1
|
Bansal R, Bhojwani D, Sun BF, Sawardekar S, Wayne AS, Ouassil H, Gupte C, Marcelino C, Gonzalez Anaya MJ, Luna N, Peterson BS. Progression of brain injuries associated with methotrexate chemotherapy in childhood acute lymphoblastic leukemia. Pediatr Res 2024:10.1038/s41390-024-03351-9. [PMID: 38951657 DOI: 10.1038/s41390-024-03351-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/18/2024] [Accepted: 06/07/2024] [Indexed: 07/03/2024]
Abstract
BACKGROUND Brain bases and progression of methotrexate-associated neurotoxicity and cognitive disturbances remain unknown. We tested whether brain abnormalities worsen in proportion to intrathecal methotrexate(IT-MTX) doses. METHODS In this prospective, longitudinal study, we recruited 19 patients with newly diagnosed acute lymphoblastic leukemia 4-to-20 years of age and 20 matched controls. We collected MRI and neuropsychological assessments at a pre-methotrexate baseline and at week 9, week 22, and year 1 during treatment. RESULTS Patients had baseline abnormalities in cortical and subcortical gray matter(GM), white matter(WM) volumes and microstructure, regional cerebral blood flow, and neuronal density. Abnormalities of GM, blood flow, and metabolites worsened in direct proportions to IT-MTX doses. WM abnormalities persisted until week 22 but normalized by year 1. Brain injuries were localized to dorsal and ventral attentional and frontoparietal cognitive networks. Patients had cognitive deficits at baseline that persisted at 1-year follow-up. CONCLUSIONS Baseline abnormalities are likely a consequence of neuroinflammation and oxidative stress. Baseline abnormalities in WM microstructure and volumes, and blood flow persisted until week 22 but normalized by year 1, likely due to treatment and its effects on reducing inflammation. The cytotoxic effects of IT-MTX, however, likely contributed to continued, progressive cortical thinning and reductions in neuronal density, thereby contributing to enduring cognitive deficits. IMPACT Brain abnormalities at a pre-methotrexate baseline likely are due to acute illness. The cytotoxic effects of intrathecal MTX contribute to progressive cortical thinning, reductions in neuronal density, and enduring cognitive deficits. Baseline white matter abnormalities may have normalized via methotrexate treatment and decreasing neuroinflammation. Corticosteroid and leucovorin conferred neuroprotective effects. Our findings suggest that the administration of neuroprotective and anti-inflammatory agents should be considered even earlier than they are currently administered. The neuroprotective effects of leucovorin suggest that strategies may be developed that extend the duration of this intervention or adapt it for use in standard risk patients.
Collapse
Affiliation(s)
- Ravi Bansal
- Department of Psychiatry, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
- Institute for the Developing Mind, Children's Hospital Los Angeles, Los Angeles, CA, USA.
| | - Deepa Bhojwani
- Cancer and Blood Disease Institute, Children's Hospital Los Angeles, Norris Comprehensive Cancer Center and Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Bernice F Sun
- Institute for the Developing Mind, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Siddhant Sawardekar
- Institute for the Developing Mind, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Alan S Wayne
- Cancer and Blood Disease Institute, Children's Hospital Los Angeles, Norris Comprehensive Cancer Center and Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Hannah Ouassil
- College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA, USA
| | - Chaitanya Gupte
- Institute for the Developing Mind, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Courtney Marcelino
- Institute for the Developing Mind, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Maria J Gonzalez Anaya
- Institute for the Developing Mind, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Natalia Luna
- Institute for the Developing Mind, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Bradley S Peterson
- Department of Psychiatry, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Institute for the Developing Mind, Children's Hospital Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
2
|
Wang C, Leng M, Ding C, Zhu X, Zhang Y, Sun C, Lou P. Ferritinophagy-mediated ferroptosis facilitates methotrexate-induced hepatotoxicity by high-mobility group box 1 (HMGB1). Liver Int 2024; 44:691-705. [PMID: 38082504 DOI: 10.1111/liv.15811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/16/2023] [Accepted: 11/22/2023] [Indexed: 03/01/2024]
Abstract
BACKGROUND AND AIM Hepatotoxicity is a well-defined reaction to methotrexate (MTX), a drug commonly used for the treatment of rheumatoid arthritis and various tumours. We sought to elucidate the mechanism underlying MTX-induced hepatotoxicity and establish a potentially effective intervention strategy. METHODS We administered MTX to liver cells and mice and assessed hepatotoxicity by cell viability assay and hepatic pathological changes. We determined ferroptosis and ferritinophagy by detecting ferroptosis-related markers and autophagic degradation of ferritin heavy chain 1 (FTH1). RESULTS We have shown that hepatocytes treated with MTX undergo ferroptosis, and this process can be attenuated by ferroptosis inhibitors. Interestingly, NCOA4-mediated ferritinophagy was found to be involved in MTX-induced ferroptosis, which was demonstrated by the relief of ferroptosis through the inhibition of autophagy or knockdown of Ncoa4. Furthermore, MTX treatment resulted in the elevation of high-mobility group box 1 (HMGB1) expression. The depletion of Hmgb1 in hepatocytes considerably alleviated MTX-induced hepatotoxicity by limiting autophagy and the subsequent autophagy-dependent ferroptosis. It is noteworthy that glycyrrhizic acid (GA), a precise inhibitor of HMGB1, effectively suppressed autophagy, ferroptosis and hepatotoxicity caused by MTX. CONCLUSION Our study shows the significant roles of autophagy-dependent ferroptosis and HMGB1 in MTX-induced hepatotoxicity. It emphasizes that the inhibition of ferritinophagy and HMGB1 may have potential as a therapeutic approach for preventing and treating MTX-induced liver injury.
Collapse
Affiliation(s)
- Chengbo Wang
- Institute of Pediatric Medicine, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou, Henan, China
| | - Maodong Leng
- Institute of Pediatric Medicine, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou, Henan, China
| | - Cong Ding
- Institute of Pediatric Medicine, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou, Henan, China
| | - Xiangzhan Zhu
- Institute of Pediatric Medicine, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou, Henan, China
| | - Yaodong Zhang
- Institute of Pediatric Medicine, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou, Henan, China
| | - Chenchen Sun
- The Second Department of General Surgery, Anyang Tumor Hospital Affiliated to Henan University of Science and Technology, Anyang Tumor Hospital, Anyang, Henan, China
| | - Pu Lou
- Institute of Pediatric Medicine, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou, Henan, China
| |
Collapse
|
3
|
Karpa V, Kalinderi K, Fidani L, Tragiannidis A. Association of microRNA Polymorphisms with Toxicities Induced by Methotrexate in Children with Acute Lymphoblastic Leukemia. Hematol Rep 2023; 15:634-650. [PMID: 37987321 PMCID: PMC10660515 DOI: 10.3390/hematolrep15040065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/04/2023] [Accepted: 11/15/2023] [Indexed: 11/22/2023] Open
Abstract
Methotrexate (MTX), a structurally related substance to folic acid, is an important chemotherapeutic agent used for decades in the treatment of pediatric acute lymphoblastic leukemia (ALL) and other types of cancer as non-Hodgkin lymphomas and osteosarcomas. Despite the successful outcomes observed, the primary drawback is the variability in the pharmacokinetics and pharmacodynamics between patients. The main adverse events related to its use are nephrotoxicity, mucositis, and myelosuppression, especially when used in high doses. The potential adverse reactions and toxicities associated with MTX are a cause for concern and may lead to dose reduction or treatment interruption. Genetic variants in MTX transport genes have been linked to toxicity. Pharmacogenetic studies conducted in the past focused on single nucleotide polymorphisms (SNPs) in the coding and 5'-regulatory regions of genes. Recent studies have demonstrated a significant role of microRNAs (miRNAs) in the transport and metabolism of drugs and in the regulation of target genes. In the last few years, the number of annotated miRNAs has continually risen, in addition to the studies of miRNA polymorphisms and MTX toxicity. Therefore, the objective of the present study is to investigate the role of miRNA variants related to MTX adverse effects.
Collapse
Affiliation(s)
- Vasiliki Karpa
- Laboratory of Medical Biology-Genetics, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (K.K.); (L.F.)
| | - Kallirhoe Kalinderi
- Laboratory of Medical Biology-Genetics, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (K.K.); (L.F.)
| | - Liana Fidani
- Laboratory of Medical Biology-Genetics, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (K.K.); (L.F.)
| | - Athanasios Tragiannidis
- Pediatric & Adolescent Hematology-Oncology Unit, 2nd Pediatric Department, Faculty of Health Sciences, Aristotle University of Thessaloniki, AHEPA Hospital, S. Kiriakidi 1, 54636 Thessaloniki, Greece;
| |
Collapse
|
4
|
Lopez-Sanchez MA, Del Carmen Garcia-Rodriguez M, Aguayo-Ortiz R, Hernandez-Cruz E, Figueroa-Figueroa DI, Hernandez-Luis F. Synthesis of Quinazolin-2,4,6-triamine Derivatives as Non-purine Xanthine Oxidase Inhibitors and Exploration of Their Toxicological Potential. ChemMedChem 2023; 18:e202300184. [PMID: 37642254 DOI: 10.1002/cmdc.202300184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 08/02/2023] [Indexed: 08/31/2023]
Abstract
In this work, a new set of quinazolin-2,4,6-triamine derivatives were synthesized to explore their potential biological activity as xanthine oxidase (XO) inhibitors, superoxide scavengers and screening of their toxicological profile. Among all the synthesized compounds, B1 exhibited better inhibitory activity against bovine xanthine oxidase (bXO) than allopurinol (IC50 =1.56 μM and IC50 =6.99 μM, respectively). As superoxide scavengers, B1, B2 and B13 exhibited a better effect than allopurinol (97.3 %, 82.1 %, 87.4 % and 69.4 %, respectively). Regarding the toxicological profile, B1 was less cytotoxic than methotrexate on HCT-15 cancer cells. Apoptosis results obtained in cells of female and male mice, showed that B1 and B2 presented a similar behaviour to CrO3 (positive control) with respect to the average frequency to induce apoptosis; while B13 apoptosis induced effect was similar to DMSO and control group. Finally, B1, B2, B13 did not induce genotoxicity in a micronuclei murine model compared to CrO3 .
Collapse
Affiliation(s)
- Marcela A Lopez-Sanchez
- Departamento de Farmacia, Facultad de Química, UNAM, Universidad 3000, 04510, Ciudad de México, México
| | - María Del Carmen Garcia-Rodriguez
- Laboratorio de Antimutagénesis, Anticarcinogénesis y Antiteratogénesis Ambiental, Facultad de Estudios Superiores-Zaragoza, UNAM, Av Guelatao 66, 09230, Ciudad de México, México
| | - Rodrigo Aguayo-Ortiz
- Departamento de Farmacia, Facultad de Química, UNAM, Universidad 3000, 04510, Ciudad de México, México
| | - Estefani Hernandez-Cruz
- Laboratorio de Antimutagénesis, Anticarcinogénesis y Antiteratogénesis Ambiental, Facultad de Estudios Superiores-Zaragoza, UNAM, Av Guelatao 66, 09230, Ciudad de México, México
| | - Diego I Figueroa-Figueroa
- Departamento de Farmacia, Facultad de Química, UNAM, Universidad 3000, 04510, Ciudad de México, México
| | - Francisco Hernandez-Luis
- Departamento de Farmacia, Facultad de Química, UNAM, Universidad 3000, 04510, Ciudad de México, México
| |
Collapse
|
5
|
Phillips NS, Stratton KL, Williams AM, Ahles T, Ness KK, Cohen HJ, Edelstein K, Yasui Y, Oeffinger K, Chow EJ, Howell RM, Robison LL, Armstrong GT, Leisenring WM, Krull KR. Late-onset Cognitive Impairment and Modifiable Risk Factors in Adult Childhood Cancer Survivors. JAMA Netw Open 2023; 6:e2316077. [PMID: 37256617 PMCID: PMC10233416 DOI: 10.1001/jamanetworkopen.2023.16077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/18/2023] [Indexed: 06/01/2023] Open
Abstract
Importance Long-term survivors of childhood cancer may be at elevated risk for new neurocognitive impairment and decline as they age into adulthood. Objective To determine whether aging adult childhood cancer survivors report more new-onset neurocognitive impairments compared with their siblings and to identify risk factors associated with such impairments. Design, Setting, and Participants Participants of this cohort study included adult survivors of childhood cancer from the Childhood Cancer Survivor Study and their siblings as a control group. The original cohort included survivors who received a diagnosis between January 1, 1970, and December 31, 1986, for whom longitudinal neurocognitive assessment was available. This study examined the prevalence of new-onset neurocognitive impairment between baseline (23.4 years after diagnosis) and follow-up (35.0 years after diagnosis). The analysis was performed from January 2021 to May 2022. Exposures Cancer treatment exposures were abstracted from medical records. Chronic health conditions were graded using Common Terminology Criteria for Adverse Events version 4.03. Main Outcomes and Measures The primary outcome was new-onset (present at follow-up, but not present at baseline) neurocognitive impairment (defined as a score in the worst 10% of the sibling cohort). Impairment was assessed using the Childhood Cancer Survivor Study Neurocognitive questionnaire. Relative risks (RRs) and 95% CIs were used to estimate associations of neurocognitive impairment with treatment and health behaviors and conditions using generalized linear models. Results The cohort comprised 2375 survivors (mean [SD] age at evaluation, 31.8 [7.5] years; 1298 women [54.6%]) of childhood cancer, including acute lymphoblastic leukemia (ALL; 1316 participants), central nervous system (CNS) tumors (488 participants), and Hodgkin lymphoma (HL; 571 participants). A total of 232 siblings (mean [SD] age at evaluation, 34.2 [8.4] years; 134 women [57.8%]) were included. Compared with siblings, a higher proportion of survivors with no impairment in memory at baseline had new-onset memory impairment at follow-up: siblings proportion, 7.8% (95% CI, 4.3%-11.4%); ALL survivors treated with chemotherapy only, 14.0% (95% CI, 10.7%-17.4%); ALL survivors treated with cranial radiation (CRT), 25.8% (95% CI, 22.6%-29.0%); CNS tumor survivors, 34.7% (95% CI, 30.0%-39.5%); and HL survivors, 16.6% (95% CI, 13.4%-19.8%). New-onset memory impairment was associated with CRT in CNS tumor survivors (RR, 1.97; 95% CI, 1.33-2.90) and alkylator chemotherapy greater than or equal to 8000 mg/m2 in ALL survivors treated without CRT (RR, 2.80; 95% CI, 1.28-6.12). Neurologic conditions mediated the impact of CRT on new-onset memory impairment in CNS survivors. Smoking, low educational attainment, and low physical activity were associated with elevated risk for new-onset memory impairment. Conclusions and Relevance These findings suggest that adult survivors of childhood cancer are at elevated risk for late-onset memory impairment related to modifiable risk factors identified early in survivorship.
