1
|
Guo Q, Yang YX, Li DX, Ji XJ, Wu N, Wang YT, Ye C, Shi TQ. Advances in multi-enzyme co-localization strategies for the construction of microbial cell factory. Biotechnol Adv 2024; 77:108453. [PMID: 39278372 DOI: 10.1016/j.biotechadv.2024.108453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/05/2024] [Accepted: 09/10/2024] [Indexed: 09/18/2024]
Abstract
Biomanufacturing, driven by technologies such as synthetic biology, offers significant potential to advance the bioeconomy and promote sustainable development. It is anticipated to transform traditional manufacturing and become a key industry in future strategies. Cell factories are the core of biomanufacturing. The advancement of synthetic biology and growing market demand have led to the production of a greater variety of natural products and increasingly complex metabolic pathways. However, this progress also presents challenges, notably the conflict between natural product production and chassis cell growth. This conflict results in low productivity and yield, adverse side effects, metabolic imbalances, and growth retardation. Enzyme co-localization strategies have emerged as a promising solution. This article reviews recent progress and applications of these strategies in constructing cell factories for efficient natural product production. It comprehensively describes the applications of enzyme-based compartmentalization, metabolic pathway-based compartmentalization, and synthetic organelle-based compartmentalization in improving product titers. The article also explores future research directions and the prospects of combining multiple strategies with advanced technologies.
Collapse
Affiliation(s)
- Qi Guo
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People's Republic of China
| | - Yu-Xin Yang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People's Republic of China
| | - Dong-Xun Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People's Republic of China
| | - Xiao-Jun Ji
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Na Wu
- College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, China
| | - Yue-Tong Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People's Republic of China.
| | - Chao Ye
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People's Republic of China.
| | - Tian-Qiong Shi
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People's Republic of China.
| |
Collapse
|
2
|
Song S, Ye C, Jin Y, Dai H, Hu J, Lian J, Pan R. Peroxisome-based metabolic engineering for biomanufacturing and agriculture. Trends Biotechnol 2024; 42:1161-1176. [PMID: 38423802 DOI: 10.1016/j.tibtech.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/04/2024] [Accepted: 02/05/2024] [Indexed: 03/02/2024]
Abstract
Subcellular compartmentalization of metabolic pathways plays a crucial role in metabolic engineering. The peroxisome has emerged as a highly valuable and promising compartment for organelle engineering, particularly in the fields of biological manufacturing and agriculture. In this review, we summarize the remarkable achievements in peroxisome engineering in yeast, the industrially popular biomanufacturing chassis host, to produce various biocompounds. We also review progress in plant peroxisome engineering, a field that has already exhibited high potential in both biomanufacturing and agriculture. Moreover, we outline various experimentally validated strategies to improve the efficiency of engineered pathways in peroxisomes, as well as prospects of peroxisome engineering.
Collapse
Affiliation(s)
- Shuyan Song
- State Key Laboratory of Rice Biology and Breeding, College of Chemical and Biological Engineering, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, Zhejiang, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, Zhejiang, China
| | - Cuifang Ye
- State Key Laboratory of Rice Biology and Breeding, College of Chemical and Biological Engineering, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, Zhejiang, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, Zhejiang, China
| | - Yijun Jin
- State Key Laboratory of Rice Biology and Breeding, College of Chemical and Biological Engineering, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, Zhejiang, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, Zhejiang, China
| | - Huaxin Dai
- Beijing Life Science Academy, Changping 102209, Beijing, China
| | - Jianping Hu
- Michigan State University-Department of Energy Plant Research Laboratory and Plant Biology Department, Michigan State University, East Lansing, MI 48824, USA
| | - Jiazhang Lian
- State Key Laboratory of Rice Biology and Breeding, College of Chemical and Biological Engineering, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, Zhejiang, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, Zhejiang, China.
| | - Ronghui Pan
- State Key Laboratory of Rice Biology and Breeding, College of Chemical and Biological Engineering, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, Zhejiang, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, Zhejiang, China.
| |
Collapse
|
3
|
Tang M, Xu X, Liu Y, Li J, Du G, Lv X, Liu L. Combinatorial Metabolic Engineering for Improving Betulinic Acid Biosynthesis in Saccharomyces cerevisiae. ACS Synth Biol 2024; 13:1798-1808. [PMID: 38748665 DOI: 10.1021/acssynbio.4c00104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Betulinic acid (BA) is a lupane-type triterpenoid with potent anticancer and anti-HIV activities. Its great potential in clinical applications necessitates the development of an efficient strategy for BA synthesis. This study attempted to achieve efficient BA biosynthesis in Saccharomyces cerevisiae using systematic metabolic engineering strategies. First, a de novo BA biosynthesis pathway in S. cerevisiae was constructed, which yielded a titer of 14.01 ± 0.21 mg/L. Then, by enhancing the BA synthesis pathway and dynamic inhibition of the competitive pathway, a greater proportion of the metabolic flow was directed toward BA synthesis, achieving a titer of 88.07 ± 5.83 mg/L. Next, acetyl-CoA and NADPH supply was enhanced, which increased the BA titer to 166.43 ± 1.83 mg/L. Finally, another BA synthesis pathway in the peroxisome was constructed. Dual regulation of the peroxisome and cytoplasmic metabolism increased the BA titer to 210.88 ± 4.76 mg/L. Following fed-batch fermentation process modification, the BA titer reached 682.29 ± 8.16 mg/L. Overall, this work offers a guide for building microbial cell factories that are capable of producing terpenoids with efficiency.
Collapse
Affiliation(s)
- Mei Tang
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Xianhao Xu
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Yanfeng Liu
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jianghua Li
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Guocheng Du
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Xueqin Lv
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Long Liu
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Institute of Future Food and Technology, JITRI, Yixing 214200, China
| |
Collapse
|
4
|
Skowyra ML, Feng P, Rapoport TA. Towards solving the mystery of peroxisomal matrix protein import. Trends Cell Biol 2024; 34:388-405. [PMID: 37743160 PMCID: PMC10957506 DOI: 10.1016/j.tcb.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/21/2023] [Accepted: 08/25/2023] [Indexed: 09/26/2023]
Abstract
Peroxisomes are vital metabolic organelles that import their lumenal (matrix) enzymes from the cytosol using mobile receptors. Surprisingly, the receptors can even import folded proteins, but the underlying mechanism has been a mystery. Recent results reveal how import receptors shuttle cargo into peroxisomes. The cargo-bound receptors move from the cytosol across the peroxisomal membrane completely into the matrix by a mechanism that resembles transport through the nuclear pore. The receptors then return to the cytosol through a separate retrotranslocation channel, leaving the cargo inside the organelle. This cycle concentrates imported proteins within peroxisomes, and the energy for cargo import is supplied by receptor export. Peroxisomal protein import thus fundamentally differs from other previously known mechanisms for translocating proteins across membranes.
Collapse
Affiliation(s)
- Michael L Skowyra
- Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Peiqiang Feng
- Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Tom A Rapoport
- Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
5
|
Ferreira MJ, Rodrigues TA, Pedrosa AG, Silva AR, Vilarinho BG, Francisco T, Azevedo JE. Glutathione and peroxisome redox homeostasis. Redox Biol 2023; 67:102917. [PMID: 37804696 PMCID: PMC10565873 DOI: 10.1016/j.redox.2023.102917] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/28/2023] [Accepted: 10/02/2023] [Indexed: 10/09/2023] Open
Abstract
Despite intensive research on peroxisome biochemistry, the role of glutathione in peroxisomal redox homeostasis has remained a matter of speculation for many years, and only recently has this issue started to be experimentally addressed. Here, we summarize and compare data from several organisms on the peroxisome-glutathione topic. It is clear from this comparison that the repertoire of glutathione-utilizing enzymes in peroxisomes of different organisms varies widely. In addition, the available data suggest that the kinetic connectivity between the cytosolic and peroxisomal pools of glutathione may also be different in different organisms, with some possessing a peroxisomal membrane that is promptly permeable to glutathione whereas in others this may not be the case. However, regardless of the differences, the picture that emerges from all these data is that glutathione is a crucial component of the antioxidative system that operates inside peroxisomes in all organisms.
Collapse
Affiliation(s)
- Maria J Ferreira
- Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Tony A Rodrigues
- Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Ana G Pedrosa
- Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Ana R Silva
- Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
| | - Beatriz G Vilarinho
- Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
| | - Tânia Francisco
- Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.
| | - Jorge E Azevedo
- Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.
| |
Collapse
|
6
|
Yang Z, Koslover EF. Diffusive exit rates through pores in membrane-enclosed structures. Phys Biol 2023; 20. [PMID: 36626849 DOI: 10.1088/1478-3975/acb1ea] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/10/2023] [Indexed: 01/11/2023]
Abstract
The function of many membrane-enclosed intracellular structures relies on release of diffusing particles that exit through narrow pores or channels in the membrane. The rate of release varies with pore size, density, and length of the channel. We propose a simple approximate model, validated with stochastic simulations, for estimating the effective release rate from cylinders, and other simple-shaped domains, as a function of channel parameters. The results demonstrate that, for very small pores, a low density of channels scattered over the boundary is sufficient to achieve substantial rates of particle release. Furthermore, we show that increasing the length of passive channels will both reduce release rates and lead to a less steep dependence on channel density. Our results are compared to previously-measured local calcium release rates from tubules of the endoplasmic reticulum, providing an estimate of the relevant channel density responsible for the observed calcium efflux.
Collapse
Affiliation(s)
- Zitao Yang
- La Jolla Country Day School, La Jolla, CA 92037, United States of America
| | - Elena F Koslover
- Department of Physics, University of California, San Diego, La Jolla, CA 92093, United States of America
| |
Collapse
|
7
|
Feng P, Skowyra ML, Rapoport TA. Structure and function of the peroxisomal ubiquitin ligase complex. Biochem Soc Trans 2022; 50:1921-1930. [PMID: 36421406 PMCID: PMC9788354 DOI: 10.1042/bst20221393] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 09/26/2023]
Abstract
Peroxisomes are membrane-bounded organelles that exist in most eukaryotic cells and are involved in the oxidation of fatty acids and the destruction of reactive oxygen species. Depending on the organism, they house additional metabolic reactions that range from glycolysis in parasitic protozoa to the production of ether lipids in animals and antibiotics in fungi. The importance of peroxisomes for human health is revealed by various disorders - notably the Zellweger spectrum - that are caused by defects in peroxisome biogenesis and are often fatal. Most peroxisomal metabolic enzymes reside in the lumen, but are synthesized in the cytosol and imported into the organelle by mobile receptors. The receptors accompany cargo all the way into the lumen and must return to the cytosol to start a new import cycle. Recycling requires receptor monoubiquitination by a membrane-embedded ubiquitin ligase complex composed of three RING finger (RF) domain-containing proteins: PEX2, PEX10, and PEX12. A recent cryo-electron microscopy (cryo-EM) structure of the complex reveals its function as a retro-translocation channel for peroxisomal import receptors. Each subunit of the complex contributes five transmembrane segments that assemble into an open channel. The N terminus of a receptor likely inserts into the pore from the lumenal side, and is then monoubiquitinated by one of the RFs to enable extraction into the cytosol. If recycling is compromised, receptors are polyubiquitinated by the concerted action of the other two RFs and ultimately degraded. The new data provide mechanistic insight into a crucial step of peroxisomal protein import.
Collapse
Affiliation(s)
- Peiqiang Feng
- Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, U.S.A
| | - Michael L. Skowyra
- Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, U.S.A
| | - Tom A. Rapoport
- Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, U.S.A
| |
Collapse
|
8
|
Bittner E, Stehlik T, Freitag J. Sharing the wealth: The versatility of proteins targeted to peroxisomes and other organelles. Front Cell Dev Biol 2022; 10:934331. [PMID: 36225313 PMCID: PMC9549241 DOI: 10.3389/fcell.2022.934331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022] Open
Abstract
Peroxisomes are eukaryotic organelles with critical functions in cellular energy and lipid metabolism. Depending on the organism, cell type, and developmental stage, they are involved in numerous other metabolic and regulatory pathways. Many peroxisomal functions require factors also relevant to other cellular compartments. Here, we review proteins shared by peroxisomes and at least one different site within the cell. We discuss the mechanisms to achieve dual targeting, their regulation, and functional consequences. Characterization of dual targeting is fundamental to understand how peroxisomes are integrated into the metabolic and regulatory circuits of eukaryotic cells.
