1
|
Anilkumar S A, Dutta S, Aboo S, Ismail A. Vitamin D as a modulator of molecular pathways involved in CVDs: Evidence from preclinical studies. Life Sci 2024; 357:123062. [PMID: 39288869 DOI: 10.1016/j.lfs.2024.123062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/27/2024] [Accepted: 09/12/2024] [Indexed: 09/19/2024]
Abstract
Vitamin D deficiency (VDD) is a widespread global health issue, affecting nearly a billion individuals worldwide, and mounting evidence links it to an increased risk of cardiovascular diseases like hypertension, atherosclerosis, and heart failure. The discovery of vitamin D receptors and metabolizing enzymes in cardiac and vascular cells, coupled with experimental studies, underscores the complex relationship between vitamin D and cardiovascular health. This review aims to synthesize and critically evaluate the preclinical evidence elucidating the role of vitamin D in cardiovascular health. We examined diverse preclinical in vitro (cardiomyocyte cell line) models and in vivo models, including knockout mice, diet-induced deficiency, and disease-specific animal models (hypertension, hypertrophy and myocardial infarction). These studies reveal that vitamin D modulates vascular tone, and prevents fibrosis and hypertrophy through effects on major signal transduction pathways (NF-kB, Nrf2, PI3K/AKT/mTOR, Calcineurin/NFAT, TGF-β/Smad, AMPK) and influences epigenetic mechanisms governing inflammation, oxidative stress, and pathological remodeling. In vitro studies elucidate vitamin D's capacity to promote cardiomyocyte differentiation and inhibit pathological remodeling. In vivo studies further uncovered detrimental cardiac effects of VDD, while supplementation with vitamin D in cardiovascular disease (CVD) models demonstrated its protective effects by decreasing inflammation, attenuating hypertrophy, reduction in plaque formation, and improving cardiac function. Hence, this comprehensive review emphasizes the critical role of vitamin D in cardiovascular health and its potential as a preventive/therapeutic strategy in CVDs. However, further research is needed to translate these findings into clinical applications as there are discrepancies between preclinical and clinical studies.
Collapse
Affiliation(s)
- Athira Anilkumar S
- Department of Endocrinology, ICMR-National Institute of Nutrition, Hyderabad, India
| | - Soumam Dutta
- Department of Endocrinology, ICMR-National Institute of Nutrition, Hyderabad, India
| | - Shabna Aboo
- Department of Endocrinology, ICMR-National Institute of Nutrition, Hyderabad, India.
| | - Ayesha Ismail
- Department of Endocrinology, ICMR-National Institute of Nutrition, Hyderabad, India.
| |
Collapse
|
2
|
Lai HH, Jeng KS, Huang CT, Chu AJ, Her GM. Heightened TPD52 linked to metabolic dysfunction and associated abnormalities in zebrafish. Arch Biochem Biophys 2024; 761:110166. [PMID: 39349129 DOI: 10.1016/j.abb.2024.110166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/05/2024] [Accepted: 09/25/2024] [Indexed: 10/02/2024]
Abstract
The tumor protein D52 (TPD52) gene encodes a proto-oncogene protein associated with various medical conditions, including breast and prostate cancers. It plays a role in multiple biological pathways such as cell growth, differentiation, and apoptosis. The function of TPD52 in lipid droplet biosynthesis has been investigated in vitro. However, its precise role in lipid metabolism in animal models is not fully understood. To investigate the functions of TPD52 in vivo, we performed a conditional TPD52 protein expression analysis using a Tet-off transgenic system to establish conditionally expressed Tpd52 transgenic zebrafish. The effect of Tpd52 on lipogenesis was assessed using various methods, including whole-mount Oil Red O staining, histological examination, and measurement of inflammatory markers and potential targets using real-time quantitative polymerase chain reaction and immunoblotting in Tpd52 fish. Zebrafish with increased Tpd52 levels exhibited notable weight gain and the enlargement of fat deposits, which were mainly attributed to an increase in the volume of adipocytes. Moreover, Tpd52 overexpression was correlated with the triggering of the adipocyte differentiation signaling pathway. During adipocytic differentiation in response to nutrient status, our observations revealed adipogenesis, nonalcoholic fatty liver disease, and metabolic cardiomyopathy (MCM) in Tpd52 transgenic zebrafish. To gain a deeper understanding of the contribution of these proteins to the regulation of cellular growth, we investigated the expression of their corresponding genes and proteins in zebrafish. In the present study, the activated protein kinase pathway was identified as the primary target of TPD52. Adult Tpd52 zebrafish showed increased lipid accumulation, resulting in the development of visceral obesity, nonalcoholic fatty liver disease, and MCM. These findings strongly suggest that TPD52 actively contributes to adipose tissue expansion and its subsequent effects. This investigation provides compelling evidence that Tpd52 facilitates adipocyte development and related metabolic comorbidities in zebrafish.
Collapse
Affiliation(s)
- Hsin-Hung Lai
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Kuo-Shyang Jeng
- Division of General Surgery, Far Eastern Memorial Hospital, New Taipei, 220, Taiwan
| | - Chung-Tsui Huang
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Far Eastern Memorial Hospital, New Taipei, 220, Taiwan
| | - An-Ju Chu
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Guor Mour Her
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan.
| |
Collapse
|
3
|
Ashraf MS, Tuli K, Moiz S, Sharma SK, Sharma D, Adnan M. AMP kinase: A promising therapeutic drug target for post-COVID-19 complications. Life Sci 2024; 359:123202. [PMID: 39489398 DOI: 10.1016/j.lfs.2024.123202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/27/2024] [Accepted: 10/29/2024] [Indexed: 11/05/2024]
Abstract
The COVID-19 pandemic, caused by SARS-CoV-2, has resulted in severe respiratory issues and persistent complications, particularly affecting glucose metabolism. Patients with or without pre-existing diabetes often experience worsened symptoms, highlighting the need for innovative therapeutic approaches. AMPK, a crucial regulator of cellular energy balance, plays a pivotal role in glucose metabolism, insulin sensitivity, and inflammatory responses. AMPK activation, through allosteric or kinase-dependent mechanisms, impacts cellular processes like glucose uptake, fatty acid oxidation, and autophagy. The tissue-specific distribution of AMPK emphasizes its role in maintaining metabolic homeostasis throughout the body. Intriguingly, SARS-CoV-2 infection inhibits AMPK, contributing to metabolic dysregulation and post-COVID-19 complications. AMPK activators like capsaicinoids, curcumin, phytoestrogens, cilostazol, and momordicosides have demonstrated the potential to regulate AMPK activity. Compounds from various sources improve fatty acid oxidation and insulin sensitivity, with metformin showing opposing effects on AMPK activation compared to the virus, suggesting potential therapeutic options. The diverse effects of AMPK activation extend to its role in countering viral infections, further highlighting its significance in COVID-19. This review explores AMPK activation mechanisms, its role in metabolic disorders, and the potential use of natural compounds to target AMPK for post-COVID-19 complications. Also, it aims to review the possible methods of activating AMPK to prevent post-COVID-19 diabetes and cardiovascular complications. It also explores the use of natural compounds for their therapeutic effects in targeting the AMPK pathways. Targeting AMPK activation emerges as a promising avenue to mitigate the long-term effects of COVID-19, offering hope for improved patient outcomes and a better quality of life.
Collapse
Affiliation(s)
- Mohammad Saquib Ashraf
- Department of Medical Laboratory Science College of Pharmacy, Nursing and Medical Science Riyadh ELM University, Riyadh, P.O. Box 12734, Saudi Arabia.
| | - Kanika Tuli
- Guru Nanak Institute of Pharmacy, Dalewal, Hoshiarpur 144208, Punjab, India
| | - Shadman Moiz
- Department of Biotechnology, Lalit Narayan Mithila University, Darbhanga 846004, Bihar, India
| | - Satish Kumar Sharma
- Department of Pharmacology, Glocal School of Pharmacy, The Glocal University, Saharanpur, India
| | - Deepa Sharma
- UMM Matrix Innovations Private Limited, Delhi 110044, India
| | - Mohd Adnan
- Department of Biology, College of Science, University of Ha'il, Ha'il, P.O. Box 2440, Saudi Arabia; Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 602105, India
| |
Collapse
|
4
|
Tocantins C, Martins JD, Rodrigues ÓM, Grilo LF, Diniz MS, Stevanovic-Silva J, Beleza J, Coxito P, Rizo-Roca D, Santos-Alves E, Moreno AJ, Ascensão A, Magalhães J, Oliveira PJ, Pereira SP. Maternal heart exhibits metabolic and redox adaptations post-uncomplicated pregnancy. Biochim Biophys Acta Mol Basis Dis 2024; 1871:167539. [PMID: 39378968 DOI: 10.1016/j.bbadis.2024.167539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 09/21/2024] [Accepted: 10/03/2024] [Indexed: 10/10/2024]
Abstract
Pregnancy may be a challenging period for the maternal systems and has been regarded as a stress test, as imperceptible/mild dysfunctions eventually present may be exacerbated during this period. The cardiovascular system is no exception, and several morphological and functional adaptations accompanying pregnancy have been described. However, long-term pregnancy-induced cardiac molecular alterations remain highly unexplored. The postpartum is marked by reverse remodeling of the pregnancy-induced cardiovascular adaptations, representing a possible critical period for assessing future maternal cardiovascular health. The current study explored the molecular and metabolic alterations in the cardiac tissue eight weeks after a physiological uncomplicated pregnancy. Female Sprague-Dawley rats were fed a chow diet through pregnancy, lactation, and weaning and compared to their non-pregnant counterparts. Eight weeks postpartum, increased levels of the phosphorylated form of AMPKα (Thr172) and its ratio to total AMPKα indicated possible alterations in cardiac metabolic flexibility, accompanied by increased Pparα and Hif1α transcripts levels. Additionally, postpartum hearts exhibited higher mitochondrial ATP and NADH levels without major changes in mitochondrial respiratory function. Elevated Nrf2 levels in the cardiac tissue suggested potential implications for cardiac redox balance, further supported by increased levels or activity of proteins directly regulated by Nrf2. The findings herein reported suggest that at eight weeks postpartum, molecular alterations induced by pregnancy, especially regarding redox balance, are still observed in the mothers' heart. These alterations present at late postpartum may open new avenues to understand the different risk for cardiovascular complications development after normal pregnancies.
Collapse
Affiliation(s)
- Carolina Tocantins
- CNC-UC-Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-504 Coimbra, Portugal; University of Coimbra, Institute for Interdisciplinary Research, PDBEB - Doctoral Programme in Experimental Biology and Biomedicine, Coimbra, Portugal
| | - João D Martins
- CNC-UC-Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-504 Coimbra, Portugal
| | - Óscar M Rodrigues
- CNC-UC-Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-504 Coimbra, Portugal
| | - Luís F Grilo
- CNC-UC-Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-504 Coimbra, Portugal; University of Coimbra, Institute for Interdisciplinary Research, PDBEB - Doctoral Programme in Experimental Biology and Biomedicine, Coimbra, Portugal
| | - Mariana S Diniz
- CNC-UC-Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-504 Coimbra, Portugal; University of Coimbra, Institute for Interdisciplinary Research, PDBEB - Doctoral Programme in Experimental Biology and Biomedicine, Coimbra, Portugal
| | - Jelena Stevanovic-Silva
- Laboratory of Metabolism and Exercise (LaMetEx), Research Centre in Physical Activity, Health and Leisure (CIAFEL), Laboratory for Integrative and Translational Research in Population Health (ITR), Faculty of Sports, University of Porto, 4200-450 Porto, Portugal
| | - Jorge Beleza
- Laboratory of Metabolism and Exercise (LaMetEx), Research Centre in Physical Activity, Health and Leisure (CIAFEL), Laboratory for Integrative and Translational Research in Population Health (ITR), Faculty of Sports, University of Porto, 4200-450 Porto, Portugal
| | - Pedro Coxito
- Laboratory of Metabolism and Exercise (LaMetEx), Research Centre in Physical Activity, Health and Leisure (CIAFEL), Laboratory for Integrative and Translational Research in Population Health (ITR), Faculty of Sports, University of Porto, 4200-450 Porto, Portugal
| | - David Rizo-Roca
- Laboratory of Metabolism and Exercise (LaMetEx), Research Centre in Physical Activity, Health and Leisure (CIAFEL), Laboratory for Integrative and Translational Research in Population Health (ITR), Faculty of Sports, University of Porto, 4200-450 Porto, Portugal
| | - Estela Santos-Alves
- Laboratory of Metabolism and Exercise (LaMetEx), Research Centre in Physical Activity, Health and Leisure (CIAFEL), Laboratory for Integrative and Translational Research in Population Health (ITR), Faculty of Sports, University of Porto, 4200-450 Porto, Portugal
| | - António J Moreno
- CNC-UC-Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-504 Coimbra, Portugal; Department of Life Sciences, School of Sciences and Technology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - António Ascensão
- Laboratory of Metabolism and Exercise (LaMetEx), Research Centre in Physical Activity, Health and Leisure (CIAFEL), Laboratory for Integrative and Translational Research in Population Health (ITR), Faculty of Sports, University of Porto, 4200-450 Porto, Portugal
| | - José Magalhães
- Laboratory of Metabolism and Exercise (LaMetEx), Research Centre in Physical Activity, Health and Leisure (CIAFEL), Laboratory for Integrative and Translational Research in Population Health (ITR), Faculty of Sports, University of Porto, 4200-450 Porto, Portugal
| | - Paulo J Oliveira
- CNC-UC-Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-504 Coimbra, Portugal
| | - Susana P Pereira
- CNC-UC-Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-504 Coimbra, Portugal; Laboratory of Metabolism and Exercise (LaMetEx), Research Centre in Physical Activity, Health and Leisure (CIAFEL), Laboratory for Integrative and Translational Research in Population Health (ITR), Faculty of Sports, University of Porto, 4200-450 Porto, Portugal.
| |
Collapse
|
5
|
Surinkaew S, Sun D, Kooltheat N, Boonhok R, Somsak V, Kumphune S. The cytoprotective effect of Gymnema inodorum leaf extract against hypoxia-induced cardiomyocytes injury. Heliyon 2024; 10:e35846. [PMID: 39170335 PMCID: PMC11337021 DOI: 10.1016/j.heliyon.2024.e35846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 08/05/2024] [Accepted: 08/05/2024] [Indexed: 08/23/2024] Open
Abstract
Ischemic heart disease stands out as a major global contributor to mortality, with the initiation of hypoxia, marked by reduced oxygen availability, disrupting the balance of reactive oxygen species (ROS), leading to cellular injury. Exploring antioxidants derived from medicinal plants is becoming more interesting as a potential alternative treatment, especially for mitigating myocardial injury. Thus, this study aimed to assess the cytoprotective efficacy of Gymnema inodorum leaf extract (GIE) in a rat cardiac myoblast, H9c2, subjected to an in vitro hypoxia. The cell viability, intracellular ROS production and the expression of inflammatory cytokines were quantified, and hypoxia-induced cell morphology changes were observed using confocal fluorescence microscopy. The results showed that GIE notably enhanced cell viability, preserving membrane integrity, when compared with the hypoxic group. Remarkably, GIE significantly reduced hypoxia-induced intracellular ROS production, attributable to its inherent antioxidant properties. Furthermore, GIE significantly reduced interleukin (IL)-1β, interleukin (IL)-6 mRNA expression level and tended to reduce tumor necrosis factor-α (TNF-α) mRNA expression. In conclusion, these findings underscore the potential of GIE in mitigating hypoxia-induced myocardial injury, highlighting its robust antioxidant and anti-inflammatory attributes.
Collapse
Affiliation(s)
- Sirirat Surinkaew
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, 80160, Thailand
- Research Excellence Center for Innovation and Health Products (RECIHP), Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Dali Sun
- Department of Electrical and Computer Engineering, Ritchie School of Engineering and Computer Science, University of Denver, Colorado, 80208, USA
| | - Nateelak Kooltheat
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, 80160, Thailand
- Hematology and Transfusion Science Research Center, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Rachasak Boonhok
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, 80160, Thailand
- Research Excellence Center for Innovation and Health Products (RECIHP), Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Voravuth Somsak
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, 80160, Thailand
- Research Excellence Center for Innovation and Health Products (RECIHP), Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Sarawut Kumphune
- Biomedical Engineering Institute, Chiang Mai University, Chiang Mai, 50200, Thailand
- Biomedical Engineering and Innovation Research Center, Chiang Mai University, Chiang Mai, 50200, Thailand
| |
Collapse
|
6
|
Hernández-Serda MA, Alarcón-López AY, Vázquez-Valadez VH, Briseño-Lugo P, Martínez-Soriano PA, Leguízamo V, Torres N, González-Terán R, Cárdenas-Granados LA, Sánchez Muñoz F, Rodríguez E, Lerma C, Zúñiga Muñoz AM, Ángeles E, Carbó R. Hypoxic Cardioprotection by New Antihypertensive Compounds in High Salt-Diet Hypertensive Rats: Glucose Transport Participation and Its Possible Pathway. Int J Mol Sci 2024; 25:8812. [PMID: 39201496 PMCID: PMC11354541 DOI: 10.3390/ijms25168812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/10/2024] [Accepted: 08/11/2024] [Indexed: 09/02/2024] Open
Abstract
Hypertension (HP) is a health condition that overloads the heart and increases the risk of heart attack and stroke. In an infarction, the lack of oxygen causes an exclusive use of glycolysis, which becomes a crucial source of ATP for the heart with a higher glucose uptake mediated by glucose transporters (GLUTs). Due to the unpleasant effects of antihypertensives, new drugs need to be researched to treat this disease. This study aimed to evaluate the cardioprotective effect of three novel antihypertensive compounds (LQMs, "Laboratorio de Química Medicinal") synthesized from Changrolin under hypoxic conditions with the participation of two primary cardiac GLUT1 and GLUT4 using a high-salt diet HP model. The model used a diet with 10% salt to increase arterial blood pressure in Wistar rats. In isolated cardiomyocytes from these rats, glucose uptake was measured during hypoxia, evaluating the participation of GLUTs with or without the animals' previous treatment with LQM312, 319, and 345 compounds. In silico calculations were performed to understand the affinity of the compounds for the trafficking of GLUTs. Results: Control cells do shift to glucose uptake exclusively in hypoxia (from 1.84 ± 0.09 µg/g/h to 2.67 ± 0.1 µg/g/h). Meanwhile, HP does not change its glucose uptake (from 2.38 ± 0.24 µg/g/h to 2.33 ± 0.26 µg/g/h), which is associated with cardiomyocyte damage. The new compounds lowered the systolic blood pressure (from 149 to 120 mmHg), but only LQM312 and LQM319 improved the metabolic state of hypoxic cardiomyocytes mediated by GLUT1 and GLUT4. In silico studies suggested that Captopril and LQM312 may mimic the interaction with the AMPK γ-subunit. Therefore, these compounds could activate AMPK, promoting the GLUT4 trafficking signaling pathway. These compounds are proposed to be cardioprotective during hypoxia under HP.
