1
|
Fugami K, Black GS, Kowalczyk T, Seda T, Gilbertson JD. Intermolecular N-N Coupling of a Dinitrosyl Iron Complex Induced by Hydrogen Bond Donors in the Secondary Coordination Sphere. J Am Chem Soc 2025; 147:7274-7281. [PMID: 39969499 PMCID: PMC11887047 DOI: 10.1021/jacs.4c12787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 02/02/2025] [Accepted: 02/04/2025] [Indexed: 02/20/2025]
Abstract
The intermolecular N-N coupling of NO in a dinitrosyl iron complex (DNIC) induced by hydrogen bond donors in the secondary coordination sphere to form N2O is reported. A family of complexes containing pendant anilines in the secondary coordination sphere were synthesized and characterized. Reduction of the {Fe(NO)2}9 complex [Fe(PhNHPDI)(NO)2][BPh4] (3) to the {Fe(NO)2}10 Fe(PhNHPDI)(NO)2 (4) results in intermolecular N-N coupling to form N2O. Similar reactions of the control {Fe(NO)2}9 complex [Fe(PhNMePDI)(NO)2][BPh4] (7), which does not have H-bonding groups in the secondary coordination sphere, do not result in N2O formation. The hydrogen bonding capabilities of the complexes were explored spectroscopically and computationally.
Collapse
Affiliation(s)
- Kayla
M. Fugami
- Department
of Chemistry, Western Washington University, Bellingham, Washington 98225, United States
| | - Gabriel S. Black
- Department
of Chemistry, Western Washington University, Bellingham, Washington 98225, United States
| | - Tim Kowalczyk
- Department
of Chemistry, Western Washington University, Bellingham, Washington 98225, United States
| | - Takele Seda
- Department
of Physics, Western Washington University, Bellingham, Washington 98225, United States
| | - John D. Gilbertson
- Department
of Chemistry, Western Washington University, Bellingham, Washington 98225, United States
| |
Collapse
|
2
|
Appelgren S, Ädelroth P. Insertion of the Fe B cofactor in cNORs lacking metal inserting chaperones. FEBS Lett 2025. [PMID: 39927524 DOI: 10.1002/1873-3468.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 11/26/2024] [Accepted: 01/16/2025] [Indexed: 02/11/2025]
Abstract
Cytochrome c-dependent nitric oxide reductase (cNOR) catalyzes the reduction of NO into nitrous oxide (N2O), a strong greenhouse gas released from denitrifying microorganisms. The cNOR active site holds an essential non-heme iron, FeB, inserted using the chaperone complex NorQD. However, in Thermus thermophilus, the cNOR (TtcNOR) cluster lacks the norQD genes. Here we investigated FeB insertion into TtcNOR and characterized and compared TtcNOR expressed in Escherichia coli to that natively produced. We show that FeB is present in the natively produced TtcNOR only. Analysis of cNOR operon sequences suggests that a hydrophilic K-pathway analogue is present in cNORs that do not rely on NorQD for iron insertion. We discuss the implications of our data for the evolution of the NOR family.
Collapse
Affiliation(s)
- Sofia Appelgren
- Department of Biochemistry and Biophysics, Stockholm University, Sweden
| | - Pia Ädelroth
- Department of Biochemistry and Biophysics, Stockholm University, Sweden
| |
Collapse
|
3
|
Su Q, Domingo-Félez C, Zhi M, Jensen MM, Xu B, Ng HY, Smets BF. Formation and Fate of Reactive Nitrogen during Biological Nitrogen Removal from Water: Important Yet Often Ignored Chemical Aspects of the Nitrogen Cycle. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:22480-22501. [PMID: 39671298 DOI: 10.1021/acs.est.4c03086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2024]
Abstract
Hydroxylamine, nitrous acid, and nitric oxide are obligate intermediates or side metabolites in different nitrogen-converting microorganisms. These compounds are unstable and susceptible to the formation of highly reactive nitrogen species, including nitrogen dioxide, dinitrogen trioxide, nitroxyl, and peroxynitrite. Due to the high reactivity and cytotoxicity, the buildup of reactive nitrogen can affect the interplay of microorganisms/microbial processes, stimulate the reactions with organic compounds like organic micropollutants (OMP) and act as the precursors of nitrous oxide (N2O). However, there is little understanding of the occurrence and significance of reactive nitrogen during biological nitrogen conversions in engineered water systems. In this review, we evaluate the formation and fate of reactive nitrogen produced by microorganisms involved in biological nitrogen removal (BNR) processes, i.e., nitritation/nitrification, denitratation/denitrification, anammox, and the combined processes. While the formation of reactive nitrogen intermediates is entirely controlled by microbial activities, the consumption can be either biological or purely chemical. Changes in environmental conditions, such as redox transition, pH, and substrate availability, can imbalance the production and consumption of these reactive intermediates, thus leading to the transient accumulation of species. Based on previous experimental evidence, environmental relevance of reactive nitrogen in BNR systems, particularly related to abiotic N2O production and OMP transformation, is demonstrated.
Collapse
Affiliation(s)
- Qingxian Su
- Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, 519087 Zhuhai, China
- National University of Singapore Environmental Research Institute, 5A Engineering Drive 1, 117411 Singapore
- Department of Environmental and Resource Engineering, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Carlos Domingo-Félez
- James Watt School of Engineering, University of Glasgow, G12 8QQ Glasgow, United Kingdom
| | - Mei Zhi
- Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, 519087 Zhuhai, China
| | - Marlene Mark Jensen
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Boyan Xu
- Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, 519087 Zhuhai, China
- National University of Singapore Environmental Research Institute, 5A Engineering Drive 1, 117411 Singapore
| | - How Yong Ng
- Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, 519087 Zhuhai, China
- National University of Singapore Environmental Research Institute, 5A Engineering Drive 1, 117411 Singapore
| | - Barth F Smets
- Center for Water Technology (WATEC), Department of Biological and Chemical Engineering, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
4
|
Mariano DC, Dias GM, Castro MR, Tschoeke DA, de Oliveira FJ, Sérvulo EFC, Neves BC. Exploring the diversity and functional profile of microbial communities of Brazilian soils with high salinity and oil contamination. Heliyon 2024; 10:e34336. [PMID: 39082007 PMCID: PMC11284384 DOI: 10.1016/j.heliyon.2024.e34336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/01/2024] [Accepted: 07/08/2024] [Indexed: 08/02/2024] Open
Abstract
Environmental pollution associated with the petroleum industry is a major problem worldwide. Microbial degradation is extremely important whether in the extractive process or in bioremediation of contaminants. Assessing the local microbiota and its potential for degradation is crucial for implementing effective bioremediation strategies. Herein, contaminated soil samples of onshore oil fields from a semiarid region in the Northeast of Brazil were investigated using metagenomics and metataxonomics. These soils exhibited hydrocarbon contamination and high salinity indices, while a control sample was collected from an uncontaminated area. The shotgun analysis revealed the predominance of Actinomycetota and Pseudomonadota, while 16S rRNA gene amplicon analysis of the samples showed Actinomycetota, Bacillota, and Pseudomonadota as the most abundant. The Archaea domain phylotypes were assigned to Thermoproteota and Methanobacteriota. Functional analysis and metabolic profile of the soil microbiomes exhibited a broader metabolic repertoire in the uncontaminated soil, while degradation pathways and surfactant biosynthesis presented higher values in the contaminated soils, where degradation pathways of xenobiotic and aromatic compounds were also present. Biosurfactant synthetic pathways were abundant, with predominance of lipopeptides. The present work uncovers several microbial drivers of oil degradation and mechanisms of adaptation to high salinity, which are pivotal traits for sustainable soil recovery strategies.
Collapse
Affiliation(s)
- Danielly C.O. Mariano
- Instituto de Química, Universidade Federal do Rio de Janeiro (UFRJ), Brazil
- Escola de Química, Universidade Federal do Rio de Janeiro (UFRJ), Brazil
| | - Graciela Maria Dias
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Brazil
| | - Michele Rocha Castro
- Instituto de Química, Universidade Federal do Rio de Janeiro (UFRJ), Brazil
- Departamento de Biologia, Instituto Federal do Rio de Janeiro (IFRJ), Brazil
| | - Diogo Antonio Tschoeke
- Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia (COPPE), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | | | | | - Bianca Cruz Neves
- Instituto de Química, Universidade Federal do Rio de Janeiro (UFRJ), Brazil
| |
Collapse
|
5
|
Matsuda K, Nakahara Y, Choirunnisa AR, Arima K, Wakimoto T. Phylogeny-guided Characterization of Bacterial Hydrazine Biosynthesis Mediated by Cupin/methionyl tRNA Synthetase-like Enzymes. Chembiochem 2024; 25:e202300838. [PMID: 38403952 DOI: 10.1002/cbic.202300838] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/27/2024] [Accepted: 02/25/2024] [Indexed: 02/27/2024]
Abstract
Cupin/methionyl-tRNA synthetase (MetRS)-like didomain enzymes catalyze nitrogen-nitrogen (N-N) bond formation between Nω-hydroxylamines and amino acids to generate hydrazines, key biosynthetic intermediates of various natural products containing N-N bonds. While the combination of these two building blocks leads to the creation of diverse hydrazine products, the full extent of their structural diversity remains largely unknown. To explore this, we herein conducted phylogeny-guided genome-mining of related hydrazine biosynthetic pathways consisting of two enzymes: flavin-dependent Nω-hydroxylating monooxygenases (NMOs) that produce Nω-hydroxylamine precursors and cupin/MetRS-like enzymes that couple the Nω-hydroxylamines with amino acids via N-N bonds. A phylogenetic analysis identified the largely unexplored sequence spaces of these enzyme families. The biochemical characterization of NMOs demonstrated their capabilities to produce various Nω-hydroxylamines, including those previously not known as precursors of N-N bonds. Furthermore, the characterization of cupin/MetRS-like enzymes identified five new hydrazine products with novel combinations of building blocks, including one containing non-amino acid building blocks: 1,3-diaminopropane and putrescine. This study substantially expanded the variety of N-N bond forming pathways mediated by cupin/MetRS-like enzymes.
