1
|
Peterson JM, Leclair V, Oyebode OE, Herzallah DM, Nestor-Kalinoski AL, Morais J, Zahedi RP, Alamr M, Di Battista JA, Hudson M. A window into intracellular events in myositis through subcellular proteomics. Inflamm Res 2025; 74:31. [PMID: 39890639 PMCID: PMC11785624 DOI: 10.1007/s00011-025-01996-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/15/2024] [Accepted: 01/06/2025] [Indexed: 02/03/2025] Open
Abstract
OBJECTIVE AND DESIGN Idiopathic inflammatory myopathies (IIM) are a heterogeneous group of inflammatory muscle disorders of unknown etiology. It is postulated that mitochondrial dysfunction and protein aggregation in skeletal muscle contribute to myofiber degeneration. However, molecular pathways that lead to protein aggregation in skeletal muscle are not well defined. SUBJECTS Here we have isolated membrane-bound organelles (e.g., nuclei, mitochondria, sarcoplasmic/endoplasmic reticulum, Golgi apparatus, and plasma membrane) from muscle biopsies of normal (n = 3) and muscle disease patients (n = 11). Of the myopathy group, 10 patients displayed mitochondrial abnormalities (IIM (n = 9); mitochondrial myopathy (n = 1)), and one IIM patient did not show mitochondrial abnormalities (polymyositis). METHODS Global proteomic analysis was performed using an Orbitrap Fusion mass spectrometer. Upon unsupervised clustering, normal and mitochondrial myopathy muscle samples clustered separately from IIM samples. RESULTS We have confirmed previously known protein alterations in IIM and identified several new ones. For example, we found differential expression of (i) nuclear proteins that control cell division, transcription, RNA regulation, and stability, (ii) ER and Golgi proteins involved in protein folding, degradation, and protein trafficking in the cytosol, and (iii) mitochondrial proteins involved in energy production/metabolism and alterations in cytoskeletal and contractile machinery of the muscle. CONCLUSIONS Our data demonstrates that molecular alterations are not limited to protein aggregations in the cytosol (inclusions) and occur in nuclear, mitochondrial, and membrane compartments of IIM skeletal muscle.
Collapse
Affiliation(s)
- Jennifer M Peterson
- Department of Exercise and Rehabilitative Sciences, The University of Toledo, 2801 W. Bancroft St., MS 119, Toledo, OH, 43606, USA.
| | - Valérie Leclair
- Division of Rheumatology, Department of Medicine, McGill University, Montreal, QC, Canada
| | - Olumide E Oyebode
- Department of Exercise and Rehabilitative Sciences, The University of Toledo, 2801 W. Bancroft St., MS 119, Toledo, OH, 43606, USA
| | - Dema M Herzallah
- Department of Exercise and Rehabilitative Sciences, The University of Toledo, 2801 W. Bancroft St., MS 119, Toledo, OH, 43606, USA
| | - Andrea L Nestor-Kalinoski
- Department of Surgery, Advanced Microscopy and Imaging Center, University of Toledo, Toledo, OH, USA
| | - Jose Morais
- Division of Geriatric Medicine and Research Institute, McGill University Health Centre, Montreal, QC, Canada
| | - René P Zahedi
- Segal Cancer Proteomics Centre, Lady Davis Institute for Medical Research, Montreal, QC, Canada
- Manitoba Centre for Proteomics and Systems Biology, University of Manitoba, Winnipeg, MB, Canada
- Department of Internal Medicine, University of Manitoba, Winnipeg, MB, Canada
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, Canada
| | - Mazen Alamr
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - John A Di Battista
- Department of Medicine and Experimental Medicine, McGill University Health Centre Research Institute, Montreal, QC, Canada
| | - Marie Hudson
- Division of Rheumatology, Department of Medicine, McGill University, Montreal, QC, Canada.
| |
Collapse
|
2
|
Pang BPS, Iu ECY, Hang M, Chan WS, Tse MCL, Yeung CTY, Wang M, Siu PMF, Lee CW, Ye K, So H, Chan CB. Deficiency of muscle-generated brain-derived neurotrophic factor causes inflammatory myopathy through reactive oxygen species-mediated necroptosis and pyroptosis. Redox Biol 2024; 78:103418. [PMID: 39531828 PMCID: PMC11602578 DOI: 10.1016/j.redox.2024.103418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/21/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024] Open
Abstract
Idiopathic inflammatory myopathy (commonly known as myositis) is a group of immune-related diseases characterized by muscle damage, weakness, and fatigue with unknown causes. Although overactivated innate immunity is a widely believed cause of myositis onset, the mechanism that provokes and maintains a high immune response in myositis patients is still unclear. This study aims to test if brain-derived neurotrophic factor (BDNF) deficiency per se is sufficient to cause myositis and determine its underlying mechanism. We found that ablating BDNF production in skeletal muscle is sufficient to trigger myositis development in mice. Muscle-specific Bdnf knockout (MBKO) mice displayed extensive myocyte necrosis, mononuclear cell infiltration, and myophagocytosis. In association with these damages, elevated production of pro-inflammatory cytokines such as interleukin (IL) 23, IL-1β, IL-18, and tumor necrosis factor α (TNFα) was found in the muscle of MBKO mice. Disruption of sarcolemma integrity was also detected in MBKO mice, which is a result of necroptosis executioner Mixed lineage kinase domain-like protein (MLKL) and pyroptosis executioner Gasdermin D (GSDMD) activation. Mechanistically, diminishing BDNF synthesis in myotubes enhances the accumulation of mitochondrial reactive oxygen species (mtROS), which sensitizes the cells towards TNFα-induced receptor-interacting protein kinase (RIPs) activation and promotes the formation of NLR family pyrin domain containing 3 (NLRP3)-containing inflammasome. BDNF deficiency-induced cell death could be alleviated by scavenging mtROS, suppressing the activity of GSDMD, or inhibiting receptor-interacting kinase 3 (RIP3). Similarly, supplementation of BDNF mimetics, suppression of RIP3 activity, increasing the intramyocellular antioxidant, or enhancing mitophagy ameliorated the myopathies of MBKO mice and improved their muscle strength. Together, our study demonstrates that insufficient BDNF production in mouse muscle causes the development of pathological features of myositis via enhancing oxidative stress, necroptosis, and pyroptosis in myofibers.
Collapse
Affiliation(s)
- Brian Pak Shing Pang
- School of Biological Sciences, Faculty of Science, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Elsie Chit Yu Iu
- School of Biological Sciences, Faculty of Science, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Miaojia Hang
- School of Biological Sciences, Faculty of Science, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Wing Suen Chan
- School of Biological Sciences, Faculty of Science, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Margaret Chui Ling Tse
- School of Biological Sciences, Faculty of Science, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Connie Tsz Ying Yeung
- School of Biological Sciences, Faculty of Science, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Mingfu Wang
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, Hong Kong Special Administrative Region
| | - Parco Ming Fai Siu
- Division of Kinesiology, School of Public Health, The University of Hong Kong, Pok Fu Lam, Hong Kong Special Administrative Region
| | - Chi Wai Lee
- Department of Biology, Hong Kong Baptist University, Hong Kong Special Administrative Region
| | - Keqiang Ye
- Faculty of Life and Health Sciences, and Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Hong Kong Special Administrative Region
| | - Ho So
- Department of Medicine & Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Chi Bun Chan
- School of Biological Sciences, Faculty of Science, The University of Hong Kong, Hong Kong Special Administrative Region; State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong Special Administrative Region.
| |
Collapse
|
3
|
Naddaf E, Nguyen TKO, Watzlawik JO, Gao H, Hou X, Fiesel FC, Mandrekar J, Kokesh E, Harmsen WS, Lanza IR, Springer W, Trushina E. NLRP3 inflammasome activation and altered mitophagy are key pathways in inclusion body myositis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.06.15.24308845. [PMID: 38947067 PMCID: PMC11213039 DOI: 10.1101/2024.06.15.24308845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Background Inclusion body myositis (IBM) is the most prevalent muscle disease in adults for which no current treatment exists. The pathogenesis of IBM remains poorly defined. Inflammation and mitochondrial dysfunction are the most common histopathological findings. In this study, we aimed to explore the interplay between inflammation and mitochondrial dysfunction in IBM patients, highlighting sex differences. Methods We included 38 IBM patients and 22 age- and sex-matched controls without myopathy. Bulk RNA sequencing, Meso Scale Discovery ELISA, western blotting, histochemistry and immunohistochemistry were performed on frozen muscle samples from the study participants. Results We demonstrated activation of the NLRP3 inflammasome in IBM muscle samples, with the NLRP3 inflammasome pathway being the most upregulated. On muscle histopathology, there is increased NRLP3 immunoreactivity in both inflammatory cells and muscle fibers. Mitophagy is critical for removing damaged mitochondria and preventing the formation of a vicious cycle of mitochondrial dysfunction-NLRP3 activation. In the IBM muscle samples, we showed altered mitophagy, most significantly in males, with elevated levels of p-S65-Ubiquitin, a mitophagy marker. Furthermore, p-S65-Ubiquitin aggregates accumulated in muscle fibers that were mostly type 2 and devoid of cytochrome-c-oxidase reactivity. Type 2 muscle fibers are known to be more prone to mitochondrial dysfunction. NLRP3 RNA levels correlated with p-S65-Ubiquitin levels in both sexes but with loss of in muscle strength only in males. Finally, we identified sex-specific molecular pathways in IBM, with females having activation of pathways that could offset some of the pathomechanisms of IBM. Conclusions NLRP3 inflammasome is activated in IBM, along with altered mitophagy particularly in males, which is of potential therapeutic significance. These findings suggest sex-specific mechanisms in IBM that warrant further investigation.
Collapse
Affiliation(s)
- Elie Naddaf
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | | | | | - Huanyao Gao
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Xu Hou
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Fabienne C. Fiesel
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Neuroscience PhD Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL, USA
| | - Jay Mandrekar
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Eileen Kokesh
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - William S. Harmsen
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Ian R. Lanza
- Division of Endocrinology and Metabolism, Mayo Clinic, Rochester, MN, USA
| | - Wolfdieter Springer
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Neuroscience PhD Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL, USA
| | - Eugenia Trushina
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
4
|
Iu ECY, So H, Chan CB. Mitochondrial defects in sporadic inclusion body myositis-causes and consequences. Front Cell Dev Biol 2024; 12:1403463. [PMID: 38808223 PMCID: PMC11130370 DOI: 10.3389/fcell.2024.1403463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/02/2024] [Indexed: 05/30/2024] Open
Abstract
Sporadic inclusion body myositis (sIBM) is a distinct subcategory of Idiopathic Inflammatory Myopathies (IIM), characterized by unique pathological features such as muscle inflammation, rimmed vacuoles, and protein aggregation within the myofibers. Although hyperactivation of the immune system is widely believed as the primary cause of IIM, it is debated whether non-immune tissue dysfunction might contribute to the disease's onset as patients with sIBM are refractory to conventional immunosuppressant treatment. Moreover, the findings that mitochondrial dysfunction can elicit non-apoptotic programmed cell death and the subsequent immune response further support this hypothesis. Notably, abnormal mitochondrial structure and activities are more prominent in the muscle of sIBM than in other types of IIM, suggesting the presence of defective mitochondria might represent an overlooked contributor to the disease onset. The large-scale mitochondrial DNA deletion, aberrant protein aggregation, and slowed organelle turnover have provided mechanistic insights into the genesis of impaired mitochondria in sIBM. This article reviews the disease hallmarks of sIBM, the plausible contributors of mitochondrial damage in the sIBM muscle, and the immunological responses associated with mitochondrial perturbations. Additionally, the potential application of mitochondrial-targeted chemicals as a new treatment strategy to sIBM is explored and discussed.
Collapse
Affiliation(s)
- Elsie Chit Yu Iu
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Ho So
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, China
| | - Chi Bun Chan
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| |
Collapse
|
5
|
Guglielmi V, Cheli M, Tonin P, Vattemi G. Sporadic Inclusion Body Myositis at the Crossroads between Muscle Degeneration, Inflammation, and Aging. Int J Mol Sci 2024; 25:2742. [PMID: 38473988 PMCID: PMC10932328 DOI: 10.3390/ijms25052742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/19/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Sporadic inclusion body myositis (sIBM) is the most common muscle disease of older people and is clinically characterized by slowly progressive asymmetrical muscle weakness, predominantly affecting the quadriceps, deep finger flexors, and foot extensors. At present, there are no enduring treatments for this relentless disease that eventually leads to severe disability and wheelchair dependency. Although sIBM is considered a rare muscle disorder, its prevalence is certainly higher as the disease is often undiagnosed or misdiagnosed. The histopathological phenotype of sIBM muscle biopsy includes muscle fiber degeneration and endomysial lymphocytic infiltrates that mainly consist of cytotoxic CD8+ T cells surrounding nonnecrotic muscle fibers expressing MHCI. Muscle fiber degeneration is characterized by vacuolization and the accumulation of congophilic misfolded multi-protein aggregates, mainly in their non-vacuolated cytoplasm. Many players have been identified in sIBM pathogenesis, including environmental factors, autoimmunity, abnormalities of protein transcription and processing, the accumulation of several toxic proteins, the impairment of autophagy and the ubiquitin-proteasome system, oxidative and nitrative stress, endoplasmic reticulum stress, myonuclear degeneration, and mitochondrial dysfunction. Aging has also been proposed as a contributor to the disease. However, the interplay between these processes and the primary event that leads to the coexistence of autoimmune and degenerative changes is still under debate. Here, we outline our current understanding of disease pathogenesis, focusing on degenerative mechanisms, and discuss the possible involvement of aging.
Collapse
Affiliation(s)
- Valeria Guglielmi
- Cellular and Molecular Biology of Cancer Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA;
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Marta Cheli
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy; (M.C.); (P.T.)
| | - Paola Tonin
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy; (M.C.); (P.T.)
| | - Gaetano Vattemi
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy; (M.C.); (P.T.)
| |
Collapse
|
6
|
Picca A, Faitg J, Auwerx J, Ferrucci L, D'Amico D. Mitophagy in human health, ageing and disease. Nat Metab 2023; 5:2047-2061. [PMID: 38036770 DOI: 10.1038/s42255-023-00930-8] [Citation(s) in RCA: 103] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 10/13/2023] [Indexed: 12/02/2023]
Abstract
Maintaining optimal mitochondrial function is a feature of health. Mitophagy removes and recycles damaged mitochondria and regulates the biogenesis of new, fully functional ones preserving healthy mitochondrial functions and activities. Preclinical and clinical studies have shown that impaired mitophagy negatively affects cellular health and contributes to age-related chronic diseases. Strategies to boost mitophagy have been successfully tested in model organisms, and, recently, some have been translated into clinics. In this Review, we describe the basic mechanisms of mitophagy and how mitophagy can be assessed in human blood, the immune system and tissues, including muscle, brain and liver. We outline mitophagy's role in specific diseases and describe mitophagy-activating approaches successfully tested in humans, including exercise and nutritional and pharmacological interventions. We describe how mitophagy is connected to other features of ageing through general mechanisms such as inflammation and oxidative stress and forecast how strengthening research on mitophagy and mitophagy interventions may strongly support human health.
