1
|
Azamor T, Familiar-Macedo D, Salem GM, Onwubueke C, Melano I, Bian L, Vasconcelos Z, Nielsen-Saines K, Wu X, Jung JU, Lin F, Goje O, Chien E, Gordon S, Foster CB, Aly H, Farrell RM, Chen W, Foo SS. Transplacental SARS-CoV-2 protein ORF8 binds to complement C1q to trigger fetal inflammation. EMBO J 2024:10.1038/s44318-024-00260-9. [PMID: 39390219 DOI: 10.1038/s44318-024-00260-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 09/08/2024] [Accepted: 09/12/2024] [Indexed: 10/12/2024] Open
Abstract
Prenatal SARS-CoV-2 infection is associated with higher rates of pregnancy and birth complications, despite that vertical transmission rates are thought to be low. Here, multi-omics analyses of human placental tissues, cord tissues/plasma, and amniotic fluid from 23 COVID-19 mother-infant pairs revealed robust inflammatory responses in both maternal and fetal compartments. Pronounced expression of complement proteins (C1q, C3, C3b, C4, C5) and inflammatory cytokines (TNF, IL-1α, and IL-17A/E) was detected in the fetal compartment of COVID-19-affected pregnancies. While ~26% of fetal tissues were positive for SARS-CoV-2 RNA, more than 60% of fetal tissues contained SARS-CoV-2 ORF8 proteins, suggesting transplacental transfer of this viral accessory protein. ORF8-positive fetal compartments exhibited increased inflammation and complement activation compared to ORF8-negative COVID-19 pregnancies. In human placental trophoblasts in vitro, exogenous ORF8 exposure resulted in complement activation and inflammatory responses. Co-immunoprecipitation analysis demonstrated that ORF8 binds to C1q specifically by interacting with a 15-peptide region on ORF8 (C37-A51) and the globular domain of C1q subunit A. In conclusion, an ORF8-C1q-dependent complement activation pathway was identified in COVID-19-affected pregnancies, likely contributing to fetal inflammation independently of fetal virus exposure.
Collapse
Grants
- R00DE028573 HHS | NIH | National Institute of Dental and Craniofacial Research (NIDR)
- R01DE033391 HHS | NIH | National Institute of Dental and Craniofacial Research (NIDR)
- R01AI140705,R01AI140718,R01AI116585,AI140718,AI172252 HHS | National Institutes of Health (NIH)
- AI129534,AI298847,AI140718,AI172252,AI140718,AI172252 HHS | National Institutes of Health (NIH)
- R01 AI140718 NIAID NIH HHS
- RES515531 Clinical and Translational Science Center, Weill Cornell Medicine (CTSC)
- R56 AI172252 NIAID NIH HHS
Collapse
Affiliation(s)
- Tamiris Azamor
- Infection Biology Program, Global Center for Pathogen Research and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Débora Familiar-Macedo
- Infection Biology Program, Global Center for Pathogen Research and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Gielenny M Salem
- Infection Biology Program, Global Center for Pathogen Research and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Chineme Onwubueke
- Infection Biology Program, Global Center for Pathogen Research and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA
| | - Ivonne Melano
- Infection Biology Program, Global Center for Pathogen Research and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Lu Bian
- Infection Biology Program, Global Center for Pathogen Research and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | | | - Karin Nielsen-Saines
- Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
- Department of Medicine, Division of Infectious Diseases, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Xianfang Wu
- Infection Biology Program, Global Center for Pathogen Research and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA
| | - Jae U Jung
- Infection Biology Program, Global Center for Pathogen Research and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Feng Lin
- Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Oluwatosin Goje
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Edward Chien
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Steve Gordon
- Section of Pediatric Infectious Diseases, Children's Institute, Cleveland Clinic Children's, Cleveland Clinic, Cleveland, OH, USA
| | - Charles B Foster
- Section of Pediatric Infectious Diseases, Children's Institute, Cleveland Clinic Children's, Cleveland Clinic, Cleveland, OH, USA
| | - Hany Aly
- Cleveland Clinic Children's, Cleveland Clinic, Cleveland, OH, USA
| | - Ruth M Farrell
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Institute, Cleveland Clinic, Cleveland, OH, USA.
| | - Weiqiang Chen
- Infection Biology Program, Global Center for Pathogen Research and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA.
| | - Suan-Sin Foo
- Infection Biology Program, Global Center for Pathogen Research and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
2
|
Madani J, Aghebati-Maleki L, Gharibeh N, Pourakbari R, Yousefi M. Fetus, as an allograft, evades the maternal immunity. Transpl Immunol 2022; 75:101728. [DOI: 10.1016/j.trim.2022.101728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 10/09/2022] [Accepted: 10/09/2022] [Indexed: 11/05/2022]
|
3
|
Ramanjaneya M, Diboun I, Rizwana N, Dajani Y, Ahmed L, Butler AE, Almarzooqi TA, Shahata M, Al Bader MK, Elgassim E, Burjaq H, Atkin SL, Abou-Samra AB, Elrayess MA. Elevated Adipsin and Reduced C5a Levels in the Maternal Serum and Follicular Fluid During Implantation Are Associated With Successful Pregnancy in Obese Women. Front Endocrinol (Lausanne) 2022; 13:918320. [PMID: 35909516 PMCID: PMC9326155 DOI: 10.3389/fendo.2022.918320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
INTRODUCTION Complement factors mediate the recruitment and activation of immune cells and are associated with metabolic changes during pregnancy. The aim of this study was to determine whether complement factors in the maternal serum and follicular fluid (FF) are associated with in vitro fertilization (IVF) outcomes in overweight/obese women. METHODS Forty overweight/obese (BMI = 30.8 ± 5.2 kg/m2) female patients, 33.6 ± 6.3 years old, undergoing IVF treatment for unexplained infertility were recruited. Baseline demographic information, including biochemical hormonal, metabolic, and inflammatory markers, and pregnancy outcome, was collected. Levels of 14 complement markers (C2, C4b, C5, C5a, C9, adipsin, mannose-binding lectin, C1q, C3, C3b/iC3b, C4, factor B, factor H, and properdin) were assessed in the serum and FF and compared to IVF outcome, inflammatory, and metabolic markers using multivariate and univariate models. RESULTS Out of 40 IVF cycles, 14 (35%) resulted in pregnancy. Compared to women with failed pregnancies, women with successful pregnancies had higher levels of adipsin in the serum and FF (p = 0.01) but lower C5a levels (p = 0.05). Serum adipsin levels were positively correlated with circulating levels of vitamin D (R = 0.5, p = 0.02), glucagon (R = 0.4, p = 0.03), leptin (R = 0.4, p = 0.01), resistin (R = 0.4, p = 0.02), and visfatin (R = 0.4, p = 0.02), but negatively correlated with total protein (R = -0.5, p = 0.03). Higher numbers of top-quality embryos were associated with increased levels of C3, properdin, C1q, factors H and B, C4, and adipsin, but with reduced C2 and C5a levels (p ≤ 0.01). CONCLUSIONS Higher adipsin and lower C5a levels in the maternal serum during implantation are potential markers of successful outcome in obese women undergoing IVF-assisted pregnancies.