Collapse
Affiliation(s)
| | | | - Johannes Freitag
- Department of Biology, Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
9
|
Andrade-Alviárez D, Bonive-Boscan AD, Cáceres AJ, Quiñones W, Gualdrón-López M, Ginger ML, Michels PAM. Delineating transitions during the evolution of specialised peroxisomes: Glycosome formation in kinetoplastid and diplonemid protists. Front Cell Dev Biol 2022; 10:979269. [PMID: 36172271 PMCID: PMC9512073 DOI: 10.3389/fcell.2022.979269] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/17/2022] [Indexed: 12/01/2022] Open
Abstract
One peculiarity of protists belonging to classes Kinetoplastea and Diplonemea within the phylum Euglenozoa is compartmentalisation of most glycolytic enzymes within peroxisomes that are hence called glycosomes. This pathway is not sequestered in peroxisomes of the third Euglenozoan class, Euglenida. Previous analysis of well-studied kinetoplastids, the ‘TriTryps’ parasites Trypanosoma brucei, Trypanosoma cruzi and Leishmania spp., identified within glycosomes other metabolic processes usually not present in peroxisomes. In addition, trypanosomatid peroxins, i.e. proteins involved in biogenesis of these organelles, are divergent from human and yeast orthologues. In recent years, genomes, transcriptomes and proteomes for a variety of euglenozoans have become available. Here, we track the possible evolution of glycosomes by querying these databases, as well as the genome of Naegleria gruberi, a non-euglenozoan, which belongs to the same protist supergroup Discoba. We searched for orthologues of TriTryps proteins involved in glycosomal metabolism and biogenesis. Predicted cellular location(s) of each metabolic enzyme identified was inferred from presence or absence of peroxisomal-targeting signals. Combined with a survey of relevant literature, we refine extensively our previously postulated hypothesis about glycosome evolution. The data agree glycolysis was compartmentalised in a common ancestor of the kinetoplastids and diplonemids, yet additionally indicates most other processes found in glycosomes of extant trypanosomatids, but not in peroxisomes of other eukaryotes were either sequestered in this ancestor or shortly after separation of the two lineages. In contrast, peroxin divergence is evident in all euglenozoans. Following their gain of pathway complexity, subsequent evolution of peroxisome/glycosome function is complex. We hypothesize compartmentalisation in glycosomes of glycolytic enzymes, their cofactors and subsequently other metabolic enzymes provided selective advantage to kinetoplastids and diplonemids during their evolution in changing marine environments. We contend two specific properties derived from the ancestral peroxisomes were key: existence of nonselective pores for small solutes and the possibility of high turnover by pexophagy. Critically, such pores and pexophagy are characterised in extant trypanosomatids. Increasing amenability of free-living kinetoplastids and recently isolated diplonemids to experimental study means our hypothesis and interpretation of bioinformatic data are suited to experimental interrogation.
Collapse
Affiliation(s)
- Diego Andrade-Alviárez
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida, Venezuela
| | - Alejandro D. Bonive-Boscan
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida, Venezuela
| | - Ana J. Cáceres
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida, Venezuela
| | - Wilfredo Quiñones
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida, Venezuela
| | | | - Michael L. Ginger
- School of Applied Sciences, University of Huddersfield, Huddersfield, United Kingdom
| | - Paul A. M. Michels
- Centre for Immunity, Infection and Evolution and Centre for Translational and Chemical Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, United Kingdom
- *Correspondence: Paul A. M. Michels,
| |
Collapse
|
10
|
Yifrach E, Holbrook‐Smith D, Bürgi J, Othman A, Eisenstein M, van Roermund CWT, Visser W, Tirosh A, Rudowitz M, Bibi C, Galor S, Weill U, Fadel A, Peleg Y, Erdmann R, Waterham HR, Wanders RJA, Wilmanns M, Zamboni N, Schuldiner M, Zalckvar E. Systematic multi-level analysis of an organelle proteome reveals new peroxisomal functions. Mol Syst Biol 2022; 18:e11186. [PMID: 36164978 PMCID: PMC9513677 DOI: 10.15252/msb.202211186] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/29/2022] [Accepted: 09/05/2022] [Indexed: 11/18/2022] Open
Abstract
Seventy years following the discovery of peroxisomes, their complete proteome, the peroxi-ome, remains undefined. Uncovering the peroxi-ome is crucial for understanding peroxisomal activities and cellular metabolism. We used high-content microscopy to uncover peroxisomal proteins in the model eukaryote - Saccharomyces cerevisiae. This strategy enabled us to expand the known peroxi-ome by ~40% and paved the way for performing systematic, whole-organellar proteome assays. By characterizing the sub-organellar localization and protein targeting dependencies into the organelle, we unveiled non-canonical targeting routes. Metabolomic analysis of the peroxi-ome revealed the role of several newly identified resident enzymes. Importantly, we found a regulatory role of peroxisomes during gluconeogenesis, which is fundamental for understanding cellular metabolism. With the current recognition that peroxisomes play a crucial part in organismal physiology, our approach lays the foundation for deep characterization of peroxisome function in health and disease.
Collapse
Affiliation(s)
- Eden Yifrach
- Department of Molecular GeneticsThe Weizmann Institute of ScienceRehovotIsrael
| | | | - Jérôme Bürgi
- Hamburg Unit c/o DESYEuropean Molecular Biology Laboratory (EMBL)HamburgGermany
| | - Alaa Othman
- Institute of Molecular Systems BiologyETH ZurichZurichSwitzerland
| | - Miriam Eisenstein
- Department of Molecular GeneticsThe Weizmann Institute of ScienceRehovotIsrael
| | - Carlo WT van Roermund
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam Gastroenterology, Endocrinology & MetabolismAmsterdam University Medical Centers – Location AMCAmsterdamThe Netherlands
| | - Wouter Visser
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam Gastroenterology, Endocrinology & MetabolismAmsterdam University Medical Centers – Location AMCAmsterdamThe Netherlands
| | - Asa Tirosh
- Life Sciences Core Facilities (LSCF)The Weizmann Institute of ScienceRehovotIsrael
| | - Markus Rudowitz
- Department of Systems Biochemistry, Institute of Biochemistry and PathobiochemistryRuhr‐University BochumBochumGermany
| | - Chen Bibi
- Department of Molecular GeneticsThe Weizmann Institute of ScienceRehovotIsrael
| | - Shahar Galor
- Department of Molecular GeneticsThe Weizmann Institute of ScienceRehovotIsrael
| | - Uri Weill
- Department of Molecular GeneticsThe Weizmann Institute of ScienceRehovotIsrael
| | - Amir Fadel
- Department of Molecular GeneticsThe Weizmann Institute of ScienceRehovotIsrael
| | - Yoav Peleg
- Life Sciences Core Facilities (LSCF)The Weizmann Institute of ScienceRehovotIsrael
| | - Ralf Erdmann
- Department of Systems Biochemistry, Institute of Biochemistry and PathobiochemistryRuhr‐University BochumBochumGermany
| | - Hans R Waterham
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam Gastroenterology, Endocrinology & MetabolismAmsterdam University Medical Centers – Location AMCAmsterdamThe Netherlands
| | - Ronald J A Wanders
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam Gastroenterology, Endocrinology & MetabolismAmsterdam University Medical Centers – Location AMCAmsterdamThe Netherlands
| | - Matthias Wilmanns
- Hamburg Unit c/o DESYEuropean Molecular Biology Laboratory (EMBL)HamburgGermany
- University Medical Center Hamburg‐EppendorfHamburgGermany
| | - Nicola Zamboni
- Institute of Molecular Systems BiologyETH ZurichZurichSwitzerland
| | - Maya Schuldiner
- Department of Molecular GeneticsThe Weizmann Institute of ScienceRehovotIsrael
| | - Einat Zalckvar
- Department of Molecular GeneticsThe Weizmann Institute of ScienceRehovotIsrael
| |
Collapse
|
11
|
Thomas AS, Sassi M, Angelini R, Morgan AH, Davies JS. Acylation, a Conductor of Ghrelin Function in Brain Health and Disease. Front Physiol 2022; 13:831641. [PMID: 35845996 PMCID: PMC9280358 DOI: 10.3389/fphys.2022.831641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/31/2022] [Indexed: 11/22/2022] Open
Abstract
Acyl-ghrelin (AG) is an orexigenic hormone that has a unique octanoyl modification on its third serine residue. It is often referred to as the “hunger hormone” due to its involvement in stimulating food intake and regulating energy homeostasis. The discovery of the enzyme ghrelin-O-acyltransferase (GOAT), which catalyses ghrelin acylation, provided further insights into the relevance of this lipidation process for the activation of the growth hormone secretagogue receptor (GHS-R) by acyl-ghrelin. Although acyl-ghrelin is predominantly linked with octanoic acid, a range of saturated fatty acids can also bind to ghrelin possibly leading to specific functions. Sources of ghrelin acylation include beta-oxidation of longer chain fatty acids, with contributions from fatty acid synthesis, the diet, and the microbiome. In addition, both acyl-ghrelin and unacyl-ghrelin (UAG) have feedback effects on lipid metabolism which in turn modulate their levels. Recently we showed that whilst acyl-ghrelin promotes adult hippocampal neurogenesis and enhances memory function, UAG inhibits these processes. As a result, we postulated that the circulating acyl-ghrelin:unacyl-ghrelin (AG:UAG) ratio might be an important regulator of neurogenesis and cognition. In this review, we discuss emerging evidence behind the relevance of ghrelin acylation in the context of brain physiology and pathology, as well as the current challenges of identifying the provenance of the acyl moiety.
Collapse
|
12
|
Michels PAM, Gualdrón-López M. Biogenesis and metabolic homeostasis of trypanosomatid glycosomes: new insights and new questions. J Eukaryot Microbiol 2022; 69:e12897. [PMID: 35175680 DOI: 10.1111/jeu.12897] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/14/2022] [Accepted: 02/14/2022] [Indexed: 11/28/2022]
Abstract
Kinetoplastea and Diplonemea possess peroxisome-related organelles that, uniquely, contain most of the enzymes of the glycolytic pathway and are hence called glycosomes. Enzymes of several other core metabolic pathways have also been located in glycosomes, in addition to some characteristic peroxisomal systems such as pathways of lipid metabolism. A considerable amount of research has been performed on glycosomes of trypanosomes since their discovery four decades ago. Not only the role of the glycosomal enzyme systems in the overall cell metabolism appeared to be unique, but the organelles display also remarkable features regarding their biogenesis and structural properties. These features are similar to those of the well-studied peroxisomes of mammalian and plant cells and yeasts yet exhibit also differences reflecting the large evolutionary distance between these protists and the representatives of other major eukaryotic lineages. Despite all research performed, many questions remain about various properties and the biological roles of glycosomes and peroxisomes. Here we review the current knowledge about glycosomes, often comparing it with information about peroxisomes. Furthermore, we highlight particularly many questions that remain about the biogenesis, and the heterogeneity in structure and content of these enigmatic organelles, and the properties of their boundary membrane.
Collapse
Affiliation(s)
- Paul A M Michels
- Centre for Immunity, Infection and Evolution and Centre for Translational and Chemical Biology, The University of Edinburgh, Edinburgh, United Kingdom
| | - Melisa Gualdrón-López
- Instituto Salud Global, Hospital Clinic-Universitat de Barcelona, and Institute for Health Sciences Trias i Pujol, Barcelona, Spain
| |
Collapse
|
13
|
Dahan N, Bykov YS, Boydston EA, Fadel A, Gazi Z, Hochberg-Laufer H, Martenson J, Denic V, Shav-Tal Y, Weissman JS, Aviram N, Zalckvar E, Schuldiner M. Peroxisome function relies on organelle-associated mRNA translation. SCIENCE ADVANCES 2022; 8:eabk2141. [PMID: 35020435 PMCID: PMC8754406 DOI: 10.1126/sciadv.abk2141] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 11/18/2021] [Indexed: 05/26/2023]
Abstract
Crucial metabolic functions of peroxisomes rely on a variety of peroxisomal membrane proteins (PMPs). While mRNA transcripts of PMPs were shown to be colocalized with peroxisomes, the process by which PMPs efficiently couple translation with targeting to the peroxisomal membrane remained elusive. Here, we combine quantitative electron microscopy with proximity-specific ribosome profiling and reveal that translation of specific PMPs occurs on the surface of peroxisomes in the yeast Saccharomyces cerevisiae. This places peroxisomes alongside chloroplasts, mitochondria, and the endoplasmic reticulum as organelles that use localized translation for ensuring correct insertion of hydrophobic proteins into their membranes. Moreover, the correct targeting of these transcripts to peroxisomes is crucial for peroxisomal and cellular function, emphasizing the importance of localized translation for cellular physiology.