Collapse
Affiliation(s)
- Kenichi Matsuda
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-ku, Sapporo, 060-0812, Japan
| | - Yuto Nakahara
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-ku, Sapporo, 060-0812, Japan
| | - Atina Rizkiya Choirunnisa
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-ku, Sapporo, 060-0812, Japan
| | - Kuga Arima
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-ku, Sapporo, 060-0812, Japan
| | - Toshiyuki Wakimoto
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-ku, Sapporo, 060-0812, Japan
| |
Collapse
|
6
|
Li D, Sun Z, Luo G, Lu L, Zhang S, Xi J. Enhancing biological conversion of NO to N 2O by utilizing thermophiles instead of mesophiles. CHEMOSPHERE 2024; 350:141037. [PMID: 38147927 DOI: 10.1016/j.chemosphere.2023.141037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/24/2023] [Accepted: 12/23/2023] [Indexed: 12/28/2023]
Abstract
The production of nitrous oxide (N2O) through the biological denitrification of nitric oxide (NO) from flue gases has recently been achieved. Although the temperature of flue gas after desulphurization is usually 45-70 °C, all previous studies conducted microbial denitrification of NO under mesophilic conditions (22-35 °C). This study investigated the biological conversion of NO to N2O in both mesophilic (35-45 °C) and thermophilic conditions (45-50 °C). The results showed that temperature has a great impact on N2O production, with a maximum conversion efficiency (from NO to N2O) of 82% achieved at 45 °C, which is obviously higher than the reported conversion efficiencies (24-71%) under mesophilic conditions. Additionally, high-throughput sequencing result showed that the genera Enterococcus, Clostridium, Romboutsia, and Streptococcus were closely related to NO denitrification and N2O production. Microbial communities at 40 and 45 °C had greater metabolizing capacities for polymeric carbon sources. This study suggests that thermophilic condition (45 °C) is more suitable for biological production of N2O from NO.
Collapse
Affiliation(s)
- Dan Li
- Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Zhuqiu Sun
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Ga Luo
- Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Lichao Lu
- School of Petrochemical Engineering and Environment, Zhejiang Ocean University, Zhoushan, 316004, China
| | - Shaobo Zhang
- Beijing Capital Sludge Disposal Technology Co. LTD, 100044, Beijing, China
| | - Jinying Xi
- Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
7
|
Kanematsu Y, Kondo HX, Takano Y. Computational Exploration of Minimum Energy Reaction Pathway of N 2O Formation from Intermediate I of P450nor Using an Active Center Model. Int J Mol Sci 2023; 24:17172. [PMID: 38139001 PMCID: PMC10743073 DOI: 10.3390/ijms242417172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/30/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
P450nor is a heme-containing enzyme that catalyzes the conversion of nitric oxide (NO) to nitrous oxide (N2O). Its catalytic mechanism has attracted attention in chemistry, biology, and environmental engineering. The catalytic cycle of P450nor is proposed to consist of three major steps. The reaction mechanism for the last step, N2O generation, remains unknown. In this study, the reaction pathway of the N2O generation from the intermediate I was explored with the B3LYP calculations using an active center model after the examination of the validity of the model. In the validation, we compared the heme distortions between P450nor and other oxidoreductases, suggesting a small effect of protein environment on the N2O generation reaction in P450nor. We then evaluated the electrostatic environment effect of P450nor on the hydride affinity to the active site with quantum mechanics/molecular mechanics (QM/MM) calculations, confirming that the affinity was unchanged with or without the protein environment. The active center model for P450nor showed that the N2O generation process in the enzymatic reaction undergoes a reasonable barrier height without protein environment. Consequently, our findings strongly suggest that the N2O generation reaction from the intermediate I depends sorely on the intrinsic reactivity of the heme cofactor bound on cysteine residue.
Collapse
Affiliation(s)
- Yusuke Kanematsu
- Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Japan
- Graduate School of Information Sciences, Hiroshima City University, 3-4-1 Ozukahigashi Asaminamiku, Hiroshima 731-3194, Japan;
| | - Hiroko X. Kondo
- Graduate School of Information Sciences, Hiroshima City University, 3-4-1 Ozukahigashi Asaminamiku, Hiroshima 731-3194, Japan;
- Faculty of Engineering, Kitami Institute of Technology, 165 Koen-cho, Kitami 090-8507, Japan
| | - Yu Takano
- Graduate School of Information Sciences, Hiroshima City University, 3-4-1 Ozukahigashi Asaminamiku, Hiroshima 731-3194, Japan;
| |
Collapse
|
8
|
Krzyżanowska DM, Jabłońska M, Kaczyński Z, Czerwicka-Pach M, Macur K, Jafra S. Host-adaptive traits in the plant-colonizing Pseudomonas donghuensis P482 revealed by transcriptomic responses to exudates of tomato and maize. Sci Rep 2023; 13:9445. [PMID: 37296159 PMCID: PMC10256816 DOI: 10.1038/s41598-023-36494-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 06/05/2023] [Indexed: 06/12/2023] Open
Abstract
Pseudomonads are metabolically flexible and can thrive on different plant hosts. However, the metabolic adaptations required for host promiscuity are unknown. Here, we addressed this knowledge gap by employing RNAseq and comparing transcriptomic responses of Pseudomonas donghuensis P482 to root exudates of two plant hosts: tomato and maize. Our main goal was to identify the differences and the common points between these two responses. Pathways upregulated only by tomato exudates included nitric oxide detoxification, repair of iron-sulfur clusters, respiration through the cyanide-insensitive cytochrome bd, and catabolism of amino and/or fatty acids. The first two indicate the presence of NO donors in the exudates of the test plants. Maize specifically induced the activity of MexE RND-type efflux pump and copper tolerance. Genes associated with motility were induced by maize but repressed by tomato. The shared response to exudates seemed to be affected both by compounds originating from the plants and those from their growth environment: arsenic resistance and bacterioferritin synthesis were upregulated, while sulfur assimilation, sensing of ferric citrate and/or other iron carriers, heme acquisition, and transport of polar amino acids were downregulated. Our results provide directions to explore mechanisms of host adaptation in plant-associated microorganisms.
Collapse
Affiliation(s)
- Dorota M Krzyżanowska
- Laboratory of Plant Microbiology, Intercollegiate Faculty of Biotechnology UG and MUG, University of Gdańsk, ul. A. Abrahama 58, 80-307, Gdańsk, Poland
| | - Magdalena Jabłońska
- Laboratory of Plant Microbiology, Intercollegiate Faculty of Biotechnology UG and MUG, University of Gdańsk, ul. A. Abrahama 58, 80-307, Gdańsk, Poland
| | - Zbigniew Kaczyński
- Laboratory of Structural Biochemistry, Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Małgorzata Czerwicka-Pach
- Laboratory of Structural Biochemistry, Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Katarzyna Macur
- Laboratory of Mass Spectrometry, Intercollegiate Faculty of Biotechnology UG and MUG, University of Gdańsk, ul. A. Abrahama 58, 80-307, Gdańsk, Poland
| | - Sylwia Jafra
- Laboratory of Plant Microbiology, Intercollegiate Faculty of Biotechnology UG and MUG, University of Gdańsk, ul. A. Abrahama 58, 80-307, Gdańsk, Poland.
| |
Collapse
|
9
|
Bhadra M, Albert T, Franke A, Josef V, Ivanović-Burmazović I, Swart M, Moënne-Loccoz P, Karlin KD. Reductive Coupling of Nitric Oxide by Cu(I): Stepwise Formation of Mono- and Dinitrosyl Species En Route to a Cupric Hyponitrite Intermediate. J Am Chem Soc 2023; 145:2230-2242. [PMID: 36652374 PMCID: PMC10122266 DOI: 10.1021/jacs.2c09874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Transition-metal-mediated reductive coupling of nitric oxide (NO(g)) to nitrous oxide (N2O(g)) has significance across the fields of industrial chemistry, biochemistry, medicine, and environmental health. Herein, we elucidate a density functional theory (DFT)-supplemented mechanism of NO(g) reductive coupling at a copper-ion center, [(tmpa)CuI(MeCN)]+ (1) {tmpa = tris(2-pyridylmethyl)amine}. At -110 °C in EtOH (<-90 °C in MeOH), exposing 1 to NO(g) leads to a new binuclear hyponitrite intermediate [{(tmpa)CuII}2(μ-N2O22-)]2+ (2), exhibiting temperature-dependent irreversible isomerization to the previously characterized κ2-O,O'-trans-[(tmpa)2Cu2II(μ-N2O22-)]2+ (OOXray) complex. Complementary stopped-flow kinetic analysis of the reaction in MeOH reveals an initial mononitrosyl species [(tmpa)Cu(NO)]+ (1-(NO)) that binds a second NO molecule, forming a dinitrosyl species [(tmpa)CuII(NO)2] (1-(NO)2). The decay of 1-(NO)2 requires an available starting complex 1 to form a dicopper-dinitrosyl species hypothesized to be [{(tmpa)Cu}2(μ-NO)2]2+ (D) bearing a diamond-core motif, en route to the formation of hyponitrite intermediate 2. In contrast, exposing 1 to NO(g) in 2-MeTHF/THF (v/v 4:1) at <-80 °C leads to the newly observed transient metastable dinitrosyl species [(tmpa)CuII(NO)2] (1-(NO)2) prior to its disproportionation-mediated transformation to the nitrite product [(tmpa)CuII(NO2)]+. Our study furnishes a near-complete profile of NO(g) activation at a reduced Cu site with tripodal tetradentate ligation in two distinctly different solvents, aided by detailed spectroscopic characterization of metastable intermediates, including resonance Raman characterization of the new dinitrosyl and hyponitrite species detected.
Collapse
Affiliation(s)
- Mayukh Bhadra
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Therese Albert
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - Alicja Franke
- Department of Chemistry and Pharmacy, Friedrich-Alexander University Erlangen-Nuremberg, 91058 Erlangen, Germany
- Department of Chemistry, Ludwig-Maximilians University, Munich, 81377 Munich, Germany
| | - Verena Josef
- Department of Chemistry and Pharmacy, Friedrich-Alexander University Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Ivana Ivanović-Burmazović
- Department of Chemistry and Pharmacy, Friedrich-Alexander University Erlangen-Nuremberg, 91058 Erlangen, Germany
- Department of Chemistry, Ludwig-Maximilians University, Munich, 81377 Munich, Germany
| | - Marcel Swart
- IQCC & Departament de Química, Universitat de Girona, Campus Montilivi (Ciencies), 17003 Girona, Spain
- ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
| | - Pierre Moënne-Loccoz
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - Kenneth D Karlin
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
10
|
Zha Y, Wan R, Wu M, Ye P, Ye L, Li X, Yang H, Luo J. A hormesis-like effect of FeS on heterotrophic denitrification and its mechanisms. CHEMOSPHERE 2023; 311:136855. [PMID: 36243086 DOI: 10.1016/j.chemosphere.2022.136855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/03/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023]
Abstract
To alleviate the insufficiency of carbon source in sewage, many sulfur-containing inorganic electron donors were added into traditional heterotrophic denitrification process. However, the effects of extraneous inorganic electron donors on heterotrophic denitrification were still largely unknown. In this study, a hormesis-like effect of ferrous sulfide (FeS, a representative inorganic electron donors) on Paracoccus denitrificans was observed. Total nitrogen (TN) removal efficiency of P. denitrificans rose by 15% with the increase of FeS dosage from 0 to 0.3 g L-1 (low level), whereas the TN removal significantly decreased to 53% as the dosage of FeS mounted up to 5.0 g L-1 (high level). Furthermore, the impacts of FeS on glucose utilization and bacterial growth exhibited hormesis-like effects. A subsequent mechanistic study revealed that above influences were caused by its released ions (Fe2+, Fe3+, and S2-) rather than particle size. Further study illustrated that low dosage of FeS released a small amount of Fe2+ and Fe3+, which provided sufficient electrons via promoting glucose utilization, then improved denitrification. Conversely, FeS with high dosage inhibited denitrification via its released S2-, which suppressed the activity of key denitrifying enzymes rather than influenced glucose metabolism and electron provision. Our results provide an insight into improving denitrification efficiency of the mixotrophic process coexisting with autotrophic and heterotrophic denitrifiers.