Collapse
Affiliation(s)
- Nicholas S. Phillips
- Epidemiology and Cancer Control Department, St Jude Children’s Research Hospital, Memphis, Tennessee
| | - Kayla L. Stratton
- Department of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, Washington
| | - AnnaLynn M. Williams
- Epidemiology and Cancer Control Department, St Jude Children’s Research Hospital, Memphis, Tennessee
| | - Tim Ahles
- Department of Psychiatry and Behavioral Sciences, Memorial Sloan Kettering Cancer Center, New York City, New York
| | - Kirsten K. Ness
- Epidemiology and Cancer Control Department, St Jude Children’s Research Hospital, Memphis, Tennessee
| | - Harvey Jay Cohen
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Kim Edelstein
- Department of Psychology, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Yutaka Yasui
- Epidemiology and Cancer Control Department, St Jude Children’s Research Hospital, Memphis, Tennessee
| | - Kevin Oeffinger
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Eric J. Chow
- Department of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Rebecca M. Howell
- Department of Radiation Physics, MD Anderson Cancer Center, Houston, Texas
| | - Leslie L. Robison
- Epidemiology and Cancer Control Department, St Jude Children’s Research Hospital, Memphis, Tennessee
| | - Gregory T. Armstrong
- Epidemiology and Cancer Control Department, St Jude Children’s Research Hospital, Memphis, Tennessee
| | - Wendy M. Leisenring
- Department of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Kevin R. Krull
- Epidemiology and Cancer Control Department, St Jude Children’s Research Hospital, Memphis, Tennessee
| |
Collapse
|
6
|
Mangoni AA, Sotgia S, Zinellu A, Carru C, Pintus G, Damiani G, Erre GL, Tommasi S. Methotrexate and cardiovascular prevention: an appraisal of the current evidence. Ther Adv Cardiovasc Dis 2023; 17:17539447231215213. [PMID: 38115784 PMCID: PMC10732001 DOI: 10.1177/17539447231215213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/02/2023] [Indexed: 12/21/2023] Open
Abstract
New evidence continues to accumulate regarding a significant association between excessive inflammation and dysregulated immunity (local and systemic) and the risk of cardiovascular events in different patient cohorts. Whilst research has sought to identify novel atheroprotective therapies targeting inflammation and immunity, several marketed drugs for rheumatological conditions may serve a similar purpose. One such drug, methotrexate, has been used since 1948 for treating cancer and, more recently, for a wide range of dysimmune conditions. Over the last 30 years, epidemiological and experimental studies have shown that methotrexate is independently associated with a reduced risk of cardiovascular disease, particularly in rheumatological patients, and exerts several beneficial effects on vascular homeostasis and blood pressure control. This review article discusses the current challenges with managing cardiovascular risk and the new frontiers offered by drug discovery and drug repurposing targeting inflammation and immunity with a focus on methotrexate. Specifically, the article critically appraises the results of observational, cross-sectional and intervention studies investigating the effects of methotrexate on overall cardiovascular risk and individual risk factors. It also discusses the putative molecular mechanisms underpinning the atheroprotective effects of methotrexate and the practical advantages of using methotrexate in cardiovascular prevention, and highlights future research directions in this area.
Collapse
Affiliation(s)
- Arduino A. Mangoni
- Discipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia
- Department of Clinical Pharmacology, Flinders Medical Centre, Southern Adelaide Local Health Network, Bedford Park, SA 5042, Australia
| | - Salvatore Sotgia
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy; Quality Control Unit, University Hospital (AOUSS), Sassari, Italy
| | - Angelo Zinellu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy; Quality Control Unit, University Hospital (AOUSS), Sassari, Italy
| | - Ciriaco Carru
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- Quality Control Unit, University Hospital (AOUSS), Sassari, Italy
| | - Gianfranco Pintus
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy; Quality Control Unit, University Hospital (AOUSS), Sassari, Italy
| | - Giovanni Damiani
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
- Italian Centre of Precision Medicine and Chronic Inflammation, Milan, Italy
| | - Gian Luca Erre
- Rheumatology Unit, Department of Clinical and Experimental Medicine, University Hospital (AOUSS) and University of Sassari, Sassari, Italy
| | - Sara Tommasi
- Discipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
- Department of Clinical Pharmacology, Flinders Medical Centre, Southern Adelaide Local Health Network, Adelaide, SA, Australia
| |
Collapse
|
7
|
Modulatory Effect of Limosilactobacillus fermentum grx08 on the Anti-Oxidative Stress Capacity of Liver, Heart, and Kidney in High-Fat Diet Rats. FERMENTATION 2022. [DOI: 10.3390/fermentation8110594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To explore the modulating effect of Limosilactobacillus fermentum (L. fermentum) grx08 on anti-oxidative stress in the liver, heart, and kidney of high-fat diet in rats, a low-fat diet as a control and a high-fat diet was used to induce oxidative stress injury in rats. L. fermentum grx08 and its heat-inactivated bacteria were used to intervene. The results showed that the high-fat diet had caused oxidative stress injury in the liver, heart, and kidney of rats. L. fermentum grx08 significantly reduced the serum levels of liver, heart, and kidney injury markers (ALT, AST, LDH, CK-MB, UA, and Crea), while restoring the balance of lipid metabolism in the liver. It also enhanced the activity of antioxidant enzymes such as GSH-Px in the liver, heart, and kidney, scavenging NO radicals and reducing the content of MDA, a product of lipid peroxidation, which can regulate the anti-oxidative stress capacity of the liver, heart, and kidney to varying degrees. Among them, L. fermentum grx08 showed better modulating effect on kidney anti-oxidative stress, followed by liver, and the weakest modulating effect on heart. At the same time, L. fermentum grx08 heat-inactivated bacteria also had a partial modulatory effect as well as a similar effect profile to that of live bacteria.
Collapse
|
8
|
Luna-López A, Flores-González GA, Rivera-Ruz IA, Librado-Osorio R, Erosa-De Haro LA, Königsberg M, Alarcón-Aguilar A. Methotrexate Induces an Antioxidant Hormetic Response in Primary Rat Astrocytes. Dose Response 2022; 20:15593258221130752. [PMCID: PMC9619289 DOI: 10.1177/15593258221130752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 09/17/2022] [Indexed: 11/03/2022] Open
Abstract
Neurodegenerative diseases have increased worldwide in recent years. Their relationship with oxidative stress has motivated the research to find therapies and medications capable of suppressing oxidative damage and therefore slowing the progression of these diseases. Glutathione (GSH) is the most important cellular antioxidant in living beings and is responsible for regulating the cellular redox state. However, GSH cannot be administered by any route of administration, so molecules that increase its levels by activating Nrf2-ARE signaling pathway are explored; since Nrf2 regulates the main genes involved in GSH de novo synthesis and recycling. Astrocytes are the most important cell-type in the antioxidant cell response and are responsible for providing GSH and other substrates for neurons to have an efficient antioxidant response. Methotrexate (MTX) is an anti-inflammatory agent that has different cellular effects when administered at low or high concentrations. So in this study, we used MTX different concentrations and exposure times to induce a hormetic antioxidant response in rat primary astrocytes. Our results showed that 20 nM MTX pre-conditioning for 12 h augmented the GSH/GSSG ratio and protected cellular viability against a toxic MTX and H2O2 insult, which was abrogated when Nrf2 was inhibited by brusatol. Hence, MTX subsequent studies as a drug to counteract the progression of some stress-associated neurodegenerative diseases are suggested.
Collapse
Affiliation(s)
- Armando Luna-López
- Departamento de Investigación Básica, Instituto Nacional de Geriatría, CDMX, México
| | - Giovanna Adonahi Flores-González
- Laboratorio de Bioenergética y Envejecimiento Celular, Depto. de Ciencias de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, CDMX, México
| | - Itzel Alejandra Rivera-Ruz
- Laboratorio de Bioenergética y Envejecimiento Celular, Depto. de Ciencias de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, CDMX, México
| | - Raúl Librado-Osorio
- Departamento de Investigación Básica, Instituto Nacional de Geriatría, CDMX, México
| | | | - Mina Königsberg
- Laboratorio de Bioenergética y Envejecimiento Celular, Depto. de Ciencias de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, CDMX, México
| | - Adriana Alarcón-Aguilar
- Laboratorio de Bioenergética y Envejecimiento Celular, Depto. de Ciencias de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, CDMX, México,Adriana Alarcón-Aguilar, Departamento de Ciencias de la Salud, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, A.P. 55-535, México D.F. C.P 09340, México.
| |
Collapse
|
9
|
Ceylanlı D, Şehirli AÖ, Gençosman S, Teralı K, Şah H, Gülmez N, Sayıner S. Protective Effects of Alpha-Lipoic Acid against 5-Fluorouracil-Induced Gastrointestinal Mucositis in Rats. Antioxidants (Basel) 2022; 11:1930. [PMID: 36290656 PMCID: PMC9598092 DOI: 10.3390/antiox11101930] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 03/23/2024] Open
Abstract
Alpha-lipoic acid (ALA) is extensively utilized in multivitamin formulas and anti-aging products. The purpose of this study was to investigate the potential protective benefits of ALA on 5-fluorouracil (5-FU)-induced gastrointestinal mucositis in Wistar albino rats. Tissues from the stomach, small intestine, and large intestine were excised, and blood sera were obtained to identify biochemical indices such as TNF-α, IL-1β, MDA, GPx, SOD, MMP-1, -2, -8, and TIMP-1. A histopathological study was also performed. The results revealed mucositis-elevated TNF-, IL-1, MDA, MMP-1, -2, -8, and TIMP-1 levels in both tissues and sera, and these values dropped dramatically following ALA treatment. Reduced SOD and GPx activities in mucositis groups were reversed in ALA-treated groups. The damage produced by mucositis in the stomach and small intestine regressed in the ALA-treated group, according to histopathological evaluation. Consequently, the implementation of ALA supplementation in 5-FU therapy may act as a protective intervention for cancer patients with gastrointestinal mucositis. In light of the findings, ALA, a food-derived antioxidant with pleiotropic properties, may be an effective treatment for 5-FU-induced gastrointestinal mucositus, and prevent oxidative stress, inflammation, and tissue damage in cancer patients receiving 5-FU therapy.
Collapse
Affiliation(s)
- Deniz Ceylanlı
- Department of Biochemistry, Faculty of Veterinary Medicine, Near East University, 99138 Nicosia, North Cyprus, Turkey
| | - Ahmet Özer Şehirli
- Department of Pharmacology, Faculty of Dentistry, Near East University, 99138 Nicosia, North Cyprus, Turkey
| | - Sevgi Gençosman
- Department of Biochemistry, Faculty of Veterinary Medicine, Near East University, 99138 Nicosia, North Cyprus, Turkey
| | - Kerem Teralı
- Department of Medical Biochemistry, Faculty of Medicine, Cyprus International University, 99258 Nicosia, Northern Cyprus, Turkey
| | - Hüseyin Şah
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Near East University, 99138 Nicosia, North Cyprus, Turkey
| | - Nurhayat Gülmez
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Siirt University, 56100 Siirt, Turkey
| | - Serkan Sayıner
- Department of Biochemistry, Faculty of Veterinary Medicine, Near East University, 99138 Nicosia, North Cyprus, Turkey
| |
Collapse
|
10
|
Shariatifar H, Ranjbarian F, Hajiahmadi F, Farasat A. A comprehensive review on methotrexate containing nanoparticles; an appropriate tool for cancer treatment. Mol Biol Rep 2022; 49:11049-11060. [PMID: 36097117 DOI: 10.1007/s11033-022-07782-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 07/07/2022] [Indexed: 11/30/2022]
Abstract
For more than seven decades, methotrexate has been used all over the world for treatment of different diseases such as: cancer, autoimmune diseases, and rheumatoid arthritis. Several studies have addressed its formula, efficacy, and delivery methods in recent years. These studies have been focused on the effectiveness of different nanoparticles on drug delivery, delivery of the drug to the target cells, and attenuation of harm to the host cell. Whereas, the main usages of methotrexate are in cancer treatment field, this review provided a brief perspective into using different nanoparticles and their role in the treatment of different cancers.
Collapse
Affiliation(s)
- Hanifeh Shariatifar
- Health Products Safety Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Fateme Ranjbarian
- Student Research Committee, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Fahimeh Hajiahmadi
- Department of Medical Imaging Technology (Molecular Imaging), School of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Farasat
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran.
| |
Collapse
|
11
|
Varışlı B, Caglayan C, Kandemir FM, Gür C, Bayav İ, Genç A. The impact of Nrf2/HO-1, caspase-3/Bax/Bcl2 and ATF6/IRE1/PERK/GRP78 signaling pathways in the ameliorative effects of morin against methotrexate-induced testicular toxicity in rats. Mol Biol Rep 2022; 49:9641-9649. [PMID: 36057755 DOI: 10.1007/s11033-022-07873-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 08/09/2022] [Accepted: 08/15/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND Methotrexate (MT) is a broadly used chemotherapeutic drug however its clinical use is confronted with several forms of toxicities containing testicular damage. The current study assessed the ameliorative effects of morin on MT-induced testicular damage with the investigation of its mechanism and the potential involvement of oxidative stress, inflammation, apoptosis and endoplasmic reticulum stress in such protection. METHODS The animals were divided into 5 distinct groups (7 rats in each group). Group 1 was control group, group 2 received MT-only (20 mg/kg bw), group 3 received orally morin-only (100 mg/kg bw), group 4 received MT (20 mg/kg bw) + morin (50 mg/kg bw) and group 5 received MT (20 mg/kg bw) + morin (100 mg/kg). In this study, morin was administered orally for 10 days, while MT was administered intraperitoneally on the 5th day. RESULTS MT intoxication was linked with augmented MDA while decreased GSH levels, the enzyme activities of glutathione peroxidase, superoxide dismutase, and catalase and mRNA levels of HO-1 and Nrf2 in the testis tissues. MT injection caused inflammation in the testicular tissue via up-regulation of MAPK14, NFκB, TNF-α and IL-1β. MT application also caused apoptosis and endoplasmic reticulum stress in the testis tissue via increasing mRNA transcript levels of Bax, caspase-3, PERK, IRE1, ATF-6, GRP78 and down-regulation of Bcl-2. CONCLUSION Treatment with morin at a dose of 50 and 100 mg/kg considerably mitigated oxidative stress, inflammation, apoptosis and endoplasmic reticulum stress in the testicular tissue indicating that testicular damage related to MT toxicity could be modulated by morin administration.
Collapse
Affiliation(s)
- Behçet Varışlı
- Vocational School of Health Sevices, Final International University, Kazafani, Cyprus
| | - Cuneyt Caglayan
- Department of Medical Biochemistry, Faculty of Medicine, Bilecik Seyh Edebali University, Bilecik, Turkey.
| | - Fatih Mehmet Kandemir
- Department of Medical Biochemistry, Faculty of Medicine, Aksaray University, Aksaray, Turkey
| | - Cihan Gür
- Department of Biochemistry, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - İbrahim Bayav
- Department of Molecular Biology and Genetics, Faculty of Science and Literature, Bingol University, 12000, Bingol, Turkey
| | - Aydın Genç
- Department of Biochemistry, Faculty of Veterinary Medicine, Bingol University, 12000, Bingol, Turkey
| |
Collapse
|
12
|
Yan F, Zhao Q, Li Y, Zheng Z, Kong X, Shu C, Liu Y, Shi Y. The role of oxidative stress in ovarian aging: a review. J Ovarian Res 2022; 15:100. [PMID: 36050696 PMCID: PMC9434839 DOI: 10.1186/s13048-022-01032-x] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 08/21/2022] [Indexed: 11/29/2022] Open
Abstract
Ovarian aging refers to the process by which ovarian function declines until eventual failure. The pathogenesis of ovarian aging is complex and diverse; oxidative stress (OS) is considered to be a key factor. This review focuses on the fact that OS status accelerates the ovarian aging process by promoting apoptosis, inflammation, mitochondrial damage, telomere shortening and biomacromolecular damage. Current evidence suggests that aging, smoking, high-sugar diets, pressure, superovulation, chemotherapeutic agents and industrial pollutants can be factors that accelerate ovarian aging by exacerbating OS status. In addition, we review the role of nuclear factor E2-related factor 2 (Nrf2), Sirtuin (Sirt), mitogen-activated protein kinase (MAPK), protein kinase B (AKT), Forkhead box O (FoxO) and Klotho signaling pathways during the process of ovarian aging. We also explore the role of antioxidant therapies such as melatonin, vitamins, stem cell therapies, antioxidant monomers and Traditional Chinese Medicine (TCM), and investigate the roles of these supplements with respect to the reduction of OS and the improvement of ovarian function. This review provides a rationale for antioxidant therapy to improve ovarian aging.