Collapse
Affiliation(s)
- Noa Dahan
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Yury S. Bykov
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Elizabeth A. Boydston
- Department of Cellular and Molecular Pharmacology, Howard Hughes Medical Institute, California Institute for Quantitative Biosciences, Center for RNA Systems Biology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Amir Fadel
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Zohar Gazi
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Hodaya Hochberg-Laufer
- The Mina and Everard Goodman Faculty of Life Sciences, The Bar-Ilan Institute of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat Gan 5290002, Israel
| | - James Martenson
- Department of Molecular and Cellular Biology, Harvard University, 52 Oxford St., Cambridge, MA 02138, USA
| | - Vlad Denic
- Department of Molecular and Cellular Biology, Harvard University, 52 Oxford St., Cambridge, MA 02138, USA
| | - Yaron Shav-Tal
- The Mina and Everard Goodman Faculty of Life Sciences, The Bar-Ilan Institute of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Jonathan S. Weissman
- Department of Cellular and Molecular Pharmacology, Howard Hughes Medical Institute, California Institute for Quantitative Biosciences, Center for RNA Systems Biology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Naama Aviram
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Einat Zalckvar
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Maya Schuldiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
14
|
Sarkar AK, Sadhukhan S. Imperative role of trehalose metabolism and trehalose-6-phosphate signaling on salt stress responses in plants. PHYSIOLOGIA PLANTARUM 2022; 174:e13647. [PMID: 35141895 DOI: 10.1111/ppl.13647] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/23/2022] [Accepted: 02/07/2022] [Indexed: 05/04/2023]
Abstract
Sugar transport and distribution have a direct impact on the growth and development of plants. Many sugars significantly influence salt stress response. The sensing of salt stress signals triggers a wide array of complicated network transduction pathways in plants. Trehalose and its intermediate compounds effectively modulate salt response and salt tolerance. Sugars such as trehalose and its derivatives not only serve as metabolic resources and structural components of cells in plants but also exhibit hormone-like regulating properties. Trehalose has an important physiological role in improving plant tolerance against salinity stresses in different plants. Plants finely adjust their cytoplasmic compatible solute pool to cope with high salinity. Salt stress induces a variety of structural, anatomical, molecular, biochemical, and physiological changes in plants, all of which have a detrimental influence on plant growth and development. This review highlights the recent developments in understanding trehalose and trehalose-6-phosphate signaling processes in plants, especially their impacts on plants growing in salty environments.
Collapse
Affiliation(s)
- Anup Kumar Sarkar
- Department of Botany, Dukhulal Nibaran Chandra College, Murshidabad, West Bengal, India
- Plant Molecular Biology Laboratory, Department of Botany, Raiganj University, Raiganj, West Bengal, India
| | - Sanjoy Sadhukhan
- Plant Molecular Biology Laboratory, Department of Botany, Raiganj University, Raiganj, West Bengal, India
| |
Collapse
|
15
|
He A, Dean JM, Lodhi IJ. Peroxisomes as cellular adaptors to metabolic and environmental stress. Trends Cell Biol 2021; 31:656-670. [PMID: 33674166 PMCID: PMC8566112 DOI: 10.1016/j.tcb.2021.02.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/02/2021] [Accepted: 02/04/2021] [Indexed: 02/06/2023]
Abstract
Peroxisomes are involved in multiple metabolic processes, including fatty acid oxidation, ether lipid synthesis, and reactive oxygen species (ROS) metabolism. Recent studies suggest that peroxisomes are critical mediators of cellular responses to various forms of stress, including oxidative stress, hypoxia, starvation, cold exposure, and noise. As dynamic organelles, peroxisomes can modulate their proliferation, morphology, and movement within cells, and engage in crosstalk with other organelles in response to external cues. Although peroxisome-derived hydrogen peroxide has a key role in cellular signaling related to stress, emerging studies suggest that other products of peroxisomal metabolism, such as acetyl-CoA and ether lipids, are also important for metabolic adaptation to stress. Here, we review molecular mechanisms through which peroxisomes regulate metabolic and environmental stress.
Collapse
Affiliation(s)
- Anyuan He
- Division of Endocrinology, Metabolism and Lipid Research, Department of Medicine, Washington University School of Medicine, St Louis, MO 63110, USA.
| | - John M Dean
- Division of Endocrinology, Metabolism and Lipid Research, Department of Medicine, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Irfan J Lodhi
- Division of Endocrinology, Metabolism and Lipid Research, Department of Medicine, Washington University School of Medicine, St Louis, MO 63110, USA.
| |
Collapse
|
16
|
Glutathione in the Nervous System as a Potential Therapeutic Target to Control the Development and Progression of Amyotrophic Lateral Sclerosis. Antioxidants (Basel) 2021; 10:antiox10071011. [PMID: 34201812 PMCID: PMC8300718 DOI: 10.3390/antiox10071011] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 11/25/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a rare neurological disorder that affects the motor neurons responsible for regulating muscle movement. However, the molecular pathogenic mechanisms of ALS remain poorly understood. A deficiency in the antioxidant tripeptide glutathione (GSH) in the nervous system appears to be involved in several neurodegenerative diseases characterized by the loss of neuronal cells. Impaired antioxidant defense systems, and the accumulation of oxidative damage due to increased dysfunction in GSH homeostasis are known to be involved in the development and progression of ALS. Aberrant GSH metabolism and redox status following oxidative damage are also associated with various cellular organelles, including the mitochondria and nucleus, and are crucial factors in neuronal toxicity induced by ALS. In this review, we provide an overview of the implications of imbalanced GSH homeostasis and its molecular characteristics in various experimental models of ALS.
Collapse
|
17
|
Liu J, Shangguan Y, Tang D, Dai Y. Histone succinylation and its function on the nucleosome. J Cell Mol Med 2021; 25:7101-7109. [PMID: 34160884 PMCID: PMC8335665 DOI: 10.1111/jcmm.16676] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/01/2021] [Accepted: 05/05/2021] [Indexed: 02/06/2023] Open
Abstract
Protein post‐translational modifications (PTMs) of histones are ubiquitous regulatory mechanisms involved in many biological processes, including replication, transcription, DNA damage repair and ontogenesis. Recently, many short‐chain acylation histone modifications have been identified by mass spectrometry (MS). Lysine succinylation (Ksuc or Ksucc) is a newly identified histone PTM that changes the chemical environment of histones and is similar to other acylation modifications; lysine succinylation appears to accumulate at transcriptional start sites and to correlate with gene expression. Although numerous studies are ongoing, there is a lack of reviews on the Ksuc of histones. Here, we review lysine succinylation sites on histones, including the chemical characteristics and the mechanism by which lysine succinylation influences nucleosomal structure, chromatin dynamics and several diseases and then discuss lysine succinylation regulation to identify theoretical and experimental proof of Ksuc on histones and in diseases to inspire further research into histone lysine succinylation as a target of disease treatment in the future.
Collapse
Affiliation(s)
- Jiayi Liu
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The First Affiliated Hospital(Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen, China.,School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Yu Shangguan
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The First Affiliated Hospital(Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen, China.,Guangxi Key Laboratory of Metabolic Disease Research, Central Laboratory of Guilin, 924st Hospital, Guilin, China
| | - Donge Tang
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The First Affiliated Hospital(Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen, China.,School of Medicine, Southern University of Science and Technology, Shenzhen, China.,Guangxi Key Laboratory of Metabolic Disease Research, Central Laboratory of Guilin, 924st Hospital, Guilin, China
| | - Yong Dai
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The First Affiliated Hospital(Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen, China.,School of Medicine, Southern University of Science and Technology, Shenzhen, China.,Guangxi Key Laboratory of Metabolic Disease Research, Central Laboratory of Guilin, 924st Hospital, Guilin, China
| |
Collapse
|
18
|
Kulagina N, Besseau S, Papon N, Courdavault V. Peroxisomes: A New Hub for Metabolic Engineering in Yeast. Front Bioeng Biotechnol 2021; 9:659431. [PMID: 33898407 PMCID: PMC8058402 DOI: 10.3389/fbioe.2021.659431] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/01/2021] [Indexed: 01/09/2023] Open
Affiliation(s)
- Natalja Kulagina
- Université de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | - Sébastien Besseau
- Université de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | - Nicolas Papon
- Université d'Angers, EA3142 "Groupe d'Etude des Interactions Hôte-Pathogène", Angers, France
| | - Vincent Courdavault
- Université de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| |
Collapse
|
19
|
Acyl-CoA thioesterase activity of peroxisomal ABC protein ABCD1 is required for the transport of very long-chain acyl-CoA into peroxisomes. Sci Rep 2021; 11:2192. [PMID: 33500543 PMCID: PMC7838297 DOI: 10.1038/s41598-021-81949-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 01/11/2021] [Indexed: 12/14/2022] Open
Abstract
The ABCD1 protein, one of the four ATP-binding cassette (ABC) proteins in subfamily D, is located on the peroxisomal membrane and is involved in the transport of very long chain fatty acid (VLCFA)-CoA into peroxisomes. Its mutation causes X-linked adrenoleukodystophy (X-ALD): an inborn error of peroxisomal β-oxidation of VLCFA. Whether ABCD1 transports VLCFA-CoA as a CoA ester or free fatty acid is controversial. Recently, Comatose (CTS), a plant homologue of human ABCD1, has been shown to possess acyl-CoA thioesterase (ACOT) activity, and it is suggested that this activity is required for transport of acyl-CoA into peroxisomes. However, the precise transport mechanism is unknown. Here, we expressed human His-tagged ABCD1 in methylotrophic yeast, and characterized its ACOT activity and transport mechanism. The expressed ABCD1 possessed both ATPase and ACOT activities. The ACOT activity of ABCD1 was inhibited by p-chloromercuribenzoic acid (pCMB), a cysteine-reactive compound. Furthermore, we performed a transport assay with ABCD1-containing liposomes using 7-nitro-2–1,3-benzoxadiazol-4-yl (NBD)-labeled acyl-CoA as the substrate. The results showed that the fatty acid produced from VLCFA-CoA by ABCD1 is transported into liposomes and that ACOT activity is essential during this transport process. We propose a detailed mechanism of VLCFA-CoA transport by ABCD1.
Collapse
|
20
|
Chornyi S, IJlst L, van Roermund CWT, Wanders RJA, Waterham HR. Peroxisomal Metabolite and Cofactor Transport in Humans. Front Cell Dev Biol 2021; 8:613892. [PMID: 33505966 PMCID: PMC7829553 DOI: 10.3389/fcell.2020.613892] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 12/10/2020] [Indexed: 12/20/2022] Open
Abstract
Peroxisomes are membrane-bound organelles involved in many metabolic pathways and essential for human health. They harbor a large number of enzymes involved in the different pathways, thus requiring transport of substrates, products and cofactors involved across the peroxisomal membrane. Although much progress has been made in understanding the permeability properties of peroxisomes, there are still important gaps in our knowledge about the peroxisomal transport of metabolites and cofactors. In this review, we discuss the different modes of transport of metabolites and essential cofactors, including CoA, NAD+, NADP+, FAD, FMN, ATP, heme, pyridoxal phosphate, and thiamine pyrophosphate across the peroxisomal membrane. This transport can be mediated by non-selective pore-forming proteins, selective transport proteins, membrane contact sites between organelles, and co-import of cofactors with proteins. We also discuss modes of transport mediated by shuttle systems described for NAD+/NADH and NADP+/NADPH. We mainly focus on current knowledge on human peroxisomal metabolite and cofactor transport, but also include knowledge from studies in plants, yeast, fruit fly, zebrafish, and mice, which has been exemplary in understanding peroxisomal transport mechanisms in general.