Collapse
Affiliation(s)
- Manjunath Ramanjaneya
- Qatar Metabolic Institute, Hamad Medical Corporation, Doha, Qatar
- Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | | | - Najeha Rizwana
- Biomedical Research Center (BRC), Qatar University, Doha, Qatar
| | | | | | | | - Thoraya Ali Almarzooqi
- Obstetrics and Gynecology Department, Women’s Hospital, Hamad Medical Corporation, Doha, Qatar
| | - Mohammed Shahata
- Obstetrics and Gynecology Department, Women’s Hospital, Hamad Medical Corporation, Doha, Qatar
| | - Moza Khalaf Al Bader
- Obstetrics and Gynecology Department, Women’s Hospital, Hamad Medical Corporation, Doha, Qatar
| | | | - Hasan Burjaq
- Obstetrics and Gynecology Department, Women’s Hospital, Hamad Medical Corporation, Doha, Qatar
| | | | | | - Mohamed A. Elrayess
- Biomedical Research Center (BRC), Qatar University, Doha, Qatar
- QU Health, Qatar University, Doha, Qatar
- *Correspondence: Mohamed A. Elrayess,
| |
Collapse
|
4
|
Leifsdottir K, Jost K, Siljehav V, Thelin EP, Lassarén P, Nilsson P, Haraldsson Á, Eksborg S, Herlenius E. The cerebrospinal fluid proteome of preterm infants predicts neurodevelopmental outcome. Front Pediatr 2022; 10:921444. [PMID: 35928685 PMCID: PMC9343678 DOI: 10.3389/fped.2022.921444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/29/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Survival rate increases for preterm infants, but long-term neurodevelopmental outcome predictors are lacking. Our primary aim was to determine whether a specific proteomic profile in cerebrospinal fluid (CSF) of preterm infants differs from that of term infants and to identify novel biomarkers of neurodevelopmental outcome in preterm infants. METHODS Twenty-seven preterm infants with median gestational age 27 w + 4 d and ten full-term infants were enrolled prospectively. Protein profiling of CSF were performed utilizing an antibody suspension bead array. The relative levels of 178 unique brain derived proteins and inflammatory mediators, selected from the Human Protein Atlas, were measured. RESULTS The CSF protein profile of preterm infants differed from that of term infants. Increased levels of brain specific proteins that are associated with neurodevelopment and neuroinflammatory pathways made up a distinct protein profile in the preterm infants. The most significant differences were seen in proteins involved in neurodevelopmental regulation and synaptic plasticity, as well as components of the innate immune system. Several proteins correlated with favorable outcome in preterm infants at 18-24 months corrected age. Among the proteins that provided strong predictors of outcome were vascular endothelial growth factor C, Neurocan core protein and seizure protein 6, all highly important in normal brain development. CONCLUSION Our data suggest a vulnerability of the preterm brain to postnatal events and that alterations in protein levels may contribute to unfavorable neurodevelopmental outcome.
Collapse
Affiliation(s)
- Kristin Leifsdottir
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.,Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden.,The Children's Hospital of Iceland, Reykjavik, Iceland
| | - Kerstin Jost
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.,Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Veronica Siljehav
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.,Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Eric P Thelin
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden.,Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Philipp Lassarén
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Peter Nilsson
- SciLifeLab, Department of Protein Science, KTH Royal Institute of Technology, Solna, Sweden
| | | | - Staffan Eksborg
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.,Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Eric Herlenius
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.,Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
5
|
Ferrer-Oliveras R, Mendoza M, Capote S, Pratcorona L, Esteve-Valverde E, Cabero-Roura L, Alijotas-Reig J. Immunological and physiopathological approach of COVID-19 in pregnancy. Arch Gynecol Obstet 2021; 304:39-57. [PMID: 33945026 PMCID: PMC8093597 DOI: 10.1007/s00404-021-06061-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 03/31/2021] [Indexed: 12/18/2022]
Abstract
Coronavirus disease-2019 (COVID-19) related to Coronavirus-2 (SARS-CoV-2) is a worldwide health concern. Despite the majority of patients will evolve asymptomatic or mild-moderate upper respiratory tract infections, 20% will develop severe disease. Based on current pathogenetic knowledge, a severe COVID-19 form is mainly a hyperinflammatory, immune-mediated disorder, triggered by a viral infection. Due to their particular immunological features, pregnant women are supposed to be particularly susceptible to complicate by intracellular infections as well as immunological disturbances. As an example, immune-thrombosis has been identified as a common immune-mediated and pathogenic phenomenon both in COVID-19, in obstetric diseases and in COVID-19 pregnant women. According to extensive published clinical data, is rationale to expect an interference with the normal development of pregnancy in selected SARS-CoV-2-infected cases, mainly during third trimester.This manuscript provides insights of research to elucidate the potential harmful responses to SARS-CoV-2 and /or other coronavirus infections, as well as bidirectional interactions between COVID-19 and pregnancy to improve their respective management.
Collapse
Affiliation(s)
- Raquel Ferrer-Oliveras
- Department of Obstetrics and Gynaecology, Hospital Universitari Quironsalud Barcelona, Barcelona, Catalonia, Spain.
| | - Manel Mendoza
- Maternal Fetal Medicine Unit, Department of Obstetrics, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain
| | - Sira Capote
- Department of Obstetrics and Gynaecology, Hospital Universitari Quironsalud Barcelona, Barcelona, Catalonia, Spain
| | - Laia Pratcorona
- Department of Obstetrics, Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain
| | - Enrique Esteve-Valverde
- Department of Internal Medicine, Althaia Network Health. Manresa, Barcelona, Spain
- Universitat Central de Catalunya, Barcelona, Catalonia, Spain
| | - Lluis Cabero-Roura
- Department of Obstetrics and Gynaecology, Hospital Universitari Quironsalud Barcelona, Barcelona, Catalonia, Spain
- Prof. Emeritus of Obsterics and Gynaecology, Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain
| | - Jaume Alijotas-Reig
- Systemic Autoimmune Diseases Unit. Department of Internal Medicine-1, Vall d' Hebron University Hospital, Barcelona, Spain.
- Systemic Autoimmune Research Unit, Vall d'Hebron Reseacrh Institute, Barcelona, Spain.
- Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain.
| |
Collapse
|
6
|
Sang YJ, Wang Q, Zheng F, Hua Y, Wang XY, Zhang JZ, Li K, Wang HQ, Zhao Y, Zhu MS, Sun HX, Li CJ. Ggps1 deficiency in the uterus results in dystocia by disrupting uterine contraction. J Mol Cell Biol 2020; 13:116-127. [PMID: 33340314 PMCID: PMC8104943 DOI: 10.1093/jmcb/mjaa066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 08/28/2020] [Accepted: 09/18/2020] [Indexed: 12/01/2022] Open
Abstract
Dystocia is a serious problem for pregnant women, and it increases the cesarean section rate. Although uterine dysfunction has an unknown etiology, it is responsible for cesarean delivery and clinical dystocia, resulting in neonatal morbidity and mortality; thus, there is an urgent need for novel therapeutic agents. Previous studies indicated that statins, which inhibit the mevalonate (MVA) pathway of cholesterol synthesis, can reduce the incidence of preterm birth, but the safety of statins for pregnant women has not been thoroughly evaluated. Therefore, to unambiguously examine the function of the MVA pathway in pregnancy and delivery, we employed a genetic approach by using myometrial cell-specific deletion of geranylgeranyl pyrophosphate synthase (Ggps1) mice. We found that Ggps1 deficiency in myometrial cells caused impaired uterine contractions, resulting in disrupted embryonic placing and dystocia. Studies of the underlying mechanism suggested that Ggps1 is required for uterine contractions to ensure successful parturition by regulating RhoA prenylation to activate the RhoA/Rock2/p-MLC pathway. Our work indicates that perturbing the MVA pathway might result in problems during delivery for pregnant females, but modifying protein prenylation with supplementary farnesyl pyrophosphate or geranylgeranyl pyrophosphate might be a strategy to avoid side effects.
Collapse
Affiliation(s)
- Yong-Juan Sang
- State Key Laboratory of Pharmaceutical Biotechnology, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing University, Nanjing 210093, China
| | - Qiang Wang
- Department of Neurosurgery, Jingling Hospital, School of Medicine, Nanjing University, Nanjing 210002, China
| | - Feng Zheng
- State Key Laboratory of Pharmaceutical Biotechnology, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing University, Nanjing 210093, China
| | - Yue Hua
- State Key Laboratory of Pharmaceutical Biotechnology, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing University, Nanjing 210093, China
| | - Xin-Ying Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing University, Nanjing 210093, China
| | - Jing-Zi Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing University, Nanjing 210093, China
| | - Kang Li
- State Key Laboratory of Pharmaceutical Biotechnology, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing University, Nanjing 210093, China
| | - Hai-Quan Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing University, Nanjing 210093, China
| | - Yue Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing University, Nanjing 210093, China
| | - Min-Sheng Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing University, Nanjing 210093, China
| | - Hai-Xiang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing University, Nanjing 210093, China
| | - Chao-Jun Li
- State Key Laboratory of Pharmaceutical Biotechnology, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing University, Nanjing 210093, China
| |
Collapse
|
7
|
Girardi G, Lingo JJ, Fleming SD, Regal JF. Essential Role of Complement in Pregnancy: From Implantation to Parturition and Beyond. Front Immunol 2020; 11:1681. [PMID: 32849586 PMCID: PMC7411130 DOI: 10.3389/fimmu.2020.01681] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 06/23/2020] [Indexed: 12/12/2022] Open
Abstract
The complement cascade was identified over 100 years ago, yet investigation of its role in pregnancy remains an area of intense research. Complement inhibitors at the maternal-fetal interface prevent inappropriate complement activation to protect the fetus. However, this versatile proteolytic cascade also favorably influences numerous stages of pregnancy, including implantation, fetal development, and labor. Inappropriate complement activation in pregnancy can have adverse lifelong sequelae for both mother and child. This review summarizes the current understanding of complement activation during all stages of pregnancy. In addition, consequences of complement dysregulation during adverse pregnancy outcomes from miscarriage, preeclampsia, and pre-term birth are examined. Finally, future research directions into complement activation during pregnancy are considered.
