1
|
Arjmand S, Ilaghi M, Sisakht AK, Guldager MB, Wegener G, Landau AM, Gjedde A. Regulation of mitochondrial dysfunction by estrogens and estrogen receptors in Alzheimer's disease: A focused review. Basic Clin Pharmacol Toxicol 2024; 135:115-132. [PMID: 38801027 DOI: 10.1111/bcpt.14035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/02/2024] [Accepted: 05/07/2024] [Indexed: 05/29/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder that primarily manifests itself by progressive memory loss and cognitive decline, thus significantly affecting memory functions and quality of life. In this review, we proceed from the understanding that the canonical amyloid-β hypothesis, while significant, has faced setbacks, highlighting the need to adopt a broader perspective considering the intricate interplay of diverse pathological pathways for effective AD treatments. Sex differences in AD offer valuable insights into a better understanding of its pathophysiology. Fluctuation of the levels of ovarian sex hormones during perimenopause is associated with changes in glucose metabolism, as a possible window of opportunity to further understand the roles of sex steroid hormones and their associated receptors in the pathophysiology of AD. We review these dimensions, emphasizing the potential of estrogen receptors (ERs) to reveal mitochondrial functions in the search for further research and therapeutic strategies for AD pharmacotherapy. Understanding and addressing the intricate interactions of mitochondrial dysfunction and ERs potentially pave the way for more effective approaches to AD therapy.
Collapse
Affiliation(s)
- Shokouh Arjmand
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Mehran Ilaghi
- Institute of Neuropharmacology, Kerman Neuroscience Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Karimi Sisakht
- Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Matti Bock Guldager
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Gregers Wegener
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Anne M Landau
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Albert Gjedde
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
2
|
Hinton A, Claypool SM, Neikirk K, Senoo N, Wanjalla CN, Kirabo A, Williams CR. Mitochondrial Structure and Function in Human Heart Failure. Circ Res 2024; 135:372-396. [PMID: 38963864 PMCID: PMC11225798 DOI: 10.1161/circresaha.124.323800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Despite clinical and scientific advancements, heart failure is the major cause of morbidity and mortality worldwide. Both mitochondrial dysfunction and inflammation contribute to the development and progression of heart failure. Although inflammation is crucial to reparative healing following acute cardiomyocyte injury, chronic inflammation damages the heart, impairs function, and decreases cardiac output. Mitochondria, which comprise one third of cardiomyocyte volume, may prove a potential therapeutic target for heart failure. Known primarily for energy production, mitochondria are also involved in other processes including calcium homeostasis and the regulation of cellular apoptosis. Mitochondrial function is closely related to morphology, which alters through mitochondrial dynamics, thus ensuring that the energy needs of the cell are met. However, in heart failure, changes in substrate use lead to mitochondrial dysfunction and impaired myocyte function. This review discusses mitochondrial and cristae dynamics, including the role of the mitochondria contact site and cristae organizing system complex in mitochondrial ultrastructure changes. Additionally, this review covers the role of mitochondria-endoplasmic reticulum contact sites, mitochondrial communication via nanotunnels, and altered metabolite production during heart failure. We highlight these often-neglected factors and promising clinical mitochondrial targets for heart failure.
Collapse
Affiliation(s)
- Antentor Hinton
- Department of Molecular Physiology and Biophysics (A.H., K.N.), Vanderbilt University Medical Center, Nashville
| | - Steven M. Claypool
- Department of Physiology, Mitochondrial Phospholipid Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland (S.M.C., N.S.)
| | - Kit Neikirk
- Department of Molecular Physiology and Biophysics (A.H., K.N.), Vanderbilt University Medical Center, Nashville
| | - Nanami Senoo
- Department of Physiology, Mitochondrial Phospholipid Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland (S.M.C., N.S.)
| | - Celestine N. Wanjalla
- Department of Medicine, Division of Clinical Pharmacology (C.N.W., A.K.), Vanderbilt University Medical Center, Nashville
| | - Annet Kirabo
- Department of Medicine, Division of Clinical Pharmacology (C.N.W., A.K.), Vanderbilt University Medical Center, Nashville
- Vanderbilt Center for Immunobiology (A.K.)
- Vanderbilt Institute for Infection, Immunology and Inflammation (A.K.)
- Vanderbilt Institute for Global Health (A.K.)
| | - Clintoria R. Williams
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, OH (C.R.W.)
| |
Collapse
|
3
|
Chen C, Khanthiyong B, Thaweetee-Sukjai B, Charoenlappanit S, Roytrakul S, Thanoi S, Reynolds GP, Nudmamud-Thanoi S. Proteomic association with age-dependent sex differences in Wisconsin Card Sorting Test performance in healthy Thai subjects. Sci Rep 2023; 13:20238. [PMID: 37981639 PMCID: PMC10658079 DOI: 10.1038/s41598-023-46750-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 11/04/2023] [Indexed: 11/21/2023] Open
Abstract
Sex differences in cognitive function exist, but they are not stable and undergo dynamic change during the lifespan. However, our understanding of how sex-related neural information transmission evolves with age is still in its infancy. This study utilized the Wisconsin Card Sorting Test (WCST) and the label-free proteomics method with bioinformatic analysis to investigate the molecular mechanisms underlying age-related sex differences in cognitive performance in 199 healthy Thai subjects (aged 20-70 years), as well as explore the sex-dependent protein complexes for predicting cognitive aging. The results showed that males outperformed females in two of the five WCST sub-scores: %Corrects and %Errors. Sex differences in these scores were related to aging, becoming noticeable in those over 60. At the molecular level, differently expressed individual proteins and protein complexes between both sexes are associated with the potential N-methyl-D-aspartate type glutamate receptor (NMDAR)-mediated excitotoxicity, with the NMDAR complex being enriched exclusively in elderly female samples. These findings provided a preliminary indication that healthy Thai females might be more susceptible to such neurotoxicity, as evidenced by their cognitive performance. NMDAR protein complex enrichment in serum could be proposed as a potential indication for predicting cognitive aging in healthy Thai females.
Collapse
Affiliation(s)
- Chen Chen
- Medical Science Graduate Program, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | | | | | - Sawanya Charoenlappanit
- National Centre for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Sittiruk Roytrakul
- National Centre for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Samur Thanoi
- School of Medical Sciences, University of Phayao, Phayao, Thailand.
| | - Gavin P Reynolds
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, UK
- Centre of Excellence in Medical Biotechnology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Sutisa Nudmamud-Thanoi
- Centre of Excellence in Medical Biotechnology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand.
- Department of Anatomy, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand.
| |
Collapse
|
4
|
Kalimon OJ, Vekaria HJ, Velmurugan GV, Hubbard WB, Sullivan PG. Characterizing Sex Differences in Mitochondrial Dysfunction After Severe Traumatic Brain Injury in Mice. Neurotrauma Rep 2023; 4:627-642. [PMID: 37752924 PMCID: PMC10518693 DOI: 10.1089/neur.2023.0046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023] Open
Abstract
Traumatic brain injury (TBI) is caused by an impact or penetrating injury to the head resulting in abnormal brain function. Mitochondrial dysfunction is an important hallmark of TBI and has been thoroughly studied in male rodent models of brain injury, but relatively little is known about these outcomes in females. These studies were designed to examine sex as a biological variable for mitochondria-related outcomes after the severe controlled cortical impact (CCI) mouse model of TBI. Synaptic and non-synaptic mitochondria were isolated from the sham- or CCI-injured cortex as well as the hippocampus ipsilateral to the craniotomy 3, 12, 24, or 48 h post-surgery, and then bioenergetics were measured. Subtle variations were observed in the timeline of mitochondrial dysfunction between sexes. Non-synaptic cortical mitochondria from injured females showed early impairment at 12 h post-CCI compared to mitochondria from injured males at 24 h post-CCI. Contrastingly, in the synaptic fraction, mitochondria from injured males showed early impairment at 12 h post-CCI, whereas mitochondria from injured females showed impairment at 24 h post-CCI. Based on bioenergetic impairments at 24 h post-CCI, synaptic and non-synaptic mitochondrial calcium loading was also measured at this time point. Consistent with bioenergetic data at 24 h, non-synaptic mitochondria from injured males had increased calcium loading compared to uninjured control, but this effect was not observed in females. Finally, histological assessment of cortical tissue sparing in each sex was measured at 7 days post-injury. There was a lack of sex-based differences in cortical tissue sparing after severe CCI. Overall, there were some subtle sex differences in mitochondrial outcomes after CCI, but these findings were not statistically significant. This study highlights the importance of utilizing both sexes when measuring mitochondrial function after severe CCI.
Collapse
Affiliation(s)
- Olivia J. Kalimon
- Department of Neuroscience, University of Kentucky, Lexington, Kentucky, USA
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky, USA
- Lexington VA Healthcare System, Lexington, Kentucky, USA
| | - Hemendra J. Vekaria
- Department of Neuroscience, University of Kentucky, Lexington, Kentucky, USA
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky, USA
- Lexington VA Healthcare System, Lexington, Kentucky, USA
| | - Gopal V. Velmurugan
- Department of Neuroscience, University of Kentucky, Lexington, Kentucky, USA
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky, USA
| | - W. Brad Hubbard
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky, USA
- Lexington VA Healthcare System, Lexington, Kentucky, USA
- Department of Physiology, University of Kentucky, Lexington, Kentucky, USA
| | - Patrick G. Sullivan
- Department of Neuroscience, University of Kentucky, Lexington, Kentucky, USA
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky, USA
- Lexington VA Healthcare System, Lexington, Kentucky, USA
| |
Collapse
|
5
|
Zhu J, Zhou Y, Jin B, Shu J. Role of estrogen in the regulation of central and peripheral energy homeostasis: from a menopausal perspective. Ther Adv Endocrinol Metab 2023; 14:20420188231199359. [PMID: 37719789 PMCID: PMC10504839 DOI: 10.1177/20420188231199359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 08/16/2023] [Indexed: 09/19/2023] Open
Abstract
Estrogen plays a prominent role in regulating and coordinating energy homeostasis throughout the growth, development, reproduction, and aging of women. Estrogen receptors (ERs) are widely expressed in the brain and nearly all tissues of the body. Within the brain, central estrogen via ER regulates appetite and energy expenditure and maintains cell glucose metabolism, including glucose transport, aerobic glycolysis, and mitochondrial function. In the whole body, estrogen has shown beneficial effects on weight control, fat distribution, glucose and insulin resistance, and adipokine secretion. As demonstrated by multiple in vitro and in vivo studies, menopause-related decline of circulating estrogen may induce the disturbance of metabolic signals and a significant decrease in bioenergetics, which could trigger an increased incidence of late-onset Alzheimer's disease, type 2 diabetes mellitus, hypertension, and cardiovascular diseases in postmenopausal women. In this article, we have systematically reviewed the role of estrogen and ERs in body composition and lipid/glucose profile variation occurring with menopause, which may provide a better insight into the efficacy of hormone therapy in maintaining energy metabolic homeostasis and hold a clue for development of novel therapeutic approaches for target tissue diseases.