Collapse
Affiliation(s)
- Serhii Chornyi
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Lodewijk IJlst
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Carlo W T van Roermund
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Ronald J A Wanders
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Hans R Waterham
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC Location AMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
21
|
Czumaj A, Szrok-Jurga S, Hebanowska A, Turyn J, Swierczynski J, Sledzinski T, Stelmanska E. The Pathophysiological Role of CoA. Int J Mol Sci 2020; 21:ijms21239057. [PMID: 33260564 PMCID: PMC7731229 DOI: 10.3390/ijms21239057] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/21/2020] [Accepted: 11/25/2020] [Indexed: 12/11/2022] Open
Abstract
The importance of coenzyme A (CoA) as a carrier of acyl residues in cell metabolism is well understood. Coenzyme A participates in more than 100 different catabolic and anabolic reactions, including those involved in the metabolism of lipids, carbohydrates, proteins, ethanol, bile acids, and xenobiotics. However, much less is known about the importance of the concentration of this cofactor in various cell compartments and the role of altered CoA concentration in various pathologies. Despite continuous research on these issues, the molecular mechanisms in the regulation of the intracellular level of CoA under pathological conditions are still not well understood. This review summarizes the current knowledge of (a) CoA subcellular concentrations; (b) the roles of CoA synthesis and degradation processes; and (c) protein modification by reversible CoA binding to proteins (CoAlation). Particular attention is paid to (a) the roles of changes in the level of CoA under pathological conditions, such as in neurodegenerative diseases, cancer, myopathies, and infectious diseases; and (b) the beneficial effect of CoA and pantethine (which like CoA is finally converted to Pan and cysteamine), used at pharmacological doses for the treatment of hyperlipidemia.
Collapse
Affiliation(s)
- Aleksandra Czumaj
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, 80-211 Gdańsk, Poland;
| | - Sylwia Szrok-Jurga
- Department of Biochemistry, Faculty of Medicine, Medical University of Gdansk, 80-211 Gdansk, Poland; (S.S.-J.); (A.H.); (J.T.)
| | - Areta Hebanowska
- Department of Biochemistry, Faculty of Medicine, Medical University of Gdansk, 80-211 Gdansk, Poland; (S.S.-J.); (A.H.); (J.T.)
| | - Jacek Turyn
- Department of Biochemistry, Faculty of Medicine, Medical University of Gdansk, 80-211 Gdansk, Poland; (S.S.-J.); (A.H.); (J.T.)
| | - Julian Swierczynski
- State School of Higher Vocational Education in Koszalin, 75-582 Koszalin, Poland;
| | - Tomasz Sledzinski
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, 80-211 Gdańsk, Poland;
- Correspondence: (T.S.); (E.S.); Tel.: +48-(0)-583-491-479 (T.S.)
| | - Ewa Stelmanska
- Department of Biochemistry, Faculty of Medicine, Medical University of Gdansk, 80-211 Gdansk, Poland; (S.S.-J.); (A.H.); (J.T.)
- Correspondence: (T.S.); (E.S.); Tel.: +48-(0)-583-491-479 (T.S.)
| |
Collapse
|
22
|
van Roermund CWT, IJlst L, Baker A, Wanders RJA, Theodoulou FL, Waterham HR. The Saccharomyces cerevisiae ABC subfamily D transporter Pxa1/Pxa2p co-imports CoASH into the peroxisome. FEBS Lett 2020; 595:763-772. [PMID: 33112423 DOI: 10.1002/1873-3468.13974] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 09/16/2020] [Accepted: 10/15/2020] [Indexed: 12/11/2022]
Abstract
ATP-binding cassette (ABC) subfamily D transporters are important for the uptake of fatty acids and other beta-oxidation substrates into peroxisomes. Genetic and biochemical evidence indicates that the transporters accept fatty acyl-coenzyme A that is cleaved during the transport cycle and then re-esterified in the peroxisomal lumen. However, it is not known whether free coenzyme A (CoA) is released inside or outside the peroxisome. Here we have used Saccharomyces cerevisiae and isolated peroxisomes to demonstrate that free CoA is released in the peroxisomal lumen. Thus, ABC subfamily D transporter provide an import pathway for free CoA that controls peroxisomal CoA homeostasis and tunes metabolism according to the cell's demands.
Collapse
Affiliation(s)
- Carlo W T van Roermund
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology & Metabolism, Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Lodewijk IJlst
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology & Metabolism, Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Alison Baker
- Centre for Plant Sciences, School of Molecular and Cellular Biology, University of Leeds, UK
| | - Ronald J A Wanders
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology & Metabolism, Amsterdam UMC, University of Amsterdam, the Netherlands
| | | | - Hans R Waterham
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology & Metabolism, Amsterdam UMC, University of Amsterdam, the Netherlands
| |
Collapse
|
23
|
Rose J, Brian C, Pappa A, Panayiotidis MI, Franco R. Mitochondrial Metabolism in Astrocytes Regulates Brain Bioenergetics, Neurotransmission and Redox Balance. Front Neurosci 2020; 14:536682. [PMID: 33224019 PMCID: PMC7674659 DOI: 10.3389/fnins.2020.536682] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 10/14/2020] [Indexed: 01/17/2023] Open
Abstract
In the brain, mitochondrial metabolism has been largely associated with energy production, and its dysfunction is linked to neuronal cell loss. However, the functional role of mitochondria in glial cells has been poorly studied. Recent reports have demonstrated unequivocally that astrocytes do not require mitochondria to meet their bioenergetics demands. Then, the question remaining is, what is the functional role of mitochondria in astrocytes? In this work, we review current evidence demonstrating that mitochondrial central carbon metabolism in astrocytes regulates overall brain bioenergetics, neurotransmitter homeostasis and redox balance. Emphasis is placed in detailing carbon source utilization (glucose and fatty acids), anaplerotic inputs and cataplerotic outputs, as well as carbon shuttles to neurons, which highlight the metabolic specialization of astrocytic mitochondria and its relevance to brain function.
Collapse
Affiliation(s)
- Jordan Rose
- Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE, United States.,School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Christian Brian
- Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE, United States.,School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Aglaia Pappa
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Mihalis I Panayiotidis
- Department of Electron Microscopy & Molecular Pathology, Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | - Rodrigo Franco
- Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE, United States.,School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States
| |
Collapse
|
24
|
Zhang R, He J, Dong Z, Liu G, Yin Y, Zhang X, Li Q, Ren Y, Yang Y, Liu W, Chen X, Xia W, Duan K, Hao F, Lin Z, Yang J, Chang Z, Zhao R, Wan W, Lu S, Peng Y, Ge S, Wang W, Li X. Genomic and experimental data provide new insights into luciferin biosynthesis and bioluminescence evolution in fireflies. Sci Rep 2020; 10:15882. [PMID: 32985577 PMCID: PMC7522259 DOI: 10.1038/s41598-020-72900-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 09/09/2020] [Indexed: 02/08/2023] Open
Abstract
Fireflies are among the most charismatic insects for their spectacular bioluminescence, but the origin and evolution of bioluminescence remain elusive. Especially, the genic basis of luciferin (D-luciferin) biosynthesis and light patterns is largely unknown. Here, we present the high-quality reference genomes of two fireflies Lamprigera yunnana (1053 Mb) and Abscondita terminalis (501 Mb) with great differences in both morphology and luminous behavior. We sequenced the transcriptomes and proteomes of luminous organs of two species. We created the CRISPR/Cas9-induced mutants of Abdominal B gene without luminous organs in the larvae of A. terminalis and sequenced the transcriptomes of mutants and wild-types. Combining gene expression analyses with comparative genomics, we propose a more complete luciferin synthesis pathway, and confirm the convergent evolution of bioluminescence in insects. Using experiments, the function of the firefly acyl-CoA thioesterase (ACOT1) to convert L-luciferin to D-luciferin was validated for the first time. Comparisons of three-dimension reconstruction of luminous organs and their differentially expressed genes among two species suggest that two positive genes in the calcium signaling pathway and structural difference of luminous organs may play an important role in the evolution of flash pattern. Altogether, our results provide important resources for further exploring bioluminescence in insects.
Collapse
Affiliation(s)
- Ru Zhang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
| | - Jinwu He
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
| | - Zhiwei Dong
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
| | - Guichun Liu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
| | - Yuan Yin
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
| | - Xinying Zhang
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Qi Li
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
| | - Yandong Ren
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
| | - Yongzhi Yang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
| | - Wei Liu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
| | - Xianqing Chen
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
| | - Wenhao Xia
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
| | - Kang Duan
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
| | - Fei Hao
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
| | - Zeshan Lin
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
| | - Jie Yang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
| | - Zhou Chang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
| | - Ruoping Zhao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
| | - Wenting Wan
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
| | - Sihan Lu
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
| | - Yanqiong Peng
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, 666303, Yunnan, China
| | - Siqin Ge
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
| | - Wen Wang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China.
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China.
- Center for Excellence in Animal Evolution and Genetics, Kunming, 650223, Yunnan, China.
| | - Xueyan Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China.
| |
Collapse
|
25
|
Peroxisomal Cofactor Transport. Biomolecules 2020; 10:biom10081174. [PMID: 32806597 PMCID: PMC7463629 DOI: 10.3390/biom10081174] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 12/20/2022] Open
Abstract
Peroxisomes are eukaryotic organelles that are essential for growth and development. They are highly metabolically active and house many biochemical reactions, including lipid metabolism and synthesis of signaling molecules. Most of these metabolic pathways are shared with other compartments, such as Endoplasmic reticulum (ER), mitochondria, and plastids. Peroxisomes, in common with all other cellular organelles are dependent on a wide range of cofactors, such as adenosine 5′-triphosphate (ATP), Coenzyme A (CoA), and nicotinamide adenine dinucleotide (NAD). The availability of the peroxisomal cofactor pool controls peroxisome function. The levels of these cofactors available for peroxisomal metabolism is determined by the balance between synthesis, import, export, binding, and degradation. Since the final steps of cofactor synthesis are thought to be located in the cytosol, cofactors must be imported into peroxisomes. This review gives an overview about our current knowledge of the permeability of the peroxisomal membrane with the focus on ATP, CoA, and NAD. Several members of the mitochondrial carrier family are located in peroxisomes, catalyzing the transfer of these organic cofactors across the peroxisomal membrane. Most of the functions of these peroxisomal cofactor transporters are known from studies in yeast, humans, and plants. Parallels and differences between the transporters in the different organisms are discussed here.
Collapse
|
26
|
Trefely S, Lovell CD, Snyder NW, Wellen KE. Compartmentalised acyl-CoA metabolism and roles in chromatin regulation. Mol Metab 2020; 38:100941. [PMID: 32199817 PMCID: PMC7300382 DOI: 10.1016/j.molmet.2020.01.005] [Citation(s) in RCA: 140] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/03/2020] [Accepted: 01/07/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Many metabolites serve as important signalling molecules to adjust cellular activities and functions based on nutrient availability. Links between acetyl-CoA metabolism, histone lysine acetylation, and gene expression have been documented and studied over the past decade. In recent years, several additional acyl modifications to histone lysine residues have been identified, which depend on acyl-coenzyme A thioesters (acyl-CoAs) as acyl donors. Acyl-CoAs are intermediates of multiple distinct metabolic pathways, and substantial evidence has emerged that histone acylation is metabolically sensitive. Nevertheless, the metabolic sources of acyl-CoAs used for chromatin modification in most cases remain poorly understood. Elucidating how these diverse chemical modifications are coupled to and regulated by cellular metabolism is important in deciphering their functional significance. SCOPE OF REVIEW In this article, we review the metabolic pathways that produce acyl-CoAs, as well as emerging evidence for functional roles of diverse acyl-CoAs in chromatin regulation. Because acetyl-CoA has been extensively reviewed elsewhere, we will focus on four other acyl-CoA metabolites integral to major metabolic pathways that are also known to modify histones: succinyl-CoA, propionyl-CoA, crotonoyl-CoA, and butyryl-CoA. We also briefly mention several other acyl-CoA species, which present opportunities for further research; malonyl-CoA, glutaryl-CoA, 3-hydroxybutyryl-CoA, 2-hydroxyisobutyryl-CoA, and lactyl-CoA. Each acyl-CoA species has distinct roles in metabolism, indicating the potential to report shifts in the metabolic status of the cell. For each metabolite, we consider the metabolic pathways in which it participates and the nutrient sources from which it is derived, the compartmentalisation of its metabolism, and the factors reported to influence its abundance and potential nuclear availability. We also highlight reported biological functions of these metabolically-linked acylation marks. Finally, we aim to illuminate key questions in acyl-CoA metabolism as they relate to the control of chromatin modification. MAJOR CONCLUSIONS A majority of acyl-CoA species are annotated to mitochondrial metabolic processes. Since acyl-CoAs are not known to be directly transported across mitochondrial membranes, they must be synthesized outside of mitochondria and potentially within the nucleus to participate in chromatin regulation. Thus, subcellular metabolic compartmentalisation likely plays a key role in the regulation of histone acylation. Metabolite tracing in combination with targeting of relevant enzymes and transporters will help to map the metabolic pathways that connect acyl-CoA metabolism to chromatin modification. The specific function of each acyl-CoA may be determined in part by biochemical properties that affect its propensity for enzymatic versus non-enzymatic protein modification, as well as the various enzymes that can add, remove and bind each modification. Further, competitive and inhibitory effects of different acyl-CoA species on these enzymes make determining the relative abundance of acyl-CoA species in specific contexts important to understand the regulation of chromatin acylation. An improved and more nuanced understanding of metabolic regulation of chromatin and its roles in physiological and disease-related processes will emerge as these questions are answered.