Collapse
Affiliation(s)
- Yunyi Zha
- School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui, 241002, China
| | - Rui Wan
- School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui, 241002, China.
| | - Mengqi Wu
- School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui, 241002, China
| | - Ping Ye
- School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui, 241002, China
| | - Liangtao Ye
- School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui, 241002, China
| | - Xiaoxiao Li
- School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui, 241002, China
| | - Haifeng Yang
- Anhui Phoneya Environmental Technology Co. Ltd., Donghu Innovation Center, Hefei, Anhui, 230601, China
| | - Jingyang Luo
- College of Environment, Hohai University, Nanjing, 210098, China
| |
Collapse
|
11
|
Singh AK, Nakhate SP, Gupta RK, Chavan AR, Poddar BJ, Prakash O, Shouche YS, Purohit HJ, Khardenavis AA. Mining the landfill soil metagenome for denitrifying methanotrophic taxa and validation of methane oxidation in microcosm. ENVIRONMENTAL RESEARCH 2022; 215:114199. [PMID: 36058281 DOI: 10.1016/j.envres.2022.114199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 05/21/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
In the present study, the microbial community residing at different depths of the landfill was characterized to assess their roles in serving as a methane sink. Physico-chemical characterization revealed the characteristic signatures of anaerobic degradation of organic matter in the bottom soil (50-60 cm) and, active process of aerobic denitrification in the top soil (0-10 cm). This was also reflected from the higher abundance of bacterial domain in the top soil metagenome represented by dominant phyla Proteobacteria and Actinobacteria which are prime decomposers of organic matter in landfill soils. The multiple fold higher relative abundances of the two most abundant genera; Streptomyces and Intrasporangium in the top soil depicted greater denitrifying taxa in top soil than the bottom soil. Amongst the aerobic methanotrophs, the genera Methylomonas, Methylococcus, Methylocella, and Methylacidiphilum were abundantly found in the top soil metagenome that were essential for oxidizing methane generated in the landfill. On the other hand, the dominance of archaeal domain represented by Methanosarcina and Methanoculleus in the bottom soil highlighted the complete anaerobic digestion of organic components via acetoclasty, carboxydotrophy, hydrogenotrophy, methylotrophy. Functional characterization revealed a higher abundance of methane monooxygenase gene in the top soil and methyl coenzyme M reductase gene in the bottom soil that correlated with the higher relative abundance of aerobic methanotrophs in the top soil while methane generation being the active process in the highly anaerobic bottom soil in the landfill. The activity dependent abundance of endogenous microbial communities in the different zones of the landfill was further validated by microcosm studies in serum bottles which established the ability of the methanotrophic community for methane metabolism in the top soil and their potential to serve as sink for methane. The study provides a better understanding about the methanotrophs in correlation with their endogenous environment, so that these bacteria can be used in resolving the environmental issues related to methane and nitrogen management at landfill site.
Collapse
Affiliation(s)
- Ashish Kumar Singh
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur, 440020, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Suraj Prabhakarrao Nakhate
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur, 440020, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Rakesh Kumar Gupta
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur, 440020, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Atul Rajkumar Chavan
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur, 440020, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Bhagyashri Jagdishprasad Poddar
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur, 440020, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Om Prakash
- National Centre for Microbial Resource, National Centre for Cell Sciences, Pune, Maharashtra, 411007, India
| | - Yogesh S Shouche
- National Centre for Microbial Resource, National Centre for Cell Sciences, Pune, Maharashtra, 411007, India
| | - Hemant J Purohit
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur, 440020, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Anshuman Arun Khardenavis
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur, 440020, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
12
|
Lee YJ, Lin BL, Lei Z. Nitrous oxide emission mitigation from biological wastewater treatment - A review. BIORESOURCE TECHNOLOGY 2022; 362:127747. [PMID: 35964917 DOI: 10.1016/j.biortech.2022.127747] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
Nitrous oxide (N2O) emitted from wastewater treatment processes has emerged as a focal point for academic and practical research amidst pressing environmental issues. This review presents an updated view on the biological pathways for N2O production and consumption in addition to the critical process factors affecting N2O emission. The current research trends including the strain and reactor aspects were then outlined with discussions. Last but not least, the research needs were proposed. The holistic life cycle assessment needs to be performed to evaluate the technical and economic feasibility of the proposed mitigation strategies or recovery options. This review also provides the background information for the proposed future research prospects on N2O mitigation and recovery technologies. As pointed out, dilution effects of the produced N2O gas product would hinder its use as renewable energy; instead, its use as an effective oxidizing agent is proposed as a promising recovery option.
Collapse
Affiliation(s)
- Yu-Jen Lee
- Department of Chemical Engineering, National Taiwan University, Taipei 10649, Taiwan
| | - Bin-le Lin
- Research Institute of Science for Safety and Sustainability, National Institute of Advanced Industrial Science and Technology, 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
| | - Zhongfang Lei
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan.
| |
Collapse
|
13
|
Cheng YI, Lin YC, Leu JY, Kuo CH, Chu HA. Comparative analysis reveals distinctive genomic features of Taiwan hot-spring cyanobacterium Thermosynechococcus sp. TA-1. Front Microbiol 2022; 13:932840. [PMID: 36033852 PMCID: PMC9403480 DOI: 10.3389/fmicb.2022.932840] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
Thermosynechococcus is a genus of thermophilic unicellular cyanobacteria that dominates microbial mats in Asian non-acidic hot springs. These cyanobacteria are the major primary producers in their ecological niches and are promising sources of thermostable enzymes for biotechnology applications. To improve our understanding of these organisms, we conducted whole-genome sequencing of a novel strain for comparative analysis with other representatives in the same genus. This newly characterized strain, Thermosynechococcus sp. TA-1, was isolated from the Taian hot springs in Taiwan. Analyses based on average nucleotide identity (ANI) and genome-scale phylogeny suggested that TA-1 and another Taiwanese strain CL-1 belong to a novel species-level taxon. Two metagenome-assembled genomes (MAGs) originated from India represent the sister group, and Thermosynechococcus elongatus PKUAC-SCTE542 from China is the next closest lineage. All cultivated strains and MAGs from Japan form a separate monophyletic clade and could be classified into two species-level taxa. Intriguingly, although TA-1 and CL-1 share 97.0% ANI, the genome alignment identified at least 16 synteny breakpoints that are mostly associated with transposase genes, which illustrates the dynamic nature of their chromosomal evolution. Gene content comparisons identified multiple features distinct at species- or strain-level among these Thermosynechococcus representatives. Examples include genes involved in bicarbonate transportation, nitric oxide protection, urea utilization, kanamycin resistance, restriction-modification system, and chemotaxis. Moreover, we observed the insertion of type II inteins in multiple genes of the two Taiwanese strains and inferred putative horizontal transfer of an asparagine synthase gene (asnB) associated with exopolysaccharides gene cluster. Taken together, while previous work suggested that strains in this genus share a highly conserved genomic core and no clear genetic differentiation could be linked to environmental factors, we found that the overall pattern of gene content divergence is largely congruent with core genome phylogeny. However, it is difficult to distinguish between the roles of phylogenetic relatedness and geographic proximity in shaping the genetic differentiation. In conclusion, knowledge of the genomic differentiation among these strains provides valuable resources for future functional characterization.
Collapse
Affiliation(s)
- Yen-I Cheng
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Yu-Chen Lin
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Jyh-Yih Leu
- Department of Life Science, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Chih-Horng Kuo
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- *Correspondence: Chih-Horng Kuo,
| | - Hsiu-An Chu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- Hsiu-An Chu,
| |
Collapse
|
14
|
Chautrand T, Souak D, Chevalier S, Duclairoir-Poc C. Gram-Negative Bacterial Envelope Homeostasis under Oxidative and Nitrosative Stress. Microorganisms 2022; 10:924. [PMID: 35630368 PMCID: PMC9144841 DOI: 10.3390/microorganisms10050924] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/15/2022] [Accepted: 04/21/2022] [Indexed: 12/15/2022] Open
Abstract
Bacteria are frequently exposed to endogenous and exogenous reactive oxygen and nitrogen species which can damage various biomolecules such as DNA, lipids, and proteins. High concentrations of these molecules can induce oxidative and nitrosative stresses in the cell. Reactive oxygen and nitrogen species are notably used as a tool by prokaryotes and eukaryotes to eradicate concurrent species or to protect themselves against pathogens. The main example is mammalian macrophages that liberate high quantities of reactive species to kill internalized bacterial pathogens. As a result, resistance to these stresses is determinant for the survival of bacteria, both in the environment and in a host. The first bacterial component in contact with exogenous molecules is the envelope. In Gram-negative bacteria, this envelope is composed of two membranes and a layer of peptidoglycan lodged between them. Several mechanisms protecting against oxidative and nitrosative stresses are present in the envelope, highlighting the importance for the cell to deal with reactive species in this compartment. This review aims to provide a comprehensive view of the challenges posed by oxidative and nitrosative stresses to the Gram-negative bacterial envelope and the mechanisms put in place in this compartment to prevent and repair the damages they can cause.
Collapse
Affiliation(s)
| | | | | | - Cécile Duclairoir-Poc
- Research Unit Bacterial Communication and Anti-infectious Strategies (UR CBSA), Rouen Normandy University, Normandy University, 55 rue Saint-Germain, 27000 Evreux, France; (T.C.); (D.S.); (S.C.)
| |
Collapse
|
15
|
Bhunia S, Ghatak A, Dey A. Second Sphere Effects on Oxygen Reduction and Peroxide Activation by Mononuclear Iron Porphyrins and Related Systems. Chem Rev 2022; 122:12370-12426. [PMID: 35404575 DOI: 10.1021/acs.chemrev.1c01021] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Activation and reduction of O2 and H2O2 by synthetic and biosynthetic iron porphyrin models have proved to be a versatile platform for evaluating second-sphere effects deemed important in naturally occurring heme active sites. Advances in synthetic techniques have made it possible to install different functional groups around the porphyrin ligand, recreating artificial analogues of the proximal and distal sites encountered in the heme proteins. Using judicious choices of these substituents, several of the elegant second-sphere effects that are proposed to be important in the reactivity of key heme proteins have been evaluated under controlled environments, adding fundamental insight into the roles played by these weak interactions in nature. This review presents a detailed description of these efforts and how these have not only demystified these second-sphere effects but also how the knowledge obtained resulted in functional mimics of these heme enzymes.