Collapse
Affiliation(s)
- Guillermina Girardi
- Department of Basic Medical Sciences, College of Medicine, Member of QU Health, Qatar University, Doha, Qatar
| | - Joshua J Lingo
- Division of Biology, Kansas State University, Manhattan, KS, United States
| | - Sherry D Fleming
- Division of Biology, Kansas State University, Manhattan, KS, United States
| | - Jean F Regal
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, United States
| |
Collapse
|
8
|
Magdalon J, Mansur F, Teles E Silva AL, de Goes VA, Reiner O, Sertié AL. Complement System in Brain Architecture and Neurodevelopmental Disorders. Front Neurosci 2020; 14:23. [PMID: 32116493 PMCID: PMC7015047 DOI: 10.3389/fnins.2020.00023] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 01/10/2020] [Indexed: 01/18/2023] Open
Abstract
Current evidence indicates that certain immune molecules such as components of the complement system are directly involved in neurobiological processes related to brain development, including neurogenesis, neuronal migration, synaptic remodeling, and response to prenatal or early postnatal brain insults. Consequently, complement system dysfunction has been increasingly implicated in disorders of neurodevelopmental origin, such as schizophrenia, autism spectrum disorder (ASD) and Rett syndrome. However, the mechanistic evidence for a causal relationship between impaired complement regulation and these disorders varies depending on the disease involved. Also, it is still unclear to what extent altered complement expression plays a role in these disorders through inflammation-independent or -dependent mechanisms. Furthermore, pathogenic mutations in specific complement components have been implicated in the etiology of 3MC syndrome, a rare autosomal recessive developmental disorder. The aims of this review are to discuss the current knowledge on the roles of the complement system in sculpting brain architecture and function during normal development as well as after specific inflammatory insults, such as maternal immune activation (MIA) during pregnancy, and to evaluate the existing evidence associating aberrant complement with developmental brain disorders.
Collapse
Affiliation(s)
- Juliana Magdalon
- Center for Experimental Research, Hospital Israelita Albert Einstein, São Paulo, Brazil.,School of Medicine, Faculdade Israelita de Ciências da Saúde Albert Einstein, São Paulo, Brazil
| | - Fernanda Mansur
- Center for Experimental Research, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - André Luiz Teles E Silva
- Center for Experimental Research, Hospital Israelita Albert Einstein, São Paulo, Brazil.,Department of Genetics and Evolutionary Biology, University of São Paulo, São Paulo, Brazil
| | - Vitor Abreu de Goes
- Center for Experimental Research, Hospital Israelita Albert Einstein, São Paulo, Brazil.,School of Medicine, Faculdade Israelita de Ciências da Saúde Albert Einstein, São Paulo, Brazil
| | - Orly Reiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Andréa Laurato Sertié
- Center for Experimental Research, Hospital Israelita Albert Einstein, São Paulo, Brazil
| |
Collapse
|
9
|
Galindo-Sevilla N, Reyes-Arroyo F, Mancilla-Ramírez J. The role of complement in preterm birth and prematurity. J Perinat Med 2019; 47:793-803. [PMID: 31494635 DOI: 10.1515/jpm-2019-0175] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 08/14/2019] [Indexed: 12/17/2022]
Abstract
Complications of preterm birth (PTB) are the global leading cause of death in children younger than 5 years of age. Almost 15 million children are born prematurely in the world each year. Increasing evidence suggests that labor and delivery have many hallmarks of an inflammatory reaction, where complement activation has an active participation. As one of the most important components of inflammation, the role of complement during labor and PTB is becoming an attractive research target. The complement components C1q and C5b-9 are deposited on fetal membranes and release inflammatory mediators that contribute to uterine contractions, cervical ripening, cell chemotaxis, metalloproteinases production, membrane awaking and rupture, and it participates as a co-adjuvant in the onset and progress of labor. This article reviews a basic description of the complement system, its role in preterm birth and current concepts regarding its contribution in novel therapy strategies and new biomarkers.
Collapse
Affiliation(s)
- Norma Galindo-Sevilla
- Departamento de Infectología e Inmunología, Instituto Nacional de Perinatología, Secretaría de Salud, Mexico City 11000, Mexico
| | - Frida Reyes-Arroyo
- Departamento de Infectología e Inmunología, Instituto Nacional de Perinatología, Secretaría de Salud, Mexico City 11000, Mexico
- Servicio Social en Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Javier Mancilla-Ramírez
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico
- Hospital de la Mujer, Secretaría de Salud, Salvador Díaz Mirón esq, Plan de San Luis S/N, Casco de Santo Tomás, Miguel Hidalgo, Mexico City 11340, Mexico
| |
Collapse
|
10
|
The role of maternal immune activation in altering the neurodevelopmental trajectories of offspring: A translational review of neuroimaging studies with implications for autism spectrum disorder and schizophrenia. Neurosci Biobehav Rev 2019; 104:141-157. [DOI: 10.1016/j.neubiorev.2019.06.020] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/24/2019] [Accepted: 06/13/2019] [Indexed: 02/01/2023]
|
11
|
Boyle AK, Rinaldi SF, Rossi AG, Saunders PTK, Norman JE. Repurposing simvastatin as a therapy for preterm labor: evidence from preclinical models. FASEB J 2018; 33:2743-2758. [PMID: 30312114 PMCID: PMC6338657 DOI: 10.1096/fj.201801104r] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Preterm birth (PTB), the leading cause of neonatal morbidity and mortality, urgently requires novel therapeutic agents. Spontaneous PTB, resulting from preterm labor, is commonly caused by intrauterine infection/inflammation. Statins are well-established, cholesterol-lowering drugs that can reduce inflammation and inhibit vascular smooth muscle contraction. We show that simvastatin reduced the incidence of PTB in a validated intrauterine LPS-induced PTB mouse model, decreased uterine proinflammatory mRNA concentrations (IL-6, Cxcl1, and Ccl2), and reduced serum IL-6 concentration. In human myometrial cells, simvastatin reduced proinflammatory mediator mRNA and protein expression (IL-6 and IL-8) and increased anti-inflammatory cytokine mRNA expression (IL-10 and IL-13). Critically, simvastatin inhibited myometrial cell contraction, basally and during inflammation, and reduced phosphorylated myosin light chain concentration. Supplementation with mevalonate and geranylgeranyl pyrophosphate, but not farnesyl pyrophosphate, abolished these anticontractile effects, indicating that the Rho/Rho-associated protein kinase pathway is critically involved. Thus, simvastatin reduces PTB incidence in mice, inhibits myometrial contractions, and exhibits key anti-inflammatory effects, providing a rationale for investigation into the repurposing of statins to treat preterm labor in women.—Boyle, A. K., Rinaldi, S. F., Rossi, A. G., Saunders, P. T. K., Norman, J. E. Repurposing simvastatin as a therapy for preterm labor: evidence from preclinical models.
Collapse
Affiliation(s)
- Ashley K Boyle
- Tommy's Centre for Maternal and Fetal Health, Medical Research Council (MRC) Centre for Reproductive Health, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom; and
| | - Sara F Rinaldi
- Tommy's Centre for Maternal and Fetal Health, Medical Research Council (MRC) Centre for Reproductive Health, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom; and
| | - Adriano G Rossi
- Medical Research Council (MRC) Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Philippa T K Saunders
- Medical Research Council (MRC) Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Jane E Norman
- Tommy's Centre for Maternal and Fetal Health, Medical Research Council (MRC) Centre for Reproductive Health, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom; and
| |
Collapse
|
12
|
Boardman JP, Ireland G, Sullivan G, Pataky R, Fleiss B, Gressens P, Miron V. The Cerebrospinal Fluid Inflammatory Response to Preterm Birth. Front Physiol 2018; 9:1299. [PMID: 30258368 PMCID: PMC6144928 DOI: 10.3389/fphys.2018.01299] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 08/29/2018] [Indexed: 12/21/2022] Open
Abstract
Background: Preterm birth is the leading risk factor for perinatal white matter injury, which can lead to motor and neuropsychiatric impairment across the life course. There is an unmet clinical need for therapeutics. White matter injury is associated with an altered inflammatory response in the brain, primarily led by microglia, and subsequent hypomyelination. However, microglia can release both damaging and trophic factors in response to injury, and a comprehensive assessment of these factors in the preterm central nervous system (CNS) has not been carried out. Method: A custom antibody array was used to assess relative levels of 50 inflammation- and myelination-associated proteins in the cerebrospinal fluid (CSF) of preterm infants in comparison to term controls. Results: Fifteen proteins differed between the groups: BDNF, BTC, C5a, FasL, Follistatin, IL-1β, IL-2, IL-4, IL-9, IL-17A, MIP-1α, MMP8, SPP1, TGFβ, and TNFβ (p < 0.05). To investigate the temporal regulation of these proteins after injury, we mined a gene expression dataset of microglia isolated from a mouse model of developmental white matter injury. Microglia in the experimental model showed dynamic temporal expression of genes encoding these proteins, with an initial and sustained pro-inflammatory response followed by a delayed anti-inflammatory response, and a continuous expression of genes predicted to inhibit healthy myelination. Conclusion: Preterm CSF shows a distinct neuroinflammatory profile compared to term controls, suggestive of a complex neural environment with concurrent damaging and reparative signals. We propose that limitation of pro-inflammatory responses, which occur early after perinatal insult, may prevent expression of myelination-suppressive genes and support healthy white matter development.