Collapse
Affiliation(s)
- Fei Yan
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Qi Zhao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Ying Li
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Zhibo Zheng
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Xinliang Kong
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Chang Shu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Yanfeng Liu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, People's Republic of China.
| | - Yun Shi
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, People's Republic of China.
| |
Collapse
|
13
|
Yu Y, Huang Z, Chen Q, Zhang Z, Jiang H, Gu R, Ding Y, Hu Y. Iron-based nanoscale coordination polymers synergistically induce immunogenic ferroptosis by blocking dihydrofolate reductase for cancer immunotherapy. Biomaterials 2022; 288:121724. [PMID: 36038420 DOI: 10.1016/j.biomaterials.2022.121724] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/26/2022] [Accepted: 08/02/2022] [Indexed: 01/18/2023]
Abstract
Iron is indispensable for cancer cell survival and cancer cells are more vulnerable to ferroptosis than normal cells. Ferroptosis holds promise for overcoming chemoresistance and inducing tumor immunogenic cell death, which offers new possibilities for cancer immunotherapy. However, the prevalence of immunogenic ferroptosis in cancer cells is diminished because of the high levels of reducing substances within tumor microenvironments. Ferroptosis-needed iron is overdose for livings, which is also an obstacle for effective immune responses. In this study, we construct self-assembled carrier-free nanoscale coordination polymers based on iron and methotrexate (MFe-NCPs). The low-dose-iron-induced immunogenic ferroptosis is obviously enhanced by methotrexate via inhibiting dihydrofolate reductase and abating substance reduction, respectively. Of note, MFe-NCPs sequentially promoted antigen presentation, immune activation, T cell infiltration and boosted the therapeutic effect of immune checkpoint blockade therapy.
Collapse
Affiliation(s)
- Yue Yu
- Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China; State Key Laboratory of Pharmaceutical Biotechnology, Medical School & School of Life Sciences, Nanjing University, Nanjing, China
| | - Zhusheng Huang
- State Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Qian Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School & School of Life Sciences, Nanjing University, Nanjing, China
| | - Zhicheng Zhang
- Department of Radiation Oncology, Key Laboratory of Cancer Prevention and Intervention, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Haojie Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School & School of Life Sciences, Nanjing University, Nanjing, China
| | - Rong Gu
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School & School of Life Sciences, Nanjing University, Nanjing, China
| | - Yitao Ding
- Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.
| | - Yiqiao Hu
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School & School of Life Sciences, Nanjing University, Nanjing, China.
| |
Collapse
|
14
|
Pradhan A, Sengupta S, Sengupta R, Chatterjee M. Attenuation of methotrexate induced hepatotoxicity by epigallocatechin 3-gallate. Drug Chem Toxicol 2022:1-9. [PMID: 35698845 DOI: 10.1080/01480545.2022.2085738] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Methotrexate (MTX) is currently used as first-line therapy for autoimmune diseases like rheumatoid arthritis, psoriasis, and systemic lupus erythematous. However, its use is limited by its hepatotoxic potential. Epigallocatechin-3-gallate (EGCG), an abundant catechin present in tea possesses potent antioxidant activity and effectively ameliorates oxidative stress-related disorders. This study aimed to investigate the hepatoprotective influence of EGCG in a MTX-induced rat model of hepatotoxicity. Sprague Dawley rats pretreated with EGCG (40 mg kg-1 b.w., p.o.) were administered a single dose of MTX (20 mg kg-1 b.w., i.p.) and its hepatoprotective efficacy compared with folic acid (1 mg kg-1 b.w., i.p.). On day 10, blood samples were collected to determine plasma levels of aspartate aminotransferase (AST), alanine transaminase (ALT), alkaline phosphatase (ALP), and lactate dehydrogenase (LDH), while the livers were examined for histopathogical changes along with levels of oxidative stress measured in terms of myeloperoxidase (MPO) activity, protein carbonylation (PCO), lipid peroxidation (LPO), and activities of cellular enzymatic antioxidants - superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx). MTX significantly increased the plasma levels of AST, ALT, ALP, and LDH, which were prevented by pretreatment with EGCG, and was corroborated by histopathology. Additionally, MTX-induced hepatic oxidative stress as measured by increased generation of MPO, enhanced PCO, LPO, and decreased activities of antioxidant enzymes was mitigated by pretreatment with EGCG. The amelioration of MTX-induced hepatotoxicity by EGCG endorsed the inclusion of an anti-oxidant during chronic administration of MTX.
Collapse
Affiliation(s)
- Ayan Pradhan
- Department of Pharmacology, Institute of Postgraduate Medical Education and Research (IPGME&R), Kolkata, India
| | - Shilpa Sengupta
- Department of Pharmacology, Institute of Postgraduate Medical Education and Research (IPGME&R), Kolkata, India
| | - Ritika Sengupta
- Department of Pharmacology, Institute of Postgraduate Medical Education and Research (IPGME&R), Kolkata, India
| | - Mitali Chatterjee
- Department of Pharmacology, Institute of Postgraduate Medical Education and Research (IPGME&R), Kolkata, India
| |
Collapse
|
15
|
Sritawan N, Suwannakot K, Naewla S, Chaisawang P, Aranarochana A, Sirichoat A, Pannangrong W, Wigmore P, Welbat JU. Effect of metformin treatment on memory and hippocampal neurogenesis decline correlated with oxidative stress induced by methotrexate in rats. Biomed Pharmacother 2021; 144:112280. [PMID: 34628167 DOI: 10.1016/j.biopha.2021.112280] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 01/18/2023] Open
Abstract
Metformin is currently used as a first-line drug to treat patients with type 2 diabetes. Previous studies have demonstrated that metformin has antioxidant properties and reduces neuroinflammation and hippocampal neuronal cell loss, which eventually improves memory. Methotrexate (MTX) is an antimetabolite chemotherapeutic agent reported to activate cognitive impairment found in many patients. Moreover, MTX negatively affects the spatial working memory, related to neurogenesis reduction in animal models. Therefore, the present study aimed to investigate the antioxidant effect of metformin on the reduction of memory and neurogenesis caused by MTX. Male Sprague-Dawley rats were divided into four groups: control, MTX, metformin, and MTX+metformin. MTX (75 mg/kg, i.v.) was administered on days 7 and 14. Rats were administered metformin (200 mg/kg, i.p.) for 14 days. Memory was determined using novel object location (NOL) and novel object recognition (NOR) tests. Furthermore, cell cycle arrest was quantified by p21 immunostaining. Levels of neuronal protein expression, scavenging enzymes activity, and malondialdehyde (MDA) level changes in the hippocampus and prefrontal cortex were investigated. Rats receiving only MTX showed memory impairment. Decreases in scavenging enzyme activity and BDNF, DCX, and Nrf2 protein expressions levels were detected in the MTX-treated rats. In addition, MTX significantly increased p21-positive cell numbers and MDA levels. However, these adverse MTX effects were counteracted by co-administration with metformin. These results demonstrate that metformin can improve memory impairments, increase BDNF, DCX and Nrf2 protein expressions and antioxidant capacities, and decrease MDA levels in MTX-treated rats.
Collapse
Affiliation(s)
- Nataya Sritawan
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Neurogenesis Research Group, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Kornrawee Suwannakot
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Neurogenesis Research Group, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Salinee Naewla
- Faculty of Nursing, Ratchathani University, Ubon Ratchathani 34000, Thailand; Neurogenesis Research Group, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Pornthip Chaisawang
- Faculty of Medical Science, Nakhonratchasima College, Nakhon Ratchasima 30000, Thailand; Neurogenesis Research Group, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Anusara Aranarochana
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Neurogenesis Research Group, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Apiwat Sirichoat
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Neurogenesis Research Group, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Wanassanan Pannangrong
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Neurogenesis Research Group, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Peter Wigmore
- Queen's Medical Centre, School of Life Sciences, Medical School, University of Nottingham, Nottingham NG7 2RD, UK.
| | - Jariya Umka Welbat
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Neurogenesis Research Group, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| |
Collapse
|
16
|
Delen O, Uz YH. Protective effect of pyrrolidine dithiocarbamate against methotrexate-induced testicular damage. Hum Exp Toxicol 2021; 40:S164-S177. [PMID: 34340576 DOI: 10.1177/09603271211035674] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The aim of the study was to investigate the protective effect of pyrrolidine dithiocarbamate (PDTC) against methotrexate (MTX)-induced testicular damage in rats. Forty Wistar albino male rats were divided into equally four groups: Control group (saline solution, IP), PDTC group (100 mg/kg PDTC,IP, 10 days), MTX group (20 mg/kg MTX, IP, single dose, on the 6th day) and MTX + PDTC group (100 mg/kg PDTC, IP, 10 days and 20 mg/kg MTX, IP, single dose, on the 6th day). After 10 days, testicular tissues were excised for morphometric, histological and immunohistochemical evaluations. Serum testosterone, follicle stimulating hormone (FSH), luteinizing hormone (LH) and prokineticin 2 (PK2) levels were determined. Body and testicular weights were measured. Testicular damage was assessed by histological evaluation. Nuclear factor kappa B (NFkB), nuclear factor erythroid 2 related factor 2 (Nrf2) and PK2 immunoreactivities were evaluated by HSCORE. Body and testicular weights, serum FSH, LH, testosterone levels, seminiferous tubule diameter and germinal epithelial thickness were significantly decreased in the MTX group. However, serum PK2 level, histologically damaged seminiferous tubules and interstitial field width were significantly increased. Additionally, there was an increase in NFkB and PK2 immunoreactivity, whereas there was a significant decrease in Nrf2 immunoreactivity. PDTC significantly improved hormonal, morphometric, histological and immunohistochemical findings. Taken together, we conclude that PDTC may reduce MTX-induced testicular damage via NFkB, Nrf2 and PK2 signaling pathways.
Collapse
Affiliation(s)
- Ozlem Delen
- Department of Histology and Embryology, Faculty of Medicine, 64058Trakya University, Edirne, Turkey
| | - Yesim H Uz
- Department of Histology and Embryology, Faculty of Medicine, 64058Trakya University, Edirne, Turkey
| |
Collapse
|
17
|
Nutraceutical Strategy to Counteract Eye Neurodegeneration and Oxidative Stress in Drosophila melanogaster Fed with High-Sugar Diet. Antioxidants (Basel) 2021; 10:antiox10081197. [PMID: 34439445 PMCID: PMC8388935 DOI: 10.3390/antiox10081197] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/22/2021] [Accepted: 07/25/2021] [Indexed: 12/14/2022] Open
Abstract
Aberrant production of reactive oxygen species (ROS) is a common feature of damaged retinal neurons in diabetic retinopathy, and antioxidants may exert both preventive and therapeutic action. To evaluate the beneficial and antioxidant properties of food supplementation with Lisosan G, a powder of bran and germ of grain (Triticum aestivum) obtained by fermentation with selected lactobacillus and natural yeast strains, we used an in vivo model of hyperglycemia-induced retinal damage, the fruit fly Drosophila melanogaster fed with high-sucrose diet. Lisosan G positively affected the visual system of hyperglycemic flies at structural/functional level, decreased apoptosis, and reactivated protective autophagy at the retina internal network. Also, in high sucrose-fed Drosophila, Lisosan G reduced the levels of brain ROS and retina peroxynitrite. The analysis of oxidative stress-related metabolites suggested 7,8-dihydrofolate, uric acid, dihydroorotate, γ-L-glutamyl-L-cysteine, allantoin, cysteinyl-glycine, and quinolate as key mediators of Lisosan G-induced inhibition of neuronal ROS, along with the upregulation of glutathione system. Of note, Lisosan G may impact oxidative stress and the ensuing retinal cell death, also independently from autophagy, although the autophagy-ROS cross-talk is critical. This study demonstrated that the continuous supplementation with the alimentary integrator Lisosan G exerts a robust and multifaceted antioxidant effect on retinal neurons, thus providing efficacious neuroprotection of hyperglycemic eye.
Collapse
|
18
|
Anderson JE, Trujillo M, McElroy T, Groves T, Alexander T, Kiffer F, Allen AR. Early Effects of Cyclophosphamide, Methotrexate, and 5-Fluorouracil on Neuronal Morphology and Hippocampal-Dependent Behavior in a Murine Model. Toxicol Sci 2021; 173:156-170. [PMID: 31651976 DOI: 10.1093/toxsci/kfz213] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Breast cancer (BC) is the most common cancer among women. Fortunately, BC survival rates have increased because the implementation of adjuvant chemotherapy leading to a growing population of survivors. However, chemotherapy-induced cognitive impairments (CICIs) affect up to 75% of BC survivors and may be driven by inflammation and oxidative stress. Chemotherapy-induced cognitive impairments can persist 20 years and hinder survivors' quality of life. To identify early effects of CMF administration in mice, we chose to evaluate adult female mice at 2-week postchemotherapy. Mice received weekly IP administration of CMF (or saline) for 4 weeks, completed behavioral testing, and were sacrificed 2 weeks following their final CMF injection. Behavioral results indicated long-term memory (LTM) impairments postchemotherapy, but did not reveal short-term memory deficits. Dendritic morphology and spine data found increases in overall spine density within CA1 basal and CA3 basal dendrites, but no changes in DG, CA1 apical, or CA3 apical dendrites. Further analysis revealed decreases in arborization across the hippocampus (DG, CA1 apical and basal, CA3 apical and basal). These physiological changes within the hippocampus correlate with our behavioral data indicating LTM impairments following CMF administration in female mice 2-week postchemotherapy. Hippocampal cytokine analysis identified decreases in IL-1α, IL-1β, IL-3, IL-10, and TNF-α levels.