Collapse
Affiliation(s)
- Anna Picca
- Department of Medicine and Surgery, LUM University, Casamassima, Italy
- Fondazione Policlinico Universitario 'A. Gemelli' IRCCS, Rome, Italy
| | - Julie Faitg
- Amazentis, EPFL Innovation Park, Lausanne, Switzerland
| | - Johan Auwerx
- Laboratory of Integrative Systems Physiology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Luigi Ferrucci
- Division of Intramural Research, National Institute on Aging, Baltimore, MD, USA.
| | | |
Collapse
|
7
|
Machado PM, McDermott MP, Blaettler T, Sundgreen C, Amato AA, Ciafaloni E, Freimer M, Gibson SB, Jones SM, Levine TD, Lloyd TE, Mozaffar T, Shaibani AI, Wicklund M, Rosholm A, Carstensen TD, Bonefeld K, Jørgensen AN, Phonekeo K, Heim AJ, Herbelin L, Barohn RJ, Hanna MG, Dimachkie MM. Safety and efficacy of arimoclomol for inclusion body myositis: a multicentre, randomised, double-blind, placebo-controlled trial. Lancet Neurol 2023; 22:900-911. [PMID: 37739573 DOI: 10.1016/s1474-4422(23)00275-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 07/08/2023] [Accepted: 07/13/2023] [Indexed: 09/24/2023]
Abstract
BACKGROUND Inclusion body myositis is the most common progressive muscle wasting disease in people older than 50 years, with no effective drug treatment. Arimoclomol is an oral co-inducer of the cellular heat shock response that was safe and well-tolerated in a pilot study of inclusion body myositis, reduced key pathological markers of inclusion body myositis in two in-vitro models representing degenerative and inflammatory components of this disease, and improved disease pathology and muscle function in mutant valosin-containing protein mice. In the current study, we aimed to assess the safety, tolerability, and efficacy of arimoclomol in people with inclusion body myositis. METHODS This multicentre, randomised, double-blind, placebo-controlled study enrolled adults in specialist neuromuscular centres in the USA (11 centres) and UK (one centre). Eligible participants had a diagnosis of inclusion body myositis fulfilling the European Neuromuscular Centre research diagnostic criteria 2011. Participants were randomised (1:1) to receive either oral arimoclomol 400 mg or matching placebo three times daily (1200 mg/day) for 20 months. The randomisation sequence was computer generated centrally using a permuted block algorithm with randomisation numbers masked to participants and trial staff, including those assessing outcomes. The primary endpoint was the change from baseline to month 20 in the Inclusion Body Myositis Functional Rating Scale (IBMFRS) total score, assessed in all randomly assigned participants, except for those who were randomised in error and did not receive any study medication, and those who did not meet inclusion criteria. Safety analyses included all randomly assigned participants who received at least one dose of study medication. This trial is registered with ClinicalTrials.gov, number NCT02753530, and is completed. FINDINGS Between Aug 16, 2017 and May 22, 2019, 152 participants with inclusion body myositis were randomly assigned to arimoclomol (n=74) or placebo (n=78). One participant was randomised in error (to arimoclomol) but not treated, and another (assigned to placebo) did not meet inclusion criteria. 150 participants (114 [76%] male and 36 [24%] female) were included in the efficacy analyses, 73 in the arimoclomol group and 77 in the placebo group. 126 completed the trial on treatment (56 [77%] and 70 [90%], respectively) and the most common reason for treatment discontinuation was adverse events. At month 20, mean IBMFRS change from baseline was not statistically significantly different between arimoclomol and placebo (-3·26, 95% CI -4·15 to -2·36 in the arimoclomol group vs -2·26, -3·11 to -1·41 in the placebo group; mean difference -0·99 [95% CI -2·23 to 0·24]; p=0·12). Adverse events leading to discontinuation occurred in 13 (18%) of 73 participants in the arimoclomol group and four (5%) of 78 participants in the placebo group. Serious adverse events occurred in 11 (15%) participants in the arimoclomol group and 18 (23%) in the placebo group. Elevated transaminases three times or more of the upper limit of normal occurred in five (7%) participants in the arimoclomol group and one (1%) in the placebo group. Tubulointerstitial nephritis was observed in one (1%) participant in the arimoclomol group and none in the placebo group. INTERPRETATION Arimoclomol did not improve efficacy outcomes, relative to placebo, but had an acceptable safety profile in individuals with inclusion body myositis. This is one of the largest trials done in people with inclusion body myositis, providing data on disease progression that might be used for subsequent clinical trial design. FUNDING US Food and Drug Administration Office of Orphan Products Development and Orphazyme.
Collapse
Affiliation(s)
- Pedro M Machado
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, UK.
| | - Michael P McDermott
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, NY, USA
| | | | | | - Anthony A Amato
- Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Emma Ciafaloni
- Department of Neurology, University of Rochester Medical Center, Rochester, NY, USA
| | - Miriam Freimer
- Department of Neurology, The Ohio State Wexner Medical Center, Columbus, OH, USA
| | - Summer B Gibson
- Neuromuscular Division, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Sarah M Jones
- Department of Neurology, University of Virginia, Charlottesville, VA, USA
| | - Todd D Levine
- Department of Neurology, HonorHealth, Phoenix, AZ, USA
| | - Thomas E Lloyd
- Departments of Neurology and Neuroscience, Johns Hopkins University, Baltimore, MD, USA
| | - Tahseen Mozaffar
- Division of Neuromuscular Disorders, University of California, Irvine, Orange, CA, USA
| | - Aziz I Shaibani
- Nerve and Muscle Center of Texas, Baylor College of Medicine, Houston, TX, USA
| | - Matthew Wicklund
- Department of Neurology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | | | | | | | | | | | - Andrew J Heim
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Laura Herbelin
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Richard J Barohn
- Department of Neurology, University of Missouri, Columbia, MO, USA
| | - Michael G Hanna
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Mazen M Dimachkie
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
8
|
Kummer K, Bertram I, Zechel S, Hoffmann DB, Schmidt J. Inflammasome in Skeletal Muscle: NLRP3 Is an Inflammatory Cell Stress Component in Inclusion Body Myositis. Int J Mol Sci 2023; 24:10675. [PMID: 37445853 DOI: 10.3390/ijms241310675] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/30/2023] [Accepted: 06/04/2023] [Indexed: 07/15/2023] Open
Abstract
Inclusion body myositis (IBM) is a chronic, mostly treatment-resistant, inflammatory myopathy with a pathology that centers around specific interactions between inflammation and protein accumulation. The study aimed to identify the inflammasome as a key event in the complex network of pathomechanisms. Regulation of the inflammasome was assessed in a well-established pro-inflammatory cell culture model using human myoblasts and primary human myotubes. By quantitative PCR, western blot and immunocytochemistry, inflammasome markers including NLRP3 were assessed in muscle cells exposed to the cytokines IL-1β and IFN-γ. The data were corroborated by analysis of muscle biopsies from patients with IBM compared to other myositis subtypes. In the cell culture model of IBM, the NLRP3 inflammasome was significantly overexpressed, as evidenced by western blot (p = 0.03) and quantitative PCR (p < 0.01). Target genes that play a role in inflammasome assembly, T-cell migration, and MHC-I expression (p = 0.009) were highly co-upregulated. NLRP3 was significantly overexpressed in muscle biopsies from IBM samples compared to disease controls (p = 0.049), including other inflammatory myopathies. Due to the extraordinary features of the pathogenesis and the pronounced upregulation of NLRP3 in IBM, the inflammasome could serve as a key molecule that drives the inflammatory cascade as well as protein accumulation in the muscle. These data can be useful for future therapeutic developments.
Collapse
Affiliation(s)
- Karsten Kummer
- Department of Neurology and Pain Treatment, Neuromuscular Center, Center for Translational Medicine, Immanuel Klinik Rüdersdorf, University Hospital of the Brandenburg Medical School, 15562 Rüdersdorf bei Berlin, Germany
- Faculty of Health Sciences Brandenburg, Brandenburg Medical School, 15562 Rüdersdorf bei Berlin, Germany
- Department of Neurology, Neuromuscular Center, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Imke Bertram
- Department of Neurology, Neuromuscular Center, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Sabrina Zechel
- Department of Neuropathology, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Daniel B Hoffmann
- Department of Trauma, Orthopaedic and Plastic Surgery, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Jens Schmidt
- Department of Neurology and Pain Treatment, Neuromuscular Center, Center for Translational Medicine, Immanuel Klinik Rüdersdorf, University Hospital of the Brandenburg Medical School, 15562 Rüdersdorf bei Berlin, Germany
- Faculty of Health Sciences Brandenburg, Brandenburg Medical School, 15562 Rüdersdorf bei Berlin, Germany
- Department of Neurology, Neuromuscular Center, University Medical Center Göttingen, 37075 Göttingen, Germany
| |
Collapse
|
9
|
Cantó-Santos J, Valls-Roca L, Tobías E, García-García FJ, Guitart-Mampel M, Esteve-Codina A, Martín-Mur B, Casado M, Artuch R, Solsona-Vilarrasa E, Fernandez-Checa JC, García-Ruiz C, Rentero C, Enrich C, Moreno-Lozano PJ, Milisenda JC, Cardellach F, Grau-Junyent JM, Garrabou G. Unravelling inclusion body myositis using a patient-derived fibroblast model. J Cachexia Sarcopenia Muscle 2023; 14:964-977. [PMID: 36860172 PMCID: PMC10067507 DOI: 10.1002/jcsm.13178] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 11/24/2022] [Accepted: 01/02/2023] [Indexed: 03/03/2023] Open
Abstract
BACKGROUND Inclusion body myositis (IBM) is an inflammatory myopathy clinically characterized by proximal and distal muscle weakness, with inflammatory infiltrates, rimmed vacuoles and mitochondrial changes in muscle histopathology. There is scarce knowledge on IBM aetiology, and non-established biomarkers or effective treatments are available, partly due to the lack of validated disease models. METHODS We have performed transcriptomics and functional validation of IBM muscle pathological hallmarks in fibroblasts from IBM patients (n = 14) and healthy controls (n = 12), paired by age and sex. The results comprise an mRNA-seq, together with functional inflammatory, autophagy, mitochondrial and metabolic changes between patients and controls. RESULTS Gene expression profile of IBM vs control fibroblasts revealed 778 differentially expressed genes (P-value adj < 0.05) related to inflammation, mitochondria, cell cycle regulation and metabolism. Functionally, an increased inflammatory profile was observed in IBM fibroblasts with higher supernatant cytokine secretion (three-fold increase). Autophagy was reduced considering basal protein mediators (18.4% reduced), time-course autophagosome formation (LC3BII 39% reduced, P-value < 0.05), and autophagosome microscopic evaluation. Mitochondria displayed reduced genetic content (by 33.9%, P-value < 0.05) and function (30.2%-decrease in respiration, 45.6%-decline in enzymatic activity (P-value < 0.001), 14.3%-higher oxidative stress, 135.2%-increased antioxidant defence (P-value < 0.05), 11.6%-reduced mitochondrial membrane potential (P-value < 0.05) and 42.8%-reduced mitochondrial elongation (P-value < 0.05)). In accordance, at the metabolite level, organic acid showed a 1.8-fold change increase, with conserved amino acid profile. Correlating to disease evolution, oxidative stress and inflammation emerge as potential markers of prognosis. CONCLUSIONS These findings confirm the presence of molecular disturbances in peripheral tissues from IBM patients and prompt patients' derived fibroblasts as a promising disease model, which may eventually be exported to other neuromuscular disorders. We additionally identify new molecular players in IBM associated with disease progression, setting the path to deepen in disease aetiology, in the identification of novel biomarkers or in the standardization of biomimetic platforms to assay new therapeutic strategies for preclinical studies.
Collapse
Affiliation(s)
- Judith Cantó-Santos
- Muscle Research and Mitochondrial Function Lab, Centre de Recerca Biomèdica CELLEX - Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) and Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain.,Department of Internal Medicine, Hospital Clinic of Barcelona, Barcelona, Spain.,CIBERER-Spanish Biomedical Research Centre in Rare Diseases, Madrid, Spain
| | - Laura Valls-Roca
- Muscle Research and Mitochondrial Function Lab, Centre de Recerca Biomèdica CELLEX - Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) and Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain.,Department of Internal Medicine, Hospital Clinic of Barcelona, Barcelona, Spain.,CIBERER-Spanish Biomedical Research Centre in Rare Diseases, Madrid, Spain
| | - Ester Tobías
- Muscle Research and Mitochondrial Function Lab, Centre de Recerca Biomèdica CELLEX - Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) and Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain.,Department of Internal Medicine, Hospital Clinic of Barcelona, Barcelona, Spain.,CIBERER-Spanish Biomedical Research Centre in Rare Diseases, Madrid, Spain
| | - Francesc Josep García-García
- Muscle Research and Mitochondrial Function Lab, Centre de Recerca Biomèdica CELLEX - Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) and Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain.,Department of Internal Medicine, Hospital Clinic of Barcelona, Barcelona, Spain.,CIBERER-Spanish Biomedical Research Centre in Rare Diseases, Madrid, Spain
| | - Mariona Guitart-Mampel
- Muscle Research and Mitochondrial Function Lab, Centre de Recerca Biomèdica CELLEX - Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) and Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain.,Department of Internal Medicine, Hospital Clinic of Barcelona, Barcelona, Spain.,CIBERER-Spanish Biomedical Research Centre in Rare Diseases, Madrid, Spain
| | - Anna Esteve-Codina
- CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Beatriz Martín-Mur
- CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Mercedes Casado
- CIBERER-Spanish Biomedical Research Centre in Rare Diseases, Madrid, Spain.,Department of Clinical Biochemistry, Institut de Recerca Sant Joan de Déu; Esplugues de Llobregat, Barcelona, Spain
| | - Rafael Artuch
- CIBERER-Spanish Biomedical Research Centre in Rare Diseases, Madrid, Spain.,Department of Clinical Biochemistry, Institut de Recerca Sant Joan de Déu; Esplugues de Llobregat, Barcelona, Spain
| | - Estel Solsona-Vilarrasa
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB-CSIC), Liver Unit-HCB-IDIBAPS, Barcelona, Spain.,CIBEREHD-Spanish Biomedical Research Centre in Hepatic and Digestive Diseases, Madrid, Spain
| | - José Carlos Fernandez-Checa
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB-CSIC), Liver Unit-HCB-IDIBAPS, Barcelona, Spain.,CIBEREHD-Spanish Biomedical Research Centre in Hepatic and Digestive Diseases, Madrid, Spain
| | - Carmen García-Ruiz
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB-CSIC), Liver Unit-HCB-IDIBAPS, Barcelona, Spain.,CIBEREHD-Spanish Biomedical Research Centre in Hepatic and Digestive Diseases, Madrid, Spain
| | - Carles Rentero
- Department of Biomedicine, Cell Biology Unit, CELLEX-IDIBAPS, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Carlos Enrich
- Department of Biomedicine, Cell Biology Unit, CELLEX-IDIBAPS, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Pedro J Moreno-Lozano
- Muscle Research and Mitochondrial Function Lab, Centre de Recerca Biomèdica CELLEX - Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) and Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain.,Department of Internal Medicine, Hospital Clinic of Barcelona, Barcelona, Spain.,CIBERER-Spanish Biomedical Research Centre in Rare Diseases, Madrid, Spain
| | - José César Milisenda
- Muscle Research and Mitochondrial Function Lab, Centre de Recerca Biomèdica CELLEX - Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) and Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain.,Department of Internal Medicine, Hospital Clinic of Barcelona, Barcelona, Spain.,CIBERER-Spanish Biomedical Research Centre in Rare Diseases, Madrid, Spain
| | - Francesc Cardellach
- Muscle Research and Mitochondrial Function Lab, Centre de Recerca Biomèdica CELLEX - Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) and Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain.,Department of Internal Medicine, Hospital Clinic of Barcelona, Barcelona, Spain.,CIBERER-Spanish Biomedical Research Centre in Rare Diseases, Madrid, Spain
| | - Josep M Grau-Junyent
- Muscle Research and Mitochondrial Function Lab, Centre de Recerca Biomèdica CELLEX - Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) and Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain.,Department of Internal Medicine, Hospital Clinic of Barcelona, Barcelona, Spain.,CIBERER-Spanish Biomedical Research Centre in Rare Diseases, Madrid, Spain
| | - Glòria Garrabou
- Muscle Research and Mitochondrial Function Lab, Centre de Recerca Biomèdica CELLEX - Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) and Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain.,Department of Internal Medicine, Hospital Clinic of Barcelona, Barcelona, Spain.,CIBERER-Spanish Biomedical Research Centre in Rare Diseases, Madrid, Spain
| |
Collapse
|
10
|
Abstract
The autoimmune inflammatory myopathies constitute a heterogeneous group of acquired myopathies that have in common the presence of endomysial inflammation and moderate to severe muscle weakness. Based on currently evolved distinct clinical, histologic, immunopathologic, and autoantibody features, these disorders can be best classified as dermatomyositis, necrotizing autoimmune myositis, antisynthetase syndrome-overlap myositis, and inclusion body myositis. Although polymyositis is no longer considered a distinct subset but rather an extinct entity, it is herein described because its clinicopathologic information has provided over many years fundamental information on T-cell-mediated myocytotoxicity, especially in reference to inclusion body myositis. Each inflammatory myopathy subset has distinct immunopathogenesis, prognosis, and response to immunotherapies, necessitating the need to correctly diagnose each subtype from the outset and avoid disease mimics. The paper describes the main clinical characteristics that aid in the diagnosis of each myositis subtype, highlights the distinct features on muscle morphology and immunopathology, elaborates on the potential role of autoantibodies in pathogenesis or diagnosis , and clarifies common uncertainties in reference to putative triggering factors such as statins and viruses including the 2019-coronavirus-2 pandemic. It extensively describes the main autoimmune markers related to autoinvasive myocytotoxic T-cells, activated B-cells, complement, cytokines, and the possible role of innate immunity. The concomitant myodegenerative features seen in inclusion body myositis along with their interrelationship between inflammation and degeneration are specifically emphasized. Finally, practical guidelines on the best therapeutic approaches are summarized based on up-to-date knowledge and controlled studies, highlighting the prospects of future immunotherapies and ongoing controversies.
