1
|
Zhang HY, Minnis C, Gustavsson E, Ryten M, Mole SE. CLN3 transcript complexity revealed by long-read RNA sequencing analysis. BMC Med Genomics 2024; 17:244. [PMID: 39367445 PMCID: PMC11451007 DOI: 10.1186/s12920-024-02017-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 09/23/2024] [Indexed: 10/06/2024] Open
Abstract
BACKGROUND Batten disease is a group of rare inherited neurodegenerative diseases. Juvenile CLN3 disease is the most prevalent type, and the most common pathogenic variant shared by most patients is the "1-kb" deletion which removes two internal coding exons (7 and 8) in CLN3. Previously, we identified two transcripts in patient fibroblasts homozygous for the 1-kb deletion: the 'major' and 'minor' transcripts. To understand the full variety of disease transcripts and their role in disease pathogenesis, it is necessary to first investigate CLN3 transcription in "healthy" samples without juvenile CLN3 disease. METHODS We leveraged PacBio long-read RNA sequencing datasets from ENCODE to investigate the full range of CLN3 transcripts across various tissues and cell types in human control samples. Then we sought to validate their existence using data from different sources. RESULTS We found that a readthrough gene affects the quantification and annotation of CLN3. After taking this into account, we detected over 100 novel CLN3 transcripts, with no dominantly expressed CLN3 transcript. The most abundant transcript has median usage of 42.9%. Surprisingly, the known disease-associated 'major' transcripts are detected. Together, they have median usage of 1.5% across 22 samples. Furthermore, we identified 48 CLN3 ORFs, of which 26 are novel. The predominant ORF that encodes the canonical CLN3 protein isoform has median usage of 66.7%, meaning around one-third of CLN3 transcripts encode protein isoforms with different stretches of amino acids. The same ORFs could be found with alternative UTRs. Moreover, we were able to validate the translational potential of certain transcripts using public mass spectrometry data. CONCLUSION Overall, these findings provide valuable insights into the complexity of CLN3 transcription, highlighting the importance of studying both canonical and non-canonical CLN3 protein isoforms as well as the regulatory role of UTRs to fully comprehend the regulation and function(s) of CLN3. This knowledge is essential for investigating the impact of the 1-kb deletion and rare pathogenic variants on CLN3 transcription and disease pathogenesis.
Collapse
Affiliation(s)
- Hao-Yu Zhang
- Great Ormond Street Institute of Child Health, University College London, London, WC1E 1EH, UK
| | - Christopher Minnis
- Great Ormond Street Institute of Child Health, University College London, London, WC1E 1EH, UK
| | - Emil Gustavsson
- Great Ormond Street Institute of Child Health, University College London, London, WC1E 1EH, UK
| | - Mina Ryten
- Great Ormond Street Institute of Child Health, University College London, London, WC1E 1EH, UK
| | - Sara E Mole
- Great Ormond Street Institute of Child Health, University College London, London, WC1E 1EH, UK.
| |
Collapse
|
2
|
Zeineddin S, Matar G, Abosaif Y, Abunada M, Aldabbour B. A novel pathogenic variant in the KCTD7 gene in a patient with neuronal ceroid lipofuscinosis (CLN14): a case report and review of the literature. BMC Neurol 2024; 24:367. [PMID: 39350080 PMCID: PMC11441090 DOI: 10.1186/s12883-024-03868-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/17/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Neuronal ceroid lipofuscinosis (NCL) is a heterogeneous group of 13 rare, progressive neurodegenerative diseases of the brain and retina. CLN14 is a very rare subtype of NCL caused by pathogenic variants in the KCTD7 gene. Only four cases of this subtype have been reported in the literature. CASE PRESENTATION A nine-month-old, previously healthy male who was firstborn to first-cousin parents presented with progressive psychomotor regression, dysmorphic facial features, myoclonus, and vision loss. Neurological examination showed generalized hypotonia and brisk reflexes. He continued to deteriorate until age 18 months, when he developed his first generalized tonic-clonic seizure. An ophthalmological examination showed a hypopigmented fundus and slight temporal disc pallor. Brain MRI showed mild generalized brain atrophy and white matter disease. EEG revealed a severely abnormal trace marked by generalized, high amplitude, sharply contoured, polymorphic delta slowing intermixed with theta slowing and some alpha activity, with disorganized and scattered spikes and sharp waves. The patient continued to have uncontrolled seizures and further psychomotor regression until he died of status epilepticus and pneumonia at the age of 44 months. WES identified a novel homozygous variant c.413T > C, p.(Leu138Pro) in the KCTD7 gene, causing an amino acid transition from leucine to proline at position 138. Both parents were carriers of the same variant. CONCLUSIONS We present the fifth known case of CLN14 in the literature and report the clinical course and a novel underlying likely causative variant in the KCTD7 gene. The improving accessibility and affordability of genetic testing will likely uncover more NCL cases and further expand the disease's genotypic and phenotypic spectrum.
Collapse
Affiliation(s)
- Safaa Zeineddin
- Faculty of Medicine, Islamic University of Gaza, P.O. Box 108, Gaza, State of Palestine
| | - Ghadeer Matar
- Faculty of Medicine, Islamic University of Gaza, P.O. Box 108, Gaza, State of Palestine
| | - Yasmin Abosaif
- Faculty of Medicine, Islamic University of Gaza, P.O. Box 108, Gaza, State of Palestine
| | - Mohammed Abunada
- Faculty of Medicine, Islamic University of Gaza, P.O. Box 108, Gaza, State of Palestine
| | - Belal Aldabbour
- Faculty of Medicine, Islamic University of Gaza, P.O. Box 108, Gaza, State of Palestine.
| |
Collapse
|
3
|
Tsikandelova R, Galo E, Cerniauskas E, Hallam D, Georgiou M, Cerna-Chavez R, Atkinson R, Palmowski P, Burté F, Davies T, Steel DH, McKibbin M, Bond J, Haggarty J, Whitfield P, Korolchuk V, Armstrong L, Yang C, Dorgau B, Kurzawa-Akanbi M, Lako M. Retinal cells derived from patients with DRAM2-dependent CORD21 dystrophy exhibit key lysosomal enzyme deficiency and lysosomal content accumulation. Stem Cell Reports 2024; 19:1107-1121. [PMID: 38964324 PMCID: PMC11368688 DOI: 10.1016/j.stemcr.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 07/06/2024] Open
Abstract
Biallelic mutations in DRAM2 lead to an autosomal recessive cone-rod dystrophy known as CORD21, which typically presents between the third and sixth decades of life. Although DRAM2 localizes to the lysosomes of photoreceptor and retinal pigment epithelium (RPE) cells, its specific role in retinal degeneration has not been fully elucidated. In this study, we generated and characterized retinal organoids (ROs) and RPE cells from induced pluripotent stem cells (iPSCs) derived from two CORD21 patients. Our investigation revealed that CORD21-ROs and RPE cells exhibit abnormalities in lipid metabolism, defects in autophagic flux, accumulation of aberrant lysosomal content, and reduced lysosomal enzyme activity. We identified potential interactions of DRAM2 with vesicular trafficking proteins, suggesting its involvement in this cellular process. These findings collectively suggest that DRAM2 plays a crucial role in maintaining the integrity of photoreceptors and RPE cells by regulating lysosomal function, autophagy, and potentially vesicular trafficking.
Collapse
Affiliation(s)
| | - Eldo Galo
- Biosciences Institute, Newcastle University, Newcastle, UK
| | | | - Dean Hallam
- Biosciences Institute, Newcastle University, Newcastle, UK
| | - Maria Georgiou
- Biosciences Institute, Newcastle University, Newcastle, UK
| | | | | | | | - Florence Burté
- Biosciences Institute, Newcastle University, Newcastle, UK
| | - Tracey Davies
- Electron Microscopy Research Services, Newcastle University, Newcastle, UK
| | - David H Steel
- Biosciences Institute, Newcastle University, Newcastle, UK
| | - Martin McKibbin
- Leeds Teaching Hospitals NHS Trust, Leeds UK and Leeds Institute for Medical Research, St. James's University Hospital, University of Leeds, Leeds, UK
| | - Jacquelyn Bond
- Leeds Teaching Hospitals NHS Trust, Leeds UK and Leeds Institute for Medical Research, St. James's University Hospital, University of Leeds, Leeds, UK
| | - Jennifer Haggarty
- Shared Research Facilities, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Phil Whitfield
- Glasgow Polyomics and Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | | | - Lyle Armstrong
- Biosciences Institute, Newcastle University, Newcastle, UK
| | - Chunbo Yang
- Biosciences Institute, Newcastle University, Newcastle, UK
| | - Birthe Dorgau
- Biosciences Institute, Newcastle University, Newcastle, UK
| | | | - Majlinda Lako
- Biosciences Institute, Newcastle University, Newcastle, UK.
| |
Collapse
|
4
|
Christen M, Gregor KM, Böttcher-Künneke A, Lombardo MS, Baumgärtner W, Jagannathan V, Puff C, Leeb T. Intragenic MFSD8 duplication and histopathological findings in a rabbit with neuronal ceroid lipofuscinosis. Anim Genet 2024; 55:588-598. [PMID: 38712841 DOI: 10.1111/age.13441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 03/20/2024] [Accepted: 04/22/2024] [Indexed: 05/08/2024]
Abstract
Neuronal ceroid lipofuscinoses (NCL) are among the most prevalent neurodegenerative disorders of early life in humans. Disease-causing variants have been described for 13 different NCL genes. In this study, a refined pathological characterization of a female rabbit with progressive neurological signs reminiscent of NCL was performed. Cytoplasmic pigment present in neurons was weakly positive with Sudan black B and autofluorescent. Immunohistology revealed astrogliosis, microgliosis and axonal degeneration. During the subsequent genetic investigation, the genome of the affected rabbit was sequenced and examined for private variants in NCL candidate genes. The analysis revealed a homozygous ~10.7 kb genomic duplication on chromosome 15 comprising parts of the MFSD8 gene, NC_013683.1:g.103,727,963_103,738,667dup. The duplication harbors two internal protein coding exons and is predicted to introduce a premature stop codon into the transcript, truncating ~50% of the wild-type MFSD8 open reading frame encoding the major facilitator superfamily domain containing protein 8, XP_002717309.2:p.(Glu235Leufs*23). Biallelic loss-of-function variants in MFSD8 have been described to cause NCL7 in human patients, dogs and a single cat. The available clinical and pathological data, together with current knowledge about MFSD8 variants and their functional impact in other species, point to the MFSD8 duplication as a likely causative defect for the observed phenotype in the affected rabbit.
Collapse
Affiliation(s)
- Matthias Christen
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Katharina M Gregor
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | | | - Mara S Lombardo
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Vidhya Jagannathan
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Christina Puff
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Tosso Leeb
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
5
|
Radić Nišević J, Kolić I, Kostanjski M, Kovačević F, Prpić I. Early Symptoms and Treatment Outcomes in Neuronal Ceroid Lipofuscinosis Type 2: Croatian Experience. J Pers Med 2024; 14:783. [PMID: 39201975 PMCID: PMC11355585 DOI: 10.3390/jpm14080783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/12/2024] [Accepted: 07/18/2024] [Indexed: 09/03/2024] Open
Abstract
BACKGROUND Late infantile neuronal ceroid lipofuscinosis type 2 (CLN2) is a rare neurodegenerative disease that generally appears in children between 2 and 4 years old, leading to seizures and a progressive loss of language and motor functions. As the disease progresses, affected individuals typically experience blindness and ultimately pass away in late childhood. Treatment with intracerebroventricular cerliponase alfa has been shown to slow the deterioration of motor and language functions compared to the natural progression of the disease. We aim to highlight the early symptoms of CLN2 which help with early diagnosis and timely treatment initiation in children with specific medical indications, as well as identify medical contraindications for enzyme replacement therapy. METHODS We describe five Croatian patients and one Bosnia and Herzegovinian patient with CLN2 disease, analyzing the clinical characteristics, neuroimaging findings, electroencephalogram results, genetic analysis, treatment indications and contraindications, and disease progression. RESULTS All six patients presented with seizures: focal seizures (n = 1), myoclonic-atonic seizures (n = 1), febrile seizures (n = 2), and tonic-clonic seizures (n = 2), along with language delay (n = 6). Despite this, one patient refused treatment, two were initially included in the clinical trial and then continued treatment, one did not indicate starting treatment, and three continued treatment. One patient, after 4.5 years of treatment, no longer had medical indications for the therapy, which was discontinued. The other two patients who received treatment had a significant slowing of disease progression. CONCLUSIONS The early onset of seizures between ages 2 and 4, alongside delayed language development, is a defining characteristic of CLN2 disease. Enzyme replacement therapy using cerliponase alfa represents the initial treatment for neuronal ceroid lipofuscinosis type 2, targeting the underlying cause of the disease. It effectively delays the progression of language and motor decline in patients diagnosed with this condition.
Collapse
Affiliation(s)
- Jelena Radić Nišević
- Division of Child Neurology, Department of Pediatrics, Clinical Hospital Center, 51000 Rijeka, Croatia; (F.K.); (I.P.)
- Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (I.K.); (M.K.)
| | - Ivana Kolić
- Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (I.K.); (M.K.)
| | - Marija Kostanjski
- Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (I.K.); (M.K.)
| | - Franka Kovačević
- Division of Child Neurology, Department of Pediatrics, Clinical Hospital Center, 51000 Rijeka, Croatia; (F.K.); (I.P.)
| | - Igor Prpić
- Division of Child Neurology, Department of Pediatrics, Clinical Hospital Center, 51000 Rijeka, Croatia; (F.K.); (I.P.)
- Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (I.K.); (M.K.)
| |
Collapse
|
6
|
Han J, Chear S, Talbot J, Swier V, Booth C, Reuben-Thomas C, Dalvi S, Weimer JM, Hewitt AW, Cook AL, Singh R. Genetic and cellular basis of impaired phagocytosis and photoreceptor degeneration in CLN3 disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.09.597388. [PMID: 38895469 PMCID: PMC11185776 DOI: 10.1101/2024.06.09.597388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Purpose CLN3 Batten disease (also known as Juvenile Neuronal Ceroid Lipofuscinosis; JNCL) is a lysosomal storage disorder that typically initiates with retinal degeneration but is followed by seizure onset, motor decline and premature death. Patient-derived CLN3 disease iPSC-RPE cells show defective phagocytosis of photoreceptor outer segments (POSs). Because modifier genes are implicated in CLN3 disease, our goal here was to investigate a direct link between CLN3 mutation and POS phagocytosis defect. Methods Isogenic control and CLN3 mutant stem cell lines were generated by CRISPR-Cas9-mediated biallelic deletion of exons 7 and 8. A transgenic CLN3 Δ 7-8/ Δ 7-8 ( CLN3 ) Yucatan miniswine was also used to study the impact of CLN3 Δ 7-8/ Δ 7-8 mutation on POS phagocytosis. POS phagocytosis by cultured RPE cells was analyzed by Western blotting and immunohistochemistry. Electroretinogram, optical coherence tomography and histological analysis of CLN3 Δ 7/8 and wild-type miniswine eyes were carried out at 6-, 36-, or 48-month age. Results CLN3 Δ 7-8/ Δ 7-8 RPE ( CLN3 RPE) displayed reduced POS binding and consequently decreased uptake of POS compared to isogenic control RPE cells. Furthermore, wild-type miniswine RPE cells phagocytosed CLN3 Δ 7-8/ Δ 7-8 POS less efficiently than wild-type POS. Consistent with decreased POS phagocytosis, lipofuscin/autofluorescence was decreased in CLN3 miniswine RPE at 36 months-of-age and was followed by almost complete loss of photoreceptors at 48 months of age. Conclusions CLN3 Δ 7-8/ Δ 7-8 mutation (that affects up to 85% patients) affects both RPE and POSs and leads to photoreceptor cell loss in CLN3 disease. Furthermore, both primary RPE dysfunction and mutant POS independently contribute to impaired POS phagocytosis in CLN3 disease.