Collapse
Affiliation(s)
- Sarmistha Bhunia
- School of Chemical Science, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata 700032, India
| | - Arnab Ghatak
- School of Chemical Science, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata 700032, India
| | - Abhishek Dey
- School of Chemical Science, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata 700032, India
| |
Collapse
|
16
|
Schwartz SL, Momper L, Rangel LT, Magnabosco C, Amend JP, Fournier GP. Novel nitrite reductase domain structure suggests a chimeric denitrification repertoire in the phylum Chloroflexi. Microbiologyopen 2022; 11:e1258. [PMID: 35212484 PMCID: PMC8756737 DOI: 10.1002/mbo3.1258] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 09/09/1999] [Accepted: 12/02/2021] [Indexed: 12/22/2022] Open
Abstract
Denitrification plays a central role in the global nitrogen cycle, reducing and removing nitrogen from marine and terrestrial ecosystems. The flux of nitrogen species through this pathway has a widespread impact, affecting ecological carrying capacity, agriculture, and climate. Nitrite reductase (Nir) and nitric oxide reductase (NOR) are the two central enzymes in this pathway. Here we present a previously unreported Nir domain architecture in members of phylum Chloroflexi. Phylogenetic analyses of protein domains within Nir indicate that an ancestral horizontal transfer and fusion event produced this chimeric domain architecture. We also identify an expanded genomic diversity of a rarely reported NOR subtype, eNOR. Together, these results suggest a greater diversity of denitrification enzyme arrangements exist than have been previously reported.
Collapse
Affiliation(s)
- Sarah L. Schwartz
- Microbiology Graduate ProgramMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
- Department of Earth, Atmospheric, and Planetary SciencesMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Lily Momper
- Department of Earth, Atmospheric, and Planetary SciencesMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
- Exponent Inc.PasadenaCaliforniaUSA
| | - Luiz Thiberio Rangel
- Department of Earth, Atmospheric, and Planetary SciencesMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | | | - Jan P. Amend
- Department of Earth SciencesUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Department of Biological SciencesUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Gregory P. Fournier
- Department of Earth, Atmospheric, and Planetary SciencesMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| |
Collapse
|
17
|
Lehnert N, Kim E, Dong HT, Harland JB, Hunt AP, Manickas EC, Oakley KM, Pham J, Reed GC, Alfaro VS. The Biologically Relevant Coordination Chemistry of Iron and Nitric Oxide: Electronic Structure and Reactivity. Chem Rev 2021; 121:14682-14905. [PMID: 34902255 DOI: 10.1021/acs.chemrev.1c00253] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Nitric oxide (NO) is an important signaling molecule that is involved in a wide range of physiological and pathological events in biology. Metal coordination chemistry, especially with iron, is at the heart of many biological transformations involving NO. A series of heme proteins, nitric oxide synthases (NOS), soluble guanylate cyclase (sGC), and nitrophorins, are responsible for the biosynthesis, sensing, and transport of NO. Alternatively, NO can be generated from nitrite by heme- and copper-containing nitrite reductases (NIRs). The NO-bearing small molecules such as nitrosothiols and dinitrosyl iron complexes (DNICs) can serve as an alternative vehicle for NO storage and transport. Once NO is formed, the rich reaction chemistry of NO leads to a wide variety of biological activities including reduction of NO by heme or non-heme iron-containing NO reductases and protein post-translational modifications by DNICs. Much of our understanding of the reactivity of metal sites in biology with NO and the mechanisms of these transformations has come from the elucidation of the geometric and electronic structures and chemical reactivity of synthetic model systems, in synergy with biochemical and biophysical studies on the relevant proteins themselves. This review focuses on recent advancements from studies on proteins and model complexes that not only have improved our understanding of the biological roles of NO but also have provided foundations for biomedical research and for bio-inspired catalyst design in energy science.
Collapse
Affiliation(s)
- Nicolai Lehnert
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Eunsuk Kim
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Hai T Dong
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Jill B Harland
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Andrew P Hunt
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Elizabeth C Manickas
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Kady M Oakley
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - John Pham
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Garrett C Reed
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Victor Sosa Alfaro
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|
18
|
New Inhibitors of Laccase and Tyrosinase by Examination of Cross-Inhibition between Copper-Containing Enzymes. Int J Mol Sci 2021; 22:ijms222413661. [PMID: 34948458 PMCID: PMC8707586 DOI: 10.3390/ijms222413661] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/17/2021] [Accepted: 12/17/2021] [Indexed: 11/23/2022] Open
Abstract
Coppers play crucial roles in the maintenance homeostasis in living species. Approximately 20 enzyme families of eukaryotes and prokaryotes are known to utilize copper atoms for catalytic activities. However, small-molecule inhibitors directly targeting catalytic centers are rare, except for those that act against tyrosinase and dopamine-β-hydroxylase (DBH). This study tested whether known tyrosinase inhibitors can inhibit the copper-containing enzymes, ceruloplasmin, DBH, and laccase. While most small molecules minimally reduced the activities of ceruloplasmin and DBH, aside from known inhibitors, 5 of 28 tested molecules significantly inhibited the function of laccase, with the Ki values in the range of 15 to 48 µM. Enzyme inhibitory kinetics classified the molecules as competitive inhibitors, whereas differential scanning fluorimetry and fluorescence quenching supported direct bindings. To the best of our knowledge, this is the first report on organic small-molecule inhibitors for laccase. Comparison of tyrosinase and DBH inhibitors using cheminformatics predicted that the presence of thione moiety would suffice to inhibit tyrosinase. Enzyme assays confirmed this prediction, leading to the discovery of two new dual tyrosinase and DBH inhibitors.
Collapse
|
19
|
Wu WY, Tsai ML, Lai YA, Hsieh CH, Liaw WF. NO Reduction to N 2O Triggered by a Dinuclear Dinitrosyl Iron Complex via the Associated Pathways of Hyponitrite Formation and NO Disproportionation. Inorg Chem 2021; 60:15874-15889. [PMID: 34015211 DOI: 10.1021/acs.inorgchem.1c00541] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In spite of the comprehensive study of the metal-mediated conversion of NO to N2O disclosing the conceivable processes/mechanism in biological and biomimetic studies, in this study, the synthesis cycles and mechanism of NO reduction to N2O triggered by the electronically localized dinuclear {Fe(NO)2}10-{Fe(NO)2}9 dinitrosyl iron complex (DNIC) [Fe(NO)2(μ-bdmap)Fe(NO)2(THF)] (1) (bdmap = 1,3- bis(dimethylamino)-2-propanolate) were investigated in detail. Reductive conversion of NO to N2O triggered by complex 1 in the presence of exogenous ·NO occurs via the simultaneous formation of hyponitrite-bound {[Fe2(NO)4(μ-bdmap)]2(κ4-N2O2)} (2) and [NO2]--bridged [Fe2(NO)4(μ-bdmap)(μ-NO2)] (3) (NO disproportionation yielding N2O and complex 3). EPR/IR spectra, single-crystal X-ray diffraction, and the electrochemical study uncover the reversible redox transformation of {Fe(NO)2}9-{Fe(NO)2}9 [Fe2(NO)4(μ-bdmap)(μ-OC4H8)]+ (7) ↔ {Fe(NO)2}10-{Fe(NO)2}9 1 ↔ {Fe(NO)2}10-{Fe(NO)2}10 [Fe(NO)2(μ-bdmap)Fe(NO)2]- (6) and characterize the formation of complex 1. Also, the synthesis study and DFT computation feature the detailed mechanism of electronically localized {Fe(NO)2}10-{Fe(NO)2}9 DNIC 1 reducing NO to N2O via the associated hyponitrite-formation and NO-disproportionation pathways. Presumably, the THF-bound {Fe(NO)2}9 unit of electronically localized {Fe(NO)2}10-{Fe(NO)2}9 complex 1 served as an electron buffering reservoir for accommodating electron redistribution, and the {Fe(NO)2}10 unit of complex 1 acted as an electron-transfer channel to drive exogeneous ·NO coordination to yield proposed relay intermediate κ2-N,O-[NO]--bridged [Fe2(NO)4(μ-bdmap)(μ-NO)] (A) for NO reduction to N2O.
Collapse
Affiliation(s)
- Wun-Yan Wu
- Department of Chemistry and Frontier Research Center of Fundamental and Applied Science of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Ming-Li Tsai
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Yi-An Lai
- Department of Chemistry and Frontier Research Center of Fundamental and Applied Science of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Chieh-Hsin Hsieh
- Department of Chemistry and Frontier Research Center of Fundamental and Applied Science of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Wen-Feng Liaw
- Department of Chemistry and Frontier Research Center of Fundamental and Applied Science of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
20
|
Marks WR, Reinheimer EW, Seda T, Zakharov LN, Gilbertson JD. NO Coupling by Nonclassical Dinuclear Dinitrosyliron Complexes to Form N 2O Dictated by Hemilability. Inorg Chem 2021; 60:15901-15909. [PMID: 34514780 DOI: 10.1021/acs.inorgchem.1c02285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Selective coupling of NO by a nonclassical dinuclear dinitrosyliron complex (D-DNIC) to form N2O is reported. The coupling is facilitated by the pyridinediimine (PDI) ligand scaffold, which enables the necessary denticity changes to produce mixed-valent, electron-deficient tethered DNICs. One-electron oxidation of the [{Fe(NO)2}]210/10 complex Fe2(PyrrPDI)(NO)4 (4) results in NO coupling to form N2O via the mixed-valent {[Fe(NO)2]2}9/10 species, which possesses an electron-deficient four-coordinate {Fe(NO)2}10 site, crucial in N-N bond formation. The hemilability of the PDI scaffold dictates the selectivity in N-N bond formation because stabilization of the five-coordinate {Fe(NO)2}9 site in the mixed-valent [{Fe(NO)2}]29/10 species, [Fe2(Pyr2PDI)(NO)4][PF6] (6), does not result in an electron-deficient, four-coordinate {Fe(NO)2}10 site, and hence no N-N coupling is observed.