Collapse
Affiliation(s)
- Marinos C Dalakas
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, United States; Neuroimmunology Unit National and Kapodistrian University of Athens Medical School, Athens, Greece.
| |
Collapse
|
11
|
Henning F, Kohn TA. Preservation of shortening velocity and power output in single muscle fibres from patients with idiopathic inflammatory myopathies. J Muscle Res Cell Motil 2022; 44:1-10. [PMID: 36517707 DOI: 10.1007/s10974-022-09638-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022]
Abstract
Idiopathic inflammatory myopathies (IIMs) are autoimmune disorders of skeletal muscle causing weakness and disability. Utilizing single fibre contractility studies, we have previously shown that contractility is affected in muscle fibres from individuals with IIMs. For the current study, we hypothesized that a compensatory increase in shortening velocity occurs in muscle fibres from individuals with IIMs in an effort to maintain power output. We performed in vitro single fibre contractility studies to assess force-velocity relationships and maximum shortening velocity (Vmax) of muscle fibres from individuals with IIMs (25 type I and 58 type IIA) and healthy controls (66 type I and 27 type IIA) and calculated maximum power output (Wmax) for each fibre. We found significantly higher Vmax (mean ± SEM) of fibres from individuals with IIMs, for both type I (1.40 ± 0.31 fibre lengths/s, n = vs. 0.63 ± 0.13 fibre lengths/s; p = 0.0019) and type IIA fibres (2.00 ± 0.17 fibre lengths/s vs 0.77 ± 0.10 fibre lengths/s; p < 0.0001). Furthermore, Wmax (mean ± SEM) was maintained compared to fibres from healthy controls, again for both type I and type IIA fibres (4.10 ± 1.00 kN/m2·fibre lengths/s vs. 2.00 ± 0.16 kN/m2·fibre lengths/s; p = ns and 9.00 ± 0.64 kN/m2·fibre lengths/s vs. 6.00 ± 0.67 kN/m2·fibre lengths/s; p = ns respectively). In addition, type I muscle fibres from individuals with IIMs was able to develop maximum power output at lower relative force. The findings of this study suggest that compensatory responses to maintain power output, including increased maximum shortening velocity and improved efficiency, may occur in muscle of individuals with IIMs. The mechanism underlying this response is unclear, and different hypotheses are discussed.
Collapse
Affiliation(s)
- Franclo Henning
- Division of Neurology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.
- Department of Human Biology, University of Cape Town, Anzio Road, Observatory, Cape Town, South Africa.
| | - Tertius Abraham Kohn
- Department of Human Biology, University of Cape Town, Anzio Road, Observatory, Cape Town, South Africa
- Department of Medical Bioscience, Faculty of Natural Sciences, University of the Western Cape, Cape Town, South Africa
| |
Collapse
|
12
|
Thoma A, Earl KE, Goljanek-Whysall K, Lightfoot AP. Major histocompatibility complex I-induced endoplasmic reticulum stress mediates the secretion of pro-inflammatory muscle-derived cytokines. J Cell Mol Med 2022; 26:6032-6041. [PMID: 36426551 PMCID: PMC9753450 DOI: 10.1111/jcmm.17621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/08/2022] [Accepted: 11/11/2022] [Indexed: 11/27/2022] Open
Abstract
Major histocompatibility complex (MHC) I is an important component of intracellular antigen presentation. However, improper expression of MHC I upon the cell surface has been associated with several autoimmune diseases. Myositis is a rare acquired autoimmune disease which targets skeletal muscle, and MHC I overexpression on the surface of muscle fibres and immune cell infiltration are clinical hallmarks. MHC I overexpression may have an important pathogenic role, mediated by the activation of the endoplasmic reticulum (ER) stress response. Given the evidence that muscle is a diverse source of cytokines, we aimed to investigate whether MHC I overexpression can modify the profile of muscle-derived cytokines and what role the ER stress pathway may play. Using C2C12 myoblasts we overexpressed MHC I with a H-2kb vector in the presence or absence of salubrinal an ER stress pathway modifying compound. MHC I overexpression induced ER stress pathway activation and elevated cytokine gene expression. MHC I overexpression caused significant release of cytokines and chemokines, which was attenuated in the presence of salubrinal. Conditioned media from MHC I overexpressing cells induced in vitro T-cell chemotaxis, atrophy of healthy myotubes and modified mitochondrial function, features which were attenuated in the presence of salubrinal. Collectively, these data suggest that MHC I overexpression can induce pro-inflammatory cytokine/chemokine release from C2C12 myoblasts, a process which appears to be mediated in-part by the ER stress pathway.
Collapse
Affiliation(s)
- Anastasia Thoma
- Musculoskeletal Science & Sports Medicine Research Centre, Department of Life Sciences, Faculty of Science & Engineering, Manchester Metropolitan University, Manchester, UK.,Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Kate E Earl
- School of Life and Medical Sciences, University of Hertfordshire, Hertfordshire, UK
| | - Katarzyna Goljanek-Whysall
- Institute for Life Course and Medical Sciences, University of Liverpool, Liverpool, UK.,Discipline of Physiology, School of Medicine, National University of Ireland, Galway, Ireland
| | - Adam P Lightfoot
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| |
Collapse
|
13
|
Ahmad W. Glucose enrichment impair neurotransmission and induce Aβ oligomerization that cannot be reversed by manipulating O-β-GlcNAcylation in the C. elegans model of Alzheimer's disease. J Nutr Biochem 2022; 108:109100. [PMID: 35779795 DOI: 10.1016/j.jnutbio.2022.109100] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 02/27/2022] [Accepted: 06/08/2022] [Indexed: 01/17/2023]
Abstract
Amyloid beta (Aβ) plaques formation and impaired neurotransmission and neuronal behaviors are primary hallmarks of Alzheimer's disease (AD) that are further associated with impaired glucose metabolism in elderly AD's patients. However, the exact role of glucose metabolism on disease progression has not been elucidated yet. In this study, the effect of glucose on Aβ-mediated toxicity, neurotransmission and neuronal behaviors has been investigated using a C. elegans model system expressing human Aβ. In addition to regular diet, worms expressing Aβ were supplemented with different concentrations of glucose and glycerol and 5 mM 2-deoxyglucose to draw any conclusions. Addition of glucose to the growth medium delayed Aβ-associated paralysis, promoted abnormal body shapes and movement, unable to restore impaired acetylcholine neurotransmission, inhibited egg laying and hatching in pre-existing Aβ-mediated pathology. The harmful effects of glucose may associate with an increase in toxic Aβ oligomers and impaired neurotransmission. O-β-GlcNAcylation (O-GlcNAc), a well-known post-translational modification is directly associated with glucose metabolism and has been found to ameliorates the Aβ- toxicity. We reasoned that glucose addition might induce O-GlcNAc, thereby protect against Aβ. Contrary to our expectations, induced glucose levels were not protective. Increasing O-GlcNAc, either with Thiamet-G (TMG) or by suppressing the O-GlcNAcase (oga-1) gene does interfere with and, therefore, reduce Aβ- toxicity but not in the presence of high glucose. The effects of glucose cannot be effectively managed by manipulating O-GlcNAc in AD models of C. elegans. Our observations suggest that glucose enrichment is unlikely to be an appropriate therapy to minimize AD progression.
Collapse
Affiliation(s)
- Waqar Ahmad
- School of Biological Sciences, the University of Queensland, Brisbane 4072, Australia.
| |
Collapse
|
14
|
Preusse C, Marteau T, Fischer N, Hentschel A, Sickmann A, Lang S, Schneider U, Schara-Schmidt U, Meyer N, Ruck T, Dengler NF, Prudlo J, Dudesek A, Görl N, Allenbach Y, Benveniste O, Goebel HH, Dittmayer C, Stenzel W, Roos A. Endoplasmic reticulum-stress and unfolded protein response-activation in immune-mediated necrotizing myopathy. Brain Pathol 2022; 32:e13084. [PMID: 35703068 DOI: 10.1111/bpa.13084] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 05/12/2022] [Indexed: 12/13/2022] Open
Abstract
Patients suffering from immune-mediated necrotizing myopathies (IMNM) harbor, the pathognomonic myositis-specific auto-antibodies anti-SRP54 or -HMGCR, while about one third of them do not. Activation of chaperone-assisted autophagy was described as being part of the molecular etiology of IMNM. Endoplasmic reticulum (ER)/sarcoplasmic reticulum (SR)-stress accompanied by activation of the unfolded protein response (UPR) often precedes activation of the protein clearance machinery and represents a cellular defense mechanism toward restoration of proteostasis. Here, we show that ER/SR-stress may be part of the molecular etiology of IMNM. To address this assumption, ER/SR-stress related key players covering the three known branches (PERK-mediated, IRE1-mediated, and ATF6-mediated) were investigated on both, the transcript and the protein levels utilizing 39 muscle biopsy specimens derived from IMNM-patients. Our results demonstrate an activation of all three UPR-branches in IMNM, which most likely precedes the activation of the protein clearance machinery. In detail, we identified increased phosphorylation of PERK and eIF2a along with increased expression and protein abundance of ATF4, all well-documented characteristics for the activation of the UPR. Further, we identified increased general XBP1-level, and elevated XBP1 protein levels. Additionally, our transcript studies revealed an increased ATF6-expression, which was confirmed by immunostaining studies indicating a myonuclear translocation of the cleaved ATF6-form toward the forced transcription of UPR-related chaperones. In accordance with that, our data demonstrate an increase of downstream factors including ER/SR co-chaperones and chaperones (e.g., SIL1) indicating an UPR-activation on a broader level with no significant differences between seropositive and seronegative patients. Taken together, one might assume that UPR-activation within muscle fibers might not only serve to restore protein homeostasis, but also enhance sarcolemmal presentation of proteins crucial for attracting immune cells. Since modulation of ER-stress and UPR via application of chemical chaperones became a promising therapeutic treatment approach, our findings might represent the starting point for new interventional concepts.
Collapse
Affiliation(s)
- Corinna Preusse
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Department of Neurology with Institute for Translational Neurology, University Hospital Münster, Münster, Germany
| | - Theodore Marteau
- Pediatric Neurology, University Children's Hospital, Faculty of Medicine, University of Duisburg-Essen, Essen, Germany
| | - Norina Fischer
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Andreas Hentschel
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V, Dortmund, Germany
| | - Albert Sickmann
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V, Dortmund, Germany
| | - Sven Lang
- Department of Medical Biochemistry and Molecular Biology, Saarland University, Homburg, Germany
| | - Udo Schneider
- Department of Rheumatology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ulrike Schara-Schmidt
- Pediatric Neurology, University Children's Hospital, Faculty of Medicine, University of Duisburg-Essen, Essen, Germany
| | - Nancy Meyer
- Pediatric Neurology, University Children's Hospital, Faculty of Medicine, University of Duisburg-Essen, Essen, Germany
| | - Tobias Ruck
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Nora F Dengler
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Johannes Prudlo
- Department of Neurology, Rostock University Medical Center, Rostock, Germany.,German Center for Neurodegenerative Diseases (DZNE) Rostock/Greifswald, Rostock, Germany.,Department of Neurology, University of Rostock, Rostock, Germany
| | - Ales Dudesek
- Department of Neurology, Rostock University Medical Center, Rostock, Germany
| | - Norman Görl
- Department of Internal Medicine, Klinikum Südstadt Rostock, Rostock, Germany
| | - Yves Allenbach
- Department of Internal Medicine and Clinical Immunology, Sorbonne Université, APHP, Pitié-Salpêtrière University Hospital, Paris, France
| | - Olivier Benveniste
- Department of Internal Medicine and Clinical Immunology, Sorbonne Université, APHP, Pitié-Salpêtrière University Hospital, Paris, France
| | - Hans-Hilmar Goebel
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Department of Neuropathology, University Hospital Mainz, Mainz, Germany
| | - Carsten Dittmayer
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Werner Stenzel
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Andreas Roos
- Pediatric Neurology, University Children's Hospital, Faculty of Medicine, University of Duisburg-Essen, Essen, Germany.,Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| |
Collapse
|
15
|
Šušnjar U, Škrabar N, Brown AL, Abbassi Y, Phatnani H, Cortese A, Cereda C, Bugiardini E, Cardani R, Meola G, Ripolone M, Moggio M, Romano M, Secrier M, Fratta P, Buratti E. Cell environment shapes TDP-43 function with implications in neuronal and muscle disease. Commun Biol 2022; 5:314. [PMID: 35383280 PMCID: PMC8983780 DOI: 10.1038/s42003-022-03253-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 03/11/2022] [Indexed: 12/26/2022] Open
Abstract
TDP-43 (TAR DNA-binding protein 43) aggregation and redistribution are recognised as a hallmark of amyotrophic lateral sclerosis and frontotemporal dementia. As TDP-43 inclusions have recently been described in the muscle of inclusion body myositis patients, this highlights the need to understand the role of TDP-43 beyond the central nervous system. Using RNA-seq, we directly compare TDP-43-mediated RNA processing in muscle (C2C12) and neuronal (NSC34) mouse cells. TDP-43 displays a cell-type-characteristic behaviour targeting unique transcripts in each cell-type, which is due to characteristic expression of RNA-binding proteins, that influence TDP-43's performance and define cell-type specific splicing. Among splicing events commonly dysregulated in both cell lines, we identify some that are TDP-43-dependent also in human cells. Inclusion levels of these alternative exons are altered in tissues of patients suffering from FTLD and IBM. We therefore propose that TDP-43 dysfunction contributes to disease development either in a common or a tissue-specific manner.