Collapse
|
7
|
Quintas S, Sanles‐Falagan R, Berbís MÁ. I 123-FP-CIT (DaTSCAN) SPECT beyond the Most Common Causes of Parkinsonism: A Systematic Review. Mov Disord Clin Pract 2024; 11:613-625. [PMID: 38693679 PMCID: PMC11145110 DOI: 10.1002/mdc3.14055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/23/2024] [Accepted: 03/30/2024] [Indexed: 05/03/2024] Open
Abstract
BACKGROUND As the diagnosis of Parkinson's disease (PD) is fundamentally clinical, the usefulness of ioflupane (123I) single-photon emission computed tomography (SPECT) or DaTSCAN as a diagnostic tool has been a matter of debate for years. The performance of DaTSCAN is generally recommended in the follow-up of patients with a clinically uncertain diagnosis, especially in those with a suspected essential tremor, drug-induced parkinsonism, or vascular parkinsonism. However, there is a dearth of DaTSCAN findings regarding neurodegenerative parkinsonisms besides PD and atypical parkinsonisms. To date, a specific nigrostriatal dopamine uptake pattern that would help differentiate PD from the most frequent atypical parkinsonisms is yet to be described. This fact is further complicated by the possible visualization of abnormalities in the uptake pattern in patients with rarer neurodegenerative parkinsonisms. OBJECTIVES We aimed to summarize the current literature regarding DaTSCAN findings in patients with rare neurodegenerative parkinsonisms. METHODS The PubMed database was systematically screened for studies in English or Spanish up to October 15, 2023, using search terms "DaTSCAN", "ioflupane", "DaT-SPECT", "123I-FP-CIT SPECT", "dopamine transporter imaging", and "[123I] FP-CIT SPECT". Duplicated publications and studies regarding PD, atypical parkinsonisms, dystonia-parkinsonism, essential tremor, and parkinsonism due to non-degenerative causes were excluded. RESULTS The obtained results were reviewed and summarized, including DaTSCAN findings in fragile X-associated tremor/ataxia syndrome, prion diseases, Huntington's disease, spinocerebellar ataxia, hereditary spastic paraparesis, metabolic disorders, and other diseases (anti-IgLON5 disease, ring chromosome 20 syndrome, chorea-acanthocytosis, and neuronal ceroid lipofuscinosis). CONCLUSIONS This review highlights the need to determine in the future the utility and cost-effectiveness of DaTSCAN, both as a diagnostic and a prognostic tool, in patients with parkinsonian symptoms in rare neurodegenerative diseases.
Collapse
Affiliation(s)
- Sonia Quintas
- Department of NeurologyLa Princesa University HospitalMadridSpain
| | | | - M. Álvaro Berbís
- Department of RadiologyHT Médica, San Juan de Dios HospitalCórdobaSpain
- Faculty of MedicineAutonomous University of MadridMadridSpain
| |
Collapse
|
8
|
Saleh MM, Hamhom AM, Al-Otaibi A, AlGhamdi M, Housawi Y, Aljadhai YI, Alameer S, Almannai M, Jad LA, Alwadei AH, Tabassum S, Alsaman A, AlAsmari A, Al Mutairi F, Althiyab H, Bashiri FA, AlHumaidi S, Alfadhel M, Mink JW, AlHashim A, Faqeih EA. Clinical and Molecular Characteristics of Neuronal Ceroid Lipofuscinosis in Saudi Arabia. Pediatr Neurol 2024; 155:149-155. [PMID: 38653183 DOI: 10.1016/j.pediatrneurol.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 02/15/2024] [Accepted: 03/03/2024] [Indexed: 04/25/2024]
Abstract
BACKGROUND Neuronal ceroid lipofuscinoses (NCLs) represent a heterogeneous group of inherited metabolic lysosomal disorders characterized by neurodegeneration. This study sought to describe the clinical and molecular characteristics of NCLs in Saudi Arabia and determine the most common types in that population. METHODS A retrospective review of electronic medical records was conducted for 63 patients with NCL (55 families) from six tertiary and referral centers in Saudi Arabia between 2008 and 2022. Clinical, radiological, and neurophysiological data as well as genetic diagnoses were reviewed. RESULTS CLN6 was the predominant type, accounting for 45% of cases in 25 families. The most common initial symptoms were speech delay (53%), cognitive decline (50%) and/or gait abnormalities (48%), and seizure (40%). Behavioral symptomatology was observed in 20%, whereas visual impairment was less frequently (9.3%) encountered. Diffuse cerebral and cerebellar atrophy was the predominant finding on brain magnetic resonance imaging. Electroencephalography generally revealed background slowing in all patients with generalized epileptiform discharges in 60%. The most common genotype detected was the p.Ser265del variant found in 36% (20 of 55 families). The most rapidly progressive subtypes were CLN2 and CLN6. Two patients with each died at age five years. The earliest age at which a patient was nonambulatory was two years in a patient with CLN14. CONCLUSIONS This is the largest molecularly confirmed NCL cohort study from Saudi Arabia. Characterizing the natural history of specific NLC types can increase understanding of the underlying pathophysiology and distinctive genotype-phenotype characteristics, facilitating early diagnosis and treatment initiation as well as genetic counseling for families.
Collapse
Affiliation(s)
- Mohammed M Saleh
- Section of Medical Genetics, Children's Specialist Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Abdulrahim M Hamhom
- Department of Pediatric Neurology, National Neuroscience Institute, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Ali Al-Otaibi
- Department of Pediatric Neurology, National Neuroscience Institute, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Malak AlGhamdi
- Unit of Medical Genetics, Department of Pediatrics, College of Medicine, King Saud University Medical City, King Saud University, Riyadh, Saudi Arabia
| | - Yousef Housawi
- Section of Medical Genetics, Pediatric Department, King Fahad Specialist Hospital, Dammam, Saudi Arabia
| | - Yaser I Aljadhai
- Department of Neuroimaging and Intervention, Medical Imaging Administration, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Seham Alameer
- Department of Pediatric, Ministry of the National Guard-Health Affairs, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| | - Mohammed Almannai
- Genetics and Precision Medicine Department (GPM), King Abdullah Specialized Children's Hospital (KASCH), King Abdulaziz Medical City, Ministry of National Guard Health Affairs (MNG-HA), Riyadh, Saudi Arabia
| | - Lamyaa A Jad
- Department of Pediatric Neurology, National Neuroscience Institute, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Ali H Alwadei
- Department of Pediatric Neurology, National Neuroscience Institute, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Sadia Tabassum
- Department of Pediatric Neurology, National Neuroscience Institute, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Abdulaziz Alsaman
- Department of Pediatric Neurology, National Neuroscience Institute, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Ali AlAsmari
- Section of Medical Genetics, Children's Specialist Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Fuad Al Mutairi
- Genetics and Precision Medicine Department (GPM), King Abdullah Specialized Children's Hospital (KASCH), King Abdulaziz Medical City, Ministry of National Guard Health Affairs (MNG-HA), Riyadh, Saudi Arabia; King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of National Guard Health Affairs (MNG-HA), Riyadh, Saudi Arabia
| | - Hamad Althiyab
- Genetics and Precision Medicine Department (GPM), King Abdullah Specialized Children's Hospital (KASCH), King Abdulaziz Medical City, Ministry of National Guard Health Affairs (MNG-HA), Riyadh, Saudi Arabia
| | - Fahad A Bashiri
- Division of Pediatric Neurology, Department of Pediatrics, College of Medicine, King Saud University Medical City, King Saud University, Riyadh, Saudi Arabia
| | - Suzan AlHumaidi
- Section of Medical Genetics, Children's Hospital, King Saud Medical City, Riyadh, Saudi Arabia
| | - Majid Alfadhel
- Genetics and Precision Medicine Department (GPM), King Abdullah Specialized Children's Hospital (KASCH), King Abdulaziz Medical City, Ministry of National Guard Health Affairs (MNG-HA), Riyadh, Saudi Arabia; King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of National Guard Health Affairs (MNG-HA), Riyadh, Saudi Arabia; Medical Genomics Research Department, King Abdullah International Medical Research Center, Ministry of National Guard Health Affairs (MNG-HA), Riyadh, Saudi Arabia
| | - Jonathan W Mink
- Department of Neurology, University of Rochester, Rochester, New York
| | - Aqeela AlHashim
- Department of Pediatric Neurology, National Neuroscience Institute, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Eissa A Faqeih
- Section of Medical Genetics, Children's Specialist Hospital, King Fahad Medical City, Riyadh, Saudi Arabia.
| |
Collapse
|
9
|
O'Neal M, Noher de Halac I, Aylward SC, Yildiz V, Zapanta B, Abreu N, de Los Reyes E. Natural History of Neuronal Ceroid Lipofuscinosis Type 6, Late Infantile Disease. Pediatr Neurol 2024; 154:51-57. [PMID: 38531163 DOI: 10.1016/j.pediatrneurol.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 12/07/2023] [Accepted: 02/26/2024] [Indexed: 03/28/2024]
Abstract
BACKGROUND Mutations in the CLN6 gene cause late infantile neuronal ceroid lipofuscinosis, a neurodegenerative lysosomal storage disease of childhood onset. Clinically, individuals present with progressive motor and cognitive regression, ataxia, and early death. The aim of this study is to establish natural history data of individuals with classic, late-infantile-onset (age less than five years) CLN6 disease. METHODS We analyzed the natural history of 25 patients with late-infantile-onset CLN6, utilizing the Hamburg motor-language scale to measure disease progression. The key outcomes were CLN6 disease progression, assessed by rate of decline in motor and language clinical domain summary scores (0 to 6 total points); onset and type of first symptom; onset of first seizure; and time from first symptom to complete loss of function. RESULTS Median age of total motor and language onset of decline was 42 months (interquartile range 36 to 48). The estimated rate of decline in total score was at a slope of -1.20 (S.D. 0.30) per year, after the start of decline. Complete loss of both motor and language function was found to be, on average, 88.1 months (S.D. 13.5). CONCLUSIONS To our knowledge, this is the largest international study that monitors the longitudinal natural history and progression of CLN6 disease. These data may serve as a template for future interventional trials targeted to slow the progression of this devastating disease.
Collapse
Affiliation(s)
- Matthew O'Neal
- Department of Pediatric Neurology, Nationwide Children's Hospital, Columbus, Ohio
| | | | - Shawn C Aylward
- Department of Pediatric Neurology, Nationwide Children's Hospital, Columbus, Ohio; The Ohio State University College of Medicine, Columbus, Ohio
| | - Vedat Yildiz
- Biostatistics Resource at Nationwide Children's Hospital (BRANCH), Nationwide Children's Hospital, Columbus, Ohio; Center for Biostatistics, Department of Biomedical Informatics, The Ohio State University College of Medicine, Columbus, Ohio
| | - Bianca Zapanta
- Division of Molecular and Human Genetics, Department of Pediatrics, Nationwide Children's Hospital, Columbus, Ohio
| | - Nicolas Abreu
- Department of Neurology, NYU Grossman School of Medicine, New York, New York
| | - Emily de Los Reyes
- Department of Pediatric Neurology, Nationwide Children's Hospital, Columbus, Ohio; The Ohio State University College of Medicine, Columbus, Ohio.
| |
Collapse
|
10
|
Heins-Marroquin U, Singh RR, Perathoner S, Gavotto F, Merino Ruiz C, Patraskaki M, Gomez-Giro G, Kleine Borgmann F, Meyer M, Carpentier A, Warmoes MO, Jäger C, Mittelbronn M, Schwamborn JC, Cordero-Maldonado ML, Crawford AD, Schymanski EL, Linster CL. CLN3 deficiency leads to neurological and metabolic perturbations during early development. Life Sci Alliance 2024; 7:e202302057. [PMID: 38195117 PMCID: PMC10776888 DOI: 10.26508/lsa.202302057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 01/11/2024] Open
Abstract
Juvenile neuronal ceroid lipofuscinosis (or Batten disease) is an autosomal recessive, rare neurodegenerative disorder that affects mainly children above the age of 5 yr and is most commonly caused by mutations in the highly conserved CLN3 gene. Here, we generated cln3 morphants and stable mutant lines in zebrafish. Although neither morphant nor mutant cln3 larvae showed any obvious developmental or morphological defects, behavioral phenotyping of the mutant larvae revealed hyposensitivity to abrupt light changes and hypersensitivity to pro-convulsive drugs. Importantly, in-depth metabolomics and lipidomics analyses revealed significant accumulation of several glycerophosphodiesters (GPDs) and cholesteryl esters, and a global decrease in bis(monoacylglycero)phosphate species, two of which (GPDs and bis(monoacylglycero)phosphates) were previously proposed as potential biomarkers for CLN3 disease based on independent studies in other organisms. We could also demonstrate GPD accumulation in human-induced pluripotent stem cell-derived cerebral organoids carrying a pathogenic variant for CLN3 Our models revealed that GPDs accumulate at very early stages of life in the absence of functional CLN3 and highlight glycerophosphoinositol and BMP as promising biomarker candidates for pre-symptomatic CLN3 disease.
Collapse
Affiliation(s)
- Ursula Heins-Marroquin
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Randolph R Singh
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
- https://ror.org/00hj8s172 Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Simon Perathoner
- Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Floriane Gavotto
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Carla Merino Ruiz
- Institut d'Investigació Sanitària Pere Virgili, Tarragona, Spain
- Biosfer Teslab SL, Reus, Spain
| | - Myrto Patraskaki
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Gemma Gomez-Giro
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Felix Kleine Borgmann
- National Center of Pathology (NCP), Laboratoire national de santé (LNS), Dudelange, Luxembourg
- Department of Oncology (DONC), Luxembourg Institute of Health (LIH), Strassen, Luxembourg
| | - Melanie Meyer
- National Center of Pathology (NCP), Laboratoire national de santé (LNS), Dudelange, Luxembourg
| | - Anaïs Carpentier
- National Center of Pathology (NCP), Laboratoire national de santé (LNS), Dudelange, Luxembourg
| | - Marc O Warmoes
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Christian Jäger
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Michel Mittelbronn
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
- National Center of Pathology (NCP), Laboratoire national de santé (LNS), Dudelange, Luxembourg
- Department of Oncology (DONC), Luxembourg Institute of Health (LIH), Strassen, Luxembourg
- Luxembourg Center of Neuropathology (LCNP), Dudelange, Luxembourg
- Faculty of Science, Technology and Medicine (FSTM), University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Department of Life Science and Medicine (DLSM), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Jens C Schwamborn
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | | | - Alexander D Crawford
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
- Department of Preclinical Sciences and Pathology, Norwegian University of Life Sciences (NMBU), Ås, Norway
- Institute for Orphan Drug Discovery, Bremerhaven, Germany
| | - Emma L Schymanski
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Carole L Linster
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| |
Collapse
|
11
|
Kimball TN, García-Rueda AG, Rivero-García P, Pérez-Segovia AH, Mayoral-Carrasco LE. Recognizing Lipofuscinosis as a Guide in Antiepileptic Treatment: Clinical Description of the First Mexican Case With Neuronal Ceroid Lipofuscinosis Type 7 (NCL7). Cureus 2024; 16:e56914. [PMID: 38659533 PMCID: PMC11042739 DOI: 10.7759/cureus.56914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2024] [Indexed: 04/26/2024] Open
Abstract
Neuronal ceroid lipofuscinosis type 7 (NCL7) is a rare form of childhood dementia; it is part of a group of diseases characterized by rapid progressive cognitive decline, blindness associated with retinitis pigmentosa, and seizures. We report the clinical and molecular characteristics of the first Mexican patient with NCL7, highlighting a particularly atypical disease course. The typical presentation form is expected to have reduced life expectancy and an average age of ambulation loss at 12 years. Our 27-year-old patient retains the ability to walk. The patient's unique presentation could, in part, be attributed to her genetic profile: a hypomorphic allele carrying a missense variant (c.1390G>A) and an almost null allele with a frameshift variant (c.1086del), contributing to the preservation of some protein function. Throughout her childhood and early adulthood, our patient experienced a variable response to antiseizure drugs, attributed to a lack of recognition of the disease and the specific efficacy of certain antiseizure medications. Our findings underscore the significance of considering this genetic condition and acknowledging its clinical heterogeneity.