Collapse
Affiliation(s)
- Walker R Marks
- Department of Chemistry, Western Washington University, Bellingham, Washington 98225, United States
| | | | - Takele Seda
- Department of Physics, Western Washington University, Bellingham, Washington 98225, United States
| | - Lev N Zakharov
- Department of Chemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - John D Gilbertson
- Department of Chemistry, Western Washington University, Bellingham, Washington 98225, United States
| |
Collapse
|
21
|
Affiliation(s)
- Sven T. Stripp
- Freie Universität Berlin, Department of Physics, Arnimallee 14, 14195 Berlin, Germany
| |
Collapse
|
22
|
Abstract
When attempting to propagate infections, bacterial pathogens encounter phagocytes that encase them in vacuoles called phagosomes. Within phagosomes, bacteria are bombarded with a plethora of stresses that often lead to their demise. However, pathogens have evolved numerous strategies to counter those host defenses and facilitate survival. Given the importance of phagosome-bacteria interactions to infection outcomes, they represent a collection of targets that are of interest for next-generation antibacterials. To facilitate such therapies, different approaches can be employed to increase understanding of phagosome-bacteria interactions, and these can be classified broadly as top down (starting from intact systems and breaking down the importance of different parts) or bottom up (developing a knowledge base on simplified systems and progressively increasing complexity). Here we review knowledge of phagosomal compositions and bacterial survival tactics useful for bottom-up approaches, which are particularly relevant for the application of reaction engineering to quantify and predict the time evolution of biochemical species in these death-dealing vacuoles. Further, we highlight how understanding in this area can be built up through the combination of immunology, microbiology, and engineering.
Collapse
Affiliation(s)
- Darshan M Sivaloganathan
- Program in Quantitative and Computational Biology, Princeton University, Princeton, New Jersey 08544, USA
| | - Mark P Brynildsen
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, USA;
| |
Collapse
|
23
|
Durand S, Guillier M. Transcriptional and Post-transcriptional Control of the Nitrate Respiration in Bacteria. Front Mol Biosci 2021; 8:667758. [PMID: 34026838 PMCID: PMC8139620 DOI: 10.3389/fmolb.2021.667758] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 03/29/2021] [Indexed: 12/02/2022] Open
Abstract
In oxygen (O2) limiting environments, numerous aerobic bacteria have the ability to shift from aerobic to anaerobic respiration to release energy. This process requires alternative electron acceptor to replace O2 such as nitrate (NO3 -), which has the next best reduction potential after O2. Depending on the organism, nitrate respiration involves different enzymes to convert NO3 - to ammonium (NH4 +) or dinitrogen (N2). The expression of these enzymes is tightly controlled by transcription factors (TFs). More recently, bacterial small regulatory RNAs (sRNAs), which are important regulators of the rapid adaptation of microorganisms to extremely diverse environments, have also been shown to control the expression of genes encoding enzymes or TFs related to nitrate respiration. In turn, these TFs control the synthesis of multiple sRNAs. These results suggest that sRNAs play a central role in the control of these metabolic pathways. Here we review the complex interplay between the transcriptional and the post-transcriptional regulators to efficiently control the respiration on nitrate.
Collapse
Affiliation(s)
- Sylvain Durand
- CNRS, UMR 8261, Université de Paris, Institut de Biologie Physico-Chimique, Paris, France
| | - Maude Guillier
- CNRS, UMR 8261, Université de Paris, Institut de Biologie Physico-Chimique, Paris, France
| |
Collapse
|
24
|
Picone N, Pol A, Mesman R, van Kessel MAHJ, Cremers G, van Gelder AH, van Alen TA, Jetten MSM, Lücker S, Op den Camp HJM. Ammonia oxidation at pH 2.5 by a new gammaproteobacterial ammonia-oxidizing bacterium. THE ISME JOURNAL 2021; 15:1150-1164. [PMID: 33303933 PMCID: PMC8115276 DOI: 10.1038/s41396-020-00840-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 11/03/2020] [Accepted: 11/11/2020] [Indexed: 01/29/2023]
Abstract
Ammonia oxidation was considered impossible under highly acidic conditions, as the protonation of ammonia leads to decreased substrate availability and formation of toxic nitrogenous compounds. Recently, some studies described archaeal and bacterial ammonia oxidizers growing at pH as low as 4, while environmental studies observed nitrification at even lower pH values. In this work, we report on the discovery, cultivation, and physiological, genomic, and transcriptomic characterization of a novel gammaproteobacterial ammonia-oxidizing bacterium enriched via continuous bioreactor cultivation from an acidic air biofilter that was able to grow and oxidize ammonia at pH 2.5. This microorganism has a chemolithoautotrophic lifestyle, using ammonia as energy source. The observed growth rate on ammonia was 0.196 day-1, with a doubling time of 3.5 days. The strain also displayed ureolytic activity and cultivation with urea as ammonia source resulted in a growth rate of 0.104 day-1 and a doubling time of 6.7 days. A high ammonia affinity (Km(app) = 147 ± 14 nM) and high tolerance to toxic nitric oxide could represent an adaptation to acidic environments. Electron microscopic analysis showed coccoid cell morphology with a large amount of intracytoplasmic membrane stacks, typical of gammaproteobacterial ammonia oxidizers. Furthermore, genome and transcriptome analysis showed the presence and expression of diagnostic genes for nitrifiers (amoCAB, hao, nor, ure, cbbLS), but no nirK was identified. Phylogenetic analysis revealed that this strain belonged to a novel bacterial genus, for which we propose the name "Candidatus Nitrosacidococcus tergens" sp. RJ19.
Collapse
Affiliation(s)
- Nunzia Picone
- grid.5590.90000000122931605Department of Microbiology, IWWR, Radboud University, Heyendaalseweg 135, NL-6525 AJ Nijmegen, The Netherlands
| | - Arjan Pol
- grid.5590.90000000122931605Department of Microbiology, IWWR, Radboud University, Heyendaalseweg 135, NL-6525 AJ Nijmegen, The Netherlands
| | - Rob Mesman
- grid.5590.90000000122931605Department of Microbiology, IWWR, Radboud University, Heyendaalseweg 135, NL-6525 AJ Nijmegen, The Netherlands
| | - Maartje A. H. J. van Kessel
- grid.5590.90000000122931605Department of Microbiology, IWWR, Radboud University, Heyendaalseweg 135, NL-6525 AJ Nijmegen, The Netherlands
| | - Geert Cremers
- grid.5590.90000000122931605Department of Microbiology, IWWR, Radboud University, Heyendaalseweg 135, NL-6525 AJ Nijmegen, The Netherlands
| | - Antonie H. van Gelder
- grid.4818.50000 0001 0791 5666Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Theo A. van Alen
- grid.5590.90000000122931605Department of Microbiology, IWWR, Radboud University, Heyendaalseweg 135, NL-6525 AJ Nijmegen, The Netherlands
| | - Mike S. M. Jetten
- grid.5590.90000000122931605Department of Microbiology, IWWR, Radboud University, Heyendaalseweg 135, NL-6525 AJ Nijmegen, The Netherlands
| | - Sebastian Lücker
- grid.5590.90000000122931605Department of Microbiology, IWWR, Radboud University, Heyendaalseweg 135, NL-6525 AJ Nijmegen, The Netherlands
| | - Huub J. M. Op den Camp
- grid.5590.90000000122931605Department of Microbiology, IWWR, Radboud University, Heyendaalseweg 135, NL-6525 AJ Nijmegen, The Netherlands
| |
Collapse
|
25
|
Melin F, Hellwig P. Redox Properties of the Membrane Proteins from the Respiratory Chain. Chem Rev 2020; 120:10244-10297. [DOI: 10.1021/acs.chemrev.0c00249] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Frederic Melin
- Chimie de la Matière Complexe UMR 7140, Laboratoire de Bioelectrochimie et Spectroscopie, CNRS-Université de Strasbourg, 1 rue Blaise Pascal, 67070 Strasbourg, France
| | - Petra Hellwig
- Chimie de la Matière Complexe UMR 7140, Laboratoire de Bioelectrochimie et Spectroscopie, CNRS-Université de Strasbourg, 1 rue Blaise Pascal, 67070 Strasbourg, France
| |
Collapse
|
26
|
Chen C, Wang Y, Liu H, Chen Y, Yao J, Chen J, Hrynsphanb D, Tatsianab S. Heterologous expression and functional study of nitric oxide reductase catalytic reduction peptide from Achromobacter denitrificans strain TB. CHEMOSPHERE 2020; 253:126739. [PMID: 32464773 DOI: 10.1016/j.chemosphere.2020.126739] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 01/21/2020] [Accepted: 04/04/2020] [Indexed: 06/11/2023]
Abstract
Biological denitrification is a promising and green technology for air pollution control. To investigate the nitric oxide reductase (NOR) that dominates NO reduction efficiency in biological purification, the heterologous prokaryotic expression system of the norB gene, which encodes the core peptide of the catalytic reduction structure in the NOR from Achromobacter denitrificans strain TB, was constructed in Escherichia coli BL21 (DE3). Results showed that the 1218 bp-long norB gene was expressed at the highest level under 1.0 mM IPTG for 5 h at 30 °C, and the relative expression abundance of norB in recombinant E. coli was increased by 16.6 times compared with that of the wild-type TB. However, the NO reduction efficiency and NOR activity of strain TB was 2.7 and 1.83 times higher than those of recombinant E. coli, respectively. On the basis of genomic reassembly and protein structure modeling, the core peptide of the NOR catalytic reduction structure from Achromobacter sp. TB can independently exert NO reduction. The low NO degradation efficiency of recombinant E. coli may be due to the lack of a NorC-like structure that increases the enzyme activity of the NorB protein. The results of this study can be used as basis for further research on the structure and function of NOR.
Collapse
Affiliation(s)
- Cong Chen
- College of Environmental, Zhejiang University of Technology, Hangzhou, 310032, PR China
| | - Yu Wang
- College of Environmental, Zhejiang University of Technology, Hangzhou, 310032, PR China
| | - Huan Liu
- College of Environmental, Zhejiang University of Technology, Hangzhou, 310032, PR China
| | - Yi Chen
- College of Environmental, Zhejiang University of Technology, Hangzhou, 310032, PR China
| | - Jiachao Yao
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 310021, PR China
| | - Jun Chen
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 310021, PR China.
| | - Dzmitry Hrynsphanb
- Research Institute of Physical and Chemical Problems, Belarusian State University, Minsk, 220030, Belarus
| | - Savitskaya Tatsianab
- Research Institute of Physical and Chemical Problems, Belarusian State University, Minsk, 220030, Belarus
| |
Collapse
|
27
|
Amanullah S, Dey A. The role of porphyrin peripheral substituents in determining the reactivities of ferrous nitrosyl species. Chem Sci 2020; 11:5909-5921. [PMID: 32832056 PMCID: PMC7407271 DOI: 10.1039/d0sc01625j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 05/07/2020] [Indexed: 12/02/2022] Open
Abstract
Ferrous nitrosyl {FeNO}7 species is an intermediate common to the catalytic cycles of Cd1NiR and CcNiR, two heme-based nitrite reductases (NiR), and its reactivity varies dramatically in these enzymes.