Collapse
Affiliation(s)
- Urša Šušnjar
- Molecular Pathology Lab, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Neva Škrabar
- Tumour Virology Lab, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
- Generatio GmbH, Center for Animal, Genetics, Tübingen, Germany
| | - Anna-Leigh Brown
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Yasmine Abbassi
- Molecular Pathology Lab, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Hemali Phatnani
- Center for Genomics of Neurodegenerative Disease, New York Genome Center, New York, USA
| | - Andrea Cortese
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
- Department of Brain and Behaviour Sciences, University of Pavia, Pavia, Italy
| | - Cristina Cereda
- Genomic and post-Genomic Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Enrico Bugiardini
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Rosanna Cardani
- BioCor Biobank, UOC SMEL-1 of Clinical Pathology, IRCCS-Policlinico San Donato, San Donato Milanese, Italy
| | - Giovanni Meola
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
- Department of Neurorehabilitation Sciences, Casa di Cura del Policlinico, Milan, Italy
| | - Michela Ripolone
- Neuromuscular and Rare Diseases Unit, Department of Neuroscience, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Maurizio Moggio
- Neuromuscular and Rare Diseases Unit, Department of Neuroscience, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Maurizio Romano
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Maria Secrier
- UCL Genetics Institute, Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Pietro Fratta
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Emanuele Buratti
- Molecular Pathology Lab, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy.
| |
Collapse
|
16
|
Treatment and Management of Autoimmune Myopathies. Neuromuscul Disord 2022. [DOI: 10.1016/b978-0-323-71317-7.00022-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
17
|
Marini M, Tani A, Manetti M, Sgambati E. Overview of sialylation status in human nervous and skeletal muscle tissues during aging. Acta Histochem 2021; 123:151813. [PMID: 34753032 DOI: 10.1016/j.acthis.2021.151813] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/29/2021] [Accepted: 10/29/2021] [Indexed: 12/14/2022]
Abstract
Sialic acids (Sias) are a large and heterogeneous family of electronegatively charged nine-carbon monosaccharides containing a carboxylic acid and are mostly found as terminal residues in glycans of glycoproteins and glycolipids such as gangliosides. They are linked to galactose or N-acetylgalactosamine via α2,3 or α2,6 linkage, or to other Sias via α2,8 or more rarely α2,9 linkage, resulting in mono, oligo and polymeric forms. Given their characteristics, Sias play a crucial role in a multitude of human tissue biological processes in physiological and pathological conditions, ranging from development and growth to adult life until aging. Here, we review the sialylation status in human adult life focusing on the nervous and skeletal muscle tissues, which both display significant structural and functional changes during aging, strongly impacting on the whole human body and, therefore, on the quality of life. In particular, this review highlights the fundamental roles played by different types of glycoconjugates Sias in several cellular biological processes in the nervous and skeletal muscle tissues during adult life, also discussing how changes in Sia content during aging may contribute to the physiological decline of physical and nervous functions and to the development of age-related degenerative pathologies. Based on our current knowledge, further in-depth investigations could help to develop novel prophylactic strategies and therapeutic approaches that, by maintaining and/or restoring the correct sialylation status in the nervous and skeletal muscle tissues, could contribute to aging slowing and the prevention of age-related pathologies.
Collapse
|
18
|
Ferreira M, Francisco S, Soares AR, Nobre A, Pinheiro M, Reis A, Neto S, Rodrigues AJ, Sousa N, Moura G, Santos MAS. Integration of segmented regression analysis with weighted gene correlation network analysis identifies genes whose expression is remodeled throughout physiological aging in mouse tissues. Aging (Albany NY) 2021; 13:18150-18190. [PMID: 34330884 PMCID: PMC8351669 DOI: 10.18632/aging.203379] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 07/21/2021] [Indexed: 02/06/2023]
Abstract
Gene expression alterations occurring with aging have been described for a multitude of species, organs, and cell types. However, most of the underlying studies rely on static comparisons of mean gene expression levels between age groups and do not account for the dynamics of gene expression throughout the lifespan. These studies also tend to disregard the pairwise relationships between gene expression profiles, which may underlie commonly altered pathways and regulatory mechanisms with age. To overcome these limitations, we have combined segmented regression analysis with weighted gene correlation network analysis (WGCNA) to identify high-confidence signatures of aging in the brain, heart, liver, skeletal muscle, and pancreas of C57BL/6 mice in a publicly available RNA-Seq dataset (GSE132040). Functional enrichment analysis of the overlap of genes identified in both approaches showed that immune- and inflammation-related responses are prominently altered in the brain and the liver, while in the heart and the muscle, aging affects amino and fatty acid metabolism, and tissue regeneration, respectively, which reflects an age-related global loss of tissue function. We also explored sexual dimorphism in the aging mouse transcriptome and found the liver and the muscle to have the most pronounced gender differences in gene expression throughout the lifespan, particularly in proteostasis-related pathways. While the data showed little overlap among the age-dysregulated genes between tissues, aging triggered common biological processes in distinct tissues, which we highlight as important features of murine tissue physiological aging.
Collapse
Affiliation(s)
- Margarida Ferreira
- Institute of Biomedicine – iBiMED, Department of Medical Sciences, University of Aveiro, Aveiro 3810-193, Portugal
| | - Stephany Francisco
- Institute of Biomedicine – iBiMED, Department of Medical Sciences, University of Aveiro, Aveiro 3810-193, Portugal
| | - Ana R. Soares
- Institute of Biomedicine – iBiMED, Department of Medical Sciences, University of Aveiro, Aveiro 3810-193, Portugal
| | - Ana Nobre
- Institute of Biomedicine – iBiMED, Department of Medical Sciences, University of Aveiro, Aveiro 3810-193, Portugal
| | - Miguel Pinheiro
- Institute of Biomedicine – iBiMED, Department of Medical Sciences, University of Aveiro, Aveiro 3810-193, Portugal
| | - Andreia Reis
- Institute of Biomedicine – iBiMED, Department of Medical Sciences, University of Aveiro, Aveiro 3810-193, Portugal
| | - Sonya Neto
- Institute of Biomedicine – iBiMED, Department of Medical Sciences, University of Aveiro, Aveiro 3810-193, Portugal
| | - Ana João Rodrigues
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga 4710-057, Portugal
- ICVS/3B’s–PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga 4710-057, Portugal
- ICVS/3B’s–PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Gabriela Moura
- Institute of Biomedicine – iBiMED, Department of Medical Sciences, University of Aveiro, Aveiro 3810-193, Portugal
| | - Manuel A. S. Santos
- Institute of Biomedicine – iBiMED, Department of Medical Sciences, University of Aveiro, Aveiro 3810-193, Portugal
| |
Collapse
|
19
|
Autophagy and Tau Protein. Int J Mol Sci 2021; 22:ijms22147475. [PMID: 34299093 PMCID: PMC8303176 DOI: 10.3390/ijms22147475] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/22/2021] [Accepted: 07/01/2021] [Indexed: 12/19/2022] Open
Abstract
Neurofibrillary tangles, which consist of highly phosphorylated tau protein, and senile plaques (SPs) are pathological hallmarks of Alzheimer's disease (AD). In swollen axons, many autophagic vacuoles are observed around SP in the AD brain. This suggests that autophagy function is disturbed in AD. We used a neuronal cellular model of tauopathy (M1C cells), which harbors wild type tau (4R0N), to assess the effects of the lysosomotrophic agent NH4Cl, and autophagy inhibitors chloroquine and 3 methyladenine (3MA). It was found that chloroquine, NH4Cl and 3MA markedly increased tau accumulation. Thus, autophagy lysosomal system disturbances disturbed the degradation mechanisms of tau protein. Other studies also revealed that tau protein, including aggregated tau, is degraded via the autophagy lysosome system. Phosphorylated and C terminal truncated tau were also reported to disturb autophagy function. As a therapeutic strategy, autophagy upregulation was suggested. Thus far, as autophagy modulators, rapamycin, mTOCR1 inhibitor and its analogues, lithium, metformin, clonidine, curcumin, nicotinamide, bexaroten, and torehalose have been proposed. As a therapeutic strategy, autophagic modulation may be the next target of AD therapeutics.
Collapse
|
20
|
Uruha A, Goebel HH, Stenzel W. Updates on the Immunopathology in Idiopathic Inflammatory Myopathies. Curr Rheumatol Rep 2021; 23:56. [PMID: 34212266 DOI: 10.1007/s11926-021-01017-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE OF REVIEW To review recent advances in immunopathology for idiopathic inflammatory myopathies, focusing on widely available immunohistochemical analyses. RECENT FINDINGS Sarcoplasmic expression of myxovirus resistance protein A (MxA) is specifically observed in all types of dermatomyositis and informs that type I interferons are crucially involved in its pathogenesis. It is a more sensitive diagnostic marker than perifascicular atrophy. Diffuse tiny dots in the sarcoplasm highlighted by p62 immunostaining are characteristically seen in immune-mediated necrotizing myopathy. This feature is linked to a chaperone-assisted selective autophagy pathway. Myofiber invasion by highly differentiated T cells, a marker of which is KLRG1, is specific to inclusion body myositis and has a crucial role in its pathogenesis. The recent advances in immunopathology contribute to increased diagnostic accuracy and a better understanding of the underlying pathophysiology in different types of idiopathic inflammatory myopathies.
Collapse
Affiliation(s)
- Akinori Uruha
- Department of Neuropathology, Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany. .,Department of Neurology, Tokyo Metropolitan Neurological Hospital, 2-6-1 Musashidai, Fuchu, Tokyo, 183-0042, Japan.
| | - Hans-Hilmar Goebel
- Department of Neuropathology, Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany.,Department of Neuropathology, Universitätsmedizin Mainz, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Werner Stenzel
- Department of Neuropathology, Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany.,Leibniz Science Campus Chronic Inflammation, Charitéplatz 1, 10117, Berlin, Germany
| |
Collapse
|
21
|
Doblado L, Lueck C, Rey C, Samhan-Arias AK, Prieto I, Stacchiotti A, Monsalve M. Mitophagy in Human Diseases. Int J Mol Sci 2021; 22:ijms22083903. [PMID: 33918863 PMCID: PMC8069949 DOI: 10.3390/ijms22083903] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/23/2021] [Accepted: 03/26/2021] [Indexed: 02/06/2023] Open
Abstract
Mitophagy is a selective autophagic process, essential for cellular homeostasis, that eliminates dysfunctional mitochondria. Activated by inner membrane depolarization, it plays an important role during development and is fundamental in highly differentiated post-mitotic cells that are highly dependent on aerobic metabolism, such as neurons, muscle cells, and hepatocytes. Both defective and excessive mitophagy have been proposed to contribute to age-related neurodegenerative diseases, such as Parkinson’s and Alzheimer’s diseases, metabolic diseases, vascular complications of diabetes, myocardial injury, muscle dystrophy, and liver disease, among others. Pharmacological or dietary interventions that restore mitophagy homeostasis and facilitate the elimination of irreversibly damaged mitochondria, thus, could serve as potential therapies in several chronic diseases. However, despite extraordinary advances in this field, mainly derived from in vitro and preclinical animal models, human applications based on the regulation of mitochondrial quality in patients have not yet been approved. In this review, we summarize the key selective mitochondrial autophagy pathways and their role in prevalent chronic human diseases and highlight the potential use of specific interventions.
Collapse
Affiliation(s)
- Laura Doblado
- Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain; (L.D.); (C.L.); (C.R.)
| | - Claudia Lueck
- Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain; (L.D.); (C.L.); (C.R.)
| | - Claudia Rey
- Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain; (L.D.); (C.L.); (C.R.)
| | - Alejandro K. Samhan-Arias
- Department of Biochemistry, Universidad Autónoma de Madrid e Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain;
| | - Ignacio Prieto
- Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, Isaac Peral 42, 28015 Madrid, Spain;
| | - Alessandra Stacchiotti
- Department of Biomedical Sciences for Health, Universita’ Degli Studi di Milano, Via Mangiagalli 31, 20133 Milan, Italy
- U.O. Laboratorio di Morfologia Umana Applicata, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy
- Correspondence: (A.S.); (M.M.)
| | - Maria Monsalve
- Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain; (L.D.); (C.L.); (C.R.)
- Correspondence: (A.S.); (M.M.)
| |
Collapse
|
22
|
Maintenance of type 2 glycolytic myofibers with age by Mib1-Actn3 axis. Nat Commun 2021; 12:1294. [PMID: 33637766 PMCID: PMC7910585 DOI: 10.1038/s41467-021-21621-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 02/03/2021] [Indexed: 01/31/2023] Open
Abstract
Age-associated muscle atrophy is a debilitating condition associated with loss of muscle mass and function with age that contributes to limitation of mobility and locomotion. However, the underlying mechanisms of how intrinsic muscle changes with age are largely unknown. Here we report that, with age, Mind bomb-1 (Mib1) plays important role in skeletal muscle maintenance via proteasomal degradation-dependent regulation of α-actinin 3 (Actn3). The disruption of Mib1 in myofibers (Mib1ΔMF) results in alteration of type 2 glycolytic myofibers, muscle atrophy, impaired muscle function, and Actn3 accumulation. After chronic exercise, Mib1ΔMF mice show muscle atrophy even at young age. However, when Actn3 level is downregulated, chronic exercise-induced muscle atrophy is ameliorated. Importantly, the Mib1 and Actn3 levels show clinical relevance in human skeletal muscles accompanied by decrease in skeletal muscle function with age. Together, these findings reveal the significance of the Mib1-Actn3 axis in skeletal muscle maintenance with age and suggest the therapeutic potential for the treatment or amelioration of age-related muscle atrophy.
Collapse
|
23
|
In Pursuit of an Effective Treatment: the Past, Present and Future of Clinical Trials in Inclusion Body Myositis. CURRENT TREATMENT OPTIONS IN RHEUMATOLOGY 2021. [DOI: 10.1007/s40674-020-00169-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Abstract
Purpose of review
No clinical trial in sporadic inclusion body myositis (IBM) thus far has shown a clear and sustained therapeutic effect. We review previous trial methodology, explore why results have not translated into clinical practice, and suggest improvements for future IBM trials.
Recent findings
Early trials primarily assessed immunosuppressive medications, with no significant clinical responses observed. Many of these studies had methodological issues, including small participant numbers, nonspecific diagnostic criteria, short treatment and/or assessment periods and insensitive outcome measures. Most recent IBM trials have instead focused on nonimmunosuppressive therapies, but there is mounting evidence supporting a primary autoimmune aetiology, including the discovery of immunosuppression-resistant clones of cytotoxic T cells and anti-CN-1A autoantibodies which could potentially be used to stratify patients into different cohorts. The latest trials have had mixed results. For example, bimagrumab, a myostatin blocker, did not affect the 6-min timed walk distance, whereas sirolimus, a promotor of autophagy, did. Larger studies are planned to evaluate the efficacy of sirolimus and arimoclomol.
Summary
Thus far, no treatment for IBM has demonstrated a definite therapeutic effect, and effective treatment options in clinical practice are lacking. Trial design and ineffective therapies are likely to have contributed to these failures. Identification of potential therapeutic targets should be followed by future studies using a stratified approach and sensitive and relevant outcome measures.