Collapse
Affiliation(s)
- Tamara N Kimball
- Genetics, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, MEX
| | - Andrea G García-Rueda
- Genetics, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, MEX
| | - Pamela Rivero-García
- Genetics, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, MEX
| | - Aarón H Pérez-Segovia
- Radiology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, MEX
| | - Luis E Mayoral-Carrasco
- Genetics, Instituto Nacional de Neurologia y Neurocirugia Manuel Velasco Suarez, Mexico City, MEX
| |
Collapse
|
12
|
Schulz A, Specchio N, de Los Reyes E, Gissen P, Nickel M, Trivisano M, Aylward SC, Chakrapani A, Schwering C, Wibbeler E, Westermann LM, Ballon DJ, Dyke JP, Cherukuri A, Bondade S, Slasor P, Cohen Pfeffer J. Safety and efficacy of cerliponase alfa in children with neuronal ceroid lipofuscinosis type 2 (CLN2 disease): an open-label extension study. Lancet Neurol 2024; 23:60-70. [PMID: 38101904 DOI: 10.1016/s1474-4422(23)00384-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 09/25/2023] [Accepted: 10/02/2023] [Indexed: 12/17/2023]
Abstract
BACKGROUND Cerliponase alfa is a recombinant human tripeptidyl peptidase 1 (TPP1) enzyme replacement therapy for the treatment of neuronal ceroid lipofuscinosis type 2 (CLN2 disease), which is caused by mutations in the TPP1 gene. We aimed to determine the long-term safety and efficacy of intracerebroventricular cerliponase alfa in children with CLN2 disease. METHODS This analysis includes cumulative data from a primary 48-week, single-arm, open-label, multicentre, dose-escalation study (NCT01907087) and the 240-week open-label extension with 6-month safety follow-up, conducted at five hospitals in Germany, Italy, the UK, and the USA. Children aged 3-16 years with CLN2 disease confirmed by genetic analysis and enzyme testing were eligible for inclusion. Treatment was intracerebroventricular infusion of 300 mg cerliponase alfa every 2 weeks. Historical controls with untreated CLN2 disease in the DEM-CHILD database were used as a comparator group. The primary efficacy outcome was time to an unreversed 2-point decline or score of 0 in the combined motor and language domains of the CLN2 Clinical Rating Scale. This extension study is registered with ClinicalTrials.gov, NCT02485899, and is complete. FINDINGS Between Sept 13, 2013, and Dec 22, 2014, 24 participants were enrolled in the primary study (15 female and 9 male). Of those, 23 participants were enrolled in the extension study, conducted between Feb 2, 2015, and Dec 10, 2020, and received 300 mg cerliponase alfa for a mean of 272·1 (range 162·1-300·1) weeks. 17 participants completed the extension and six discontinued prematurely. Treated patients were significantly less likely than historical untreated controls to have an unreversed 2-point decline or score of 0 in the combined motor and language domains (hazard ratio 0·14, 95% CI 0·06 to 0·33; p<0·0001). All participants experienced at least one adverse event and 21 (88%) experienced a serious adverse event; nine participants experienced intracerebroventricular device-related infections, with nine events in six participants resulting in device replacement. There were no study discontinuations because of an adverse event and no deaths. INTERPRETATION Cerliponase alfa over a mean treatment period of more than 5 years was seen to confer a clinically meaningful slowing of decline of motor and language function in children with CLN2 disease. Although our study does not have a contemporaneous control group, the results provide crucial insights into the effects of long-term treatment. FUNDING BioMarin Pharmaceutical.
Collapse
Affiliation(s)
- Angela Schulz
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Nicola Specchio
- Neurology, Epilepsy and Movement Disorders, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Emily de Los Reyes
- Department of Pediatrics and Neurology, The Ohio State University, Nationwide Children's Hospital, Columbus, OH, USA
| | - Paul Gissen
- NIHR Great Ormond Street Hospital Biomedical Research Centre, London, UK
| | - Miriam Nickel
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marina Trivisano
- Neurology, Epilepsy and Movement Disorders, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Shawn C Aylward
- Department of Pediatrics and Neurology, The Ohio State University, Nationwide Children's Hospital, Columbus, OH, USA
| | - Anupam Chakrapani
- NIHR Great Ormond Street Hospital Biomedical Research Centre, London, UK
| | - Christoph Schwering
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Eva Wibbeler
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lena Marie Westermann
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Douglas J Ballon
- Citigroup Biomedical Imaging Center, Weill Cornell Medical College, New York, NY, USA
| | - Jonathan P Dyke
- Citigroup Biomedical Imaging Center, Weill Cornell Medical College, New York, NY, USA
| | - Anu Cherukuri
- Department of Translational Sciences, BioMarin Pharmaceutical, Novato, CA, USA
| | - Shailesh Bondade
- Drug Safety Surveillance, BioMarin Pharmaceutical, Novato, CA, USA
| | - Peter Slasor
- Statistical Science, BioMarin Pharmaceutical, Novato, CA, USA
| | | |
Collapse
|
13
|
Eto K, Itagaki R, Takamura A, Eto Y, Nagata S. Clinical features of two Japanese siblings of neuronal ceroid lipofuscinosis type 1 (CLN1) complicated with TypeⅡ diabetes mellitus. Mol Genet Metab Rep 2023; 37:101019. [PMID: 38053925 PMCID: PMC10694742 DOI: 10.1016/j.ymgmr.2023.101019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 12/07/2023] Open
Abstract
Neuronal ceroid lipofuscinosis type1(CLN1), is a one form of the group of neuronal ceroid lipofuscinoses (NCLs), which is a neurodegenerative disorder characterized by progressive psychomotor deterioration, ataxia, epilepsy, and visual impairment. Neurological manifestations occur at a wide range of ages, from infancy to adulthood, but are most common in infancy. The prevalence of CLN1 is unclear; however, it is very rare in Japan and Europe. In Japan, only a few cases have been reported, two of infantile- and one of juvenile-onset type. Nonetheless, the clinical characteristics of Japanese patients and their relationship with the genotype have not been sufficiently investigated. Here, we report the cases of two siblings that presented with juvenile-onset (a 22-year-old man and a 29-year-old woman) CLN1 associated with type II diabetes mellitus. In both cases, visual impairment followed by learning disability was observed from school-age, and retinitis pigmentosa was noted on ophthalmological examination. These patients presented type II diabetes mellitus during their later teenage years. Brain magnetic resonance imaging (MRI) revealed marked atrophy of the cerebrum and cerebellum. The clinical symptoms lead to suspect NCLs. Decreased PPT1 enzyme activity in dried blood spot (DBS)and leukocytes were observed, and the genetic analysis revealed heterozygous missense variants in PPT1, c.550G > A/c.664 A > G (p. Glu184Lys/p. Lys216Glu). The latter variant of this patients was novel variant. The residual enzymatic activity of PPT1 in these cases is higher than that in the infantile type. CLN1 mutant cells are known to have altered subcellular expression and localization, enhanced lipid raft-mediated endocytosis, abnormal autophagy, and mitochondrial dysfunction. Although the prevalence of diabetes mellitus is high and the possibility of coincidental complications cannot be ruled out, we concluded that mitochondrial abnormalities are involved in insulin resistance and may be implicated in the development of type II diabetes mellitus. Further studies are needed to prove the correlation between CLN1 and diabetes mellitus.
Collapse
Affiliation(s)
- Kaoru Eto
- Tokyo Women's Medical University, Adachi Medical Center, Department of Pediatrics, Japan
- Tokyo Women's Medical University, Department of Pediatrics, Japan
| | - Rina Itagaki
- Advanced Clinical Research Center & Asian Lysosomal Research Center, Institute of Neurological Disorders, Japan
| | - Ayumi Takamura
- Tottori University Faculty of Medicine, Department of Pathobiological Science and Technology, Japan
| | - Yoshikatsu Eto
- Advanced Clinical Research Center & Asian Lysosomal Research Center, Institute of Neurological Disorders, Japan
| | - Satoru Nagata
- Tokyo Women's Medical University, Department of Pediatrics, Japan
| |
Collapse
|
14
|
Huber RJ, Gray J, Kim WD. Loss of mfsd8 alters the secretome during Dictyostelium aggregation. Eur J Cell Biol 2023; 102:151361. [PMID: 37742391 DOI: 10.1016/j.ejcb.2023.151361] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/15/2023] [Accepted: 09/16/2023] [Indexed: 09/26/2023] Open
Abstract
Major facilitator superfamily domain-containing protein 8 (MFSD8) is a transmembrane protein that has been reported to function as a lysosomal chloride channel. In humans, homozygous mutations in MFSD8 cause a late-infantile form of neuronal ceroid lipofuscinosis (NCL) called CLN7 disease. In the social amoeba Dictyostelium discoideum, Mfsd8 localizes to cytoplasmic puncta and vesicles, and regulates conserved processes during the organism's life cycle. Here, we used D. discoideum to examine the effect of mfsd8-deficiency on the secretome during the early stages of multicellular development. Mass spectrometry revealed 61 proteins that were differentially released by cells after 4 and 8 h of starvation. Most proteins were present in increased amounts in mfsd8- conditioned buffer compared to WT indicating that loss of mfsd8 deregulates protein secretion and/or causes the release of proteins not normally secreted by WT cells. GO term enrichment analyses showed that many of the proteins aberrantly released by mfsd8- cells localize to compartments and regions of the cell associated with the endo-lysosomal and secretory pathways. Mass spectrometry also revealed proteins previously known to be impacted by the loss of mfsd8 (e.g., cathepsin D), as well as proteins that may underlie mfsd8-deficiency phenotypes during aggregation. Finally, we show that mfsd8-deficiency reduces intracellular proteasome 20S activity due to the abnormal release of at least one proteasomal subunit. Together, this study reveals the impact of mfsd8 loss on the secretome during D. discoideum aggregation and lays the foundation for follow up work that investigates the role of altered protein release in CLN7 disease.
Collapse
Affiliation(s)
- Robert J Huber
- Department of Biology, Trent University, Peterborough, Ontario, Canada; Environmental and Life Sciences Graduate Program, Trent University, Peterborough, Ontario, Canada.
| | - Joshua Gray
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, Ontario, Canada
| | - William D Kim
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, Ontario, Canada
| |
Collapse
|
15
|
Rus CM, Polla DL, Di Bucchianico S, Fischer S, Hartkamp J, Hartmann G, Alpagu Y, Cozma C, Zimmermann R, Bauer P. Neuronal progenitor cells-based metabolomics study reveals dysregulated lipid metabolism and identifies putative biomarkers for CLN6 disease. Sci Rep 2023; 13:18550. [PMID: 37899458 PMCID: PMC10613621 DOI: 10.1038/s41598-023-45789-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 10/24/2023] [Indexed: 10/31/2023] Open
Abstract
Neuronal ceroid lipofuscinosis 6 (CLN6) is a rare and fatal autosomal recessive disease primarily affecting the nervous system in children. It is caused by a pathogenic mutation in the CLN6 gene for which no therapy is available. Employing an untargeted metabolomics approach, we analyzed the metabolic changes in CLN6 subjects to see if this system could potentially yield biomarkers for diagnosis and monitoring disease progression. Neuronal-like cells were derived from human fibroblast lines from CLN6-affected subjects (n = 3) and controls (wild type, n = 3). These were used to assess the potential of a neuronal-like cell-based metabolomics approach to identify CLN6 distinctive and specific biomarkers. The most impacted metabolic profile is associated with sphingolipids, glycerophospholipids metabolism, and calcium signaling. Over 2700 spectral features were screened, and fifteen metabolites were identified that differed significantly between both groups, including the sphingolipids C16 GlcCer, C24 GlcCer, C24:1 GlcCer and glycerophospholipids PG 40:6 and PG 40:7. Of note, these fifteen metabolites were downregulated in the CLN6 disease group. This study is the first to analyze the metabolome of neuronal-like cells with a pathogenic mutation in the CLN6 gene and to provide insights into their metabolomic alterations. This could allow for the development of novel biomarkers for monitoring CLN6 disease.
Collapse
Affiliation(s)
- Corina-Marcela Rus
- Centogene GmbH, Am Strande 7, 18057, Rostock, Germany.
- Joint Mass Spectrometry Center, Chair of Analytical Chemistry, University of Rostock, Albert-Einstein Straße 27, 18059, Rostock, Germany.
| | | | - Sebastiano Di Bucchianico
- Joint Mass Spectrometry Center, Chair of Analytical Chemistry, University of Rostock, Albert-Einstein Straße 27, 18059, Rostock, Germany
- Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
- Department Life, Light & Matter, University of Rostock, Albert-Einstein Straße 25, 18059, Rostock, Germany
| | | | - Jörg Hartkamp
- Centogene GmbH, Am Strande 7, 18057, Rostock, Germany
| | | | - Yunus Alpagu
- Centogene GmbH, Am Strande 7, 18057, Rostock, Germany
| | - Claudia Cozma
- Centogene GmbH, Am Strande 7, 18057, Rostock, Germany
| | - Ralf Zimmermann
- Joint Mass Spectrometry Center, Chair of Analytical Chemistry, University of Rostock, Albert-Einstein Straße 27, 18059, Rostock, Germany
- Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
- Department Life, Light & Matter, University of Rostock, Albert-Einstein Straße 25, 18059, Rostock, Germany
| | - Peter Bauer
- Centogene GmbH, Am Strande 7, 18057, Rostock, Germany
- Department of Medicine, Clinic III, Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, Ernst-Heydemann-Str. 6, 18057, Rostock, Germany
| |
Collapse
|
16
|
Bernardi S, Gemignani F, Marchese M. The involvement of Purkinje cells in progressive myoclonic epilepsy: Focus on neuronal ceroid lipofuscinosis. Neurobiol Dis 2023; 185:106258. [PMID: 37573956 PMCID: PMC10480493 DOI: 10.1016/j.nbd.2023.106258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/01/2023] [Accepted: 08/11/2023] [Indexed: 08/15/2023] Open
Abstract
The progressive myoclonic epilepsies (PMEs) are a group of rare neurodegenerative diseases characterized by myoclonus, epileptic seizures, and progressive neurological deterioration with cerebellar involvement. They include storage diseases like Gaucher disease, Lafora disease, and forms of neuronal ceroid lipofuscinosis (NCL). To date, 13 NCLs have been reported (CLN1-CLN8, CLN10-CLN14), associated with mutations in different genes. These forms, which affect both children and adults, are characterized by seizures, cognitive and motor impairments, and in most cases visual loss. In NCLs, as in other PMEs, central nervous system (CNS) neurodegeneration is widespread and involves different subpopulations of neurons. One of the most affected regions is the cerebellar cortex, where motor and non-motor information is processed and transmitted to deep cerebellar nuclei through the axons of Purkinje cells (PCs). PCs, being GABAergic, have an inhibitory effect on their target neurons, and provide the only inhibitory output of the cerebellum. Degeneration of PCs has been linked to motor impairments and epileptic seizures. Seizures occur when some insult upsets the normal balance in the CNS between excitatory and inhibitory impulses, causing hyperexcitability. Here we review the role of PCs in epilepsy onset and progression following their PME-related loss. In particular, we focus on the involvement of PCs in seizure phenotype in NCLs, highlighting findings from case reports and studies of animal models in which epilepsy can be linked to PC loss.
Collapse
Affiliation(s)
- Sara Bernardi
- Department Neurobiology and Molecular Medicine, IRCCS Fondazione Stella Maris, 56128 Pisa, Italy; Department of Biology, University of Pisa, Pisa, Italy
| | | | - Maria Marchese
- Department Neurobiology and Molecular Medicine, IRCCS Fondazione Stella Maris, 56128 Pisa, Italy.
| |
Collapse
|
17
|
Sakti DH, Cornish EE, Fraser CL, Nash BM, Sandercoe TM, Jones MM, Rowe NA, Jamieson RV, Johnson AM, Grigg JR. Early recognition of CLN3 disease facilitated by visual electrophysiology and multimodal imaging. Doc Ophthalmol 2023; 146:241-256. [PMID: 36964447 PMCID: PMC10256658 DOI: 10.1007/s10633-023-09930-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 03/07/2023] [Indexed: 03/26/2023]
Abstract
BACKGROUND Neuronal ceroid lipofuscinosis is a group of neurodegenerative disorders with varying visual dysfunction. CLN3 is a subtype which commonly presents with visual decline. Visual symptomatology can be indistinct making early diagnosis difficult. This study reports ocular biomarkers of CLN3 patients to assist clinicians in early diagnosis, disease monitoring, and future therapy. METHODS Retrospective review of 5 confirmed CLN3 patients in our eye clinic. Best corrected visual acuity (BCVA), electroretinogram (ERG), ultra-widefield (UWF) fundus photography and fundus autofluorescence (FAF), and optical coherence tomography (OCT) studies were undertaken. RESULTS Five unrelated children, 4 females and 1 male, with median age of 6.2 years (4.6-11.7) at first assessment were investigated at the clinic from 2016 to 2021. Four homozygous and one heterozygous pathogenic CLN3 variants were found. Best corrected visual acuities (BCVAs) ranged from 0.18 to 0.88 logMAR at first presentation. Electronegative ERGs were identified in all patients. Bull's eye maculopathies found in all patients. Hyper-autofluorescence ring surrounding hypo-autofluorescence fovea on FAF was found. Foveal ellipsoid zone (EZ) disruptions were found in all patients with additional inner and outer retinal microcystic changes in one patient. Neurological problems noted included autism, anxiety, motor dyspraxia, behavioural issue, and psychomotor regression. CONCLUSIONS CLN3 patients presented at median age 6.2 years with visual decline. Early onset maculopathy with an electronegative ERG and variable cognitive and motor decline should prompt further investigations including neuropaediatric evaluation and genetic assessment for CLN3 disease. The structural parameters such as EZ and FAF will facilitate ocular monitoring.
