1
|
Lyons CL, Cowan E, Nilsson O, Mohar M, Peña-Martínez P, Eliasson L, Lagerstedt JO. Apolipoprotein A-I priming via SR-BI and ABCA1 receptor binding upregulates mitochondrial metabolism to promote insulin secretion in INS-1E cells. PLoS One 2024; 19:e0311039. [PMID: 39546458 PMCID: PMC11567530 DOI: 10.1371/journal.pone.0311039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/11/2024] [Indexed: 11/17/2024] Open
Abstract
Apolipoprotein A-I (ApoA-I), the primary component of high-density lipoprotein (HDL) cholesterol primes β-cells to increase insulin secretion, however, the mechanisms involved are not fully defined. Here, we aimed to confirm ApoA-I receptors in β-cells and delineate ApoA-I-receptor pathways in β-cell insulin output. An LRC-TriCEPS experiment was performed using the INS-1E rat β-cell model and ApoA-I for unbiased identification of ApoA-I receptors. Identified targets, alongside ATP binding cassette transporter A1 (ABCA1) (included control) were silenced in the same cells, and insulin secretion (ELISA) and mitochondrial metabolism (seahorse) were assessed with/without ApoA-I priming. Human β-cell expression data was used to investigate ApoA-I receptor pathways in type 2 diabetes (T2D). Scavenger receptor B1 (SR-BI) and regulator of microtubule dynamics 1 were identified as ApoA-I targets. SR-BI or ABCA1 silencing abolished ApoA-I induced increases in insulin secretion. ApoA-I priming increased mitochondrial OXPHOS, however this was greatly attenuated with SR-BI or ABCA1 silencing. Supporting this, human β-cell expression data investigations found SR-BI and ABCA1 to be correlated with genes associated with mitochondrial pathways. In all, SR-BI and ABCA1 correlated with 73 and 3 genes differentially expressed in T2D, respectively. We confirm that SR-BI and ABCA1 are the primary β-cell ApoA-I receptors and demonstrate that ApoA-I priming enhances β-cell insulin secretion via the upregulation of mitochondrial metabolism through ApoA-I-SR-BI and ApoA-I-ABCA1 pathways. We propose that SR-BI relies on mitochondrial and exocytotic pathways, while ABCA1 depends solely on mitochondrial pathways. Our findings uncover new targets in ApoA-I β-cell mechanism for T2D therapies.
Collapse
Affiliation(s)
- Claire L. Lyons
- Department of Experimental Medical Sciences, Unit of Medical Protein Science, Lund University, Lund, Sweden
| | - Elaine Cowan
- Department of Clinical Sciences, Unit of Islet Cell Exocytosis, Lund University Diabetes Centre, Malmö, Sweden
| | - Oktawia Nilsson
- Department of Experimental Medical Sciences, Unit of Medical Protein Science, Lund University, Lund, Sweden
| | - Manca Mohar
- Department of Experimental Medical Sciences, Unit of Medical Protein Science, Lund University, Lund, Sweden
| | - Pablo Peña-Martínez
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Lena Eliasson
- Department of Clinical Sciences, Unit of Islet Cell Exocytosis, Lund University Diabetes Centre, Malmö, Sweden
| | - Jens O. Lagerstedt
- Department of Experimental Medical Sciences, Unit of Medical Protein Science, Lund University, Lund, Sweden
- Department of Clinical Sciences, Unit of Islet Cell Exocytosis, Lund University Diabetes Centre, Malmö, Sweden
| |
Collapse
|
2
|
Lui DTW, Tan KCB. High-density lipoprotein in diabetes: Structural and functional relevance. J Diabetes Investig 2024; 15:805-816. [PMID: 38416054 PMCID: PMC11215696 DOI: 10.1111/jdi.14172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 02/29/2024] Open
Abstract
Low levels of high-density lipoprotein-cholesterol (HDL-C) is considered a major cardiovascular risk factor. However, recent studies have suggested a more U-shaped association between HDL-C and cardiovascular disease. It has been shown that the cardioprotective effect of HDL is related to the functions of HDL particles rather than their cholesterol content. HDL particles are highly heterogeneous and have multiple functions relevant to cardiometabolic conditions including cholesterol efflux capacity, anti-oxidative, anti-inflammatory, and vasoactive properties. There are quantitative and qualitative changes in HDL as well as functional abnormalities in both type 1 and type 2 diabetes. Non-enzymatic glycation, carbamylation, oxidative stress, and systemic inflammation can modify the HDL composition and therefore the functions, especially in situations of poor glycemic control. Studies of HDL proteomics and lipidomics have provided further insights into the structure-function relationship of HDL in diabetes. Interestingly, HDL also has a pleiotropic anti-diabetic effect, improving glycemic control through improvement in insulin sensitivity and β-cell function. Given the important role of HDL in cardiometabolic health, HDL-based therapeutics are being developed to enhance HDL functions rather than to increase HDL-C levels. Among these, recombinant HDL and small synthetic apolipoprotein A-I mimetic peptides may hold promise for preventing and treating diabetes and cardiovascular disease.