Collapse
Affiliation(s)
- Julie E Anderson
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205.,Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Madison Trujillo
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205.,Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Taylor McElroy
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205.,Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Thomas Groves
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205.,Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205.,Neurobiology & Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Tyler Alexander
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205.,Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Frederico Kiffer
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205.,Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Antiño R Allen
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205.,Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205.,Neurobiology & Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| |
Collapse
|
19
|
Sou NL, Huang YH, Chen DY, Chen YM, Tang FY, Ko HA, Fan YH, Lin YY, Wang YC, Chih HM, Shane B, Huang WN, Chiang EPI. Folinate Supplementation Ameliorates Methotrexate Induced Mitochondrial Formate Depletion In Vitro and In Vivo. Int J Mol Sci 2021; 22:1350. [PMID: 33572934 PMCID: PMC7866403 DOI: 10.3390/ijms22031350] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 12/13/2022] Open
Abstract
(1) Background: Antifolate methotrexate (MTX) is the most common disease-modifying antirheumatic drug (DMARD) for treating human rheumatoid arthritis (RA). The mitochondrial-produced formate is essential for folate-mediated one carbon (1C) metabolism. The impacts of MTX on formate homeostasis in unknown, and rigorously controlled kinetic studies can greatly help in this regard. (2) Methods: Combining animal model (8-week old female C57BL/6JNarl mice, n = 18), cell models, stable isotopic tracer studies with gas chromatography/mass spectrometry (GC/MS) platforms, we systematically investigated how MTX interferes with the partitioning of mitochondrial and cytosolic formate metabolism. (3) Results: MTX significantly reduced de novo deoxythymidylate (dTMP) and methionine biosyntheses from mitochondrial-derived formate in cells, mouse liver, and bone marrow, supporting our postulation that MTX depletes mitochondrial 1C supply. Furthermore, MTX inhibited formate generation from mitochondria glycine cleavage system (GCS) both in vitro and in vivo. Folinate selectively rescued 1C metabolic pathways in a tissue-, cellular compartment-, and pathway-specific manner: folinate effectively reversed the inhibition of mitochondrial formate-dependent 1C metabolism in mouse bone marrow (dTMP, methionine, and GCS) and cells (dTMP and GCS) but not methionine synthesis in liver/liver-derived cells. Folinate failed to fully recover hepatic mitochondrial-formate utilization for methionine synthesis, suggesting that the efficacy of clinical folinate rescue in MTX therapy on hepatic methionine metabolism is poor. (4) Conclusion: Conducting studies in mouse and cell models, we demonstrate novel findings that MTX specifically depletes mitochondrial 1C supply that can be ameliorated by folinate supplementation except for hepatic transmethylation. These results imply that clinical use of low-dose MTX may particularly impede 1C metabolism via depletion of mitochondrial formate. The MTX induced systematic and tissue-specific formate depletion needs to be addressed more carefully, and the efficacy of folinate with respect to protecting against such depletion deserves to be evaluated in medical practice.
Collapse
Grants
- 108-2321-B-005-004 Ministry of Science and Technology, Taiwan
- 107-2320-B005-003-MY3 Ministry of Science and Technology, Taiwan
- 107-2621-M005-008-MY3 Ministry of Science and Technology, Taiwan
- 107-2321-B-005-009 Ministry of Science and Technology, Taiwan
- 108-2321-B-005 -004 Ministry of Science and Technology, Taiwan
- 107-2320-B039-008-MY3 Ministry of Science and Technology, Taiwan
- 104-2320-B-039-041-MY3 Ministry of Science and Technology, Taiwan
- CMU103-ASIA-20 China Medical University, Taiwan
- CMU103-S-46 China Medical University, Taiwan
- CMU104-S-32 China Medical University, Taiwan
- 997608 Taipei Veterans General Hospital
- 1077602 Taipei Veterans General Hospital
Collapse
Affiliation(s)
- Nga-Lai Sou
- Food Science and Biotechnology, National Chung Hsing University (NCHU), Taichung 402, Taiwan; (N.-L.S.); (Y.-H.H.); (H.-A.K.); (Y.-H.F.); (Y.-Y.L.); (Y.-C.W.); (H.-M.C.)
- Innovation and Development Center of Sustainable Agriculture (IDCSA), National Chung Hsing University (NCHU), Taichung 402, Taiwan
| | - Yu-Hsuan Huang
- Food Science and Biotechnology, National Chung Hsing University (NCHU), Taichung 402, Taiwan; (N.-L.S.); (Y.-H.H.); (H.-A.K.); (Y.-H.F.); (Y.-Y.L.); (Y.-C.W.); (H.-M.C.)
- Innovation and Development Center of Sustainable Agriculture (IDCSA), National Chung Hsing University (NCHU), Taichung 402, Taiwan
| | - Der-Yuan Chen
- Allergy Immunology Rheumatology, Taichung Veterans General Hospital (TVGH), Taichung 402, Taiwan; (D.-Y.C.); (Y.-M.C.); (W.-N.H.)
- Allergy Immunology Rheumatology, China Medical University Hospital, Taichung 402, Taiwan
| | - Yi-Ming Chen
- Allergy Immunology Rheumatology, Taichung Veterans General Hospital (TVGH), Taichung 402, Taiwan; (D.-Y.C.); (Y.-M.C.); (W.-N.H.)
| | - Feng-Yao Tang
- Department of Nutrition, China Medical University, Taichung 402, Taiwan;
| | - Hsin-An Ko
- Food Science and Biotechnology, National Chung Hsing University (NCHU), Taichung 402, Taiwan; (N.-L.S.); (Y.-H.H.); (H.-A.K.); (Y.-H.F.); (Y.-Y.L.); (Y.-C.W.); (H.-M.C.)
| | - Yi-Hsuan Fan
- Food Science and Biotechnology, National Chung Hsing University (NCHU), Taichung 402, Taiwan; (N.-L.S.); (Y.-H.H.); (H.-A.K.); (Y.-H.F.); (Y.-Y.L.); (Y.-C.W.); (H.-M.C.)
| | - Yi-Ying Lin
- Food Science and Biotechnology, National Chung Hsing University (NCHU), Taichung 402, Taiwan; (N.-L.S.); (Y.-H.H.); (H.-A.K.); (Y.-H.F.); (Y.-Y.L.); (Y.-C.W.); (H.-M.C.)
| | - Yi-Cheng Wang
- Food Science and Biotechnology, National Chung Hsing University (NCHU), Taichung 402, Taiwan; (N.-L.S.); (Y.-H.H.); (H.-A.K.); (Y.-H.F.); (Y.-Y.L.); (Y.-C.W.); (H.-M.C.)
| | - Hui-Ming Chih
- Food Science and Biotechnology, National Chung Hsing University (NCHU), Taichung 402, Taiwan; (N.-L.S.); (Y.-H.H.); (H.-A.K.); (Y.-H.F.); (Y.-Y.L.); (Y.-C.W.); (H.-M.C.)
- Department of Nursing and Pediatrics, Taichung Veterans General Hospital (TVGH), Taichung 402, Taiwan
| | - Barry Shane
- Nutritional Sciences and Toxicology, UC Berkeley, Berkeley, CA 94701, USA;
| | - Wen-Nan Huang
- Allergy Immunology Rheumatology, Taichung Veterans General Hospital (TVGH), Taichung 402, Taiwan; (D.-Y.C.); (Y.-M.C.); (W.-N.H.)
| | - En-Pei Isabel Chiang
- Food Science and Biotechnology, National Chung Hsing University (NCHU), Taichung 402, Taiwan; (N.-L.S.); (Y.-H.H.); (H.-A.K.); (Y.-H.F.); (Y.-Y.L.); (Y.-C.W.); (H.-M.C.)
- Innovation and Development Center of Sustainable Agriculture (IDCSA), National Chung Hsing University (NCHU), Taichung 402, Taiwan
| |
Collapse
|
20
|
Sorriento D, Gambardella J, Iaccarino G. Cancer, NFkappaB, and oxidative stress-dependent phenotypes. Cancer 2021. [DOI: 10.1016/b978-0-12-819547-5.00016-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
21
|
Tang D, Zhao YC, Liu H, Luo S, Clarke JM, Glass C, Su L, Shen S, Christiani DC, Gao W, Wei Q. Potentially functional genetic variants in PLIN2, SULT2A1 and UGT1A9 genes of the ketone pathway and survival of nonsmall cell lung cancer. Int J Cancer 2020; 147:1559-1570. [PMID: 32072637 PMCID: PMC8078192 DOI: 10.1002/ijc.32932] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/18/2020] [Accepted: 02/03/2020] [Indexed: 12/11/2022]
Abstract
The ketone metabolism pathway is a principle procedure in physiological homeostasis and induces cancer cells to switch between glycolysis and oxidative phosphorylation for energy production. We conducted a two-phase analysis for associations between genetic variants in the ketone metabolism pathway genes and survival of nonsmall cell lung cancer (NSCLC) by analyzing genotyping data from two published genome-wide association studies (GWASs). In the discovery, we used a genotyping dataset from the Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial in the multivariable Cox proportional hazards regression analysis. We used Bayesian false discovery probability (≤0.80) for multiple testing correction to evaluate associations between 25,819 (2,176 genotyped and 23,643 imputed) single-nucleotide polymorphisms (SNPs) in 162 genes and survival of 1,185 NSCLC patients. Subsequently, we validated the identified significant SNPs with an additional 984 NSCLC patients from the Harvard Lung Cancer Susceptibility GWAS study. Finally, we found that three independent and potentially functional SNPs in three different genes (i.e., PLIN2 rs7867814 G>A, SULT2A1 rs2547235 C>T and UGT1A9 rs2011404 C>T) were independently associated with risk of death from NSCLC, with a combined hazards ratio of 1.22 [95% confidence interval = 1.09-1.36 and p = 0.0003], 0.82 (0.74-0.91 and p = 0.0002) and 1.21 (1.10-1.33 and p = 0.0001), respectively. Additional expression quantitative trait loci analysis found that the survival-associated PLIN2 rs7867814 GA + AA genotypes, but not the genotypes of other two SNPs, were significantly associated with increased mRNA expression levels (p = 0.005). These results indicated that PLIN2 variants may be potential predictors of NSCLC survival through regulating the PLIN2 expression.
Collapse
Affiliation(s)
- Dongfang Tang
- Department of Thoracic Oncology, Huadong Hospital, Fudan University, Shanghai 200040, China
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Population Health Sciences, Duke University School of Medicine, Durham, NC 27710, USA
| | - Yu Chen Zhao
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Population Health Sciences, Duke University School of Medicine, Durham, NC 27710, USA
| | - Hongliang Liu
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Population Health Sciences, Duke University School of Medicine, Durham, NC 27710, USA
| | - Sheng Luo
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jeffrey M. Clarke
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Carolyn Glass
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Li Su
- Departments of Environmental Health and Department of Epidemiology, Harvard School of Public Health, Boston, MA, 02115 USA
| | - Sipeng Shen
- Departments of Environmental Health and Department of Epidemiology, Harvard School of Public Health, Boston, MA, 02115 USA
| | - David C. Christiani
- Departments of Environmental Health and Department of Epidemiology, Harvard School of Public Health, Boston, MA, 02115 USA
- Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Wen Gao
- Department of Thoracic Oncology, Huadong Hospital, Fudan University, Shanghai 200040, China
| | - Qingyi Wei
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Population Health Sciences, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
22
|
Yücel O, Şengelen A, Emik S, Önay-Uçar E, Arda N, Gürdağ G. Folic acid-modified methotrexate-conjugated gold nanoparticles as nano-sized trojans for drug delivery to folate receptor-positive cancer cells. NANOTECHNOLOGY 2020; 31:355101. [PMID: 32413875 DOI: 10.1088/1361-6528/ab9395] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Methotrexate (MTX), an analog of folic acid (FA), is a drug widely used in cancer treatment. To prevent its potential toxicity and enhance therapeutic efficacy, targeted drug delivery systems, especially nanotechnology-folate platforms, are a central strategy. Gold nanoparticles (AuNPs) are promising candidates to be used as drug delivery systems because of their small particle sizes and their inertness for the body. In this study, glutathione (GSH)-coated FA-modified spherical AuNPs (5.6 nm) were successfully synthesized, and the anticancer activity of novel MTX-loaded (MTX/Au-GSH-FA) NPs (11 nm) was examined. Dynamic light scattering (DLS) and transmission electron microscopy (TEM) results showed that MTX/AuNPs possess spherical morphology, nanoscaled particle size, narrow size distribution, and good stability. In vitro studies showed that cytotoxicity of MTX/Au-GSH-FA to folate receptor-positive (FR+) human brain (U-87 MG) and cervical (HeLa) cancer cells enhanced significantly (∼3 and ∼10 fold, respectively) compared to free MTX while there was no significant effect in FR-negative human cell lines A549 (lung carcinoma), PC3 (prostate carcinoma), HEK-293 (healthy embryonic kidney). Moreover, the receptor specificity of the conjugate was shown by fluorescent microscopic imaging. In conclusion, these results indicate that the synthesized novel MTX/Au-GSH-FA NP complex seems to be a good candidate for effective and targeted delivery in FR+ cancer therapy.
Collapse
Affiliation(s)
- Oğuz Yücel
- Department of Chemical Engineering, Faculty of Engineering, Istanbul University-Cerrahpaşa, Avcılar 34320, Istanbul, Turkey
| | | | | | | | | | | |
Collapse
|
23
|
Sritawan N, Prajit R, Chaisawang P, Sirichoat A, Pannangrong W, Wigmore P, Welbat JU. Metformin alleviates memory and hippocampal neurogenesis decline induced by methotrexate chemotherapy in a rat model. Biomed Pharmacother 2020; 131:110651. [PMID: 32841896 DOI: 10.1016/j.biopha.2020.110651] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/29/2020] [Accepted: 08/17/2020] [Indexed: 12/14/2022] Open
Abstract
Methotrexate (MTX) is a chemotherapeutic drug commonly used to treat cancers that has an adverse effect on patients' cognition. Metformin is a primary treatment for type 2 diabetes mellitus that can pass through the blood-brain barrier. Metformin has neuroprotective actions, which can improve memory. In the present study, we examined the ability of metformin in MTX chemotherapy-generated cognitive and hippocampal neurogenesis alterations. Male Sprague-Dawley rats were allocated into control, MTX, metformin, preventive, and throughout groups. MTX (75 mg/kg/day) was given intravenously on days 7 and 14 of the study. Metformin (200 mg/kg/day) was injected intraperitoneally for 14 days. Some of the MTX-treated rats received co-treatment with metformin once a day for either 14 (preventive) or 28 days (throughout). After treatment, memory ability was evaluated using novel object location and novel object recognition tests. Ki67 (proliferating cells), BrdU (survival cells), and doublecortin (immature neurons, DCX) positive cells in the subgranular zone (SGZ) of the hippocampal dentate gyrus were quantified. We found that reductions of cognition, the number of proliferating and survival cells and immature neurons in the SGZ were ameliorated in the co-treatment groups, which suggests that metformin can prevent memory and hippocampal neurogenesis impairments induced by MTX in adult rats.