Collapse
Affiliation(s)
- Dhimas H Sakti
- Save Sight Institute, Speciality of Clinical Ophthalmology and Eye Health, Faculty of Medicine and Health, The University of Sydney, Sydney Eye Hospital Campus, 8 Macquarie St, Sydney, NSW, 2001, Australia
- Department of Ophthalmology, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Elisa E Cornish
- Save Sight Institute, Speciality of Clinical Ophthalmology and Eye Health, Faculty of Medicine and Health, The University of Sydney, Sydney Eye Hospital Campus, 8 Macquarie St, Sydney, NSW, 2001, Australia
- Eye Genetics Research Unit, The Children's Hospital at Westmead, Save Sight Institute, Children's Medical Research Institute, The University of Sydney, Sydney, NSW, Australia
| | - Clare L Fraser
- Save Sight Institute, Speciality of Clinical Ophthalmology and Eye Health, Faculty of Medicine and Health, The University of Sydney, Sydney Eye Hospital Campus, 8 Macquarie St, Sydney, NSW, 2001, Australia
| | - Benjamin M Nash
- Eye Genetics Research Unit, The Children's Hospital at Westmead, Save Sight Institute, Children's Medical Research Institute, The University of Sydney, Sydney, NSW, Australia
- Sydney Genome Diagnostics, Sydney Children's Hospital Network (Westmead), Sydney, Australia
| | - Trent M Sandercoe
- Department of Ophthalmology, Sydney Children's Hospital Network (Westmead), Sydney, Australia
| | - Michael M Jones
- Department of Ophthalmology, Sydney Children's Hospital Network (Westmead), Sydney, Australia
| | - Neil A Rowe
- Department of Ophthalmology, Sydney Children's Hospital Network (Westmead), Sydney, Australia
| | - Robyn V Jamieson
- Save Sight Institute, Speciality of Clinical Ophthalmology and Eye Health, Faculty of Medicine and Health, The University of Sydney, Sydney Eye Hospital Campus, 8 Macquarie St, Sydney, NSW, 2001, Australia
- Eye Genetics Research Unit, The Children's Hospital at Westmead, Save Sight Institute, Children's Medical Research Institute, The University of Sydney, Sydney, NSW, Australia
| | - Alexandra M Johnson
- Department of Neurology, Sydney Children's Hospital, University of New South Wales, Sydney, Australia
| | - John R Grigg
- Save Sight Institute, Speciality of Clinical Ophthalmology and Eye Health, Faculty of Medicine and Health, The University of Sydney, Sydney Eye Hospital Campus, 8 Macquarie St, Sydney, NSW, 2001, Australia.
- Eye Genetics Research Unit, The Children's Hospital at Westmead, Save Sight Institute, Children's Medical Research Institute, The University of Sydney, Sydney, NSW, Australia.
- Department of Ophthalmology, Sydney Children's Hospital Network (Westmead), Sydney, Australia.
| |
Collapse
|
18
|
Life B, Petkau TL, Cruz GNF, Navarro-Delgado EI, Shen N, Korthauer K, Leavitt BR. FTD-associated behavioural and transcriptomic abnormalities in 'humanized' progranulin-deficient mice: A novel model for progranulin-associated FTD. Neurobiol Dis 2023; 182:106138. [PMID: 37105261 DOI: 10.1016/j.nbd.2023.106138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/17/2023] [Accepted: 04/24/2023] [Indexed: 04/29/2023] Open
Abstract
Frontotemporal dementia (FTD) is an early onset dementia characterized by neuropathology and behavioural changes. A common genetic cause of FTD is haploinsufficiency of the gene progranulin (GRN). Mouse models of progranulin deficiency have provided insight into progranulin neurobiology, but the description of phenotypes with preclinical relevance has been limited in the currently available heterozygous progranulin-null mice. The identification of robust and reproducible FTD-associated behavioural, neuropathological, and biochemical phenotypes in progranulin deficient mice is a critical step in the preclinical development of therapies for FTD. In this work, we report the generation of a novel, 'humanized' mouse model of progranulin deficiency that expresses a single, targeted copy of human GRN in the absence of mouse progranulin. We also report the in-depth, longitudinal characterization of humanized progranulin-deficient mice and heterozygous progranulin-null mice over 18 months. Our analysis yielded several novel progranulin-dependent physiological and behavioural phenotypes, including increased marble burying, open field hyperactivity, and thalamic microgliosis in both models. RNAseq analysis of cortical tissue revealed an overlapping profile of transcriptomic dysfunction. Further transcriptomic analysis offers new insights into progranulin neurobiology. In sum, we have identified several consistent phenotypes in two independent mouse models of progranulin deficiency that are expected to be useful endpoints in the development of therapies for progranulin-deficient FTD. Furthermore, the presence of the human progranulin gene in the humanized progranulin-deficient mice will expedite the development of clinically translatable gene therapy strategies.
Collapse
Affiliation(s)
- Benjamin Life
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, University of British Columbia, Vancouver, BC V6H 0B3, Canada; BC Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada
| | - Terri L Petkau
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, University of British Columbia, Vancouver, BC V6H 0B3, Canada; BC Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada
| | - Giuliano N F Cruz
- BC Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada; Department of Statistics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Erick I Navarro-Delgado
- BC Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada; Department of Statistics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Ning Shen
- BC Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada; Department of Statistics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Keegan Korthauer
- BC Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada; Department of Statistics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Blair R Leavitt
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, University of British Columbia, Vancouver, BC V6H 0B3, Canada; BC Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada; Division of Neurology, Department of Medicine, University of British Columbia Hospital, Vancouver, BC V6T 2B5, Canada; Center for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
19
|
Pickrell WO, Fry AE. Epilepsy genetics: a practical guide for adult neurologists. Pract Neurol 2023; 23:111-119. [PMID: 36639246 DOI: 10.1136/pn-2022-003623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2022] [Indexed: 01/15/2023]
Abstract
An understanding of epilepsy genetics is important for adult neurologists, as making a genetic diagnosis gives clinical benefit. In this review, we describe the key features of different groups of genetic epilepsies. We describe the common available genetic tests for epilepsy, and how to interpret them.
Collapse
Affiliation(s)
- William Owen Pickrell
- Department of Neurology, Morriston Hospital, Swansea Bay University Health Board, Swansea, UK
- Swansea University Medical School, Swansea University, Swansea, UK
| | - Andrew E Fry
- All Wales Medical Genomics Service, University Hospital of Wales, Cardiff, UK
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, UK
| |
Collapse
|
20
|
Djafar JV, Johnson AM, Elvidge KL, Farrar MA. Childhood Dementia: A Collective Clinical Approach to Advance Therapeutic Development and Care. Pediatr Neurol 2023; 139:76-85. [PMID: 36571866 DOI: 10.1016/j.pediatrneurol.2022.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 11/14/2022] [Accepted: 11/26/2022] [Indexed: 12/05/2022]
Abstract
Childhood dementias are a group of over 100 rare and ultra-rare pediatric conditions that are clinically characterized by chronic global neurocognitive decline. This decline is associated with a progressive loss of skills and shortened life expectancy. With an estimated incidence of one in 2800 births and less than 5% of the conditions having disease-modifying therapies, the impact is profound for patients and their families. Traditional research, care, and advocacy efforts have focused on individual disorders, or groups classified by molecular pathogenesis, and this has established robust foundations for further progress and collaboration. This review describes the shared and disease-specific clinical changes contributing to childhood dementia and considers these as potential indicators of underlying pathophysiologic processes. Like adult neurodegenerative syndromes, the heterogeneous phenotypes extend beyond cognitive decline and may involve changes in eating, motor function, pain, sleep, and behavior, mediated by physiological changes in neural networks. Importantly, these physiological phenotypes are associated with significant carer stress, anxiety, and challenges in care. These phenotypes are also pertinent for the development of therapeutics and optimization of best practice management. A collective approach to childhood dementia is anticipated to identify relevant biomarkers of prognosis or therapeutic efficacy, streamline the path from preclinical studies to clinical trials, increase opportunities for the development of multiple therapeutics, and refine clinical care.
Collapse
Affiliation(s)
- Jason V Djafar
- Discipline of Paediatrics and Child Health, School of Clinical Medicine, UNSW Medicine and Health, UNSW Sydney, Sydney, NSW, Australia; Department of Neurology, Sydney Children's Hospital Network, Sydney, NSW, Australia
| | - Alexandra M Johnson
- Discipline of Paediatrics and Child Health, School of Clinical Medicine, UNSW Medicine and Health, UNSW Sydney, Sydney, NSW, Australia; Department of Neurology, Sydney Children's Hospital Network, Sydney, NSW, Australia
| | | | - Michelle A Farrar
- Discipline of Paediatrics and Child Health, School of Clinical Medicine, UNSW Medicine and Health, UNSW Sydney, Sydney, NSW, Australia; Department of Neurology, Sydney Children's Hospital Network, Sydney, NSW, Australia.
| |
Collapse
|
21
|
Purzycka-Olewiecka JK, Hetmańczyk-Sawicka K, Kmieć T, Szczęśniak D, Trubicka J, Krawczyński M, Pronicki M, Ługowska A. Deterioration of visual quality and acuity as the first sign of ceroid lipofuscinosis type 3 (CLN3), a rare neurometabolic disease. Metab Brain Dis 2023; 38:709-715. [PMID: 36576693 PMCID: PMC9859910 DOI: 10.1007/s11011-022-01148-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/14/2022] [Indexed: 12/29/2022]
Abstract
Ceroid lipofuscinosis type 3 (CLN3) is an autosomal recessive, neurodegenerative metabolic disease. Typical clinical symptoms include progressive visual loss, epilepsy of unknown etiology and dementia. Presence of lipofuscin deposits with typical pattern of 'fingerprints' and vacuolized lymphocytes suggest the diagnosis of CLN3. Cause of CLN3 are mutations in the CLN3 gene, among which the most frequently found is the large deletion 1.02 kb spreading on exons 7 and 8. We present 4 patients from 2 families, in whom the deterioration of visual quality and acuity was observed as first clinical sign, when they were a few years old and it was successively accompanied by symptoms of neurologic deterioration (like generalized convulsions with consciousness impairment). In all patients the 1.02 kb deletion in the CLN3 gene was detected in homo- or heterozygosity with other CLN3 pathogenic variant. Ultrastructural studies revealed abnormal structures corresponding to 'fingerprint' profiles (FPPs) in conjunctival endothelial cells. It should be emphasized that in patients with blindness of unknown cause the diagnosis of ceroid lipofuscinosis should be considered and in older children-especially CLN3. The facility of the analysis for the presence of 1.02 kb deletion and economic costs are a solid argument for intensive use of this test in the diagnostic procedure of CLN3.
Collapse
Affiliation(s)
| | | | - Tomasz Kmieć
- Department of Neurology and Epileptology, The Children's Memorial Health Institute, Warsaw, Poland
| | - Dominika Szczęśniak
- Department of Genetics, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Joanna Trubicka
- Department of Pathology, The Children's Memorial Health Institute, Warsaw, Poland
| | - Maciej Krawczyński
- Department of Medical Genetics, Poznan University of Medical Sciences, Poznan, Poland
- Center for Medical Genetics GENESIS, Poznan, Poland
| | - Maciej Pronicki
- Department of Pathology, The Children's Memorial Health Institute, Warsaw, Poland
| | - Agnieszka Ługowska
- Department of Genetics, Institute of Psychiatry and Neurology, Warsaw, Poland.
| |
Collapse
|
22
|
Sivananthan S, Lee L, Anderson G, Csanyi B, Williams R, Gissen P. Buffy Coat Score as a Biomarker of Treatment Response in Neuronal Ceroid Lipofuscinosis Type 2. Brain Sci 2023; 13:209. [PMID: 36831752 PMCID: PMC9954623 DOI: 10.3390/brainsci13020209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/19/2023] [Accepted: 01/22/2023] [Indexed: 01/28/2023] Open
Abstract
The introduction of intracerebroventricular (ICV) enzyme replacement therapy (ERT) for treatment of neuronal ceroid lipofuscinosis type 2 (CLN2) disease has produced dramatic improvements in disease management. However, assessments of therapeutic effect for ICV ERT are limited to clinical observational measures, namely the CLN2 Clinical Rating Scale, a subjective measure of motor and language performance. There is a need for an objective biomarker to enable assessments of disease progression and response to treatment. To address this, we investigated whether the proportion of cells with abnormal storage inclusions on electron microscopic examination of peripheral blood buffy coats could act as a biomarker of disease activity in CLN2 disease. We conducted a prospective longitudinal analysis of six patients receiving ICV ERT. We demonstrated a substantial and continuing reduction in the proportion of abnormal cells over the course of treatment, whereas symptomatic scores revealed little or no change over time. Here, we proposed the use of the proportion of cells with abnormal storage as a biomarker of response to therapy in CLN2. In the future, as more tissue-specific biomarkers are developed, the buffy coats may form part of a panel of biomarkers in order to give a more holistic view of a complex disease.
Collapse
Affiliation(s)
- Siyamini Sivananthan
- Department of Inherited Metabolic Diseases, Great Ormond Street Hospital, London WC1N 1EH, UK
| | - Laura Lee
- Department of Inherited Metabolic Diseases, Great Ormond Street Hospital, London WC1N 1EH, UK
| | - Glenn Anderson
- Department of Inherited Metabolic Diseases, Great Ormond Street Hospital, London WC1N 1EH, UK
- Institute for Health Research Great Ormond Street Hospital Biomedical Research Centre, University College London, London WC1N 1EH, UK
| | - Barbara Csanyi
- Department of Inherited Metabolic Diseases, Great Ormond Street Hospital, London WC1N 1EH, UK
| | - Ruth Williams
- Department of Children’s Neurosciences, Evelina London Children’s Hospital, London SE1 7EH, UK
| | - Paul Gissen
- Department of Inherited Metabolic Diseases, Great Ormond Street Hospital, London WC1N 1EH, UK
- Institute for Health Research Great Ormond Street Hospital Biomedical Research Centre, University College London, London WC1N 1EH, UK
| |
Collapse
|
23
|
Gomez Limia C, Baird M, Schwartz M, Saxena S, Meyer K, Wein N. Emerging Perspectives on Gene Therapy Delivery for Neurodegenerative and Neuromuscular Disorders. J Pers Med 2022; 12:1979. [PMID: 36556200 PMCID: PMC9788053 DOI: 10.3390/jpm12121979] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/31/2022] [Accepted: 11/07/2022] [Indexed: 12/05/2022] Open
Abstract
Neurodegenerative disorders (NDDs), such as Alzheimer's disease (AD) and Parkinson's Disease (PD), are a group of heterogeneous diseases that mainly affect central nervous system (CNS) functions. A subset of NDDs exhibit CNS dysfunction and muscle degeneration, as observed in Gangliosidosis 1 (GM1) and late stages of PD. Neuromuscular disorders (NMDs) are a group of diseases in which patients show primary progressive muscle weaknesses, including Duchenne Muscular Dystrophy (DMD), Pompe disease, and Spinal Muscular Atrophy (SMA). NDDs and NMDs typically have a genetic component, which affects the physiological functioning of critical cellular processes, leading to pathogenesis. Currently, there is no cure or efficient treatment for most of these diseases. More than 200 clinical trials have been completed or are currently underway in order to establish safety, tolerability, and efficacy of promising gene therapy approaches. Thus, gene therapy-based therapeutics, including viral or non-viral delivery, are very appealing for the treatment of NDDs and NMDs. In particular, adeno-associated viral vectors (AAV) are an attractive option for gene therapy for NDDs and NMDs. However, limitations have been identified after systemic delivery, including the suboptimal capacity of these therapies to traverse the blood-brain barrier (BBB), degradation of the particles during the delivery, high reactivity of the patient's immune system during the treatment, and the potential need for redosing. To circumvent these limitations, several preclinical and clinical studies have suggested intrathecal (IT) delivery to target the CNS and peripheral organs via cerebrospinal fluid (CSF). CSF administration can vastly improve the delivery of small molecules and drugs to the brain and spinal cord as compared to systemic delivery. Here, we review AAV biology and vector design elements, different therapeutic routes of administration, and highlight CSF delivery as an attractive route of administration. We discuss the different aspects of neuromuscular and neurodegenerative diseases, such as pathogenesis, the landscape of mutations, and the biological processes associated with the disease. We also describe the hallmarks of NDDs and NMDs as well as discuss current therapeutic approaches and clinical progress in viral and non-viral gene therapy and enzyme replacement strategies for those diseases.