Collapse
Affiliation(s)
- James P Boardman
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom.,Centre for Clinical Brain Sciences, Chancellor's Building, The University of Edinburgh, Edinburgh, United Kingdom
| | - Graeme Ireland
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Gemma Sullivan
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Rozalia Pataky
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Bobbi Fleiss
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, London, United Kingdom.,PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,PremUP, Paris, France
| | - Pierre Gressens
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, London, United Kingdom.,PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,PremUP, Paris, France
| | - Veronique Miron
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
13
|
Yang MY, Diao ZY, Wang ZY, Yan GJ, Zhao GF, Zheng MM, Dai AY, Dai YM, Hu YL. Pravastatin alleviates lipopolysaccharide-induced placental TLR4 over-activation and promotes uterine arteriole remodeling without impairing rat fetal development. J Biomed Res 2018; 32:288-297. [PMID: 30008464 PMCID: PMC6117606 DOI: 10.7555/jbr.32.20180039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Preeclampsia is associated with over-activation of the innate immune system in the placenta, in which toll-like receptor 4 (TLR4) plays an essential part. With their potent anti-inflammatory effects, statins have been suggested as potential prevention or treatment of preeclampsia, although evidence remains inadequate. Herewith, we investigated whether pravastatin could ameliorate preeclampsia-like phenotypes in a previously established lipopolysaccharide (LPS)-induced rat preeclampsia model, through targeting the TLR4/NF-κB pathway. The results showed that pravastatin reduced the blood pressure [maximum decline on gestational day (GD) 12, (101.33±2.49) mmHg vs. (118.3±1.37) mmHg, P<0.05] and urine protein level [maximum decline on GD9, (3,726.23±1,572.86)μg vs. (1,991.03±609.37)μg, P<0.05], which were elevated following LPS administration. Pravastatin also significantly reduced the rate of fetal growth restriction in LPS-treated rats (34.10% vs. 8.99%, P<0.05). Further pathological analyses suggested a restoration of normal spiral artery remodeling in preeclampsia rats by pravastatin treatment. These effects of pravastatin were associated with decreased TLR4/NF-κB protein levels in the placenta and IL-6/MCP-1 levels in serum. Additionally, no obvious abnormalities in fetal liver, brain, and kidney were found after administration of pravastatin. These results provide supportive evidence for use of pravastatin in preventing preeclampsia.
Collapse
Affiliation(s)
- Mu-Yi Yang
- Drum Tower Clinical Medical College, Nanjing Medical University, Nanjing, Jiangsu 210008, China
| | - Zhen-Yu Diao
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu 210008, China
| | - Zhi-Yin Wang
- Drum Tower Clinical Medical College, Nanjing Medical University, Nanjing, Jiangsu 210008, China
| | - Gui-Jun Yan
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu 210008, China
| | - Guang-Feng Zhao
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu 210008, China
| | - Ming-Ming Zheng
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu 210008, China
| | - An-Yi Dai
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu 210008, China
| | - Yi-Min Dai
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu 210008, China
| | - Ya-Li Hu
- Drum Tower Clinical Medical College, Nanjing Medical University, Nanjing, Jiangsu 210008, China
| |
Collapse
|
14
|
Girardi G. Complement activation, a threat to pregnancy. Semin Immunopathol 2017; 40:103-111. [PMID: 28900713 DOI: 10.1007/s00281-017-0645-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 08/03/2017] [Indexed: 12/11/2022]
Abstract
Pregnancy poses a challenge for the immune systems of placental mammals. As fetal tissues are semi-allogeneic and alloantibodies that commonly develop in the mother, the fetus and the placenta might be subject to complement-mediated immune attack with the potential risk of adverse pregnancy outcomes. Here, I describe how the use of animal models was pivotal in demonstrating that complement inhibition at the fetomaternal interface is essential for a successful pregnancy. Studies in animals also helped the identification of uncontrolled complement activation as a crucial effector in the pathogenesis of recurrent miscarriages, intrauterine growth restriction, preeclampsia, and preterm birth. Clinical studies employing complement biomarkers in plasma and urine showed an association between dysregulation of the complement system and adverse pregnancy outcomes. A better understanding of the role of the complement system in pregnancy complications will allow a rational approach to manipulate its activation as a potential therapeutic strategy with the goal of protecting pregnancies and improving long-term outcomes for mother and child.
Collapse
Affiliation(s)
- Guillermina Girardi
- Pregnancy Laboratory, Department of Women and Children's Health, The Rayne Institute, St Thomas' Hospital, King's College London, London, SE1 7EH, UK.
| |
Collapse
|
15
|
Pataky R, Howie FA, Girardi G, Boardman JP. Complement C5a is present in CSF of human newborns and is elevated in association with preterm birth. J Matern Fetal Neonatal Med 2016; 30:2413-2416. [PMID: 27806664 PMCID: PMC5556752 DOI: 10.1080/14767058.2016.1251896] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Neuroinflammation contributes to developmental brain injury associated with preterm birth, but the mediators that drive it are incompletely understood. Previous studies have shown that complement C5a is present and injurious in the brains of foetal mice exposed to preterm labour. Here, we demonstrate that C5a is present in the cerebrospinal fluid of newborn human infants and that levels are elevated in those born preterm. The difference is not explained by systemic infection. Complement activation in the neonatal brain and its role as a potential therapeutic target in preterm brain injury warrant further study. Activation in the neonatal brain and its role as a potential therapeutic target for preterm brain injury warrants further study.
Collapse
Affiliation(s)
- Rozalia Pataky
- a MRC Centre for Reproductive Health, University of Edinburgh, Queen's Medical Research Institute , Edinburgh , UK and
| | - Forbes A Howie
- a MRC Centre for Reproductive Health, University of Edinburgh, Queen's Medical Research Institute , Edinburgh , UK and
| | - Guillermina Girardi
- b Department of Women's Health , King's College London, St Thomas' Hospital , London , UK
| | - James P Boardman
- a MRC Centre for Reproductive Health, University of Edinburgh, Queen's Medical Research Institute , Edinburgh , UK and
| |
Collapse
|
16
|
Wong MJ, Kantores C, Ivanovska J, Jain A, Jankov RP. Simvastatin prevents and reverses chronic pulmonary hypertension in newborn rats via pleiotropic inhibition of RhoA signaling. Am J Physiol Lung Cell Mol Physiol 2016; 311:L985-L999. [DOI: 10.1152/ajplung.00345.2016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 09/30/2016] [Indexed: 11/22/2022] Open
Abstract
Chronic neonatal pulmonary hypertension (PHT) frequently results in early death. Systemically administered Rho-kinase (ROCK) inhibitors prevent and reverse chronic PHT in neonatal rats, but at the cost of severe adverse effects, including systemic hypotension and growth restriction. Simvastatin has pleiotropic inhibitory effects on isoprenoid intermediates that may limit activity of RhoA, which signals upstream of ROCK. We therefore hypothesized that statin treatment would safely limit pulmonary vascular RhoA activity and prevent and reverse experimental chronic neonatal PHT via downstream inhibitory effects on pathological ROCK activity. Sprague-Dawley rats in normoxia (room air) or moderate normobaric hypoxia (13% O2) received simvastatin (2 mg·kg−1·day−1 ip) or vehicle from postnatal days 1–14 (prevention protocol) or from days 14–21 (rescue protocol). Chronic hypoxia increased RhoA and ROCK activity in lung tissue. Simvastatin reduced lung content of the isoprenoid intermediate farnesyl pyrophosphate and decreased RhoA/ROCK signaling in the hypoxia-exposed lung. Preventive or rescue treatment of chronic hypoxia-exposed animals with simvastatin decreased pulmonary vascular resistance, right ventricular hypertrophy, and pulmonary arterial remodeling. Preventive simvastatin treatment improved weight gain, did not lower systemic blood pressure, and did not cause apparent toxic effects on skeletal muscle, liver or brain. Rescue therapy with simvastatin improved exercise capacity. We conclude that simvastatin limits RhoA/ROCK activity in the chronic hypoxia-exposed lung, thus preventing or ameliorating hemodynamic and structural markers of chronic PHT and improving long-term outcome, without causing adverse effects.