Collapse
Affiliation(s)
- Manuel A. Hernández-Serda
- Departamento de Ciencias Químicas FES Cuautitlán, UNAM, Av. 1° de Mayo S/N, Santa María las Torres, Campo Uno, Cuautitlán Izcalli 54740, Estado de México, Mexico; (M.A.H.-S.); (A.Y.A.-L.)
| | - Aldo Y. Alarcón-López
- Departamento de Ciencias Químicas FES Cuautitlán, UNAM, Av. 1° de Mayo S/N, Santa María las Torres, Campo Uno, Cuautitlán Izcalli 54740, Estado de México, Mexico; (M.A.H.-S.); (A.Y.A.-L.)
| | - Víctor H. Vázquez-Valadez
- Departamento de Ciencias Biológicas, FES Cuautitlán, UNAM, Av. 1° de Mayo S/N, Santa María las Torres, Campo Uno, Cuautitlán Izcalli 54740, Estado de México, Mexico; (V.H.V.-V.); (P.B.-L.); (V.L.); (N.T.); (R.G.-T.)
- QSAR Analytics SA de CV. Tempano 10, Colonia Atlanta, Cuautitlán Izcalli 54740, Estado de México, Mexico
| | - Paola Briseño-Lugo
- Departamento de Ciencias Biológicas, FES Cuautitlán, UNAM, Av. 1° de Mayo S/N, Santa María las Torres, Campo Uno, Cuautitlán Izcalli 54740, Estado de México, Mexico; (V.H.V.-V.); (P.B.-L.); (V.L.); (N.T.); (R.G.-T.)
| | - Pablo A. Martínez-Soriano
- Laboratorio de Química Medicinal y Teórica, Departamento de Ciencias Químicas, FESC, UNAM, Av. 1° de Mayo, Col. Sta. María las Torres, Cuautitlán Izcalli 54740, Estado de México, Mexico; (P.A.M.-S.); (L.A.C.-G.); (E.Á.)
| | - Viridiana Leguízamo
- Departamento de Ciencias Biológicas, FES Cuautitlán, UNAM, Av. 1° de Mayo S/N, Santa María las Torres, Campo Uno, Cuautitlán Izcalli 54740, Estado de México, Mexico; (V.H.V.-V.); (P.B.-L.); (V.L.); (N.T.); (R.G.-T.)
| | - Nalleli Torres
- Departamento de Ciencias Biológicas, FES Cuautitlán, UNAM, Av. 1° de Mayo S/N, Santa María las Torres, Campo Uno, Cuautitlán Izcalli 54740, Estado de México, Mexico; (V.H.V.-V.); (P.B.-L.); (V.L.); (N.T.); (R.G.-T.)
| | - Rodrigo González-Terán
- Departamento de Ciencias Biológicas, FES Cuautitlán, UNAM, Av. 1° de Mayo S/N, Santa María las Torres, Campo Uno, Cuautitlán Izcalli 54740, Estado de México, Mexico; (V.H.V.-V.); (P.B.-L.); (V.L.); (N.T.); (R.G.-T.)
| | - Luis A. Cárdenas-Granados
- Laboratorio de Química Medicinal y Teórica, Departamento de Ciencias Químicas, FESC, UNAM, Av. 1° de Mayo, Col. Sta. María las Torres, Cuautitlán Izcalli 54740, Estado de México, Mexico; (P.A.M.-S.); (L.A.C.-G.); (E.Á.)
| | - Fausto Sánchez Muñoz
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano #1, Col. Sección XVI, Tlalpan, Ciudad de México 14080, Mexico;
| | - Emma Rodríguez
- Laboratorio de Medicina Traslacional UNAM-INC, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano #1, Col. Sección XVI, Tlalpan, Ciudad de México 14080, Mexico;
| | - Claudia Lerma
- Departamento de Biología Molecular, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano #1, Col. Sección XVI, Tlalpan, Ciudad de México 14080, Mexico;
| | - Alejandra María Zúñiga Muñoz
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano #1, Col. Sección XVI, Tlalpan, Ciudad de México 14080, Mexico;
| | - Enrique Ángeles
- Laboratorio de Química Medicinal y Teórica, Departamento de Ciencias Químicas, FESC, UNAM, Av. 1° de Mayo, Col. Sta. María las Torres, Cuautitlán Izcalli 54740, Estado de México, Mexico; (P.A.M.-S.); (L.A.C.-G.); (E.Á.)
| | - Roxana Carbó
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano #1, Col. Sección XVI, Tlalpan, Ciudad de México 14080, Mexico;
| |
Collapse
|
7
|
Nag S, Mitra O, Maturi B, Kaur SP, Saini A, Nama M, Roy S, Samanta S, Chacko L, Dutta R, Sayana SB, Subramaniyan V, Bhatti JS, Kandimalla R. Autophagy and mitophagy as potential therapeutic targets in diabetic heart condition: Harnessing the power of nanotheranostics. Asian J Pharm Sci 2024; 19:100927. [PMID: 38948399 PMCID: PMC11214300 DOI: 10.1016/j.ajps.2024.100927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 03/29/2024] [Accepted: 04/13/2024] [Indexed: 07/02/2024] Open
Abstract
Autophagy and mitophagy pose unresolved challenges in understanding the pathology of diabetic heart condition (DHC), which encompasses a complex range of cardiovascular issues linked to diabetes and associated cardiomyopathies. Despite significant progress in reducing mortality rates from cardiovascular diseases (CVDs), heart failure remains a major cause of increased morbidity among diabetic patients. These cellular processes are essential for maintaining cellular balance and removing damaged or dysfunctional components, and their involvement in the development of diabetic heart disease makes them attractive targets for diagnosis and treatment. While a variety of conventional diagnostic and therapeutic strategies are available, DHC continues to present a significant challenge. Point-of-care diagnostics, supported by nanobiosensing techniques, offer a promising alternative for these complex scenarios. Although conventional medications have been widely used in DHC patients, they raise several concerns regarding various physiological aspects. Modern medicine places great emphasis on the application of nanotechnology to target autophagy and mitophagy in DHC, offering a promising approach to deliver drugs beyond the limitations of traditional therapies. This article aims to explore the potential connections between autophagy, mitophagy and DHC, while also discussing the promise of nanotechnology-based theranostic interventions that specifically target these molecular pathways.
Collapse
Affiliation(s)
- Sagnik Nag
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - Oishi Mitra
- Department of Bio-Sciences, School of Bio-Sciences & Technology (SBST), Vellore Institute of Technology (VIT), Tiruvalam Road, Vellore 632014, Tamil Nadu, India
| | - Bhanu Maturi
- Department of Internal Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Simran Preet Kaur
- Department of Microbiology, University of Delhi (South Campus), Benito Juarez Road, New Delhi 110021, India
| | - Ankita Saini
- Department of Microbiology, University of Delhi (South Campus), Benito Juarez Road, New Delhi 110021, India
| | - Muskan Nama
- Department of Bio-Sciences, School of Bio-Sciences & Technology (SBST), Vellore Institute of Technology (VIT), Tiruvalam Road, Vellore 632014, Tamil Nadu, India
| | - Soumik Roy
- Department of Biotechnology, Indian Institute of Technology, Hyderabad (IIT-H), Sangareddy, Telangana 502284, India
| | - Souvik Samanta
- Department of Bio-Sciences, School of Bio-Sciences & Technology (SBST), Vellore Institute of Technology (VIT), Tiruvalam Road, Vellore 632014, Tamil Nadu, India
| | - Leena Chacko
- BioAnalytical Lab, Meso Scale Discovery, 1601 Research Blvd, Rockville, MD, USA
| | - Rohan Dutta
- Department of Bio-Sciences, School of Bio-Sciences & Technology (SBST), Vellore Institute of Technology (VIT), Tiruvalam Road, Vellore 632014, Tamil Nadu, India
| | - Suresh Babu Sayana
- Department of Pharmacology, Government Medical College, Suryapet, Telangana, India
| | - Vetriselvan Subramaniyan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - Jasvinder Singh Bhatti
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India
| | - Ramesh Kandimalla
- Department of Biochemistry, Kakatiya Medical College, Warangal 506007, India
| |
Collapse
|
8
|
Ping P, Yang T, Ning C, Zhao Q, Zhao Y, Yang T, Gao Z, Fu S. Chlorogenic acid attenuates cardiac hypertrophy via up-regulating Sphingosine-1-phosphate receptor1 to inhibit endoplasmic reticulum stress. ESC Heart Fail 2024; 11:1580-1593. [PMID: 38369950 PMCID: PMC11098655 DOI: 10.1002/ehf2.14707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 10/06/2023] [Accepted: 01/23/2024] [Indexed: 02/20/2024] Open
Abstract
AIMS Cardiac hypertrophy, an adaptive response of the heart to stress overload, is closely associated with heart failure and sudden cardiac death. This study aimed to investigate the therapeutic effects of chlorogenic acid (CGA) on cardiac hypertrophy and elucidate the underlying mechanisms. METHODS AND RESULTS To simulate cardiac hypertrophy, myocardial cells were exposed to isoproterenol (ISO, 10 μM). A rat model of ISO-induced cardiac hypertrophy was also established. The expression levels of cardiac hypertrophy markers, endoplasmic reticulum stress (ERS) markers, and apoptosis markers were measured using quantitative reverse transcription PCR and western blotting. The apoptosis level, size of myocardial cells, and heart tissue pathological changes were determined by terminal deoxynucleotidyl transferase dUTP nick-end labelling staining, immunofluorescence staining, haematoxylin and eosin staining, and Masson's staining. We found that CGA treatment decreased the size of ISO-treated H9c2 cells. Moreover, CGA inhibited ISO-induced up-regulation of cardiac hypertrophy markers (atrial natriuretic peptide, brain natriuretic peptide, and β-myosin heavy chain), ERS markers (C/EBP homologous protein, glucose regulatory protein 78, and protein kinase R-like endoplasmic reticulum kinase), and apoptosis markers (bax and cleaved caspase-12/9/3) but increased the expression of anti-apoptosis marker bcl-2 in a dose-dependent way (0, 10, 50, and 100 μM). Knockdown of sphingosine-1-phosphate receptor 1 (S1pr1) reversed the protective effect of CGA on cardiac hypertrophy, ERS, and apoptosis in vitro (P < 0.05). CGA also restored ISO-induced inhibition on the AMP-activated protein kinase (AMPK)/sirtuin 1 (SIRT1) signalling in H9c2 cells, while S1pr1 knockdown abolished these CGA-induced effects (P < 0.05). CGA (90 mg/kg/day, for six consecutive days) protected rats against cardiac hypertrophy in vivo (P < 0.05). CONCLUSIONS CGA treatment attenuated ISO-induced ERS and cardiac hypertrophy by activating the AMPK/SIRT1 pathway via modulation of S1pr1.
Collapse
Affiliation(s)
- Ping Ping
- General Station for Drug and Instrument Supervision and ControlJoint Logistic Support Force of Chinese People's Liberation ArmyBeijingChina
| | - Ting Yang
- Central LaboratoryHainan Hospital of Chinese People's Liberation Army General HospitalSanyaChina
| | - Chaoxue Ning
- Central LaboratoryHainan Hospital of Chinese People's Liberation Army General HospitalSanyaChina
| | - Qingkai Zhao
- Department of Health and MedicineHainan Hospital of Chinese People's Liberation Army General HospitalSanyaChina
| | - Yali Zhao
- Central LaboratoryHainan Hospital of Chinese People's Liberation Army General HospitalSanyaChina
| | - Tao Yang
- Department of OncologyHainan Hospital of Chinese People's Liberation Army General HospitalSanyaChina
| | - Zhitao Gao
- School of Laboratory MedicineXinxiang Medical UniversityXinxiangChina
| | - Shihui Fu
- Department of CardiologyHainan Hospital of Chinese People's Liberation Army General HospitalSanyaChina
- Department of Geriatric CardiologyChinese People's Liberation Army General HospitalBeijingChina
| |
Collapse
|
9
|
Khalilimeybodi A, Saucerman JJ, Rangamani P. Modeling cardiomyocyte signaling and metabolism predicts genotype-to-phenotype mechanisms in hypertrophic cardiomyopathy. Comput Biol Med 2024; 175:108499. [PMID: 38677172 PMCID: PMC11175993 DOI: 10.1016/j.compbiomed.2024.108499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/17/2024] [Accepted: 04/21/2024] [Indexed: 04/29/2024]
Abstract
Familial hypertrophic cardiomyopathy (HCM) is a significant precursor of heart failure and sudden cardiac death, primarily caused by mutations in sarcomeric and structural proteins. Despite the extensive research on the HCM genotype, the complex and context-specific nature of many signaling and metabolic pathways linking the HCM genotype to phenotype has hindered therapeutic advancements for patients. Here, we have developed a computational model of HCM encompassing cardiomyocyte signaling and metabolic networks and their associated interactions. Utilizing a stochastic logic-based ODE approach, we linked cardiomyocyte signaling to the metabolic network through a gene regulatory network and post-translational modifications. We validated the model against published data on activities of signaling species in the HCM context and transcriptomes of two HCM mouse models (i.e., R403Q-αMyHC and R92W-TnT). Our model predicts that HCM mutation induces changes in metabolic functions such as ATP synthase deficiency and a transition from fatty acids to carbohydrate metabolism. The model indicated major shifts in glutamine-related metabolism and increased apoptosis after HCM-induced ATP synthase deficiency. We predicted that the transcription factors STAT, SRF, GATA4, TP53, and FoxO are the key regulators of cardiomyocyte hypertrophy and apoptosis in HCM in alignment with experiments. Moreover, we identified shared (e.g., activation of PGC1α by AMPK, and FHL1 by titin) and context-specific mechanisms (e.g., regulation of Ca2+ sensitivity by titin in HCM patients) that may control genotype-to-phenotype transition in HCM across different species or mutations. We also predicted potential combination drug targets for HCM (e.g., mavacamten plus ROS inhibitors) preventing or reversing HCM phenotype (i.e., hypertrophic growth, apoptosis, and metabolic remodeling) in cardiomyocytes. This study provides new insights into mechanisms linking genotype to phenotype in familial hypertrophic cardiomyopathy and offers a framework for assessing new treatments and exploring variations in HCM experimental models.
Collapse
Affiliation(s)
- A Khalilimeybodi
- Department of Mechanical and Aerospace Engineering, Jacobs School of Engineering, University of California San Diego, La Jolla CA 92093, United States of America
| | - Jeffrey J Saucerman
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, United States of America; Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, United States of America
| | - P Rangamani
- Department of Mechanical and Aerospace Engineering, Jacobs School of Engineering, University of California San Diego, La Jolla CA 92093, United States of America.
| |
Collapse
|
10
|
Mascarenhas L, Downey M, Schwartz G, Adabag S. Antiarrhythmic effects of metformin. Heart Rhythm O2 2024; 5:310-320. [PMID: 38840768 PMCID: PMC11148504 DOI: 10.1016/j.hroo.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024] Open
Abstract
Atrial fibrillation/flutter (AF) is a major public health problem and is associated with stroke, heart failure, dementia, and death. It is estimated that 20%-30% of Americans will develop AF at some point in their life. Current medications to prevent AF have limited efficacy and significant adverse effects. Newer and safer therapies to prevent AF are needed. Ventricular arrhythmias are less prevalent than AF but may have significant consequences including sudden cardiac death. Metformin is the most prescribed, first-line medication for treatment of diabetes mellitus (DM). It decreases hepatic glucose production but also reduces inflammation and oxidative stress. Experimental studies have shown that metformin improves metabolic, electrical, and histologic risk factors associated with AF and ventricular arrhythmias. Furthermore, in large clinical observational studies, metformin has been associated with a reduced risk of AF in people with DM. These data suggest that metformin may have antiarrhythmic properties and may be a candidate to be repurposed as a medication to prevent cardiac arrhythmias. In this article, we review the clinical observational and experimental evidence for the association between metformin and cardiac arrhythmias. We also discuss the potential antiarrhythmic mechanisms underlying this association. Repurposing a well-tolerated, safe, and inexpensive medication to prevent cardiac arrhythmias has significant positive public health implications.