Collapse
Affiliation(s)
- Jing Zhu
- Center for Reproductive Medicine, Department of Reproductive Endocrinology, Zhejiang Provincial People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yier Zhou
- Center for Reproductive Medicine, Department of Reproductive Endocrinology, Zhejiang Provincial People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Bihui Jin
- Center for Reproductive Medicine, Department of Reproductive Endocrinology, Zhejiang Provincial People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jing Shu
- Reproductive Medicine Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, China
| |
Collapse
|
6
|
Chen C, Khanthiyong B, Charoenlappanit S, Roytrakul S, Reynolds GP, Thanoi S, Nudmamud-Thanoi S. Cholinergic-estrogen interaction is associated with the effect of education on attenuating cognitive sex differences in a Thai healthy population. PLoS One 2023; 18:e0278080. [PMID: 37471329 PMCID: PMC10358962 DOI: 10.1371/journal.pone.0278080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 05/30/2023] [Indexed: 07/22/2023] Open
Abstract
The development of human brain is shaped by both genetic and environmental factors. Sex differences in cognitive function have been found in humans as a result of sexual dimorphism in neural information transmission. Numerous studies have reported the positive effects of education on cognitive functions. However, little work has investigated the effect of education on attenuating cognitive sex differences and the neural mechanisms behind it based on healthy population. In this study, the Wisconsin Card Sorting Test (WCST) was employed to examine sex differences in cognitive function in 135 Thai healthy subjects, and label-free quantitative proteomic method and bioinformatic analysis were used to study sex-specific neurotransmission-related protein expression profiles. The results showed sex differences in two WCST sub-scores: percentage of Total corrects and Total errors in the primary education group (Bayes factor>100) with males performed better, while such differences eliminated in secondary and tertiary education levels. Moreover, 11 differentially expressed proteins (DEPs) between men and women (FDR<0.1) were presented in both education groups, with majority of them upregulated in females. Half of those DEPs interacted directly with nAChR3, whereas the other DEPs were indirectly connected to the cholinergic pathways through interaction with estrogen. These findings provided a preliminary indication that a cholinergic-estrogen interaction relates to, and might underpin, the effect of education on attenuating cognitive sex differences in a Thai healthy population.
Collapse
Affiliation(s)
- Chen Chen
- Medical Science Graduate Program, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
- Centre of Excellence in Medical Biotechnology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | | | - Sawanya Charoenlappanit
- Functional Proteomics Technology Laboratory, National Centre for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Sittiruk Roytrakul
- Functional Proteomics Technology Laboratory, National Centre for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Gavin P. Reynolds
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, United Kingdom
| | - Samur Thanoi
- School of Medical Sciences, University of Phayao, Mae Ka, Phayao, Thailand
| | - Sutisa Nudmamud-Thanoi
- Centre of Excellence in Medical Biotechnology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
- Department of Anatomy, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| |
Collapse
|
7
|
Sato K, Takayama KI, Inoue S. Expression and function of estrogen receptors and estrogen-related receptors in the brain and their association with Alzheimer's disease. Front Endocrinol (Lausanne) 2023; 14:1220150. [PMID: 37469978 PMCID: PMC10352578 DOI: 10.3389/fendo.2023.1220150] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 06/20/2023] [Indexed: 07/21/2023] Open
Abstract
While estrogens are well known for their pivotal role in the female reproductive system, they also play a crucial function in regulating physiological processes associated with learning and memory in the brain. Moreover, they have neuroprotective effects in the pathogenesis of Alzheimer's disease (AD). Importantly, AD has a higher incidence in older and postmenopausal women than in men, and estrogen treatment might reduce the risk of AD in these women. In general, estrogens bind to and activate estrogen receptors (ERs)-mediated transcriptional machineries, and also stimulate signal transduction through membrane ERs (mERs). Estrogen-related receptors (ERRs), which share homologous sequences with ERs but lack estrogen-binding capabilities, are widely and highly expressed in the human brain and have also been implicated in AD pathogenesis. In this review, we primarily provide a summary of ER and ERR expression patterns in the human brain. In addition, we summarize recent studies on their role in learning and memory. We then review and discuss research that has elucidated the functions and importance of ERs and ERRs in AD pathogenesis, including their role in Aβ clearance and the reduction of phosphorylated tau levels. Elucidation of the mechanisms underlying ER- and ERR-mediated transcriptional machineries and their functions in healthy and diseased brains would provide new perspectives for the diagnosis and treatment of AD. Furthermore, exploring the potential role of estrogens and their receptors, ERs, in AD will facilitate a better understanding of the sex differences observed in AD, and lead to novel sex-specific therapeutic approaches.
Collapse
Affiliation(s)
- Kaoru Sato
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute for Geriatrics and Gerontology (TMIG), Tokyo, Japan
- Integrated Research Initiative for Living Well with Dementia (IRIDE), TMIG, Tokyo, Japan
| | - Ken-ichi Takayama
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute for Geriatrics and Gerontology (TMIG), Tokyo, Japan
| | - Satoshi Inoue
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute for Geriatrics and Gerontology (TMIG), Tokyo, Japan
| |
Collapse
|
8
|
Sautchuk R, Yu C, McArthur M, Massie C, Brookes PS, Porter GA, Awad H, Eliseev RA. Role of the Mitochondrial Permeability Transition in Bone Metabolism and Aging. J Bone Miner Res 2023; 38:522-540. [PMID: 36779737 PMCID: PMC10101909 DOI: 10.1002/jbmr.4787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 02/02/2023] [Accepted: 02/07/2023] [Indexed: 02/14/2023]
Abstract
The mitochondrial permeability transition pore (MPTP) and its positive regulator, cyclophilin D (CypD), play important pathophysiological roles in aging. In bone tissue, higher CypD expression and pore activity are found in aging; however, a causal relationship between CypD/MPTP and bone degeneration needs to be established. We previously reported that CypD expression and MPTP activity are downregulated during osteoblast (OB) differentiation and that manipulations in CypD expression affect OB differentiation and function. Using a newly developed OB-specific CypD/MPTP gain-of-function (GOF) mouse model, we here present evidence that overexpression of a constitutively active K166Q mutant of CypD (caCypD) impairs OB energy metabolism and function, and bone morphological and biomechanical parameters. Specifically, in a spatial-dependent and sex-dependent manner, OB-specific CypD GOF led to a decrease in oxidative phosphorylation (OxPhos) levels, higher oxidative stress, and general metabolic adaptations coincident with the decreased bone organic matrix content in long bones. Interestingly, accelerated bone degeneration was present in vertebral bones regardless of sex. Overall, our work confirms CypD/MPTP overactivation as an important pathophysiological mechanism leading to bone degeneration and fragility in aging. © 2023 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Rubens Sautchuk
- Center for Musculoskeletal ResearchUniversity of Rochester, Rochester, NY, USA
| | - Chen Yu
- Center for Musculoskeletal ResearchUniversity of Rochester, Rochester, NY, USA
| | - Matthew McArthur
- Center for Musculoskeletal ResearchUniversity of Rochester, Rochester, NY, USA
| | - Christine Massie
- Center for Musculoskeletal ResearchUniversity of Rochester, Rochester, NY, USA
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
| | - Paul S Brookes
- Department of Anesthesiology and Perioperative Medicine, University of Rochester, Rochester, NY, USA
- Department of Pharmacology & Physiology, University of Rochester, Rochester, NY, USA
| | - George A Porter
- Department of Pediatrics, Division of Cardiology, University of Rochester, Rochester, NY, USA
| | - Hani Awad
- Center for Musculoskeletal ResearchUniversity of Rochester, Rochester, NY, USA
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
| | - Roman A Eliseev
- Center for Musculoskeletal ResearchUniversity of Rochester, Rochester, NY, USA
- Department of Pharmacology & Physiology, University of Rochester, Rochester, NY, USA
- Department of Pathology, University of Rochester, Rochester, NY, USA
| |
Collapse
|
9
|
Truter N, Malan L, Essop MF. Glial cell activity in cardiovascular diseases and risk of acute myocardial infarction. Am J Physiol Heart Circ Physiol 2023; 324:H373-H390. [PMID: 36662577 DOI: 10.1152/ajpheart.00332.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Growing evidence indicates that the pathophysiological link between the brain and heart underlies cardiovascular diseases, specifically acute myocardial infarction (AMI). Astrocytes are the most abundant glial cells in the central nervous system and provide support/protection for neurons. Astrocytes and peripheral glial cells are emerging as key modulators of the brain-heart axis in AMI, by affecting sympathetic nervous system activity (centrally and peripherally). This review, therefore, aimed to gain an improved understanding of glial cell activity and AMI risk. This includes discussions on the potential role of contributing factors in AMI risk, i.e., autonomic nervous system dysfunction, glial-neurotrophic and ischemic risk markers [glial cell line-derived neurotrophic factor (GDNF), astrocytic S100 calcium-binding protein B (S100B), silent myocardial ischemia, and cardiac troponin T (cTnT)]. Consideration of glial cell activity and related contributing factors in certain brain-heart disorders, namely, blood-brain barrier dysfunction, myocardial ischemia, and chronic psychological stress, may improve our understanding regarding the pathological role that glial dysfunction can play in the development/onset of AMI. Here, findings demonstrated perturbations in glial cell activity and contributing factors (especially sympathetic activity). Moreover, emerging AMI risk included sympathovagal imbalance, low GDNF levels reflecting prothrombic risk, hypertension, and increased ischemia due to perfusion deficits (indicated by S100B and cTnT levels). Such perturbations impacted blood-barrier function and perfusion that were exacerbated during psychological stress. Thus, greater insights and consideration regarding such biomarkers may help drive future studies investigating brain-heart axis pathologies to gain a deeper understanding of astrocytic glial cell contributions and unlock potential novel therapies for AMI.