Collapse
Affiliation(s)
- Nataya Sritawan
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Ram Prajit
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Pornthip Chaisawang
- Faculty of Medical Science, Nakhonratchasima College, Nakhon Ratchasima 30000, Thailand.
| | - Apiwat Sirichoat
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Wanassanan Pannangrong
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Peter Wigmore
- School of Life Sciences, Medical School, Queen's Medical Centre, Nottingham University, Nottingham NG7 2RD, UK.
| | - Jariya Umka Welbat
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Neuroscience Research and Development Group, Khon Kaen University, Khon Kaen 40002, Thailand.
| |
Collapse
|
24
|
Bala K, Husain I, Sharma A. Arginine deaminase from Pseudomonas aeruginosa PS2: purification, biochemical characterization and in-vitro evaluation of anticancer activity. 3 Biotech 2020; 10:226. [PMID: 32373418 DOI: 10.1007/s13205-020-02212-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 04/16/2020] [Indexed: 01/04/2023] Open
Abstract
In the present study, arginine deaminase (ADI) was purified from Pseudomonas aeruginosa PS2 which showed relative molecular mass of 70 ± 3 kDa on native-PAGE and 36 ± 0.5 kDa on SDS-PAGE. Purified ADI exhibited optimum activity at pH 6.5 and temperature 40 ºC. Metal ions, K+ and Mg2+ had positive, while Mn2+, Cr2+, Co2+, Fe3+, Ni2+, Cu2+, Cd2+ and Hg2+ had negative effects on catalytic activity of ADI. Purified enzyme showed high substrate specificity towards natural substrate L-arginine and did not hydrolyse its structural analogues. In-vitro serum half-life of purified ADI was 40 h, whereas proteolytic half-life was 28, 27, and 32 min against trypsin, elastase-I and proteinase-K, respectively. Anticancer activity of ADI has been evaluated against panel of human cancer cell lines (LS-180, HCT-116, MCF-7, BT-549, T47D, HL-60, MOLT-4, K-562, and PC-3) but lowest IC50 1.2 IU ml-1 was recorded with MCF-7 cells. Colony forming assay, wound-healing migration assay, phase contrast microscopy, DAPI staining, cell cycle analysis and DNA laddering assay revealed that ADI treatment induced apoptotic cell death in dose dependent manner. Increased level of MMP loss, ROS generation and decreased level of SOD, CAT, GPx and GSH displayed ADI treatment induced mitochondrial dysfunctioning. Furthermore, purified ADI had no substantial toxicity against human normal cell lines and blood erythrocytes. These findings suggesting that purified ADI could be developed as an anticancer agent but more in depth studies are warranted.
Collapse
Affiliation(s)
- Kiran Bala
- 1Bacteriology Laboratory, Department of P.G. Studies and Research in Biological Science, Rani Durgavati University, Jabalpur, Madhya Pradesh India
| | - Islam Husain
- 1Bacteriology Laboratory, Department of P.G. Studies and Research in Biological Science, Rani Durgavati University, Jabalpur, Madhya Pradesh India
- 2Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Lucknow, Uttar Pradesh India
| | - Anjana Sharma
- 1Bacteriology Laboratory, Department of P.G. Studies and Research in Biological Science, Rani Durgavati University, Jabalpur, Madhya Pradesh India
| |
Collapse
|
25
|
Lomeli N, Di K, Pearre DC, Chung TF, Bota DA. Mitochondrial-associated impairments of temozolomide on neural stem/progenitor cells and hippocampal neurons. Mitochondrion 2020; 52:56-66. [PMID: 32045717 DOI: 10.1016/j.mito.2020.02.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 01/04/2020] [Accepted: 02/07/2020] [Indexed: 12/17/2022]
Abstract
Primary brain tumor patients often experience neurological, cognitive, and depressive symptoms that profoundly affect quality of life. The DNA alkylating agent, temozolomide (TMZ), along with radiation therapy forms the standard of care for glioblastoma (GBM) - the most common and aggressive of all brain cancers. Numerous studies have reported that TMZ disrupts hippocampal neurogenesis and causes spatial learning deficits in rodents; however, the effect of TMZ on mature hippocampal neurons has not been addressed. In this study, we examined the mitochondrial-mediated mechanisms involving TMZ-induced neural damage in primary rat neural stem/progenitor cells (NSC) and hippocampal neurons. TMZ inhibited mtDNA replication and transcription of mitochondrial genes (ND1 and Cyt b) in NSC by 24 h, whereas the effect of TMZ on neuronal mtDNA transcription was less pronounced. Transmission electron microscopy imaging revealed mitochondrial degradation in TMZ-treated NSC. Acute TMZ exposure (4 h) caused a rapid reduction in dendritic branching and loss of postsynaptic density-95 (PSD95) puncta on dendrites. Longer TMZ exposure impaired mitochondrial respiratory activity, increased oxidative stress, and induced apoptosis in hippocampal neurons. The presented findings suggest that NSC may be more vulnerable to TMZ than hippocampal neurons upon acute exposure; however long-term TMZ exposure results in neuronal mitochondrial respiratory dysfunction and dendritic damage, which may be associated with delayed cognitive impairments.
Collapse
Affiliation(s)
- Naomi Lomeli
- Department of Pathology & Laboratory Medicine, University of California Irvine, Irvine, CA, USA.
| | - Kaijun Di
- Department of Neurology, University of California Irvine, Irvine, CA, USA; Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA.
| | - Diana C Pearre
- Department of Obstetrics and Gynecology, University of California, Irvine, Orange, CA, USA.
| | - Tzu-Feng Chung
- Department of Neurology, University of California Irvine, Irvine, CA, USA.
| | - Daniela A Bota
- Department of Pathology & Laboratory Medicine, University of California Irvine, Irvine, CA, USA; Department of Neurology, University of California Irvine, Irvine, CA, USA; Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA; Department of Neurological Surgery, University of California Irvine, Irvine, CA, USA.
| |
Collapse
|
26
|
Abstract
PURPOSE OF REVIEW In an attempt to identify potential new therapeutic targets, efforts to describe the metabolic features unique to cancer cells are increasingly being reported. Although current standard of care regimens for several pediatric malignancies incorporate agents that target tumor metabolism, these drugs have been part of the therapeutic landscape for decades. More recent research has focused on the identification and targeting of new metabolic vulnerabilities in pediatric cancers. The purpose of this review is to describe the most recent translational findings in the metabolic targeting of pediatric malignancies. RECENT FINDINGS Across multiple pediatric cancer types, dependencies on a number of key metabolic pathways have emerged through study of patient tissue samples and preclinical modeling. Among the potentially targetable vulnerabilities are glucose metabolism via glycolysis, oxidative phosphorylation, amino acid and polyamine metabolism, and NAD metabolism. Although few agents have yet to move forward into clinical trials for pediatric cancer patients, the robust and promising preclinical data that have been generated suggest that future clinical trials should rationally test metabolically targeted agents for relevant disease populations. SUMMARY Recent advances in our understanding of the metabolic dependencies of pediatric cancers represent a source of potential new therapeutic opportunities for these diseases.
Collapse
|
27
|
Asai A, Konno M, Koseki J, Taniguchi M, Vecchione A, Ishii H. One-carbon metabolism for cancer diagnostic and therapeutic approaches. Cancer Lett 2019; 470:141-148. [PMID: 31759958 DOI: 10.1016/j.canlet.2019.11.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 11/08/2019] [Accepted: 11/18/2019] [Indexed: 12/31/2022]
Abstract
Altered metabolism is critical for the rapid and unregulated proliferation of cancer cells; hence the requirement for an abundant source of nucleotides. One characteristic of this metabolic reprogramming is in one-carbon (1C) metabolism, which is particularly noteworthy for its role in DNA synthesis. Various forms of methylation are also noteworthy as they relate to cancer cell survival and proliferation. In recent years, 1C metabolism has received substantial attention for its role in cancer malignancy via these functions. Therefore, therapeutic inhibitors targeting 1C metabolism have been utilized as anticancer drugs. This review outlines the importance of 1C metabolism and its clinical application in cancer. Understanding 1C metabolism could aid the development of novel cancer diagnostic and therapeutic methods.
Collapse
Affiliation(s)
- Ayumu Asai
- Department of Medical Data Science, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, 565-0871, Japan; Department of Frontier Science for Cancer and Chemotherapy, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, 565-0871, Japan; Artificial Intelligence Research Center, The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan
| | - Masamitsu Konno
- Department of Frontier Science for Cancer and Chemotherapy, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, 565-0871, Japan
| | - Jun Koseki
- Department of Medical Data Science, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, 565-0871, Japan
| | - Masateru Taniguchi
- Artificial Intelligence Research Center, The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan
| | - Andrea Vecchione
- Department of Clinical and Molecular Medicine, University of Rome "Sapienza", Santo Andrea Hospital, Via di Grottarossa, Rome, 1035-00189, Italy
| | - Hideshi Ishii
- Department of Medical Data Science, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, 565-0871, Japan.
| |
Collapse
|
28
|
Chen YC, Sheen JM, Hsu MH, Hsiao CC, Wang SC, Huang LT. Melatonin rescued methotrexate-induced spatial deficit and hyperhomocysteinemia and increased asymmetric dimethylarginine in plasma and dorsal hippocampus in developing rats. Life Sci 2019; 242:116931. [PMID: 31618610 DOI: 10.1016/j.lfs.2019.116931] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 10/02/2019] [Accepted: 10/02/2019] [Indexed: 01/08/2023]
Abstract
AIMS With the improvement of the survival rates in children acute lymphoblastic leukemia (ALL), some children ALL survivors show impaired cognitive function. Methotrexate (MTX), an essential component in ALL treatment, has been reported to be related to neurologic sequelae and to increased oxidative stress through its interactions with enzymes in the folate pathway. Asymmetric dimethylarginine (ADMA) is the main endogenous inhibitor of nitric oxide synthase, and increased ADMA may result from increased oxidants. Melatonin is an antioxidant; however, its role in MTX neuropathy is not well studied. We developed a rat model mimicking child ALL treatment to explore peripheral and central homocysteine and ADMA regulation after MTX and found potential treatment choice. MAIN METHODS Preweaning male Sprague-Dawley rats were used in this study. Experiment 1 evaluated spatial performance in rats with intrathecal (IT) MTX, intraperitoneal (IP) MTX, or combined IT and IP MTX, protocols mimicking ALL treatment in children. Experiment 2 focused on rats with combined IT and IP MTX, evaluating spatial performance and plasma and dorsal hippocampal homocysteine and ADMA levels, their regulation, and the protective effect of melatonin. KEY FINDINGS Combined IT and IP MTX treatment caused in spatial deficits in developing rats, and melatonin restored the spatial performance. Alterations in peripheral and central homocysteine and ADMA concentrations and their regulation were found and could be alleviated by melatonin treatment. SIGNIFICANCES Combined IP and IT MTX treatment caused spatial deficits in developing rats. Melatonin could restore spatial performance through alleviating the effects on the imbalance of oxidative stress.
Collapse
Affiliation(s)
- Yu-Chieh Chen
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan; Department of Traditional Medicine, Chang Gung University, Linkow, Taiwan
| | - Jiunn-Ming Sheen
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan; Department of Traditional Medicine, Chang Gung University, Linkow, Taiwan
| | - Mei-Hsin Hsu
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chih-Cheng Hsiao
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan; Department of Traditional Medicine, Chang Gung University, Linkow, Taiwan
| | - Su-Chen Wang
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Li-Tung Huang
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan; Department of Traditional Medicine, Chang Gung University, Linkow, Taiwan.
| |
Collapse
|
29
|
De Bastiani MA, Klamt F. Integrated transcriptomics reveals master regulators of lung adenocarcinoma and novel repositioning of drug candidates. Cancer Med 2019; 8:6717-6729. [PMID: 31503425 PMCID: PMC6825976 DOI: 10.1002/cam4.2493] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 07/18/2019] [Accepted: 07/31/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Lung adenocarcinoma is the major cause of cancer-related deaths in the world. Given this, the importance of research on its pathophysiology and therapy remains a key health issue. To assist in this endeavor, recent oncology studies are adopting Systems Biology approaches and bioinformatics to analyze and understand omics data, bringing new insights about this disease and its treatment. METHODS We used reverse engineering of transcriptomic data to reconstruct nontumorous lung reference networks, focusing on transcription factors (TFs) and their inferred target genes, referred as regulatory units or regulons. Afterwards, we used 13 case-control studies to identify TFs acting as master regulators of the disease and their regulatory units. Furthermore, the inferred activation patterns of regulons were used to evaluate patient survival and search drug candidates for repositioning. RESULTS The regulatory units under the influence of ATOH8, DACH1, EPAS1, ETV5, FOXA2, FOXM1, HOXA4, SMAD6, and UHRF1 transcription factors were consistently associated with the pathological phenotype, suggesting that they may be master regulators of lung adenocarcinoma. We also observed that the inferred activity of FOXA2, FOXM1, and UHRF1 was significantly associated with risk of death in patients. Finally, we obtained deptropine, promazine, valproic acid, azacyclonol, methotrexate, and ChemBridge ID compound 5109870 as potential candidates to revert the molecular profile leading to decreased survival. CONCLUSION Using an integrated transcriptomics approach, we identified master regulator candidates involved with the development and prognostic of lung adenocarcinoma, as well as potential drugs for repurposing.
Collapse
Affiliation(s)
- Marco Antônio De Bastiani
- Laboratory of Cellular Biochemistry, Department of Biochemistry, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,National Institute of Science and Technology for Translational Medicine (INCT-TM), Porto Alegre, RS, Brazil
| | - Fábio Klamt
- Laboratory of Cellular Biochemistry, Department of Biochemistry, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,National Institute of Science and Technology for Translational Medicine (INCT-TM), Porto Alegre, RS, Brazil
| |
Collapse
|
30
|
Rai V, Bose S, Saha S, Chakraborty C. Evaluation of oxidative stress and the microenvironment in oral submucous fibrosis. Heliyon 2019; 5:e01502. [PMID: 31011652 PMCID: PMC6462775 DOI: 10.1016/j.heliyon.2019.e01502] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/24/2019] [Accepted: 04/08/2019] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Oral Submucous fibrosis (OSF) is a chronic inflammatory mucosal disease of unknown etiology. Statistics show cases of OSF which has a high rate of overall prevalence and increase the chance of malignant transformation. As we know malignant cells is situated in a very complex microenvironment with altered metabolic pathway including intermediates which participate in oxidative stress process which enhances metabolic rewiring and promotes tumor progression. This study aims to evaluate the tumor microenvironment and their role in metabolic reprogramming. METHODS This study was conducted on the serum sample of OSF (n = 20) compared to the healthy group (n = 20) using ELISA. The serum levels of intermediate by-products of metabolic pathway and oxidative stress induced biomolecular damage products were determined. The sensitivity of results was analyzed by correlating it with markers of metabolic status (Glucose, Total cholesterol, Total protein). RESULTS Metabolic pathway intermediates molecules like Fatty Acids (FAA), Ascorbic acid, Citrate, Oxaloacetate (OAA), levels were significantly high in the serum of OSF cases. This indicated that intermediates act as a metabolic switch that drives cells to adapt malignant transformation pathway. Markers related to oxidative DNA damage (8-hydroxy-2' -deoxyguanosine), Oxidative lipid peroxidation (8-epi-Prostaglandin F2α), and Protein carbonyl were significantly up-regulated. This significant increase in oxidative stress marker revealed the reprogramming of the metabolic pathway for fulfilling the nutritional requirement of cancer cells. A further significant correlation was observed with metabolic products confirmed altered metabolic status. CONCLUSION Our findings could identify the differentiating intermediate pathway metabolites and oxidative damage to biomolecules that are leading to rewiring of metabolism in the OSF group. Findings described in the study can be helpful to explain further the molecular aspects that lead to the progression of OSF towards carcinogenesis.