Collapse
Affiliation(s)
- Lorraine Mascarenhas
- Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Michael Downey
- Department of Cardiology, Hennepin County Medical Center, Minneapolis, Minnesota
| | - Gregory Schwartz
- Cardiology Section, Rocky Mountain Regional VA Medical Center and University of Colorado School of Medicine, Aurora, Colorado
| | - Selcuk Adabag
- Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota
- Department of Cardiology, Minneapolis Veterans Affairs Medical Center and University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
11
|
Boengler K, Eickelmann C, Kleinbongard P. Mitochondrial Kinase Signaling for Cardioprotection. Int J Mol Sci 2024; 25:4491. [PMID: 38674076 PMCID: PMC11049936 DOI: 10.3390/ijms25084491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Myocardial ischemia/reperfusion injury is reduced by cardioprotective adaptations such as local or remote ischemic conditioning. The cardioprotective stimuli activate signaling cascades, which converge on mitochondria and maintain the function of the organelles, which is critical for cell survival. The signaling cascades include not only extracellular molecules that activate sarcolemmal receptor-dependent or -independent protein kinases that signal at the plasma membrane or in the cytosol, but also involve kinases, which are located to or within mitochondria, phosphorylate mitochondrial target proteins, and thereby modify, e.g., respiration, the generation of reactive oxygen species, calcium handling, mitochondrial dynamics, mitophagy, or apoptosis. In the present review, we give a personal and opinionated overview of selected protein kinases, localized to/within myocardial mitochondria, and summarize the available data on their role in myocardial ischemia/reperfusion injury and protection from it. We highlight the regulation of mitochondrial function by these mitochondrial protein kinases.
Collapse
Affiliation(s)
- Kerstin Boengler
- Institute of Physiology, Justus-Liebig University, 35392 Giessen, Germany
| | - Chantal Eickelmann
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, 45147 Essen, Germany; (C.E.); (P.K.)
| | - Petra Kleinbongard
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, 45147 Essen, Germany; (C.E.); (P.K.)
| |
Collapse
|
12
|
Arnold M, Do P, Davidson SM, Large SR, Helmer A, Beer G, Siepe M, Longnus SL. Metabolic Considerations in Direct Procurement and Perfusion Protocols with DCD Heart Transplantation. Int J Mol Sci 2024; 25:4153. [PMID: 38673737 PMCID: PMC11050041 DOI: 10.3390/ijms25084153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
Heart transplantation with donation after circulatory death (DCD) provides excellent patient outcomes and increases donor heart availability. However, unlike conventional grafts obtained through donation after brain death, DCD cardiac grafts are not only exposed to warm, unprotected ischemia, but also to a potentially damaging pre-ischemic phase after withdrawal of life-sustaining therapy (WLST). In this review, we aim to bring together knowledge about changes in cardiac energy metabolism and its regulation that occur in DCD donors during WLST, circulatory arrest, and following the onset of warm ischemia. Acute metabolic, hemodynamic, and biochemical changes in the DCD donor expose hearts to high circulating catecholamines, hypoxia, and warm ischemia, all of which can negatively impact the heart. Further metabolic changes and cellular damage occur with reperfusion. The altered energy substrate availability prior to organ procurement likely plays an important role in graft quality and post-ischemic cardiac recovery. These aspects should, therefore, be considered in clinical protocols, as well as in pre-clinical DCD models. Notably, interventions prior to graft procurement are limited for ethical reasons in DCD donors; thus, it is important to understand these mechanisms to optimize conditions during initial reperfusion in concert with graft evaluation and re-evaluation for the purpose of tailoring and adjusting therapies and ensuring optimal graft quality for transplantation.
Collapse
Affiliation(s)
- Maria Arnold
- Department of Cardiac Surgery, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
- Department for BioMedical Research, University of Bern, 3008 Bern, Switzerland
| | - Peter Do
- Department of Cardiac Surgery, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Sean M. Davidson
- The Hatter Cardiovascular Institute, University College London, London WC1E 6HX, UK
| | - Stephen R. Large
- Royal Papworth Hospital, Biomedical Campus, Cambridge CB2 0AY, UK
| | - Anja Helmer
- Department of Cardiac Surgery, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
- Department for BioMedical Research, University of Bern, 3008 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Georgia Beer
- Department of Cardiac Surgery, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
- Department for BioMedical Research, University of Bern, 3008 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Matthias Siepe
- Department of Cardiac Surgery, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Sarah L. Longnus
- Department of Cardiac Surgery, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
- Department for BioMedical Research, University of Bern, 3008 Bern, Switzerland
| |
Collapse
|
13
|
Raju SC, Molinaro A, Awoyemi A, Jørgensen SF, Braadland PR, Nendl A, Seljeflot I, Ueland PM, McCann A, Aukrust P, Vestad B, Mayerhofer C, Broch K, Gullestad L, Lappegård KT, Halvorsen B, Kristiansen K, Hov JR, Trøseid M. Microbial-derived imidazole propionate links the heart failure-associated microbiome alterations to disease severity. Genome Med 2024; 16:27. [PMID: 38331891 PMCID: PMC10854170 DOI: 10.1186/s13073-024-01296-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/23/2024] [Indexed: 02/10/2024] Open
Abstract
BACKGROUND Interactions between the gut microbiota, diet, and host metabolism contribute to the development of cardiovascular disease, but a firm link between disease-specific gut microbiota alterations and circulating metabolites is lacking. METHODS We performed shot-gun sequencing on 235 samples from 166 HF patients and 69 healthy control samples. Separate plasma samples from healthy controls (n = 53) were used for the comparison of imidazole propionate (ImP) levels. Taxonomy and functional pathways for shotgun sequencing data was assigned using MetaPhlAn3 and HUMAnN3 pipelines. RESULTS Here, we show that heart failure (HF) is associated with a specific compositional and functional shift of the gut microbiota that is linked to circulating levels of the microbial histidine-derived metabolite ImP. Circulating ImP levels are elevated in chronic HF patients compared to controls and associated with HF-related gut microbiota alterations. Contrary to the microbiota composition, ImP levels provide insight into etiology and severity of HF and also associate with markers of intestinal permeability and systemic inflammation. CONCLUSIONS Our findings establish a connection between changes in the gut microbiota, the presence, etiology, and severity of HF, and the gut-microbially produced metabolite ImP. While ImP appears promising as a circulating biomarker reflecting gut dysbiosis related to HF, further studies are essential to demonstrate its causal or contributing role in HF pathogenesis. TRIAL REGISTRATION NCT02637167, registered December 22, 2015.
Collapse
Affiliation(s)
- Sajan C Raju
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Antonio Molinaro
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Department of Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Transplantation Medicine, Norwegian PSC Research Center, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Ayodeji Awoyemi
- Department of Cardiology, Oslo University Hospital Ullevål, Oslo, Norway
- Center for Clinical Heart Research, Oslo University Hospital Ullevål, Oslo, Norway
| | - Silje F Jørgensen
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Peder R Braadland
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Transplantation Medicine, Norwegian PSC Research Center, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Andraz Nendl
- Department of Cardiology, Oslo University Hospital Ullevål, Oslo, Norway
- Center for Clinical Heart Research, Oslo University Hospital Ullevål, Oslo, Norway
| | - Ingebjørg Seljeflot
- Department of Cardiology, Oslo University Hospital Ullevål, Oslo, Norway
- Center for Clinical Heart Research, Oslo University Hospital Ullevål, Oslo, Norway
| | | | | | - Pål Aukrust
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Beate Vestad
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Department of Transplantation Medicine, Norwegian PSC Research Center, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Cristiane Mayerhofer
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Kaspar Broch
- Department of Cardiology, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Lars Gullestad
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Cardiology, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Knut T Lappegård
- Division of Internal Medicine, Nordlandssykehuset, 8005, Bodø, Norway
- Institute of Clinical Medicine, University of Tromsø, 9037, Tromsø, Norway
| | - Bente Halvorsen
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Karsten Kristiansen
- BGI-Shenzhen, Shenzhen, 518083, China
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Johannes R Hov
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Department of Transplantation Medicine, Norwegian PSC Research Center, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Section of Gastroenterology, Department of Transplantation Medicine, Oslo University Hospital, Oslo, Norway
| | - Marius Trøseid
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway.
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.
- Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Oslo, Norway.
| |
Collapse
|
14
|
de Zélicourt A, Fayssoil A, Mansart A, Zarrouki F, Karoui A, Piquereau J, Lefebvre F, Gerbaud P, Mika D, Dakouane-Giudicelli M, Lanchec E, Feng M, Leblais V, Bobe R, Launay JM, Galione A, Gomez AM, de la Porte S, Cancela JM. Two-pore channels (TPCs) acts as a hub for excitation-contraction coupling, metabolism and cardiac hypertrophy signalling. Cell Calcium 2024; 117:102839. [PMID: 38134531 DOI: 10.1016/j.ceca.2023.102839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/01/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023]
Abstract
Ca2+ signaling is essential for cardiac contractility and excitability in heart function and remodeling. Intriguingly, little is known about the role of a new family of ion channels, the endo-lysosomal non-selective cation "two-pore channel" (TPCs) in heart function. Here we have used double TPC knock-out mice for the 1 and 2 isoforms of TPCs (Tpcn1/2-/-) and evaluated their cardiac function. Doppler-echocardiography unveils altered left ventricular (LV) systolic function associated with a LV relaxation impairment. In cardiomyocytes isolated from Tpcn1/2-/- mice, we observed a reduction in the contractile function with a decrease in the sarcoplasmic reticulum Ca2+ content and a reduced expression of various key proteins regulating Ca2+ stores, such as calsequestrin. We also found that two main regulators of the energy metabolism, AMP-activated protein kinase and mTOR, were down regulated. We found an increase in the expression of TPC1 and TPC2 in a model of transverse aortic constriction (TAC) mice and in chronically isoproterenol infused WT mice. In this last model, adaptive cardiac hypertrophy was reduced by Tpcn1/2 deletion. Here, we propose a central role for TPCs and lysosomes that could act as a hub integrating information from the excitation-contraction coupling mechanisms, cellular energy metabolism and hypertrophy signaling.
Collapse
Affiliation(s)
- Antoine de Zélicourt
- Université Paris-Saclay, UVSQ, Inserm, END-ICAP, 78000 Versailles, France; Neuroscience Paris-Saclay Institute (Neuro-PSI), UMR 9197, CNRS- Université Paris-Saclay, Saclay, 91400, France
| | - Abdallah Fayssoil
- Université Paris-Saclay, UVSQ, Inserm, END-ICAP, 78000 Versailles, France
| | - Arnaud Mansart
- Université Paris-Saclay, UVSQ, Inserm, 2I, 78000 Versailles, France
| | - Faouzi Zarrouki
- Neuroscience Paris-Saclay Institute (Neuro-PSI), UMR 9197, CNRS- Université Paris-Saclay, Saclay, 91400, France
| | - Ahmed Karoui
- UMR-S 1180, INSERM, Signaling and cardiovascular pathophysiology, Université Paris-Saclay, 91400 Orsay, France
| | - Jérome Piquereau
- UMR-S 1180, INSERM, Signaling and cardiovascular pathophysiology, Université Paris-Saclay, 91400 Orsay, France
| | - Florence Lefebvre
- UMR-S 1180, INSERM, Signaling and cardiovascular pathophysiology, Université Paris-Saclay, 91400 Orsay, France
| | - Pascale Gerbaud
- UMR-S 1180, INSERM, Signaling and cardiovascular pathophysiology, Université Paris-Saclay, 91400 Orsay, France
| | - Delphine Mika
- UMR-S 1180, INSERM, Signaling and cardiovascular pathophysiology, Université Paris-Saclay, 91400 Orsay, France
| | | | - Erwan Lanchec
- Neuroscience Paris-Saclay Institute (Neuro-PSI), UMR 9197, CNRS- Université Paris-Saclay, Saclay, 91400, France
| | - Miao Feng
- UMR-S 1176, Université Paris-Saclay, Le Kremlin Bicêtre, France
| | - Véronique Leblais
- UMR-S 1180, INSERM, Signaling and cardiovascular pathophysiology, Université Paris-Saclay, 91400 Orsay, France
| | - Régis Bobe
- UMR-S 1176, Université Paris-Saclay, Le Kremlin Bicêtre, France
| | - Jean-Marie Launay
- Service de Biochimie, INSERM UMR S942, Hôpital Lariboisière, Paris, France
| | - Antony Galione
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, United Kingdom
| | - Ana Maria Gomez
- UMR-S 1180, INSERM, Signaling and cardiovascular pathophysiology, Université Paris-Saclay, 91400 Orsay, France
| | - Sabine de la Porte
- Université Paris-Saclay, UVSQ, Inserm, END-ICAP, 78000 Versailles, France
| | - José-Manuel Cancela
- Neuroscience Paris-Saclay Institute (Neuro-PSI), UMR 9197, CNRS- Université Paris-Saclay, Saclay, 91400, France.
| |
Collapse
|
15
|
Zhu Y, He YJ, Yu Y, Xu D, Yuan SY, Yan H. Aldehyde Dehydrogenase 2 Preserves Mitochondrial Function in the Ischemic Heart: A Redox-dependent Mechanism for AMPK Activation by Thioredoxin-1. J Cardiovasc Pharmacol 2024; 83:93-104. [PMID: 37816196 DOI: 10.1097/fjc.0000000000001499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 09/24/2023] [Indexed: 10/12/2023]
Abstract
ABSTRACT Aldehyde dehydrogenase 2 (ALDH2) protects the ischemic heart by activating adenosine 5'-monophosphate-activated protein kinase (AMPK) signaling. However, the molecular mechanisms linking ALDH2 and AMPK signaling are not fully understood. This study aimed to explore the potential mechanisms linking ALDH2 and AMPK in myocardial ischemic injury. An ischemic model was established by ligating the left anterior descending coronary artery in rats. The overexpression or knockdown of ALDH2 in H9c2 cells treated with oxygen-glucose deprivation was obtained through lentivirus infection. Transferase-mediated dUTP nick-end labeling was used to evaluate apoptosis in an ischemic rat model and oxygen-glucose deprivation cells. ALDH2 activity, mitochondrial oxidative stress markers, adenosine triphosphate, respiratory control ratio, and cell viability in H9c2 cells were evaluated using a biological kit and 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyl tetrazolium bromide. Protein expression of ALDH2 , 4-hydroxynonenal, thioredoxin-1 (Trx-1), and AMPK-proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) signaling pathway was detected through Western blotting. ALDH2 activation reduced ischemic-induced myocardial infarct size and apoptosis. ALDH2 protected mitochondrial function by enhancing mitochondrial respiratory control ratio and adenosine triphosphate production, alleviated mitochondrial oxidative stress, and suppressed myocardial apoptosis. Moreover, ALDH2 attenuated ischemia-induced oxidative stress and maintained Trx-1 levels by reducing 4-hydroxynonenal, thereby promoting AMPK-PGC-1α signaling activation. Inhibiting Trx-1 or AMPK abolished the cardioprotective effect of ALDH2 on ischemia. ALDH2 alleviates myocardial injury through increased mitochondrial biogenesis and reduced oxidative stress, and these effects were achieved through Trx1-mediating AMPK-PGC1-α signaling activation.
Collapse
Affiliation(s)
- Yi Zhu
- Department of Anesthesiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ya-Jun He
- Department of Intensive Care Unit, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China; and
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Yu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dan Xu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shi-Ying Yuan
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong Yan
- Department of Anesthesiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
16
|
Wu N, Shen C, Wang J, Chen X, Zhong P. MOTS-c Peptide Attenuated Diabetic Cardiomyopathy in STZ-Induced Type 1 Diabetic Mouse Model. Cardiovasc Drugs Ther 2023:10.1007/s10557-023-07540-2. [PMID: 38141139 DOI: 10.1007/s10557-023-07540-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/12/2023] [Indexed: 12/24/2023]
Abstract
BACKGROUND Diabetic cardiomyopathy (DCM) pathogenesis is a common complication of diabetes, but effective treatments remain limited. Mitochondrial-derived peptide MOTS-c has shown therapeutic promise in animal models of various heart diseases, but its efficacy in DCM is unknown. This study investigates the effects of MOTS-c treatment in a mouse model of type 1 diabetes-induced DCM. METHODS Type 1 diabetes (T1DM) was induced in mice by streptozotocin (STZ) injection. After diabetes establishment, the mice were randomly dividend into two groups treated with or without MOTS-c peptide, which was administered subcutaneously by osmotic pump for 12 weeks. At the end of the experiment, cardiac function, histology, and molecular changes were determined. RESULTS The results showed that diabetic mice exhibited significant cardiac dysfunction, dilatation, and adverse cardiac remodeling. MOTS-c treatment markedly ameliorated these diabetes-associated myocardial function and structure abnormalities. Additionally, MOTS-c reversed AMPK signaling deactivation and inhibited inflammation in the diabetic heart. CONCLUSIONS Our data demonstrated a protective effect of MOTS-c against diabetic cardiomyopathy potentially by activating the AMPK pathway and inhibiting inflammation. These findings demonstrate the therapeutic efficacy of MOTS-c for diabetic cardiomyopathy and warrant further investigation into its clinical potential.