Ferrous nitrosyl {FeNO}7 species is an intermediate common to the catalytic cycles of Cd1NiR and CcNiR, two heme-based nitrite reductases (NiR), and its reactivity varies dramatically in these enzymes. The former reduces NO2– to NO in the denitrification pathway while the latter reduces NO2– to NH4+ in a dissimilatory nitrite reduction. With very similar electron transfer partners and heme based active sites, the origin of this difference in reactivity has remained unexplained. Differences in the structure of the heme d1 (Cd1NiR), which bears electron-withdrawing groups and has saturated pyrroles, relative to heme c (CcNiR) are often invoked to explain these reactivities. A series of iron porphyrinoids, designed to model the electron-withdrawing peripheral substitution as well as the saturation present in heme d1 in Cd1NiR, and their NO adducts were synthesized and their properties were investigated. The data clearly show that the presence of electron-withdrawing groups (EWGs) and saturated pyrroles together in a synthetic porphyrinoid (FeDEsC) weakens the Fe–NO bond in {FeNO}7 adducts along with decreasing the bond dissociation free energies (BDFENH) of the {FeHNO}8 species. The EWG raises the E° of the {FeNO}7/8 process, making the electron transfer (ET) facile, but decreases the pKa of {FeNO}8 species, making protonation (PT) difficult, while saturation has the opposite effect. The weakening of the Fe–NO bonding biases the {FeNO}7 species of FeDEsC for NO dissociation, as in Cd1NiR, which is otherwise set-up for a proton-coupled electron transfer (PCET) to form an {FeHNO}8 species eventually leading to its further reduction to NH4+.
Collapse
Affiliation(s)
- Sk Amanullah
- School of Chemical Sciences , Indian Association for the Cultivation of Science , 2A & 2B Raja SC Mullick Road , Kolkata , India - 700032 .
| | - Abhishek Dey
- School of Chemical Sciences , Indian Association for the Cultivation of Science , 2A & 2B Raja SC Mullick Road , Kolkata , India - 700032 .
| |
Collapse
|
28
|
Wu W, Liaw W. Nitric oxide reduction forming hyponitrite triggered by metal‐containing complexes. J CHIN CHEM SOC-TAIP 2020. [DOI: 10.1002/jccs.201900473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Wun‐Yan Wu
- Department of Chemistry and Frontier Research Center of Fundamental and Applied Science of MattersNational Tsing Hua University Hsinchu, Taiwan Republic of China
| | - Wen‐Feng Liaw
- Department of Chemistry and Frontier Research Center of Fundamental and Applied Science of MattersNational Tsing Hua University Hsinchu, Taiwan Republic of China
| |
Collapse
|
29
|
Abucayon EG, Khade RL, Powell DR, Zhang Y, Richter-Addo GB. Not Limited to Iron: A Cobalt Heme-NO Model Facilitates N-N Coupling with External NO in the Presence of a Lewis Acid to Generate N 2 O. Angew Chem Int Ed Engl 2019; 58:18598-18603. [PMID: 31591802 PMCID: PMC6901747 DOI: 10.1002/anie.201909137] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/17/2019] [Indexed: 01/15/2023]
Abstract
Some bacterial heme proteins catalyze the coupling of two NO molecules to generate N2 O. We previously reported that a heme Fe-NO model engages in this N-N bond-forming reaction with NO. We now demonstrate that (OEP)CoII (NO) similarly reacts with 1 equiv of NO in the presence of the Lewis acids BX3 (X=F, C6 F5 ) to generate N2 O. DFT calculations support retention of the CoII oxidation state for the experimentally observed adduct (OEP)CoII (NO⋅BF3 ), the presumed hyponitrite intermediate (P.+ )CoII (ONNO⋅BF3 ), and the porphyrin π-radical cation by-product of this reaction, and that the π-radical cation formation likely occurs at the hyponitrite stage. In contrast, the Fe analogue undergoes a ferrous-to-ferric oxidation state conversion during this reaction. Our work shows that cobalt hemes are chemically competent to engage in the NO-to-N2 O conversion reaction.
Collapse
Affiliation(s)
- Erwin G. Abucayon
- Price Family Foundation of Structural Biology, Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019
| | - Rahul L. Khade
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Castle Point on Hudson, Hoboken, NJ 07030
| | - Douglas R. Powell
- Price Family Foundation of Structural Biology, Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019
| | - Yong Zhang
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Castle Point on Hudson, Hoboken, NJ 07030
| | - George B. Richter-Addo
- Price Family Foundation of Structural Biology, Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019
| |
Collapse
|
30
|
Breider F, Yoshikawa C, Makabe A, Toyoda S, Wakita M, Matsui Y, Kawagucci S, Fujiki T, Harada N, Yoshida N. Response of N 2O production rate to ocean acidification in the western North Pacific. NATURE CLIMATE CHANGE 2019; 9:954-958. [PMID: 31857827 PMCID: PMC6923134 DOI: 10.1038/s41558-019-0605-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 09/17/2019] [Indexed: 05/18/2023]
Abstract
Ocean acidification induced by the increase of anthropogenic CO2 emissions has a profound impact on marine organisms and biogeochemical processes.1 The response of marine microbial activities to ocean acidification might play a crucial role in the future evolution of air-sea fluxes of biogenic gases such as nitrous oxide (N2O), a strong greenhouse gas and the dominant stratospheric ozone-depleting substance.2 Here, we examine the response of N2O production from nitrification to acidification in a series of incubation experiments conducted in subtropical and subarctic western North Pacific. The experiments show that, when pH was reduced, the N2O production rate during nitrification measured at subarctic stations increased significantly whereas nitrification rates remained stable or decreased. Contrary to what was previously thought, these results suggest that the effect of ocean acidification on N2O production during nitrification and nitrification rates are likely uncoupled. Collectively these results suggest that, if seawater pH continues to decline at the same rate, ocean acidification could increase the marine N2O production during nitrification in subarctic North Pacific by 185 to 491% by the end of the century.
Collapse
Affiliation(s)
- Florian Breider
- Tokyo Institute of Technology, Department of Environmental Chemistry
and Engineering, Nagatsuta 4259, Midori-ku, Yokohama, 226-8502 Kanagawa, Japan
- Ecole Polytechnique Fédérale de Lausanne - EPFL,
Institute of Environmental Engineering, Station 2, CH-1015 Lausanne,
Switzerland
- corresponding author: Florian Breider, Ecole Polytechnique
Fédérale de Lausanne - EPFL, Institute of Environmental
Engineering, Station 2, CH-1015 Lausanne, Switzerland,
| | - Chisato Yoshikawa
- Research Institute for Marine Resources Utilization, Japan Agency of
Marine Earth Science and Technology, 2-15 Natsushima-cho, Yokosuka-city 237-0061,
Japan
| | - Akiko Makabe
- Institute for Extra-cutting-edge Science and Technology Avant-garde
Research (X-star), Japan Agency of Marine Earth Science and Technology, 2-15
Natsushima-cho, Yokosuka-city 237-0061, Japan
| | - Sakae Toyoda
- Tokyo Institute of Technology, School of Materials and Chemical
Technology, Nagatsuta 4259, Midori-ku, Yokohama, 226-8502 Kanagawa, Japan
| | - Masahide Wakita
- Research Institute for Global Change (RIGC), Japan Agency of Marine
Earth Science and Technology,2-15 Natsushima-cho, Yokosuka-city 237-0061,
Japan
| | - Yohei Matsui
- Atmosphere and Ocean Research Institute, The University of Tokyo,
5-1-5, Kashiwanoha, Kashiwa-shi, Chiba 277-8564 Japan
| | - Shinsuke Kawagucci
- Institute for Extra-cutting-edge Science and Technology Avant-garde
Research (X-star), Japan Agency of Marine Earth Science and Technology, 2-15
Natsushima-cho, Yokosuka-city 237-0061, Japan
| | - Tetsuichi Fujiki
- Research Institute for Global Change (RIGC), Japan Agency of Marine
Earth Science and Technology,2-15 Natsushima-cho, Yokosuka-city 237-0061,
Japan
| | - Naomi Harada
- Research Institute for Global Change (RIGC), Japan Agency of Marine
Earth Science and Technology,2-15 Natsushima-cho, Yokosuka-city 237-0061,
Japan
| | - Naohiro Yoshida
- Tokyo Institute of Technology, Department of Environmental Chemistry
and Engineering, Nagatsuta 4259, Midori-ku, Yokohama, 226-8502 Kanagawa, Japan
- Tokyo Institute of Technology, School of Materials and Chemical
Technology, Nagatsuta 4259, Midori-ku, Yokohama, 226-8502 Kanagawa, Japan
- Tokyo Institute of Technology, Earth-Life Science Institute, Meguro,
152-8551 Tokyo, Japan
| |
Collapse
|
31
|
Wijeratne GB, Bhadra M, Siegler MA, Karlin KD. Copper(I) Complex Mediated Nitric Oxide Reductive Coupling: Ligand Hydrogen Bonding Derived Proton Transfer Promotes N 2O (g) Release. J Am Chem Soc 2019; 141:17962-17967. [PMID: 31621325 DOI: 10.1021/jacs.9b07286] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A cuprous chelate bearing a secondary sphere hydrogen bonding functionality, [(PV-tmpa)CuI]+, transforms •NO(g) to N2O(g) in high-yields in methanol. Ligand derived proton transfer facilitates N-O bond cleavage of a putative hyponitrite intermediate releasing N2O(g), underscoring the crucial balance between H-bonding capabilities and acidities in (bio)chemical •NO(g) coupling systems.