Collapse
Affiliation(s)
- Cintia Gomez Limia
- Center for Gene Therapy, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Megan Baird
- Center for Gene Therapy, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus, OH 43205, USA
| | - Maura Schwartz
- Center for Gene Therapy, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus, OH 43205, USA
| | - Smita Saxena
- Department of Neurology, Inselspital, 3010 Bern, Switzerland
| | - Kathrin Meyer
- Center for Gene Therapy, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus, OH 43205, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH 43205, USA
| | - Nicolas Wein
- Center for Gene Therapy, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus, OH 43205, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH 43205, USA
| |
Collapse
|
24
|
Ostergaard JR, Nelvagal HR, Cooper JD. Top-down and bottom-up propagation of disease in the neuronal ceroid lipofuscinoses. Front Neurol 2022; 13:1061363. [PMID: 36438942 PMCID: PMC9692088 DOI: 10.3389/fneur.2022.1061363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 10/28/2022] [Indexed: 11/13/2022] Open
Abstract
Background The Neuronal Ceroid Lipofuscinoses (NCLs) may be considered distinct neurodegenerative disorders with separate underlying molecular causes resulting from monogenetic mutations. An alternative hypothesis is to consider the NCLs as related diseases that share lipofuscin pathobiology as the common core feature, but otherwise distinguished by different a) initial anatomic location, and b) disease propagation. Methods We have tested this hypothesis by comparing known differences in symptomatology and pathology of the CLN1 phenotype caused by complete loss of PPT1 function (i.e., the classical infantile form) and of the classical juvenile CLN3 phenotype. These two forms of NCL represent early onset and rapidly progressing vs. late onset and slowly progressing disease modalities respectively. Results Despite displaying similar pathological endpoints, the clinical phenotypes and the evidence of imaging and postmortem studies reveal strikingly different time courses and distributions of disease propagation. Data from CLN1 disease are indicative of disease propagation from the body, with early effects within the spinal cord and subsequently within the brainstem, the cerebral hemispheres, cerebellum and retina. In contrast, the retina appears to be the most vulnerable organ in CLN3, and the site where pathology is first present. Pathology subsequently is present in the occipital connectome of the CLN3 brain, followed by a top-down propagation in which cerebral and cerebellar atrophy in early adolescence is followed by involvement of the peripheral nerves in later adolescence/early twenties, with the extrapyramidal system also affected during this time course. Discussion The propagation of disease in these two NCLs therefore has much in common with the “Brain-first” vs. “Body-first” models of alpha-synuclein propagation in Parkinson's disease. CLN1 disease represents a “Body-first” or bottom-up disease propagation and CLN3 disease having a “Brain-first” and top-down propagation. It is noteworthy that the varied phenotypes of CLN1 disease, whether it starts in infancy (infantile form) or later in childhood (juvenile form), still fit with our proposed hypothesis of a bottom-up disease propagation in CLN1. Likewise, in protracted CLN3 disease, where both cognitive and motor declines are delayed, the initial manifestations of disease are also seen in the outer retinal layers, i.e., identical to classical Juvenile NCL disease.
Collapse
Affiliation(s)
- John R. Ostergaard
- Department of Child and Adolescencet, Centre for Rare Diseases, Aarhus, Denmark
- *Correspondence: John R. Ostergaard
| | - Hemanth R. Nelvagal
- Department of Pediatrics, School of Medicine, Washington University in St Louis, St Louis, MO, United States
- UCL School of Pharmacy, University College London, London, United Kingdom
| | - Jonathan D. Cooper
- Department of Pediatrics, School of Medicine, Washington University in St Louis, St Louis, MO, United States
- Department of Genetics, School of Medicine, Washington University in St Louis, St Louis, MO, United States
- Department of Neurology, School of Medicine, Washington University in St Louis, St Louis, MO, United States
| |
Collapse
|
25
|
Kim WD, Huber RJ. An altered transcriptome underlies cln5-deficiency phenotypes in Dictyostelium discoideum. Front Genet 2022; 13:1045738. [DOI: 10.3389/fgene.2022.1045738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/27/2022] [Indexed: 11/11/2022] Open
Abstract
Mutations in CLN5 cause a subtype of neuronal ceroid lipofuscinosis (NCL) called CLN5 disease. The NCLs, commonly referred to as Batten disease, are a family of neurodegenerative lysosomal storage diseases that affect all ages and ethnicities globally. Previous research showed that CLN5 participates in a variety of cellular processes. However, the precise function of CLN5 in the cell and the pathway(s) regulating its function are not well understood. In the model organism Dictyostelium discoideum, loss of the CLN5 homolog, cln5, impacts various cellular and developmental processes including cell proliferation, cytokinesis, aggregation, cell adhesion, and terminal differentiation. In this study, we used comparative transcriptomics to identify differentially expressed genes underlying cln5-deficiency phenotypes during growth and the early stages of multicellular development. During growth, genes associated with protein ubiquitination/deubiquitination, cell cycle progression, and proteasomal degradation were affected, while genes linked to protein and carbohydrate catabolism were affected during early development. We followed up this analysis by showing that loss of cln5 alters the intracellular and extracellular amounts of proliferation repressors during growth and increases the extracellular amount of conditioned medium factor, which regulates cAMP signalling during the early stages of development. Additionally, cln5- cells displayed increased intracellular and extracellular amounts of discoidin, which is involved in cell-substrate adhesion and migration. Previous work in mammalian models reported altered lysosomal enzyme activity due to mutation or loss of CLN5. Here, we detected altered intracellular activities of various carbohydrate enzymes and cathepsins during cln5- growth and starvation. Notably, cln5- cells displayed reduced β-hexosaminidase activity, which aligns with previous work showing that D. discoideum Cln5 and human CLN5 can cleave the substrate acted upon by β-hexosaminidase. Finally, consistent with the differential expression of genes associated with proteasomal degradation in cln5- cells, we also observed elevated amounts of a proteasome subunit and reduced proteasome 20S activity during cln5- growth and starvation. Overall, this study reveals the impact of cln5-deficiency on gene expression in D. discoideum, provides insight on the genes and proteins that play a role in regulating Cln5-dependent processes, and sheds light on the molecular mechanisms underlying CLN5 disease.
Collapse
|
26
|
Suzuki C, Yamaguchi J, Sanada T, Oliva Trejo JA, Kakuta S, Shibata M, Tanida I, Uchiyama Y. Lack of Cathepsin D in the central nervous system results in microglia and astrocyte activation and the accumulation of proteinopathy-related proteins. Sci Rep 2022; 12:11662. [PMID: 35804072 PMCID: PMC9270453 DOI: 10.1038/s41598-022-15805-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 06/29/2022] [Indexed: 11/09/2022] Open
Abstract
Neuronal ceroid lipofuscinosis is one of many neurodegenerative storage diseases characterized by excessive accumulation of lipofuscins. CLN10 disease, an early infantile neuronal ceroid lipofuscinosis, is associated with a gene that encodes cathepsin D (CtsD), one of the major lysosomal proteases. Whole body CtsD-knockout mice show neurodegenerative phenotypes with the accumulation of lipofuscins in the brain and also show defects in other tissues including intestinal necrosis. To clarify the precise role of CtsD in the central nervous system (CNS), we generated a CNS-specific CtsD-knockout mouse (CtsD-CKO). CtsD-CKO mice were born normally but developed seizures and their growth stunted at around postnatal day 23 ± 1. CtsD-CKO did not exhibit apparent intestinal symptoms as those observed in whole body knockout. Histologically, autofluorescent materials were detected in several areas of the CtsD-CKO mouse's brain, including: thalamus, cerebral cortex, hippocampus, and cerebellum. Expression of ubiquitin and autophagy-associated proteins was also increased, suggesting that the autophagy-lysosome system was impaired. Microglia and astrocytes were activated in the CtsD-CKO thalamus, and inducible nitric oxide synthase (iNOS), an inflammation marker, was increased in the microglia. Interestingly, deposits of proteinopathy-related proteins, phosphorylated α-synuclein, and Tau protein were also increased in the thalamus of CtsD-CKO infant mice. Considering these results, we propose thatt the CtsD-CKO mouse is a useful mouse model to investigate the contribution of cathepsin D to the early phases of neurodegenerative diseases in relation to lipofuscins, proteinopathy-related proteins and activation of microglia and astrocytes.
Collapse
Affiliation(s)
- Chigure Suzuki
- Department of Cellular and Molecular Neuropathology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, 113-8421, Japan.,Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Junji Yamaguchi
- Department of Cellular and Molecular Neuropathology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, 113-8421, Japan.,Laboratory of Morphology and Image Analysis, Biomedical Research Center, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Takahito Sanada
- Department of Cellular and Molecular Neuropathology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Juan Alejandro Oliva Trejo
- Department of Cellular and Molecular Neuropathology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Souichirou Kakuta
- Department of Cellular and Molecular Neuropathology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, 113-8421, Japan.,Laboratory of Morphology and Image Analysis, Biomedical Research Center, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Masahiro Shibata
- Division of Morphological Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima-shi, Kagoshima, 890-8544, Japan
| | - Isei Tanida
- Department of Cellular and Molecular Neuropathology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, 113-8421, Japan.
| | - Yasuo Uchiyama
- Department of Cellular and Molecular Neuropathology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, 113-8421, Japan.
| |
Collapse
|
27
|
Effects of chronic cannabidiol in a mouse model of naturally occurring neuroinflammation, neurodegeneration, and spontaneous seizures. Sci Rep 2022; 12:11286. [PMID: 35789177 PMCID: PMC9253004 DOI: 10.1038/s41598-022-15134-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 06/20/2022] [Indexed: 11/25/2022] Open
Abstract
Cannabidiol (CBD) has gained attention as a therapeutic agent and is purported to have immunomodulatory, neuroprotective, and anti-seizure effects. Here, we determined the effects of chronic CBD administration in a mouse model of CLN1 disease (Cln1-/-) that simultaneously exhibits neuroinflammation, neurodegeneration, and spontaneous seizures. Proteomic analysis showed that putative CBD receptors are expressed at similar levels in the brains of Cln1-/- mice compared to normal animals. Cln1-/- mice received an oral dose (100 mg/kg/day) of CBD for six months and were evaluated for changes in pathological markers of disease and seizures. Chronic cannabidiol administration was well-tolerated, high levels of CBD were detected in the brain, and markers of astrocytosis and microgliosis were reduced. However, CBD had no apparent effect on seizure frequency or neuron survival. These data are consistent with CBD having immunomodulatory effects. It is possible that a higher dose of CBD could also reduce neurodegeneration and seizure frequency.
Collapse
|
28
|
Yap SQ, Kim WD, Huber RJ. Mfsd8 Modulates Growth and the Early Stages of Multicellular Development in Dictyostelium discoideum. Front Cell Dev Biol 2022; 10:930235. [PMID: 35756993 PMCID: PMC9218796 DOI: 10.3389/fcell.2022.930235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 05/23/2022] [Indexed: 11/17/2022] Open
Abstract
MFSD8 is a transmembrane protein that has been reported to transport chloride ions across the lysosomal membrane. Mutations in MFSD8 are associated with a subtype of Batten disease called CLN7 disease. Batten disease encompasses a family of 13 inherited neurodegenerative lysosomal storage diseases collectively referred to as the neuronal ceroid lipofuscinoses (NCLs). Previous work identified an ortholog of human MFSD8 in the social amoeba D. discoideum (gene: mfsd8, protein: Mfsd8), reported its localization to endocytic compartments, and demonstrated its involvement in protein secretion. In this study, we further characterized the effects of mfsd8 loss during D. discoideum growth and early stages of multicellular development. During growth, mfsd8− cells displayed increased rates of proliferation, pinocytosis, and expansion on bacterial lawns. Loss of mfsd8 also increased cell size, inhibited cytokinesis, affected the intracellular and extracellular levels of the quorum-sensing protein autocrine proliferation repressor A, and altered lysosomal enzyme activity. During the early stages of development, loss of mfsd8 delayed aggregation, which we determined was at least partly due to impaired cell-substrate adhesion, defects in protein secretion, and alterations in lysosomal enzyme activity. Overall, these results show that Mfsd8 plays an important role in modulating a variety of processes during the growth and early development of D. discoideum.
Collapse
Affiliation(s)
- Shyong Quan Yap
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, ON, Canada
| | - William D Kim
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, ON, Canada
| | - Robert J Huber
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, ON, Canada.,Department of Biology, Trent University, Peterborough, ON, Canada
| |
Collapse
|
29
|
Natural history of MRI brain volumes in patients with neuronal ceroid lipofuscinosis 3: a sensitive imaging biomarker. Neuroradiology 2022; 64:2059-2067. [PMID: 35699772 PMCID: PMC9474504 DOI: 10.1007/s00234-022-02988-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/25/2022] [Indexed: 11/02/2022]
Abstract
PURPOSE Grey matter (GM) atrophy due to neuronal loss is a striking feature of patients with CLN3 disease. A precise and quantitative description of disease progression is needed in order to establish an evaluation tool for current and future experimental treatments. In order to develop a quantitative marker to measure brain volume outcome, we analysed the longitudinal volumetric development of GM, white matter (WM) and lateral ventricles and correlated those with the clinical course. METHODS One hundred twenty-two MRI scans of 35 patients (21 females; 14 males; age 15.3 ± 4.8 years) with genetically confirmed CLN3 disease were performed. A three-dimensional T1-weighted sequence was acquired with whole brain coverage. Volumetric segmentation of the brain was performed with the FreeSurfer image analysis suite. The clinical severity was assessed by the Hamburg jNCL score, a disease-specific scoring system. RESULTS The volumes of supratentorial cortical GM and supratentorial WM, cerebellar GM, basal ganglia/thalamus and hippocampus significantly (r = - 0.86 to - 0.69, p < 0.0001) decreased with age, while the lateral ventricle volume increased (r = 0.68, p < 0.0001). Supratentorial WM volume correlated poorer with age (r = - 0.56, p = 0.0001). Supratentorial cortical GM volume showed the steepest (4.6% (± 0.2%)) and most uniform decrease with strongest correlation with age (r = - 0.86, p < 0.0001). In addition, a strong correlation with disease specific clinical scoring existed for the supratentorial cortical GM volume (r = 0.85, p = < 0.0001). CONCLUSION Supratentorial cortical GM volume is a sensitive parameter for assessment of disease progression even in early and late disease stages and represents a potential reliable outcome measure for evaluation of experimental therapies.
Collapse
|
30
|
Lopez-Cañizares A, Carletti P, Berrocal AM. Progressive Vision Loss in a Child With Cognitive Impairments. JAMA Ophthalmol 2022; 140:827-828. [PMID: 35653149 DOI: 10.1001/jamaophthalmol.2022.1015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
31
|
Recent Insight into the Genetic Basis, Clinical Features, and Diagnostic Methods for Neuronal Ceroid Lipofuscinosis. Int J Mol Sci 2022; 23:ijms23105729. [PMID: 35628533 PMCID: PMC9145894 DOI: 10.3390/ijms23105729] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/15/2022] [Accepted: 05/17/2022] [Indexed: 11/17/2022] Open
Abstract
Neuronal ceroid lipofuscinoses (NCLs) are a group of rare, inherited, neurodegenerative lysosomal storage disorders that affect children and adults. They are traditionally grouped together, based on shared clinical symptoms and pathological ground. To date, 13 autosomal recessive gene variants, as well as one autosomal dominant gene variant, of NCL have been described. These genes encode a variety of proteins, whose functions have not been fully defined; most are lysosomal enzymes, transmembrane proteins of the lysosome, or other organelles. Common symptoms of NCLs include the progressive loss of vision, mental and motor deterioration, epileptic seizures, premature death, and, in rare adult-onset cases, dementia. Depending on the mutation, these symptoms can vary, with respect to the severity and onset of symptoms by age. Currently, all forms of NCL are fatal, and no curative treatments are available. Herein, we provide an overview to summarize the current knowledge regarding the pathophysiology, genetics, and clinical manifestation of these conditions, as well as the approach to diagnosis.