Collapse
Affiliation(s)
- Vertika Rai
- School of Medical Science and Technology, IIT Kharagpur, India
| | - Surajit Bose
- Awadh Dental College and Hospital, Jamshedpur, India
| | - Satadal Saha
- School of Medical Science and Technology, IIT Kharagpur, India
| | | |
Collapse
|
31
|
Elens I, Dekeyster E, Moons L, D'Hooge R. Methotrexate Affects Cerebrospinal Fluid Folate and Tau Levels and Induces Late Cognitive Deficits in Mice. Neuroscience 2019; 404:62-70. [PMID: 30703509 DOI: 10.1016/j.neuroscience.2019.01.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 01/03/2019] [Accepted: 01/16/2019] [Indexed: 01/08/2023]
Abstract
Intravenous and/or intrathecal administration of the anti-folate drug methotrexate is a common chemotherapeutic procedure in childhood leukemia. Therapeutic and prophylactic efficacy of these procedures notwithstanding, the occurrence of late adverse effects remains a cause of clinical concern in leukemia survivors. We propose an experimental mouse model to mimic the impact of methotrexate exposure on brain biochemistry and cell proliferation, as well as behavioral and neurocognitive functioning at adult age. Female C57Bl6/J mouse pups received saline or methotrexate injection (20 mg/kg, i.p.). CSF and serum concentrations of folate metabolites and toxicity makers were analyzed at 4 h, 24 h, and 1 week following injection. Behavioral test battery performance was assessed at adult age (3-4 months). We found acute changes in serum and CSF levels of folate in exposed pups that coincided with increases in CSF Tau, whereas homocysteine in serum and CSF, and CSF levels of pTau were unchanged or remained below detection. In addition, methotrexate injection coincided with diminished hippocampal cell proliferation 1 week after methotrexate injection. At adult age, exposed mice displayed hippocampus-dependent deficits in the Morris water maze, whereas exploration and anxiety-related behaviors were largely unaffected. Particularly during the reference memory (probe) trial after reversal learning, methotrexate-exposed animals were less precise than controls. These findings demonstrate adult neurocognitive sequelae in a mouse model that can be attributed to the biochemical and cellular impact of early-life methotrexate exposure.
Collapse
Affiliation(s)
- Iris Elens
- Laboratory of Biological Psychology, KU Leuven, Leuven, Belgium; Department of Child and Adolescent Psychiatry, KU Leuven, University Psychiatric Centre Leuven, Leuven, Belgium
| | - Eline Dekeyster
- Animal Physiology and Neurobiology Unit, Zoological Institute, KU Leuven, Leuven, Belgium; Janssen Vaccines and Prevention B.V., Johnson & Johnson, Leiden, the Netherlands
| | - Lieve Moons
- Animal Physiology and Neurobiology Unit, Zoological Institute, KU Leuven, Leuven, Belgium
| | - Rudi D'Hooge
- Laboratory of Biological Psychology, KU Leuven, Leuven, Belgium.
| |
Collapse
|
32
|
Speirs MMP, Swensen AC, Chan TY, Jones PM, Holman JC, Harris MB, Maschek JA, Cox JE, Carson RH, Hill JT, Andersen JL, Prince JT, Price JC. Imbalanced sphingolipid signaling is maintained as a core proponent of a cancerous phenotype in spite of metabolic pressure and epigenetic drift. Oncotarget 2019; 10:449-479. [PMID: 30728898 PMCID: PMC6355186 DOI: 10.18632/oncotarget.26533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 12/10/2018] [Indexed: 01/01/2023] Open
Abstract
Tumor heterogeneity may arise through genetic drift and environmentally driven clonal selection for metabolic fitness. This would promote subpopulations derived from single cancer cells that exhibit distinct phenotypes while conserving vital pro-survival pathways. We aimed to identify significant drivers of cell fitness in pancreatic adenocarcinoma (PDAC) creating subclones in different nutrient formulations to encourage differential metabolic reprogramming. The genetic and phenotypic expression profiles of each subclone were analyzed relative to a healthy control cell line (hTert-HPNE). The subclones exhibited distinct variations in protein expression and lipid metabolism. Relative to hTert-HPNE, PSN-1 subclones uniformly maintained modified sphingolipid signaling and specifically retained elevated sphingosine-1-phosphate (S1P) relative to C16 ceramide (C16 Cer) ratios. Each clone utilized a different perturbation to this pathway, but maintained this modified signaling to preserve cancerous phenotypes, such as rapid proliferation and defense against mitochondria-mediated apoptosis. Although the subclones were unique in their sensitivity, inhibition of S1P synthesis significantly reduced the ratio of S1P/C16 Cer, slowed cell proliferation, and enhanced sensitivity to apoptotic signals. This reliance on S1P signaling identifies this pathway as a promising drug-sensitizing target that may be used to eliminate cancerous cells consistently across uniquely reprogrammed PDAC clones.
Collapse
Affiliation(s)
- Monique M P Speirs
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, USA
| | - Adam C Swensen
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, USA
| | - Tsz Y Chan
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, USA
| | - Peter M Jones
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, USA
| | - John C Holman
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, USA
| | - McCall B Harris
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, USA
| | - John A Maschek
- Health Sciences Cores-Metabolomics, University of Utah, Salt Lake, Utah, USA
| | - James E Cox
- Health Sciences Cores-Metabolomics, University of Utah, Salt Lake, Utah, USA
| | - Richard H Carson
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, USA
| | - Jonathon T Hill
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah, USA
| | - Joshua L Andersen
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, USA
| | - John T Prince
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, USA
| | - John C Price
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, USA
| |
Collapse
|
33
|
Suman S, Sharma RK, Kumar V, Sinha N, Shukla Y. Metabolic fingerprinting in breast cancer stages through 1H NMR spectroscopy-based metabolomic analysis of plasma. J Pharm Biomed Anal 2018; 160:38-45. [PMID: 30059813 DOI: 10.1016/j.jpba.2018.07.024] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 07/15/2018] [Accepted: 07/16/2018] [Indexed: 12/14/2022]
Abstract
Breast cancer (BC) is one of the most common malignancies among women worldwide, which is indeed associated with metabolic reprogramming. However, BC is a very complex and heterogeneous disease, which can relate with the changes in metabolic profiles during BC progression. Hence, investigating the metabolic alterations during BC stage progression may reveal the deregulated pathways and useful metabolic signatures of BC. To demonstrate the metabolic insights, we opted 1H NMR spectroscopy based metabolomics of blood plasma of early and late stage BC (N = 72) with age and gender matched healthy subjects (N = 50). Further, the metabolic profiles were analyzed to delineate the potential signatures of BC by performing multivariate and nonparametric statistical analysis in early and late stages of BC in comparison with healthy subjects. Sixteen metabolites levels were differentially changed (p < 0.05) in the early and late stages of BC from healthy subjects. Among them, the levels of hydroxybutyrate, lysine, glutamate, glucose, N-acetyl glycoprotein, Lactate were highly distinguished in BC stages and showed a good biomarker potential using receiver-operating curves based diagnostic models. Furthermore, the significant modulation and good diagnostic performances of glutamate, N-acetyl glycoprotein and Lactate in LBC as compared to EBC give their significance in the BC progression. In general, our observations demonstrate that these panels of metabolites may act as vital component of the metabolism of early to late stage BC progression. Our results also open new avenue towards early and late stage BC diagnosis and intervention implying metabolomics approaches.
Collapse
Affiliation(s)
- Shankar Suman
- Proteomics and Environmental Carcinogenesis Laboratory, Food, Drug and Chemical Toxicology Group, 31 Vishvigyan Bhawan, CSIR-Indian Institute of Toxicology Research, Mahatma Gandhi Marg, Post Box 80, Lucknow, 226001, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR Campus, Lucknow, India
| | - Raj Kumar Sharma
- Center of Biomedical Research, SGPGIMS-campus, Raibareilly Road, Lucknow, U.P., 226014, India
| | - Vijay Kumar
- Department of Surgical Oncology, King George's Medical University, Chowk, Lucknow, 226003, India
| | - Neeraj Sinha
- Center of Biomedical Research, SGPGIMS-campus, Raibareilly Road, Lucknow, U.P., 226014, India
| | - Yogeshwer Shukla
- Proteomics and Environmental Carcinogenesis Laboratory, Food, Drug and Chemical Toxicology Group, 31 Vishvigyan Bhawan, CSIR-Indian Institute of Toxicology Research, Mahatma Gandhi Marg, Post Box 80, Lucknow, 226001, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR Campus, Lucknow, India.
| |
Collapse
|
34
|
De S, Kundu S, Chatterjee U, Chattopadhyay S, Chatterjee M. Allylpyrocatechol attenuates methotrexate-induced hepatotoxicity in a collagen-induced model of arthritis. Free Radic Res 2018; 52:698-711. [DOI: 10.1080/10715762.2018.1466391] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Soumita De
- Department of Pharmacology, Institute of Postgraduate Medical Education and Research, Kolkata, India
| | - Sunanda Kundu
- Department of Pharmacology, Institute of Postgraduate Medical Education and Research, Kolkata, India
| | - Uttara Chatterjee
- Department of Pathology, Institute of Postgraduate Medical Education and Research, Kolkata, India
| | | | - Mitali Chatterjee
- Department of Pharmacology, Institute of Postgraduate Medical Education and Research, Kolkata, India
| |
Collapse
|
35
|
Rtibi K, Selmi S, Grami D, Amri M, Sebai H, Marzouki L. Opposite Effect of Opuntia ficus-indica L. Juice Depending on Fruit Maturity Stage on Gastrointestinal Physiological Parameters in Rat. J Med Food 2018; 21:617-624. [PMID: 29489444 DOI: 10.1089/jmf.2017.0121] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The phytochemical composition and the effect of the green and ripe Opuntia ficus-indica juice on some gastrointestinal (GI) physiological parameters such as stomach emptying and small-intestinal motility and permeability were determined in rats administered multiple concentrations of the prickly pear juice (5, 10, and 20 mL kg-1, b.w., p.o.). Other separate groups of rats were received, respectively; sodium chloride (0.9%, b.w., p.o.), clonidine (α-2-adrenergic agonist, 1 mg kg-1, b.w., i.p.), yohimbine (α-2-adrenergic antagonist, 2 mg kg-1, b.w., i.p.), and loperamide (5 mg kg-1, b.w., p.o.). In vivo reverse effect of juice on GI physiological parameters was investigated using a charcoal meal test, phenol-red colorimetric method, loperamide-induced acute constipation, and castor oil-caused small-bowel hypersecretion. However, the opposite in vitro influence of juice on intestinal permeability homeostasis was assessed by the Ussing chamber system. Mature prickly pear juice administration stimulated significantly and dose dependently the GI transit (GIT; 8-26%) and gastric emptying (0.9-11%) in a rat model. Conversely, the immature prickly pear juice reduced gastric emptying (7-23%), GIT (10-28%), and diarrhea (59-88%). Moreover, the standard drugs have produced their antagonistic effects on GI physiological functions. The permeability of the isolated perfused rat small-intestine has a paradoxical response flowing prickly pear juices administration at diverse doses and maturity grade. Most importantly, the quantitative phytochemical analyses of both juices showed a different composition depending on the degree of maturity. In conclusion, the prickly pear juice at two distinct phases of maturity has different phytochemical characteristics and opposite effects on GI physiological actions in rat.
Collapse
Affiliation(s)
- Kais Rtibi
- 1 Laboratory of Functional Physiology and Valorization of Bioresources, Higher Institute of Biotechnology of Béja , Béja, Tunisia .,2 Laboratory of Functional Neurophysiology and Pathologies, Department of Biological Sciences, Faculty of Sciences of Tunis, Tunis, Tunisia
| | - Slimen Selmi
- 1 Laboratory of Functional Physiology and Valorization of Bioresources, Higher Institute of Biotechnology of Béja , Béja, Tunisia
| | - Dhekra Grami
- 1 Laboratory of Functional Physiology and Valorization of Bioresources, Higher Institute of Biotechnology of Béja , Béja, Tunisia
| | - Mohamed Amri
- 2 Laboratory of Functional Neurophysiology and Pathologies, Department of Biological Sciences, Faculty of Sciences of Tunis, Tunis, Tunisia
| | - Hichem Sebai
- 1 Laboratory of Functional Physiology and Valorization of Bioresources, Higher Institute of Biotechnology of Béja , Béja, Tunisia
| | - Lamjed Marzouki
- 1 Laboratory of Functional Physiology and Valorization of Bioresources, Higher Institute of Biotechnology of Béja , Béja, Tunisia .,2 Laboratory of Functional Neurophysiology and Pathologies, Department of Biological Sciences, Faculty of Sciences of Tunis, Tunis, Tunisia
| |
Collapse
|
36
|
Bielecka-Wajdman AM, Ludyga T, Machnik G, Gołyszny M, Obuchowicz E. Tricyclic Antidepressants Modulate Stressed Mitochondria in Glioblastoma Multiforme Cells. Cancer Control 2018; 25:1073274818798594. [PMID: 30213208 PMCID: PMC6144521 DOI: 10.1177/1073274818798594] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 07/22/2018] [Accepted: 08/03/2018] [Indexed: 12/12/2022] Open
Abstract
A common feature of solid tumors, including glioblastoma multiforme (GBM), is mitochondrial dysfunction. However, it is reported that the current standard of anti-GBM therapies may potentiate mitochondrial damage and, in effect, support the aggressive character of cancer. As mitochondria are implicated in the modulation of cellular drug sensitivity and chemoresistance mechanisms, activation-stressed mitochondria in GBM cells may represent a new target for anti-GBM therapy that is nontoxic for normal cells. METHODS As mitochondria are possible targets for antidepressant drugs used as adjuvant therapy in patients with GBM, we examined their influence on mitochondrial volume and activity, reactive oxygen species level, extracellular lactate concentration, and p65 NF-κB gene expression in GBM cells. RESULTS Our investigation showed, for the first time, that tricyclic antidepressants, imipramine and amitriptyline, partially reverse GBM abnormalities. CONCLUSION In the light of reported studies, the mitochondrial disturbance observed in glioma cells is a dynamic process that can be reversed or silenced. Moreover, imipramine and amitriptyline are attractive cellular metabolic modulators and can potentially be used to restoring a proper function of mitochondria in GBM cells.
Collapse
Affiliation(s)
- Anna M. Bielecka-Wajdman
- Department of Pharmacology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Tomasz Ludyga
- Department of Pharmacology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Grzegorz Machnik
- Clinic of Internal Medicine and Clinical Pharmacology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Miłosz Gołyszny
- Department of Pharmacology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Ewa Obuchowicz
- Department of Pharmacology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
37
|
Kuczma M, Ding ZC, Zhou G. Immunostimulatory Effects of Melphalan and Usefulness in Adoptive Cell Therapy with Antitumor CD4+ T Cells. Crit Rev Immunol 2017; 36:179-191. [PMID: 27910767 DOI: 10.1615/critrevimmunol.2016017507] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The alkylating agent melphalan is used in the treatment of hematological malignancies, especially multiple myeloma. In the past, the usefulness of melphalan has been solely attributed to its cytotoxicity on fastgrowing cancerous cells. Although the immunomodulatory effects of melphalan were suggested many years ago, only recently has this aspect of melphalan's activity begun to be elucidated at the molecular level. Emerging evidence indicates that melphalan can foster an immunogenic microenvironment by inducing immunogenic cell death (ICD) as characterized by membrane translocation of endoplasmic reticulum protein calreticulin (CRT) and by release of chromatin-binding protein high-mobility group box 1 (HMGB1). In addition, the lympho-depletive effect of melphalan can induce the release of pro-inflammatory cytokines and growth factors, deplete regulatory T cells, and create space to facilitate the expansion of infused tumor-reactive T cells. These features suggest that melphalan can be used as a preparative chemotherapy for adoptive T-cell therapy. This notion is supported by our recent work demonstrating that the combination of melphalan and adoptive transfer of tumor-reactive CD4+ T cells can mediate potent antitumor effects in animal models. This review summarizes the recent advances in understanding and utilizing the immunomodulatory effects of melphalan.