Collapse
Affiliation(s)
- David Tak Wai Lui
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong SARChina
| | - Kathryn Choon Beng Tan
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong SARChina
| |
Collapse
|
3
|
Manandhar B, Pandzic E, Deshpande N, Chen SY, Wasinger VC, Kockx M, Glaros EN, Ong KL, Thomas SR, Wilkins MR, Whan RM, Cochran BJ, Rye KA. ApoA-I Protects Pancreatic β-Cells From Cholesterol-Induced Mitochondrial Damage and Restores Their Ability to Secrete Insulin. Arterioscler Thromb Vasc Biol 2024; 44:e20-e38. [PMID: 38095105 DOI: 10.1161/atvbaha.123.319378] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 11/13/2023] [Indexed: 01/26/2024]
Abstract
BACKGROUND High cholesterol levels in pancreatic β-cells cause oxidative stress and decrease insulin secretion. β-cells can internalize apo (apolipoprotein) A-I, which increases insulin secretion. This study asks whether internalization of apoA-I improves β-cell insulin secretion by reducing oxidative stress. METHODS Ins-1E cells were cholesterol-loaded by incubation with cholesterol-methyl-β-cyclodextrin. Insulin secretion in the presence of 2.8 or 25 mmol/L glucose was quantified by radioimmunoassay. Internalization of fluorescently labeled apoA-I by β-cells was monitored by flow cytometry. The effects of apoA-I internalization on β-cell gene expression were evaluated by RNA sequencing. ApoA-I-binding partners on the β-cell surface were identified by mass spectrometry. Mitochondrial oxidative stress was quantified in β-cells and isolated islets with MitoSOX and confocal microscopy. RESULTS An F1-ATPase β-subunit on the β-cell surface was identified as the main apoA-I-binding partner. β-cell internalization of apoA-I was time-, concentration-, temperature-, cholesterol-, and F1-ATPase β-subunit-dependent. β-cells with internalized apoA-I (apoA-I+ cells) had higher cholesterol and cell surface F1-ATPase β-subunit levels than β-cells without internalized apoA-I (apoA-I- cells). The internalized apoA-I colocalized with mitochondria and was associated with reduced oxidative stress and increased insulin secretion. The IF1 (ATPase inhibitory factor 1) attenuated apoA-I internalization and increased oxidative stress in Ins-1E β-cells and isolated mouse islets. Differentially expressed genes in apoA-I+ and apoA-I- Ins-1E cells were related to protein synthesis, the unfolded protein response, insulin secretion, and mitochondrial function. CONCLUSIONS These results establish that β-cells are functionally heterogeneous, and apoA-I restores insulin secretion in β-cells with elevated cholesterol levels by improving mitochondrial redox balance.
Collapse
Affiliation(s)
- Bikash Manandhar
- School of Biomedical Sciences, Faculty of Medicine (B.M., E.N.G., K.L.O., S.R.T., B.J.C., K.-A.R.), UNSW, Sydney, Australia
| | - Elvis Pandzic
- Katharina Gaus Light Microscopy Facility, Mark Wainwright Analytical Centre (E.P., R.M.W.), UNSW, Sydney, Australia
| | - Nandan Deshpande
- School of Biotechnology and Biomolecular Sciences (N.D., S.-Y.C., M.R.W.), UNSW, Sydney, Australia
| | - Sing-Young Chen
- School of Biotechnology and Biomolecular Sciences (N.D., S.-Y.C., M.R.W.), UNSW, Sydney, Australia
| | - Valerie C Wasinger
- Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical Centre (V.C.W.), UNSW, Sydney, Australia
| | - Maaike Kockx
- ANZAC Research Institute, Concord, Sydney, Australia (M.K.)