Collapse
|
24
|
Paul P, Liewluck T, Ernste FC, Mandrekar J, Milone M. Anti-cN1A antibodies do not correlate with specific clinical, electromyographic, or pathological findings in sporadic inclusion body myositis. Muscle Nerve 2021; 63:490-496. [PMID: 33373040 DOI: 10.1002/mus.27157] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 11/17/2020] [Accepted: 12/23/2020] [Indexed: 12/29/2022]
Abstract
BACKGROUND Anti-cytosolic 5'-nucleotidase 1A (cN1A) antibodies are commonly detected in patients with sporadic inclusion body myositis (sIBM). However, their pathogenic role has not been established. Moreover, efforts toward identifying sIBM distinct clinicopathologic characteristics associated with these antibodies have yielded conflicting results. METHODS We first searched for patients, seen in our clinics, tested for anti-cN1A antibodies between December 2015 and December 2019. We identified 92 patients who were diagnosed with sIBM, according to the 2011 ENMC or Griggs et al criteria. Thereafter, we reviewed and compared the clinical and investigational findings of these patients in relation to their antibody status. RESULTS Anti-cN1A antibodies were present in 47/92 (51%) patients with sIBM. Comparison of seropositive and seronegative cohorts yielded no significant difference in clinical features, including facial weakness, oropharyngeal and respiratory involvement, or disease severity. The antibody titer did not correlate with the clinical phenotype, CK value, or presence of myotonic discharges on EMG. Anti-cN1A antibody positive patients appeared to have more frequent auto-aggressive inflammation on muscle biopsy but not as an isolated myopathological feature. CONCLUSIONS Our study showed that anti-cN1A antibody positive and negative sIBM patients have similar clinical features and disease severity. Anti-cN1A antibodies in our sIBM cohort did not correlate with any studied clinical or laboratory parameter and, therefore, were of limited value in the patient's assessment.
Collapse
Affiliation(s)
- Pritikanta Paul
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA.,Department of Neurology and Rehabilitation, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Teerin Liewluck
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Jay Mandrekar
- Biomedical Statistics and Bioinformatics, Mayo Clinic, Rochester, Minnesota, USA
| | | |
Collapse
|
25
|
Abstract
RNA-binding proteins (RBPs) are essential factors required for the physiological function of neurons, muscle, and other tissue types. In keeping with this, a growing body of genetic, clinical, and pathological evidence indicates that RBP dysfunction and/or gene mutation leads to neurodegeneration and myopathy. Here, we summarize the current understanding of matrin 3 (MATR3), a poorly understood RBP implicated not only in ALS and frontotemporal dementia but also in distal myopathy. We begin by reviewing MATR3's functions, its regulation, and how it may be involved in both sporadic and familial neuromuscular disease. We also discuss insights gleaned from cellular and animal models of MATR3 pathogenesis, the links between MATR3 and other disease-associated RBPs, and the mechanisms underlying RBP-mediated disorders.
Collapse
Affiliation(s)
- Ahmed M. Malik
- Medical Scientist Training Program
- Neuroscience Graduate Program, and
| | - Sami J. Barmada
- Neuroscience Graduate Program, and
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
26
|
Dalakas MC. Inflammatory myopathies: update on diagnosis, pathogenesis and therapies, and COVID-19-related implications. ACTA MYOLOGICA : MYOPATHIES AND CARDIOMYOPATHIES : OFFICIAL JOURNAL OF THE MEDITERRANEAN SOCIETY OF MYOLOGY 2020; 39:289-301. [PMID: 33458584 PMCID: PMC7783437 DOI: 10.36185/2532-1900-032] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 11/09/2020] [Indexed: 12/11/2022]
Abstract
The inflammatory myopathies constitute a heterogeneous group of acquired myopathies that have in common the presence of endomysial inflammation. Based on steadily evolved clinical, histological and immunopathological features and some autoantibody associations, these disorders can now be classified in five characteristic subsets: Dermatomyositis (DM) Polymyositis (PM), Necrotizing Autoimmune Myositis (NAM), Anti-synthetase syndrome-overlap myositis (Anti-SS-OM), and Inclusion-Body-Myositis (IBM). Each inflammatory myopathy subset has distinct immunopathogenesis, prognosis and response to immunotherapies, necessitating the need to correctly identify each subtype from the outset to avoid disease mimics and proceed to early therapy initiation. The review presents the main clinicopathologic characteristics of each subset highlighting the importance of combining expertise in clinical neurological examination with muscle morphology and immunopathology to avoid erroneous diagnoses and therapeutic schemes. The main autoimmune markers related to autoreactive T cells, B cells, autoantibodies and cytokines are presented and the concomitant myodegenerative features seen in IBM muscles are pointed out. Most importantly, unsettled issues related to a role of autoantibodies and controversies with reference to possible triggering factors related to statins are clarified. The emerging effect SARS-CoV-2 as the cause of hyperCKemia and potentially NAM is addressed and practical guidelines on the best therapeutic approaches and concerns regarding immunotherapies during COVID-19 pandemic are summarized.
Collapse
Affiliation(s)
- Marinos C Dalakas
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA USA and the Neuroimmunology Unit, National and Kapodistrian University University of Athens Medical School, Athens, Greece
| |
Collapse
|
27
|
Chen F, Liu H, Wang X, Li Z, Zhang J, Pei Y, Zheng Z, Wang J. Melatonin activates autophagy via the NF-κB signaling pathway to prevent extracellular matrix degeneration in intervertebral disc. Osteoarthritis Cartilage 2020; 28:1121-1132. [PMID: 32470597 DOI: 10.1016/j.joca.2020.05.011] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 05/12/2020] [Accepted: 05/14/2020] [Indexed: 02/02/2023]
Abstract
OBJECTIVE This study investigated whether melatonin alleviates intervertebral disc degeneration (IVDD) by promoting autophagy through inhibiting the NF-κB signaling pathway. METHODS Magnetic resonance imaging (MRI), hematoxylin and eosin (H&E) staining and Safranin-O staining were used to measure disc degeneration in rat needle puncture IVDD models, and melatonin was injected intraperitoneally in the treated group to test its function. The expression of autophagy and extracellular matrix (ECM) degeneration related-markers were measured in the discs using immunohistochemistry. Transmission electron microscopy was used to evaluate the activation of autophagy in human nucleus pulposus (NP) tissues with different degenerated statuses. The expression of autophagy and disc degeneration related-markers were detected in NP cells by Western blot, RT-qPCR, and immunofluorescence analyses. NF-κB signaling pathway involvement was studied by lentivirus-mediated knockdown, Western blotting, and immunohistochemistry and immunofluorescence staining. RESULTS Melatonin prevented IVDD development in vivo and in vitro. Compared to non-degenerated disc tissues, degenerated human NP tissues showed a decrease in the autophagy-specific marker LC3B and the numbers of autophagosomes and autolysosomes, whereas the p62 level was increased; similar results were observed in rat IVDD models, indicating a negative correlation between autophagy and IVDD. Furthermore, both in vivo and in vitro studies found that melatonin application induced autophagy and reduced ECM disc degradation. Melatonin was also shown to regulate autophagy by inhibiting the NF-κB signaling pathway in vivo and vitro. CONCLUSION This study indicates that melatonin prevents IVDD by promoting autophagy, indicating its possible therapeutic potential for controlling the progression of IVDD.
Collapse
Affiliation(s)
- F Chen
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, PR China
| | - H Liu
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, PR China
| | - X Wang
- Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The 6th Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Z Li
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, PR China
| | - J Zhang
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, PR China
| | - Y Pei
- Department of Pediatric Intensive Care Unit, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Z Zheng
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, PR China.
| | - J Wang
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, PR China.
| |
Collapse
|
28
|
Greenberg SA. Inclusion body myositis: clinical features and pathogenesis. Nat Rev Rheumatol 2020; 15:257-272. [PMID: 30837708 DOI: 10.1038/s41584-019-0186-x] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Inclusion body myositis (IBM) is often viewed as an enigmatic disease with uncertain pathogenic mechanisms and confusion around diagnosis, classification and prospects for treatment. Its clinical features (finger flexor and quadriceps weakness) and pathological features (invasion of myofibres by cytotoxic T cells) are unique among muscle diseases. Although IBM T cell autoimmunity has long been recognized, enormous attention has been focused for decades on several biomarkers of myofibre protein aggregates, which are present in <1% of myofibres in patients with IBM. This focus has given rise, together with the relative treatment refractoriness of IBM, to a competing view that IBM is not an autoimmune disease. Findings from the past decade that implicate autoimmunity in IBM include the identification of a circulating autoantibody (anti-cN1A); the absence of any statistically significant genetic risk factor other than the common autoimmune disease 8.1 MHC haplotype in whole-genome sequencing studies; the presence of a marked cytotoxic T cell signature in gene expression studies; and the identification in muscle and blood of large populations of clonal highly differentiated cytotoxic CD8+ T cells that are resistant to many immunotherapies. Mounting evidence that IBM is an autoimmune T cell-mediated disease provides hope that future therapies directed towards depleting these cells could be effective.
Collapse
Affiliation(s)
- Steven A Greenberg
- Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA. .,Children's Hospital Computational Health Informatics Program, Boston Children's Hospital, Boston, MA, USA. .,Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
29
|
Noto YI, Kondo M, Tsuji Y, Matsushima S, Mizuno T, Tokuda T, Nakagawa M. Diagnostic Value of Muscle [ 11C] PIB-PET in Inclusion Body Myositis. Front Neurol 2020; 10:1386. [PMID: 32010047 PMCID: PMC6978729 DOI: 10.3389/fneur.2019.01386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 12/17/2019] [Indexed: 11/17/2022] Open
Abstract
Background: The accumulation of multiple-protein aggregates within muscle fibers is a pathological hallmark of sporadic inclusion body myositis (s-IBM) with the presence of inclusion bodies. Amyloid-beta is one of the accumulated proteins in s-IBM. The aim of this study was to elucidate the utility of Pittsburgh compound B-positron emission tomography (PIB-PET) for diagnosing s-IBM. Methods: Nine patients with s-IBM and four patients with idiopathic inflammatory myopathy (IIM) were included. Patients underwent PIB-PET of body muscles. Standardized uptake values (SUVs) were measured in 16 muscles. A comparison of SUVs was made between s-IBM and IIM groups. The correlation between PIB-PET and clinical parameters was analyzed. Results: The mean SUV of all muscles in s-IBM patients was higher than in IIM patients (0.32 vs. 0.25, respectively; p = 0.031). Subgroup analysis identified a clear difference in SUVs of the forearm and lower-leg muscle groups (p = 0.021 and p = 0.045, respectively). There was no correlation between SUVs and clinical parameters in s-IBM patients. Conclusions: Muscle PIB-PET may help to make a diagnosis of s-IBM.
Collapse
Affiliation(s)
- Yu-Ichi Noto
- Department of Neurology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Masaki Kondo
- Department of Neurology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yukiko Tsuji
- Department of Neurology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | | | - Toshiki Mizuno
- Department of Neurology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takahiko Tokuda
- Department of Molecular Pathobiology of Brain Diseases, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Masanori Nakagawa
- North Medical Center, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
30
|
Rosenbohm A, Buckert D, Kassubek J, Rottbauer W, Ludolph AC, Bernhardt P. Sporadic inclusion body myositis: no specific cardiac involvement in cardiac magnetic resonance tomography. J Neurol 2020; 267:1407-1413. [PMID: 31997038 PMCID: PMC7184047 DOI: 10.1007/s00415-020-09724-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/19/2020] [Accepted: 01/21/2020] [Indexed: 11/23/2022]
Abstract
Objective To investigate cardiac involvement in patients with sporadic inclusion body myositis (IBM) by cardiac magnetic resonance tomography (CMR). Methods A case series of 20 patients with IBM underwent basic cardiac assessment and CMR including functional imaging, native and contrast-enhanced T1-weighted, and late gadolinium enhancement (LGE) imaging. Results All IBM patients reported no cardiac symptoms. Echocardiography was normal in 16/17 IBM patients. In CMR, IBM patients had normal ejection fractions (mean LVEF 63 ± 7%) and ventricular mass. They had reduced left (mean 55 versus 88 ml) and right ventricular stroke volumes (mean 54 versus 86 ml) and increased early myocardial enhancement (pathological T1 Ratio in 44% versus 5%), as compared to age- and gender-matched controls. Since arterial hypertension was more often observed in IBM patients, hypertensive heart disease can also be causative for these changes. Late gadolinium enhancement did not differ statistically from healthy controls. There was no apparent association between elevated biomarkers, echocardiography and CMR. Conclusion CMR revealed subtle changes in cardiac geometry and tissue characterization in IBM patients when compared to a gender- and age-matched control group. Findings in CMR indicated a higher extent of diffuse myocardial fibrosis as well as smaller left ventricular stroke volumes. These alterations may be due to a higher prevalence of arterial hypertension in the IBM cohort.
Collapse
Affiliation(s)
- Angela Rosenbohm
- Department of Neurology, University of Ulm, Oberer Eselsberg 45, 89081, Ulm, Germany.
| | - Dominik Buckert
- Department of Internal Medicine II, University of Ulm, Ulm, Germany
| | - Jan Kassubek
- Department of Neurology, University of Ulm, Oberer Eselsberg 45, 89081, Ulm, Germany
| | | | - Albert C Ludolph
- Department of Neurology, University of Ulm, Oberer Eselsberg 45, 89081, Ulm, Germany
| | | |
Collapse
|
31
|
Huang HL, Lin WC, Yeh CC, Sun YT. Serological risk factors for concomitant interstitial lung disease in patients with idiopathic inflammatory myopathy. J Clin Neurosci 2020; 74:32-35. [PMID: 31982271 DOI: 10.1016/j.jocn.2020.01.060] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 01/12/2020] [Indexed: 01/01/2023]
Abstract
Interstitial lung disease (ILD) is an extramuscular manifestation associated with increased mortality in idiopathic inflammatory myopathy (IIM). To identify risk factors for ILD in patients with IIM, this study retrospectively enrolled 117 eligible patients from a university medical center. After a comprehensive chart review, 56 patients were stratified into ILD (n = 28) and non-ILD (n = 28) groups. Clinical features, laboratory data, concomitant diseases, and serology profiles were compared. Patients with ILD had high prevalence of anti-Jo1 antibodies (p = 0.002), anti-Ro52 antibodies (p < 0.001), both anti-Jo1 and anti-Ro52 antibodies (p = 0.008), anti-Jo1 or anti-Ro52 antibodies (p < 0.001), and lower initial creatine kinase (CK) levels (p = 0.006). Moreover, patients with anti-Ro52 antibodies and either anti-Ro52 or anti-Jo1 antibodies had 9.17-fold (95% confidence interval [CI]: 2.858-33.487, p < 0.001) and 13.44-fold (95% CI: 4.008-52.757, p < 0.001) increased odds of developing ILD, respectively. By contrast, patients with higher CK levels had 0.99-fold (95% CI: 0.999-0.999, p = 0.011) increased odds of developing ILD. Both anti-Ro52 and anti-Jo1 antibodies were independent serological risk factors for IIM-associated ILD. Because these serology tests are commonly available, they can be used to guide pulmonary screening for patients with IIM to increase neurologist proactivity in recognizing and treating extramuscular conditions.