Collapse
Affiliation(s)
- Michal Kuczma
- Cancer Immunology, Inflammation and Tolerance Program, Georgia Cancer Center, Augusta University, Augusta, Georgia, USA
| | - Zhi-Chun Ding
- Cancer Immunology, Inflammation and Tolerance Program, Georgia Cancer Center, Augusta University, Augusta, Georgia, USA
| | - Gang Zhou
- Cancer Immunology, Inflammation and Tolerance Program, Georgia Cancer Center, Augusta University, Augusta, Georgia, USA
| |
Collapse
|
38
|
Rtibi K, Selmi S, Grami D, Amri M, Sebai H, Marzouki L. Contribution of oxidative stress in acute intestinal mucositis induced by 5 fluorouracil (5-FU) and its pro-drug capecitabine in rats. Toxicol Mech Methods 2017; 28:262-267. [DOI: 10.1080/15376516.2017.1402976] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Kaïs Rtibi
- Laboratoire de Physiologie Fonctionnelle et Valorisation des Bioressources-Institut Supérieur de Biotechnologie de Béja, Béja, 9000, Tunisia
- Département des Sciences Biologiques, Faculté des Sciences de Tunis, Laboratoire de Neurophysiologie Fonctionnelle et Pathologies, Tunis, Tunisia
| | - Slimen Selmi
- Laboratoire de Physiologie Fonctionnelle et Valorisation des Bioressources-Institut Supérieur de Biotechnologie de Béja, Béja, 9000, Tunisia
| | - Dhekra Grami
- Laboratoire de Physiologie Fonctionnelle et Valorisation des Bioressources-Institut Supérieur de Biotechnologie de Béja, Béja, 9000, Tunisia
| | - Mohamed Amri
- Département des Sciences Biologiques, Faculté des Sciences de Tunis, Laboratoire de Neurophysiologie Fonctionnelle et Pathologies, Tunis, Tunisia
| | - Hichem Sebai
- Laboratoire de Physiologie Fonctionnelle et Valorisation des Bioressources-Institut Supérieur de Biotechnologie de Béja, Béja, 9000, Tunisia
| | - Lamjed Marzouki
- Laboratoire de Physiologie Fonctionnelle et Valorisation des Bioressources-Institut Supérieur de Biotechnologie de Béja, Béja, 9000, Tunisia
- Département des Sciences Biologiques, Faculté des Sciences de Tunis, Laboratoire de Neurophysiologie Fonctionnelle et Pathologies, Tunis, Tunisia
| |
Collapse
|
39
|
Nayar G, Ejikeme T, Chongsathidkiet P, Elsamadicy AA, Blackwell KL, Clarke JM, Lad SP, Fecci PE. Leptomeningeal disease: current diagnostic and therapeutic strategies. Oncotarget 2017; 8:73312-73328. [PMID: 29069871 PMCID: PMC5641214 DOI: 10.18632/oncotarget.20272] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 07/20/2017] [Indexed: 12/28/2022] Open
Abstract
Leptomeningeal disease has become increasingly prevalent as novel therapeutic interventions extend the survival of cancer patients. Although a majority of leptomeningeal spread occurs secondary to breast cancer, lung cancer, and melanoma, a wide variety of malignancies have been reported as primary sources. Symptoms on presentation are equally diverse, often involving a combination of neurological deficits with the possibility of obstructive hydrocephalus. Diagnosis is definitively made via cerebrospinal fluid cytology for malignant cells, but neuro-imaging with high quality T1-weighted magnetic resonance imaging can aid diagnosis and localization. While leptomeningeal disease is still a terminal, late-stage complication, a variety of treatment modalities, such as intrathecal chemotherapeutics and radiation therapy, have improved median survival from 4–6 weeks to 3–6 months. Positive prognosticative factors for survival include younger age, high performance scores, and controlled systemic disease. In looking to the future, diagnostics that improve early detection and chemotherapeutics tailored to the primary malignancy will likely be the most significant advances in improving survival.
Collapse
Affiliation(s)
- Gautam Nayar
- Duke Brain Tumor Immunotherapy Program, Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA.,The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC, USA.,Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA
| | - Tiffany Ejikeme
- Duke Brain Tumor Immunotherapy Program, Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA.,The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC, USA.,Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA
| | - Pakawat Chongsathidkiet
- Duke Brain Tumor Immunotherapy Program, Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA.,The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC, USA.,Department of Pathology, Duke University Medical Center, Durham, NC, USA
| | - Aladine A Elsamadicy
- Duke Brain Tumor Immunotherapy Program, Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA.,The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC, USA.,Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA
| | - Kimberly L Blackwell
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| | - Jeffrey M Clarke
- Division of Medical Oncology, Duke University Medical Center, Durham, NC, USA
| | - Shivanand P Lad
- Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA
| | - Peter E Fecci
- Duke Brain Tumor Immunotherapy Program, Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA.,The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC, USA.,Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA.,Department of Pathology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
40
|
Sapino S, Oliaro-Bosso S, Zonari D, Zattoni A, Ugazio E. Mesoporous silica nanoparticles as a promising skin delivery system for methotrexate. Int J Pharm 2017; 530:239-248. [PMID: 28754510 DOI: 10.1016/j.ijpharm.2017.07.058] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 07/18/2017] [Accepted: 07/20/2017] [Indexed: 02/06/2023]
Abstract
The systemic administration of methotrexate (MTX), a commonly used, antineoplastic drug which is also used in cutaneous disorders, is primarily associated with prolonged retention in the body and consequently with side effects. Innovative drug delivery techniques and alternative administration routes would therefore contribute to its safe and effective use. The general objective of this study is thus the development of MTX-based preparations for the topical treatment of skin disorders. MCM-41-like nanoparticles (MSN), are herein proposed as carriers which can improve the cutaneous absorption and hence the bioavailability and efficacy of MTX. The MTX/MSN complex, prepared via the impregnation procedure, has been physico-chemically characterized, while its cell cultures have had their biocompatibility and bioactivity tested. Furthermore, a series of stable MTX-based dermal formulations has been developed, some containing shea butter, a natural fat. Ex-vivo porcine skin absorption and the transepidermal permeation of MTX have also been monitored in a variety of media using Franz diffusion cells. Interestingly, the epidermal accumulation of the active molecule was increased by its inclusion into MSN, regardless of the surrounding medium. Furthermore, the presence of shea butter enhanced the skin uptake of the drug both in the free and in the loaded form.
Collapse
Affiliation(s)
- Simona Sapino
- Università di Torino, Dipartimento di Scienza e Tecnologia del Farmaco, Via P. Giuria 9, 10125 Turin, Italy; NIS (Nanostructured Interfaces and Surfaces) Centre, Università di Torino, Turin, Italy; "G. Scansetti" Interdepartmental Centre, Università di Torino, Turin, Italy
| | - Simonetta Oliaro-Bosso
- Università di Torino, Dipartimento di Scienza e Tecnologia del Farmaco, Via P. Giuria 9, 10125 Turin, Italy; "G. Scansetti" Interdepartmental Centre, Università di Torino, Turin, Italy
| | - Daniele Zonari
- Università di Torino, Dipartimento di Scienza e Tecnologia del Farmaco, Via P. Giuria 9, 10125 Turin, Italy
| | - Andrea Zattoni
- Dipartimento di Chimica "G. Ciamician", Via Selmi 2, 40126 Bologna, Italy; byFlow Srl, Via Caduti della Via Fani 11/b, 40127 Bologna, Italy
| | - Elena Ugazio
- Università di Torino, Dipartimento di Scienza e Tecnologia del Farmaco, Via P. Giuria 9, 10125 Turin, Italy; NIS (Nanostructured Interfaces and Surfaces) Centre, Università di Torino, Turin, Italy; "G. Scansetti" Interdepartmental Centre, Università di Torino, Turin, Italy.
| |
Collapse
|
41
|
Rtibi K, Selmi S, Grami D, Sebai H, Amri M, Marzouki L. Irinotecan chemotherapy-induced intestinal oxidative stress: Underlying causes of disturbed mucosal water and electrolyte transport. ACTA ACUST UNITED AC 2017; 24:275-279. [PMID: 28801072 DOI: 10.1016/j.pathophys.2017.07.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 07/13/2017] [Accepted: 07/14/2017] [Indexed: 12/20/2022]
Abstract
Irinotecan, a chemotherapy drug, can cause acute diarrhea immediately after administration. Hence, the present study was designed to investigate the gastrointestinal (GI) disturbances after an intraperitoneal (IP) administration of irinotecan in rats.Twenty Wistar rats were separated into two groups of ten. Group A was considered as a control group (NaCl, 0.9%). Group B was treated with irinotecan at a single dose of 200mgkg-1. The rats were observed for defecation. For the enteropooling test, the animals were sacrificed by decapitation 1h post-treatment. The small intestine was excised and the fluid was milked into a graduated tube and the volume was measured. After centrifugation of intraluminal liquid, the electrolyte concentrations in the supernatants were measured by flame photometry. Oxidative stress parameters and intracellular mediators as well as the MPO activity were determined in intestinal mucosa by colorimetric methods Our result indicated that irinotecan produces an intestinal fluid accumulation and electrolyte transport disorders. These effects were associated with augmented intestinal MPO activity and oxidative damage such as an elevation of MDA production and a depletion of enzymatic and non-enzymatic antioxidants. More than that, drug administration provoked intracellular mediator disturbances such as a free iron, H2O2 and calcium levels. In conclusion, the data suggest that irinotecan caused a gastrointestinal stress via oxidative stress-induced disturbances in water and electrolyte transport in the intestinal mucosa in rats.
Collapse
Affiliation(s)
- Kaïs Rtibi
- Laboratoire de Physiologie Fonctionnelle et Valorisation des Bioressources-Institut Supérieur de Biotechnologie de Béja, B.P. 382, 09000 Béja, Tunisia; Laboratoire de Neurophysiologie Fonctionnelle et Pathologies, Département des Sciences Biologiques, Faculté des Sciences de Tunis, 2092 Tunis, Tunisia.
| | - Slimen Selmi
- Laboratoire de Physiologie Fonctionnelle et Valorisation des Bioressources-Institut Supérieur de Biotechnologie de Béja, B.P. 382, 09000 Béja, Tunisia
| | - Dhekra Grami
- Laboratoire de Physiologie Fonctionnelle et Valorisation des Bioressources-Institut Supérieur de Biotechnologie de Béja, B.P. 382, 09000 Béja, Tunisia
| | - Hichem Sebai
- Laboratoire de Physiologie Fonctionnelle et Valorisation des Bioressources-Institut Supérieur de Biotechnologie de Béja, B.P. 382, 09000 Béja, Tunisia
| | - Mohamed Amri
- Laboratoire de Neurophysiologie Fonctionnelle et Pathologies, Département des Sciences Biologiques, Faculté des Sciences de Tunis, 2092 Tunis, Tunisia
| | - Lamjed Marzouki
- Laboratoire de Physiologie Fonctionnelle et Valorisation des Bioressources-Institut Supérieur de Biotechnologie de Béja, B.P. 382, 09000 Béja, Tunisia; Laboratoire de Neurophysiologie Fonctionnelle et Pathologies, Département des Sciences Biologiques, Faculté des Sciences de Tunis, 2092 Tunis, Tunisia
| |
Collapse
|
42
|
Husain I, Bala K, Wani A, Makhdoomi U, Malik F, Sharma A. Arginase purified from endophytic Pseudomonas aeruginosa IH2: Induce apoptosis through both cell cycle arrest and MMP loss in human leukemic HL-60 cells. Chem Biol Interact 2017; 274:35-49. [PMID: 28690100 DOI: 10.1016/j.cbi.2017.07.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 06/20/2017] [Accepted: 07/03/2017] [Indexed: 02/06/2023]
Abstract
Arginase is a therapeutic enzyme for arginine-auxotrophic cancers but their low anticancer activity, less proteolytic tolerance and shorter serum half-life are the major shortcomings. In this study, arginase from Pseudomonas aeruginosa IH2 was purified to homogeneity and estimated as 75 kDa on native-PAGE and 37 kDa on SDS-PAGE. Arginase showed optimum activity at pH 8 and temperature 35 °C. Mn2+ and Mg2+ ions enhanced arginase activity while, Li+, Cu2+, and Al3+ ions reduced arginase activity. In-vitro serum half-life of arginase was 36 h and proteolytic half-life against trypsin and proteinase-K was 25 and 29 min, respectively. Anticancer activity of arginase was evaluated against colon, breast, leukemia, and prostate cancer cell lines and lowest IC50 (0.8 IU ml-1) was found against leukemia cell line HL-60. Microscopic studies and flow cytometric analysis of Annexin V/PI staining of HL-60 cells revealed that arginase induced apoptosis in dose-dependent manner. Cell cycle analysis suggested that arginase induced cell cycle arrest in G0/G1 phase. The increasing level of MMP loss, ROS generation and decreasing level of SOD, CAT, GPx and GSH suggested that arginase treatment triggered dysfunctioning of mitochondria. The cleavage of caspase-3, PARP-1, activations of caspase-8, 9 and high expression of proapoptotic protein Bax, low expression of anti-apoptotic protein Bcl-2 indicated that arginase treatment activates mitochondrial pathway of apoptosis. Purified arginase did not exert cytotoxic effects on human noncancer cells. Our study strongly supports that arginase could be used as potent anticancer agent but further studies are required which are underway in our lab.
Collapse
Affiliation(s)
- Islam Husain
- Bacteriology Laboratory, Department of P.G. Studies and Research in Biological Science, Rani Durgavati University, Madhya Pradesh, India
| | - Kiran Bala
- Bacteriology Laboratory, Department of P.G. Studies and Research in Biological Science, Rani Durgavati University, Madhya Pradesh, India
| | - Abubakar Wani
- Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu & Kashmir, India
| | - Ubaid Makhdoomi
- Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu & Kashmir, India
| | - Fayaz Malik
- Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu & Kashmir, India
| | - Anjana Sharma
- Bacteriology Laboratory, Department of P.G. Studies and Research in Biological Science, Rani Durgavati University, Madhya Pradesh, India.
| |
Collapse
|
43
|
Abstract
Reactive oxygen species (ROS) are important signaling molecules that act through the oxidation of nucleic acids, proteins, and lipids. Several hallmarks of cancer, including uncontrolled proliferation, angiogenesis, and genomic instability, are promoted by the increased ROS levels commonly found in tumor cells. To counteract excessive ROS accumulation, oxidative stress, and death, cancer cells tightly regulate ROS levels by enhancing scavenging enzymes, which are dependent on the reducing cofactor nicotinamide adenine dinucleotide phosphate (NADPH). This review focuses on mitochondrial ROS homeostasis with a description of six pathways of NADPH production in mitochondria and a discussion of the possible strategies of pharmacological intervention to selectively eliminate cancer cells by increasing their ROS levels.