Collapse
Affiliation(s)
- Sophie Trefely
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Metabolic Disease Research, Department of Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Claudia D Lovell
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nathaniel W Snyder
- Center for Metabolic Disease Research, Department of Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA.
| | - Kathryn E Wellen
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
27
|
Kulikova VA, Nikiforov AA. Role of NUDIX Hydrolases in NAD and ADP-Ribose Metabolism in Mammals. BIOCHEMISTRY. BIOKHIMIIA 2020; 85:883-894. [PMID: 33045949 DOI: 10.1134/s0006297920080040] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/21/2020] [Accepted: 06/22/2020] [Indexed: 12/20/2022]
Abstract
Proteins of the NUDIX hydrolase (NUDT) superfamily that cleave organic pyrophosphates are found in all classes of organisms, from archaea and bacteria to higher eukaryotes. In mammals, NUDTs exhibit a wide range of functions and are characterized by different substrate specificity and intracellular localization. They control the concentration of various metabolites in the cell, including key regulatory molecules such as nicotinamide adenine dinucleotide (NAD), ADP-ribose, and their derivatives. In this review, we discuss the role of NUDT proteins in the metabolism of NAD and ADP-ribose in human and animal cells.
Collapse
Affiliation(s)
- V A Kulikova
- Peter the Great St. Petersburg Polytechnic University, Saint Petersburg, 195251, Russia.
- Institute of Cytology, Russian Academy of Sciences, Saint Petersburg, 194064, Russia
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Saint Petersburg, 194223, Russia
| | - A A Nikiforov
- Institute of Cytology, Russian Academy of Sciences, Saint Petersburg, 194064, Russia
| |
Collapse
|
28
|
Chen C, Li J, Qin X, Wang W. Peroxisomal Membrane Contact Sites in Mammalian Cells. Front Cell Dev Biol 2020; 8:512. [PMID: 32714927 PMCID: PMC7344225 DOI: 10.3389/fcell.2020.00512] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 05/28/2020] [Indexed: 12/11/2022] Open
Abstract
Peroxisomes participate in essential cellular metabolic processes, such as oxidation of fatty acids (FAs) and maintenance of reactive oxygen species (ROS) homeostasis. Peroxisomes must communicate with surrounding organelles to exchange information and metabolites. The formation of membrane contact sites (MCSs), where protein-protein or protein-lipid complexes tether the opposing membranes of two organelles, represents an essential means of organelle crosstalk. Peroxisomal MCS (PO-MCS) studies are emerging but are still in the early stages. In this review, we summarize the identified PO-MCSs with the ER, mitochondria, lipid droplets, and lysosomes in mammalian cells and discuss their tethering mechanisms and physiological roles. We also highlight several features of PO-MCSs that may help future studies.
Collapse
Affiliation(s)
- Chao Chen
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Li
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuhui Qin
- Department of Human Anatomy, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Wang
- Department of Human Anatomy, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
29
|
Chalermwat C, Thosapornvichai T, Wongkittichote P, Phillips JD, Cox JE, Jensen AN, Wattanasirichaigoon D, Jensen LT. Overexpression of the peroxin Pex34p suppresses impaired acetate utilization in yeast lacking the mitochondrial aspartate/glutamate carrier Agc1p. FEMS Yeast Res 2020; 19:5621492. [PMID: 31711143 DOI: 10.1093/femsyr/foz078] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 11/10/2019] [Indexed: 12/19/2022] Open
Abstract
PEX34, encoding a peroxisomal protein implicated in regulating peroxisome numbers, was identified as a high copy suppressor, capable of bypassing impaired acetate utilization of agc1∆ yeast. However, improved growth of agc1∆ yeast on acetate is not mediated through peroxisome proliferation. Instead, stress to the endoplasmic reticulum and mitochondria from PEX34 overexpression appears to contribute to enhanced acetate utilization of agc1∆ yeast. The citrate/2-oxoglutarate carrier Yhm2p is required for PEX34 stimulated growth of agc1∆ yeast on acetate medium, suggesting that the suppressor effect is mediated through increased activity of a redox shuttle involving mitochondrial citrate export. Metabolomic analysis also revealed redirection of acetyl-coenzyme A (CoA) from synthetic reactions for amino acids in PEX34 overexpressing yeast. We propose a model in which increased formation of products from the glyoxylate shunt, together with enhanced utilization of acetyl-CoA, promotes the activity of an alternative mitochondrial redox shuttle, partially substituting for loss of yeast AGC1.
Collapse
Affiliation(s)
- Chalongchai Chalermwat
- Graduate Program in Molecular Medicine, Faculty of Science, Mahidol University, 272 Rama 6 Road, Ratchathewi, Bangkok 10400 Thailand
| | - Thitipa Thosapornvichai
- Department of Biochemistry, Faculty of Science, Mahidol University, 272 Rama 6 Road, Ratchathewi, Bangkok 10400 Thailand
| | - Parith Wongkittichote
- Department of Pediatrics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, 270 Rama 6 Road, Ratchathewi, Bangkok 10400, Thailand.,Department of Pediatrics, St. Louis Children's Hospital, Washington University School of Medicine, 1 Brookings Drive, St. Louis, MO 63130, USA
| | - John D Phillips
- Department of Internal Medicine, Division of Hematology, University of Utah, 30 N 1900 E, Salt Lake City, UT 84132, USA
| | - James E Cox
- Metabolomics Core Research Facility, University of Utah, 15 N Medical Drive East, Salt Lake City, UT 84112, USA.,Department of Biochemistry, University of Utah, 15 N Medical Drive East, Salt Lake City, UT 84112, USA
| | - Amornrat N Jensen
- Department of Pathobiology, Faculty of Science, Mahidol University, 272 Rama 6 Road, Ratchathewi, Bangkok 10400, Thailand
| | - Duangrurdee Wattanasirichaigoon
- Department of Pediatrics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, 270 Rama 6 Road, Ratchathewi, Bangkok 10400, Thailand
| | - Laran T Jensen
- Department of Biochemistry, Faculty of Science, Mahidol University, 272 Rama 6 Road, Ratchathewi, Bangkok 10400 Thailand
| |
Collapse
|
30
|
Martín JF. Transport systems, intracellular traffic of intermediates and secretion of β-lactam antibiotics in fungi. Fungal Biol Biotechnol 2020; 7:6. [PMID: 32351700 PMCID: PMC7183595 DOI: 10.1186/s40694-020-00096-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 04/10/2020] [Indexed: 02/07/2023] Open
Abstract
Fungal secondary metabolites are synthesized by complex biosynthetic pathways catalized by enzymes located in different subcellular compartments, thus requiring traffic of precursors and intermediates between them. The β-lactam antibiotics penicillin and cephalosporin C serve as an excellent model to understand the molecular mechanisms that control the subcellular localization of secondary metabolites biosynthetic enzymes. Optimal functioning of the β-lactam biosynthetic enzymes relies on a sophisticated temporal and spatial organization of the enzymes, the intermediates and the final products. The first and second enzymes of the penicillin pathway, ACV synthetase and IPN synthase, in Penicillium chrysogenum and Aspergillus nidulans are cytosolic. In contrast, the last two enzymes of the penicillin pathway, phenylacetyl-CoA ligase and isopenicillin N acyltransferase, are located in peroxisomes working as a tandem at their optimal pH that coincides with the peroxisomes pH. Two MFS transporters, PenM and PaaT have been found to be involved in the import of the intermediates isopenicillin N and phenylacetic acid, respectively, into peroxisomes. Similar compartmentalization of intermediates occurs in Acremonium chrysogenum; two enzymes isopenicillin N-CoA ligase and isopenicillin N-CoA epimerase, that catalyse the conversion of isopenicillin N in penicillin N, are located in peroxisomes. Two genes encoding MFS transporters, cefP and cefM, are located in the early cephalosporin gene cluster. These transporters have been localized in peroxisomes by confocal fluorescence microscopy. A third gene of A. chrysogenum, cefT, encodes an MFS protein, located in the cell membrane involved in the secretion of cephalosporin C, although cefT-disrupted mutants are still able to export cephalosporin by redundant transporters. The secretion of penicillin from peroxisomes to the extracellular medium is still unclear. Attempts have been made to identify a gene encoding the penicillin secretion protein among the 48 ABC-transporters of P. chrysogenum. The highly efficient secretion system that exports penicillin against a concentration gradient may involve active penicillin extrusion systems mediated by vesicles that fuse to the cell membrane. However, there is no correlation of pexophagy with penicillin or cephalosporin formation since inactivation of pexophagy leads to increased penicillin or cephalosporin biosynthesis due to preservation of peroxisomes. The penicillin biosynthesis finding shows that in order to increase biosynthesis of novel secondary metabolites it is essential to adequately target enzymes to organelles.
Collapse
Affiliation(s)
- Juan F Martín
- Área de Microbiología, Departamento de Biología Molecular, Universidad de León, León, Spain
| |
Collapse
|
31
|
Kataya ARA, Elshobaky A, Heidari B, Dugassa NF, Thelen JJ, Lillo C. Multi-targeted trehalose-6-phosphate phosphatase I harbors a novel peroxisomal targeting signal 1 and is essential for flowering and development. PLANTA 2020; 251:98. [PMID: 32306103 PMCID: PMC7214503 DOI: 10.1007/s00425-020-03389-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 04/10/2020] [Indexed: 05/13/2023]
Abstract
This work reveals information about new peroxisomal targeting signals type 1 and identifies trehalose-6-phosphate phosphatase I as multitargeted and is implicated in plant development, reproduction, and stress response. A putative, non-canonical peroxisomal targeting signal type 1 (PTS1) Pro-Arg-Met > was identified in the extreme C-terminus of trehalose-6-phosphate phosphatase (TPP)I. TPP catalyzes the final step of trehalose synthesis, and the enzyme was previously characterized to be nuclear only (Krasensky et al. in Antioxid Redox Signal 21(9):1289-1304, 2014). Here we show that the TPPI C-terminal decapeptide ending with Pro-Arg-Met > or Pro-Lys-Met > can indeed function as a PTS1. Upon transient expression in two plant expression systems, the free C- or N-terminal end led to the full-length TPPI targeting to peroxisomes and plastids, respectively. The nucleus and nucleolus targeting of the full-length TPPI was observed in both cases. The homozygous T-DNA insertion line of TPPI showed a pleiotropic phenotype including smaller leaves, shorter roots, delayed flowering, hypersensitivity to salt, and a sucrose dependent seedling development. Our results identify novel PTS1s, and TPPI as a protein multi-targeted to peroxisomes, plastids, nucleus, and nucleolus. Altogether our findings implicate an essential role for TPPI in development, reproduction, and cell signaling.
Collapse
Affiliation(s)
- Amr R A Kataya
- Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, 4036, Stavanger, Norway.
- Department of Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA.
| | - Ahmed Elshobaky
- Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, 4036, Stavanger, Norway
- Botany Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Behzad Heidari
- Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, 4036, Stavanger, Norway
- Department of Plant Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Nemie-Feyissa Dugassa
- Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, 4036, Stavanger, Norway
| | - Jay J Thelen
- Department of Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Cathrine Lillo
- Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, 4036, Stavanger, Norway
| |
Collapse
|
32
|
Naquet P, Kerr EW, Vickers SD, Leonardi R. Regulation of coenzyme A levels by degradation: the 'Ins and Outs'. Prog Lipid Res 2020; 78:101028. [PMID: 32234503 DOI: 10.1016/j.plipres.2020.101028] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/09/2020] [Accepted: 02/22/2020] [Indexed: 02/06/2023]
Abstract
Coenzyme A (CoA) is the predominant acyl carrier in mammalian cells and a cofactor that plays a key role in energy and lipid metabolism. CoA and its thioesters (acyl-CoAs) regulate a multitude of metabolic processes at different levels: as substrates, allosteric modulators, and via post-translational modification of histones and other non-histone proteins. Evidence is emerging that synthesis and degradation of CoA are regulated in a manner that enables metabolic flexibility in different subcellular compartments. Degradation of CoA occurs through distinct intra- and extracellular pathways that rely on the activity of specific hydrolases. The pantetheinase enzymes specifically hydrolyze pantetheine to cysteamine and pantothenate, the last step in the extracellular degradation pathway for CoA. This reaction releases pantothenate in the bloodstream, making this CoA precursor available for cellular uptake and de novo CoA synthesis. Intracellular degradation of CoA depends on specific mitochondrial and peroxisomal Nudix hydrolases. These enzymes are also active against a subset of acyl-CoAs and play a key role in the regulation of subcellular (acyl-)CoA pools and CoA-dependent metabolic reactions. The evidence currently available indicates that the extracellular and intracellular (acyl-)CoA degradation pathways are regulated in a coordinated and opposite manner by the nutritional state and maximize the changes in the total intracellular CoA levels that support the metabolic switch between fed and fasted states in organs like the liver. The objective of this review is to update the contribution of these pathways to the regulation of metabolism, physiology and pathology and to highlight the many questions that remain open.