Collapse
Affiliation(s)
- Hung-Ling Huang
- Department of Neurology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Wen-Chih Lin
- Department of Physical Medicine and Rehabilitation, Chi Mei Medical Centre, Chiali Branch, Tainan 722, Taiwan
| | - Che-Chun Yeh
- Department of Neurology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; Division of Neurology, Department of Internal Medicine, National Cheng Kung University Hospital, Dou-Liou Branch, Yunlin, Taiwan
| | - Yuan-Ting Sun
- Department of Neurology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; Advanced Optoelectronic Technology Centre, National Cheng Kung University, Tainan 701, Taiwan.
| |
Collapse
|
32
|
Mariampillai K, Granger B, Amelin D, Guiguet M, Hachulla E, Maurier F, Meyer A, Tohmé A, Charuel JL, Musset L, Allenbach Y, Benveniste O. Development of a New Classification System for Idiopathic Inflammatory Myopathies Based on Clinical Manifestations and Myositis-Specific Autoantibodies. JAMA Neurol 2019; 75:1528-1537. [PMID: 30208379 DOI: 10.1001/jamaneurol.2018.2598] [Citation(s) in RCA: 275] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Importance Idiopathic inflammatory myopathies are heterogeneous in their pathophysiologic features and prognosis. The emergence of myositis-specific autoantibodies suggests that subgroups of patients exist. Objective To develop a new classification scheme for idiopathic inflammatory myopathies based on phenotypic, biological, and immunologic criteria. Design, Setting, and Participants An observational, retrospective cohort study was performed using a database of the French myositis network. Patients identified from referral centers for neuromuscular diseases were included from January 1, 2003, to February 1, 2016. Of 445 initial patients, 185 patients were excluded and 260 adult patients with myositis who had complete data and defined historical classifications for polymyositis, dermatomyositis, and inclusion body myositis were enrolled. All patients were tested for anti-histidyl-ARN-t- synthetase (Jo1), anti-threonine-ARN-t-synthetase (PL7), anti-alanine-ARN-t-synthetase (PL12), anti-complex nucleosome remodeling histone deacetylase (Mi2), anti-Ku, anti-polymyositis/systemic scleroderma (PMScl), anti-topoisomerase 1 (Scl70), and anti-signal recognition particle (SRP) antibodies. A total of 708 variables were collected per patient (eg, cancer, lung involvement, and myositis-specific antibodies). Main Outcomes and Measures Unsupervised multiple correspondence analysis and hierarchical clustering analysis to aggregate patients in subgroups. Results Among 260 participants (163 [62.7%] women; mean age, 59.7 years; median age [range], 61.5 years [48-71 years]), 4 clusters of patients emerged. Cluster 1 (n = 77) included patients who were male, white, and older than 60 years and had finger flexor and quadriceps weakness and findings of vacuolated fibers and mitochondrial abnormalities. Cluster 1 regrouped patients who had inclusion body myositis (72 of 77 patients [93.5%]; 95% CI, 85.5%-97.8%; P < .001). Cluster 2 (n = 91) regrouped patients who were women and had high creatine phosphokinase levels, necrosis without inflammation, and anti-SRP or anti-3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR) antibodies corresponding to immune-mediated necrotizing myopathy (53 of 91 [58.2%]; 95% CI, 47.4%-68.5%; P < .001). Cluster 3 (n = 52) regrouped patients who had dermatomyositis rash and anti-Mi2, anti-melanoma differentiation-associated protein 5 (MDA5), or anti-transcription intermediary factor-1γ (TIF1γ) antibodies, mainly corresponding with patients who had dermatomyositis (43 of 52 [82.7%]; 95% CI, 69.7%-91.8%; P < .001). Cluster 4 (n = 40) was defined by the presence of anti-Jo1 or anti-PL7 antibodies corresponding to antisynthetase syndrome (36 of 40 [90.0%]; 95% CI, 76.3%-97.2%; P < .001). The classification of an independent cohort (n = 50) confirmed the 4 clusters (Cohen κ light, 0.8; 95% CI, 0.6-0.9). Conclusions and Relevance These findings suggest a classification of idiopathic inflammatory myopathies with 4 subgroups: dermatomyositis, inclusion body myositis, immune-mediated necrotizing myopathy, and antisynthetase syndrome. This classification system suggests that a targeted clinical-serologic approach for identifying idiopathic inflammatory myopathies may be warranted.
Collapse
Affiliation(s)
- Kubéraka Mariampillai
- Centre de Recherche en Myologie, Unité Mixte de Recherche Scientifique 974, Université Pierre et Marie Curie, Institut National de la Santé et de la Recherche Médicale, Paris, France.,Département de Médecine Interne et Immunologie Clinique, Centre de Référence Maladies Neuro-Musculaires, Assistance Publique-Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière, DHUi2B, Paris, France
| | - Benjamin Granger
- Département de Biostatistiques, Santé Publique et Information Médicale, Assistance Publique-Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière, Paris, France.,Institut Pierre Louis d'Epidémiologie et de Santé Publique, Université Pierre et Marie Curie-Paris 6, Sorbonne Universités, Groupe de Recherche Clinique-08, Epidémiologie et Evaluation des Maladies Ostéoarticulaires Inflammatoires et Systémiques, Paris, France
| | - Damien Amelin
- Centre de Recherche en Myologie, Unité Mixte de Recherche Scientifique 974, Université Pierre et Marie Curie, Institut National de la Santé et de la Recherche Médicale, Paris, France
| | - Marguerite Guiguet
- Sorbonne Universités, Institut Pierre Louis d'Epidémiologie et de Santé Publique, Université Pierre et Marie Curie-Paris 6, Unité Mixte de Recherche Scientifique 1136, Paris, France
| | - Eric Hachulla
- Service de Médecine Interne, Centre Hospitalier Universitaire, Lille, France
| | | | - Alain Meyer
- Département de Physiologie, Centre Hospitalier Universitaire de Strasbourg, Strasbourg, France
| | - Aline Tohmé
- Service de Médecine Interne, Centre Hospitalier Universitaire Hôtel Dieu De France, Beirut, Lebanon
| | - Jean-Luc Charuel
- Laboratoire Immunochimie, Assistance Publique-Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Lucile Musset
- Laboratoire Immunochimie, Assistance Publique-Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Yves Allenbach
- Centre de Recherche en Myologie, Unité Mixte de Recherche Scientifique 974, Université Pierre et Marie Curie, Institut National de la Santé et de la Recherche Médicale, Paris, France.,Département de Médecine Interne et Immunologie Clinique, Centre de Référence Maladies Neuro-Musculaires, Assistance Publique-Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière, DHUi2B, Paris, France
| | - Olivier Benveniste
- Centre de Recherche en Myologie, Unité Mixte de Recherche Scientifique 974, Université Pierre et Marie Curie, Institut National de la Santé et de la Recherche Médicale, Paris, France.,Département de Médecine Interne et Immunologie Clinique, Centre de Référence Maladies Neuro-Musculaires, Assistance Publique-Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière, DHUi2B, Paris, France
| |
Collapse
|
33
|
Alhajraf F, Ness D, Hye A, Strydom A. Plasma amyloid and tau as dementia biomarkers in Down syndrome: Systematic review and meta-analyses. Dev Neurobiol 2019; 79:684-698. [PMID: 31389176 PMCID: PMC6790908 DOI: 10.1002/dneu.22715] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 08/02/2019] [Accepted: 08/02/2019] [Indexed: 12/18/2022]
Abstract
Individuals with Down syndrome (DS) are at high risk of developing Alzheimer's disease (AD). Discovering reliable biomarkers which could facilitate early AD diagnosis and be used to predict/monitor disease course would be extremely valuable. To examine if analytes in blood related to amyloid plaques may constitute such biomarkers, we conducted meta‐analyses of studies comparing plasma amyloid beta (Aβ) levels between DS individuals and controls, and between DS individuals with and without dementia. PubMed, Embase, and Google Scholar were searched for studies investigating the relationship between Aβ plasma concentrations and dementia in DS and 10 studies collectively comprising >1,600 adults, including >1,400 individuals with DS, were included. RevMan 5.3 was used to perform meta‐analyses. Meta‐analyses showed higher plasma Aβ40 (SMD = 1.79, 95% CI [1.14, 2.44], Z = 5.40, p < .00001) and plasma Aβ42 levels (SMD = 1.41, 95% CI [1.15, 1.68], Z = 10.46, p < .00001) in DS individuals than controls, and revealed that DS individuals with dementia had higher plasma Aβ40 levels (SMD = 0.23, 95% CI [0.05, 0.41], Z = 2.54, p = .01) and lower Aβ42/Aβ40 ratios (SMD = −0.33, 95% CI [−0.63, −0.03], Z = 2.15, p = .03) than DS individuals without dementia. Our results indicate that plasma Aβ40 levels may constitute a promising biomarker for predicting dementia status in individuals with DS. Further investigations using new ultra‐sensitive assays are required to obtain more reliable results and to investigate to what extent these results may be generalizable beyond the DS population.
Collapse
Affiliation(s)
- Falah Alhajraf
- UCL Queen Square Institute of Neurology, University College London, London, UK.,Al Amiri Hospital, Kuwait City, State of Kuwait
| | - Deborah Ness
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,The LonDownS Consortium (London Down Syndrome Consortium), London, UK
| | - Abdul Hye
- The Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Andre Strydom
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,The LonDownS Consortium (London Down Syndrome Consortium), London, UK
| |
Collapse
|
34
|
Fischer N, Preuße C, Radke J, Pehl D, Allenbach Y, Schneider U, Feist E, von Casteleyn V, Hahn K, Ruck T, Meuth SG, Goebel HH, Graf R, Mammen A, Benveniste O, Stenzel W. Sequestosome-1 (p62) expression reveals chaperone-assisted selective autophagy in immune-mediated necrotizing myopathies. Brain Pathol 2019; 30:261-271. [PMID: 31376301 PMCID: PMC8018061 DOI: 10.1111/bpa.12772] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 07/26/2019] [Indexed: 12/21/2022] Open
Abstract
Diffuse myofiber necrosis in the context of inflammatory myopathy is the hallmark of immune‐mediated necrotizing myopathy (IMNM). We have previously shown that skeletal muscle fibers of IMNM patients may display nonrimmed vacuoles and sarcoplasmic irregularities. The dysfunctional chaperone activity has been linked to the defective assembly of skeletal muscle proteins and their degradation via lysosomes, autophagy and the proteasomal machinery. This study was undertaken to highlight a chaperone‐assisted selective autophagy (CASA) pathway, functionally involved in protein homeostasis, cell stress and the immune response in skeletal muscle of IMNM patients. Skeletal muscle biopsies from 54 IMNM patients were analyzed by immunostaining, as well as by qPCR. Eight biopsies of sIBM patients served as pathological controls, and eight biopsies of nondisease control subjects were included. Alteration of autophagy was detectable in all IMNM biopsy samples highlighted via a diffuse sarcoplasmic staining pattern by p62 and LC3 independent of vacuoles. This pattern was at variance with the coarse focal staining pattern mostly confined to rimmed vacuoles in sIBM. Colocalization of p62 with the chaperone proteins HSP70 and αB‐crystalline points to the specific targeting of misfolded proteins to the CASA machinery. Bcl2‐associated athanogene 3 (BAG3) positivity of these fibers emphasizes the selectivity of autophagy processes and these fibers also express MHC class I sarcolemma. Expression of genes involved in autophagy and endoplasmic reticulum (ER) stress pathways studied here is significantly upregulated in IMNM. We highlight that vacuoles without sarcolemmal features may arise in IMNM muscle biopsies, and they must not be confounded with sIBM‐specific vacuoles. Further, we show the activation of selective autophagy and emphasize the role of chaperones in this context. CASA occurs in IMNM muscle, and specific molecular pathways of autophagy differ from the ones in sIBM, with p62 as a unique identifier of this process.
Collapse
Affiliation(s)
- Norina Fischer
- Department of Neuropathology, Charité - Universitätsmedizin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Corinna Preuße
- Department of Neuropathology, Charité - Universitätsmedizin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Josefine Radke
- Department of Neuropathology, Charité - Universitätsmedizin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Debora Pehl
- Oxford University Hospitals Foundation Trust, Neuropathology & Ocular Pathology Department, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Yves Allenbach
- Assistance Public-Hôpitaux de Paris, Sorbonne-Université, INSERM, UMR974, Department of Internal Medicine and Clinical Immunology, Pitié-Salpêtrière University Hospital, Paris, France
| | - Udo Schneider
- Department of Rheumatology, Charité - Universitätsmedizin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Eugen Feist
- Department of Rheumatology, Charité - Universitätsmedizin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Vincent von Casteleyn
- Department of Rheumatology, Charité - Universitätsmedizin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Katrin Hahn
- Department of Neurology, Charité - Universitätsmedizin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Tobias Ruck
- Department of Neurology with Institute for Translational Neurology, University Hospital Münster, Münster, Germany
| | - Sven G Meuth
- Department of Neurology with Institute for Translational Neurology, University Hospital Münster, Münster, Germany
| | - Hans-Hilmar Goebel
- Department of Neuropathology, Charité - Universitätsmedizin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Rose Graf
- National Institutes of Health, 9000 Rockville Pike, Building 50, Room 1505, Bethesda, MD, 20892, USA
| | - Andrew Mammen
- National Institutes of Health, 9000 Rockville Pike, Building 50, Room 1505, Bethesda, MD, 20892, USA
| | - Olivier Benveniste
- Assistance Public-Hôpitaux de Paris, Sorbonne-Université, INSERM, UMR974, Department of Internal Medicine and Clinical Immunology, Pitié-Salpêtrière University Hospital, Paris, France
| | - Werner Stenzel
- Department of Neuropathology, Charité - Universitätsmedizin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany.,Leibniz ScienceCampus Chronic Inflammation, Berlin, Germany
| |
Collapse
|
35
|
Cannizzaro M, Jarošová J, De Paepe B. Relevance of solute carrier family 5 transporter defects to inherited and acquired human disease. J Appl Genet 2019; 60:305-317. [PMID: 31286439 DOI: 10.1007/s13353-019-00502-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 06/21/2019] [Accepted: 06/30/2019] [Indexed: 01/12/2023]
Abstract
The solute carrier (SLC) group of membrane transport proteins is crucial for cells via their control of import and export of vital molecules across the cellular membrane. Defects in these transporters with narrow substrate specificities cause monogenic disorders, giving us essential clues of their precise roles in cellular functioning. The SLC5 family in particular has been linked to various human diseases, of mild and severe phenotype as well as high and low prevalence. In this review, we describe the effects on health of SLC5 dysfunction and dysregulation by summarizing findings in patients with transporter gene defects. Patients display a plethora of pathologies which include glucose/galactose malabsorption, familiar renal glycosuria, thyroid dyshormonogenesis, and distal hereditary motor neuronopathies. In addition, the therapeutic potential of intervening in transporter activities for treating common diseases such as diabetes and cancer is explored.
Collapse
Affiliation(s)
- Miryam Cannizzaro
- Department of Neurology & Neuromuscular Reference Center, Ghent University Hospital, Corneel Heymanslaan 10, 9000, Ghent, Belgium
| | - Jana Jarošová
- Department of Neurology & Neuromuscular Reference Center, Ghent University Hospital, Corneel Heymanslaan 10, 9000, Ghent, Belgium
| | - Boel De Paepe
- Department of Neurology & Neuromuscular Reference Center, Ghent University Hospital, Corneel Heymanslaan 10, 9000, Ghent, Belgium.
| |
Collapse
|
36
|
Tomas X, Milisenda JC, Garcia-Diez AI, Prieto-Gonzalez S, Faruch M, Pomes J, Grau-Junyent JM. Whole-body MRI and pathological findings in adult patients with myopathies. Skeletal Radiol 2019; 48:653-676. [PMID: 30377729 DOI: 10.1007/s00256-018-3107-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 10/12/2018] [Accepted: 10/22/2018] [Indexed: 02/08/2023]
Abstract
Magnetic resonance imaging (MRI) is considered the most sensitive and specific imaging technique for the detection of muscle diseases related to myopathies. Since 2008, the use of whole-body MRI (WBMRI) to evaluate myopathies has improved due to technical advances such as rolling table platform and parallel imaging, which enable rapid assessment of the entire musculoskeletal system with high-quality images. WBMRI protocols should include T1-weighted and short-tau inversion recovery (STIR), which provide the basic pulse sequences for studying myopathies, in order to detect fatty infiltration/muscle atrophy and muscle edema, respectively. High signal intensity in T1-weighted images shows chronic disease with fatty infiltration, whereas high signal intensity in STIR indicates an acute stage with muscle edema. Additional sequences such as diffusion-weighted imaging (DWI) can be readily incorporated into routine WBMRI study protocols. Contrast-enhanced sequences have not been done. This article reviews WBMRI as an imaging method to evaluate different myopathies (idiopathic inflammatory, dystrophic, non-dystrophic, metabolic, and channelopathies). WBMRI provides a comprehensive estimate of the total burden with a single study, seeking specific distribution patterns, including clinically silent involvement of muscle areas. Furthermore, WBMRI may help to select the "target muscle area" for biopsy during patient follow-up. It may be also be used to detect related and non-related pathological conditions, such as tumors.