Collapse
Affiliation(s)
- Nina Truter
- Centre for Cardio-metabolic Research in Africa, Department of Physiological Sciences, Stellenbosch University, Cape Town, South Africa
| | - Leoné Malan
- Technology Transfer and Innovation-Support Office, North-West University, Potchefstroom, South Africa
| | - M Faadiel Essop
- Centre for Cardio-metabolic Research in Africa, Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
10
|
Cannino G, Urbani A, Gaspari M, Varano M, Negro A, Filippi A, Ciscato F, Masgras I, Gerle C, Tibaldi E, Brunati AM, Colombo G, Lippe G, Bernardi P, Rasola A. The mitochondrial chaperone TRAP1 regulates F-ATP synthase channel formation. Cell Death Differ 2022; 29:2335-2346. [PMID: 35614131 PMCID: PMC9751095 DOI: 10.1038/s41418-022-01020-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 01/31/2023] Open
Abstract
Binding of the mitochondrial chaperone TRAP1 to client proteins shapes bioenergetic and proteostatic adaptations of cells, but the panel of TRAP1 clients is only partially defined. Here we show that TRAP1 interacts with F-ATP synthase, the protein complex that provides most cellular ATP. TRAP1 competes with the peptidyl-prolyl cis-trans isomerase cyclophilin D (CyPD) for binding to the oligomycin sensitivity-conferring protein (OSCP) subunit of F-ATP synthase, increasing its catalytic activity and counteracting the inhibitory effect of CyPD. Electrophysiological measurements indicate that TRAP1 directly inhibits a channel activity of purified F-ATP synthase endowed with the features of the permeability transition pore (PTP) and that it reverses PTP induction by CyPD, antagonizing PTP-dependent mitochondrial depolarization and cell death. Conversely, CyPD outcompetes the TRAP1 inhibitory effect on the channel. Our data identify TRAP1 as an F-ATP synthase regulator that can influence cell bioenergetics and survival and can be targeted in pathological conditions where these processes are dysregulated, such as cancer.
Collapse
Affiliation(s)
- Giuseppe Cannino
- Department of Biomedical Sciences, University of Padova, via U. Bassi 58/B, 35131, Padova, Italy
| | - Andrea Urbani
- Department of Biomedical Sciences, University of Padova, via U. Bassi 58/B, 35131, Padova, Italy
| | - Marco Gaspari
- Research Centre for Advanced Biochemistry and Molecular Biology, Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, viale Europa, 88100, Catanzaro, Italy
| | - Mariaconcetta Varano
- Research Centre for Advanced Biochemistry and Molecular Biology, Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, viale Europa, 88100, Catanzaro, Italy
| | - Alessandro Negro
- Department of Biomedical Sciences, University of Padova, via U. Bassi 58/B, 35131, Padova, Italy
| | - Antonio Filippi
- Department of Medicine, University of Udine, via Colugna 50, 33100, Udine, Italy
| | - Francesco Ciscato
- Department of Biomedical Sciences, University of Padova, via U. Bassi 58/B, 35131, Padova, Italy
| | - Ionica Masgras
- Department of Biomedical Sciences, University of Padova, via U. Bassi 58/B, 35131, Padova, Italy
- Institute of Neuroscience, National Research Council, Viale G. Colombo 3, 35131, Padova, Italy
| | - Christoph Gerle
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, Japan
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan
| | - Elena Tibaldi
- Department of Molecular Medicine, University of Padova, via Gabelli 63, 35121, Padova, Italy
| | - Anna Maria Brunati
- Department of Molecular Medicine, University of Padova, via Gabelli 63, 35121, Padova, Italy
| | - Giorgio Colombo
- Department of Chemistry, University of Pavia, via Taramelli 12, 27100, Pavia, Italy
- Institute of Chemical and Technological Sciences "Giulio Natta"- SCITEC, Via Mario Bianco 9, 20131, Milano, Italy
| | - Giovanna Lippe
- Department of Medicine, University of Udine, via Colugna 50, 33100, Udine, Italy
| | - Paolo Bernardi
- Department of Biomedical Sciences, University of Padova, via U. Bassi 58/B, 35131, Padova, Italy
- Institute of Neuroscience, National Research Council, Viale G. Colombo 3, 35131, Padova, Italy
| | - Andrea Rasola
- Department of Biomedical Sciences, University of Padova, via U. Bassi 58/B, 35131, Padova, Italy.
| |
Collapse
|
11
|
Quinn JF, Kelly MJ, Harris CJ, Hack W, Gray NE, Kulik V, Bostick Z, Brumbach BH, Copenhaver PF. The novel estrogen receptor modulator STX attenuates Amyloid-β neurotoxicity in the 5XFAD mouse model of Alzheimer's disease. Neurobiol Dis 2022; 174:105888. [PMID: 36209948 PMCID: PMC10108899 DOI: 10.1016/j.nbd.2022.105888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/09/2022] [Accepted: 10/05/2022] [Indexed: 11/21/2022] Open
Abstract
Based on previous evidence that the non-steroidal estrogen receptor modulator STX mitigates the effects of neurotoxic Amyloid-β (Aβ) in vitro, we have evaluated its neuroprotective benefits in a mouse model of Alzheimer's disease. Cohorts of 5XFAD mice, which begin to accumulate cerebral Aβ at two months of age, were treated with orally-administered STX starting at 6 months of age for two months. After behavioral testing to evaluate cognitive function, biochemical and immunohistochemical assays were used to analyze key markers of mitochondrial function and synaptic integrity. Oral STX treatment attenuated Aβ-associated mitochondrial toxicity and synaptic toxicity in the brain, as previously documented in cultured neurons. STX also moderately improved spatial memory in 5XFAD mice. In addition, STX reduced markers for reactive astrocytosis and microgliosis surrounding amyloid plaques, and also unexpectedly reduced overall levels of cerebral Aβ in the brain. The neuroprotective effects of STX were more robust in females than in males. These results suggest that STX may have therapeutic potential in Alzheimer's Disease.
Collapse
Affiliation(s)
- Joseph F Quinn
- Department of Neurology, Oregon Health and Science University, Portland, OR, United States of America; Parkinson's Disease Research, Education, and Clinical Center, Portland Veterans Affairs Medical Center, Portland, OR, United States of America.
| | - Martin J Kelly
- Department of Chemical Physiology and Biochemistry, OHSU, Portland, OR, United States of America
| | - Christopher J Harris
- Department of Neurology, Oregon Health and Science University, Portland, OR, United States of America
| | - Wyatt Hack
- Department of Neurology, Oregon Health and Science University, Portland, OR, United States of America
| | - Nora E Gray
- Department of Neurology, Oregon Health and Science University, Portland, OR, United States of America
| | - Veronika Kulik
- Department of Neurology, Oregon Health and Science University, Portland, OR, United States of America
| | - Zoe Bostick
- Department of Cell, Developmental and Cancer Biology, OHSU, Portland, OR, United States of America
| | - Barbara H Brumbach
- Biostatistics and Design Program, OHSU-PSU School of Public Health, Portland, OR, United States of America
| | - Philip F Copenhaver
- Department of Cell, Developmental and Cancer Biology, OHSU, Portland, OR, United States of America
| |
Collapse
|
12
|
Queathem ED, Fitzgerald M, Welly R, Rowles CC, Schaller K, Bukhary S, Baines CP, Rector RS, Padilla J, Manrique-Acevedo C, Lubahn DB, Vieira-Potter VJ. Suppression of estrogen receptor beta classical genomic activity enhances systemic and adipose-specific response to chronic beta-3 adrenergic receptor (β3AR) stimulation. Front Physiol 2022; 13:920675. [PMID: 36213237 PMCID: PMC9534559 DOI: 10.3389/fphys.2022.920675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 08/15/2022] [Indexed: 11/23/2022] Open
Abstract
White adipose tissue (WAT) dysfunction independently predicts cardiometabolic disease, yet there is a lack of effective adipocyte-targeting therapeutics. B3AR agonists enhance adipocyte mitochondrial function and hold potential in this regard. Based on enhanced sensitivity to B3AR-mediated browning in estrogen receptor (ER)alpha-null mice, we hypothesized that ERβ may enhance the WAT response to the B3AR ligand, CL316,243 (CL). Methods: Male and female wild-type (WT) and ERβ DNA binding domain knock-out (ERβDBDKO) mice fed high-fat diet (HFD) to induce obesity were administered CL (1 mg/kg) daily for 2 weeks. Systemic physiological assessments of body composition (EchoMRI), bioenergetics (metabolic chambers), adipocyte mitochondrial respiration (oroboros) and glucose tolerance were performed, alongside perigonadal (PGAT), subcutaneous (SQAT) and brown adipose tissue (BAT) protein expression assessment (Western blot). Mechanisms were tested in vitro using primary adipocytes isolated from WT mice, and from Esr2-floxed mice in which ERβ was knocked down. Statistical analyses were performed using 2 × 2 analysis of variance (ANOVA) for main effects of genotype (G) and treatment (T), as well as GxT interactions; t-tests were used to determine differences between in vitro treatment conditions (SPSS V24). Results: There were no genotype differences in HFD-induced obesity or systemic rescue effects of CL, yet ERβDBDKO females were more sensitive to CL-induced increases in energy expenditure and WAT UCP1 induction (GxT, p < 0.05), which coincided with greater WAT B3AR protein content among the KO (G, p < 0.05). Among males, who were more insulin resistant to begin with (no genotype differences before treatment), tended to be more sensitive to CL-mediated reduction in insulin resistance. With sexes combined, basal WAT mitochondrial respiration trended toward being lower in the ERβDBDKO mice, but this was completely rescued by CL (p < 0.05). Confirming prior work, CL increased adipose tissue ERβ protein (T, p < 0.05, all), an effect that was enhanced in WAT and BAT the female KO (GxT, p < 0.01). In vitro experiments indicated that an inhibitor of ERβ genomic function (PHTPP) synergized with CL to further increase UCP1 mRNA (p = 0.043), whereas full ERβ protein was required for UCP1 expression (p = 0.042). Conclusion: Full ERβ activity appears requisite and stimulatory for UCP1 expression via a mechanism involving non-classical ERβ signaling. This novel discovery about the role of ERβ in adipocyte metabolism may have important clinical applications.