| | - Elias N Glaros
- School of Biomedical Sciences, Faculty of Medicine (B.M., E.N.G., K.L.O., S.R.T., B.J.C., K.-A.R.), UNSW, Sydney, Australia
| | - Kwok Leung Ong
- School of Biomedical Sciences, Faculty of Medicine (B.M., E.N.G., K.L.O., S.R.T., B.J.C., K.-A.R.), UNSW, Sydney, Australia
| | - Shane R Thomas
- School of Biomedical Sciences, Faculty of Medicine (B.M., E.N.G., K.L.O., S.R.T., B.J.C., K.-A.R.), UNSW, Sydney, Australia
| | - Marc R Wilkins
- School of Biotechnology and Biomolecular Sciences (N.D., S.-Y.C., M.R.W.), UNSW, Sydney, Australia
| | - Renee M Whan
- Katharina Gaus Light Microscopy Facility, Mark Wainwright Analytical Centre (E.P., R.M.W.), UNSW, Sydney, Australia
| | - Blake J Cochran
- School of Biomedical Sciences, Faculty of Medicine (B.M., E.N.G., K.L.O., S.R.T., B.J.C., K.-A.R.), UNSW, Sydney, Australia
| | - Kerry-Anne Rye
- School of Biomedical Sciences, Faculty of Medicine (B.M., E.N.G., K.L.O., S.R.T., B.J.C., K.-A.R.), UNSW, Sydney, Australia
| |
Collapse
|
4
|
Mohsin S, Elabadlah H, Alotaiba MK, AlAmry S, Almehairbi SJ, Harara MMK, Almuhsin AMH, Tariq S, Howarth FC, Adeghate EA. High-Density Lipoprotein Is Located Alongside Insulin in the Islets of Langerhans of Normal and Rodent Models of Diabetes. Nutrients 2024; 16:313. [PMID: 38276551 PMCID: PMC10818677 DOI: 10.3390/nu16020313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/10/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024] Open
Abstract
Recent studies have implicated pre-beta and beta lipoproteins (VLDL and LDL) in the etiopathogenesis of complications of diabetes mellitus (DM). In contrast, alpha lipoprotein (HDL) is protective of the beta cells of the pancreas. This study examined the distribution of HDL in the islets of Langerhans of murine models of type 1 diabetic rats (streptozotocin (STZ)-induced DM in Wistar rats) and type 2 models of DM rats (Goto-Kakizaki (GK), non-diabetic Zucker lean (ZL), and Zucker diabetic and fatty (ZDF)). The extent by which HDL co-localizes with insulin or glucagon in the islets of the pancreas was also investigated. Pancreatic tissues of Wistar non-diabetic, diabetic Wistar, GK, ZL, and ZDF rats were processed for immunohistochemistry. Pancreatic samples of GK rats fed with either a low-fat or a high-fat diet were prepared for transmission immune-electron microscopy (TIEM) to establish the cytoplasmic localization of HDL in islet cells. HDL was detected in the core and periphery of pancreatic islets of Wistar non-diabetic and diabetic, GK, ZL, and ZDF rats. The average total of islet cells immune positive for HDL was markedly (<0.05) reduced in GK and ZDF rats in comparison to Wistar controls. The number of islet cells containing HDL was also remarkably (p < 0.05) reduced in Wistar diabetic rats and GK models fed on high-fat food. The co-localization study using immunofluorescence and TIEM techniques showed that HDL is detected alongside insulin within the secretory granules of β-cells. HDL did not co-localize with glucagon. This observation implies that HDL may contribute to the metabolism of insulin.
Collapse
Affiliation(s)
- Sahar Mohsin
- Department of Anatomy, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (S.M.)
| | - Haba Elabadlah
- Department of Anatomy, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (S.M.)
- Cambridge Medical and Rehabilitation Center, Al Ain P.O. Box 222297, United Arab Emirates
| | - Mariam K. Alotaiba
- Department of Anatomy, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (S.M.)
| | - Suhail AlAmry
- Department of Anatomy, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (S.M.)
| | - Shamma J. Almehairbi
- Department of Anatomy, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (S.M.)
| | - Maha M. K. Harara
- Department of Anatomy, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (S.M.)
| | - Aisha M. H. Almuhsin
- Department of Anatomy, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (S.M.)
| | - Saeed Tariq
- Department of Anatomy, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (S.M.)
| | - Frank Christopher Howarth
- Department of Physiology, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
| | - Ernest A. Adeghate
- Department of Anatomy, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (S.M.)