Collapse
Affiliation(s)
- Mathew J. Wong
- Physiology & Experimental Medicine Program, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Crystal Kantores
- Physiology & Experimental Medicine Program, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Julijana Ivanovska
- Physiology & Experimental Medicine Program, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Amish Jain
- Heart and Stroke Richard Lewar Centre of Excellence in Cardiovascular Research, University of Toronto, Toronto, Ontario, Canada
- Department of Paediatrics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; and
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Robert P. Jankov
- Physiology & Experimental Medicine Program, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
- Heart and Stroke Richard Lewar Centre of Excellence in Cardiovascular Research, University of Toronto, Toronto, Ontario, Canada
- Department of Paediatrics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; and
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
17
|
Histological chorioamnionitis shapes the neonatal transcriptomic immune response. Early Hum Dev 2016; 98:1-6. [PMID: 27318328 PMCID: PMC4947555 DOI: 10.1016/j.earlhumdev.2016.06.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 05/27/2016] [Accepted: 06/01/2016] [Indexed: 11/24/2022]
Abstract
BACKGROUND Histologic chorioamnionitis (HCA) is commonly associated with preterm birth and deleterious post-natal outcomes including sepsis and necrotizing enterocolitis. Transcriptomic analysis has been used to uncover gene signatures that permit diagnosis and prognostication, show new therapeutic targets, and reveal mechanisms that underlie differential outcomes with other complex disease states in neonates such as sepsis. AIMS To define the transcriptomic and inflammatory protein response in peripheral blood among infants with exposure to histologic chorioamnionitis. STUDY DESIGN Prospective, observational study. SUBJECTS Uninfected preterm neonates retrospectively categorized based on placental pathology with no HCA exposure (n=18) or HCA exposure (n=15). OUTCOMES MEASURES We measured the transcriptomic and inflammatory mediator response in prospectively collected whole blood. RESULTS We found 488 significant (p<0.001), differentially expressed genes in whole blood samples among uninfected neonates with HCA exposure that collectively represented activated innate and adaptive immune cellular pathways and revealed a potential regulatory role for the pleotropic microRNA molecule miR-155. Differentially secreted plasma cytokines in patients with HCA exposure compared to patients without HCA included MCP-1, MPO, and MMP-9 (p<0.05). CONCLUSIONS Exposure to HCA distinctively activates the neonatal immune system in utero with potentially long-term health consequences.
Collapse
|
18
|
Girardi G. MRI-based methods to detect placental and fetal brain abnormalities in utero. J Reprod Immunol 2016; 114:86-91. [DOI: 10.1016/j.jri.2015.05.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 05/21/2015] [Accepted: 05/29/2015] [Indexed: 11/29/2022]
|
19
|
Bing W, Pang X, Qu Q, Bai X, Yang W, Bi Y, Bi X. Simvastatin improves the homing of BMSCs via the PI3K/AKT/miR-9 pathway. J Cell Mol Med 2016; 20:949-61. [PMID: 26871266 PMCID: PMC4831354 DOI: 10.1111/jcmm.12795] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 12/22/2015] [Indexed: 12/21/2022] Open
Abstract
Bone marrow‐derived mesenchymal stem cells (BMSCs) have great therapeutic potential for many diseases. However, the homing of BMSCs to injury sites remains a difficult problem. Recent evidence indicates that simvastatin stimulates AKT phosphorylation, and p‐AKT affects the expression of chemokine (CXC motif) receptor‐4 (CXCR4). Therefore, simvastatin may improve the expression of CXCR4 in BMSCs, and microRNAs (miRs) may participate in this process. In this study, we demonstrated that simvastatin increased both the total and the surface expression of CXCR4 in BMSCs. Stromal cell‐derived factor‐1α (SDF‑1α)‐induced migration of BMSCs was also enhanced by simvastatin, and this action was inhibited by AMD 3100(a chemokine receptor antagonist for CXCR4). The PI3K/AKT pathway was activated by simvastatin in this process, and LY294002 reversed the overexpression of CXCR4 caused by simvastatin. MiR‐9 directly targeted CXCR4 in rat BMSCs, and simvastatin decreased miR‐9 expression. P‐AKT affected the expression of miR‐9; as the phosphorylation of AKT increased, miR‐9 expression decreased. In addition, LY294002 increased miR‐9 expression. Taken together, our results indicated that simvastatin improved the migration of BMSCs via the PI3K/AKT pathway. MiR‐9 also participated in this process, and the phosphorylation of AKT affected miR‐9 expression, suggesting that simvastatin might have beneficial effects in stem cell therapy.
Collapse
Affiliation(s)
- Weidong Bing
- Department of Cardiovascular Surgery, Qi Lu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Xinyan Pang
- Department of Cardiovascular Surgery, Qi Lu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Qingxi Qu
- Department of Cardiovascular Surgery, Qi Lu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Xiao Bai
- Department of Cardiovascular Surgery, Qi Lu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Wenwen Yang
- Department of Cardiovascular Surgery, Qi Lu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Yanwen Bi
- Department of Cardiovascular Surgery, Qi Lu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Xiaolu Bi
- School of Life Science of Shandong University, Jinan, Shandong Province, China
| |
Collapse
|
20
|
McDonald CR, Tran V, Kain KC. Complement Activation in Placental Malaria. Front Microbiol 2015; 6:1460. [PMID: 26733992 PMCID: PMC4685051 DOI: 10.3389/fmicb.2015.01460] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 12/07/2015] [Indexed: 01/06/2023] Open
Abstract
Sixty percent of all pregnancies worldwide occur in malaria endemic regions. Pregnant women are at greater risk of malaria infection than their non-pregnant counterparts and have a higher risk of adverse birth outcomes including low birth weight resulting from intrauterine growth restriction and/or preterm birth. The complement system plays an essential role in placental and fetal development as well as the host innate immune response to malaria infection. Excessive or dysregulated complement activation has been associated with the pathobiology of severe malaria and with poor pregnancy outcomes, dependent and independent of infection. Here we review the role of complement in malaria and pregnancy and discuss its part in mediating altered placental angiogenesis, malaria-induced adverse birth outcomes, and disruptions to the in utero environment with possible consequences on fetal neurodevelopment. A detailed understanding of the mechanisms underlying adverse birth outcomes, and the impact of maternal malaria infection on fetal neurodevelopment, may lead to biomarkers to identify at-risk pregnancies and novel therapeutic interventions to prevent these complications.