Collapse
Affiliation(s)
- Eric D. Queathem
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
- Department of Biochemistry, University of Missouri, Columbia, MO, United States
| | - Maggie Fitzgerald
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
| | - Rebecca Welly
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
| | - Candace C. Rowles
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
| | - Kylie Schaller
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
- Department of Biochemistry, University of Missouri, Columbia, MO, United States
| | - Shahad Bukhary
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
| | - Christopher P. Baines
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, United States
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, United States
| | - R. Scott Rector
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
- Internal Medicine-Division of Gastroenterology and Hepatology, University of Missouri, Columbia, MO, United States
- Research Service, Truman VA Memorial Hospital, Columbia, MO, United States
| | - Jaume Padilla
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, United States
| | - Camila Manrique-Acevedo
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Missouri Columbia School of Medicine, Columbia, MO, United States
| | - Dennis B. Lubahn
- Department of Biochemistry, University of Missouri, Columbia, MO, United States
| | - Victoria J. Vieira-Potter
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
| |
Collapse
|
13
|
Sautchuk R, Eliseev RA. Cell energy metabolism and bone formation. Bone Rep 2022; 16:101594. [PMID: 35669927 PMCID: PMC9162940 DOI: 10.1016/j.bonr.2022.101594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 05/19/2022] [Accepted: 05/23/2022] [Indexed: 12/19/2022] Open
Abstract
Energy metabolism plays an important role in cell and tissue ability to effectively function, maintain homeostasis, and perform repair. Yet, the role of energy metabolism in skeletal tissues in general and in bone, in particular, remains understudied. We, here, review the aspects of cell energy metabolism relevant to bone tissue, such as: i) availability of substrates and oxygen; ii) metabolism regulatory mechanisms most active in bone tissue, e.g. HIF and BMP; iii) crosstalk of cell bioenergetics with other cell functions, e.g. proliferation and differentiation; iv) role of glycolysis and mitochondrial oxidative phosphorylation in osteogenic lineage; and v) most significant changes in bone energy metabolism observed in aging and other pathologies. In addition, we review available methods to study energy metabolism on a subcellular, cellular, tissue, and live animal levels.
Collapse
Affiliation(s)
- Rubens Sautchuk
- Center for Musculoskeletal Research, University of Rochester School of Medicine & Dentistry, 601 Elmwood Ave, Rochester, NY 14642, United States
| | - Roman A. Eliseev
- Center for Musculoskeletal Research, University of Rochester School of Medicine & Dentistry, 601 Elmwood Ave, Rochester, NY 14642, United States
| |
Collapse
|
14
|
Baev AY, Charishnikova OS, Khasanov FA, Nebesnaya KS, Makhmudov AR, Rakhmedova MT, Khushbaktova ZA, Syrov VN, Levitskaya YV. Ecdysterone prevents negative effect of acute immobilization stress on energy metabolism of rat liver mitochondria. J Steroid Biochem Mol Biol 2022; 219:106066. [PMID: 35104603 DOI: 10.1016/j.jsbmb.2022.106066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/06/2022] [Accepted: 01/28/2022] [Indexed: 11/16/2022]
Abstract
Ecdysterone is a naturally occurring steroid hormone, which presents in arthropods and in a number of plants as an insect defence tool. There are many studies showing that application of ecdysterone can alter mitochondrial functions of mammalian cells, however it is not clear whether its effects are direct or mediated by activation of other cellular processes. In our study, we have shown how ecdysterone acts at the mitochondrial level in normal conditions and in certain pathology. We have demonstrated that application of immobilization stress to male rats causes uncoupling of mitochondrial oxidative phosphorylation, the preliminary application of ecdysterone prevents negative effect of immobilization stress on mitochondria. In-vitro experiments with isolated mitochondria have shown that ecdysterone can increase mitochondrial coupling and hyperpolarise mitochondria but without a noticeable effect on ADP/O ratio. Molecular docking experiments revealed that ecdysterone has high binding energy with mitochondrial FOF1 ATP synthase, but further biochemical analysis have not revealed either stimulatory or inhibitory effect of ecdysterone on FOF1 ATPase activity of the enzyme. Thus, ecdysterone can directly affect mitochondrial bioenergetics, though we assume that its preventive effect on mitochondria during immobilization stress is also coupled with the activation of some other cellular processes.
Collapse
Affiliation(s)
- Artyom Y Baev
- Laboratory of Experimental Biophysics, Centre for Advanced Technologies, Tashkent, Uzbekistan; Department of Biophysics, Faculty of Biology, National University of Uzbekistan, Tashkent, Uzbekistan.
| | - Oksana S Charishnikova
- Laboratory of Experimental Biophysics, Centre for Advanced Technologies, Tashkent, Uzbekistan
| | - Feruzbek A Khasanov
- Laboratory of Experimental Biophysics, Centre for Advanced Technologies, Tashkent, Uzbekistan; Department of Biochemistry, Faculty of Biology, National University of Uzbekistan, Tashkent, Uzbekistan
| | - Kamila S Nebesnaya
- Laboratory of Experimental Biophysics, Centre for Advanced Technologies, Tashkent, Uzbekistan; Department of Biophysics, Faculty of Biology, National University of Uzbekistan, Tashkent, Uzbekistan
| | - Albert R Makhmudov
- Laboratory of Experimental Biophysics, Centre for Advanced Technologies, Tashkent, Uzbekistan; Faculty of Chemistry, National University of Uzbekistan, Tashkent, Uzbekistan
| | - Mannona T Rakhmedova
- Laboratory of Experimental Biophysics, Centre for Advanced Technologies, Tashkent, Uzbekistan
| | - Zainab A Khushbaktova
- S. Yu. Yunusov Institute of the Chemistry of Plant Substances, Academy of Sciences of the Republic of Uzbekistan, Tashkent, Uzbekistan
| | - Vladimir N Syrov
- S. Yu. Yunusov Institute of the Chemistry of Plant Substances, Academy of Sciences of the Republic of Uzbekistan, Tashkent, Uzbekistan
| | - Yuliya V Levitskaya
- Laboratory of Experimental Biophysics, Centre for Advanced Technologies, Tashkent, Uzbekistan; Department of Biophysics, Faculty of Biology, National University of Uzbekistan, Tashkent, Uzbekistan.
| |
Collapse
|
15
|
Fehsel K, Christl J. Comorbidity of osteoporosis and Alzheimer's disease: Is `AKT `-ing on cellular glucose uptake the missing link? Ageing Res Rev 2022; 76:101592. [PMID: 35192961 DOI: 10.1016/j.arr.2022.101592] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 02/08/2023]
Abstract
Osteoporosis and Alzheimer's disease (AD) are both degenerative diseases. Osteoporosis often proceeds cognitive deficits, and multiple studies have revealed common triggers that lead to energy deficits in brain and bone. Risk factors for osteoporosis and AD, such as obesity, type 2 diabetes, aging, chemotherapy, vitamin deficiency, alcohol abuse, and apolipoprotein Eε4 and/or Il-6 gene variants, reduce cellular glucose uptake, and protective factors, such as estrogen, insulin, exercise, mammalian target of rapamycin inhibitors, hydrogen sulfide, and most phytochemicals, increase uptake. Glucose uptake is a fine-tuned process that depends on an abundance of glucose transporters (Gluts) on the cell surface. Gluts are stored in vesicles under the plasma membrane, and protective factors cause these vesicles to fuse with the membrane, resulting in presentation of Gluts on the cell surface. This translocation depends mainly on AKT kinase signaling and can be affected by a range of factors. Reduced AKT kinase signaling results in intracellular glucose deprivation, which causes endoplasmic reticulum stress and iron depletion, leading to activation of HIF-1α, the transcription factor necessary for higher Glut expression. The link between diseases and aging is a topic of growing interest. Here, we show that diseases that affect the same biochemical pathways tend to co-occur, which may explain why osteoporosis and/or diabetes are often associated with AD.
Collapse
|
16
|
Sartori MR, Navarro CDC, Castilho RF, Vercesi AE. Enhanced resistance to Ca2+-induced mitochondrial permeability transition in the long-lived red-footed tortoise Chelonoidis carbonaria. J Exp Biol 2022; 225:jeb243532. [PMID: 34904632 DOI: 10.1242/jeb.243532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 12/08/2021] [Indexed: 11/20/2022]
Abstract
The interaction between supraphysiological cytosolic Ca2+ levels and mitochondrial redox imbalance mediates the mitochondrial permeability transition (MPT). The MPT is involved in cell death, diseases and aging. This study compared the liver mitochondrial Ca2+ retention capacity and oxygen consumption in the long-lived red-footed tortoise (Chelonoidis carbonaria) with those in the rat as a reference standard. Mitochondrial Ca2+ retention capacity, a quantitative measure of MPT sensitivity, was remarkably higher in tortoises than in rats. This difference was minimized in the presence of the MPT inhibitors ADP and cyclosporine A. However, the Ca2+ retention capacities of tortoise and rat liver mitochondria were similar when both MPT inhibitors were present simultaneously. NADH-linked phosphorylating respiration rates of tortoise liver mitochondria represented only 30% of the maximal electron transport system capacity, indicating a limitation imposed by the phosphorylation system. These results suggested underlying differences in putative MPT structural components [e.g. ATP synthase, adenine nucleotide translocase (ANT) and cyclophilin D] between tortoises and rats. Indeed, in tortoise mitochondria, titrations of inhibitors of the oxidative phosphorylation components revealed a higher limitation of ANT. Furthermore, cyclophilin D activity was approximately 70% lower in tortoises than in rats. Investigation of critical properties of mitochondrial redox control that affect MPT demonstrated that tortoise and rat liver mitochondria exhibited similar rates of H2O2 release and glutathione redox status. Overall, our findings suggest that constraints imposed by ANT and cyclophilin D, putative components or regulators of the MPT pore, are associated with the enhanced resistance to Ca2+-induced MPT in tortoises.