Collapse
Affiliation(s)
- Nan Wu
- Department of Cardiovascular Medicine, The First Affliated Hospital of Ningbo University, Ningbo, 315000, Zhejiang, China
| | - Caijie Shen
- Department of Cardiovascular Medicine, The First Affliated Hospital of Ningbo University, Ningbo, 315000, Zhejiang, China
| | - Jian Wang
- Department of Cardiovascular Medicine, The First Affliated Hospital of Ningbo University, Ningbo, 315000, Zhejiang, China
| | - Xiaomin Chen
- Department of Cardiovascular Medicine, The First Affliated Hospital of Ningbo University, Ningbo, 315000, Zhejiang, China.
| | - Peng Zhong
- Department of Cardiology Research Institute, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, Hubei, China.
| |
Collapse
|
17
|
Owesny P, Grune T. The link between obesity and aging - insights into cardiac energy metabolism. Mech Ageing Dev 2023; 216:111870. [PMID: 37689316 DOI: 10.1016/j.mad.2023.111870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
Obesity and aging are well-established risk factors for a range of diseases, including cardiovascular diseases and type 2 diabetes. Given the escalating prevalence of obesity, the aging population, and the subsequent increase in cardiovascular diseases, it is crucial to investigate the underlying mechanisms involved. Both aging and obesity have profound effects on the energy metabolism through various mechanisms, including metabolic inflexibility, altered substrate utilization for energy production, deregulated nutrient sensing, and mitochondrial dysfunction. In this review, we aim to present and discuss the hypothesis that obesity, due to its similarity in changes observed in the aging heart, may accelerate the process of cardiac aging and exacerbate the clinical outcomes of elderly individuals with obesity.
Collapse
Affiliation(s)
- Patricia Owesny
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany; DZHK (German Center for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany; DZHK (German Center for Cardiovascular Research), partner site Berlin, Berlin, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany.
| |
Collapse
|
18
|
Wang Y, Liu Z, Bian X, Zhao C, Zhang X, Liu X, Wang N. Function and regulation of ubiquitin-like SUMO system in heart. Front Cell Dev Biol 2023; 11:1294717. [PMID: 38033852 PMCID: PMC10687153 DOI: 10.3389/fcell.2023.1294717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/06/2023] [Indexed: 12/02/2023] Open
Abstract
The small ubiquitin-related modifier (SUMOylation) system is a conserved, reversible, post-translational protein modification pathway covalently attached to the lysine residues of proteins in eukaryotic cells, and SUMOylation is catalyzed by SUMO-specific activating enzyme (E1), binding enzyme (E2) and ligase (E3). Sentrin-specific proteases (SENPs) can cleave the isopeptide bond of a SUMO conjugate and catalyze the deSUMOylation reaction. SUMOylation can regulate the activity of proteins in many important cellular processes, including transcriptional regulation, cell cycle progression, signal transduction, DNA damage repair and protein stability. Biological experiments in vivo and in vitro have confirmed the key role of the SUMO conjugation/deconjugation system in energy metabolism, Ca2+ cycle homeostasis and protein quality control in cardiomyocytes. In this review, we summarized the research progress of the SUMO conjugation/deconjugation system and SUMOylation-mediated cardiac actions based on related studies published in recent years, and highlighted the further research areas to clarify the role of the SUMO system in the heart by using emerging technologies.
Collapse
Affiliation(s)
- Ying Wang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
- Central Laboratory, The Fifth Central Hospital of Tianjin, Tianjin, China
| | - Zhihao Liu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiyun Bian
- Central Laboratory, The Fifth Central Hospital of Tianjin, Tianjin, China
- Tianjin Key Laboratory of Epigenetics for Organ Development in Preterm Infants, The Fifth Central Hospital of Tianjin, Tianjin, China
| | - Chenxu Zhao
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Xin Zhang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Xiaozhi Liu
- Central Laboratory, The Fifth Central Hospital of Tianjin, Tianjin, China
- Tianjin Key Laboratory of Epigenetics for Organ Development in Preterm Infants, The Fifth Central Hospital of Tianjin, Tianjin, China
| | - Nan Wang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| |
Collapse
|
19
|
FUJIOKA Y, OTANI K, KODAMA T, OKADA M, YAMAWAKI H. Autocrine role of senescent cardiac fibroblasts-derived extracellular vesicles. J Vet Med Sci 2023; 85:1157-1164. [PMID: 37779091 PMCID: PMC10686776 DOI: 10.1292/jvms.23-0279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/19/2023] [Indexed: 10/03/2023] Open
Abstract
Cellular senescence is a highly stable state associated with cell cycle arrest, that is elicited in response to various stresses. The accumulation of senescent cells in tissues drives age-related diseases. Recent studies have shown that the cellular senescence enhances an extracellular vesicles (EV) secretion. EV are lipid-bilayer-capsuled particles released by various cells mediating cell-to-cell communication. It was recently reported that EV secreted by the senescent cells had several functions such as cancer cell proliferation and immune cell activation. In the present study, we investigated whether senescent cardiac fibroblasts-derived EV play an autocrine/paracrine role in the heart cells. Neonatal rat cardiac fibroblasts (NRCFs) were treated with doxorubicin (DOX) to induce cellular senescence. EV were isolated from NRCFs culture media. The vehicle-treated NRCFs-derived EV (D0-EV, 72 hr) increased a living cell number in NRCFs, which was attenuated by DOX (1,000 nM)-treated NRCFs-derived EV (D103-EV, 72 hr). While D0-EV did not affect protein concentration in NRCFs, D103-EV decreased it. Furthermore, D103-EV significantly increased a ratio of microtubule-associated protein 1 light chain 3 (LC3)-II to LC3-I in NRCFs, indicating an induction of autophagy. In addition, D103-EV increased phosphorylation of adenosine monophosphate-activated kinase (AMPK) α in NRCFs. In neonatal rat cardiomyocytes, however, NRCFs-derived EV (72 hr) had no effect on the living cell number, protein concentration, and ratio of LC3-II to LC3-I. In conclusion, we for the first time revealed that DOX-induced senescent NRCFs-derived EV induce autophagy in NRCFs perhaps partly through the activation of AMPKα.
Collapse
Affiliation(s)
- Yusei FUJIOKA
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Aomori, Japan
| | - Kosuke OTANI
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Aomori, Japan
| | - Tomoko KODAMA
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Aomori, Japan
| | - Muneyoshi OKADA
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Aomori, Japan
| | - Hideyuki YAMAWAKI
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Aomori, Japan
| |
Collapse
|
20
|
Qiu Z, Li Y, Fu Y, Yang Y. Research progress of AMP-activated protein kinase and cardiac aging. Open Life Sci 2023; 18:20220710. [PMID: 37671091 PMCID: PMC10476487 DOI: 10.1515/biol-2022-0710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 07/27/2023] [Accepted: 08/05/2023] [Indexed: 09/07/2023] Open
Abstract
The process of aging is marked by a gradual deterioration in the physiological functions and functional reserves of various tissues and organs, leading to an increased susceptibility to diseases and even death. Aging manifests in a tissue- and organ-specific manner, and is characterized by varying rates and direct and indirect interactions among different tissues and organs. Cardiovascular disease (CVD) is the leading cause of death globally, with older adults (aged >70 years) accounting for approximately two-thirds of CVD-related deaths. The prevalence of CVD increases exponentially with an individual's age. Aging is a critical independent risk factor for the development of CVD. AMP-activated protein kinase (AMPK) activation exerts cardioprotective effects in the heart and restores cellular metabolic functions by modulating gene expression and regulating protein levels through its interaction with multiple target proteins. Additionally, AMPK enhances mitochondrial function and cellular energy status by facilitating the utilization of energy substrates. This review focuses on the role of AMPK in the process of cardiac aging and maintaining normal metabolic levels and redox homeostasis in the heart, particularly in the presence of oxidative stress and the invasion of inflammatory factors.
Collapse
Affiliation(s)
- Zhengqi Qiu
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macao SAR 999078, China
| | - Yufei Li
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macao SAR 999078, China
| | - Yancheng Fu
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Carson International Cancer Center, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Shenzhen University, Shenzhen518060, China
| | - Yanru Yang
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Carson International Cancer Center, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Shenzhen University, Shenzhen518060, China
| |
Collapse
|
21
|
Kvandova M, Puzserova A, Balis P. Sexual Dimorphism in Cardiometabolic Diseases: The Role of AMPK. Int J Mol Sci 2023; 24:11986. [PMID: 37569362 PMCID: PMC10418890 DOI: 10.3390/ijms241511986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/18/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of mortality and disability among both males and females. The risk of cardiovascular diseases is heightened by the presence of a risk factor cluster of metabolic syndrome, covering obesity and obesity-related cardiometabolic risk factors such as hypertension, glucose, and lipid metabolism dysregulation primarily. Sex hormones contribute to metabolic regulation and make women and men susceptible to obesity development in a different manner, which necessitates sex-specific management. Identifying crucial factors that protect the cardiovascular system is essential to enhance primary and secondary prevention of cardiovascular diseases and should be explicitly studied from the perspective of sex differences. It seems that AMP-dependent protein kinase (AMPK) may be such a factor since it has the protective role of AMPK in the cardiovascular system, has anti-diabetic properties, and is regulated by sex hormones. Those findings highlight the potential cardiometabolic benefits of AMPK, making it an essential factor to consider. Here, we review information about the cross-talk between AMPK and sex hormones as a critical point in cardiometabolic disease development and progression and a target for therapeutic intervention in human disease.
Collapse
Affiliation(s)
- Miroslava Kvandova
- Institute of Normal and Pathological Physiology, Centre of Experimental Medicine, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia; (A.P.); (P.B.)
| | | | | |
Collapse
|
22
|
Molinaro A, Nemet I, Bel Lassen P, Chakaroun R, Nielsen T, Aron-Wisnewsky J, Bergh PO, Li L, Henricsson M, Køber L, Isnard R, Helft G, Stumvoll M, Pedersen O, Smith JG, Tang WHW, Clément K, Hazen SL, Bäckhed F. Microbially Produced Imidazole Propionate Is Associated With Heart Failure and Mortality. JACC. HEART FAILURE 2023; 11:810-821. [PMID: 37115134 DOI: 10.1016/j.jchf.2023.03.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/01/2023] [Accepted: 03/16/2023] [Indexed: 04/29/2023]
Abstract
BACKGROUND Over the past years, it has become clear that the microbial ecosystem in the gut has a profound capacity to interact with the host through the production of a wide range of bioactive metabolites. The microbially produced metabolite imidazole propionate (ImP) is clinically and mechanistically linked with insulin resistance and type 2 diabetes, but it is unclear how ImP is associated with heart failure. OBJECTIVES The authors aimed to explore whether ImP is associated with heart failure and mortality. METHODS ImP serum measurements in 2 large and independent clinical cohorts of patients (European [n = 1,985] and North American [n = 2,155]) with a range of severity of cardiovascular disease including heart failure. Univariate and multivariate Cox regression analyses were performed to delineate the impact of ImP on 5-year mortality in the North American cohort, independent of other covariates. RESULTS ImP is independently associated with reduced ejection fraction and heart failure in both cohorts, even after adjusting for traditional risk factors. Elevated ImP was a significant independent predictor of 5-year mortality (for the highest quartile, adjusted HR: 1.85 [95% CI: 1.20-2.88]; P < 0.01). CONCLUSIONS The gut microbial metabolite ImP is increased in individuals with heart failure and is a predictor of overall survival.
Collapse
Affiliation(s)
- Antonio Molinaro
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine and Sahlgrenska Center for Cardiovascular and Metabolic Research, University of Gothenburg, Gothenburg, Sweden; Sahlgrenska University Hospital, Department of Medicine, Gothenburg, Sweden
| | - Ina Nemet
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland, Ohio, USA; Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, Ohio, USA
| | - Pierre Bel Lassen
- Sorbonne Université, INSERM, Nutrition and Obesities: Systemic Approaches (NutriOmics), Paris, France; Assistance Publique Hôpitaux de Paris, Pitie-Salpêtrière Hospital, Nutrition Department, Paris, France
| | - Rima Chakaroun
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine and Sahlgrenska Center for Cardiovascular and Metabolic Research, University of Gothenburg, Gothenburg, Sweden; Medical Department III-Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| | - Trine Nielsen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Judith Aron-Wisnewsky
- Sorbonne Université, INSERM, Nutrition and Obesities: Systemic Approaches (NutriOmics), Paris, France; Assistance Publique Hôpitaux de Paris, Pitie-Salpêtrière Hospital, Nutrition Department, Paris, France
| | - Per-Olof Bergh
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine and Sahlgrenska Center for Cardiovascular and Metabolic Research, University of Gothenburg, Gothenburg, Sweden
| | - Lin Li
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland, Ohio, USA; Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, Ohio, USA
| | - Marcus Henricsson
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine and Sahlgrenska Center for Cardiovascular and Metabolic Research, University of Gothenburg, Gothenburg, Sweden
| | - Lars Køber
- Department of Cardiology, Rigshospialet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Richard Isnard
- Assistance Publique Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Cardiology Department, Paris, France
| | - Gerard Helft
- Sorbonne Université, INSERM UMRS1166, Hôpital Pitié-Salpêtrière (AP-HP), Paris, France
| | - Michael Stumvoll
- Medical Department III-Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| | - Oluf Pedersen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - J Gustav Smith
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine and Sahlgrenska Center for Cardiovascular and Metabolic Research, University of Gothenburg, Gothenburg, Sweden; Department of Cardiology, Clinical Sciences, Lund University and Skåne University Hospital, Lund, Sweden; Wallenberg Center for Molecular Medicine and Lund University Diabetes Center, Lund University, Lund, Sweden
| | - W H Wilson Tang
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland, Ohio, USA; Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, Ohio, USA; Department of Cardiovascular Medicine, Heart, Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Karine Clément
- Sorbonne Université, INSERM, Nutrition and Obesities: Systemic Approaches (NutriOmics), Paris, France; Assistance Publique Hôpitaux de Paris, Pitie-Salpêtrière Hospital, Nutrition Department, Paris, France
| | - Stanley L Hazen
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland, Ohio, USA; Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, Ohio, USA; Department of Cardiovascular Medicine, Heart, Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Fredrik Bäckhed
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine and Sahlgrenska Center for Cardiovascular and Metabolic Research, University of Gothenburg, Gothenburg, Sweden; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Region Västra Götaland, Sahlgrenska University Hospital, Department of Clinical Physiology, Gothenburg, Sweden.
| |
Collapse
|
23
|
Ni X, Shang FS, Wang TF, Wu DJ, Chen DG, Zhuang B. Ellagic acid induces apoptosis and autophagy in colon cancer through the AMPK/mTOR pathway. Tissue Cell 2023; 81:102032. [PMID: 36701898 DOI: 10.1016/j.tice.2023.102032] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 01/19/2023] [Accepted: 01/19/2023] [Indexed: 01/23/2023]
Abstract
Ellagic acid (EA), found in fruits and foods, has been shown to be effective in the treatment of breast, colon and bladder cancer. However, due to the complexity of colon cancer, the therapeutic mechanism of EA for colon cancer is still unclear. Cell Counting Kit-8 (CCK-8) assay were employed to investigate the cell proliferation. Western blotting and flow cytometry assays were utilized to investigate apoptosis and autophagy in CRC cells (HCT116), respectively. Moreover, western blotting and luciferase reporter assays were evaluated the effect of EA on AMPK/mTOR pathway. Through flow cytometry analysis, EA could promote the apoptosis of HCT116 cells. In addition, EA can reduce the phosphorylation of mTOR, promoted phosphorylation of AMPK, and induced autophagy in HCT116 cells. Also, Dorsomorphin pretreatment can reduce the expression of autophagy protein, which indicates that EA induces autophagy through AMPK/mTOR pathway. These results suggest that EA inhibits the growth of colon cancer through AMPK/mTOR pathway and induces apoptosis and protective autophagy.
Collapse
Affiliation(s)
- Xiong Ni
- Department of General Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
| | - Fu-Sheng Shang
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
| | - Ting-Feng Wang
- Department of General Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
| | - De-Jun Wu
- Department of General Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
| | - Da-Gui Chen
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China.
| | - Biao Zhuang
- Department of General Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China.
| |
Collapse
|
24
|
AlTamimi JZ, AlFaris NA, Alshammari GM, Alagal RI, Aljabryn DH, Yahya MA. The Protective Effect of 11-Keto-β-Boswellic Acid against Diabetic Cardiomyopathy in Rats Entails Activation of AMPK. Nutrients 2023; 15:nu15071660. [PMID: 37049501 PMCID: PMC10097356 DOI: 10.3390/nu15071660] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 03/25/2023] [Accepted: 03/25/2023] [Indexed: 04/03/2023] Open
Abstract
This study examined the protective effect of 11-keto-β-boswellic acid (AKBA) against streptozotocin (STZ)-induced diabetic cardiomyopathy (DC) in rats and examined the possible mechanisms of action. Male rats were divided into 5 groups (n = 8/each): (1) control, AKBA (10 mg/kg, orally), STZ (65 mg/kg, i.p.), STZ + AKBA (10 mg/kg, orally), and STZ + AKBA + compound C (CC/an AMPK inhibitor, 0.2 mg/kg, i.p.). AKBA improved the structure and the systolic and diastolic functions of the left ventricles (LVs) of STZ rats. It also attenuated the increase in plasma glucose, plasma insulin, and serum and hepatic levels of triglycerides (TGs), cholesterol (CHOL), and free fatty acids (FFAs) in these diabetic rats. AKBA stimulated the ventricular activities of phosphofructokinase (PFK), pyruvate dehydrogenase (PDH), and acetyl CoA carboxylase (ACC); increased levels of malonyl CoA; and reduced levels of carnitine palmitoyltransferase I (CPT1), indicating improvement in glucose and FA oxidation. It also reduced levels of malondialdehyde (MDA); increased mitochondria efficiency and ATP production; stimulated mRNA, total, and nuclear levels of Nrf2; increased levels of glutathione (GSH), heme oxygenase (HO-1), superoxide dismutase (SOD), and catalase (CAT); but reduced the expression and nuclear translocation of NF-κB and levels of tumor-necrosis factor-α (TNF-α) and interleukin-6 (IL-6). These effects were concomitant with increased activities of AMPK in the LVs of the control and STZ-diabetic rats. Treatment with CC abolished all these protective effects of AKBA. In conclusion, AKBA protects against DC in rats, mainly by activating the AMPK-dependent control of insulin release, cardiac metabolism, and antioxidant and anti-inflammatory effects.