Collapse
Affiliation(s)
- Chloe R McDonald
- Sandra Rotman Laboratories, Sandra Rotman Centre for Global Health, Toronto General Research Institute, University Health Network, TorontoON, Canada; Department of Global Health and Population, Harvard School of Public Health, BostonMA, USA
| | - Vanessa Tran
- Sandra Rotman Laboratories, Sandra Rotman Centre for Global Health, Toronto General Research Institute, University Health Network, Toronto ON, Canada
| | - Kevin C Kain
- Sandra Rotman Laboratories, Sandra Rotman Centre for Global Health, Toronto General Research Institute, University Health Network, TorontoON, Canada; Tropical Disease Unit, Division of Infectious Diseases, Department of Medicine, University of Toronto, TorontoON, Canada
| |
Collapse
|
21
|
Vernon AC, So PW, Lythgoe DJ, Chege W, Cooper JD, Williams SCR, Kapur S. Longitudinal in vivo maturational changes of metabolites in the prefrontal cortex of rats exposed to polyinosinic-polycytidylic acid in utero. Eur Neuropsychopharmacol 2015; 25:2210-20. [PMID: 26475576 DOI: 10.1016/j.euroneuro.2015.09.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 08/28/2015] [Accepted: 09/29/2015] [Indexed: 01/10/2023]
Abstract
Proton magnetic resonance spectroscopy ((1)H MRS) studies in schizophrenia patients generally report decreased levels of N-acetyl-aspartate (NAA), glutamate and glutathione, particularly in frontal cortex. However, these data are inconsistent in part due to confounds associated with clinical samples. The lack of validated diagnostic biomarkers also hampers analysis of the neurodevelopmental trajectory of neurochemical abnormalities. Rodent models are powerful tools to address these issues, particularly when combined with (1)H MRS (clinically comparable technology). We investigated the trajectory of metabolic changes in the prefrontal cortex during brain maturation from adolescence to adulthood in vivo using (1)H MRS in rats exposed prenatally to polyinosinic-polycytidylic acid (POL), a rodent model of maternal immune activation (MIA), an epidemiological risk factor for several psychiatric disorders with a neurodevelopmental origin. Longitudinal in vivo (1)H MRS revealed a significant decrease in PFC levels of GSH and taurine in adult, but not adolescent rats. Significant age×MIA interactions for PFC levels of NAA were also observed. These data replicate some deficits observed in the PFC of patients with schizophrenia. There were no significant changes in the levels of glutamate or any other metabolite. These data suggest prenatal exposure to POL leads to subtle metabolic perturbations of the normal maturing PFC, which may be related to subsequent behavioural abnormalities. Further work is however required to examine any potential confound of shipping stress on the presumed imbalances in PFC metabolites in POL-exposed offspring. Testing the interactions between MIA with stress or genetic risk variants will also be an important advance.
Collapse
Affiliation(s)
- Anthony C Vernon
- King's College London, Institute of Psychiatry Psychology and Neuroscience, Department of Psychosis Studies, De Crespigny Park, London SE5 8AF, UK.
| | - Po-Wah So
- King's College London, Institute of Psychiatry, Department of Neuroimaging, Centre for Neuroimaging Sciences, De Crespigny Park, London SE5 8AF, UK
| | - David J Lythgoe
- King's College London, Institute of Psychiatry, Department of Neuroimaging, Centre for Neuroimaging Sciences, De Crespigny Park, London SE5 8AF, UK
| | - Winfred Chege
- King's College London, Institute of Psychiatry Psychology and Neuroscience, Department of Psychosis Studies, De Crespigny Park, London SE5 8AF, UK
| | - Jonathan D Cooper
- King's College London, Institute of Psychiatry Psychology and Neuroscience, Department of Basic and Clinical Neuroscience, The James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Steven C R Williams
- King's College London, Institute of Psychiatry, Department of Neuroimaging, Centre for Neuroimaging Sciences, De Crespigny Park, London SE5 8AF, UK
| | - Shitij Kapur
- King's College London, Institute of Psychiatry Psychology and Neuroscience, Department of Psychosis Studies, De Crespigny Park, London SE5 8AF, UK
| |
Collapse
|
22
|
Experimental Malaria in Pregnancy Induces Neurocognitive Injury in Uninfected Offspring via a C5a-C5a Receptor Dependent Pathway. PLoS Pathog 2015; 11:e1005140. [PMID: 26402732 PMCID: PMC4581732 DOI: 10.1371/journal.ppat.1005140] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 08/11/2015] [Indexed: 02/06/2023] Open
Abstract
The in utero environment profoundly impacts childhood neurodevelopment and behaviour. A substantial proportion of pregnancies in Africa are at risk of malaria in pregnancy (MIP) however the impact of in utero exposure to MIP on fetal neurodevelopment is unknown. Complement activation, in particular C5a, may contribute to neuropathology and adverse outcomes during MIP. We used an experimental model of MIP and standardized neurocognitive testing, MRI, micro-CT and HPLC analysis of neurotransmitter levels, to test the hypothesis that in utero exposure to malaria alters neurodevelopment through a C5a-C5aR dependent pathway. We show that malaria-exposed offspring have persistent neurocognitive deficits in memory and affective-like behaviour compared to unexposed controls. These deficits were associated with reduced regional brain levels of major biogenic amines and BDNF that were rescued by disruption of C5a-C5aR signaling using genetic and functional approaches. Our results demonstrate that experimental MIP induces neurocognitive deficits in offspring and suggest novel targets for intervention. A growing body of evidence has established the importance of the in utero environment on neurodevelopment and long-term cognitive and behavioral outcomes. These data suggest factors that disrupt the tightly regulated in utero environment can modify normal neurodevelopmental processes. Approximately 125 million pregnancies worldwide are at risk of malaria infection every year. However the impact of in utero exposure to MIP on fetal neurodevelopment is unknown. Here we use a mouse model of malaria in pregnancy to examine the impact of maternal malaria exposure on neurocognitive outcomes in offspring. We observed impaired learning and memory and depressive-like behavior in malaria-exposed offspring that were neither congenitally infected nor low birth weight. These neurocognitive impairments were associated with decreased tissue levels of neurotransmitters in regions of the brain linked to the observed deficits. Disruption of maternal C5a complement receptor signaling restored the levels of neurotransmitters and rescued the associated cognitive phenotype observed in malaria-exposed offspring. This study provides the first evidence implicating a causal link between pre-natal exposure to malaria, complement signaling and subsequent neurocognitive impairment in offspring.
Collapse
|
23
|
Girardi G, Fraser J, Lennen R, Vontell R, Jansen M, Hutchison G. Imaging of activated complement using ultrasmall superparamagnetic iron oxide particles (USPIO)--conjugated vectors: an in vivo in utero non-invasive method to predict placental insufficiency and abnormal fetal brain development. Mol Psychiatry 2015; 20:1017-26. [PMID: 25245499 PMCID: PMC4288949 DOI: 10.1038/mp.2014.110] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 07/14/2014] [Accepted: 07/21/2014] [Indexed: 01/02/2023]
Abstract
In the current study, we have developed a magnetic resonance imaging-based method for non-invasive detection of complement activation in placenta and foetal brain in vivo in utero. Using this method, we found that anti-complement C3-targeted ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles bind within the inflamed placenta and foetal brain cortical tissue, causing a shortening of the T2* relaxation time. We used two mouse models of pregnancy complications: a mouse model of obstetrics antiphospholipid syndrome (APS) and a mouse model of preterm birth (PTB). We found that detection of C3 deposition in the placenta in the APS model was associated with placental insufficiency characterised by increased oxidative stress, decreased vascular endothelial growth factor and placental growth factor levels and intrauterine growth restriction. We also found that foetal brain C3 deposition was associated with cortical axonal cytoarchitecture disruption and increased neurodegeneration in the mouse model of APS and in the PTB model. In the APS model, foetuses that showed increased C3 in their brains additionally expressed anxiety-related behaviour after birth. Importantly, USPIO did not affect pregnancy outcomes and liver function in the mother and the offspring, suggesting that this method may be useful for detecting complement activation in vivo in utero and predicting placental insufficiency and abnormal foetal neurodevelopment that leads to neuropsychiatric disorders.
Collapse
Affiliation(s)
- G Girardi
- MRC Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK,Lupus Research Unit, The Rayne Institute, King's College London St Thomas' Hospital, London, UK,Women's Health, King's College London, St Thomas' Hospital, London SE1 7EH, UK
| | - J Fraser
- Centre for Nano Safety, Napier University Edinburgh, Edinburgh, UK
| | - R Lennen
- BHF/University Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - R Vontell
- Centrer for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, The Rayne Institute, King's College London, St Thomas' Hospital, London, UK
| | - M Jansen
- BHF/University Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - G Hutchison
- Centre for Nano Safety, Napier University Edinburgh, Edinburgh, UK
| |
Collapse
|
24
|
Ozen M, Zhao H, Lewis DB, Wong RJ, Stevenson DK. Heme oxygenase and the immune system in normal and pathological pregnancies. Front Pharmacol 2015; 6:84. [PMID: 25964759 PMCID: PMC4408852 DOI: 10.3389/fphar.2015.00084] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 04/02/2015] [Indexed: 11/22/2022] Open
Abstract
Normal pregnancy is an immunotolerant state. Many factors, including environmental, socioeconomic, genetic, and immunologic changes by infection and/or other causes of inflammation, may contribute to inter-individual differences resulting in a normal or pathologic pregnancy. In particular, imbalances in the immune system can cause many pregnancy-related diseases, such as infertility, abortions, pre-eclampsia, and preterm labor, which result in maternal/fetal death, prematurity, or small-for-gestational age newborns. New findings imply that myeloid regulatory cells and regulatory T cells (Tregs) may mediate immunotolerance during normal pregnancy. Effector T cells (Teffs) have, in contrast, been implicated to cause adverse pregnancy outcomes. Furthermore, feto-maternal tolerance affects the developing fetus. It has been shown that the Treg/Teff balance affects litter size and adoptive transfer of pregnancy-induced Tregs can prevent fetal rejection in the mouse. Heme oxygenase-1 (HO-1) has a protective role in many conditions through its anti-inflammatory, anti-apoptotic, antioxidative, and anti-proliferative actions. HO-1 is highly expressed in the placenta and plays a role in angiogenesis and placental vascular development and in regulating vascular tone in pregnancy. In addition, HO-1 is a major regulator of immune homeostasis by mediating crosstalk between innate and adaptive immune systems. Moreover, HO-1 can inhibit inflammation-induced phenotypic maturation of immune effector cells and pro-inflammatory cytokine secretion and promote anti-inflammatory cytokine production. HO-1 may also be associated with T-cell activation and can limit immune-based tissue injury by promoting Treg suppression of effector responses. Thus, HO-1 and its byproducts may protect against pregnancy complications by its immunomodulatory effects, and the regulation of HO-1 or its downstream effects has the potential to prevent or treat pregnancy complications and prematurity.