Collapse
Affiliation(s)
- Marina R Sartori
- Department of Pathology, Faculty of Medical Sciences, University of Campinas, Campinas, SP 13083-887, Brazil
| | - Claudia D C Navarro
- Department of Pathology, Faculty of Medical Sciences, University of Campinas, Campinas, SP 13083-887, Brazil
| | - Roger F Castilho
- Department of Pathology, Faculty of Medical Sciences, University of Campinas, Campinas, SP 13083-887, Brazil
| | - Anibal E Vercesi
- Department of Pathology, Faculty of Medical Sciences, University of Campinas, Campinas, SP 13083-887, Brazil
| |
Collapse
|
17
|
Maioli S, Leander K, Nilsson P, Nalvarte I. Estrogen receptors and the aging brain. Essays Biochem 2021; 65:913-925. [PMID: 34623401 PMCID: PMC8628183 DOI: 10.1042/ebc20200162] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 12/14/2022]
Abstract
The female sex hormone estrogen has been ascribed potent neuroprotective properties. It signals by binding and activating estrogen receptors that, depending on receptor subtype and upstream or downstream effectors, can mediate gene transcription and rapid non-genomic actions. In this way, estrogen receptors in the brain participate in modulating neural differentiation, proliferation, neuroinflammation, cholesterol metabolism, synaptic plasticity, and behavior. Circulating sex hormones decrease in the course of aging, more rapidly at menopause in women, and slower in men. This review will discuss what this drop entails in terms of modulating neuroprotection and resilience in the aging brain downstream of spatiotemporal estrogen receptor alpha (ERα) and beta (ERβ) signaling, as well as in terms of the sex differences observed in Alzheimer's disease (AD) and Parkinson's disease (PD). In addition, controversies related to ER expression in the brain will be discussed. Understanding the spatiotemporal signaling of sex hormones in the brain can lead to more personalized prevention strategies or therapies combating neurodegenerative diseases.
Collapse
Affiliation(s)
- Silvia Maioli
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Karin Leander
- Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Per Nilsson
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Ivan Nalvarte
- Department of Biosciences and Nutrition, Karolinska Institutet, 141 57 Huddinge, Sweden
| |
Collapse
|
18
|
White Adipose Tissue Depots Respond to Chronic Beta-3 Adrenergic Receptor Activation in a Sexually Dimorphic and Depot Divergent Manner. Cells 2021; 10:cells10123453. [PMID: 34943961 PMCID: PMC8700379 DOI: 10.3390/cells10123453] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/28/2021] [Accepted: 11/30/2021] [Indexed: 12/24/2022] Open
Abstract
Beta-3 adrenergic receptor activation via exercise or CL316,243 (CL) induces white adipose tissue (WAT) browning, improves glucose tolerance, and reduces visceral adiposity. Our aim was to determine if sex or adipose tissue depot differences exist in response to CL. Daily CL injections were administered to diet-induced obese male and female mice for two weeks, creating four groups: male control, male CL, female control, and female CL. These groups were compared to determine the main and interaction effects of sex (S), CL treatment (T), and WAT depot (D). Glucose tolerance, body composition, and energy intake and expenditure were assessed, along with perigonadal (PGAT) and subcutaneous (SQAT) WAT gene and protein expression. CL consistently improved glucose tolerance and body composition. Female PGAT had greater protein expression of the mitochondrial uncoupling protein 1 (UCP1), while SQAT (S, p < 0.001) was more responsive to CL in increasing UCP1 (S×T, p = 0.011) and the mitochondrial biogenesis induction protein, PPARγ coactivator 1α (PGC1α) (S×T, p = 0.026). Females also displayed greater mitochondrial OXPHOS (S, p < 0.05) and adiponectin protein content (S, p < 0.05). On the other hand, male SQAT was more responsive to CL in increasing protein levels of PGC1α (S×T, p = 0.046) and adiponectin (S, p < 0.05). In both depots and in both sexes, CL significantly increased estrogen receptor beta (ERβ) and glucose-related protein 75 (GRP75) protein content (T, p < 0.05). Thus, CL improves systemic and adipose tissue-specific metabolism in both sexes; however, sex differences exist in the WAT-specific effects of CL. Furthermore, across sexes and depots, CL affects estrogen signaling by upregulating ERβ.
Collapse
|
19
|
Shaw GA. Mitochondria as the target for disease related hormonal dysregulation. Brain Behav Immun Health 2021; 18:100350. [PMID: 34746877 PMCID: PMC8554460 DOI: 10.1016/j.bbih.2021.100350] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 09/12/2021] [Accepted: 09/17/2021] [Indexed: 12/13/2022] Open
Abstract
Mitochondria play an important role in the synthesis of steroid hormones, including the sex hormone estrogen. Sex-specific regulation of these hormones is important for phenotypic development and downstream, sex-specific activational effects in both brain and behavior. First, mitochondrial contribution to the synthesis of estrogen, followed by a discussion of the signaling interactions between estrogen and the mitochondria will be reviewed. Next, disorders with an established sex difference related to aging, mood, and cognition will be examined. Finally, review of mitochondria as a biomarker of disease and data supporting efforts in targeting mitochondria as a therapeutic target for the amelioration of these disorders will be discussed. Taken together, this review aims to assess the influence of E2 on mitochondrial function within the brain via exploration of E2-ER interactions within neural mitochondria and how they may act to influence the development and presentation of neurodegenerative and neurocognitive diseases with known sex differences.
Collapse
Affiliation(s)
- Gladys A. Shaw
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
20
|
Carrer A, Tommasin L, Šileikytė J, Ciscato F, Filadi R, Urbani A, Forte M, Rasola A, Szabò I, Carraro M, Bernardi P. Defining the molecular mechanisms of the mitochondrial permeability transition through genetic manipulation of F-ATP synthase. Nat Commun 2021; 12:4835. [PMID: 34376679 PMCID: PMC8355262 DOI: 10.1038/s41467-021-25161-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 07/26/2021] [Indexed: 12/13/2022] Open
Abstract
F-ATP synthase is a leading candidate as the mitochondrial permeability transition pore (PTP) but the mechanism(s) leading to channel formation remain undefined. Here, to shed light on the structural requirements for PTP formation, we test cells ablated for g, OSCP and b subunits, and ρ0 cells lacking subunits a and A6L. Δg cells (that also lack subunit e) do not show PTP channel opening in intact cells or patch-clamped mitoplasts unless atractylate is added. Δb and ΔOSCP cells display currents insensitive to cyclosporin A but inhibited by bongkrekate, suggesting that the adenine nucleotide translocator (ANT) can contribute to channel formation in the absence of an assembled F-ATP synthase. Mitoplasts from ρ0 mitochondria display PTP currents indistinguishable from their wild-type counterparts. In this work, we show that peripheral stalk subunits are essential to turn the F-ATP synthase into the PTP and that the ANT provides mitochondria with a distinct permeability pathway.
Collapse
Affiliation(s)
- Andrea Carrer
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Ludovica Tommasin
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Justina Šileikytė
- Vollum Institute, Oregon Health and Science University, Portland, OR, USA
| | - Francesco Ciscato
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Riccardo Filadi
- Department of Biomedical Sciences, University of Padova, Padova, Italy.,Consiglio Nazionale delle Ricerche Neuroscience Institute, Padova, Italy
| | - Andrea Urbani
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Michael Forte
- Vollum Institute, Oregon Health and Science University, Portland, OR, USA
| | - Andrea Rasola
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Ildikò Szabò
- Consiglio Nazionale delle Ricerche Neuroscience Institute, Padova, Italy.,Department of Biology, University of Padova, Padova, Italy
| | - Michela Carraro
- Department of Biomedical Sciences, University of Padova, Padova, Italy.
| | - Paolo Bernardi
- Department of Biomedical Sciences, University of Padova, Padova, Italy. .,Consiglio Nazionale delle Ricerche Neuroscience Institute, Padova, Italy.
| |
Collapse
|
21
|
Anti-Apoptotic and Antioxidant Activities of the Mitochondrial Estrogen Receptor Beta in N2A Neuroblastoma Cells. Int J Mol Sci 2021; 22:ijms22147620. [PMID: 34299239 PMCID: PMC8306648 DOI: 10.3390/ijms22147620] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/05/2021] [Accepted: 07/13/2021] [Indexed: 12/11/2022] Open
Abstract
Estrogens are steroid hormones that play a crucial role in the regulation of the reproductive and non-reproductive system physiology. Among non-reproductive systems, the nervous system is mainly affected by estrogens due to their antioxidant, anti-apoptotic, and anti-inflammatory activities, which are mediated by membranous and nuclear estrogen receptors, and also by non-estrogen receptor-associated estrogen actions. Neuronal viability and functionality are also associated with the maintenance of mitochondrial functions. Recently, the localization of estrogen receptors, especially estrogen receptor beta, in the mitochondria of many types of neuronal cells is documented, indicating the direct involvement of the mitochondrial estrogen receptor beta (mtERβ) in the maintenance of neuronal physiology. In this study, cell lines of N2A cells stably overexpressing a mitochondrial-targeted estrogen receptor beta were generated and further analyzed to study the direct involvement of mtERβ in estrogen neuroprotective antioxidant and anti-apoptotic actions. Results from this study revealed that the presence of estrogen receptor beta in mitochondria render N2A cells more resistant to staurosporine- and H2O2-induced apoptotic stimuli, as indicated by the reduced activation of caspase-9 and -3, the increased cell viability, the increased ATP production, and the increased resistance to mitochondrial impairment in the presence or absence of 17-β estradiol (E2). Thus, the direct involvement of mtERβ in antioxidant and anti-apoptotic activities is documented, rendering mtERβ a promising therapeutic target for mitochondrial dysfunction-associated degenerative diseases.