Collapse
Affiliation(s)
- Francesco Ciccarese
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
| | - Vincenzo Ciminale
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy.,Veneto Institute of Oncology - IRCCS, Padua, Italy
| |
Collapse
|
44
|
Thakor P, Subramanian RB, Thakkar SS, Ray A, Thakkar VR. Phytol induces ROS mediated apoptosis by induction of caspase 9 and 3 through activation of TRAIL, FAS and TNF receptors and inhibits tumor progression factor Glucose 6 phosphate dehydrogenase in lung carcinoma cell line (A549). Biomed Pharmacother 2017; 92:491-500. [PMID: 28575806 DOI: 10.1016/j.biopha.2017.05.066] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 05/11/2017] [Accepted: 05/12/2017] [Indexed: 01/11/2023] Open
Abstract
A number of drugs as well as lead molecules are isolated from natural sources. Phytol is one of such lead molecule belongs to terpenes group distributed widely in medicinal plants. In the present work, we investigated the cytotoxic behavior of phytol on human lung carcinoma cells (A549). Phytol was found to cause characteristic apoptotic morphological changes and generation of ROS in A549 cells. The mechanism of phytol involved the activation of TRAIL, FAS and TNF-α receptors along with caspase 9 and 3. In silico molecular docking studies revealed that phytol has a good binding affinity with glucose-6-phosphate dehydrogenase (G6PD), which is known to promote tumor proliferation. The ability of phytol to become potential drug candidate has been revealed from the pharmacokinetic study performed in the present study.
Collapse
Affiliation(s)
- Parth Thakor
- P. G. Department of Biosciences, Sardar Patel Maidan, Bakrol-Vadtal Road, Satellite Campus, Bakrol, Sardar Patel University, Vallabhvidyanagar, India.
| | - Ramalingam B Subramanian
- P. G. Department of Biosciences, Sardar Patel Maidan, Bakrol-Vadtal Road, Satellite Campus, Bakrol, Sardar Patel University, Vallabhvidyanagar, India
| | - Sampark S Thakkar
- Department of Organic Chemistry, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, Changa, India
| | - Arabinda Ray
- Department of Organic Chemistry, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, Changa, India
| | - Vasudev R Thakkar
- P. G. Department of Biosciences, Sardar Patel Maidan, Bakrol-Vadtal Road, Satellite Campus, Bakrol, Sardar Patel University, Vallabhvidyanagar, India.
| |
Collapse
|
45
|
Kadochi Y, Mori S, Fujiwara-Tani R, Luo Y, Nishiguchi Y, Kishi S, Fujii K, Ohmori H, Kuniyasu H. Remodeling of energy metabolism by a ketone body and medium-chain fatty acid suppressed the proliferation of CT26 mouse colon cancer cells. Oncol Lett 2017; 14:673-680. [PMID: 28693220 PMCID: PMC5494726 DOI: 10.3892/ol.2017.6195] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Accepted: 03/13/2017] [Indexed: 01/10/2023] Open
Abstract
Normal and cancerous cells are suggested to have differential utilization of fatty acids and ketone bodies, which could be exploited in cancer therapy. The present study examined the effect of 3-hydroxybutyric acid (3-HBA), which is a ketone body generating acetyl-CoA, and lauric acid (LAA, C12:0), which is a medium-chain saturated fatty acid translocated to mitochondria in a carnitine-independent manner to produce acetyl-CoA, on the energy metabolism of mouse CT26 colon cancer cells. In CT26 cells expressing 3-HBA and LAA transporters, 3-HBA and LAA reduced cell proliferation, mitochondrial volume and lactate production, and increased oxidative stress, particularly in low-glucose conditions. Concurrent treatment with 3-HBA and LAA under glucose starvation had a synergistic effect on cell growth inhibition. In addition, LAA and LAA + 3-HBA promoted an imbalance in the expression of enzymes in the electron transport chain. These findings suggested that treatment with 3-HBA and/or LAA during glucose starvation may reprogram energy metabolism and decrease the proliferation of cancer cells.
Collapse
Affiliation(s)
- Yui Kadochi
- Department of Molecular Pathology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Shiori Mori
- Department of Molecular Pathology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Rina Fujiwara-Tani
- Department of Molecular Pathology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Yi Luo
- Department of Molecular Pathology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Yukiko Nishiguchi
- Department of Molecular Pathology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Shingo Kishi
- Department of Molecular Pathology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Kiyomu Fujii
- Department of Molecular Pathology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Hitoshi Ohmori
- Department of Molecular Pathology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Hiroki Kuniyasu
- Department of Molecular Pathology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| |
Collapse
|
46
|
Rtibi K, Grami D, Selmi S, Amri M, Sebai H, Marzouki L. Vinblastine, an anticancer drug, causes constipation and oxidative stress as well as others disruptions in intestinal tract in rat. Toxicol Rep 2017; 4:221-225. [PMID: 28959642 PMCID: PMC5615122 DOI: 10.1016/j.toxrep.2017.04.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 04/13/2017] [Accepted: 04/28/2017] [Indexed: 01/11/2023] Open
Abstract
The purpose of this study is to examine the gastrointestinal disorders after injection of vinblastine (2 mg kg-1 b.w. i.v.) in rats. Animals were divided into two equal groups: Group 1 was considered as a control group (NaCl, 0.9%). Group 2 was treated with intravenous injection of vinblastine for 7 days. Loperamide (2 mg kg-1) was injected in a saline solution subcutaneously to induce constipation in another group of rats during the same period. Fecal parameters of the different groups have been determined. At the end of the experiment, animals were anaesthetized and sacrificed by decapitation. The intestinal mucosa specimens were examined for lipid peroxidation, sulfhydryl groups (-SH) and protein carbonylation as well as antioxidant enzyme activities and intracellular mediators. Gastrointestinal motility was realized by the test meal (10% charcoal in 5% gum arabic). In result, statistically significant decreases in the fecal number and water content collected during 24 h were detected in the vinblastine group, but less important than loperamide control group. The animals treated with vinblastine, showed also a significant decrease (13%) of GIT, lower than that of loperamide (34%). The intestinal tissues from vinblastine-treated rats were showed a significant increase in lipoperoxydation and H2O2 production as well as a significant depletion of enzymatic and non-enzymatic antioxidants. Added to that, a disruption of intracellular iron and calcium levels was observed. Therefore, the present study provide the first strong evidence that vinblastine induced numerous disruptions in gastrointestinal which are related to oxidative stress and intracellular mediators disorders.
Collapse
Affiliation(s)
- Kaïs Rtibi
- Laboratoire de Physiologie Fonctionnelle et Valorisation des Bioressources-Institut Supérieur de Biotechnologie de Béja, B.P. 382, 9000 Béja, Tunisia.,Laboratoire de Neurophysiologie Fonctionnelle et Pathologies, Département des Sciences Biologiques, Faculté des Sciences de Tunis, 2092 Tunis, Tunisia
| | - Dhekra Grami
- Laboratoire de Physiologie Fonctionnelle et Valorisation des Bioressources-Institut Supérieur de Biotechnologie de Béja, B.P. 382, 9000 Béja, Tunisia
| | - Slimen Selmi
- Laboratoire de Physiologie Fonctionnelle et Valorisation des Bioressources-Institut Supérieur de Biotechnologie de Béja, B.P. 382, 9000 Béja, Tunisia
| | - Mohamed Amri
- Laboratoire de Neurophysiologie Fonctionnelle et Pathologies, Département des Sciences Biologiques, Faculté des Sciences de Tunis, 2092 Tunis, Tunisia
| | - Hichem Sebai
- Laboratoire de Physiologie Fonctionnelle et Valorisation des Bioressources-Institut Supérieur de Biotechnologie de Béja, B.P. 382, 9000 Béja, Tunisia
| | - Lamjed Marzouki
- Laboratoire de Physiologie Fonctionnelle et Valorisation des Bioressources-Institut Supérieur de Biotechnologie de Béja, B.P. 382, 9000 Béja, Tunisia.,Laboratoire de Neurophysiologie Fonctionnelle et Pathologies, Département des Sciences Biologiques, Faculté des Sciences de Tunis, 2092 Tunis, Tunisia
| |
Collapse
|
47
|
Liu Q, Tao T, Liu F, Ni R, Lu C, Shen A. Hyper-O-GlcNAcylation of YB-1 affects Ser102 phosphorylation and promotes cell proliferation in hepatocellular carcinoma. Exp Cell Res 2016; 349:230-238. [PMID: 27751836 DOI: 10.1016/j.yexcr.2016.10.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 10/09/2016] [Accepted: 10/13/2016] [Indexed: 11/16/2022]
Abstract
As an essential post-translational modification, O-GlcNAcylation has been thought to be able to modulate various nuclear and cytoplasmic proteins and is emerging as a key regulator of multiple biological processes, such as transcription, cell growth, signal transduction, and cell motility. Recently, authoritative glycomics analyses have reported extensive crosstalk between O-GlcNAcylation and phosphorylation, which always dynamically interplay with each other and regulate signaling, transcription, and other cellular processes. Also, plentiful studies have shown close correlation between YB-1 phosphorylation and tumorigenesis. Therefore, our study aimed to determine whether YB-1 was O-GlcNAc modified and whether such modification could interact with its phosphorylation during the process of HCC development. Western blot and immunohistochemistry were firstly conducted to reveal obvious up-regulation of YB-1, OGT and O-GlcNAc modification in HCC tissues. What is more, not only YB-1 was identified to be O-GlcNAcylated but hyper-O-GlcNAcylation was demonstrated to facilitate HCC cell proliferation in a YB-1 dependent manner. Moreover, we detected four specific O-GlcNAc sites and confirmed T126A to be the most effective mutant in HCC cell proliferation via close O-GlcNAcylation-phosphorylation interaction. Even more interestingly, we discovered that T126A-induced HCC cell retardation and subdued transcriptional activity of YB-1 could be partially reversed by T126A/S102E mutant. From all above, it is not difficult to find that glycosylated-YB-1 mainly enhanced cell proliferation through congenerous actions with YB-1 phosphorylation and thus played indispensable roles in fine-tuning cell proliferation and procession of HCC.
Collapse
Affiliation(s)
- Qingqing Liu
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, People's Republic of China; Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 19 Qi-xiu Road, Nantong 226001, Jiangsu Province, People's Republic of China
| | - Tao Tao
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 19 Qi-xiu Road, Nantong 226001, Jiangsu Province, People's Republic of China
| | - Fang Liu
- Key Laboratory of Neuroregeneration, Nantong University, Nantong 226001, Jiangsu Province, People's Republic of China
| | - Runzhou Ni
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, People's Republic of China
| | - Cuihua Lu
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, People's Republic of China.
| | - Aiguo Shen
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 19 Qi-xiu Road, Nantong 226001, Jiangsu Province, People's Republic of China; Key Laboratory of Neuroregeneration, Nantong University, Nantong 226001, Jiangsu Province, People's Republic of China.
| |
Collapse
|
48
|
P-gp, MRP2 and OAT1/OAT3 mediate the drug-drug interaction between resveratrol and methotrexate. Toxicol Appl Pharmacol 2016; 306:27-35. [PMID: 27377006 DOI: 10.1016/j.taap.2016.06.030] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 06/26/2016] [Accepted: 06/29/2016] [Indexed: 01/27/2023]
Abstract
The purpose of present study was to investigate the effect of resveratrol (Res) on altering methotrexate (MTX) pharmacokinetics and clarify the related molecular mechanism. Res significantly increased rat intestinal absorption of MTX in vivo and in vitro. Simultaneously, Res inhibited MTX efflux transport in MDR1-MDCK and MRP2-MDCK cell monolayers, suggesting that the target of drug interaction was MDR1 and MRP2 in the intestine during the absorption process. Furthermore, there was a significant decrease in renal clearance of MTX after simultaneous intravenous administration. Similarly, MTX uptake was markedly inhibited by Res in rat kidney slices and hOAT1/3-HEK293 cell, indicating that OAT1 and OAT3 were involved in the drug interaction in the kidney. Additionally, concomitant administration of Res decreased cytotoxic effects of MTX in hOAT1/3-HEK293 cells, and ameliorated nephrotoxicity caused by MTX in rats. Conversely, intestinal damage caused by MTX was not exacerbated after Res treatment. In conclusion, Res enhanced MTX absorption in intestine and decreased MTX renal elimination by inhibiting P-gp, MRP2, OAT1 and OAT3 in vivo and in vitro. Res improved MTX-induced renal damage without increasing intestinal toxicity.
Collapse
|
49
|
Kelleni MT, Ibrahim SA, Abdelrahman AM. Effect of captopril and telmisartan on methotrexate-induced hepatotoxicity in rats: impact of oxidative stress, inflammation and apoptosis. Toxicol Mech Methods 2016; 26:371-7. [PMID: 27269004 DOI: 10.1080/15376516.2016.1191576] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Methotrexate (MTX) is a commonly used antineoplastic and anti-rheumatoid drug whose efficacy is limited by its hepatotoxicity. The aim of this study was to investigate the possible protective role of captopril (100 mg/kg/day, p.o. for seven days), an angiotensin converting enzyme inhibitor, and telmisartan (10 mg/kg/day p.o. for seven days), an angiotensin II receptor blocker with peroxisome proliferative receptor gamma (PPARγ) agonism, in a model of MTX (single dose 20 mg/kg i.p. at the fifth day) induced hepatotoxicity in rats. Results of the present study revealed MTX-induced hepatotoxicity as demonstrated by increased level of liver enzymes and confirmed by histopathology. Pretreatment with captopril or telmisartan produced a significant hepatic protection manifested as a significant (p < 0.05) decrease in serum levels of alanine transferase (ALT) and aspartate transferase (AST) and alkaline phosphatase (ALP) enzymes; hepatic malondialdehyde (MDA) and total nitrites and nitrates (NOx) levels; as well as a significant increase in hepatic superoxide dismutase (SOD) activity. In addition, there was a remarkable improvement in the histopathological features and a significant reduction in the expression of COX-2, iNOS and caspase-3 enzymes as compared with the MTX group. We recommend considering captopril/Telmisartan, if tolerated and not contraindicated, as preferable antihypertensive agents in patients receiving MTX in their chemotherapy protocols.
Collapse
Affiliation(s)
- Mina T Kelleni
- a Faculty of Medicine, Department of Pharmacology , Minia University , Minia , Egypt
| | - Salwa A Ibrahim
- a Faculty of Medicine, Department of Pharmacology , Minia University , Minia , Egypt
| | - Aly M Abdelrahman
- a Faculty of Medicine, Department of Pharmacology , Minia University , Minia , Egypt
| |
Collapse
|
50
|
Resa S, Orte A, Miguel D, Paredes JM, Puente-Muñoz V, Salto R, Giron MD, Ruedas-Rama MJ, Cuerva JM, Alvarez-Pez JM, Crovetto L. New Dual Fluorescent Probe for Simultaneous Biothiol and Phosphate Bioimaging. Chemistry 2015; 21:14772-9. [DOI: 10.1002/chem.201502799] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Indexed: 12/19/2022]
|