Collapse
|
25
|
Downregulation of miR-137 Facilitates CD4+ T Cell Pyroptosis in Systemic Lupus Erythematosus via Stimulating AMPK Pathway. J Immunol Res 2023; 2023:1241774. [PMID: 36815949 PMCID: PMC9936506 DOI: 10.1155/2023/1241774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/03/2022] [Accepted: 12/17/2022] [Indexed: 02/11/2023] Open
Abstract
Objective From the pathogenic mechanism point of view, systemic lupus erythematosus (SLE) features prominently in T lymphocyte apoptosis. Yet the regulatory mechanism underlying SLE cell apoptosis remains to be explored. This research intends to clarify the role played by miR-137 in SLE and the underlying mechanisms. Methods Twenty SLE patients (SLE group) and twenty healthy controls (control group) were selected, from whom peripheral blood CD4+ T cells were isolated via magnetic-activated cell sorting. Reverse transcription-polymerase chain reaction (RT-PCR) quantified miR-137 and AMP-activated protein kinase (AMPK) in CD4+ T cells. Further, transfection of miR-137 mimics and inhibitors into CD4+ T cells was carried out to alter miR levels. Levels of pyroptosis, apoptosis, and inflammatory- and pyroptosis-related proteins were determined through PI staining, flow cytometry, and Western blotting, respectively. A luciferase reporter gene assay identified the targeting relation between miR-137 and AMPK. Results SLE patients showed downregulated miR-137 and upregulated AMPK in CD4+ T cells than controls. miR-137 upregulation by miR-137 mimic transfection inhibited Jurkat cell pyroptosis and apoptosis at both mRNA and protein levels and suppressed NOD-like receptor thermal protein domain-associated protein 3 (NLRP3) inflammasome activity and pyroptosis-related protein gasdermin D (GSDMD), while miR-137 inhibitor transfection contributed to completely opposite effects. miR-137 directly targeted AMPK, as indicated by the luciferase reporter gene assay. Furthermore, miR-137 inhibitor intervention induced healthy CD4+ T cell pyroptosis and apoptosis via mediating AMPK, whereas miR-137 mimic transfection into CD4+ T cells of SLE patients leads to opposite results. Conclusion Upregulating miR-137 inhibits CD4+ T cell pyroptosis in SLE patients by modulating the AMPK pathway, suggesting the potential diagnostic and therapeutic role of miR-137 in SLE.
Collapse
|
26
|
Oxidative stress and related metabolic alterations are induced in ex situ perfusion of donated hearts regardless of the ventricular load or leukocyte depletion. Am J Transplant 2023; 23:475-483. [PMID: 36695686 DOI: 10.1016/j.ajt.2022.11.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/18/2022] [Accepted: 11/26/2022] [Indexed: 01/05/2023]
Abstract
We sought to determine the role of donor blood circulating leukocytes in mediating oxidative stress and inflammation during normothermic ex situ heart perfusion (ESHP). Normothermic ESHP allows preservation of donated heart in a perfused, dynamic state, preventing ischemia. However, the cardiac function declines during ESHP, limiting the potential of this method for improvement of the outcomes of transplantation and expanding the donor pool. Extracorporeal circulation-related oxidative stress plays a critical role in the functional decline of the donor heart. Hearts from domestic pigs were perfused in working mode (WM, whole blood-based or leukocyte-depleted blood-based perfusate) or nonworking mode. Markers of oxidative stress and responsive glucose anabolic pathways were induced in the myocardium regardless of left ventricular load. Myocardial function during ESHP as well as cardioprotective mechanisms were preserved better in WM. Leukocyte-depleted perfusate did not attenuate tissue oxidative stress or perfusate proinflammatory cytokines and did not improve functional preservation. Although ESHP is associated with ongoing oxidative stress and metabolic alteration in the myocardium, preserved cardioprotective mechanisms in WM may exert beneficial effects. Leukocyte depletion of the perfusate may not attenuate inflammation and oxidative stress effectively or improve the functional preservation of the heart during ESHP.
Collapse
|
27
|
Chirico N, Kessler EL, Maas RGC, Fang J, Qin J, Dokter I, Daniels M, Šarić T, Neef K, Buikema JW, Lei Z, Doevendans PA, Sluijter JPG, van Mil A. Small molecule-mediated rapid maturation of human induced pluripotent stem cell-derived cardiomyocytes. Stem Cell Res Ther 2022; 13:531. [PMID: 36575473 PMCID: PMC9795728 DOI: 10.1186/s13287-022-03209-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 12/01/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Human induced pluripotent stem cell (iPSC)-derived cardiomyocytes (iPSC-CMs) do not display all hallmarks of mature primary cardiomyocytes, especially the ability to use fatty acids (FA) as an energy source, containing high mitochondrial mass, presenting binucleation and increased DNA content per nuclei (polyploidism), and synchronized electrical conduction. This immaturity represents a bottleneck to their application in (1) disease modelling-as most cardiac (genetic) diseases have a middle-age onset-and (2) clinically relevant models, where integration and functional coupling are key. So far, several methods have been reported to enhance iPSC-CM maturation; however, these protocols are laborious, costly, and not easily scalable. Therefore, we developed a simple, low-cost, and rapid protocol to promote cardiomyocyte maturation using two small molecule activators of the peroxisome proliferator-activated receptor β/δ and gamma coactivator 1-alpha (PPAR/PGC-1α) pathway: asiatic acid (AA) and GW501516 (GW). METHODS AND RESULTS: Monolayers of iPSC-CMs were incubated with AA or GW every other day for ten days resulting in increased expression of FA metabolism-related genes and markers for mitochondrial activity. AA-treated iPSC-CMs responsiveness to the mitochondrial respiratory chain inhibitors increased and exhibited higher flexibility in substrate utilization. Additionally, structural maturity improved after treatment as demonstrated by an increase in mRNA expression of sarcomeric-related genes and higher nuclear polyploidy in AA-treated samples. Furthermore, treatment led to increased ion channel gene expression and protein levels. CONCLUSIONS Collectively, we developed a fast, easy, and economical method to induce iPSC-CMs maturation via PPAR/PGC-1α activation. Treatment with AA or GW led to increased metabolic, structural, functional, and electrophysiological maturation, evaluated using a multiparametric quality assessment.
Collapse
Affiliation(s)
- Nino Chirico
- grid.5477.10000000120346234Circulatory Health Laboratory, Regenerative Medicine Center Utrecht, University Utrecht, University Medical Center Utrecht, Utrecht, The Netherlands ,grid.7692.a0000000090126352Laboratory of Experimental Cardiology, Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Elise L. Kessler
- grid.5477.10000000120346234Circulatory Health Laboratory, Regenerative Medicine Center Utrecht, University Utrecht, University Medical Center Utrecht, Utrecht, The Netherlands ,grid.7692.a0000000090126352Laboratory of Experimental Cardiology, Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Renée G. C. Maas
- grid.5477.10000000120346234Circulatory Health Laboratory, Regenerative Medicine Center Utrecht, University Utrecht, University Medical Center Utrecht, Utrecht, The Netherlands ,grid.7692.a0000000090126352Laboratory of Experimental Cardiology, Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Juntao Fang
- grid.5477.10000000120346234Circulatory Health Laboratory, Regenerative Medicine Center Utrecht, University Utrecht, University Medical Center Utrecht, Utrecht, The Netherlands ,grid.7692.a0000000090126352Laboratory of Experimental Cardiology, Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jiabin Qin
- grid.5477.10000000120346234Circulatory Health Laboratory, Regenerative Medicine Center Utrecht, University Utrecht, University Medical Center Utrecht, Utrecht, The Netherlands ,grid.7692.a0000000090126352Laboratory of Experimental Cardiology, Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Inge Dokter
- grid.5477.10000000120346234Circulatory Health Laboratory, Regenerative Medicine Center Utrecht, University Utrecht, University Medical Center Utrecht, Utrecht, The Netherlands ,grid.7692.a0000000090126352Laboratory of Experimental Cardiology, Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Mark Daniels
- grid.5477.10000000120346234Circulatory Health Laboratory, Regenerative Medicine Center Utrecht, University Utrecht, University Medical Center Utrecht, Utrecht, The Netherlands ,grid.7692.a0000000090126352Laboratory of Experimental Cardiology, Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Tomo Šarić
- grid.6190.e0000 0000 8580 3777Center for Physiology and Pathophysiology, Institute for Neurophysiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Klaus Neef
- grid.7692.a0000000090126352Laboratory of Experimental Cardiology, Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands ,grid.491096.3Department of Cardiology, Amsterdam Medical Centre, 1105 AZ Amsterdam, The Netherlands
| | - Jan-Willem Buikema
- grid.5477.10000000120346234Circulatory Health Laboratory, Regenerative Medicine Center Utrecht, University Utrecht, University Medical Center Utrecht, Utrecht, The Netherlands ,grid.7692.a0000000090126352Laboratory of Experimental Cardiology, Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Zhiyong Lei
- grid.5477.10000000120346234Circulatory Health Laboratory, Regenerative Medicine Center Utrecht, University Utrecht, University Medical Center Utrecht, Utrecht, The Netherlands ,grid.7692.a0000000090126352Laboratory of Experimental Cardiology, Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Pieter A. Doevendans
- grid.5477.10000000120346234Circulatory Health Laboratory, Regenerative Medicine Center Utrecht, University Utrecht, University Medical Center Utrecht, Utrecht, The Netherlands ,grid.7692.a0000000090126352Laboratory of Experimental Cardiology, Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands ,grid.411737.7Netherlands Heart Institute, Utrecht, The Netherlands
| | - Joost P. G. Sluijter
- grid.5477.10000000120346234Circulatory Health Laboratory, Regenerative Medicine Center Utrecht, University Utrecht, University Medical Center Utrecht, Utrecht, The Netherlands ,grid.7692.a0000000090126352Laboratory of Experimental Cardiology, Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Alain van Mil
- grid.5477.10000000120346234Circulatory Health Laboratory, Regenerative Medicine Center Utrecht, University Utrecht, University Medical Center Utrecht, Utrecht, The Netherlands ,grid.7692.a0000000090126352Laboratory of Experimental Cardiology, Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
28
|
Jung F, Braune S, Jung CHG, Krüger-Genge A, Waldeck P, Petrick I, Küpper JH. Lipophilic and Hydrophilic Compounds from Arthrospira platensis and Its Effects on Tissue and Blood Cells-An Overview. Life (Basel) 2022; 12:1497. [PMID: 36294932 PMCID: PMC9605678 DOI: 10.3390/life12101497] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 09/14/2024] Open
Abstract
The cyanobacterium Arthrospira platensis (Spirulina platensis) is a natural source of considerable amounts of ingredients that are relevant for nutra- and pharmaceutical uses. Different hydrophilic and hydrophobic substances can be obtained by extraction from the biomass. The respective extraction techniques determine the composition of substances in the extract and thus its biological activity. In this short review, we provide an overview of the hydrophilic compounds (phenols, phycobiliproteins, polysaccharides, and vitamins) and lipophilic ingredients (chlorophylls, vitamins, fatty acids, and glycolipids) of Arthrospira platensis. The principal influences of these substances on blood and tissue cells are briefly summarized.
Collapse
Affiliation(s)
- Friedrich Jung
- Institute of Biotechnology, Molecular Cell Biology, Brandenburg University of Technology Cottbus-Senftenberg, 01968 Senftenberg, Germany
| | - Steffen Braune
- Institute of Biotechnology, Molecular Cell Biology, Brandenburg University of Technology Cottbus-Senftenberg, 01968 Senftenberg, Germany
- Faculty of Health Sciences Brandenburg, Brandenburg University of Technology Cottbus-Senftenberg, 01968 Senftenberg, Germany
| | | | - Anne Krüger-Genge
- Department of Healthcare, Biomaterials and Cosmeceuticals, Fraunhofer-Institute for Applied Polymer Research, 14476 Potsdam-Golm, Germany
| | - Peter Waldeck
- Institute of Materials Chemistry, Thermodynamics, Brandenburg University of Technology Cottbus-Senftenberg, 01968 Senftenberg, Germany
| | - Ingolf Petrick
- Institute of Materials Chemistry, Thermodynamics, Brandenburg University of Technology Cottbus-Senftenberg, 01968 Senftenberg, Germany
| | - Jan-Heiner Küpper
- Institute of Biotechnology, Molecular Cell Biology, Brandenburg University of Technology Cottbus-Senftenberg, 01968 Senftenberg, Germany
- Faculty of Health Sciences Brandenburg, Brandenburg University of Technology Cottbus-Senftenberg, 01968 Senftenberg, Germany
- Carbon Biotech Social Enterprise AG, 01968 Senftenberg, Germany
| |
Collapse
|
29
|
Karamichalakis N, Kolovos V, Paraskevaidis I, Tsougos E. A New Hope: Sodium-Glucose Cotransporter-2 Inhibition to Prevent Atrial Fibrillation. J Cardiovasc Dev Dis 2022; 9:jcdd9080236. [PMID: 35893226 PMCID: PMC9331782 DOI: 10.3390/jcdd9080236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/17/2022] [Accepted: 07/22/2022] [Indexed: 11/16/2022] Open
Abstract
Atrial arrhythmias are common in patients with diabetes mellitus (DM), and despite recent advances in pharmaceutical and invasive treatments, atrial fibrillation (AF) and atrial flutter (AFl) are still associated with substantial mortality and morbidity. Clinical trial data imply a protective effect of sodium-glucose cotransporter-2 inhibitors (SGLT2is) on the occurrence of AF and AFl. This review summarizes the state of knowledge regarding DM-mediated mechanisms responsible for AF genesis and recurrence but also discusses the recent data from experimental studies, published trials and metanalyses.
Collapse
|
30
|
Abstract
As a muscular pump that contracts incessantly throughout life, the heart must constantly generate cellular energy to support contractile function and fuel ionic pumps to maintain electrical homeostasis. Thus, mitochondrial metabolism of multiple metabolic substrates such as fatty acids, glucose, ketones, and lactate is essential to ensuring an uninterrupted supply of ATP. Multiple metabolic pathways converge to maintain myocardial energy homeostasis. The regulation of these cardiac metabolic pathways has been intensely studied for many decades. Rapid adaptation of these pathways is essential for mediating the myocardial adaptation to stress, and dysregulation of these pathways contributes to myocardial pathophysiology as occurs in heart failure and in metabolic disorders such as diabetes. The regulation of these pathways reflects the complex interactions of cell-specific regulatory pathways, neurohumoral signals, and changes in substrate availability in the circulation. Significant advances have been made in the ability to study metabolic regulation in the heart, and animal models have played a central role in contributing to this knowledge. This review will summarize metabolic pathways in the heart and describe their contribution to maintaining myocardial contractile function in health and disease. The review will summarize lessons learned from animal models with altered systemic metabolism and those in which specific metabolic regulatory pathways have been genetically altered within the heart. The relationship between intrinsic and extrinsic regulators of cardiac metabolism and the pathophysiology of heart failure and how these have been informed by animal models will be discussed.