Collapse
Affiliation(s)
- Xavier Tomas
- Department of Radiology (CDIC), Hospital Clinic, Universitat de Barcelona (UB), Villarroel 170, 08036, Barcelona, Spain.
| | - Jose Cesar Milisenda
- Department of Internal Medicine, Hospital Clinic, Universitat de Barcelona (UB) and CIBERER, Villarroel 170, 08036, Barcelona, Spain
| | - Ana Isabel Garcia-Diez
- Department of Radiology (CDIC), Hospital Clinic, Universitat de Barcelona (UB), Villarroel 170, 08036, Barcelona, Spain
| | - Sergio Prieto-Gonzalez
- Department of Autoimmune Diseases, Hospital Clinic, Universitat de Barcelona (UB), Villarroel 170, 08036, Barcelona, Spain
| | - Marie Faruch
- Department of Radiology, Hopital Purpan, Centre Hospitalier Universitaire (CHU), Place du Docteur Baylac TSA 40031, 31059, Toulouse cedex 9, France
| | - Jaime Pomes
- Department of Radiology (CDIC), Hospital Clinic, Universitat de Barcelona (UB), Villarroel 170, 08036, Barcelona, Spain
| | - Josep Maria Grau-Junyent
- Department of Internal Medicine, Hospital Clinic, Universitat de Barcelona (UB) and CIBERER, Villarroel 170, 08036, Barcelona, Spain
| |
Collapse
|
37
|
Bhatt PS, Tzoulis C, Balafkan N, Miletic H, Tran GTT, Sanaker PS, Bindoff LA. Mitochondrial DNA depletion in sporadic inclusion body myositis. Neuromuscul Disord 2019; 29:242-246. [PMID: 30850168 DOI: 10.1016/j.nmd.2019.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 01/23/2019] [Accepted: 02/04/2019] [Indexed: 11/19/2022]
Abstract
Sporadic inclusion body myositis (sIBM) is a late onset disorder of unkown aetiology. Mitochondrial changes such as cytochrome oxidase deficient fibres are a well recognised feature and mitochondrial DNA (mtDNA) deletions have also been reported, but not consistently. Since mtDNA deletions are not present in all cases, we investigated whether other types of mtDNA abnormality were responsible for the mitochondrial changes. We studied 9 patients with sIBM. To control for fibre loss or replacement with inflammatory cells, we compared sIBM patients with necrotising myopathy (n = 4) as well as with healthy controls. Qualitative anlysis for mtDNA deletions and quantitative measurement of mtDNA copy number showed that muscle from patients with sIBM contained on average 67% less mtDNA than healthy controls (P = 0.001). The level of mtDNA was also significantly depleted in sIBM when compared to necrotising myopathy. No significant difference in copy number was seen in patients with necrotising myopathy compared to controls. Deletions of mtDNA were present in 4 patients with sIBM, but not all. Our findings suggest that mtDNA depletion is a more consistent finding in sIBM, and one that may be implicated in the pathogenesis of the disease.
Collapse
Affiliation(s)
- Padmanabh S Bhatt
- Department of Neurology, Haukeland University Hospital, 5021 Bergen, Norway
| | - Charalampos Tzoulis
- Department of Neurology, Haukeland University Hospital, 5021 Bergen, Norway; Department of Clinical Medicine (K1), University of Bergen, Pb 7804, 5020, Norway
| | - Novin Balafkan
- Department of Clinical Medicine (K1), University of Bergen, Pb 7804, 5020, Norway
| | - Hrvoje Miletic
- Department of Pathology, Haukeland University Hospital, Bergen, 5021, Norway; Department of Biomedicine, University of Bergen, Bergen, Pb 7804, 5020, Norway
| | - Gia Tuong Thi Tran
- Department of Clinical Medicine (K1), University of Bergen, Pb 7804, 5020, Norway
| | | | - Laurence A Bindoff
- Department of Neurology, Haukeland University Hospital, 5021 Bergen, Norway; Department of Clinical Medicine (K1), University of Bergen, Pb 7804, 5020, Norway.
| |
Collapse
|
38
|
Koo JH, Kang EB, Cho JY. Resistance Exercise Improves Mitochondrial Quality Control in a Rat Model of Sporadic Inclusion Body Myositis. Gerontology 2019; 65:240-252. [PMID: 30641518 DOI: 10.1159/000494723] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 10/22/2018] [Indexed: 01/05/2025] Open
Abstract
BACKGROUND Mitochondrial dysfunction is implicated in the pathogenesis of multiple muscular diseases, including sporadic inclusion body myositis (s-IBM), the most common aging-related muscle disease. However, the factors causing mitochondrial dysfunction in s-IBM are unknown. OBJECTIVE We hypothesized that resistance exercise (RE) may alleviate muscle impairment by improving mitochondrial function via reducing amyloid-beta (Aβ) accumulation. METHODS Twenty-four male Wistar rats were randomized to a saline-injection control group (sham, n = 8), a chloroquine (CQ) control group (CQ-CON, n = 8), and a CQ plus RE group (CQ-RE, n = 8) in which rats climbed a ladder with weight attached to their tails 9 weeks after starting CQ treatment. RESULTS RE markedly inhibited soleus muscle atrophy and muscle damage. RE reduced CQ-induced Aβ accumulation, which resulted in decreased formation of rimmed vacuoles and mitochondrial-mediated apoptosis. Most importantly, the decreased Aβ accumulation improved both mitochondrial quality control (MQC) through increased mitochondrial biogenesis and mitophagy, and mitochondrial dynamics. Furthermore, RE-mediated reduction of Aβ accumulation elevated mitochondrial oxidative capacity by upregulating superoxide dismutase-2, catalase, and citrate synthase via activating sirtuin 3 signaling. CONCLUSION RE enhances mitochondrial function by improving MQC and mitochondrial oxidative capacity via reducing Aβ accumulation, thereby inhibiting CQ-induced muscle impairment, in a rat model of s-IBM.
Collapse
MESH Headings
- Amyloid beta-Peptides/metabolism
- Animals
- Apoptosis
- Catalase/metabolism
- Chloroquine/toxicity
- Citrate (si)-Synthase/metabolism
- Disease Models, Animal
- Geriatrics
- Humans
- Male
- Mitochondria, Muscle/drug effects
- Mitochondria, Muscle/physiology
- Mitophagy
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Myositis, Inclusion Body/pathology
- Myositis, Inclusion Body/physiopathology
- Myositis, Inclusion Body/therapy
- Physical Conditioning, Animal
- Rats
- Rats, Wistar
- Resistance Training
- Superoxide Dismutase/metabolism
Collapse
Affiliation(s)
- Jung-Hoon Koo
- Department of Exercise Biochemistry, Korea National Sport University, Seoul, Republic of Korea
| | - Eun-Bum Kang
- Division of Sports Science, Daejeon University, Daejeon, Republic of Korea
| | - Joon-Yong Cho
- Department of Exercise Biochemistry, Korea National Sport University, Seoul, Republic of Korea,
| |
Collapse
|
39
|
De Paepe B. Sporadic Inclusion Body Myositis: An Acquired Mitochondrial Disease with Extras. Biomolecules 2019; 9:biom9010015. [PMID: 30621041 PMCID: PMC6359202 DOI: 10.3390/biom9010015] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 12/19/2018] [Accepted: 12/19/2018] [Indexed: 12/12/2022] Open
Abstract
The sporadic form of inclusion body myositis (IBM) is the most common late-onset myopathy. Its complex pathogenesis includes degenerative, inflammatory and mitochondrial aspects. However, which of those mechanisms are cause and which effect, as well as their interrelations, remain partly obscured to this day. In this review the nature of the mitochondrial dysregulation in IBM muscle is explored and comparison is made with other muscle disorders. Mitochondrial alterations in IBM are evidenced by histological and serum biomarkers. Muscular mitochondrial dynamics is disturbed, with deregulated organelle fusion leading to subsequent morphological alterations and muscle displays abnormal mitophagy. The tissue increases mitochondrial content in an attempt to compensate dysfunction, yet mitochondrial DNA (mtDNA) alterations and mild mtDNA depletion are also present. Oxidative phosphorylation defects have repeatedly been shown, most notably a reduction in complex IV activities and levels of mitokines and regulatory RNAs are perturbed. Based on the cumulating evidence of mitochondrial abnormality as a disease contributor, it is therefore warranted to regard IBM as a mitochondrial disease, offering a feasible therapeutic target to be developed for this yet untreatable condition.
Collapse
Affiliation(s)
- Boel De Paepe
- Neuromuscular Reference Centre, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium.
| |
Collapse
|
40
|
Haczkiewicz K, Sebastian A, Piotrowska A, Misterska-Skóra M, Hałoń A, Skoczyńska M, Sebastian M, Wiland P, Dzięgiel P, Podhorska-Okołów M. Immunohistochemical and ultrastructural analysis of sporadic inclusion body myositis: a case series. Rheumatol Int 2018; 39:1291-1301. [PMID: 30535925 DOI: 10.1007/s00296-018-4221-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 12/04/2018] [Indexed: 12/18/2022]
Abstract
Sporadic inclusion body myositis (s-IBM) is a progressive, skeletal muscle disease with poor prognosis. However, establishing the final diagnosis is difficult because of the lack of clear biomarkers in the blood serum and very slow development of clinical symptoms. Moreover, most other organs function normally without any disturbance. Here, in patients with this untreatable disease, we have underlined the importance of immunohistochemical and ultrastructural assessment of skeletal muscle in patients diagnosed with s-IBM. The goal of this study was to identify the distribution of specific antigens and to determine morphological features in order to localize pathological protein aggregates, rimmed vacuoles, and loss of myofibrils, which are key elements in the diagnosis of s-IBM. All studied patients were between 48 and 83 years of age and were hospitalized in the Department of Rheumatology and Internal Medicine between 2011 and 2016. Anamneses revealed an accelerated progression of muscle atrophy, weakness of limb muscles, and difficulties with climbing stairs. Based on histopathology and transmission electron microscopy examination, inflammatory infiltrations consisting of mononuclear cells, severe atrophy and focal necrosis of myofibers, splitting of myofilaments, myelinoid bodies and rimmed vacuoles were observed. Primary antibodies directed against CD3, CD8, CD68, cN1A, beta-amyloid, Tau protein and apolipoprotein B made it possible to identify types of cells within infiltrations as well as the protein deposits within myofibers. Using a combination of immunohistochemistry and electron microscopy methods, we were able to establish the correct final diagnosis and to implement a specific treatment to inhibit disease progression.
Collapse
Affiliation(s)
- Katarzyna Haczkiewicz
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, Chałubińskiego Street 6a, 50-368, Wrocław, Poland.
| | - Agata Sebastian
- Department of Rheumatology and Internal Medicine, Wroclaw Medical University, Borowska Street 213, 50-556, Wrocław, Poland
| | - Aleksandra Piotrowska
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, Chałubińskiego Street 6a, 50-368, Wrocław, Poland
| | - Maria Misterska-Skóra
- Department of Rheumatology and Internal Medicine, Wroclaw Medical University, Borowska Street 213, 50-556, Wrocław, Poland
| | - Agnieszka Hałoń
- Department of Pathomorphology, Wroclaw Medical University, Borowska Street 213, 50-556, Wrocław, Poland
| | - Marta Skoczyńska
- Department of Rheumatology and Internal Medicine, Wroclaw Medical University, Borowska Street 213, 50-556, Wrocław, Poland
| | - Maciej Sebastian
- Department of Minimally Invasive Surgery and Proctology, Wroclaw Medical University, Borowska Street 213, 50-556, Wrocław, Poland
| | - Piotr Wiland
- Department of Rheumatology and Internal Medicine, Wroclaw Medical University, Borowska Street 213, 50-556, Wrocław, Poland
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, Chałubińskiego Street 6a, 50-368, Wrocław, Poland
| | - Marzenna Podhorska-Okołów
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, Chałubińskiego Street 6a, 50-368, Wrocław, Poland
| |
Collapse
|
41
|
Buzkova J, Nikkanen J, Ahola S, Hakonen AH, Sevastianova K, Hovinen T, Yki-Järvinen H, Pietiläinen KH, Lönnqvist T, Velagapudi V, Carroll CJ, Suomalainen A. Metabolomes of mitochondrial diseases and inclusion body myositis patients: treatment targets and biomarkers. EMBO Mol Med 2018; 10:e9091. [PMID: 30373890 PMCID: PMC6284386 DOI: 10.15252/emmm.201809091] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 09/14/2018] [Accepted: 09/24/2018] [Indexed: 01/18/2023] Open
Abstract
Mitochondrial disorders (MDs) are inherited multi-organ diseases with variable phenotypes. Inclusion body myositis (IBM), a sporadic inflammatory muscle disease, also shows mitochondrial dysfunction. We investigated whether primary and secondary MDs modify metabolism to reveal pathogenic pathways and biomarkers. We investigated metabolomes of 25 mitochondrial myopathy or ataxias patients, 16 unaffected carriers, six IBM and 15 non-mitochondrial neuromuscular disease (NMD) patients and 30 matched controls. MD and IBM metabolomes clustered separately from controls and NMDs. MDs and IBM showed transsulfuration pathway changes; creatine and niacinamide depletion marked NMDs, IBM and infantile-onset spinocerebellar ataxia (IOSCA). Low blood and muscle arginine was specific for patients with m.3243A>G mutation. A four-metabolite blood multi-biomarker (sorbitol, alanine, myoinositol, cystathionine) distinguished primary MDs from others (76% sensitivity, 95% specificity). Our omics approach identified pathways currently used to treat NMDs and mitochondrial stroke-like episodes and proposes nicotinamide riboside in MDs and IBM, and creatine in IOSCA and IBM as novel treatment targets. The disease-specific metabolic fingerprints are valuable "multi-biomarkers" for diagnosis and promising tools for follow-up of disease progression and treatment effect.