Collapse
Affiliation(s)
- Maide Ozen
- Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine , Stanford, CA, USA
| | - Hui Zhao
- Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine , Stanford, CA, USA
| | - David B Lewis
- Division of Allergy, Immunology, and Rheumatology, Department of Pediatrics, Stanford University School of Medicine , Stanford, CA, USA
| | - Ronald J Wong
- Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine , Stanford, CA, USA
| | - David K Stevenson
- Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine , Stanford, CA, USA
| |
Collapse
|
25
|
Hagberg H, Mallard C, Ferriero DM, Vannucci SJ, Levison SW, Vexler ZS, Gressens P. The role of inflammation in perinatal brain injury. Nat Rev Neurol 2015; 11:192-208. [PMID: 25686754 PMCID: PMC4664161 DOI: 10.1038/nrneurol.2015.13] [Citation(s) in RCA: 571] [Impact Index Per Article: 63.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Inflammation is increasingly recognized as being a critical contributor to both normal development and injury outcome in the immature brain. The focus of this Review is to highlight important differences in innate and adaptive immunity in immature versus adult brain, which support the notion that the consequences of inflammation will be entirely different depending on context and stage of CNS development. Perinatal brain injury can result from neonatal encephalopathy and perinatal arterial ischaemic stroke, usually at term, but also in preterm infants. Inflammation occurs before, during and after brain injury at term, and modulates vulnerability to and development of brain injury. Preterm birth, on the other hand, is often a result of exposure to inflammation at a very early developmental phase, which affects the brain not only during fetal life, but also over a protracted period of postnatal life in a neonatal intensive care setting, influencing critical phases of myelination and cortical plasticity. Neuroinflammation during the perinatal period can increase the risk of neurological and neuropsychiatric disease throughout childhood and adulthood, and is, therefore, of concern to the broader group of physicians who care for these individuals.
Collapse
Affiliation(s)
- Henrik Hagberg
- 1] Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St Thomas' Hospital, London SE1 7EH, UK. [2] Perinatal Center, Institute of Physiology and Neurosciences and Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, 435 43 Gothenburg, Sweden
| | - Carina Mallard
- Perinatal Center, Institute of Physiology and Neurosciences and Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, 435 43 Gothenburg, Sweden
| | - Donna M Ferriero
- Departments of Neurology and Pediatrics, University of California San Francisco, San Francisco, CA 94158, USA
| | - Susan J Vannucci
- Department of Pediatrics/Newborn Medicine, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
| | - Steven W Levison
- Department of Neurology and Neuroscience, Rutgers University, RBHS-New Jersey Medical School, Cancer Center, H-1226 205 South Orange Avenue, Newark, NJ 07103, USA
| | - Zinaida S Vexler
- Departments of Neurology and Pediatrics, University of California San Francisco, San Francisco, CA 94158, USA
| | | |
Collapse
|
26
|
Regal JF, Gilbert JS, Burwick RM. The complement system and adverse pregnancy outcomes. Mol Immunol 2015; 67:56-70. [PMID: 25802092 DOI: 10.1016/j.molimm.2015.02.030] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 02/20/2015] [Accepted: 02/24/2015] [Indexed: 02/08/2023]
Abstract
Adverse pregnancy outcomes significantly contribute to morbidity and mortality for mother and child, with lifelong health consequences for both. The innate and adaptive immune system must be regulated to insure survival of the fetal allograft, and the complement system is no exception. An intact complement system optimizes placental development and function and is essential to maintain host defense and fetal survival. Complement regulation is apparent at the placental interface from early pregnancy with some degree of complement activation occurring normally throughout gestation. However, a number of pregnancy complications including early pregnancy loss, fetal growth restriction, hypertensive disorders of pregnancy and preterm birth are associated with excessive or misdirected complement activation, and are more frequent in women with inherited or acquired complement system disorders or complement gene mutations. Clinical studies employing complement biomarkers in plasma and urine implicate dysregulated complement activation in components of each of the adverse pregnancy outcomes. In addition, mechanistic studies in rat and mouse models of adverse pregnancy outcomes address the complement pathways or activation products of importance and allow critical analysis of the pathophysiology. Targeted complement therapeutics are already in use to control adverse pregnancy outcomes in select situations. A clearer understanding of the role of the complement system in both normal pregnancy and complicated or failed pregnancy will allow a rational approach to future therapeutic strategies for manipulating complement with the goal of mitigating adverse pregnancy outcomes, preserving host defense, and improving long term outcomes for both mother and child.
Collapse
Affiliation(s)
- Jean F Regal
- Department of Biomedical Sciences, University of Minnesota Medical School, 1035 University Drive, Duluth, MN 55812, USA.
| | - Jeffrey S Gilbert
- Department of Biomedical Sciences, University of Minnesota Medical School, 1035 University Drive, Duluth, MN 55812, USA.
| | - Richard M Burwick
- Department of Obstetrics and Gynecology, Division of Maternal Fetal Medicine, Oregon Health & Science University, Mail Code: L-458, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA.
| |
Collapse
|
27
|
Rinaldi SF, Makieva S, Frew L, Wade J, Thomson AJW, Moran CM, Norman JE, Stock SJ. Ultrasound-guided intrauterine injection of lipopolysaccharide as a novel model of preterm birth in the mouse. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:1201-6. [PMID: 25747535 DOI: 10.1016/j.ajpath.2015.01.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 01/19/2015] [Accepted: 01/30/2015] [Indexed: 11/30/2022]
Abstract
Mouse models are used to study mechanisms that link intrauterine infection and preterm birth (PTB). To mimic intrauterine infection, lipopolysaccharide (LPS) is commonly injected into the uterus via minilaparotomy, which is invasive, and can cause PTB in control animals. We hypothesized that less-invasive ultrasound-guided intrauterine LPS injection or intravaginal LPS administration could induce PTB by stimulating an inflammatory response of the uteroplacental tissues, while minimizing PTB in control animals. On day 17 of gestation mice received LPS intravaginally (10 to 240 μg; n = 3 to 8) or into the uterus (20 μg) under ultrasound guidance (n = 7) or via laparotomy (n = 7). Control animals received phosphate-buffered saline (PBS; n = 5 to 7). Intrauterine administration of LPS, both under ultrasound guidance and via laparotomy, induced delivery earlier than in PBS control groups (P < 0.01). Intravaginal LPS administration did not stimulate PTB. Quantitative real-time PCR and immunohistochemistry of tissues harvested 6 hours after treatment confirmed that ultrasound-guided LPS administration induced a localized inflammatory response. Ultrasound-guided intrauterine LPS injection reliably induces PTB in the mouse and mimics the local inflammatory and immune responses observed in the more-invasive laparotomy model of inflammation-induced PTB. Ultrasound-guided intrauterine LPS injection is a useful novel model of PTB for future studies and concords with the principles of reduction, replacement, and refinement.