Collapse
Affiliation(s)
- Philippe Naquet
- Aix Marseille Univ, INSERM, CNRS, Centre d'Immunologie de Marseille-Luminy, Marseille, France.
| | - Evan W Kerr
- Department of Biochemistry, West Virginia University, Morgantown, West Virginia 26506, United States of America
| | - Schuyler D Vickers
- Department of Biochemistry, West Virginia University, Morgantown, West Virginia 26506, United States of America
| | - Roberta Leonardi
- Department of Biochemistry, West Virginia University, Morgantown, West Virginia 26506, United States of America.
| |
Collapse
|
33
|
Houten SM, Wanders RJA, Ranea-Robles P. Metabolic interactions between peroxisomes and mitochondria with a special focus on acylcarnitine metabolism. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165720. [PMID: 32057943 DOI: 10.1016/j.bbadis.2020.165720] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/03/2020] [Accepted: 02/05/2020] [Indexed: 12/13/2022]
Abstract
Carnitine plays an essential role in mitochondrial fatty acid β-oxidation as a part of a cycle that transfers long-chain fatty acids across the mitochondrial membrane and involves two carnitine palmitoyltransferases (CPT1 and CPT2). Two distinct carnitine acyltransferases, carnitine octanoyltransferase (COT) and carnitine acetyltransferase (CAT), are peroxisomal enzymes, which indicates that carnitine is not only important for mitochondrial, but also for peroxisomal metabolism. It has been demonstrated that after peroxisomal metabolism, specific intermediates can be exported as acylcarnitines for subsequent and final mitochondrial metabolism. There is also evidence that peroxisomes are able to degrade fatty acids that are typically handled by mitochondria possibly after transport as acylcarnitines. Here we review the biochemistry and physiological functions of metabolite exchange between peroxisomes and mitochondria with a special focus on acylcarnitines.
Collapse
Affiliation(s)
- Sander M Houten
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, Box 1498, New York, NY 10029, USA.
| | - Ronald J A Wanders
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Department of Clinical Chemistry, Amsterdam Gastroenterology & Metabolism, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Pablo Ranea-Robles
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, Box 1498, New York, NY 10029, USA
| |
Collapse
|
34
|
Quiñones W, Acosta H, Gonçalves CS, Motta MCM, Gualdrón-López M, Michels PAM. Structure, Properties, and Function of Glycosomes in Trypanosoma cruzi. Front Cell Infect Microbiol 2020; 10:25. [PMID: 32083023 PMCID: PMC7005584 DOI: 10.3389/fcimb.2020.00025] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 01/15/2020] [Indexed: 12/29/2022] Open
Abstract
Glycosomes are peroxisome-related organelles that have been identified in kinetoplastids and diplonemids. The hallmark of glycosomes is their harboring of the majority of the glycolytic enzymes. Our biochemical studies and proteome analysis of Trypanosoma cruzi glycosomes have located, in addition to enzymes of the glycolytic pathway, enzymes of several other metabolic processes in the organelles. These analyses revealed many aspects in common with glycosomes from other trypanosomatids as well as features that seem specific for T. cruzi. Their enzyme content indicates that T. cruzi glycosomes are multifunctional organelles, involved in both several catabolic processes such as glycolysis and anabolic ones. Specifically discussed in this minireview are the cross-talk between glycosomal metabolism and metabolic processes occurring in other cell compartments, and the importance of metabolite translocation systems in the glycosomal membrane to enable the coordination between the spatially separated processes. Possible mechanisms for metabolite translocation across the membrane are suggested by proteins identified in the organelle's membrane-homologs of the ABC and MCF transporter families-and the presence of channels as inferred previously from the detection of channel-forming proteins in glycosomal membrane preparations from the related parasite T. brucei. Together, these data provide insight in the way in which different parts of T. cruzi metabolism, although uniquely distributed over different compartments, are integrated and regulated. Moreover, this information reveals opportunities for the development of drugs against Chagas disease caused by these parasites and for which currently no adequate treatment is available.
Collapse
Affiliation(s)
- Wilfredo Quiñones
- Laboratorio de Enzimología de Parásitos, Facultad de Ciencias, Universidad de Los Andes, Mérida, Venezuela
| | - Héctor Acosta
- Laboratorio de Enzimología de Parásitos, Facultad de Ciencias, Universidad de Los Andes, Mérida, Venezuela
| | - Camila Silva Gonçalves
- Laboratório de Ultraestrutura Celular Hertha Meyer, Centro de Ciências da Saúde, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maria Cristina M Motta
- Laboratório de Ultraestrutura Celular Hertha Meyer, Centro de Ciências da Saúde, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Melisa Gualdrón-López
- Instituto Salud Global, Hospital Clinic-Universitat de Barcelona, and Institute for Health Sciences Trias i Pujol, Barcelona, Spain
| | - Paul A M Michels
- Centre for Immunity, Infection and Evolution and Centre for Translational and Chemical Biology, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
35
|
Liu GS, Li T, Zhou W, Jiang M, Tao XY, Liu M, Zhao M, Ren YH, Gao B, Wang FQ, Wei DZ. The yeast peroxisome: A dynamic storage depot and subcellular factory for squalene overproduction. Metab Eng 2020; 57:151-161. [DOI: 10.1016/j.ymben.2019.11.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/19/2019] [Accepted: 11/05/2019] [Indexed: 02/06/2023]
|
36
|
Acosta H, Quiñones W. Isolation of Glycosomes from Trypanosoma cruzi. Methods Mol Biol 2020; 2116:627-643. [PMID: 32221946 DOI: 10.1007/978-1-0716-0294-2_37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
Glycosomes are peroxisome-related organelles of trypanosomatids in which the glycolytic and some other metabolic pathways are compartmentalized. We describe here two methods for the purification of glycosomes from Trypanosoma cruzi for preparative purposes, differential and isopycnic centrifugation. These are two techniques that allow the separation of different cellular compartments based on their different physicochemical characteristics. The first type of centrifugation is a rapid method that does not require large inputs and allows for fractions enriched in specific cell compartments to be obtained. The second type of centrifugation is a more elaborate method, but enables highly purified cellular compartments to be isolated. The success in obtaining these purified, intact organelles critically depends on using an appropriate method for controlled rupture of the cells.
Collapse
Affiliation(s)
- Héctor Acosta
- Laboratorio de Enzimología de Parásitos, Facultad de Ciencias, Universidad de Los Andes, Mérida, Venezuela
| | - Wilfredo Quiñones
- Laboratorio de Enzimología de Parásitos, Facultad de Ciencias, Universidad de Los Andes, Mérida, Venezuela.
| |
Collapse
|
37
|
Singh R, Manivannan S, Krikken AM, de Boer R, Bordin N, Devos DP, van der Klei IJ. Hansenula polymorpha Pex37 is a peroxisomal membrane protein required for organelle fission and segregation. FEBS J 2019; 287:1742-1757. [PMID: 31692262 PMCID: PMC7318627 DOI: 10.1111/febs.15123] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 08/29/2019] [Accepted: 11/04/2019] [Indexed: 11/30/2022]
Abstract
Here, we describe a novel peroxin, Pex37, in the yeast Hansenula polymorpha. H. polymorpha Pex37 is a peroxisomal membrane protein, which belongs to a protein family that includes, among others, the Neurospora crassa Woronin body protein Wsc, the human peroxisomal membrane protein PXMP2, the Saccharomyces cerevisiae mitochondrial inner membrane protein Sym1, and its mammalian homologue MPV17. We show that deletion of H. polymorpha PEX37 does not appear to have a significant effect on peroxisome biogenesis or proliferation in cells grown at peroxisome‐inducing growth conditions (methanol). However, the absence of Pex37 results in a reduction in peroxisome numbers and a defect in peroxisome segregation in cells grown at peroxisome‐repressing conditions (glucose). Conversely, overproduction of Pex37 in glucose‐grown cells results in an increase in peroxisome numbers in conjunction with a decrease in their size. The increase in numbers in PEX37‐overexpressing cells depends on the dynamin‐related protein Dnm1. Together our data suggest that Pex37 is involved in peroxisome fission in glucose‐grown cells. Introduction of human PXMP2 in H. polymorpha pex37 cells partially restored the peroxisomal phenotype, indicating that PXMP2 represents a functional homologue of Pex37. H.polymorpha pex37 cells did not show aberrant growth on any of the tested carbon and nitrogen sources that are metabolized by peroxisomal enzymes, suggesting that Pex37 may not fulfill an essential function in transport of these substrates or compounds required for their metabolism across the peroxisomal membrane.
Collapse
Affiliation(s)
- Ritika Singh
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, the Netherlands
| | - Selvambigai Manivannan
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, the Netherlands
| | - Arjen M Krikken
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, the Netherlands
| | - Rinse de Boer
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, the Netherlands
| | - Nicola Bordin
- Centro Andaluz de Biología del Desarrollo, CSIC, Universidad Pablo de Olavide, Seville, Spain.,Structural and Molecular Biology, University College London, UK
| | - Damien P Devos
- Centro Andaluz de Biología del Desarrollo, CSIC, Universidad Pablo de Olavide, Seville, Spain
| | - Ida J van der Klei
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, the Netherlands
| |
Collapse
|
38
|
Artificial cells containing sustainable energy conversion engines. Emerg Top Life Sci 2019; 3:573-578. [DOI: 10.1042/etls20190103] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 10/09/2019] [Accepted: 10/10/2019] [Indexed: 11/17/2022]
Abstract
Living cells naturally maintain a variety of metabolic reactions via energy conversion mechanisms that are coupled to proton transfer across cell membranes, thereby producing energy-rich compounds. Until now, researchers have been unable to maintain continuous biochemical reactions in artificially engineered cells, mainly due to the lack of mechanisms that generate energy-rich resources, such as adenosine triphosphate (ATP) and reduced nicotinamide adenine dinucleotide (NADH). If these metabolic activities in artificial cells are to be sustained, reliable energy transduction strategies must be realized. In this perspective, this article discusses the development of an artificially engineered cell containing a sustainable energy conversion process.
Collapse
|
39
|
Vamecq J, Papegay B, Nuyens V, Boogaerts J, Leo O, Kruys V. Mitochondrial dysfunction, AMPK activation and peroxisomal metabolism: A coherent scenario for non-canonical 3-methylglutaconic acidurias. Biochimie 2019; 168:53-82. [PMID: 31626852 DOI: 10.1016/j.biochi.2019.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 10/10/2019] [Indexed: 12/13/2022]
Abstract
The occurrence of 3-methylglutaconic aciduria (3-MGA) is a well understood phenomenon in leucine oxidation and ketogenesis disorders (primary 3-MGAs). In contrast, its genesis in non-canonical (secondary) 3-MGAs, a growing-up group of disorders encompassing more than a dozen of inherited metabolic diseases, is a mystery still remaining unresolved for three decades. To puzzle out this anthologic problem of metabolism, three clues were considered: (i) the variety of disorders suggests a common cellular target at the cross-road of metabolic and signaling pathways, (ii) the response to leucine loading test only discriminative for primary but not secondary 3-MGAs suggests these latter are disorders of extramitochondrial HMG-CoA metabolism as also attested by their failure to increase 3-hydroxyisovalerate, a mitochondrial metabolite accumulating only in primary 3-MGAs, (iii) the peroxisome is an extramitochondrial site possessing its own pool and displaying metabolism of HMG-CoA, suggesting its possible involvement in producing extramitochondrial 3-methylglutaconate (3-MG). Following these clues provides a unifying common basis to non-canonical 3-MGAs: constitutive mitochondrial dysfunction induces AMPK activation which, by inhibiting early steps in cholesterol and fatty acid syntheses, pipelines cytoplasmic acetyl-CoA to peroxisomes where a rise in HMG-CoA followed by local dehydration and hydrolysis may lead to 3-MGA yield. Additional contributors are considered, notably for 3-MGAs associated with hyperammonemia, and to a lesser extent in CLPB deficiency. Metabolic and signaling itineraries followed by the proposed scenario are essentially sketched, being provided with compelling evidence from the literature coming in their support.