Collapse
|
22
|
Cikic S, Chandra PK, Harman JC, Rutkai I, Katakam PV, Guidry JJ, Gidday JM, Busija DW. Sexual differences in mitochondrial and related proteins in rat cerebral microvessels: A proteomic approach. J Cereb Blood Flow Metab 2021; 41:397-412. [PMID: 32241204 PMCID: PMC8370005 DOI: 10.1177/0271678x20915127] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Sex differences in mitochondrial numbers and function are present in large cerebral arteries, but it is unclear whether these differences extend to the microcirculation. We performed an assessment of mitochondria-related proteins in cerebral microvessels (MVs) isolated from young, male and female, Sprague-Dawley rats. MVs composed of arterioles, capillaries, and venules were isolated from the cerebrum and used to perform a 3 versus 3 quantitative, multiplexed proteomics experiment utilizing tandem mass tags (TMT), coupled with liquid chromatography/mass spectrometry (LC/MS). MS data and bioinformatic analyses were performed using Proteome Discoverer version 2.2 and Ingenuity Pathway Analysis. We identified a total of 1969 proteins, of which 1871 were quantified by TMT labels. Sixty-four proteins were expressed significantly (p < 0.05) higher in female samples compared with male samples. Females expressed more mitochondrial proteins involved in energy production, mitochondrial membrane structure, anti-oxidant enzyme proteins, and those involved in fatty acid oxidation. Conversely, males had higher expression levels of mitochondria-destructive proteins. Our findings reveal, for the first time, the full extent of sexual dimorphism in the mitochondrial metabolic protein profiles of MVs, which may contribute to sex-dependent cerebrovascular and neurological pathologies.
Collapse
Affiliation(s)
- Sinisa Cikic
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Partha K Chandra
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Jarrod C Harman
- Department of Ophthalmology, Louisiana State University Health Science Center, New Orleans, LA, USA.,Department of Physiology, Louisiana State University Health Science Center, New Orleans, LA, USA.,Neuroscience Center of Excellence, Louisiana State University Health Science Center, New Orleans, LA, USA.,Department of Biochemistry and Molecular Biology, Louisiana State University Health Science Center, New Orleans, LA, USA
| | - Ibolya Rutkai
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA.,Tulane Brain Institute, Tulane University, New Orleans, LA, USA
| | - Prasad Vg Katakam
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA.,Tulane Brain Institute, Tulane University, New Orleans, LA, USA
| | - Jessie J Guidry
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Science Center, New Orleans, LA, USA.,Proteomics Core Facility, Louisiana State University Health Science Center, New Orleans, LA, USA
| | - Jeffrey M Gidday
- Department of Ophthalmology, Louisiana State University Health Science Center, New Orleans, LA, USA.,Department of Physiology, Louisiana State University Health Science Center, New Orleans, LA, USA.,Neuroscience Center of Excellence, Louisiana State University Health Science Center, New Orleans, LA, USA.,Department of Biochemistry and Molecular Biology, Louisiana State University Health Science Center, New Orleans, LA, USA
| | - David W Busija
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA.,Tulane Brain Institute, Tulane University, New Orleans, LA, USA
| |
Collapse
|
23
|
Reis de Assis D, Szabo A, Requena Osete J, Puppo F, O’Connell KS, A. Akkouh I, Hughes T, Frei E, A. Andreassen O, Djurovic S. Using iPSC Models to Understand the Role of Estrogen in Neuron-Glia Interactions in Schizophrenia and Bipolar Disorder. Cells 2021; 10:209. [PMID: 33494281 PMCID: PMC7909800 DOI: 10.3390/cells10020209] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/08/2020] [Accepted: 01/19/2021] [Indexed: 01/04/2023] Open
Abstract
Schizophrenia (SCZ) and bipolar disorder (BIP) are severe mental disorders with a considerable disease burden worldwide due to early age of onset, chronicity, and lack of efficient treatments or prevention strategies. Whilst our current knowledge is that SCZ and BIP are highly heritable and share common pathophysiological mechanisms associated with cellular signaling, neurotransmission, energy metabolism, and neuroinflammation, the development of novel therapies has been hampered by the unavailability of appropriate models to identify novel targetable pathomechanisms. Recent data suggest that neuron-glia interactions are disturbed in SCZ and BIP, and are modulated by estrogen (E2). However, most of the knowledge we have so far on the neuromodulatory effects of E2 came from studies on animal models and human cell lines, and may not accurately reflect many processes occurring exclusively in the human brain. Thus, here we highlight the advantages of using induced pluripotent stem cell (iPSC) models to revisit studies of mechanisms underlying beneficial effects of E2 in human brain cells. A better understanding of these mechanisms opens the opportunity to identify putative targets of novel therapeutic agents for SCZ and BIP. In this review, we first summarize the literature on the molecular mechanisms involved in SCZ and BIP pathology and the beneficial effects of E2 on neuron-glia interactions. Then, we briefly present the most recent developments in the iPSC field, emphasizing the potential of using patient-derived iPSCs as more relevant models to study the effects of E2 on neuron-glia interactions.
Collapse
Affiliation(s)
- Denis Reis de Assis
- NORMENT, Institute of Clinical Medicine, University of Oslo & Division of Mental Health and Addiction, Oslo University Hospital, 0450 Oslo, Norway; (A.S.); (J.R.O.); (F.P.); (K.S.O.); (I.A.A.); (T.H.); (E.F.); (O.A.A.)
- Department of Medical Genetics, Oslo University Hospital, 0450 Oslo, Norway
| | - Attila Szabo
- NORMENT, Institute of Clinical Medicine, University of Oslo & Division of Mental Health and Addiction, Oslo University Hospital, 0450 Oslo, Norway; (A.S.); (J.R.O.); (F.P.); (K.S.O.); (I.A.A.); (T.H.); (E.F.); (O.A.A.)
- Department of Medical Genetics, Oslo University Hospital, 0450 Oslo, Norway
| | - Jordi Requena Osete
- NORMENT, Institute of Clinical Medicine, University of Oslo & Division of Mental Health and Addiction, Oslo University Hospital, 0450 Oslo, Norway; (A.S.); (J.R.O.); (F.P.); (K.S.O.); (I.A.A.); (T.H.); (E.F.); (O.A.A.)
- Department of Medical Genetics, Oslo University Hospital, 0450 Oslo, Norway
| | - Francesca Puppo
- NORMENT, Institute of Clinical Medicine, University of Oslo & Division of Mental Health and Addiction, Oslo University Hospital, 0450 Oslo, Norway; (A.S.); (J.R.O.); (F.P.); (K.S.O.); (I.A.A.); (T.H.); (E.F.); (O.A.A.)
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Kevin S. O’Connell
- NORMENT, Institute of Clinical Medicine, University of Oslo & Division of Mental Health and Addiction, Oslo University Hospital, 0450 Oslo, Norway; (A.S.); (J.R.O.); (F.P.); (K.S.O.); (I.A.A.); (T.H.); (E.F.); (O.A.A.)
| | - Ibrahim A. Akkouh
- NORMENT, Institute of Clinical Medicine, University of Oslo & Division of Mental Health and Addiction, Oslo University Hospital, 0450 Oslo, Norway; (A.S.); (J.R.O.); (F.P.); (K.S.O.); (I.A.A.); (T.H.); (E.F.); (O.A.A.)
- Department of Medical Genetics, Oslo University Hospital, 0450 Oslo, Norway
| | - Timothy Hughes
- NORMENT, Institute of Clinical Medicine, University of Oslo & Division of Mental Health and Addiction, Oslo University Hospital, 0450 Oslo, Norway; (A.S.); (J.R.O.); (F.P.); (K.S.O.); (I.A.A.); (T.H.); (E.F.); (O.A.A.)
- Department of Medical Genetics, Oslo University Hospital, 0450 Oslo, Norway
| | - Evgeniia Frei
- NORMENT, Institute of Clinical Medicine, University of Oslo & Division of Mental Health and Addiction, Oslo University Hospital, 0450 Oslo, Norway; (A.S.); (J.R.O.); (F.P.); (K.S.O.); (I.A.A.); (T.H.); (E.F.); (O.A.A.)
- Department of Medical Genetics, Oslo University Hospital, 0450 Oslo, Norway
| | - Ole A. Andreassen
- NORMENT, Institute of Clinical Medicine, University of Oslo & Division of Mental Health and Addiction, Oslo University Hospital, 0450 Oslo, Norway; (A.S.); (J.R.O.); (F.P.); (K.S.O.); (I.A.A.); (T.H.); (E.F.); (O.A.A.)
- Division of Mental Health and Addiction, Oslo University Hospital, 0372 Oslo, Norway
| | - Srdjan Djurovic
- NORMENT, Institute of Clinical Medicine, University of Oslo & Division of Mental Health and Addiction, Oslo University Hospital, 0450 Oslo, Norway; (A.S.); (J.R.O.); (F.P.); (K.S.O.); (I.A.A.); (T.H.); (E.F.); (O.A.A.)
- NORMENT, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway
| |
Collapse
|
24
|
Carraro M, Jones K, Sartori G, Schiavone M, Antonucci S, Kucharczyk R, di Rago JP, Franchin C, Arrigoni G, Forte M, Bernardi P. The Unique Cysteine of F-ATP Synthase OSCP Subunit Participates in Modulation of the Permeability Transition Pore. Cell Rep 2020; 32:108095. [DOI: 10.1016/j.celrep.2020.108095] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/13/2020] [Accepted: 08/10/2020] [Indexed: 12/31/2022] Open
|
25
|
Mitochondrial F-ATP synthase as the permeability transition pore. Pharmacol Res 2020; 160:105081. [PMID: 32679179 DOI: 10.1016/j.phrs.2020.105081] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 07/06/2020] [Accepted: 07/10/2020] [Indexed: 12/27/2022]
Abstract
The current state of research on the mitochondrial permeability transition pore (PTP) can be described in terms of three major problems: molecular identity, atomic structure and gating mechanism. In this review these three problems are discussed in the light of recent findings with special emphasis on the discovery that the PTP is mitochondrial F-ATP synthase (mtFoF1). Novel features of the mitochondrial F-ATP synthase emerging from the success of single particle cryo electron microscopy (cryo-EM) to determine F-ATP synthase structures are surveyed along with their possible involvement in pore formation. Also, current findings from the gap junction field concerning the involvement of lipids in channel closure are examined. Finally, an earlier proposal denoted as the 'Death Finger' is discussed as a working model for PTP gating.