Collapse
Affiliation(s)
- Heiko Bugger
- University Heart Center Graz, Department of Cardiology, Medical University of Graz, Graz, Austria, Austria (H.B., N.J.B.)
| | - Nikole J Byrne
- University Heart Center Graz, Department of Cardiology, Medical University of Graz, Graz, Austria, Austria (H.B., N.J.B.)
| | - E Dale Abel
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles (E.D.A.)
| |
Collapse
|
31
|
Nishiyama C, Saito Y, Sakaguchi A, Kaneko M, Kiyonari H, Xu Y, Arima Y, Uosaki H, Kimura W. Prolonged Myocardial Regenerative Capacity in Neonatal Opossum. Circulation 2022; 146:125-139. [PMID: 35616010 DOI: 10.1161/circulationaha.121.055269] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Early neonates of both large and small mammals are able to regenerate the myocardium through cardiomyocyte proliferation for only a short period after birth. This myocardial regenerative capacity declines in parallel with withdrawal of cardiomyocytes from the cell cycle in the first few postnatal days. No mammalian species examined to date has been found capable of a meaningful regenerative response to myocardial injury later than 1 week after birth. METHODS We examined cardiomyocyte proliferation in neonates of the marsupial opossum (Monodelphis domestica) by immunostaining at various times after birth. The regenerative capacity of the postnatal opossum myocardium was assessed after either apex resection or induction of myocardial infarction at postnatal day 14 or 29, whereas that of the postnatal mouse myocardium was assessed after myocardial infarction at postnatal day 7. Bioinformatics data analysis, immunofluorescence staining, and pharmacological and genetic intervention were applied to determine the role of AMPK (5'-AMP-activated protein kinase) signaling in regulation of the mammalian cardiomyocyte cell cycle. RESULTS Opossum neonates were found to manifest cardiomyocyte proliferation for at least 2 weeks after birth at a frequency similar to that apparent in early neonatal mice. Moreover, the opossum heart at postnatal day 14 showed substantial regenerative capacity both after apex resection and after myocardial infarction injury, whereas this capacity had diminished by postnatal day 29. Transcriptomic and immunofluorescence analyses indicated that AMPK signaling is activated in postnatal cardiomyocytes of both opossum and mouse. Pharmacological or genetic inhibition of AMPK signaling was sufficient to extend the postnatal window of cardiomyocyte proliferation in both mouse and opossum neonates as well as of cardiac regeneration in neonatal mice. CONCLUSIONS The marsupial opossum maintains cardiomyocyte proliferation and a capacity for myocardial regeneration for at least 2 weeks after birth. As far as we are aware, this is the longest postnatal duration of such a capacity among mammals examined to date. AMPK signaling was implicated as an evolutionarily conserved regulator of mammalian postnatal cardiomyocyte proliferation.
Collapse
Affiliation(s)
- Chihiro Nishiyama
- Laboratory for Heart Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan. (C.N., Y.S., A.S., W.K.)
| | - Yuichi Saito
- Laboratory for Heart Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan. (C.N., Y.S., A.S., W.K.)
| | - Akane Sakaguchi
- Laboratory for Heart Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan. (C.N., Y.S., A.S., W.K.)
| | - Mari Kaneko
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan. (M.K., H.K.)
| | - Hiroshi Kiyonari
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan. (M.K., H.K.)
| | - Yuqing Xu
- Laboratory for Developmental Cardiology, International Research Center for Medical Science, Kumamoto University, Japan (Y.X., Y.A.)
| | - Yuichiro Arima
- Laboratory for Developmental Cardiology, International Research Center for Medical Science, Kumamoto University, Japan (Y.X., Y.A.)
| | - Hideki Uosaki
- Division of Regenerative Medicine, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Japan (H.U.)
| | - Wataru Kimura
- Laboratory for Heart Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan. (C.N., Y.S., A.S., W.K.)
| |
Collapse
|
32
|
García-Díez E, López-Oliva ME, Pérez-Jiménez J, Martín MA, Ramos S. Metabolic regulation of (-)-epicatechin and the colonic metabolite 2,3-dihydroxybenzoic acid on the glucose uptake, lipid accumulation and insulin signalling in cardiac H9c2 cells. Food Funct 2022; 13:5602-5615. [PMID: 35502961 DOI: 10.1039/d2fo00182a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Epicatechin (EC) and main colonic phenolic acids derived from flavonoid intake have been suggested to exert healthful effects, although their mechanism of action remains unknown. Heart damage is highly prevalent in metabolic diseases, and the failure of this organ is a major cause of death worldwide. In this study, the modulation of the energy metabolism and insulin signalling by the mentioned compounds in cardiac H9c2 cells was evaluated. Incubation of cells with EC (1-20 μM) and 2,3-dihydroxybenzoic acid (DHBA, 10 μM) reduced glucose uptake, and both compounds decreased lipid accumulation at concentrations higher than 0.5 μM. EC and DHBA also increased the tyrosine phosphorylated and total insulin receptor (IR) levels, and activated the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) pathway in cardiac H9c2 cells. Interestingly, EC and DHBA did not modify glucose transporters (SGLT-1 and GLUT-1) levels, and increased GLUT-4 values. In addition, EC and DHBA decreased cluster of differentiation 36 (CD36) and fatty acid synthase (FAS) values, and enhanced carnitine palmitoyl transferase 1 (CPT1) and proliferator activated receptor α (PPARα) levels. By using specific inhibitors of AKT and 5'-AMP-activated protein kinase (AMPK), the participation of both proteins in EC- and DHBA-mediated regulation on glucose uptake and lipid accumulation was shown. Taken together, EC and DHBA modulate glucose uptake and lipid accumulation via AKT and AMPK, and reinforce the insulin signalling by activating key proteins of this pathway in H9c2 cells.
Collapse
Affiliation(s)
- Esther García-Díez
- Department of Metabolism and Nutrition, Institute of Food Science and Technology and Nutrition (ICTAN), Consejo Superior de Investigaciones Científicas (CSIC), José Antonio Novais 10, Ciudad Universitaria, 28040 Madrid, Spain.
| | - María Elvira López-Oliva
- Sección Departamental de Fisiología. Facultad de Farmacia, Universidad Complutense de Madrid (UCM), Spain
| | - Jara Pérez-Jiménez
- Department of Metabolism and Nutrition, Institute of Food Science and Technology and Nutrition (ICTAN), Consejo Superior de Investigaciones Científicas (CSIC), José Antonio Novais 10, Ciudad Universitaria, 28040 Madrid, Spain.
| | - María Angeles Martín
- Department of Metabolism and Nutrition, Institute of Food Science and Technology and Nutrition (ICTAN), Consejo Superior de Investigaciones Científicas (CSIC), José Antonio Novais 10, Ciudad Universitaria, 28040 Madrid, Spain. .,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, Spain
| | - Sonia Ramos
- Department of Metabolism and Nutrition, Institute of Food Science and Technology and Nutrition (ICTAN), Consejo Superior de Investigaciones Científicas (CSIC), José Antonio Novais 10, Ciudad Universitaria, 28040 Madrid, Spain.
| |
Collapse
|
33
|
Monteiro BL, Santos RAS, Mario EG, Araujo TS, Savergnini SSQ, Santiago AF, Muzzi RAL, Castro IC, Teixeira LG, Botion LM, Marinho BM, Santos SHS, Porto LCJ. Genetic deletion of Mas receptor in FVB/N mice impairs cardiac use of glucose and lipids. Peptides 2022; 151:170764. [PMID: 35151766 DOI: 10.1016/j.peptides.2022.170764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/18/2022] [Accepted: 02/08/2022] [Indexed: 11/20/2022]
Abstract
Angiotensin-(1-7) is a biologically active product of the renin-angiotensin system cascade and exerts inhibitory effects on inflammation, vascular and cellular growth mechanisms signaling through the G protein-coupled Mas receptor. The major purpose of the present study was to investigate the use of glucose and fatty acids by cardiac tissue in Mas knockout mice models. Serum levels of glucose, lipids, and insulin were measured in Mas-deficient and wild-type FVB/N mice. To investigate the cardiac use of lipids, the lipoprotein lipase, the gene expression of peroxisome proliferator-activated receptor alpha; carnitine palmitoyltransferase I and acyl-CoA oxidase were evaluated. To investigate the cardiac use of glucose, the insulin signaling through Akt/GLUT4 pathway, glucose-6-phosphate (G-6-P) and fructose-6-phosphate (F-6-P) glycolytic intermediates, in addition to ATP, lactate and the glycogen content were measured. Despite normal body weight, cholesterol and insulin, Mas-Knockout mice presented hyperglycemia and hypertriglyceridemia, impaired insulin signaling, through reduced phosphorylation of AKT and decreased translocation of GLUT4 in response to insulin, with subsequent decrease of the cardiac G-6-P and F-6-P. Lactate production and glycogen content were not altered in Mas-KO hearts. Mas-KO presented reduced cardiac lipoprotein lipase activity and decreased translocation of CD36 in response to insulin. The expression of peroxisome proliferator-activated receptor alpha and carnitine palmitoyltransferase I genes were lower in Mas-KO animals compared to wild-type animals. The ATP content of Mas-KO hearts was smaller than in wild-type. The present results suggest that genetic deletion of Mas produced a devastating effect on cardiac use of glucose and lipids, leading to lower energy efficiency in the heart.
Collapse
Affiliation(s)
- Brenda L Monteiro
- Federal University of Lavras, Department of Nutrition, Av. Norte UFLA - Aquenta Sol, Lavras, MG, Brazil.
| | - Robson A S Santos
- Institute of Biological Sciences, Department of Physiology and Biophysics, Federal University of Minas Gerais, Av. Pres. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, MG, Brazil.
| | - Erica G Mario
- Institute of Biological Sciences, Department of Physiology and Biophysics, Federal University of Minas Gerais, Av. Pres. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, MG, Brazil.
| | - Thiago S Araujo
- Federal University of Lavras, Department of Nutrition, Av. Norte UFLA - Aquenta Sol, Lavras, MG, Brazil.
| | - Silvia S Q Savergnini
- Institute of Biological Sciences, Department of Physiology and Biophysics, Federal University of Minas Gerais, Av. Pres. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, MG, Brazil.
| | - Andrezza F Santiago
- Federal University of Lavras, Department of Nutrition, Av. Norte UFLA - Aquenta Sol, Lavras, MG, Brazil.
| | - Ruthnea A L Muzzi
- Institute of Agricultural Sciences (ICA), Food Engineering, Universidade Federal de Minas Gerais (UFMG), Montes Claros, Minas Gerais, Brazil.
| | - Isabela C Castro
- Federal University of Lavras, Department of Nutrition, Av. Norte UFLA - Aquenta Sol, Lavras, MG, Brazil.
| | - Lilian G Teixeira
- Federal University of Lavras, Department of Nutrition, Av. Norte UFLA - Aquenta Sol, Lavras, MG, Brazil.
| | - Leida M Botion
- Institute of Biological Sciences, Department of Physiology and Biophysics, Federal University of Minas Gerais, Av. Pres. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, MG, Brazil.
| | - Barbhara M Marinho
- Laboratory of Health Science, Postgraduate Program in Health Science, Universidade Estadual de Montes Claros (Unimontes), Minas Gerais, Brazil.
| | - Sergio H S Santos
- Institute of Agricultural Sciences (ICA), Food Engineering, Universidade Federal de Minas Gerais (UFMG), Montes Claros, Minas Gerais, Brazil; Laboratory of Health Science, Postgraduate Program in Health Science, Universidade Estadual de Montes Claros (Unimontes), Minas Gerais, Brazil.
| | - Laura C J Porto
- Federal University of Lavras, Department of Nutrition, Av. Norte UFLA - Aquenta Sol, Lavras, MG, Brazil; Institute of Biological Sciences, Department of Physiology and Biophysics, Federal University of Minas Gerais, Av. Pres. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, MG, Brazil.
| |
Collapse
|
34
|
AMPK Activation Is Indispensable for the Protective Effects of Caloric Restriction on Left Ventricular Function in Postinfarct Myocardium. BIOLOGY 2022; 11:biology11030448. [PMID: 35336822 PMCID: PMC8945456 DOI: 10.3390/biology11030448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/02/2022] [Accepted: 03/08/2022] [Indexed: 11/16/2022]
Abstract
Background: Caloric restriction (CR) extends lifespan in many species, including mammals. CR is cardioprotective in senescent myocardium by correcting pre-existing mitochondrial dysfunction and apoptotic activation. Furthermore, it confers cardioprotection against acute ischemia-reperfusion injury. Here, we investigated the role of AMP-activated protein kinase (AMPK) in mediating the cardioprotective CR effects in failing, postinfarct myocardium. Methods: Ligation of the left coronary artery or sham operation was performed in rats and mice. Four weeks after surgery, left ventricular (LV) function was analyzed by echocardiography, and animals were assigned to different feeding groups (control diet or 40% CR, 8 weeks) as matched pairs. The role of AMPK was investigated with an AMPK inhibitor in rats or the use of alpha 2 AMPK knock-out mice. Results: CR resulted in a significant improvement in LV function, compared to postinfarct animals receiving control diet in both species. The improvement in LV function was accompanied by a reduction in serum BNP, decrease in LV proapoptotic activation, and increase in mitochondrial biogenesis in the LV. Inhibition or loss of AMPK prevented most of these changes. Conclusions: The failing, postischemic heart is protected from progressive loss of LV systolic function by CR. AMPK activation is indispensable for these protective effects.
Collapse
|
35
|
Cui YK, Hong YX, Wu WY, Han WM, Wu Y, Wu C, Li GR, Wang Y. Acacetin ameliorates cardiac hypertrophy by activating Sirt1/AMPK/PGC-1α pathway. Eur J Pharmacol 2022; 920:174858. [PMID: 35219729 DOI: 10.1016/j.ejphar.2022.174858] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 02/15/2022] [Accepted: 02/22/2022] [Indexed: 12/20/2022]
Abstract
Cardiac hypertrophy is a major risk factor for developing heart failure. This study investigates the effects of the natural flavone acacetin on myocardial hypertrophy in cellular level and whole animals. In cardiomyocytes from neonatal rat with hypertrophy induced by angiotensin II (Ang II), acacetin at 0.3, 1, and 3 μM reduced the increased myocyte surface area, brain natriuretic peptide (BNP), and ROS production by upregulating anti-oxidative molecules (i.e. Nrf2, SOD1, SOD2, HO-1), anti-apoptotic protein Bcl-2, and downregulating the pro-apoptotic protein Bax and the inflammatory cytokine IL-6 in a concentration-dependent manner. In addition, acacetin rescued Ang II-induced impairment of PGC-1α, PPARα and pAMPK. These beneficial effects of acacetin were mediated by activation of Sirt1, which was confirmed in cardiac hypertrophy induced by abdominal aorta constriction (AAC) in SD rats. Acacetin prodrug (10 mg/kg, s.c., b.i.d.) treatment reduced the elevated artery blood pressure, improved the increased heart size and thickness of left ventricular wall and the ventricular fibrosis associated with inhibiting myocardial fibrosis and BNP, and reversed the impaired protective signal molecules including PGC-1α, Nrf2, PPARα, pAMPK and Sirt1 of left ventricular tissue. Our results demonstrate the novel pharmacological effect that acacetin ameliorates cardiac hypertrophy via Sirt1-mediated activation of AMPK/PGC-1α signal molecules followed by reducing oxidation, inflammation and apoptosis.
Collapse
Affiliation(s)
- Yu-Kai Cui
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Xiamen, 361009, China
| | - Yi-Xiang Hong
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Xiamen, 361009, China
| | - Wei-Yin Wu
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Xiamen, 361009, China
| | - Wei-Min Han
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Xiamen, 361009, China
| | - Yao Wu
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Xiamen, 361009, China
| | - Chan Wu
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Xiamen, 361009, China
| | - Gui-Rong Li
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Xiamen, 361009, China; Nanjing Amazigh Pharma Limited, Nanjing, Jiangsu, 210032, China.
| | - Yan Wang
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Xiamen, 361009, China.
| |
Collapse
|
36
|
Fan M, Choi YJ, Wedamulla NE, Tang Y, Han KI, Hwang JY, Kim EK. Heat-Killed Enterococcus faecalis EF-2001 Attenuate Lipid Accumulation in Diet-Induced Obese (DIO) Mice by Activating AMPK Signaling in Liver. Foods 2022; 11:575. [PMID: 35206052 PMCID: PMC8870772 DOI: 10.3390/foods11040575] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 02/04/2023] Open
Abstract
To explore the inhibitory mechanism of heat-killed Enterococcus faecalis, EF-2001 on hepatic lipid deposition, a diet-induced obese (DIO) animal model was established by high-fat diet (HFD). The DIO C57BL/6 mice were divided into four groups: the normal group without HFD (ND, n = 8), obesity group (HFD, n = 8), experimental group (HFD + EF-2001, 200 mg/kg, n = 8), and positive control group (HFD + Orlistat, 60 mg/kg, n = 8). After 4 weeks, liver and adipose tissue were fixed in 10% paraformaldehyde, followed by embedding in paraffin for tissue sectioning. The differences in body mass, body fat ratio, fatty cell area, and lipid profiling of the liver (TC, LDL, and HDL) were also determined. Moreover, Western blot was performed to analyze the expression of lipid accumulation-related proteins, including AMPK, PPARγ, SREBP-1, ACC, and FAS. Compared with the HFD group, the HFD + EF-2001 group exhibited decreased fat mass, liver index, adipocyte area, TC, and LDL, and an increased level of HDL. The results of liver hematoxylin and eosin (H&E), and oil red O staining showed that the mice in each intervention group were improved on hepatic lipid accumulation, and the mice in the HFD + EF-2001 group were the most similar to those in the normal group when compared with the HFD group. From the Western blot results, we proved that EF-2001 activated the AMPK signaling pathway. EF-2001 significantly upregulated the expressions of p-AMPK and p-ACC and downregulated PPARγ, SREBP-1, and FAS in murine liver. Taken together, these results suggest that EF-2001 decrease lipid accumulation in the DIO model mice through the AMPK pathway and ameliorate liver damage by HFD.
Collapse
Affiliation(s)
- Meiqi Fan
- Division of Food Bioscience, College of Biomedical and Health Sciences, Konkuk University, Chungju 27478, Korea;
| | - Young-Jin Choi
- Department of Food Science and Nutrition, College of Health Science, Dong-A University, Busan 49315, Korea; (Y.-J.C.); (N.E.W.)