Collapse
|
32
|
Li W, Cologna SM. Mass spectrometry-based proteomics in neurodegenerative lysosomal storage disorders. Mol Omics 2022; 18:256-278. [PMID: 35343995 PMCID: PMC9098683 DOI: 10.1039/d2mo00004k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The major function of the lysosome is to degrade unwanted materials such as lipids, proteins, and nucleic acids; therefore, deficits of the lysosomal system can result in improper degradation and trafficking of these biomolecules. Diseases associated with lysosomal failure can be lethal and are termed lysosomal storage disorders (LSDs), which affect 1 in 5000 live births collectively. LSDs are inherited metabolic diseases caused by mutations in single lysosomal and non-lysosomal proteins and resulting in the subsequent accumulation of macromolecules within. Most LSD patients present with neurodegenerative clinical symptoms, as well as damage in other organs. The discovery of new biomarkers is necessary to understand and monitor these diseases and to track therapeutic progress. Over the past ten years, mass spectrometry (MS)-based proteomics has flourished in the biomarker studies in many diseases, including neurodegenerative, and more specifically, LSDs. In this review, biomarkers of disease pathophysiology and monitoring of LSDs revealed by MS-based proteomics are discussed, including examples from Niemann-Pick disease type C, Fabry disease, neuronal ceroid-lipofuscinoses, mucopolysaccharidosis, Krabbe disease, mucolipidosis, and Gaucher disease.
Collapse
Affiliation(s)
- Wenping Li
- Department of Chemistry, University of Illinois at Chicago, USA.
| | | |
Collapse
|
33
|
Bartsch U, Storch S. Experimental Therapeutic Approaches for the Treatment of Retinal Pathology in Neuronal Ceroid Lipofuscinoses. Front Neurol 2022; 13:866983. [PMID: 35509995 PMCID: PMC9058077 DOI: 10.3389/fneur.2022.866983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/17/2022] [Indexed: 11/13/2022] Open
Abstract
The neuronal ceroid lipofuscinoses (NCLs) are a group of childhood-onset neurodegenerative lysosomal storage disorders mainly affecting the brain and the retina. In the NCLs, disease-causing mutations in 13 different ceroid lipofuscinoses genes (CLN) have been identified. The clinical symptoms include seizures, progressive neurological decline, deterioration of motor and language skills, and dementia resulting in premature death. In addition, the deterioration and loss of vision caused by progressive retinal degeneration is another major hallmark of NCLs. To date, there is no curative therapy for the treatment of retinal degeneration and vision loss in patients with NCL. In this review, the key findings of different experimental approaches in NCL animal models aimed at attenuating progressive retinal degeneration and the decline in retinal function are discussed. Different approaches, including experimental enzyme replacement therapy, gene therapy, cell-based therapy, and immunomodulation therapy were evaluated and showed encouraging therapeutic benefits. Recent experimental ocular gene therapies in NCL animal models with soluble lysosomal enzyme deficiencies and transmembrane protein deficiencies have shown the strong potential of gene-based approaches to treat retinal dystrophies in NCLs. In CLN3 and CLN6 mouse models, an adeno-associated virus (AAV) vector-mediated delivery of CLN3 and CLN6 to bipolar cells has been shown to attenuate the retinal dysfunction. Therapeutic benefits of ocular enzyme replacement therapies were evaluated in CLN2 and CLN10 animal models. Since brain-targeted gene or enzyme replacement therapies will most likely not attenuate retinal neurodegeneration, there is an unmet need for treatment options additionally targeting the retina in patients with NCL. The long-term benefits of these therapeutic interventions aimed at attenuating retinal degeneration and vision loss in patients with NCL remain to be investigated in future clinical studies.
Collapse
Affiliation(s)
- Udo Bartsch
- Department of Ophthalmology, Experimental Ophthalmology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stephan Storch
- University Children's Research@Kinder-UKE, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- *Correspondence: Stephan Storch
| |
Collapse
|
34
|
Simonati A, Williams RE. Neuronal Ceroid Lipofuscinosis: The Multifaceted Approach to the Clinical Issues, an Overview. Front Neurol 2022; 13:811686. [PMID: 35359645 PMCID: PMC8961688 DOI: 10.3389/fneur.2022.811686] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/11/2022] [Indexed: 01/04/2023] Open
Abstract
The main aim of this review is to summarize the current state-of-art in the field of childhood Neuronal Ceroid Lipofuscinosis (NCL), a group of rare neurodegenerative disorders. These are genetic diseases associated with the formation of toxic endo-lysosomal storage. Following a brief historical review of the evolution of NCL definition, a clinically-oriented approach is used describing how the early symptoms and signs affecting motor, visual, cognitive domains, and including seizures, may lead clinicians to a rapid molecular diagnosis, avoiding the long diagnostic odyssey commonly observed. We go on to focus on recent advances in NCL research and summarize contributions to knowledge of the pathogenic mechanisms underlying NCL. We describe the large variety of experimental models which have aided this research, as well as the most recent technological developments which have shed light on the main mechanisms involved in the cellular pathology, such as apoptosis and autophagy. The search for innovative therapies is described. Translation of experimental data into therapeutic approaches is being established for several of the NCLs, and one drug is now commercially available. Lastly, we show the importance of palliative care and symptomatic treatments which are still the main therapeutic interventions.
Collapse
Affiliation(s)
- Alessandro Simonati
- Departments of Surgery, Dentistry, Paediatrics, and Gynaecology, School of Medicine, University of Verona, Verona, Italy
- Department of Clinical Neuroscience, AOUI-VR, Verona, Italy
- *Correspondence: Alessandro Simonati
| | - Ruth E. Williams
- Department of Children's Neuroscience, Evelina London Children's Hospital, London, United Kingdom
- Ruth E. Williams
| |
Collapse
|
35
|
Brodsky MC, Drack A. Bilateral visual loss, behavioral changes, and overlooking in a young child with stargardt disease: Neurodiagnostic considerations. Am J Ophthalmol Case Rep 2022; 25:101307. [PMID: 35112029 PMCID: PMC8790276 DOI: 10.1016/j.ajoc.2022.101307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 01/18/2022] [Indexed: 11/28/2022] Open
Affiliation(s)
- Michael C. Brodsky
- Mayo Clinic Department of Ophthalmology and Neurology, USA
- Corresponding author. Department of Ophthalmology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA.
| | - Arlene Drack
- University of Iowa and the University of Iowa Institute for Vision Research, USA
| |
Collapse
|
36
|
Nickel M, Schulz A. Natural History Studies in NCL and Their Expanding Role in Drug Development: Experiences From CLN2 Disease and Relevance for Clinical Trials. Front Neurol 2022; 13:785841. [PMID: 35211079 PMCID: PMC8861081 DOI: 10.3389/fneur.2022.785841] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/10/2022] [Indexed: 11/18/2022] Open
Abstract
Conducting clinical trials in rare diseases is challenging. In trials that aim to use natural history control cohorts for evaluation of efficacy, lack of data on natural history of disease prolongs development of future therapies significantly. Therefore, collection of valid natural history data in clinical settings is needed to advance drug development. These data need to fulfill requirements on type of collection, quantifiable measures on the course of disease, verification and monitoring as well as compliance to strict data protection and sharing policies. Disease registries can be a source for patient data. Late-infantile CLN2 disease is characterized by rapid psychomotor decline and epilepsy. Natural-history data of 140 genotype-confirmed CLN2 patients from two independent, international cohorts were analyzed in a natural history study. Both datasets included quantitative ratings with disease-specific clinical scores. Among 41 patients for whom longitudinal assessments spanning an extended disease course were available within the DEM-CHILD DB (an international NCL disease patient database, NCT04613089), a rapid loss of motor and language abilities was documented in quantitative detail. Data showed that the course of disease in late-infantile CLN2 disease is highly predictable with regard to the loss of language and motor function and that the results were homogeneous across multiple and international sites. These data were accepted by EMA and FDA as valid natural-history controls for the evaluation of efficacy in experimental therapies for CLN2 disease and led to an expedited approval of intracerebroventricular enzyme replacement therapy with cerliponase alpha in May 2017.
Collapse
Affiliation(s)
- Miriam Nickel
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Angela Schulz
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
37
|
Trivisano M, Ferretti A, Calabrese C, Pietrafusa N, Piscitello L, Carfi' Pavia G, Vigevano F, Specchio N. Neurophysiological Findings in Neuronal Ceroid Lipofuscinoses. Front Neurol 2022; 13:845877. [PMID: 35280270 PMCID: PMC8916234 DOI: 10.3389/fneur.2022.845877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 01/20/2022] [Indexed: 11/19/2022] Open
Abstract
Neuronal ceroid lipofuscinoses (NCLs) are a heterogeneous group of neurodegenerative diseases, characterized by progressive cerebral atrophy due to lysosomal storage disorder. Common clinical features include epileptic seizures, progressive cognitive and motor decline, and visual failure, which occur over different time courses according to subtypes. During the latest years, many advances have been done in the field of targeted treatments, and in the next future, gene therapies and enzyme replacement treatments may be available for several NCL variants. Considering that there is rapid disease progression in NCLs, an early diagnosis is crucial, and neurophysiological features might have a key role for this purpose. Across the different subtypes of NCLs, electroencephalogram (EEG) is characterized by a progressive deterioration of cerebral activity with slowing of background activity and disappearance of spindles during sleep. Some types of heterogeneous abnormalities, diffuse or focal, prevalent over temporal and occipital regions, are described in many NCL variants. Photoparoxysmal response to low-frequency intermittent photic stimulation (IPS) is a typical EEG finding, mostly described in CLN2, CLN5, and CLN6 diseases. Visual evoked potentials (VEPs) allow to monitor the visual functions, and the lack of response at electroretinogram (ERG) reflects retinal neurodegeneration. Taken together, EEG, VEPs, and ERG may represent essential tools toward an early diagnosis of NCLs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Nicola Specchio
- Rare and Complex Epilepsy Unit, Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, Full Member of European Reference Network EpiCARE, Rome, Italy
| |
Collapse
|
38
|
Kim WD, Wilson-Smillie MLDM, Thanabalasingam A, Lefrancois S, Cotman SL, Huber RJ. Autophagy in the Neuronal Ceroid Lipofuscinoses (Batten Disease). Front Cell Dev Biol 2022; 10:812728. [PMID: 35252181 PMCID: PMC8888908 DOI: 10.3389/fcell.2022.812728] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/24/2022] [Indexed: 12/22/2022] Open
Abstract
The neuronal ceroid lipofuscinoses (NCLs), also referred to as Batten disease, are a family of neurodegenerative diseases that affect all age groups and ethnicities around the globe. At least a dozen NCL subtypes have been identified that are each linked to a mutation in a distinct ceroid lipofuscinosis neuronal (CLN) gene. Mutations in CLN genes cause the accumulation of autofluorescent lipoprotein aggregates, called ceroid lipofuscin, in neurons and other cell types outside the central nervous system. The mechanisms regulating the accumulation of this material are not entirely known. The CLN genes encode cytosolic, lysosomal, and integral membrane proteins that are associated with a variety of cellular processes, and accumulated evidence suggests they participate in shared or convergent biological pathways. Research across a variety of non-mammalian and mammalian model systems clearly supports an effect of CLN gene mutations on autophagy, suggesting that autophagy plays an essential role in the development and progression of the NCLs. In this review, we summarize research linking the autophagy pathway to the NCLs to guide future work that further elucidates the contribution of altered autophagy to NCL pathology.
Collapse
Affiliation(s)
- William D. Kim
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, ON, Canada
| | | | - Aruban Thanabalasingam
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, ON, Canada
| | - Stephane Lefrancois
- Centre Armand-Frappier Santé Biotechnologie, Institut National de La Recherche Scientifique, Laval, QC, Canada
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
- Centre D'Excellence en Recherche sur Les Maladies Orphelines–Fondation Courtois (CERMO-FC), Université Du Québec à Montréal (UQAM), Montréal, QC, Canada
| | - Susan L. Cotman
- Department of Neurology, Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Harvard Medical School, Boston, MA, United States
| | - Robert J. Huber
- Department of Biology, Trent University, Peterborough, ON, Canada
| |
Collapse
|
39
|
Qiao Y, Gu Y, Cheng Y, Su Y, Lv N, Shang Q, Xing Q. Case Report: Novel MFSD8 Variants in a Chinese Family With Neuronal Ceroid Lipofuscinoses 7. Front Genet 2022; 13:807515. [PMID: 35154277 PMCID: PMC8826235 DOI: 10.3389/fgene.2022.807515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/06/2022] [Indexed: 11/24/2022] Open
Abstract
Neuronal ceroid lipofuscinoses (NCLs) are among the most common progressive encephalopathies of childhood. Neuronal ceroid lipofuscinosis 7 (CLN7), one of the late infantile-onset NCLs, is an autosomal recessive disorder caused by mutations in the MFSD8 gene on chromosome 4q28. Almost all reported mutations of MFSD8 in CLN7 patients were SNVs. However, we report a 4-year-old boy with CLN7 harboring compound heterozygous mutations in the MFSD8 gene, including one novel two-nucleotide deletion c.136_137delAT (p. M46Vfs*22) and one whole gene deletion of MFSD8 confirmed by Sanger sequencing, genomic quantitative PCR and CNV-seq. Therefore, for nonconsanguineous CLN7 patients with homozygous mutations in the MFSD8 gene, genetic counseling staff should focus on the possibility of whole gene deletion. This is one case report describing a whole gene deletion in a Chinese patient with CLN7, suggesting the diagnosis of CLN7 should be based on clinical suspicion and genetic testing.
Collapse
Affiliation(s)
- Yimeng Qiao
- Institutes of Biomedical Sciences and Children's Hospital, Fudan University, Shanghai, China
| | - Yang Gu
- Children's Hospital of Zhengzhou University and Henan Children's Hospital, Zhengzhou, China
| | - Ye Cheng
- Institutes of Biomedical Sciences and Children's Hospital, Fudan University, Shanghai, China
| | - Yu Su
- Institutes of Biomedical Sciences and Children's Hospital, Fudan University, Shanghai, China
| | - Nan Lv
- Children's Hospital of Zhengzhou University and Henan Children's Hospital, Zhengzhou, China
| | - Qing Shang
- Children's Hospital of Zhengzhou University and Henan Children's Hospital, Zhengzhou, China
| | - Qinghe Xing
- Institutes of Biomedical Sciences and Children's Hospital, Fudan University, Shanghai, China.,Shanghai Center for Women and Children's Health, Shanghai, China
| |
Collapse
|
40
|
Storey CL, Williams RSB, Fisher PR, Annesley SJ. Dictyostelium discoideum: A Model System for Neurological Disorders. Cells 2022; 11:cells11030463. [PMID: 35159273 PMCID: PMC8833889 DOI: 10.3390/cells11030463] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/23/2022] [Accepted: 01/24/2022] [Indexed: 12/14/2022] Open
Abstract
Background: The incidence of neurological disorders is increasing due to population growth and extended life expectancy. Despite advances in the understanding of these disorders, curative strategies for treatment have not yet eventuated. In part, this is due to the complexities of the disorders and a lack of identification of their specific underlying pathologies. Dictyostelium discoideum has provided a useful, simple model to aid in unraveling the complex pathological characteristics of neurological disorders including Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, neuronal ceroid lipofuscinoses and lissencephaly. In addition, D. discoideum has proven to be an innovative model for pharmaceutical research in the neurological field. Scope of review: This review describes the contributions of D. discoideum in the field of neurological research. The continued exploration of proteins implicated in neurological disorders in D. discoideum may elucidate their pathological roles and fast-track curative therapeutics.
Collapse
Affiliation(s)
- Claire Louise Storey
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Bundoora 3086, Australia; (C.L.S.); (P.R.F.)
| | - Robin Simon Brooke Williams
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London, Egham TW20 0EX, UK;
| | - Paul Robert Fisher
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Bundoora 3086, Australia; (C.L.S.); (P.R.F.)
| | - Sarah Jane Annesley
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Bundoora 3086, Australia; (C.L.S.); (P.R.F.)