Collapse
Affiliation(s)
- Joseph Vamecq
- Inserm, CHU Lille, Univ Lille, Department of Biochemistry and Molecular Biology, Laboratory of Hormonology, Metabolism-Nutrition & Oncology (HMNO), Center of Biology and Pathology (CBP) Pierre-Marie Degand, CHRU Lille, EA 7364 RADEME, University of North France, Lille, France.
| | - Bérengère Papegay
- Laboratory of Experimental Medicine (ULB unit 222), University Hospital Center, Charleroi, (CHU Charleroi), Belgium
| | - Vincent Nuyens
- Laboratory of Experimental Medicine (ULB unit 222), University Hospital Center, Charleroi, (CHU Charleroi), Belgium
| | - Jean Boogaerts
- Laboratory of Experimental Medicine (ULB unit 222), University Hospital Center, Charleroi, (CHU Charleroi), Belgium
| | - Oberdan Leo
- Laboratory of Immunobiology, Department of Molecular Biology, ULB Immunology Research Center (UIRC), Free University of Brussels (ULB), Gosselies, Belgium
| | - Véronique Kruys
- Laboratory of Molecular Biology of the Gene, Department of Molecular Biology, ULB Immunology Research Center (UIRC), Free University of Brussels (ULB), Gosselies, Belgium
| |
Collapse
|
40
|
Lismont C, Koster J, Provost S, Baes M, Van Veldhoven PP, Waterham HR, Fransen M. Deciphering the potential involvement of PXMP2 and PEX11B in hydrogen peroxide permeation across the peroxisomal membrane reveals a role for PEX11B in protein sorting. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:182991. [DOI: 10.1016/j.bbamem.2019.05.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 05/09/2019] [Accepted: 05/21/2019] [Indexed: 02/07/2023]
|
41
|
Salic K, Gart E, Seidel F, Verschuren L, Caspers M, van Duyvenvoorde W, Wong KE, Keijer J, Bobeldijk-Pastorova I, Wielinga PY, Kleemann R. Combined Treatment with L-Carnitine and Nicotinamide Riboside Improves Hepatic Metabolism and Attenuates Obesity and Liver Steatosis. Int J Mol Sci 2019; 20:E4359. [PMID: 31491949 PMCID: PMC6770226 DOI: 10.3390/ijms20184359] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 08/24/2019] [Accepted: 08/28/2019] [Indexed: 01/02/2023] Open
Abstract
Obesity characterized by adiposity and ectopic fat accumulation is associated with the development of non-alcoholic fatty liver disease (NAFLD). Treatments that stimulate lipid utilization may prevent the development of obesity and comorbidities. This study evaluated the potential anti-obesogenic hepatoprotective effects of combined treatment with L-carnitine and nicotinamide riboside, i.e., components that can enhance fatty acid transfer across the inner mitochondrial membrane and increase nicotinamide adenine nucleotide (NAD+) levels, which are necessary for β-oxidation and the TCA cycle, respectively. Ldlr -/-.Leiden mice were treated with high-fat diet (HFD) supplemented with L-carnitine (LC; 0.4% w/w), nicotinamide riboside (NR; 0.3% w/w) or both (COMBI) for 21 weeks. L-carnitine plasma levels were reduced by HFD and normalized by LC. NR supplementation raised its plasma metabolite levels demonstrating effective delivery. Although food intake and ambulatory activity were comparable in all groups, COMBI treatment significantly attenuated HFD-induced body weight gain, fat mass gain (-17%) and hepatic steatosis (-22%). Also, NR and COMBI reduced hepatic 4-hydroxynonenal adducts. Upstream-regulator gene analysis demonstrated that COMBI reversed detrimental effects of HFD on liver metabolism pathways and associated regulators, e.g., ACOX, SCAP, SREBF, PPARGC1B, and INSR. Combination treatment with LC and NR exerts protective effects on metabolic pathways and constitutes a new approach to attenuate HFD-induced obesity and NAFLD.
Collapse
Affiliation(s)
- Kanita Salic
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), 2333 CK Leiden, The Netherlands.
| | - Eveline Gart
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), 2333 CK Leiden, The Netherlands.
- Human and Animal Physiology, Wageningen University, 6708 WD Wageningen, The Netherlands.
| | - Florine Seidel
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), 2333 CK Leiden, The Netherlands.
| | - Lars Verschuren
- Department of Microbiology and Systems Biology, The Netherlands Organization for Applied Scientific Research (TNO), 3704 HE Zeist, The Netherlands.
| | - Martien Caspers
- Department of Microbiology and Systems Biology, The Netherlands Organization for Applied Scientific Research (TNO), 3704 HE Zeist, The Netherlands.
| | - Wim van Duyvenvoorde
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), 2333 CK Leiden, The Netherlands.
| | | | - Jaap Keijer
- Human and Animal Physiology, Wageningen University, 6708 WD Wageningen, The Netherlands.
| | - Ivana Bobeldijk-Pastorova
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), 2333 CK Leiden, The Netherlands.
| | - Peter Y Wielinga
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), 2333 CK Leiden, The Netherlands.
| | - Robert Kleemann
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), 2333 CK Leiden, The Netherlands.
- Department of Vascular Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands.
| |
Collapse
|
42
|
Charton L, Plett A, Linka N. Plant peroxisomal solute transporter proteins. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2019; 61:817-835. [PMID: 30761734 PMCID: PMC6767901 DOI: 10.1111/jipb.12790] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 02/11/2019] [Indexed: 05/18/2023]
Abstract
Plant peroxisomes are unique subcellular organelles which play an indispensable role in several key metabolic pathways, including fatty acid β-oxidation, photorespiration, and degradation of reactive oxygen species. The compartmentalization of metabolic pathways into peroxisomes is a strategy for organizing the metabolic network and improving pathway efficiency. An important prerequisite, however, is the exchange of metabolites between peroxisomes and other cell compartments. Since the first studies in the 1970s scientists contributed to understanding how solutes enter or leave this organelle. This review gives an overview about our current knowledge of the solute permeability of peroxisomal membranes described in plants, yeast, mammals and other eukaryotes. In general, peroxisomes contain in their bilayer membrane specific transporters for hydrophobic fatty acids (ABC transporter) and large cofactor molecules (carrier for ATP, NAD and CoA). Smaller solutes with molecular masses below 300-400 Da, like the organic acids malate, oxaloacetate, and 2-oxoglutarate, are shuttled via non-selective channels across the peroxisomal membrane. In comparison to yeast, human, mammals and other eukaryotes, the function of these known peroxisomal transporters and channels in plants are discussed in this review.
Collapse
Affiliation(s)
- Lennart Charton
- Institute for Plant Biochemistry and Cluster of Excellence on Plant Sciences (CEPLAS)Heinrich Heine UniversityUniversitätsstrasse 140225 DüsseldorfGermany
| | - Anastasija Plett
- Institute for Plant Biochemistry and Cluster of Excellence on Plant Sciences (CEPLAS)Heinrich Heine UniversityUniversitätsstrasse 140225 DüsseldorfGermany
| | - Nicole Linka
- Institute for Plant Biochemistry and Cluster of Excellence on Plant Sciences (CEPLAS)Heinrich Heine UniversityUniversitätsstrasse 140225 DüsseldorfGermany
| |
Collapse
|
43
|
Amon S, Meier-Abt F, Gillet LC, Dimitrieva S, Theocharides APA, Manz MG, Aebersold R. Sensitive Quantitative Proteomics of Human Hematopoietic Stem and Progenitor Cells by Data-independent Acquisition Mass Spectrometry. Mol Cell Proteomics 2019; 18:1454-1467. [PMID: 30975897 PMCID: PMC6601215 DOI: 10.1074/mcp.tir119.001431] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 03/08/2019] [Indexed: 12/14/2022] Open
Abstract
Physiological processes in multicellular organisms depend on the function and interactions of specialized cell types operating in context. Some of these cell types are rare and thus obtainable only in minute quantities. For example, tissue-specific stem and progenitor cells are numerically scarce, but functionally highly relevant, and fulfill critical roles in development, tissue maintenance, and disease. Whereas low numbers of cells are routinely analyzed by genomics and transcriptomics, corresponding proteomic analyses have so far not been possible due to methodological limitations. Here we describe a sensitive and robust quantitative technique based on data-independent acquisition mass spectrometry. We quantified the proteome of sets of 25,000 human hematopoietic stem/multipotent progenitor cells (HSC/MPP) and three committed progenitor cell subpopulations of the myeloid differentiation pathway (common myeloid progenitors, megakaryocyte-erythrocyte progenitors, and granulocyte-macrophage progenitors), isolated by fluorescence-activated cell sorting from five healthy donors. On average, 5,851 protein groups were identified per sample. A subset of 4,131 stringently filtered protein groups was quantitatively compared across the 20 samples, defining unique signatures for each subpopulation. A comparison of proteomic and transcriptomic profiles indicated HSC/MPP-specific divergent regulation of biochemical functions such as telomerase maintenance and quiescence-inducing enzymes, including isocitrate dehydrogenases. These are essential for maintaining stemness and were detected at proteome, but not transcriptome, level. The method is equally applicable to almost any rare cell type, including healthy and cancer stem cells or physiologically and pathologically infiltrating cell populations. It thus provides essential new information toward the detailed biochemical understanding of cell development and functionality in health and disease.
Collapse
Affiliation(s)
- Sabine Amon
- From the ‡Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Fabienne Meier-Abt
- From the ‡Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland;; §Hematology, University and University Hospital Zurich, 8091 Zurich, Switzerland
| | - Ludovic C Gillet
- From the ‡Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Slavica Dimitrieva
- ¶Functional Genomics Center Zurich, ETH Zurich and University of Zurich, 8057 Zurich, Switzerland
| | | | - Markus G Manz
- §Hematology, University and University Hospital Zurich, 8091 Zurich, Switzerland
| | - Ruedi Aebersold
- From the ‡Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland;; ‖Faculty of Science, University of Zurich, 8057 Zurich, Switzerland.
| |
Collapse
|
44
|
Costello JL, Passmore JB, Islinger M, Schrader M. Multi-localized Proteins: The Peroxisome-Mitochondria Connection. Subcell Biochem 2019; 89:383-415. [PMID: 30378033 DOI: 10.1007/978-981-13-2233-4_17] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Peroxisomes and mitochondria are dynamic, multifunctional organelles that play pivotal cooperative roles in the metabolism of cellular lipids and reactive oxygen species. Their functional interplay, the "peroxisome-mitochondria connection", also includes cooperation in anti-viral signalling and defence, as well as coordinated biogenesis by sharing key division proteins. In this review, we focus on multi-localised proteins which are shared by peroxisomes and mitochondria in mammals. We first outline the targeting and sharing of matrix proteins which are involved in metabolic cooperation. Next, we discuss shared components of peroxisomal and mitochondrial dynamics and division, and we present novel insights into the dual targeting of tail-anchored membrane proteins. Finally, we provide an overview of what is currently known about the role of shared membrane proteins in disease. What emerges is that sharing of proteins between these two organelles plays a key role in their cooperative functions which, based on new findings, may be more extensive than originally envisaged. Gaining a better insight into organelle interplay and the targeting of shared proteins is pivotal to understanding how organelle cooperation contributes to human health and disease.
Collapse
Affiliation(s)
| | | | - Markus Islinger
- Institute of Neuroanatomy, Center for Biomedicine & Medical Technology Mannheim, Medical Faculty Manheim, University of Heidelberg, 68167, Mannheim, Germany
| | | |
Collapse
|
45
|
Liu J, Lu W, Shi B, Klein S, Su X. Peroxisomal regulation of redox homeostasis and adipocyte metabolism. Redox Biol 2019; 24:101167. [PMID: 30921635 PMCID: PMC6434164 DOI: 10.1016/j.redox.2019.101167] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 03/01/2019] [Accepted: 03/10/2019] [Indexed: 12/26/2022] Open
Abstract
Peroxisomes are ubiquitous cellular organelles required for specific pathways of fatty acid oxidation and lipid synthesis, and until recently their functions in adipocytes have not been well appreciated. Importantly, peroxisomes host many oxygen-consumption reactions and play a major role in generation and detoxification of reactive oxygen species (ROS) and reactive nitrogen species (RNS), influencing whole cell redox status. Here, we review recent progress in peroxisomal functions in lipid metabolism as related to ROS/RNS metabolism and discuss the roles of peroxisomal redox homeostasis in adipogenesis and adipocyte metabolism. We provide a framework for understanding redox regulation of peroxisomal functions in adipocytes together with testable hypotheses for developing therapies for obesity and the related metabolic diseases.