- Center for Silver-Targeted Biomaterials, Brain Busan 21 Plus Program, Dong-A University, Busan 49315, Korea
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Korea
| | - Nishala Erandi Wedamulla
- Department of Food Science and Nutrition, College of Health Science, Dong-A University, Busan 49315, Korea; (Y.-J.C.); (N.E.W.)
- Center for Silver-Targeted Biomaterials, Brain Busan 21 Plus Program, Dong-A University, Busan 49315, Korea
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Korea
- Department of Export Agriculture, Faculty of Animal Science and Export Agriculture, Uva Wellassa University, Badulla 90000, Sri Lanka
| | - Yujiao Tang
- School of Bio-Science and Food Engineering, Changchun University of Science and Technology, Changchun 130600, China;
| | | | - Ji-Young Hwang
- Department of Food Science & Technology, Dong-Eui University, Busan 47340, Korea;
| | - Eun-Kyung Kim
- Department of Food Science and Nutrition, College of Health Science, Dong-A University, Busan 49315, Korea; (Y.-J.C.); (N.E.W.)
- Center for Silver-Targeted Biomaterials, Brain Busan 21 Plus Program, Dong-A University, Busan 49315, Korea
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Korea
- Department of Export Agriculture, Faculty of Animal Science and Export Agriculture, Uva Wellassa University, Badulla 90000, Sri Lanka
- Center for Food & Bio Innovation, Dong-A University, Busan 49315, Korea
| |
Collapse
|
37
|
Ren D, Fedorova J, Davitt K, Van Le TN, Griffin JH, Liaw PC, Esmon CT, Rezaie AR, Li J. Activated Protein C Strengthens Cardiac Tolerance to Ischemic Insults in Aging. Circ Res 2022; 130:252-272. [PMID: 34930019 PMCID: PMC8882057 DOI: 10.1161/circresaha.121.319044] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
BACKGROUND APC (activated protein C) is a plasma serine protease with anticoagulant and anti-inflammatory activities. EPCR (Endothelial protein C receptor) is associated with APC's activity and mediates its downstream signaling events. APC exerts cardioprotective effects during ischemia and reperfusion (I/R). This study aims to characterize the role of the APC-EPCR axis in ischemic insults in aging. METHODS Young (3-4 months) and aged (24-26 months) wild-type C57BL/6J mice, as well as EPCR point mutation (EPCRR84A/R84A) knockin C57BL/6J mice incapable of interaction with APC and its wild type of littermate C57BL/6J mice, were subjected to I/R. Wild-type APC, signaling-selective APC-2Cys, or anticoagulant-selective APC-E170A were administrated before reperfusion. RESULTS The results demonstrated that cardiac I/R reduces APC activity, and the APC activity was impaired in the aged versus young hearts possibly attributable to the declined EPCR level with aging. Serum EPCR measurement showed that I/R triggered the shedding of membrane EPCR into circulation, while administration of APC attenuated the I/R-induced EPCR shedding in both young and aged hearts. Subsequent echocardiography showed that APC and APC-2Cys but not APC-E170A ameliorated cardiac dysfunction during I/R in both young and aged mice. Importantly, APC elevated the resistance of the aged heart to ischemic insults through stabilizing EPCR. However, all these cardioprotective effects of APC were blunted in the EPCRR84A/R84A mice versus its wild-type littermates. The ex vivo working heart and metabolomics results demonstrated that AMPK (AMP-activated protein kinase) mediates acute adaptive response while AKT (protein kinase B) is involved in chronic metabolic programming in the hearts with APC treatment. CONCLUSIONS I/R stress causes shedding of the membrane EPCR in the heart, and administration of APC prevents I/R-induced cardiac EPCR shedding that is critical for limiting cardiac damage in aging.
Collapse
Affiliation(s)
- Di Ren
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL 33612
| | - Julia Fedorova
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL 33612
| | - Kayla Davitt
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL 33612
| | - Tran Ngoc Van Le
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL 33612
| | - John H. Griffin
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
| | - Patricia C. Liaw
- Thrombosis and Atherosclerosis Research Institute, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Charles T. Esmon
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - Alireza R. Rezaie
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - Ji Li
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL 33612
| |
Collapse
|
38
|
Berberine Protects against TNF- α-Induced Injury of Human Umbilical Vein Endothelial Cells via the AMPK/NF- κB/YY1 Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2021:6518355. [PMID: 35003308 PMCID: PMC8741384 DOI: 10.1155/2021/6518355] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/09/2021] [Accepted: 12/16/2021] [Indexed: 12/12/2022]
Abstract
Endothelial injury, characterized by an inflammatory response and increased permeability, is an initial stage of atherosclerosis (AS). Adenosine 5′-monophosphate (AMP), activated protein kinase (AMPK), and Nuclear Factor kappa B (NF-κB)/Yin Yang 1(YY1) signaling pathways play important roles in the process of endothelial injury. Berberine (BBR), a bioactive alkaloid isolated from several herbal substances, possesses multiple pharmacological effects, including anti-inflammatory, antimicrobial, antidiabetic, anticancer, and antioxidant activities. Previous studies showed a protective effect of berberine against endothelial injury. However, the underlying mechanism remains unclear. We explored the potential effect of BBR on TNF- (tumor necrosis factor-) α-induced injury of human umbilical endothelial cells (HUVECs) and studied its possible molecular mechanism. In the present study, HUVECs were divided into three groups. HUVEC viability was measured with Cell Counting Kit-8 assay. Extracellular lactic dehydrogenase (LDH) concentration was measured with LDH leakage assay. Endothelial microparticle (EMP) numbers were evaluated by flow cytometry analysis assay. The expression of proinflammatory cytokines was evaluated by Enzyme-Linked Immunosorbent Assay (ELISA). The mRNA expression of NF-κB and YY1 was detected by Real-Time PCR (RT-PCR). The protein expression of NF-κB, YY1, and AMPK was detected by immunofluorescence microscopy assay or western blot analysis. The results showed that LDH concentration, EMPs numbers, and the expression of proinflammatory cytokines (IL-6, IL-8, and IL-1β) increased in TNF-α-induced injured HUVECs, but ameliorated by BBR pretreatment. BBR pretreatment upregulated the expression of phosphorylated AMPK and downregulated the expressions of NF-κB and YY1 in injured HUVECs induced by TNF-α, which were offset by the AMPK inhibitor Compound C (CC). The results indicated that BBR protected against TNF-α-induced endothelial injury via the AMPK/NF-κB/YY1 signaling pathway.
Collapse
|
39
|
Choksey A, Timm KN. Cancer Therapy-Induced Cardiotoxicity-A Metabolic Perspective on Pathogenesis, Diagnosis and Therapy. Int J Mol Sci 2021; 23:441. [PMID: 35008867 PMCID: PMC8745714 DOI: 10.3390/ijms23010441] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/21/2021] [Accepted: 12/28/2021] [Indexed: 12/13/2022] Open
Abstract
Long-term cardiovascular complications of cancer therapy are becoming ever more prevalent due to increased numbers of cancer survivors. Cancer therapy-induced cardiotoxicity (CTIC) is an incompletely understood consequence of various chemotherapies, targeted anti-cancer agents and radiation therapy. It is typically detected clinically by a reduction in cardiac left ventricular ejection fraction, assessed by echocardiography. However, once cardiac functional decline is apparent, this indicates irreversible cardiac damage, highlighting a need for the development of diagnostics which can detect CTIC prior to the onset of functional decline. There is increasing evidence to suggest that pathological alterations to cardiac metabolism play a crucial role in the development of CTIC. This review discusses the metabolic alterations and mechanisms which occur in the development of CTIC, with a focus on doxorubicin, trastuzumab, imatinib, ponatinib, sunitinib and radiotherapy. Potential methods to diagnose and predict CTIC prior to functional cardiac decline in the clinic are evaluated, with a view to both biomarker and imaging-based approaches. Finally, the therapeutic potential of therapies which manipulate cardiac metabolism in the context of adjuvant cardioprotection against CTIC is examined. Together, an integrated view of the role of metabolism in pathogenesis, diagnosis and treatment is presented.
Collapse
Affiliation(s)
- Anurag Choksey
- Somerville College, University of Oxford, Woodstock Road, Oxford OX2 6HD, UK;
| | - Kerstin N. Timm
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| |
Collapse
|
40
|
Sun J, Wang R, Chao T, Wang C. Long Noncoding RNAs Involved in Cardiomyocyte Apoptosis Triggered by Different Stressors. J Cardiovasc Transl Res 2021; 15:588-603. [PMID: 34855148 DOI: 10.1007/s12265-021-10186-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/04/2021] [Indexed: 12/26/2022]
Abstract
Cardiomyocytes are essential to maintain the normal cardiac function. Ischemia, hypoxia, and drug stimulation can induce pathological apoptosis of cardiomyocytes which eventually leads to heart failure, arrhythmia, and other cardiovascular diseases. Understanding the molecular mechanisms that regulate cardiomyocyte apoptosis is of great significance for the prevention and treatment of cardiovascular diseases. In recent years, more and more evidences reveal that long noncoding RNAs (lncRNAs) play important regulatory roles in myocardial cell apoptosis. They can modulate the expression of apoptosis-related genes at post-transcriptional level by altering the translation efficacy of target mRNAs or functioning as a precursor for miRNAs or competing for miRNA-mediated inhibition. Moreover, reversing the abnormal expression of lncRNAs can attenuate and even reverse the pathological apoptosis of cardiomyocytes. Therefore, apoptosis-related lncRNAs may become a potential new field for studying cardiomyocyte apoptosis and provide new ideas for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Jinghui Sun
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ru Wang
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tiantian Chao
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chenglong Wang
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
41
|
Tuo X, Deng Z, Huang G, Gong H, Xie H. Astragalus polysaccharide attenuates overexercise-induce myocardial injury via activating AMPK signaling pathway to suppress inflammation and oxidative stress. AN ACAD BRAS CIENC 2021; 94:e20210314. [PMID: 34787291 DOI: 10.1590/0001-3765202120210314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 06/02/2021] [Indexed: 11/21/2022] Open
Abstract
Excessive exercise leads to myocardial injury or even sudden exercise death. For the vast sports population, appropriate physiological state is a necessary condition for exercise. The present study aims to investigate the cardioprotective effects and potent mechanism of astragalus polysaccharide (APS) treatment against the exercise-induced myocardial injury via in vitro cell-based assay and in vivo model rat. Efficacies of APS incubation on the inflammatory response and oxidative stress induced by LPS were both explored in H9c2 cells by using CCK-8 and western blotting method, respectively. Normal SD rats were randomly divided into saline-treated overexercise rat group, and APS-treated overexercise rat groups with three doses. Then long-term swimming training load cycle (8 week) were performed on these rats. Finally, the changes on body weight, myocardial morphological and injury indicators, as well as the inflammation-related proteins in overexercise-induced model rats were all assessed. Three concentrations of APS all significantly increased cell viability, and decreased the apoptosis of cardiomyocytes in LPS-treated H9c2 cells. Moreover, chronic treatment of APS at all three doses also could obviously decreased myocardial injury-related indicators. Furthermore, the histopathologic examination exhibited that the APS successfully attenuated the changes of myocardial tissues, reduced the lipid accumulation and the protein levels of IL-1β, TNF-α and NF-κB. Furthermore, the APS could activate the AMPK signaling pathway, enhance the autophagy and suppress the production of ROS. On conclusions, APS exerted the protective efficacies on overexercise-induced myocardial injury by activating the AMPK signaling pathway to increase autophagy and suppress the inflammation response, oxidative stress, apoptosis of myocardial cells.
Collapse
Affiliation(s)
- Xinling Tuo
- Guangdong Mechanical and Electrical Polytechnic, No.2 Chanchushi Rd. East, Tonghe, Baiyun District, Guangzhou 510515, PR, China
| | - Zhijian Deng
- The Fifth Affiliated Hospital of Guangzhou Medical University, Harbour Road, n 621, Whampoa District, Guangzhou, Guangdong Province 510700, PR, China
| | - Guochao Huang
- Guangzhou Liwan District Peizhen Primary School, n 4, Pingxi First Lane, Baihedong, Liwan District, Guangzhou, Guangdong Province 510380, PR, China
| | - Huiping Gong
- Guangzhou Sport University, Guangzhou Road, n 1268, Guangzhou Avenue Middle, Tianhe District, Guangzhou, Guangdong Province 510500, PR, China
| | - Hezhi Xie
- Guangzhou Sport University, Guangzhou Road, n 1268, Guangzhou Avenue Middle, Tianhe District, Guangzhou, Guangdong Province 510500, PR, China
| |
Collapse
|
42
|
Chien LH, Wu CT, Deng JS, Jiang WP, Huang WC, Huang GJ. Salvianolic Acid C Protects against Cisplatin-Induced Acute Kidney Injury through Attenuation of Inflammation, Oxidative Stress and Apoptotic Effects and Activation of the CaMKK-AMPK-Sirt1-Associated Signaling Pathway in Mouse Models. Antioxidants (Basel) 2021; 10:antiox10101620. [PMID: 34679755 PMCID: PMC8533075 DOI: 10.3390/antiox10101620] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/23/2021] [Accepted: 10/13/2021] [Indexed: 12/28/2022] Open
Abstract
Acute kidney injury (AKI) is a sudden reduction in kidney activity and has a high mortality rate. Salvianolic acid C (SAC), one of the main polyphenolic components of Salvia miltiorrhiza, displays significant pharmacologically active effects. An animal model of cisplatin-induced kidney injury was used to study the potential of SAC to improve AKI. First, SAC was administered intraperitoneally in mice for 10 consecutive days, and then cisplatin was administered intraperitoneally on day 7 to establish a nephrotoxicity mouse model. SAC mitigated renal histological changes, blood creatinine (CRE) and blood urea nitrogen (BUN) production and the levels of inflammatory mediators in the cisplatin-induced AKI. Furthermore, malondialdehyde (MDA) levels were reduced and glutathione (GSH) was increased after intraperitoneal injection (i.p.) administration of SAC. In addition, based on Western blot data, SAC reduced the expression of inducible NO synthase (iNOS), cyclooxygenase-2 (COX-2), nuclear factor kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) activation in mouse renal tissues. Finally, SAC diminished the level of TLR-4 expression and enhanced the production of several antioxidative enzymes (superoxidase dismutase (SOD1), glutathione peroxidase (GPx3), catalase, nuclear-factor-erythroid-2-related factor 2 (Nrf2) and heme oxygenase 1 (HO-1)), Sirtuin 1 (Sirt1), p-AMP-activated protein kinase (AMPK) and p-Ca2+/calmodulin-dependent protein kinase kinase (CaMKK). In addition, Sirt1 inhibition (EX 527) inverted the effect of SAC against cisplatin-induced nephrotoxicity. Collectively, SAC provides a therapeutic target with promising clinical potential after cisplatin treatment by attenuating oxidative stress and inflammation.
Collapse
Affiliation(s)
- Liang-Hsuan Chien
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan;
| | - Chien-Ta Wu
- Faculty of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Jeng-Shyan Deng
- Department of Health and Nutrition Biotechnology, Asia University, Taichung 413, Taiwan;
| | - Wen-Ping Jiang
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan 717, Taiwan;
| | - Wen-Chin Huang
- Graduate Institute of Biomedical Sciences, School of Medicine, China Medical University, Taichung 404, Taiwan;
- International Master’s Program of Biomedical Sciences, School of Medicine, China Medical University, Taichung 404, Taiwan
| | - Guan-Jhong Huang
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan;
- Department of Health and Nutrition Biotechnology, Asia University, Taichung 413, Taiwan;
- Correspondence: ; Tel.: +886-4-2205-3366 (ext. 5508)
| |
Collapse
|
43
|
Estradiol ameliorates metformin-inhibited Sertoli cell proliferation via AMPK/TSC2/mTOR signaling pathway. Theriogenology 2021; 175:7-22. [PMID: 34481229 DOI: 10.1016/j.theriogenology.2021.08.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 07/31/2021] [Accepted: 08/25/2021] [Indexed: 12/15/2022]
Abstract
Metformin is a commonly used for treating type 2 diabetes and it acts on a variety of organs including the male reproductive system. 17β-estradiol plays an important role in Sertoli cell (SC) proliferation which determines the germ cell development and spermatogenesis. The aim of this study is to investigate the effect of metformin on immature chicken SC proliferation and the potential mechanisms by which 17β-estradiol regulate this process. Results showed that metformin significantly inhibited SC proliferation, whereas 17β-estradiol weakened the inhibitory effects of metformin on SC viability, cell growth, and cell cycle progression. SC proliferation-inhibiting effect of metformin exposure was regulated by decreasing adenosine triphosphate level and respiratory enzyme activity in the mitochondria; this process was possibly mediated by the adenosine monophosphate-activated protein kinase (AMPK)/tuberous sclerosis complex 2 (TSC2)/mammalian target of rapamycin (mTOR) signaling pathway, which was regulated by the down-expressed miR-1764 and by the decreased antioxidant enzyme activity and excessive reactive oxygen species generation. In addition, SCs transfected with the miR-1764 agomir led to an improvement of proliferation capacity through down-regulating AMPKα2 level, which further decreased TSC2 expression and induced mTOR activation. However, the anti-proliferative effect of miR-1764 antagomir can be alleviated by 17β-estradiol treatment via the up-expression of miR-1764 in transfected SCs. Our findings suggest appropriate dose of exogenous 17β-estradiol treatment can ameliorate the inhibitory effect of metformin on SC proliferation via the regulation of AMPK/TSC2/mTOR signaling pathway, this might reduce the risk of poor male fertility caused by the abuse of anti-diabetic agents.