- Correspondence: ; Tel.: +61-394-791-412
| |
Collapse
|
41
|
Liu J, Bassal M, Schlichting S, Braren I, Di Spiezio A, Saftig P, Bartsch U. Intravitreal gene therapy restores the autophagy-lysosomal pathway and attenuates retinal degeneration in cathepsin D-deficient mice. Neurobiol Dis 2022; 164:105628. [PMID: 35033660 DOI: 10.1016/j.nbd.2022.105628] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/07/2022] [Accepted: 01/10/2022] [Indexed: 11/16/2022] Open
Abstract
Loss of vision due to progressive retinal degeneration is a hallmark of neuronal ceroid lipofuscinoses (NCL), a group of fatal neurodegenerative lysosomal storage diseases. Enzyme substitution therapies represent promising treatment options for NCLs caused by dysfunctions of soluble lysosomal enzymes. Here, we compared the efficacy of a cell-based enzyme substitution strategy and a gene therapy approach to attenuate the retinal pathology in cathepsin D- (CTSD) deficient mice, an animal model of CLN10 disease. Levels of enzymatically active CTSD in mutant retinas were significantly higher after an adeno-associated virus vector-mediated CTSD transfer to retinal glial cells and retinal pigment epithelial cells than after intravitreal transplantations of a CTSD overexpressing clonal neural stem cell line. In line with this finding, the gene therapy treatment restored the disrupted autophagy-lysosomal pathway more effectively than the cell-based approach, as indicated by a complete clearance of storage, significant attenuation of lysosomal hypertrophy, and normalized levels of the autophagy marker sequestosome 1/p62 and microtubule-associated protein 1 light chain 3-II. While the cell-based treatment did not prevent the rapidly progressing loss of various retinal cell types, the gene therapy approach markedly attenuated retinal degeneration as demonstrated by a pronounced rescue of photoreceptor cells and rod bipolar cells.
Collapse
Affiliation(s)
- Junling Liu
- Department of Ophthalmology, Experimental Ophthalmology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Mahmoud Bassal
- Department of Ophthalmology, Experimental Ophthalmology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Stefanie Schlichting
- Department of Ophthalmology, Experimental Ophthalmology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Ingke Braren
- Vector Facility, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | | | - Paul Saftig
- Institute of Biochemistry, Christian-Albrechts-University Kiel, 24118 Kiel, Germany
| | - Udo Bartsch
- Department of Ophthalmology, Experimental Ophthalmology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| |
Collapse
|
42
|
Nicolaou P, Tanteles GA, Votsi C, Zamba-Papanicolaou E, Papacostas SS, Christodoulou K, Christou YP. A Novel CLN6 Variant Associated With Juvenile Neuronal Ceroid Lipofuscinosis in Patients With Absence of Visual Loss as a Presenting Feature. Front Genet 2021; 12:746101. [PMID: 34868216 PMCID: PMC8640139 DOI: 10.3389/fgene.2021.746101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 10/05/2021] [Indexed: 11/13/2022] Open
Abstract
The neuronal ceroid lipofuscinoses (NCLs), also known as Batten disease, are a group of autosomal recessive lysosomal storage disorders that are characterized by neurodegeneration, progressive cognitive decline, motor impairment, ataxia, loss of vision, seizures, and premature death. To date, pathogenic variants in more than 13 genes have been associated with NCLs. CLN6 encodes an endoplasmic reticulum non-glycosylated transmembrane protein, which is involved in lysosomal acidification. Mutations in CLN6 cause late-infantile juvenile NCL (JNCL) adult-onset NCL, and Kufs disease. Members from two available families with JNCL were clinically evaluated, and samples were collected from consenting individuals. The molecular investigation was performed by whole-exome sequencing, Sanger sequencing, and family segregation analysis. Furthermore, in silico prediction analysis and structural modeling of the identified CLN6 variants were performed. We report clinical and genetic findings of three patients from two Greek-Cypriot families (families 915 and 926) with JNCL. All patients were males, and the first symptoms appeared at the age of 6 years. The proband of family 926 presented with loss of motor abilities, ataxia, spasticity, seizure, and epilepsy. The proband of family 915 had ataxia, spasticity, dysarthria, dystonia, and intellectual disability. Both probands did not show initial signs of vision and/or hearing loss. Molecular analysis of family 926 revealed two CLN6 biallelic variants: the novel, de novo p.Tyr295Cys and the known p.Arg136His variants. In family 915, both patients were homozygous for the p.Arg136His CLN6 variant. Prediction analysis of the two CLN6 variants characterized them as probably damaging and disease-causing. Structural modeling of the variants predicted that they probably cause protein structural differentiation. In conclusion, we describe two unrelated Cypriot families with JNCL. Both families had variants in the CLN6 gene; however, they presented with slightly different symptoms, and notably none of the patients has loss of vision. In silico prediction and structural analyses indicate that both variants are most likely pathogenic.
Collapse
Affiliation(s)
- Paschalis Nicolaou
- Department of Neurogenetics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus.,Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - George A Tanteles
- Department of Clinical Genetics and Genomics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus.,Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Christina Votsi
- Department of Neurogenetics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus.,Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Eleni Zamba-Papanicolaou
- Department of Neuroepidemiology, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus.,Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Savvas S Papacostas
- Department of Neurobiology, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus.,Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Kyproula Christodoulou
- Department of Neurogenetics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus.,Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Yiolanda-Panayiota Christou
- Department of Neurobiology, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus.,Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| |
Collapse
|
43
|
Ostergaard JR. Gait phenotype in Batten disease: A marker of disease progression. Eur J Paediatr Neurol 2021; 35:1-7. [PMID: 34547583 DOI: 10.1016/j.ejpn.2021.09.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 08/03/2021] [Accepted: 09/06/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND Gait impairment and its etiologic correlate has not previously been subject of special attention in Batten disease. METHODS In the present review, the clinical picture of gait phenotype during Batten disease course accompanied by descriptions of the known concomitant patho-anatomical changes is presented. RESULTS In CLN1 a non-rhythmic gait is seen around 1-1½ years of age. Shortly after, postural hypotonia and exaggerated tendon reflexes develop. The disease reaches a burnt-out stage during the third year of age and subsequently the children are almost without voluntary movements. The existing literature indicates that gait phenotype in CLN1 is caused by early involvement of the spinal interneurons followed by impact of the cortex and the cortico-spinal tracts. The earliest walking abnormality in children with CLN2 is a clumsy, ataxic, and spastic gait, which is in accordance with the existing imaging and histologic studies showing early involvement of the cerebellum and the cortico-spinal pathways. In CLN3, a reduction in walking speed is present at the age of 7-8 years. It occurs simultaneously with a reduction in the white matter microstructure and brain connectivity networks. Functional impairment of the basal ganglia contributing to a parkinsonian gait phenotype occurs in the mid-teens. In the late teens and early twenties involvement of the peripheral nerves, neurogenic musculoskeletal atrophy, loss of tendon reflexes and postural control are seen. CONCLUSION The progressively impaired gait function in Batten disease is related to timing of damage of distinct areas of the nervous system depending on subtype and is a powerful marker of disease progression.
Collapse
Affiliation(s)
- John R Ostergaard
- Centre for Rare Diseases, Department of Children & Youth, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, DK-8200, Aarhus N, Denmark.
| |
Collapse
|
44
|
Chartier S, Boutaud L, Le Guillou E, Alby C, Billon C, Millischer AE, Caillaud C, Galmiche L, Mechler C, Sonigo P, Boddaert N, Lyonnet S, Rondeau S, Bole-Feysot C, Masson C, Ville Y, Roth P, Desguerre I, Encha-Razavi F, Attie-Bitach T. Prenatal-onset of congenital neuronal ceroid lipofuscinosis with a novel CTSD mutation. Birth Defects Res 2021; 113:1324-1332. [PMID: 34491000 DOI: 10.1002/bdr2.1950] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 08/04/2021] [Accepted: 08/15/2021] [Indexed: 12/26/2022]
Abstract
BACKGROUND Neuronal ceroid lipofuscinoses (NCLs) form a clinically and genetically heterogeneous group of inherited neurodegenerative disorders that share common neuropathological features. Although they are the first cause of neurodegenerative disorders in children, their congenital forms are rarely documented. They are classically due to mutations in the CTSD gene (the CLN10 disease). Affected newborns usually present severe microcephaly, seizures and respiratory failure leading to death within the first postnatal days or weeks. CASES We report on two siblings, in which exome sequencing identified a novel homozygous CTSD variant. The first sib presented at birth with seizures, rapidly progressive postnatal microcephaly and visual deficiency related to retinal dysfunction. Progressive neurological deterioration leads to death at the age of 24 months. Cathepsin D activity was reduced in the cultured fibroblasts of this patient. The second sib, a fetus of 36 weeks of gestation, was delivered after pregnancy termination for brain abnormalities (in accordance with French Legislation) suggesting a recurrence of the disease. Fetal postmortem examination disclosed neuropathological features consistent with NCL. CONCLUSIONS Congenital NCL related to CTSD mutations is a neuronal storage disorder that produces in the developing brain diffuse neurodegeneration and white matter atrophy resulting in a progressive and rapidly lethal microcephaly.
Collapse
Affiliation(s)
- Suzanne Chartier
- Unité d'Embryofœtopathologie, Hôpital Necker-Enfants Malades, AP-HP.Centre, Paris, France
| | - Lucile Boutaud
- Unité d'Embryofœtopathologie, Hôpital Necker-Enfants Malades, AP-HP.Centre, Paris, France.,Université de Paris, Imagine Institute, INSERM UMR 1163, Paris, France
| | - Edouard Le Guillou
- Service de Biochimie Métabolique, Hôpital Necker-Enfants Malades, AP-HP.Centre, Paris, France.,Université de Paris, Institut Necker Enfants Malades INSERM U1151, Paris, France
| | - Caroline Alby
- Service de Génétique Moléculaire, Hôpital Necker-Enfants Malades, AP-HP.Centre, Paris, France
| | - Clarisse Billon
- Unité d'Embryofœtopathologie, Hôpital Necker-Enfants Malades, AP-HP.Centre, Paris, France.,Département de Génétique, Hôpital Européen Georges Pompidou, APHP, Paris, France
| | - Anne-Elodie Millischer
- Service de Radiologie Pédiatrique, Hôpital Necker-Enfants Malades, AP-HP.Centre, Paris, France
| | - Catherine Caillaud
- Service de Biochimie Métabolique, Hôpital Necker-Enfants Malades, AP-HP.Centre, Paris, France.,Université de Paris, Institut Necker Enfants Malades INSERM U1151, Paris, France
| | - Louise Galmiche
- Service d'Anatomo-pathologie, Hôpital Necker-Enfants Malades, AP-HP.Centre, Paris, France
| | - Charlotte Mechler
- Service de Fœtopathologie, Hôpital Robert Debré, AP-HP, Paris, France
| | - Pascale Sonigo
- Service de Radiologie Pédiatrique, Hôpital Necker-Enfants Malades, AP-HP.Centre, Paris, France
| | - Nathalie Boddaert
- Service de Radiologie Pédiatrique, Hôpital Necker-Enfants Malades, AP-HP.Centre, Paris, France
| | - Stanislas Lyonnet
- Université de Paris, Imagine Institute, INSERM UMR 1163, Paris, France
| | - Sophie Rondeau
- Service de Génétique Moléculaire, Hôpital Necker-Enfants Malades, AP-HP.Centre, Paris, France
| | - Christine Bole-Feysot
- Plateforme de Génomique, Université de Paris, Imagine Institute, INSERM UMR 1163, Paris, France
| | - Cécile Masson
- Plateforme de Bioinformatique, Structure Fédérative de Recherche Necker, INSERM UMR1163, Université de Paris, Imagine Institute, Paris, France
| | - Yves Ville
- Université de Paris, Imagine Institute, INSERM UMR 1163, Paris, France.,Service d'Obstétrique, Maternité, Chirurgie, Médecine et Imagerie Fœtales, Hôpital Necker-Enfants Malades, AP-HP.Centre, Paris, France
| | - Philippe Roth
- Université de Paris, Imagine Institute, INSERM UMR 1163, Paris, France.,Service d'Obstétrique, Maternité, Chirurgie, Médecine et Imagerie Fœtales, Hôpital Necker-Enfants Malades, AP-HP.Centre, Paris, France
| | - Isabelle Desguerre
- Université de Paris, Imagine Institute, INSERM UMR 1163, Paris, France.,Service de Neurologie Pédiatrique, Hôpital Necker-Enfants Malades, AP-HP.Centre, Paris, France
| | - Férechté Encha-Razavi
- Unité d'Embryofœtopathologie, Hôpital Necker-Enfants Malades, AP-HP.Centre, Paris, France
| | - Tania Attie-Bitach
- Unité d'Embryofœtopathologie, Hôpital Necker-Enfants Malades, AP-HP.Centre, Paris, France.,Université de Paris, Imagine Institute, INSERM UMR 1163, Paris, France
| |
Collapse
|
45
|
Augustine EF, Adams HR, de Los Reyes E, Drago K, Frazier M, Guelbert N, Laine M, Levin T, Mink JW, Nickel M, Peifer D, Schulz A, Simonati A, Topcu M, Turunen JA, Williams R, Wirrell EC, King S. Management of CLN1 Disease: International Clinical Consensus. Pediatr Neurol 2021; 120:38-51. [PMID: 34000449 DOI: 10.1016/j.pediatrneurol.2021.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 04/01/2021] [Accepted: 04/04/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND CLN1 disease (neuronal ceroid lipofuscinosis type 1) is a rare, genetic, neurodegenerative lysosomal storage disorder caused by palmitoyl-protein thioesterase 1 (PPT1) enzyme deficiency. Clinical features include developmental delay, psychomotor regression, seizures, ataxia, movement disorders, visual impairment, and early death. In general, the later the age at symptom onset, the more protracted the disease course. We sought to evaluate current evidence and to develop expert practice consensus to support clinicians who have not previously encountered patients with this rare disease. METHODS We searched the literature for guidelines and evidence to support clinical practice recommendations. We surveyed CLN1 disease experts and caregivers regarding their experiences and recommendations, and a meeting of experts was conducted to ascertain points of consensus and clinical practice differences. RESULTS We found a limited evidence base for treatment and no clinical management guidelines specific to CLN1 disease. Fifteen CLN1 disease experts and 39 caregivers responded to the surveys, and 14 experts met to develop consensus-based recommendations. The resulting management recommendations are uniquely informed by family perspectives, due to the inclusion of caregiver and advocate perspectives. A family-centered approach is supported, and individualized, multidisciplinary care is emphasized in the recommendations. Ascertainment of the specific CLN1 disease phenotype (infantile-, late infantile-, juvenile-, or adult-onset) is of key importance in informing the anticipated clinical course, prognosis, and care needs. Goals and strategies should be periodically reevaluated and adapted to patients' current needs, with a primary aim of optimizing patient and family quality of life.
Collapse
Affiliation(s)
- Erika F Augustine
- Department of Neurology and Neurogenetics, Kennedy Krieger Institute, Baltimore, Maryland; Departments of Neurology and Pediatrics, University of Rochester School of Medicine and Dentistry, Rochester, New York.
| | - Heather R Adams
- Departments of Neurology and Pediatrics, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Emily de Los Reyes
- Department of Pediatrics and Neurology, Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio
| | | | | | - Norberto Guelbert
- Metabolic Diseases Section, Children's Hospital of Cordoba, Cordoba, Argentina
| | - Minna Laine
- Department of Pediatric Neurology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Tanya Levin
- Medical Writing Consultant, Atlanta, Georgia
| | - Jonathan W Mink
- Departments of Neurology, Neuroscience, and Pediatrics, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Miriam Nickel
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Angela Schulz
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alessandro Simonati
- Department of Surgery, Dentistry, Paediatrics and Gynaecology, University of Verona School of Medicine, Verona, Italy
| | - Meral Topcu
- Professor Emeritus, Department of Pediatric Neurology, Hacettepe University, Ankara, Turkey
| | - Joni A Turunen
- Department of Ophthalmology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Ruth Williams
- Children's Neurosciences Centre, Evelina London Children's Hospital, London, United Kingdom
| | - Elaine C Wirrell
- Divisions of Epilepsy and Child and Adolescent Neurology, Department of Neurology, Mayo Clinic, Rochester, Minnesota
| | | |
Collapse
|
46
|
Singh RB, Gupta P, Kartik A, Farooqui N, Singhal S, Shergill S, Singh KP, Agarwal A. Ocular Manifestations of Neuronal Ceroid Lipofuscinoses. Semin Ophthalmol 2021; 36:582-595. [PMID: 34106804 DOI: 10.1080/08820538.2021.1936571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Neuronal ceroid lipofuscinoses (NCLs) are a group of rare neurodegenerative storage disorders associated with devastating visual prognosis, with an incidence of 1/1,000,000 in the United States and comparatively higher incidence in European countries. The pathophysiological mechanisms causing NCLs occur due to enzymatic or transmembrane defects in various sub-cellular organelles including lysosomes, endoplasmic reticulum, and cytoplasmic vesicles. NCLs are categorized into different types depending upon the underlying cause i.e., soluble lysosomal enzyme deficiencies or non-enzymatic deficiencies (functions of identified proteins), which are sub-divided based on an axial classification system. In this review, we have evaluated the current evidence in the literature and reported the incidence rates, underlying mechanisms and currently available management protocols for these rare set of neuroophthalmological disorders. Additionally, we also highlighted the potential therapies under development that can expand the treatment of these rare disorders beyond symptomatic relief.