Collapse
Affiliation(s)
- Jingjing Liu
- Department of Biochemistry and Molecular Biology, Soochow University College of Medicine, Suzhou, 215123, China
| | - Wen Lu
- Department of Biochemistry and Molecular Biology, Soochow University College of Medicine, Suzhou, 215123, China; Department of Endocrinology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Bimin Shi
- Department of Endocrinology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Samuel Klein
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Xiong Su
- Department of Biochemistry and Molecular Biology, Soochow University College of Medicine, Suzhou, 215123, China; Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
46
|
Xiberras J, Klein M, Nevoigt E. Glycerol as a substrate for Saccharomyces cerevisiae based bioprocesses - Knowledge gaps regarding the central carbon catabolism of this 'non-fermentable' carbon source. Biotechnol Adv 2019; 37:107378. [PMID: 30930107 DOI: 10.1016/j.biotechadv.2019.03.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 03/22/2019] [Accepted: 03/26/2019] [Indexed: 12/14/2022]
Abstract
Glycerol is an interesting alternative carbon source in industrial bioprocesses due to its higher degree of reduction per carbon atom compared to sugars. During the last few years, significant progress has been made in improving the well-known industrial platform organism Saccharomyces cerevisiae with regard to its glycerol utilization capability, particularly in synthetic medium. This provided a basis for future metabolic engineering focusing on the production of valuable chemicals from glycerol. However, profound knowledge about the central carbon catabolism in synthetic glycerol medium is a prerequisite for such incentives. As a matter of fact, the current assumptions about the actual in vivo fluxes active on glycerol as the sole carbon source have mainly been based on omics data collected in complex media or were even deduced from studies with other non-fermentable carbon sources, such as ethanol or acetate. A number of uncertainties have been identified which particularly regard the role of the glyoxylate cycle, the subcellular localization of the respective enzymes, the contributions of mitochondrial transporters and the active anaplerotic reactions under these conditions. The review scrutinizes the current knowledge, highlights the necessity to collect novel experimental data using cells growing in synthetic glycerol medium and summarizes the current state of the art with regard to the production of valuable fermentation products from a carbon source that has been considered so far as 'non-fermentable' for the yeast S. cerevisiae.
Collapse
Affiliation(s)
- Joeline Xiberras
- Department of Life Sciences and Chemistry, Jacobs University gGmbH, Campus Ring 1, 28759 Bremen, Germany
| | - Mathias Klein
- Department of Life Sciences and Chemistry, Jacobs University gGmbH, Campus Ring 1, 28759 Bremen, Germany
| | - Elke Nevoigt
- Department of Life Sciences and Chemistry, Jacobs University gGmbH, Campus Ring 1, 28759 Bremen, Germany.
| |
Collapse
|
47
|
Acosta H, Burchmore R, Naula C, Gualdrón-López M, Quintero-Troconis E, Cáceres AJ, Michels PAM, Concepción JL, Quiñones W. Proteomic analysis of glycosomes from Trypanosoma cruzi epimastigotes. Mol Biochem Parasitol 2019; 229:62-74. [PMID: 30831156 PMCID: PMC7082770 DOI: 10.1016/j.molbiopara.2019.02.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/25/2019] [Accepted: 02/27/2019] [Indexed: 12/20/2022]
Abstract
In Trypanosoma cruzi, the causal agent of Chagas disease, the first seven steps of glycolysis are compartmentalized in glycosomes, which are authentic but specialized peroxisomes. Besides glycolysis, activity of enzymes of other metabolic processes have been reported to be present in glycosomes, such as β-oxidation of fatty acids, purine salvage, pentose-phosphate pathway, gluconeogenesis and biosynthesis of ether-lipids, isoprenoids, sterols and pyrimidines. In this study, we have purified glycosomes from T. cruzi epimastigotes, collected the soluble and membrane fractions of these organelles, and separated peripheral and integral membrane proteins by Na2CO3 treatment and osmotic shock. Proteomic analysis was performed on each of these fractions, allowing us to confirm the presence of enzymes involved in various metabolic pathways as well as identify new components of this parasite's glycosomes.
Collapse
Affiliation(s)
- Héctor Acosta
- Laboratorio de Enzimología de Parásitos, Facultad de Ciencias, Universidad de Los Andes, Mérida, 5101, Venezuela
| | - Richard Burchmore
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Christina Naula
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Melisa Gualdrón-López
- Instituto Salud Global, Hospital Clinic-Universitat de Barcelona, and Institute for Health Sciences Trias i Pujol, Barcelona, Spain
| | - Ender Quintero-Troconis
- Laboratorio de Enzimología de Parásitos, Facultad de Ciencias, Universidad de Los Andes, Mérida, 5101, Venezuela
| | - Ana J Cáceres
- Laboratorio de Enzimología de Parásitos, Facultad de Ciencias, Universidad de Los Andes, Mérida, 5101, Venezuela
| | - Paul A M Michels
- Centre for Immunity, Infection and Evolution and Centre for Translational and Chemical Biology, The University of Edinburgh, Edinburgh, EH9 3FL, UK
| | - Juan Luis Concepción
- Laboratorio de Enzimología de Parásitos, Facultad de Ciencias, Universidad de Los Andes, Mérida, 5101, Venezuela
| | - Wilfredo Quiñones
- Laboratorio de Enzimología de Parásitos, Facultad de Ciencias, Universidad de Los Andes, Mérida, 5101, Venezuela.
| |
Collapse
|
48
|
Abstract
SIGNIFICANCE NAD+ and NADP+ are important cosubstrates in redox reactions and participate in regulatory networks operating in adjustment of metabolic pathways. Moreover, NAD+ is a cosubstrate in post-translational modification of proteins and is involved in DNA repair. NADPH is indispensable for reductive syntheses and the redox chemistry involved in attaining and maintaining correct protein conformation. Recent Advances: Within a couple of decades, a wealth of information has been gathered on NAD(H)+/NADP(H) redox imaging, regulatory role of redox potential in assembly of spatial protein structures, and the role of ADP-ribosylation of regulatory proteins affecting both gene expression and metabolism. All these have a bearing also on disease, healthy aging, and longevity. CRITICAL ISSUES Knowledge of the signal propagation pathways of NAD+-dependent post-translational modifications is still fragmentary for explaining the mechanism of cellular stress effects and nutritional state on these actions. Evaluation of the cosubstrate and regulator roles of NAD(H) and NADP(H) still suffers from some controversies in experimental data. FUTURE DIRECTIONS Activating or inhibiting interventions in NAD+-dependent protein modifications for medical purposes has shown promise, but restraining tumor growth by inhibiting DNA repair in tumors by means of interference in sirtuins is still in the early stage. The same is true for the use of this technology in improving health and healthy aging. New genetically encoded specific NAD and NADP probes are expected to modernize the research on redox biology.
Collapse
Affiliation(s)
- Ilmo E Hassinen
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| |
Collapse
|
49
|
Hörandl E, Speijer D. How oxygen gave rise to eukaryotic sex. Proc Biol Sci 2019; 285:rspb.2017.2706. [PMID: 29436502 PMCID: PMC5829205 DOI: 10.1098/rspb.2017.2706] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 01/15/2018] [Indexed: 12/13/2022] Open
Abstract
How did full meiotic eukaryotic sex evolve and what was the immediate advantage allowing it to develop? We propose that the crucial determinant can be found in internal reactive oxygen species (ROS) formation at the start of eukaryotic evolution approximately 2 × 109 years ago. The large amount of ROS coming from a bacterial endosymbiont gave rise to DNA damage and vast increases in host genome mutation rates. Eukaryogenesis and chromosome evolution represent adaptations to oxidative stress. The host, an archaeon, most probably already had repair mechanisms based on DNA pairing and recombination, and possibly some kind of primitive cell fusion mechanism. The detrimental effects of internal ROS formation on host genome integrity set the stage allowing evolution of meiotic sex from these humble beginnings. Basic meiotic mechanisms thus probably evolved in response to endogenous ROS production by the ‘pre-mitochondrion’. This alternative to mitosis is crucial under novel, ROS-producing stress situations, like extensive motility or phagotrophy in heterotrophs and endosymbiontic photosynthesis in autotrophs. In multicellular eukaryotes with a germline–soma differentiation, meiotic sex with diploid–haploid cycles improved efficient purging of deleterious mutations. Constant pressure of endogenous ROS explains the ubiquitous maintenance of meiotic sex in practically all eukaryotic kingdoms. Here, we discuss the relevant observations underpinning this model.
Collapse
Affiliation(s)
- Elvira Hörandl
- Department of Systematics, Biodiversity and Evolution of Plants, University of Goettingen, Göttingen, Germany
| | - Dave Speijer
- Department of Medical Biochemistry, Academic Medical Centre (AMC), University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
50
|
Violante S, Achetib N, van Roermund CWT, Hagen J, Dodatko T, Vaz FM, Waterham HR, Chen H, Baes M, Yu C, Argmann CA, Houten SM. Peroxisomes can oxidize medium- and long-chain fatty acids through a pathway involving ABCD3 and HSD17B4. FASEB J 2018; 33:4355-4364. [PMID: 30540494 DOI: 10.1096/fj.201801498r] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Peroxisomes are essential organelles for the specialized oxidation of a wide variety of fatty acids, but they are also able to degrade fatty acids that are typically handled by mitochondria. Using a combination of pharmacological inhibition and clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR associated protein 9 genome editing technology to simultaneously manipulate peroxisomal and mitochondrial fatty acid β-oxidation (FAO) in HEK-293 cells, we identified essential players in the metabolic crosstalk between these organelles. Depletion of carnitine palmitoyltransferase (CPT)2 activity through pharmacological inhibition or knockout (KO) uncovered a significant residual peroxisomal oxidation of lauric and palmitic acid, leading to the production of peroxisomal acylcarnitine intermediates. Generation and analysis of additional single- and double-KO cell lines revealed that the D-bifunctional protein (HSD17B4) and the peroxisomal ABC transporter ABCD3 are essential in peroxisomal oxidation of lauric and palmitic acid. Our results indicate that peroxisomes not only accept acyl-CoAs but can also oxidize acylcarnitines in a similar biochemical pathway. By using an Hsd17b4 KO mouse model, we demonstrated that peroxisomes contribute to the plasma acylcarnitine profile after acute inhibition of CPT2, proving in vivo relevance of this pathway. We summarize that peroxisomal FAO is important when mitochondrial FAO is defective or overloaded.-Violante, S., Achetib, N., van Roermund, C. W. T., Hagen, J., Dodatko, T., Vaz, F. M., Waterham, H. R., Chen, H., Baes, M., Yu, C., Argmann, C. A., Houten, S. M. Peroxisomes can oxidize medium- and long-chain fatty acids through a pathway involving ABCD3 and HSD17B4.
Collapse
Affiliation(s)
- Sara Violante
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Mount Sinai Genomics, Incorporated, New York, New York, USA
| | - Nihad Achetib
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Carlo W T van Roermund
- Department of Clinical Chemistry, Amsterdam, The Netherlands.,Department of Pediatrics, Amsterdam, The Netherlands.,Laboratory Genetic Metabolic Diseases, Amsterdam, The Netherlands; and
| | - Jacob Hagen
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Tetyana Dodatko
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Frédéric M Vaz
- Department of Clinical Chemistry, Amsterdam, The Netherlands.,Department of Pediatrics, Amsterdam, The Netherlands.,Laboratory Genetic Metabolic Diseases, Amsterdam, The Netherlands; and
| | - Hans R Waterham
- Department of Clinical Chemistry, Amsterdam, The Netherlands.,Department of Pediatrics, Amsterdam, The Netherlands.,Laboratory Genetic Metabolic Diseases, Amsterdam, The Netherlands; and
| | - Hongjie Chen
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Mount Sinai Genomics, Incorporated, New York, New York, USA
| | - Myriam Baes
- Laboratory of Cell Metabolism, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven-University of Leuven, Leuven, Belgium
| | - Chunli Yu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Mount Sinai Genomics, Incorporated, New York, New York, USA
| | - Carmen A Argmann
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Sander M Houten
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|