Collapse
Affiliation(s)
- Gayan B Wijeratne
- Department of Chemistry , The Johns Hopkins University , Baltimore , Maryland 21218 , United States
| | - Mayukh Bhadra
- Department of Chemistry , The Johns Hopkins University , Baltimore , Maryland 21218 , United States
| | - Maxime A Siegler
- Department of Chemistry , The Johns Hopkins University , Baltimore , Maryland 21218 , United States
| | - Kenneth D Karlin
- Department of Chemistry , The Johns Hopkins University , Baltimore , Maryland 21218 , United States
| |
Collapse
|
32
|
Abucayon EG, Khade RL, Powell DR, Zhang Y, Richter‐Addo GB. Not Limited to Iron: A Cobalt Heme–NO Model Facilitates N–N Coupling with External NO in the Presence of a Lewis Acid to Generate N
2
O. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201909137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Erwin G. Abucayon
- Price Family Foundation of Structural Biology Department of Chemistry and Biochemistry University of Oklahoma Norman OK 73019 USA
| | - Rahul L. Khade
- Department of Chemistry and Chemical Biology Stevens Institute of Technology Castle Point on Hudson Hoboken NJ 07030 USA
| | - Douglas R. Powell
- Price Family Foundation of Structural Biology Department of Chemistry and Biochemistry University of Oklahoma Norman OK 73019 USA
| | - Yong Zhang
- Department of Chemistry and Chemical Biology Stevens Institute of Technology Castle Point on Hudson Hoboken NJ 07030 USA
| | - George B. Richter‐Addo
- Price Family Foundation of Structural Biology Department of Chemistry and Biochemistry University of Oklahoma Norman OK 73019 USA
| |
Collapse
|
33
|
Lehnert N, Fujisawa K, Camarena S, Dong HT, White CJ. Activation of Non-Heme Iron-Nitrosyl Complexes: Turning Up the Heat. ACS Catal 2019. [DOI: 10.1021/acscatal.9b03219] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Nicolai Lehnert
- Department of Chemistry and Department of Biophysics, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109-1055, United States
| | - Kiyoshi Fujisawa
- Department of Chemistry, Ibaraki University, Mito 310-8512, Japan
| | - Stephanie Camarena
- Department of Chemistry and Department of Biophysics, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109-1055, United States
| | - Hai T. Dong
- Department of Chemistry and Department of Biophysics, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109-1055, United States
| | - Corey J. White
- Department of Chemistry and Department of Biophysics, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|
34
|
Wu WY, Hsu CN, Hsieh CH, Chiou TW, Tsai ML, Chiang MH, Liaw WF. NO-to-[N2O2]2–-to-N2O Conversion Triggered by {Fe(NO)2}10-{Fe(NO)2}9 Dinuclear Dinitrosyl Iron Complex. Inorg Chem 2019; 58:9586-9591. [DOI: 10.1021/acs.inorgchem.9b01635] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Wun-Yan Wu
- Department of Chemistry and Frontier Research Center of Fundamental and Applied Science of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Chia-Ning Hsu
- Department of Chemistry and Frontier Research Center of Fundamental and Applied Science of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Chieh-Hsin Hsieh
- Department of Chemistry and Frontier Research Center of Fundamental and Applied Science of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Tzung-Wen Chiou
- Department of Chemistry and Frontier Research Center of Fundamental and Applied Science of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Ming-Li Tsai
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Ming-Hsi Chiang
- Institute of Chemistry, Academia Sinica, Nankang, Taipei 115, Taiwan
| | - Wen-Feng Liaw
- Department of Chemistry and Frontier Research Center of Fundamental and Applied Science of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
35
|
Cui YX, Biswal BK, Guo G, Deng YF, Huang H, Chen GH, Wu D. Biological nitrogen removal from wastewater using sulphur-driven autotrophic denitrification. Appl Microbiol Biotechnol 2019; 103:6023-6039. [DOI: 10.1007/s00253-019-09935-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/20/2019] [Accepted: 05/21/2019] [Indexed: 01/06/2023]
|
36
|
Gomes FO, Maia LB, Loureiro JA, Pereira MC, Delerue-Matos C, Moura I, Moura JJ, Morais S. Biosensor for direct bioelectrocatalysis detection of nitric oxide using nitric oxide reductase incorporated in carboxylated single-walled carbon nanotubes/lipidic 3 bilayer nanocomposite. Bioelectrochemistry 2019; 127:76-86. [DOI: 10.1016/j.bioelechem.2019.01.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 01/31/2019] [Accepted: 01/31/2019] [Indexed: 02/07/2023]
|
37
|
Arrangement of a NO ligand and the neighboring sulfur-containing species on a dinuclear ruthenium complex by ligand substitution and linkage isomerism of a dimethyl sulfoxide ligand. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.02.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
38
|
Amanullah S, Singha A, Dey A. Tailor made iron porphyrins for investigating axial ligand and distal environment contributions to electronic structure and reactivity. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.01.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
39
|
The Response of nor and nos Contributes to Staphylococcus aureus Virulence and Metabolism. J Bacteriol 2019; 201:JB.00107-19. [PMID: 30782631 DOI: 10.1128/jb.00107-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 02/06/2019] [Indexed: 12/21/2022] Open
Abstract
Staphylococcus aureus causes a wide spectrum of disease, with the site and severity of infection dependent on virulence traits encoded within genetically distinct clonal complexes (CCs) and bacterial responses to host innate immunity. The production of nitric oxide (NO) by activated phagocytes is a major host response to which S. aureus metabolically adapts through multiple strategies that are conserved in all CCs, including an S. aureus nitric oxide synthase (Nos). Previous genome analysis of CC30, a lineage associated with chronic endocardial and osteoarticular infections, revealed a putative NO reductase (Nor) not found in other CCs that potentially contributes to NO resistance and clinical outcome. Here, we demonstrate that Nor has true nitric oxide reductase activity, with nor expression enhanced by NO stress and anaerobic growth. Furthermore, we demonstrate that nor is regulated by MgrA and SrrAB, which modulate S. aureus virulence and hypoxic response. Transcriptome analysis of the S. aureus UAMS-1, UAMS-1 Δnor, and UAMS-1 Δnos strains under NO stress and anaerobic growth demonstrates that Nor contributes to nucleotide metabolism and Nos to glycolysis. We demonstrate that Nor and Nos contribute to enhanced survival in the presence of human human polymorphonuclear cells and have organ-specific seeding in a tail vein infection model. Nor contributes to abscess formation in an osteological implant model. We also demonstrate that Nor has a role in S. aureus metabolism and virulence. The regulation overlap between Nor and Nos points to an intriguing link between regulation of intracellular NO, metabolic adaptation, and persistence in the CC30 lineage.IMPORTANCE Staphylococcus aureus can cause disease at most body sites, and illness spans asymptomatic infection to death. The variety of clinical presentations is due to the diversity of strains, which are grouped into distinct clonal complexes (CCs) based on genetic differences. The ability of S. aureus CC30 to cause chronic infections relies on its ability to evade the oxidative/nitrosative defenses of the immune system and survive under different environmental conditions, including differences in oxygen and nitric oxide concentrations. The significance of this work is the exploration of unique genes involved in resisting NO stress and anoxia. A better understanding of the functions that control the response of S. aureus CC30 to NO and oxygen will guide the treatment of severe disease presentations.
Collapse
|
40
|
Ferretti E, Dechert S, Demeshko S, Holthausen MC, Meyer F. Reductive Nitric Oxide Coupling at a Dinickel Core: Isolation of a Key
cis
‐Hyponitrite Intermediate en route to N
2
O Formation. Angew Chem Int Ed Engl 2019; 58:1705-1709. [DOI: 10.1002/anie.201811925] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Indexed: 11/11/2022]
Affiliation(s)
- Eleonora Ferretti
- Institut für Anorganische ChemieUniversität Göttingen Tammannstrasse 4 37077 Göttingen Germany
| | - Sebastian Dechert
- Institut für Anorganische ChemieUniversität Göttingen Tammannstrasse 4 37077 Göttingen Germany
| | - Serhiy Demeshko
- Institut für Anorganische ChemieUniversität Göttingen Tammannstrasse 4 37077 Göttingen Germany
| | - Max C. Holthausen
- Institut für Anorganische und Analytische ChemieGoethe-Universität Frankfurt Max-von-Laue-Strass 7 60438 Frankfurt Germany
| | - Franc Meyer
- Institut für Anorganische ChemieUniversität Göttingen Tammannstrasse 4 37077 Göttingen Germany
| |
Collapse
|
41
|
Ferretti E, Dechert S, Demeshko S, Holthausen MC, Meyer F. Reductive Nitric Oxide Coupling at a Dinickel Core: Isolation of a Key
cis
‐Hyponitrite Intermediate en route to N
2
O Formation. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201811925] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Eleonora Ferretti
- Institut für Anorganische ChemieUniversität Göttingen Tammannstrasse 4 37077 Göttingen Germany
| | - Sebastian Dechert
- Institut für Anorganische ChemieUniversität Göttingen Tammannstrasse 4 37077 Göttingen Germany
| | - Serhiy Demeshko
- Institut für Anorganische ChemieUniversität Göttingen Tammannstrasse 4 37077 Göttingen Germany
| | - Max C. Holthausen
- Institut für Anorganische und Analytische ChemieGoethe-Universität Frankfurt Max-von-Laue-Strass 7 60438 Frankfurt Germany
| | - Franc Meyer
- Institut für Anorganische ChemieUniversität Göttingen Tammannstrasse 4 37077 Göttingen Germany
| |
Collapse
|
42
|
Bhagi-Damodaran A, Lu Y. The Periodic Table's Impact on Bioinorganic Chemistry and Biology's Selective Use of Metal Ions. STRUCTURE AND BONDING 2019; 182:153-173. [PMID: 36567794 PMCID: PMC9788643 DOI: 10.1007/430_2019_45] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Despite the availability of a vast variety of metal ions in the periodic table, biology uses only a selective few metal ions. Most of the redox active metals used belong to the first row of transition metals in the periodic table and include Fe, Co, Ni, Mn and Cu. On the other hand, Ca, Zn and Mg are the most commonly used redox inactive metals in biology. In this chapter, we discuss the periodic table's impact on bio-inorganic chemistry, by exploring reasons behind this selective choice of metals biology. A special focus is placed on the chemical and functional reasons why one metal ion is preferred over another one. We discuss the implications of metal choice in various biological processes including catalysis, electron transfer, redox sensing and signaling. We find that bioavailability of metal ions along with their redox potentials, coordination flexibility, valency and ligand affinity determine the specificity of metals for biological processes. Understanding the implications underlying the selective choice of metals of the periodic table in these biological processes can help design more efficient catalysts, more precise biosensors and more effective drugs.
Collapse
Affiliation(s)
| | - Yi Lu
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| |
Collapse
|
43
|
Sabuncu S, Reed JH, Lu Y, Moënne-Loccoz P. Nitric Oxide Reductase Activity in Heme-Nonheme Binuclear Engineered Myoglobins through a One-Electron Reduction Cycle. J Am Chem Soc 2018; 140:17389-17393. [PMID: 30512937 DOI: 10.1021/jacs.8b11037] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
FeBMbs are structural and functional models of native bacterial nitric oxide reductases (NORs) generated through engineering of myoglobin. These biosynthetic models replicate the heme-nonheme diiron site of NORs and allow substitutions of metal centers and heme cofactors. Here, we provide evidence for multiple NOR turnover in monoformyl-heme-containing FeBMb1 proteins loaded with FeII, CoII, or ZnII metal ions at the FeB site (FeII/CoII/ZnII-FeBMb1(MF-heme)). FTIR detection of the ν(NNO) band of N2O at 2231 cm-1 provides a direct quantitative measurement of the product in solution. A maximum number of turnover is observed with FeII-FeBMb1(MF-heme), but the NOR activity is retained when the FeB site is loaded with ZnII. These data support the viability of a one-electron semireduced pathway for the reduction of NO at binuclear centers in reducing conditions.