Collapse
Affiliation(s)
- Rohan Bir Singh
- Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA.,Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
| | - Prakash Gupta
- Department of Internal Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Akash Kartik
- Department of Hepatobiliary and Pancreatic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Naba Farooqui
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Sachi Singhal
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Sukhman Shergill
- Department of Anesthesiology, Yale-New Haven Hospital, New Haven, CT, USA
| | - Kanwar Partap Singh
- Department of Ophthalmology, Dayanand Medical College & Hospital, Ludhiana, India
| | - Aniruddha Agarwal
- Eye Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates
| |
Collapse
|
47
|
Schaefers J, van der Giessen LJ, Klees C, Jacobs EH, Sieverdink S, Dremmen MHG, Spoor JKH, van der Ploeg AT, van den Hout JMP, Huidekoper HH. Presymptomatic treatment of classic late-infantile neuronal ceroid lipofuscinosis with cerliponase alfa. Orphanet J Rare Dis 2021; 16:221. [PMID: 33990214 PMCID: PMC8120778 DOI: 10.1186/s13023-021-01858-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/06/2021] [Indexed: 11/30/2022] Open
Abstract
Background Neuronal ceroid lipofuscinosis type 2 (CLN2 disease) is a rare rapidly progressive neurodegenerative disorder, resulting in early death. Intracerebroventricular enzyme replacement therapy (ERT) with cerliponase alfa is now available and has shown to delay disease progression in symptomatic patients. It is yet unknown if cerliponase alfa can prevent disease onset in presymptomatic patients. Results We evaluated the effect of 2 years of intracerebroventricular ERT in two siblings with CLN2 disease, one symptomatic (age 47 months) and one presymptomatic (age 23 months) at treatment start, using the CLN2 Clinical Rating Scale (CLN2 CRS), Gross Motor Function Measure-66 (GMFM-66) for motor function, Bayley Scales of Infant and Toddler Development, 3rd Edition, Dutch (BSID-III-NL) for neurocognitive development, brain MRI, and visual evoked potentials (VEP), electroretinogram (ERG) and retinoscopy for visual function. On the CLN2 CRS patient 1 showed a decline from 3 to 2 in the combined motor and language score due to regression in language use (CLN2 CRS total score after 2 years of treatment: 8), whereas a decline of 2 or more points in the combined motor and language score would be expected without treatment. Patient 2 retained the maximum score of 3 in all 4 subdomains (CLN2 CRS total score after 2 years of treatment: 12). The GMFM-66 total score declined from 46 to 39 in patient 1 and showed an age-appropriate increase from 66 to 84 in patient 2. Cognitive-developmental age decreased from 24 to 11 months in patient 1, whereas an increase in cognitive-developmental age from 21 to 39 months was seen in patient 2. Cerebral and cerebellar atrophy observed on MRI in patient 1 at age 42 months (before treatment) was not observed in patient 2 at age 48 months (after 2 years of treatment). Conclusion We show that cerliponase alfa is able to delay the onset of symptoms when treatment is started in a presymptomatic stage of CLN2 disease. Our results advocate the start of treatment at an early age before symptom onset, but should be confirmed in a larger cohort study.
Collapse
Affiliation(s)
- J Schaefers
- Department of Pediatrics, Center for Lysosomal and Metabolic Diseases, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - L J van der Giessen
- Department of Pediatric Physiotherapy, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - C Klees
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - E H Jacobs
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - S Sieverdink
- Department of Pediatrics, Center for Lysosomal and Metabolic Diseases, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - M H G Dremmen
- Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - J K H Spoor
- Department of Pediatric Neurosurgery, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - A T van der Ploeg
- Department of Pediatrics, Center for Lysosomal and Metabolic Diseases, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - J M P van den Hout
- Department of Pediatrics, Center for Lysosomal and Metabolic Diseases, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - H H Huidekoper
- Department of Pediatrics, Center for Lysosomal and Metabolic Diseases, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, 3000 CA, Rotterdam, The Netherlands.
| |
Collapse
|
48
|
Wibbeler E, Wang R, Reyes EDL, Specchio N, Gissen P, Guelbert N, Nickel M, Schwering C, Lehwald L, Trivisano M, Lee L, Amato G, Cohen-Pfeffer J, Shediac R, Leal-Pardinas F, Schulz A. Cerliponase Alfa for the Treatment of Atypical Phenotypes of CLN2 Disease: A Retrospective Case Series. J Child Neurol 2021; 36:468-474. [PMID: 33356800 PMCID: PMC8027928 DOI: 10.1177/0883073820977997] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND The classic phenotype of CLN2 disease (neuronal ceroid lipofuscinosis type 2) typically manifests between ages 2 and 4 years with a predictable clinical course marked by epilepsy, language developmental delay, and rapid psychomotor decline. Atypical phenotypes exhibit variable time of onset, symptomatology, and/or progression. Intracerebroventricular-administered cerliponase alfa (rhTPP1 enzyme) has been shown to stabilize motor and language function loss in patients with classic CLN2 disease, but its impact on individuals with atypical phenotypes has not been described. METHODS A chart review was conducted of 14 patients (8 male, 6 female) with atypical CLN2 phenotypes who received cerliponase alfa. Pre- and posttreatment CLN2 Clinical Rating Scale Motor and Language (ML) domain scores were compared. RESULTS Median age at first presenting symptom was 5.9 years. First reported symptoms were language abnormalities (6 [43%] patients), seizures (4 [29%]), ataxia/language abnormalities (3 [21%]), and ataxia alone (1 [7%]). Median age at diagnosis was 10.8 years. ML score declined before treatment in 13 (93%) patients. Median age at treatment initiation was 11.7 years; treatment duration ranged from 11 to 58 months. From treatment start, ML score remained stable in 11 patients (treatment duration 11-43 months), improved 1 point in 1 patient after 13 months, and declined 1 point in 2 patients after 15 and 58 months, respectively. There were 13 device-related infections in 8 patients (57%) and 10 hypersensitivity reactions in 6 (43%). CONCLUSIONS Cerliponase alfa is well tolerated and has the potential to stabilize motor and language function in patients with atypical phenotypes of CLN2 disease.
Collapse
Affiliation(s)
- Eva Wibbeler
- University Medical Center Hamburg-Eppendorf, Children’s Hospital, Hamburg, Germany
| | - Raymond Wang
- CHOC Children’s Specialists, Orange, CA, USA,University of California-Irvine School of Medicine, Irvine, CA, USA
| | - Emily de los Reyes
- Nationwide Children Hospital Columbus Ohio, Ohio State University, Columbus, OH, USA
| | | | - Paul Gissen
- The NIHR Great Ormond Street Hospital, Biomedical Research Centre, London, UK
| | - Norberto Guelbert
- Hospital de Niños de la Santísima Trinidad [Holy Trinity Children’s Hospital], Cordoba, Argentina
| | - Miriam Nickel
- University Medical Center Hamburg-Eppendorf, Children’s Hospital, Hamburg, Germany
| | - Christoph Schwering
- University Medical Center Hamburg-Eppendorf, Children’s Hospital, Hamburg, Germany
| | - Lenora Lehwald
- Nationwide Children Hospital Columbus Ohio, Ohio State University, Columbus, OH, USA
| | | | - Laura Lee
- The NIHR Great Ormond Street Hospital, Biomedical Research Centre, London, UK
| | | | | | | | | | - Angela Schulz
- University Medical Center Hamburg-Eppendorf, Children’s Hospital, Hamburg, Germany,Angela Schulz, MD, PhD, Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246 Hamburg, Germany.
| |
Collapse
|
49
|
Mole SE, Schulz A, Badoe E, Berkovic SF, de Los Reyes EC, Dulz S, Gissen P, Guelbert N, Lourenco CM, Mason HL, Mink JW, Murphy N, Nickel M, Olaya JE, Scarpa M, Scheffer IE, Simonati A, Specchio N, Von Löbbecke I, Wang RY, Williams RE. Guidelines on the diagnosis, clinical assessments, treatment and management for CLN2 disease patients. Orphanet J Rare Dis 2021; 16:185. [PMID: 33882967 PMCID: PMC8059011 DOI: 10.1186/s13023-021-01813-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 04/06/2021] [Indexed: 11/28/2022] Open
Abstract
Background CLN2 disease (Neuronal Ceroid Lipofuscinosis Type 2) is an ultra-rare, neurodegenerative lysosomal storage disease, caused by an enzyme deficiency of tripeptidyl peptidase 1 (TPP1). Lack of disease awareness and the non-specificity of presenting symptoms often leads to delayed diagnosis. These guidelines provide robust evidence-based, expert-agreed recommendations on the risks/benefits of disease-modifying treatments and the medical interventions used to manage this condition. Methods An expert mapping tool process was developed ranking multidisciplinary professionals, with knowledge of CLN2 disease, diagnostic or management experience of CLN2 disease, or family support professionals. Individuals were sequentially approached to identify two chairs, ensuring that the process was transparent and unbiased. A systematic literature review of published evidence using Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidance was independently and simultaneously conducted to develop key statements based upon the strength of the publications. Clinical care statements formed the basis of an international modified Delphi consensus determination process using the virtual meeting (Within3) online platform which requested experts to agree or disagree with any changes. Statements reaching the consensus mark became the guiding statements within this manuscript, which were subsequently assessed against the Appraisal of Guidelines for Research and Evaluation (AGREEII) criteria. Results Twenty-one international experts from 7 different specialities, including a patient advocate, were identified. Fifty-three guideline statements were developed covering 13 domains: General Description and Statements, Diagnostics, Clinical Recommendations and Management, Assessments, Interventions and Treatment, Additional Care Considerations, Social Care Considerations, Pain Management, Epilepsy / Seizures, Nutritional Care Interventions, Respiratory Health, Sleep and Rest, and End of Life Care. Consensus was reached after a single round of voting, with one exception which was revised, and agreed by 100% of the SC and achieved 80% consensus in the second voting round. The overall AGREE II assessment score obtained for the development of the guidelines was 5.7 (where 1 represents the lowest quality, and 7 represents the highest quality). Conclusion This program provides robust evidence- and consensus-driven guidelines that can be used by all healthcare professionals involved in the management of patients with CLN2 disease and other neurodegenerative disorders. This addresses the clinical need to complement other information available. Supplementary Information The online version contains supplementary material available at 10.1186/s13023-021-01813-5.
Collapse
Affiliation(s)
| | - Angela Schulz
- Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Eben Badoe
- Korle Bu Teaching Hospital, University of Ghana Medical School, Accra, Ghana
| | - Samuel F Berkovic
- Austin Health Victoria, University of Melbourne, Heidelberg, VIC, Australia
| | | | - Simon Dulz
- Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Paul Gissen
- University College London, London, UK.,NIHR Great Ormond Street Hospital Biomedical Research Centre, London, UK
| | | | - Charles M Lourenco
- Universidade de São Paulo Faculdade de Medicina de Ribeirão Preto, Riberirao Preto, Brazil
| | | | - Jonathan W Mink
- Golisano Childrens' Hospital, University of Rochester Medical Center, Rochester, NY, USA
| | - Noreen Murphy
- Batten Disease Support and Research Association (BDSRA), Columbus, OH, USA
| | - Miriam Nickel
- Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Joffre E Olaya
- Children's Hospital of Orange County, Orange County, CA, USA
| | - Maurizio Scarpa
- Regional Coordinating Center for Rare Diseases, University Hospital Udine, Udine, Italy
| | - Ingrid E Scheffer
- Austin Health Victoria, University of Melbourne, Heidelberg, VIC, Australia.,Royal Children's Hospital, Florey and Murdoch Children's Research Institutes, Melbourne, Australia
| | - Alessandro Simonati
- Department of Surgery, Dentistry, Paediatrics and Gynaecology, University of Verona School of Medicine, Verona, Italy
| | | | | | - Raymond Y Wang
- Children's Hospital of Orange County, Orange County, CA, USA
| | | |
Collapse
|
50
|
Lourenço CM, Pessoa A, Mendes CC, Rivera‐Nieto C, Vergara D, Troncoso M, Gardner E, Mallorens F, Tavera L, Lizcano LA, Atanacio N, Guelbert N, Specola N, Mancilla N, de Souza CFM, Mole SE. Revealing the clinical phenotype of atypical neuronal ceroid lipofuscinosis type 2 disease: Insights from the largest cohort in the world. J Paediatr Child Health 2021; 57:519-525. [PMID: 33377563 PMCID: PMC8049023 DOI: 10.1111/jpc.15250] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/20/2020] [Accepted: 10/04/2020] [Indexed: 01/04/2023]
Abstract
AIM Neuronal ceroid lipofuscinosis type 2 (CLN2) disease is an autosomal recessive inherited neurodegenerative lysosomal storage disorder caused by deficient tripeptidyl peptidase 1 (TPP1) enzyme, leading to progressive deterioration of neurological functions commonly occurring in children aged 2-4 years and culminating in early death. Atypical cases associated with earlier or later symptom onset, or even protracted course, have already been reported. Such variable manifestations may constitute an additional challenge to early diagnosis and initiation of appropriate treatment. The present work aimed to analyse clinical data from a cohort of Latin American CLN2 patients with atypical phenotypes. METHODS Experts in inborn errors of metabolism from Latin America selected patients from their centres who were deemed by the clinicians to have atypical forms of CLN2, according to the current literature on this topic and their practical experience. Clinical and genetic data from the medical records were retrospectively revised. All cases were presented and analysed by these experts at an Advisory Board Meeting in São Paulo, Brazil, in October 2018. RESULTS Seizures, language abnormalities and behavioural disorders were found as the first manifestations, appearing at the median age of 6 years, an older age than classically described for the late infantile form. Three novel mutations were also identified. CONCLUSION Our findings reinforce the inclusion of CLN2 in the differential diagnosis of children presenting with seizures, behavioural disorders and language abnormalities. Early diagnosis will allow early initiation of specific therapy.
Collapse
Affiliation(s)
- Charles M Lourenço
- School of MedicineEstácio University CenterRibeirão PretoSão PauloBrazil
| | - Andre Pessoa
- Pediatric Neurology Service, Albert Sabin Children's HospitalUniversity of Ceará StateFortalezaCearáBrazil
| | - Carmen C Mendes
- Reference Center in Inborn Errors of Metabolism, Department of PediatricsUniversidade Federal de São PauloSão PauloBrazil
| | | | - Diane Vergara
- Service of Children Neuropsychiatry, San Borja Arriarán HospitalSchool of Medicine of the University of ChileSantiagoChile
| | - Mónica Troncoso
- Service of Children Neuropsychiatry, San Borja Arriarán HospitalSchool of Medicine of the University of ChileSantiagoChile
| | - Emily Gardner
- UCL MRC Laboratory for Molecular Cell BiologyUniversity College LondonLondonUnited Kingdom
| | - Francisca Mallorens
- Medical Genetics SectionHospital Nacional Prof. A. PosadasBuenos AiresArgentina
| | | | | | - Nora Atanacio
- Dr. N.A Chamoles LaboratoryPedro de Elizalde Children's HospitalBuenos AiresArgentina
| | - Norberto Guelbert
- Metabolic Disease SectionCorboda Children's HospitalBuenos AiresArgentina
| | - Norma Specola
- Metabolic UnitChildren Hospital of La PlataBuenos AiresArgentina
| | - Nury Mancilla
- Department of PaediatricsNational University of ColombiaBogotáColombia
| | | | - Sara E Mole
- UCL MRC Laboratory for Molecular Cell Biology and UCL Great Ormond Street Institute of Child HealthUniversity College LondonLondonUnited Kingdom
| |
Collapse
|