Collapse
|
44
|
Ochoa R, Ortega-Pajares A, Castello FA, Serral F, Fernández Do Porto D, Villa-Pulgarin JA, Varela-M RE, Muskus C. Identification of Potential Kinase Inhibitors within the PI3K/AKT Pathway of Leishmania Species. Biomolecules 2021; 11:biom11071037. [PMID: 34356660 PMCID: PMC8301987 DOI: 10.3390/biom11071037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/09/2021] [Accepted: 07/06/2021] [Indexed: 11/25/2022] Open
Abstract
Leishmaniasis is a public health disease that requires the development of more effective treatments and the identification of novel molecular targets. Since blocking the PI3K/AKT pathway has been successfully studied as an effective anticancer strategy for decades, we examined whether the same approach would also be feasible in Leishmania due to their high amount and diverse set of annotated proteins. Here, we used a best reciprocal hits protocol to identify potential protein kinase homologues in an annotated human PI3K/AKT pathway. We calculated their ligandibility based on available bioactivity data of the reported homologues and modelled their 3D structures to estimate the druggability of their binding pockets. The models were used to run a virtual screening method with molecular docking. We found and studied five protein kinases in five different Leishmania species, which are AKT, CDK, AMPK, mTOR and GSK3 homologues from the studied pathways. The compounds found for different enzymes and species were analysed and suggested as starting point scaffolds for the design of inhibitors. We studied the kinases’ participation in protein–protein interaction networks, and the potential deleterious effects, if inhibited, were supported with the literature. In the case of Leishmania GSK3, an inhibitor of its human counterpart, prioritized by our method, was validated in vitro to test its anti-Leishmania activity and indirectly infer the presence of the enzyme in the parasite. The analysis contributes to improving the knowledge about the presence of similar signalling pathways in Leishmania, as well as the discovery of compounds acting against any of these kinases as potential molecular targets in the parasite.
Collapse
Affiliation(s)
- Rodrigo Ochoa
- Programa de Estudio y Control de Enfermedades Tropicales PECET, Faculty of Medicine, University of Antioquia, Medellín 050010, Colombia;
- Biophysics of Tropical Diseases Max Planck Tandem Group, University of Antioquia, Medellín 050010, Colombia
- Correspondence: (R.O.); (R.E.V.-M.)
| | - Amaya Ortega-Pajares
- Department of Medicine, The Peter Doherty Institute, University of Melbourne, Melbourne, VIC 3000, Australia;
| | - Florencia A. Castello
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), IC-CONICET Ciudad Universitaria, Pabellon 2, Ciudad de Buenos Aires C1428EHA, Argentina; (F.A.C.); (F.S.); (D.F.D.P.)
| | - Federico Serral
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), IC-CONICET Ciudad Universitaria, Pabellon 2, Ciudad de Buenos Aires C1428EHA, Argentina; (F.A.C.); (F.S.); (D.F.D.P.)
| | - Darío Fernández Do Porto
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), IC-CONICET Ciudad Universitaria, Pabellon 2, Ciudad de Buenos Aires C1428EHA, Argentina; (F.A.C.); (F.S.); (D.F.D.P.)
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires Ciudad Universitaria, Pabellon 2, Ciudad de Buenos Aires C1428EHA, Argentina
| | - Janny A. Villa-Pulgarin
- Grupo de Investigaciones Biomédicas, Facultad de Ciencias de la Salud, Corporación Universitaria Remington, Medellín 050034, Colombia;
| | - Rubén E. Varela-M
- Grupo de Investigación en Química y Biotecnología (QUIBIO), Facultad de Ciencias Básicas, Universidad Santiago de Cali, Cali 760035, Colombia
- Correspondence: (R.O.); (R.E.V.-M.)
| | - Carlos Muskus
- Programa de Estudio y Control de Enfermedades Tropicales PECET, Faculty of Medicine, University of Antioquia, Medellín 050010, Colombia;
| |
Collapse
|
45
|
He Z, Zeng X, Zhou D, Liu P, Han D, Xu L, Bu T, Wang J, Ke M, Pan X, Du Y, Xue H, Lu D, Luo B. LncRNA Chaer Prevents Cardiomyocyte Apoptosis From Acute Myocardial Infarction Through AMPK Activation. Front Pharmacol 2021; 12:649398. [PMID: 34335241 PMCID: PMC8322763 DOI: 10.3389/fphar.2021.649398] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/04/2021] [Indexed: 11/30/2022] Open
Abstract
Long non-coding RNA (lncRNA) is widely reported to be involved in cardiac (patho)physiology. Acute myocardial infarction, in which cardiomyocyte apoptosis plays an important role, is a life-threatening disease. Here, we report the lncRNA Chaer that is anti-apoptotic in cardiomyocytes during Acute myocardial infarction. Importantly, lncRNA Chaer is significantly downregulated in both oxygen-glucose deprivation (oxygen-glucose deprivation)-treated cardiomyocytes in vitro and AMI heart. In vitro, overexpression of lncRNA Chaer with adeno virus reduces cardiomyocyte apoptosis induced by OGD-treated while silencing of lncRNA Chaer increases cardiomyocyte apoptosis instead. In vivo, forced expression of lncRNA Chaer with AAV9 attenuates cardiac apoptosis, reduces infarction area and improves mice heart function in AMI. Interestingly, overexpression of lncRNA Chaer promotes the phosphorylation of AMPK, and AMPK inhibitor Compound C reverses the overexpression of lncRNA Chaer effect of reducing cardiomyocyte apoptosis under OGD-treatment. In summary, we identify the novel ability of lncRNA Chaer in regulating cardiomyocyte apoptosis by promoting phosphorylation of AMPK in AMI.
Collapse
Affiliation(s)
- Zhiyu He
- Department of Cardiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaojun Zeng
- Department of Cardiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Deke Zhou
- Department of Cardiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Traditional Chinese Medicine Hospital of Gaozhou, Department of Cardiology, Gaozhou, China
| | - Peiying Liu
- Department of Cardiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Dunzheng Han
- Department of Cardiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lingling Xu
- Department of Cardiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Tong Bu
- Department of Cardiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jinping Wang
- Department of Cardiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Mengmeng Ke
- Department of Cardiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiudi Pan
- Department of Cardiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yipeng Du
- Department of Cardiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hao Xue
- Department of Cardiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Dongfeng Lu
- Department of Cardiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Bihui Luo
- Department of Cardiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
46
|
Elrashidy RA, Ibrahim SE. Cinacalcet as a surrogate therapy for diabetic cardiomyopathy in rats through AMPK-mediated promotion of mitochondrial and autophagic function. Toxicol Appl Pharmacol 2021; 421:115533. [PMID: 33848515 DOI: 10.1016/j.taap.2021.115533] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/26/2021] [Accepted: 04/09/2021] [Indexed: 10/21/2022]
Abstract
Decreased activity of AMP-activated protein kinase (AMPK) is implicated in the pathogenesis of diabetic cardiomyopathy (DCM). Recent evidence suggests a crosstalk between cinacalcet and AMPK activation. This study investigated the effects of cinacalcet on cardiac remodeling and dysfunction in type 2 diabetic rats (T2DM). High fat diet for 4 weeks combined with single intraperitoneal injection of streptozotocin (30 mg/kg) was used to induce type 2 diabetes in rats. Diabetic rats were either orally treated with vehicle, 5 or 10 mg/kg cinacalcet for 4 weeks. Control rats were fed standard chow diet and intraperitoneally injected with citrate buffer. T2DM rats showed lower body weight (BW), hyperglycemia and dyslipidemia, along with increased heart weight (HW) and HW/BW ratio. Masson's trichrome stained cardiac sections revealed massive fibrosis in T2DM rats. There were increased TGF-β1 and hydroxyproline levels, coupled with up-regulation of atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) in hearts of T2DM rats. These alterations were associated with redox imbalance and impaired cardiac functions. Decreased phosphorylation of AMPK at threonine172 residue was found in T2DM hearts. Cinacalcet for 4 weeks significantly activated AMPK and alleviated cardiac remodeling and dysfunction in a dose-dependent manner, without affecting blood glucose, serum calcium and phosphorus levels. Cinacalcet increased the mitochondrial DNA content, and expressions of PGC-1α, UCP-3, beclin-1 and LC3-II/LC3-I ratio. Cinacalcet decreased the pro-apoptotic Bax, while increased the anti-apoptotic Bcl-2 in cardiac tissue of T2DM rats. These findings might highlight cinacalcet as an alternative therapy to combat the development and progression of DCM.
Collapse
MESH Headings
- AMP-Activated Protein Kinases/metabolism
- Animals
- Apoptosis/drug effects
- Autophagy/drug effects
- Cinacalcet/pharmacology
- Diabetes Mellitus, Experimental/chemically induced
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/enzymology
- Diabetes Mellitus, Experimental/physiopathology
- Diabetes Mellitus, Type 2/chemically induced
- Diabetes Mellitus, Type 2/drug therapy
- Diabetes Mellitus, Type 2/enzymology
- Diabetes Mellitus, Type 2/physiopathology
- Diabetic Cardiomyopathies/enzymology
- Diabetic Cardiomyopathies/etiology
- Diabetic Cardiomyopathies/physiopathology
- Diabetic Cardiomyopathies/prevention & control
- Fibrosis
- Hemodynamics/drug effects
- Male
- Mitochondria, Heart/drug effects
- Mitochondria, Heart/enzymology
- Mitochondria, Heart/pathology
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/enzymology
- Myocytes, Cardiac/pathology
- Oxidative Stress/drug effects
- Rats, Wistar
- Signal Transduction
- Streptozocin
- Ventricular Remodeling/drug effects
- Rats
Collapse
Affiliation(s)
- Rania A Elrashidy
- Biochemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt.
| | - Samah E Ibrahim
- Physiology Department, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
47
|
Bolívar S, Noriega L, Ortega S, Osorio E, Rosales W, Mendoza X, Mendoza-Torres E. Novel Targets of Metformin in Cardioprotection: Beyond the Effects Mediated by AMPK. Curr Pharm Des 2021; 27:80-90. [PMID: 32386485 DOI: 10.2174/1381612826666200509232610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 04/30/2020] [Indexed: 11/22/2022]
Abstract
Ischemic heart disease is the main cause of death globally. In the heart, the ischemia/reperfusion injury gives rise to a complex cascade of molecular signals, called cardiac remodeling, which generates harmful consequences for the contractile function of the myocardium and consequently heart failure. Metformin is the drug of choice in the treatment of type 2 diabetes mellitus. Clinical data suggest the direct effects of this drug on cardiac metabolism and studies in animal models showed that metformin activates the classical pathway of AMP-activated protein kinase (AMPK), generating cardioprotective effects during cardiac remodeling, hypertrophy and fibrosis. Furthermore, new studies have emerged about other targets of metformin with a potential role in cardioprotection. This state of the art review shows the available scientific evidence of the cardioprotective potential of metformin and its possible effects beyond AMPK. Targeting of autophagy, mitochondrial function and miRNAs are also explored as cardioprotective approaches along with a therapeutic potential. Further advances related to the biological effects of metformin and cardioprotective approaches may provide new therapies to protect the heart and prevent cardiac remodeling and heart failure.
Collapse
Affiliation(s)
- Samir Bolívar
- Healthcare Pharmacy and Pharmacology Research Group, Facultad de Quimica y Farmacia, Universidad del Atlantico, Barranquilla, Colombia
| | - Laura Noriega
- Healthcare Pharmacy and Pharmacology Research Group, Facultad de Quimica y Farmacia, Universidad del Atlantico, Barranquilla, Colombia
| | - Stefany Ortega
- Healthcare Pharmacy and Pharmacology Research Group, Facultad de Quimica y Farmacia, Universidad del Atlantico, Barranquilla, Colombia
| | - Estefanie Osorio
- Advaced Research Group in Biomedicine, Universidad Libre Seccional Barranquilla, Colombia
| | - Wendy Rosales
- Advaced Research Group in Biomedicine, Universidad Libre Seccional Barranquilla, Colombia
| | - Xilene Mendoza
- Universidad Metropolitana, Grupo de Investigacion en Medicina Traslacional (GIMET), Barranquilla, Colombia
| | - Evelyn Mendoza-Torres
- Advaced Research Group in Biomedicine, Universidad Libre Seccional Barranquilla, Colombia
| |
Collapse
|
48
|
Hardy E, Fernandez-Patron C. Targeting MMP-Regulation of Inflammation to Increase Metabolic Tolerance to COVID-19 Pathologies: A Hypothesis. Biomolecules 2021; 11:biom11030390. [PMID: 33800947 PMCID: PMC7998259 DOI: 10.3390/biom11030390] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 02/28/2021] [Accepted: 03/02/2021] [Indexed: 02/06/2023] Open
Abstract
Many individuals infected with the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) develop no or only mild symptoms, but some can go on onto develop a spectrum of pathologies including pneumonia, acute respiratory distress syndrome, respiratory failure, systemic inflammation, and multiorgan failure. Many pathogens, viral and non-viral, can elicit these pathologies, which justifies reconsidering whether the target of therapeutic approaches to fight pathogen infections should be (a) the pathogen itself, (b) the pathologies elicited by the pathogen interaction with the human host, or (c) a combination of both. While little is known about the immunopathology of SARS-CoV-2, it is well-established that the above-mentioned pathologies are associated with hyper-inflammation, tissue damage, and the perturbation of target organ metabolism. Mounting evidence has shown that these processes are regulated by endoproteinases (particularly, matrix metalloproteinases (MMPs)). Here, we review what is known about the roles played by MMPs in the development of COVID-19 and postulate a mechanism by which MMPs could influence energy metabolism in target organs, such as the lung. Finally, we discuss the suitability of MMPs as therapeutic targets to increase the metabolic tolerance of the host to damage inflicted by the pathogen infection, with a focus on SARS-CoV-2.
Collapse
Affiliation(s)
- Eugenio Hardy
- Center for Molecular Immunology, 16040 Havana, Cuba
- Correspondence: (E.H.); (C.F.-P.)
| | - Carlos Fernandez-Patron
- Department of Biochemistry, Mazankowski Alberta Heart Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
- Correspondence: (E.H.); (C.F.-P.)
| |
Collapse
|
49
|
Lee TW, Lee TI, Lin YK, Chen YC, Kao YH, Chen YJ. Effect of antidiabetic drugs on the risk of atrial fibrillation: mechanistic insights from clinical evidence and translational studies. Cell Mol Life Sci 2021; 78:923-934. [PMID: 32965513 PMCID: PMC11072414 DOI: 10.1007/s00018-020-03648-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 08/18/2020] [Accepted: 09/12/2020] [Indexed: 12/13/2022]
Abstract
Diabetes mellitus (DM) is an independent risk factor for atrial fibrillation (AF), which is the most common sustained arrhythmia and is associated with substantial morbidity and mortality. Advanced glycation end product and its receptor activation, cardiac energy dysmetabolism, structural and electrical remodeling, and autonomic dysfunction are implicated in AF pathophysiology in diabetic hearts. Antidiabetic drugs have been demonstrated to possess therapeutic potential for AF. However, clinical investigations of AF in patients with DM have been scant and inconclusive. This article provides a comprehensive review of research findings on the association between DM and AF and critically analyzes the effect of different pharmacological classes of antidiabetic drugs on AF.
Collapse
Affiliation(s)
- Ting-Wei Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Ting-I Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Department of General Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yung-Kuo Lin
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yao-Chang Chen
- Department of Biomedical Engineering, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Hsun Kao
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yi-Jen Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
- Cardiovascular Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
- Taipei Heart Institute, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
50
|
Liu H, Zheng W, Chen Q, Zhou Y, Pan Y, Zhang J, Bai Y, Shao C. lncRNA CASC19 Contributes to Radioresistance of Nasopharyngeal Carcinoma by Promoting Autophagy via AMPK-mTOR Pathway. Int J Mol Sci 2021; 22:ijms22031407. [PMID: 33573349 PMCID: PMC7866785 DOI: 10.3390/ijms22031407] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/21/2021] [Accepted: 01/28/2021] [Indexed: 02/07/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) is one of the most frequent head and neck malignant tumors and is majorly treated by radiotherapy. However, radiation resistance remains a serious obstacle to the successful treatment of NPC. The aim of this study was to discover the underlying mechanism of radioresistance and to elucidate novel genes that may play important roles in the regulation of NPC radiosensitivity. By using RNA-seq analysis of NPC cell line CNE2 and its radioresistant cell line CNE2R, lncRNA CASC19 was screened out as a candidate radioresistance marker. Both in vitro and in vivo data demonstrated that a high expression level of CASC19 was positively correlated with the radioresistance of NPC, and the radiosensitivity of NPC cells was considerably enhanced by knockdown of CASC19. The incidence of autophagy was enhanced in CNE2R in comparison with CNE2 and another NPC cell line HONE1, and silencing autophagy with LC3 siRNA (siLC3) sensitized NPC cells to irradiation. Furthermore, CASC19 siRNA (siCASC19) suppressed cellular autophagy by inhibiting the AMPK/mTOR pathway and promoted apoptosis through the PARP1 pathway. Our results revealed for the first time that lncRNA CASC19 contributed to the radioresistance of NPC by regulating autophagy. In significance, CASC19 might be a potential molecular biomarker and a new therapeutic target in NPC.
Collapse
|