Collapse
Affiliation(s)
- Sara F Rinaldi
- Tommy's Centre for Maternal and Fetal Health at the Medical Research Council Centre for Reproductive Health, University of Edinburgh, Queen's Medical Research Institute, Edinburgh, United Kingdom
| | - Sofia Makieva
- Tommy's Centre for Maternal and Fetal Health at the Medical Research Council Centre for Reproductive Health, University of Edinburgh, Queen's Medical Research Institute, Edinburgh, United Kingdom
| | - Lorraine Frew
- Tommy's Centre for Maternal and Fetal Health at the Medical Research Council Centre for Reproductive Health, University of Edinburgh, Queen's Medical Research Institute, Edinburgh, United Kingdom
| | - Jean Wade
- Tommy's Centre for Maternal and Fetal Health at the Medical Research Council Centre for Reproductive Health, University of Edinburgh, Queen's Medical Research Institute, Edinburgh, United Kingdom
| | - Adrian J W Thomson
- University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute, Edinburgh, United Kingdom
| | - Carmel M Moran
- University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute, Edinburgh, United Kingdom
| | - Jane E Norman
- Tommy's Centre for Maternal and Fetal Health at the Medical Research Council Centre for Reproductive Health, University of Edinburgh, Queen's Medical Research Institute, Edinburgh, United Kingdom
| | - Sarah J Stock
- Tommy's Centre for Maternal and Fetal Health at the Medical Research Council Centre for Reproductive Health, University of Edinburgh, Queen's Medical Research Institute, Edinburgh, United Kingdom.
| |
Collapse
|
28
|
Figliozzi RW, Chen F, Balish M, Ajavon A, Hsia SV. Thyroid hormone-dependent epigenetic suppression of herpes simplex virus-1 gene expression and viral replication in differentiated neuroendocrine cells. J Neurol Sci 2014; 346:164-73. [PMID: 25175854 DOI: 10.1016/j.jns.2014.08.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 08/05/2014] [Accepted: 08/13/2014] [Indexed: 12/21/2022]
Abstract
A global HSV-1 gene repression occurs during latency in sensory neurons where most viral gene transcriptions are suppressed. The molecular mechanisms of gene silencing and how stress factors trigger the reactivation are not well understood. Thyroid hormones are known to be altered due to stress, and with its nuclear receptor impart transcriptional repression or activation depending upon the hormone level. Therefore we hypothesized that triiodothyronine (T3) treatment of infected differentiated neuron like cells would reduce the ability of HSV-1 to produce viral progeny compared to untreated infected cells. Previously we identified putative thyroid hormone receptor elements (TREs) within the promoter regions of HSV-1 thymidine kinase (TK) and other key genes. Searching for a human cell line that can model neuronal HSV-1 infection, we performed HSV-1 infection experiments on differentiated human neuroendocrine cells, LNCaP. Upon androgen deprivation these cells undergo complete differentiation and exhibit neuronal-like morphology and physiology. These cells were readily infected by our HSV-1 recombinant virus, expressing GFP and maintaining many processes iconic of dendritic morphology. Our results demonstrated that differentiated LNCaP cells produced suppressive effects on HSV-1 gene expression and replication compared to its undifferentiated counterpart and T3 treatment has further decreased the viral plaque counts compared to untreated cells. Upon washout of the T3 viral plaque counts were restored, indicating an increase of viral replication. The qRT-PCR experiments using primers for TK showed reduced expression under T3 treatment. ChIP assays using a panel of antibodies for H3 lysine 9 epigenetic marks showed increased repressive marks on the promoter regions of TK. In conclusion we have demonstrated a T3 mediated quiescent infection in differentiated LNCaP cells that has potential to mimic latent infection. In this HSV-1 infection model thyroid hormone treatment caused decreased viral replication, repressed TK expression and increased repressive histone tail marks on the TK promoter.
Collapse
Affiliation(s)
- Robert W Figliozzi
- Department of Pharmaceutical Sciences, University of Maryland Eastern Shore, College of Pharmacy, Princess Anne, MD 21853, USA
| | - Feng Chen
- Department of Pharmaceutical Sciences, University of Maryland Eastern Shore, College of Pharmacy, Princess Anne, MD 21853, USA
| | - Matthew Balish
- Department of Pharmaceutical Sciences, University of Maryland Eastern Shore, College of Pharmacy, Princess Anne, MD 21853, USA
| | - Amakoe Ajavon
- Department of Pharmaceutical Sciences, University of Maryland Eastern Shore, College of Pharmacy, Princess Anne, MD 21853, USA
| | - S Victor Hsia
- Department of Pharmaceutical Sciences, University of Maryland Eastern Shore, College of Pharmacy, Princess Anne, MD 21853, USA.
| |
Collapse
|
29
|
Gonzalez JM, Pedroni SMA, Girardi G. Statins prevent cervical remodeling, myometrial contractions and preterm labor through a mechanism that involves hemoxygenase-1 and complement inhibition. Mol Hum Reprod 2014; 20:579-89. [PMID: 24623738 DOI: 10.1093/molehr/gau019] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024] Open
Abstract
Preterm birth (PTB) is a major public health problem, with a global prevalence of 9.6% and over a million annual neonatal deaths. In a mouse model of preterm labor (PTL) induced by intravaginal administration of a subclinical dose of lipopolysaccharide (LPS), we previously demonstrated that LPS ascends to the cervix, inducing complement activation, cervical remodeling and PTL. Here we show that complement activation also plays a role in myometrial contractions during PTL in this model. Increased levels of C5a were detected in the myometrium of LPS-treated mice but not in age-matched control or term myometrium. Human and mouse myometrium incubated with C5a showed increased frequency of contractions and expression of connexin 43, suggesting that C5a is an uterotonic molecule. Statins, which showed beneficial effects in preventing complement-mediated pregnancy complications, prevented cervical remodeling, myometrial contractions and PTL in the LPS model. The protective effects of statins in PTL were associated with increased synthesis, expression and activity of heme oxygenase (HO-1) in myometrium and cervix. Coadministration of HO-1 inhibitor tin-protoporphyrin-IX with pravastatin abrogated the protective effects of pravastatin on cervical remodeling and myometrial contractions leading to PTB. In addition, pravastatin inhibited complement activation in the cervix by increasing the synthesis and expression of complement inhibitor decay-accelerating factor. This study in mice suggests that statins might be useful to prevent PTL in humans. Clinical trials in humans are needed and if these results are confirmed, they may form the basis for a new clinical approach to prevent PTB.
Collapse
Affiliation(s)
- Juan M Gonzalez
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, CA 94117, USA
| | - Silvia M A Pedroni
- MRC Centre for Reproductive Health, University of Edinburgh, Queen's Medical Research Institute, Edinburgh EH16 4TJ, UK Clinical Sciences, Imperial College London, London W12 0NN, UK
| | - Guillermina Girardi
- MRC Centre for Reproductive Health, University of Edinburgh, Queen's Medical Research Institute, Edinburgh EH16 4TJ, UK MRC Centre for Inflammation Research, University of Edinburgh, Queen's Medical Research Institute, Edinburgh EH16 4TJ, UK King's College London, St Thomas' Hospital, London SE1 7EH, UK
| |
Collapse
|
30
|
Larghi EL, Kaufman TS. Modulators of complement activation: a patent review (2008 - 2013). Expert Opin Ther Pat 2014; 24:665-86. [PMID: 24640971 DOI: 10.1517/13543776.2014.898063] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION The architecture of the complement system has evolved during the last 600 - 700 million years to become an amazingly efficient and highly versatile alerting and cell killing device. Under physiological conditions, this system acts as a well-regulated cascade, protecting the organism against pathogens and participating during the initial defensive steps of humoral and cellular response. The unregulated activation of this system may cause or even aggravate diseases; therefore, its modulation is currently considered of high importance. AREAS COVERED This review is a critical examination on patent literature published between 2008 and 2013. An insight is provided about the discovery and development of novel therapeutic agents. These include macromolecules, polysaccharides and proteins, specific antibodies, and hybrid or chimeric products. Peptides and low molecular weight organic compounds (natural products, their derivatives and fully synthetic molecules) are covered as well. EXPERT OPINION The search of specific inhibitors of the complement cascade has become one of the Holy Grails of Medicinal Chemistry for the last 30 - 40 years, with very few cases of success. Some highly specific macromolecules are currently available as modulators of the complement. However, there is still a marked need to find new, more specific, efficient and convenient alternatives, especially suited for chronic administration, including novel inexpensive small molecule inhibitors. Analogously, despite the initial success with specific monoclonal antibodies, a vast territory is awaiting to be explored and conquered, regarding the regulation of complement activation by antibody-mediated blockage of specific polypeptides or receptor sites.
Collapse
Affiliation(s)
- Enrique L Larghi
- Universidad Nacional de Rosario, Instituto de Química Rosario (IQUIR, CONICET-UNR) and Departamento Química Orgánica, Facultad de Ciencias Bioquímicas y Farmacéuticas , Suipacha 531, S2002LRK Rosario , República Argentina
| | | |
Collapse
|