Collapse
|
26
|
Tsialtas I, Gorgogietas VA, Michalopoulou M, Komninou A, Liakou E, Georgantopoulos A, Kalousi FD, Karra AG, Protopapa E, Psarra AMG. Neurotoxic effects of aluminum are associated with its interference with estrogen receptors signaling. Neurotoxicology 2020; 77:114-126. [PMID: 31945389 DOI: 10.1016/j.neuro.2020.01.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 01/10/2020] [Accepted: 01/12/2020] [Indexed: 12/20/2022]
Abstract
Aluminum compounds have been observed in various brain regions, and their accumulation has been associated with many neurodegenerative disorders. Neurotoxic effects of aluminum are attributed to reactive oxygen species generation, induction of apoptosis and inflammatory reactions activation. Metalloestrogen activity of aluminum has also been linked to breast cancer progression and metastasis. In this study, taking into account the anti-apoptotic and anti-oxidant activities of estrogens in neuronal cells, which are mediated by estrogen receptors, the possible estrogenic activity of aluminum in SH-SY5Y neuroblastoma cells was studied. Our results showed that aluminum in the form of aluminum chlorohydrate (ACH) exhibited no effect on estrogen receptors transcriptional activation, and differential effect on estrogen receptor alpha (ERα) and estrogen receptor beta (ERβ) protein levels. ACH caused reduction in ERβ protein levels, and increase in its mitochondrial localization. ACH-induced reduction in ERβ protein level may be linked, at least in part, to the ACH-induced increase in ERα protein level. This statement is based on our observations showing aluminum-induced reduction in the E2-induced increase in ERα S118 phosphorylation, in MCF-7 and SH-SH5Y cells. Phosphorylation at S118 residue is known to be associated with inhibition of the ubiquitin-induced proteolytic degradation of ERα, leading to its accumulation. Since it is known that ERα negatively regulate ERβ expression, increase in ERα, may contribute to reduction in ERβ levels and subsequent weakening of its anti-apoptotic and anti-oxidant activity, justified by the observed reduction in procaspase 9, mitochondrial cytochrome c, Bcl-2, Bcl-xL and mitochondrial thioredoxin protein level, as well as by the increase in proapoptotic BAX level, in ACH treated SH-SY5Y cells. In addition, increase in mitochondrial ERβ localization may also trigger mitochondrial metabolism, suppress biosynthetic process of gluconeogenesis, as indicated by the observed reduction in the phosphoenolpyruvate carboxykinase protein level, and eventually lead to increase in reactive oxygen species (ROS) generation, known to be implicated in aluminum induced neurodegeneration. This statement was verified by the observed ACH-induced increase in ERβ mitochondrial localization, induction of the mitochondrial membrane depolarization and increase in ROS production, in neuronal-like differentiated SH-SY5Y cells.
Collapse
Affiliation(s)
- Ioannis Tsialtas
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - Vyron A Gorgogietas
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - Maria Michalopoulou
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - Aggeliki Komninou
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - Eleni Liakou
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | | | - Foteini D Kalousi
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - Aikaterini G Karra
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - Evagelia Protopapa
- Department of Aesthetics and Cosmetology, Faculty of Health & Caring Professions, University of West Attica, Egaleo, Greece
| | - Anna-Maria G Psarra
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece.
| |
Collapse
|
27
|
Giorgio V, Fogolari F, Lippe G, Bernardi P. OSCP subunit of mitochondrial ATP synthase: role in regulation of enzyme function and of its transition to a pore. Br J Pharmacol 2019; 176:4247-4257. [PMID: 30291799 PMCID: PMC6887684 DOI: 10.1111/bph.14513] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/20/2018] [Accepted: 09/04/2018] [Indexed: 12/20/2022] Open
Abstract
The permeability transition pore (PTP) is a latent, high-conductance channel of the inner mitochondrial membrane. When activated, it plays a key role in cell death and therefore in several diseases. The investigation of the PTP took an unexpected turn after the discovery that cyclophilin D (the target of the PTP inhibitory effect of cyclosporin A) binds to FO F1 (F)-ATP synthase, thus inhibiting its catalytic activity by about 30%. This observation was followed by the demonstration that binding occurs at a particular subunit of the enzyme, the oligomycin sensitivity conferral protein (OSCP), and that F-ATP synthase can form Ca2+ -activated, high-conductance channels with features matching those of the PTP, suggesting that the latter originates from a conformational change in F-ATP synthase. This review is specifically focused on the OSCP subunit of F-ATP synthase, whose unique features make it a potential pharmacological target both for modulation of F-ATP synthase and its transition to a pore. LINKED ARTICLES: This article is part of a themed section on Mitochondrial Pharmacology: Featured Mechanisms and Approaches for Therapy Translation. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.22/issuetoc.
Collapse
Affiliation(s)
- Valentina Giorgio
- Consiglio Nazionale delle Ricerche Institute of Neuroscience and Department of Biomedical SciencesUniversity of PadovaPadovaItaly
| | - Federico Fogolari
- Department of Mathematics, Computer Sciences and PhysicsUniversity of UdineUdineItaly
| | - Giovanna Lippe
- Department of Agricultural, Food, Environmental and Animal SciencesUniversity of UdineUdineItaly
| | - Paolo Bernardi
- Consiglio Nazionale delle Ricerche Institute of Neuroscience and Department of Biomedical SciencesUniversity of PadovaPadovaItaly
| |
Collapse
|
28
|
Fels JA, Manfredi G. Sex Differences in Ischemia/Reperfusion Injury: The Role of Mitochondrial Permeability Transition. Neurochem Res 2019; 44:2336-2345. [PMID: 30863968 DOI: 10.1007/s11064-019-02769-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 03/04/2019] [Accepted: 03/06/2019] [Indexed: 12/23/2022]
Abstract
Brain and heart ischemia are among the leading causes of death and disability in both men and women, but there are significant sex differences in the incidence and severity of these diseases. Ca2+ dysregulation in response to ischemia/reperfusion injury (I/RI) is a well-recognized pathogenic mechanism leading to the death of affected cells. Excess intracellular Ca2+ causes mitochondrial matrix Ca2+ overload that can result in mitochondrial permeability transition (MPT), which can have severe consequences for mitochondrial function and trigger cell death. Recent findings indicate that estrogens and their related receptors are involved in the regulation of MPT, suggesting that sex differences in I/RI could be linked to estrogen-dependent modulation of mitochondrial Ca2+. Here, we review the evidence supporting sex differences in I/RI and the role of estrogen and estrogen receptors in producing these differences, the involvement of mitochondrial Ca2+ overload in disease pathogenesis, and the estrogen-dependent modulation of MPT that may contribute to sex differences.
Collapse
Affiliation(s)
- Jasmine A Fels
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st St., RR506, New York, NY, 10065, USA.,Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Giovanni Manfredi
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st St., RR506, New York, NY, 10065, USA.
| |
Collapse
|
29
|
Morrison HW, Filosa JA. Stroke and the neurovascular unit: glial cells, sex differences, and hypertension. Am J Physiol Cell Physiol 2019; 316:C325-C339. [PMID: 30601672 DOI: 10.1152/ajpcell.00333.2018] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A functional neurovascular unit (NVU) is central to meeting the brain's dynamic metabolic needs. Poststroke damage to the NVU within the ipsilateral hemisphere ranges from cell dysfunction to complete cell loss. Thus, understanding poststroke cell-cell communication within the NVU is of critical importance. Loss of coordinated NVU function exacerbates ischemic injury. However, particular cells of the NVU (e.g., astrocytes) and those with ancillary roles (e.g., microglia) also contribute to repair mechanisms. Epidemiological studies support the notion that infarct size and recovery outcomes are heterogeneous and greatly influenced by modifiable and nonmodifiable factors such as sex and the co-morbid condition common to stroke: hypertension. The mechanisms whereby sex and hypertension modulate NVU function are explored, to some extent, in preclinical laboratory studies. We present a review of the NVU in the context of ischemic stroke with a focus on glial contributions to NVU function and dysfunction. We explore the impact of sex and hypertension as modifiable and nonmodifiable risk factors and the underlying cellular mechanisms that may underlie heterogeneous stroke outcomes. Most of the preclinical investigative studies of poststroke NVU dysfunction are carried out primarily in male stroke models lacking underlying co-morbid conditions, which is very different from the human condition. As such, the evolution of translational medicine to target the NVU for improved stroke outcomes remains elusive; however, it is attainable with further research.
Collapse
|
30
|
Leanza L, Checchetto V, Biasutto L, Rossa A, Costa R, Bachmann M, Zoratti M, Szabo I. Pharmacological modulation of mitochondrial ion channels. Br J Pharmacol 2019; 176:4258-4283. [PMID: 30440086 DOI: 10.1111/bph.14544] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 10/15/2018] [Accepted: 10/22/2018] [Indexed: 12/17/2022] Open
Abstract
The field of mitochondrial ion channels has undergone a rapid development during the last three decades, due to the molecular identification of some of the channels residing in the outer and inner membranes. Relevant information about the function of these channels in physiological and pathological settings was gained thanks to genetic models for a few, mitochondria-specific channels. However, many ion channels have multiple localizations within the cell, hampering a clear-cut determination of their function by pharmacological means. The present review summarizes our current knowledge about the ins and outs of mitochondrial ion channels, with special focus on the channels that have received much attention in recent years, namely, the voltage-dependent anion channels, the permeability transition pore (also called mitochondrial megachannel), the mitochondrial calcium uniporter and some of the inner membrane-located potassium channels. In addition, possible strategies to overcome the difficulties of specifically targeting mitochondrial channels versus their counterparts active in other membranes are discussed, as well as the possibilities of modulating channel function by small peptides that compete for binding with protein interacting partners. Altogether, these promising tools along with large-scale chemical screenings set up to identify new, specific channel modulators will hopefully allow us to pinpoint the actual function of most mitochondrial ion channels in the near future and to pharmacologically affect important pathologies in which they are involved, such as neurodegeneration, ischaemic damage and cancer. LINKED ARTICLES: This article is part of a themed section on Mitochondrial Pharmacology: Featured Mechanisms and Approaches for Therapy Translation. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.22/issuetoc.