Collapse
Affiliation(s)
- Sinan Sabuncu
- Department of Biochemistry & Molecular Biology , Oregon Health & Science University , Portland , Oregon 97239 , United States
| | - Julian H Reed
- Department of Chemistry , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Yi Lu
- Department of Chemistry , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Pierre Moënne-Loccoz
- Department of Biochemistry & Molecular Biology , Oregon Health & Science University , Portland , Oregon 97239 , United States
| |
Collapse
|
44
|
Adam SM, Wijeratne GB, Rogler PJ, Diaz DE, Quist DA, Liu JJ, Karlin KD. Synthetic Fe/Cu Complexes: Toward Understanding Heme-Copper Oxidase Structure and Function. Chem Rev 2018; 118:10840-11022. [PMID: 30372042 PMCID: PMC6360144 DOI: 10.1021/acs.chemrev.8b00074] [Citation(s) in RCA: 156] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Heme-copper oxidases (HCOs) are terminal enzymes on the mitochondrial or bacterial respiratory electron transport chain, which utilize a unique heterobinuclear active site to catalyze the 4H+/4e- reduction of dioxygen to water. This process involves a proton-coupled electron transfer (PCET) from a tyrosine (phenolic) residue and additional redox events coupled to transmembrane proton pumping and ATP synthesis. Given that HCOs are large, complex, membrane-bound enzymes, bioinspired synthetic model chemistry is a promising approach to better understand heme-Cu-mediated dioxygen reduction, including the details of proton and electron movements. This review encompasses important aspects of heme-O2 and copper-O2 (bio)chemistries as they relate to the design and interpretation of small molecule model systems and provides perspectives from fundamental coordination chemistry, which can be applied to the understanding of HCO activity. We focus on recent advancements from studies of heme-Cu models, evaluating experimental and computational results, which highlight important fundamental structure-function relationships. Finally, we provide an outlook for future potential contributions from synthetic inorganic chemistry and discuss their implications with relevance to biological O2-reduction.
Collapse
Affiliation(s)
- Suzanne M. Adam
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Gayan B. Wijeratne
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Patrick J. Rogler
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Daniel E. Diaz
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - David A. Quist
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Jeffrey J. Liu
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Kenneth D. Karlin
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
45
|
Beck D, Klüfers P. HN 2 O 2 - as a Ligand in Mononuclear Hydrogenhyponitrite-κ 2 -N,O Ruthenium Complexes with Bisphosphane Co-Ligands. Chemistry 2018; 24:16019-16028. [PMID: 30144196 DOI: 10.1002/chem.201803770] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Indexed: 01/21/2023]
Abstract
The hyponitrite anion is a tentative intermediate in the reduction of nitric oxide (NO) to nitrous oxide (N2 O) catalyzed by nitric-oxide reductase (NOR) in the process of bacterial denitrification. Owing to the considerable number of known coordination modes for the hyponitrito ligand, its actual bonding form in the enzymatic cycle is a point of current discussion. Here, we contribute to the hardly known ligand properties of a key intermediate, the monoprotonated hyponitrite anion. Three air- and water-stable ruthenium complexes with hydrogenhyponitrite as the ligand were synthesized by using commercially available bisphosphane co-ligands (1,2-bis(diphenylphosphino)ethane (dppe), 1,3-bis(diphenylphosphino)propane (dppp), 1,2-bis(diphenylphosphino)ethene (dppv)). The starting compounds [Ru(dppe)2 (tos)]BF4 (1) and [Ru(dppp)2 (tos)]BF4 (2) contained the bidentate coordinating tosylate anion (tos) as a particularly well-suited leaving group. To confirm the protonated and deprotonated species, X-ray diffraction, IR, UV/Vis spectroscopy (solution and solid state), solid-state NMR spectroscopy, and high-resolution mass spectroscopy were used. DFT calculations give insight into the bonding situation. We report on [Ru(dppe)2 (HN2 O2 )]BF4 (5), [Ru(dppp)2 (HN2 O2 )]BF4 (6), [Ru(dppv)2 (HN2 O2 )]BF4 (7), [Ru(dppp)2 (HN2 O2 )]BF4 ⋅Imi (9; Imi=imidazole) as the first mononuclear trans-hydrogenhyponitrite complexes. Isolated deprotonated analogs are [Ru(dppe)2 (N2 O2 )]⋅HImi(BF4 ) (8) and [Ru(dppv)2 (N2 O2 )] ⋅HImi(BF4 )⋅Imi (10).
Collapse
Affiliation(s)
- Daniel Beck
- Ludwig-Maximilians-Universitaet, Department of Chemistry, Butenandtstrasse 5-13, Haus D, München, 81377, Germany
| | - Peter Klüfers
- Ludwig-Maximilians-Universitaet, Department of Chemistry, Butenandtstrasse 5-13, Haus D, München, 81377, Germany
| |
Collapse
|
46
|
|
47
|
McGarry JM, Pacheco AA. Upon further analysis, neither cytochrome c 554 from Nitrosomonas europaea nor its F156A variant display NO reductase activity, though both proteins bind nitric oxide reversibly. J Biol Inorg Chem 2018; 23:861-878. [PMID: 29946979 DOI: 10.1007/s00775-018-1582-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 06/15/2018] [Indexed: 01/02/2023]
Abstract
A re-investigation of the interaction with NO of the small tetraheme protein cytochrome c554 (C554) from Nitrosomonas europaea has shown that the 5-coordinate heme II of the two- or four-electron-reduced protein will nitrosylate reversibly. The process is first order in C554, first order in NO, and second-order overall. The rate constant for NO binding to the heme is 3000 ± 140 M-1s-1, while that for dissociation is 0.034 ± 0.009 s-1; the degree of protein reduction does not appear to significantly influence the nitrosylation rate. In contrast to a previous report (Upadhyay AK, et al. J Am Chem Soc 128:4330, 2006), this study found no evidence of C554-catalyzed NO reduction, either with [Formula: see text] or with [Formula: see text] Some sub-stoichiometric oxidation of the lowest potential heme IV was detected when [Formula: see text] was exposed to an excess of NO, but this is believed to arise from partial intramolecular electron transfer that generates {Fe(NO)}8 at heme II. The vacant heme II coordination site of C554 is crowded by three non-bonding hydrophobic amino acids. After replacing one of these (Phe156) with the smaller alanine, the nitrosylation rate for F156A2- and F156A4- was about 400× faster than for the wild type, though the rate of the reverse denitrosylation process was almost unchanged. Unlike in the wild-type C554, the 6-coordinate low-spin hemes of F156A4- oxidized over the course of several minutes after exposure to NO. Concomitant formation of N2O could explain this heme oxidation, though alternative explanations are equally plausible given the available data.
Collapse
Affiliation(s)
- Jennifer M McGarry
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, 3210 N. Cramer Street, Milwaukee, WI, 53211, USA
| | - A Andrew Pacheco
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, 3210 N. Cramer Street, Milwaukee, WI, 53211, USA.
| |
Collapse
|
48
|
Arikawa Y, Hiura J, Tsuchii C, Kodama M, Matsumoto N, Umakoshi K. A synthetic NO reduction cycle on a bis(pyrazolato)-bridged dinuclear ruthenium complex including photo-induced transformation. Dalton Trans 2018; 47:7399-7401. [PMID: 29770405 DOI: 10.1039/c8dt01208c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A synthetic NO reduction cycle (2NO + 2H+ + 2e- → N2O + H2O) on a dinuclear platform {(TpRu)2(μ-pz)2} (Tp = HB(pyrazol-1-yl)3) was achieved, where an unusual N-N coupling complex was included. Moreover, an interesting photo-induced conversion of the N-N coupling complex to an oxido-bridged complex was revealed.
Collapse
Affiliation(s)
- Yasuhiro Arikawa
- Division of Chemistry and Materials Science, Graduate School of Engineering, Nagasaki University, Bunkyo-machi 1-14, Nagasaki 852-8521, Japan.
| | | | | | | | | | | |
Collapse
|
49
|
Heme redox potentials hold the key to reactivity differences between nitric oxide reductase and heme-copper oxidase. Proc Natl Acad Sci U S A 2018; 115:6195-6200. [PMID: 29802230 DOI: 10.1073/pnas.1720298115] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Despite high structural homology between NO reductases (NORs) and heme-copper oxidases (HCOs), factors governing their reaction specificity remain to be understood. Using a myoglobin-based model of NOR (FeBMb) and tuning its heme redox potentials (E°') to cover the native NOR range, through manipulating hydrogen bonding to the proximal histidine ligand and replacing heme b with monoformyl (MF-) or diformyl (DF-) hemes, we herein demonstrate that the E°' holds the key to reactivity differences between NOR and HCO. Detailed electrochemical, kinetic, and vibrational spectroscopic studies, in tandem with density functional theory calculations, demonstrate a strong influence of heme E°' on NO reduction. Decreasing E°' from +148 to -130 mV significantly impacts electronic properties of the NOR mimics, resulting in 180- and 633-fold enhancements in NO association and heme-nitrosyl decay rates, respectively. Our results indicate that NORs exhibit finely tuned E°' that maximizes their enzymatic efficiency and helps achieve a balance between opposite factors: fast NO binding and decay of dinitrosyl species facilitated by low E°' and fast electron transfer facilitated by high E°'. Only when E°' is optimally tuned in FeBMb(MF-heme) for NO binding, heme-nitrosyl decay, and electron transfer does the protein achieve multiple (>35) turnovers, previously not achieved by synthetic or enzyme-based NOR models. This also explains a long-standing question in bioenergetics of selective cross-reactivity in HCOs. Only HCOs with heme E°' in a similar range as NORs (between -59 and 200 mV) exhibit NOR reactivity. Thus, our work demonstrates efficient tuning of E°' in various metalloproteins for their optimal functionality.
Collapse
|
50
|
Van Stappen C, Lehnert N. Mechanism of N–N Bond Formation by Transition Metal–Nitrosyl Complexes: Modeling Flavodiiron Nitric Oxide Reductases. Inorg Chem 2018; 57:4252-4269. [DOI: 10.1021/acs.inorgchem.7b02333] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Casey Van Stappen
- Department of Chemistry and Department of Biophysics, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109-1055, United States
| | - Nicolai Lehnert
- Department of Chemistry and Department of Biophysics, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|