Collapse
Affiliation(s)
- Jana Buzkova
- Research Programs Unit, Molecular Neurology, Biomedicum-Helsinki, University of Helsinki, Helsinki, Finland
| | - Joni Nikkanen
- Research Programs Unit, Molecular Neurology, Biomedicum-Helsinki, University of Helsinki, Helsinki, Finland
| | - Sofia Ahola
- Research Programs Unit, Molecular Neurology, Biomedicum-Helsinki, University of Helsinki, Helsinki, Finland
| | - Anna H Hakonen
- Research Programs Unit, Molecular Neurology, Biomedicum-Helsinki, University of Helsinki, Helsinki, Finland
| | - Ksenia Sevastianova
- Department of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Topi Hovinen
- Research Programs Unit, Molecular Neurology, Biomedicum-Helsinki, University of Helsinki, Helsinki, Finland
| | - Hannele Yki-Järvinen
- Department of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Kirsi H Pietiläinen
- Research Programs Unit, Diabetes and Obesity, Obesity Research Unit, University of Helsinki, Helsinki, Finland
- Abdominal Centre, Endocrinology, Helsinki University Central Hospital and University of Helsinki, Helsinki, Finland
| | - Tuula Lönnqvist
- Department of Child Neurology, Children's Hospital, University of Helsinki, Helsinki, Finland
| | - Vidya Velagapudi
- Metabolomics Unit, Institute for Molecular Medicine Finland FIMM, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Christopher J Carroll
- Research Programs Unit, Molecular Neurology, Biomedicum-Helsinki, University of Helsinki, Helsinki, Finland
- Genetics Research Centre, Molecular and Clinical Sciences Institute, St. George's University of London, London, UK
| | - Anu Suomalainen
- Research Programs Unit, Molecular Neurology, Biomedicum-Helsinki, University of Helsinki, Helsinki, Finland
- Department of Neurosciences, Helsinki University Hospital, Helsinki, Finland
- Neuroscience Centre, Helsinki Institute Life Science, University of Helsinki, Helsinki, Finland
| |
Collapse
|
42
|
Herbelet S, De Bleecker JL. Immune checkpoint failures in inflammatory myopathies: An overview. Autoimmun Rev 2018; 17:746-754. [PMID: 29885538 DOI: 10.1016/j.autrev.2018.01.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 01/18/2018] [Indexed: 12/21/2022]
Abstract
Dermatomyositis (DM), polymyositis (PM), inclusion body myositis (IBM), immune mediated necrotizing myopathy (IMNM) and overlap myositis (OM) are classified as inflammatory myopathies (IM) with involvement of autoimmune features such as autoreactive lymphocytes and autoantibodies. Autoimmunity can be defined as a loss in self-tolerance and attack of autoantigens by the immune system. Self-tolerance is achieved by a group of immune mechanisms occurring in central and periphal lymphoid organs and tissues, called immune checkpoints, that work in synergy to protect the body from harmful immune reactions. Autoimmune disorders appear when immune checkpoints fail. In this review, the different immune checkpoint failures are discussed in DM, PM, IBM and IMNM. Exploring research contribution in each of these immune checkpoints might help to highlight research perspectives in the field and obtain a more complete picture of IM disease pathology.
Collapse
Affiliation(s)
- Sandrine Herbelet
- Department of Neurology, Ghent University and Ghent University Hospital, C. Heymanslaan 10, 9000 Gent, Belgium.
| | - Jan L De Bleecker
- Department of Neurology, Ghent University and Ghent University Hospital, C. Heymanslaan 10, 9000 Gent, Belgium
| |
Collapse
|
43
|
Abstract
Autoimmune diseases develop as a result of chronic inflammation owing to interactions between genes and the environment. However, the mechanisms by which autoimmune diseases evolve remain poorly understood. Newly discovered risk factors and pathogenic processes in the various idiopathic inflammatory myopathy (IIM) phenotypes (known collectively as myositis) have illuminated innovative approaches for understanding these diseases. The HLA 8.1 ancestral haplotype is a key risk factor for major IIM phenotypes in some populations, and several genetic variants associated with other autoimmune diseases have been identified as IIM risk factors. Environmental risk factors are less well studied than genetic factors but might include viruses, bacteria, ultraviolet radiation, smoking, occupational and perinatal exposures and a growing list of drugs (including biologic agents) and dietary supplements. Disease mechanisms vary by phenotype, with evidence of shared innate and adaptive immune and metabolic pathways in some phenotypes but unique pathways in others. The heterogeneity and rarity of the IIMs make advancements in diagnosis and treatment cumbersome. Novel approaches, better-defined phenotypes, and international, multidisciplinary consensus have contributed to progress, and it is hoped that these methods will eventually enable therapeutic intervention before the onset or major progression of disease. In the future, preemptive strategies for IIM management might be possible.
Collapse
Affiliation(s)
- Frederick W. Miller
- Environmental Autoimmunity Group, Clinical Research Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Janine A. Lamb
- Centre for Epidemiology, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, UK
| | - Jens Schmidt
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Kanneboyina Nagaraju
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Binghamton University, Binghamton, NY, USA
| |
Collapse
|
44
|
Castets P, Frank S, Sinnreich M, Rüegg MA. "Get the Balance Right": Pathological Significance of Autophagy Perturbation in Neuromuscular Disorders. J Neuromuscul Dis 2018; 3:127-155. [PMID: 27854220 PMCID: PMC5271579 DOI: 10.3233/jnd-160153] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Recent research has revealed that autophagy, a major catabolic process in cells, is dysregulated in several neuromuscular diseases and contributes to the muscle wasting caused by non-muscle disorders (e.g. cancer cachexia) or during aging (i.e. sarcopenia). From there, the idea arose to interfere with autophagy or manipulate its regulatory signalling to help restore muscle homeostasis and attenuate disease progression. The major difficulty for the development of therapeutic strategies is to restore a balanced autophagic flux, due to the dynamic nature of autophagy. Thus, it is essential to better understand the mechanisms and identify the signalling pathways at play in the control of autophagy in skeletal muscle. A comprehensive analysis of the autophagic flux and of the causes of its dysregulation is required to assess the pathogenic role of autophagy in diseased muscle. Furthermore, it is essential that experiments distinguish between primary dysregulation of autophagy (prior to disease onset) and impairments as a consequence of the pathology. Of note, in most muscle disorders, autophagy perturbation is not caused by genetic modification of an autophagy-related protein, but rather through indirect alteration of regulatory signalling or lysosomal function. In this review, we will present the mechanisms involved in autophagy, and those ensuring its tight regulation in skeletal muscle. We will then discuss as to how autophagy dysregulation contributes to the pathogenesis of neuromuscular disorders and possible ways to interfere with this process to limit disease progression.
Collapse
Affiliation(s)
| | - Stephan Frank
- Institute of Pathology, Division of Neuropathology Basel University Hospital, Basel, Switzerland
| | - Michael Sinnreich
- Neuromuscular Research Center, Departments of Neurology and Biomedicine, Pharmazentrum, Basel, Switzerland
| | | |
Collapse
|
45
|
Mitophagy in three cases of immune-mediated necrotizing myopathy associated with anti-3-hydroxy-3-methylglutaryl-coenzyme A reductase autoantibodies: ultrastructural and immunohistochemical studies. Neuromuscul Disord 2018; 28:283-288. [PMID: 29402601 DOI: 10.1016/j.nmd.2018.01.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 11/24/2017] [Accepted: 01/07/2018] [Indexed: 02/06/2023]
Abstract
Immune-mediated necrotizing myopathy (IMNM) associated with anti-3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR) autoantibodies occurs in patients both with and without history of statin-intake. The mechanisms of muscle fiber degeneration in this condition remain unknown. We studied pathological changes in muscle biopsies from three patients lacking history of statin-intake. Ultrastructural observations showed accumulation of degenerating mitochondria, glycogen granules and autophagic vacuoles, forming large composites in three cases, along with various nonspecific changes. The autophagic vacuoles often contained remnants of mitochondria, indicating mitophagy. Furthermore, upregulation of B-cell lymphoma 2/adenovirus E1B 19 kD-interacting protein 3 (BNIP3), a protein involved in mitophagy, was observed in two cases examined. In three cases of sporadic inclusion body myositis, two polymyositis, and three IMNM with anti-signal recognition particle antibody, BNIP3 was upregulated less frequently, and ultrastructural change of mitophagy was rarely seen. These findings suggested that mitophagy plays an important role in muscle fiber degeneration in IMNM with anti-HMGCR autoantibodies.
Collapse
|
46
|
Couture P, Malfatti E, Morau G, Mathian A, Cohen-Aubart F, Nielly H, Amoura Z, Cherin P. Inclusion body myositis and human immunodeficiency virus type 1: A new case report and literature review. Neuromuscul Disord 2018; 28:334-338. [PMID: 29426734 DOI: 10.1016/j.nmd.2018.01.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/22/2017] [Accepted: 01/06/2018] [Indexed: 10/18/2022]
Abstract
Prevalence of muscle disease in human immunodeficiency virus (HIV) infection is less than 1% of patients with acquired immune deficiency syndrome. Sporadic inclusion body myositis (IBM) is observed in a few cases of patients infected by retroviruses such as HIV-1. A Caucasian man was diagnosed with HIV when he was 30 years old. The viral load was undetectable and CD4 cell count was 600/mm3 when the diagnosis of inclusion body myositis was confirmed. Histological findings were typical of IBM. The treatment consisted of immunoglobulin therapy for three years without effect. Twenty-two patients were found in the English and French literature. They are younger than those who suffer from IBM without HIV (median age = 47, range: 30 to 59), and they are mostly men with considerable serum creatine kinase (CK) elevation (median CK level = 1322 IU/L, range: 465 to 10270), most of them were treated with Zidovudine.
Collapse
Affiliation(s)
- Priscille Couture
- Assistance Publique-Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Département de Médecine Interne 2, Centre National de Référence des Maladies Auto-Immunes Systémiques et Rares. Institut E3M. 47-83 Boulevard de l'Hôpital, 75013, Paris, France.
| | - Edoardo Malfatti
- Assistance Publique-Hôpitaux de Paris, Unité de Morphologie Neuromusculaire - Institut de myologie, Hôpital Pitié-Salpêtrière, 47-83 Boulevard de l'Hôpital, 75013, Paris, France
| | - Geneviève Morau
- Assistance Publique-Hôpitaux de Paris, Maladie infectieuse et tropicale, Hôpital Bichat Claude Bernard, 46 Rue Henri Huchard, 75018, Paris, France
| | - Alexis Mathian
- Assistance Publique-Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Département de Médecine Interne 2, Centre National de Référence des Maladies Auto-Immunes Systémiques et Rares. Institut E3M. 47-83 Boulevard de l'Hôpital, 75013, Paris, France
| | - Fleur Cohen-Aubart
- Assistance Publique-Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Département de Médecine Interne 2, Centre National de Référence des Maladies Auto-Immunes Systémiques et Rares. Institut E3M. 47-83 Boulevard de l'Hôpital, 75013, Paris, France
| | - Hubert Nielly
- Assistance Publique-Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Département de Médecine Interne 2, Centre National de Référence des Maladies Auto-Immunes Systémiques et Rares. Institut E3M. 47-83 Boulevard de l'Hôpital, 75013, Paris, France
| | - Zahir Amoura
- Assistance Publique-Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Département de Médecine Interne 2, Centre National de Référence des Maladies Auto-Immunes Systémiques et Rares. Institut E3M. 47-83 Boulevard de l'Hôpital, 75013, Paris, France
| | - Patrick Cherin
- Assistance Publique-Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Département de Médecine Interne 2, Centre National de Référence des Maladies Auto-Immunes Systémiques et Rares. Institut E3M. 47-83 Boulevard de l'Hôpital, 75013, Paris, France
| |
Collapse
|
47
|
Abstract
PURPOSE OF REVIEW In this review, we describe recent progress in the clinical epidemiology of sporadic inclusion body myositis (IBM). RECENT FINDINGS In a population-based, retrospective study from Norway, performed with a denominator population of 2.6 million; and with cases defined by the 1997 and/or 2011 European Neuro-Muscular Centre Research Diagnostic criteria, the estimated point prevalence of IBM was 3.3/100 000. Mean time from symptom onset to diagnosis was 5.6 years, longer than in earlier studies. The male to female ratio was 3 : 2, and the mean age at diagnosis 67 years, very similar to figures reported this year from a nationwide, Dutch myopathy registry. Coexisting rheumatic diseases were recorded in 25% of Norwegian IBM cases, with Sjøgren's syndrome as the most commonly encountered. Mortality was increased in IBM, with a standardized mortality rate of 1.7, but there was no indication of increased cancer risk. SUMMARY Population-based data indicate that the prevalence of IBM in Europe is higher than expected from previous studies. Diagnostic delay appears to be a persisting problem in IBM; a major challenge with promising new therapies on the horizon.
Collapse
|
48
|
Keller CW, Schmidt J, Lünemann JD. Immune and myodegenerative pathomechanisms in inclusion body myositis. Ann Clin Transl Neurol 2017; 4:422-445. [PMID: 28589170 PMCID: PMC5454400 DOI: 10.1002/acn3.419] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 04/09/2017] [Accepted: 04/10/2017] [Indexed: 12/17/2022] Open
Abstract
Inclusion Body Myositis (IBM) is a relatively common acquired inflammatory myopathy in patients above 50 years of age. Pathological hallmarks of IBM are intramyofiber protein inclusions and endomysial inflammation, indicating that both myodegenerative and inflammatory mechanisms contribute to its pathogenesis. Impaired protein degradation by the autophagic machinery, which regulates innate and adaptive immune responses, in skeletal muscle fibers has recently been identified as a potential key pathomechanism in IBM. Immunotherapies, which are successfully used for treating other inflammatory myopathies lack efficacy in IBM and so far no effective treatment is available. Thus, a better understanding of the mechanistic pathways underlying progressive muscle weakness and atrophy in IBM is crucial in identifying novel promising targets for therapeutic intervention. Here, we discuss recent insights into the pathomechanistic network of mutually dependent inflammatory and degenerative events during IBM.
Collapse
Affiliation(s)
- Christian W. Keller
- Institute of Experimental ImmunologyLaboratory of NeuroinflammationUniversity of ZürichZürichSwitzerland
| | - Jens Schmidt
- Department of NeurologyUniversity Medical Center GöttingenGöttingenGermany
| | - Jan D. Lünemann
- Institute of Experimental ImmunologyLaboratory of NeuroinflammationUniversity of ZürichZürichSwitzerland
- Department of NeurologyUniversity Hospital ZürichZürichSwitzerland
| |
Collapse
|
49
|
Capkun G, Callan A, Tian H, Wei Z, Zhao C, Agashivala N, Barghout V. Burden of illness and healthcare resource use in United States patients with sporadic inclusion body myositis. Muscle Nerve 2017; 56:861-867. [PMID: 28493327 DOI: 10.1002/mus.25686] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 04/17/2017] [Accepted: 04/30/2017] [Indexed: 02/06/2023]
Abstract
INTRODUCTION We analyzed the burden of illness of sporadic inclusion body myositis (sIBM) patients and the costs to the healthcare system. METHODS A retrospective cohort analysis of 333 sIBM patients aged ≥ 50 years was performed using United States (U.S.) claims data. sIBM patients were matched in a 1:5 ratio to randomly selected individuals with ≥1 healthcare encounter within the year of index date. RESULTS sIBM patients presented with higher rates of disease- and muscle-related conditions, such as myalgia, myositis, muscle weakness, dysphagia, pneumonia, and falls. Use of healthcare resources, including physical therapy, office visits, emergency room (ER) visits, and hospitalizations, was greater in sIBM patients. This was also reflected in significantly higher overall healthcare costs in the sIBM population driven mainly by more all-cause office visits, all-cause ER visits and hospitalizations. CONCLUSIONS sIBM imposes a substantial burden on U.S. patients in terms of additional healthcare usage and associated costs. Muscle Nerve 56: 861-867, 2017.
Collapse
Affiliation(s)
| | | | - Haijun Tian
- Novartis Pharmaceuticals Corporation, East Hanover, New Jersey, USA
| | | | - Changgeng Zhao
- Novartis Pharmaceuticals Corporation, East Hanover, New Jersey, USA
| | - Neetu Agashivala
- Novartis Pharmaceuticals Corporation, East Hanover, New Jersey, USA
| | | |
Collapse
|
50
|
Needham M, Mastaglia F. Advances in inclusion body myositis: genetics, pathogenesis and clinical aspects. Expert Opin Orphan Drugs 2017. [DOI: 10.1080/21678707.2017.1318056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|