Collapse
Affiliation(s)
- Luigi Leanza
- Department of Biology, University of Padova, Padova, Italy
| | | | - Lucia Biasutto
- CNR Institute of Neurosciences, Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Andrea Rossa
- Department of Chemical Sciences, University of Padova, Padova, Italy
| | - Roberto Costa
- Department of Biology, University of Padova, Padova, Italy
| | | | - Mario Zoratti
- CNR Institute of Neurosciences, Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Ildiko Szabo
- Department of Biology, University of Padova, Padova, Italy.,CNR Institute of Neurosciences, Department of Biomedical Sciences, University of Padova, Padova, Italy
| |
Collapse
|
31
|
Porter GA, Beutner G. Cyclophilin D, Somehow a Master Regulator of Mitochondrial Function. Biomolecules 2018; 8:E176. [PMID: 30558250 PMCID: PMC6316178 DOI: 10.3390/biom8040176] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 12/10/2018] [Accepted: 12/12/2018] [Indexed: 12/14/2022] Open
Abstract
Cyclophilin D (CyPD) is an important mitochondrial chaperone protein whose mechanism of action remains a mystery. It is well known for regulating mitochondrial function and coupling of the electron transport chain and ATP synthesis by controlling the mitochondrial permeability transition pore (PTP), but more recent evidence suggests that it may regulate electron transport chain activity. Given its identification as a peptidyl-prolyl, cis-trans isomerase (PPIase), CyPD, is thought to be involved in mitochondrial protein folding, but very few reports demonstrate the presence of this activity. By contrast, CyPD may also perform a scaffolding function, as it binds to a number of important proteins in the mitochondrial matrix and inner mitochondrial membrane. From a clinical perspective, inhibiting CyPD to inhibit PTP opening protects against ischemia⁻reperfusion injury, making modulation of CyPD activity a potentially important therapeutic goal, but the lack of knowledge about the mechanisms of CyPD's actions remains problematic for such therapies. Thus, the important yet enigmatic nature of CyPD somehow makes it a master regulator, yet a troublemaker, for mitochondrial function.
Collapse
Affiliation(s)
- George A Porter
- Department of Pediatrics, Division of Cardiology, University of Rochester School of Medicine, Rochester, NY 14642, USA.
| | - Gisela Beutner
- Department of Pediatrics, Division of Cardiology, University of Rochester School of Medicine, Rochester, NY 14642, USA.
| |
Collapse
|
32
|
Novaira HJ, Negron AL, Graceli JB, Capellino S, Schoeffield A, Hoffman GE, Levine JE, Wolfe A, Wondisford FE, Radovick S. Impairments in the reproductive axis of female mice lacking estrogen receptor β in GnRH neurons. Am J Physiol Endocrinol Metab 2018; 315:E1019-E1033. [PMID: 30040478 PMCID: PMC6293171 DOI: 10.1152/ajpendo.00173.2018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 07/02/2018] [Accepted: 07/21/2018] [Indexed: 12/24/2022]
Abstract
The effect of estrogen on the differentiation and maintenance of reproductive tissues is mediated by two nuclear estrogen receptors (ERs), ERα, and ERβ. Lack of functional ERα and ERβ genes in vivo significantly affects reproductive function; however, the target tissues and signaling pathways in the hypothalamus are not clearly defined. Here, we describe the generation and reproductive characterization of a complete-ERβ KO (CERβKO) and a GnRH neuron-specific ERβKO (GERβKO) mouse models. Both ERβKO mouse models displayed a delay in vaginal opening and first estrus. Hypothalamic gonadotropin-releasing hormone (GnRH) mRNA expression levels in both ERβKO mice were similar to control mice; however female CERβKO and GERβKO mice had lower basal and surge serum gonadotropin levels. Although a GnRH stimulation test in both female ERβKO models showed preserved gonadotropic function in the same animals, a kisspeptin stimulation test revealed an attenuated response by GnRH neurons, suggesting a role for ERβ in normal GnRH neuron function. No alteration in estrogen-negative feedback was observed in either ERβKO mouse models after ovariectomy and estrogen replacement. Further, abnormal development of ovarian follicles with low serum estradiol levels and impairment of fertility were observed in both ERβKO mouse models. In male ERβKO mice, no differences in the timing of pubertal onset or serum luteinizing hormone and follicle-stimulating hormone levels were observed as compared with controls. Taken together, these data provide in vivo evidence for a role of ERβ in GnRH neurons in modulating puberty and reproduction, specifically through kisspeptin responsiveness in the female hypothalamic-pituitary-gonadal axis.
Collapse
Affiliation(s)
- Horacio J Novaira
- Department of Pediatrics, Rutgers-Robert Wood Johnson Medical School , New Brunswick, New Jersey
| | - Ariel L Negron
- Department of Pediatrics, Rutgers-Robert Wood Johnson Medical School , New Brunswick, New Jersey
| | - Jones B Graceli
- Department of Morphology, Federal University of Espirito Santo , Vitoria , Brazil
| | - Silvia Capellino
- IfADo-Leibniz Research Centre for Working Environment and Human Factors, Department of Immunology , Dortmund , Germany
| | | | - Gloria E Hoffman
- Department of Biology, Morgan State University , Baltimore, Maryland
| | - Jon E Levine
- Department of Neuroscience, University of Wisconsin , Madison, Wisconsin
| | - Andrew Wolfe
- Department of Pediatrics, Division of Endocrinology, Johns Hopkins University School of Medicine , Baltimore, Maryland
| | - Fredric E Wondisford
- Department of Medicine, Rutgers-Robert Wood Johnson Medical School , New Brunswick, New Jersey
| | - Sally Radovick
- Department of Pediatrics, Rutgers-Robert Wood Johnson Medical School , New Brunswick, New Jersey
| |
Collapse
|
33
|
Guo L, Carraro M, Sartori G, Minervini G, Eriksson O, Petronilli V, Bernardi P. Arginine 107 of yeast ATP synthase subunit g mediates sensitivity of the mitochondrial permeability transition to phenylglyoxal. J Biol Chem 2018; 293:14632-14645. [PMID: 30093404 DOI: 10.1074/jbc.ra118.004495] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 07/27/2018] [Indexed: 12/18/2022] Open
Abstract
Modification with arginine-specific glyoxals modulates the permeability transition (PT) of rat liver mitochondria, with inhibitory or inducing effects that depend on the net charge of the adduct(s). Here, we show that phenylglyoxal (PGO) affects the PT in a species-specific manner (inhibition in mouse and yeast, induction in human and Drosophila mitochondria). Following the hypotheses (i) that the effects are mediated by conserved arginine(s) and (ii) that the PT is mediated by the F-ATP synthase, we have narrowed the search to 60 arginines. Most of these residues are located in subunits α, β, γ, ϵ, a, and c and were excluded because PGO modification did not significantly affect enzyme catalysis. On the other hand, yeast mitochondria lacking subunit g or bearing a subunit g R107A mutation were totally resistant to PT inhibition by PGO. Thus, the effect of PGO on the PT is specifically mediated by Arg-107, the only subunit g arginine that has been conserved across species. These findings are evidence that the PT is mediated by F-ATP synthase.
Collapse
Affiliation(s)
- Lishu Guo
- From the Consiglio Nazionale delle Ricerche Institute of Neuroscience and Department of Biomedical Sciences, University of Padova, Padova 35131, Italy and
| | - Michela Carraro
- From the Consiglio Nazionale delle Ricerche Institute of Neuroscience and Department of Biomedical Sciences, University of Padova, Padova 35131, Italy and
| | - Geppo Sartori
- From the Consiglio Nazionale delle Ricerche Institute of Neuroscience and Department of Biomedical Sciences, University of Padova, Padova 35131, Italy and
| | - Giovanni Minervini
- From the Consiglio Nazionale delle Ricerche Institute of Neuroscience and Department of Biomedical Sciences, University of Padova, Padova 35131, Italy and
| | - Ove Eriksson
- the Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Helsinki 00290, Finland
| | - Valeria Petronilli
- From the Consiglio Nazionale delle Ricerche Institute of Neuroscience and Department of Biomedical Sciences, University of Padova, Padova 35131, Italy and
| | - Paolo Bernardi
- From the Consiglio Nazionale delle Ricerche Institute of Neuroscience and Department of Biomedical Sciences, University of Padova, Padova 35131, Italy and
| |
Collapse
|
34
|
Bachmann M, Costa R, Peruzzo R, Prosdocimi E, Checchetto V, Leanza L. Targeting Mitochondrial Ion Channels to Fight Cancer. Int J Mol Sci 2018; 19:ijms19072060. [PMID: 30011966 PMCID: PMC6073807 DOI: 10.3390/ijms19072060] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 07/12/2018] [Accepted: 07/13/2018] [Indexed: 12/14/2022] Open
Abstract
In recent years, several experimental evidences have underlined a new role of ion channels in cancer development and progression. In particular, mitochondrial ion channels are arising as new oncological targets, since it has been proved that most of them show an altered expression during tumor development and the pharmacological targeting of some of them have been demonstrated to be able to modulate cancer growth and progression, both in vitro as well as in vivo in pre-clinical mouse models. In this scenario, pharmacology of mitochondrial ion channels would be in the near future a new frontier for the treatment of tumors. In this review, we discuss the new advances in the field, by focusing our attention on the improvements in new drug developments to target mitochondrial ion channels.
Collapse
Affiliation(s)
| | - Roberto Costa
- Department of Biology, University of Padova, 35131 Padova, Italy.
| | - Roberta Peruzzo
- Department of Biology, University of Padova, 35131 Padova, Italy.
| | - Elena Prosdocimi
- Department of Biology, University of Padova, 35131 Padova, Italy.
| | | | - Luigi Leanza
- Department of Biology, University of Padova, 35131 Padova, Italy.
| |
Collapse
|