- Zayed Centre for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| |
Collapse
|
5
|
Denimal D. Antioxidant and Anti-Inflammatory Functions of High-Density Lipoprotein in Type 1 and Type 2 Diabetes. Antioxidants (Basel) 2023; 13:57. [PMID: 38247481 PMCID: PMC10812436 DOI: 10.3390/antiox13010057] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/24/2023] [Accepted: 12/27/2023] [Indexed: 01/23/2024] Open
Abstract
(1) Background: high-density lipoproteins (HDLs) exhibit antioxidant and anti-inflammatory properties that play an important role in preventing the development of atherosclerotic lesions and possibly also diabetes. In turn, both type 1 diabetes (T1D) and type 2 diabetes (T2D) are susceptible to having deleterious effects on these HDL functions. The objectives of the present review are to expound upon the antioxidant and anti-inflammatory functions of HDLs in both diabetes in the setting of atherosclerotic cardiovascular diseases and discuss the contributions of these HDL functions to the onset of diabetes. (2) Methods: this narrative review is based on the literature available from the PubMed database. (3) Results: several antioxidant functions of HDLs, such as paraoxonase-1 activity, are compromised in T2D, thereby facilitating the pro-atherogenic effects of oxidized low-density lipoproteins. In addition, HDLs exhibit diminished ability to inhibit pro-inflammatory pathways in the vessels of individuals with T2D. Although the literature is less extensive, recent evidence suggests defective antiatherogenic properties of HDL particles in T1D. Lastly, substantial evidence indicates that HDLs play a role in the onset of diabetes by modulating glucose metabolism. (4) Conclusions and perspectives: impaired HDL antioxidant and anti-inflammatory functions present intriguing targets for mitigating cardiovascular risk in individuals with diabetes. Further investigations are needed to clarify the influence of glycaemic control and nephropathy on HDL functionality in patients with T1D. Furthermore, exploring the effects on HDL functionality of novel antidiabetic drugs used in the management of T2D may provide intriguing insights for future research.
Collapse
Affiliation(s)
- Damien Denimal
- Unit 1231, Center for Translational and Molecular Medicine, University of Burgundy, 21000 Dijon, France;
- Department of Clinical Biochemistry, Dijon Bourgogne University Hospital, 21079 Dijon, France
| |
Collapse
|
6
|
Graham A. Modulation of the Cellular microRNA Landscape: Contribution to the Protective Effects of High-Density Lipoproteins (HDL). BIOLOGY 2023; 12:1232. [PMID: 37759631 PMCID: PMC10526091 DOI: 10.3390/biology12091232] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023]
Abstract
High-density lipoproteins (HDL) play an established role in protecting against cellular dysfunction in a variety of different disease contexts; however, harnessing this therapeutic potential has proved challenging due to the heterogeneous and relative instability of this lipoprotein and its variable cargo molecules. The purpose of this study is to examine the contribution of microRNA (miRNA; miR) sequences, either delivered directly or modulated endogenously, to these protective functions. This narrative review introduces the complex cargo carried by HDL, the protective functions associated with this lipoprotein, and the factors governing biogenesis, export and the uptake of microRNA. The possible mechanisms by which HDL can modulate the cellular miRNA landscape are considered, and the impact of key sequences modified by HDL is explored in diseases such as inflammation and immunity, wound healing, angiogenesis, dyslipidaemia, atherosclerosis and coronary heart disease, potentially offering new routes for therapeutic intervention.
Collapse
Affiliation(s)
- Annette Graham
- Department of Biological and Biomedical Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Cowcaddens Road, Glasgow G4 0BA, UK
| |
Collapse
|
7
|
Denimal D, Monier S, Bouillet B, Vergès B, Duvillard L. High-Density Lipoprotein Alterations in Type 2 Diabetes and Obesity. Metabolites 2023; 13:metabo13020253. [PMID: 36837872 PMCID: PMC9967905 DOI: 10.3390/metabo13020253] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/07/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Alterations affecting high-density lipoproteins (HDLs) are one of the various abnormalities observed in dyslipidemia in type 2 diabetes mellitus (T2DM) and obesity. Kinetic studies have demonstrated that the catabolism of HDL particles is accelerated. Both the size and the lipidome and proteome of HDL particles are significantly modified, which likely contributes to some of the functional defects of HDLs. Studies on cholesterol efflux capacity have yielded heterogeneous results, ranging from a defect to an improvement. Several studies indicate that HDLs are less able to inhibit the nuclear factor kappa-B (NF-κB) proinflammatory pathway, and subsequently, the adhesion of monocytes on endothelium and their recruitment into the subendothelial space. In addition, the antioxidative function of HDL particles is diminished, thus facilitating the deleterious effects of oxidized low-density lipoproteins on vasculature. Lastly, the HDL-induced activation of endothelial nitric oxide synthase is less effective in T2DM and metabolic syndrome, contributing to several HDL functional defects, such as an impaired capacity to promote vasodilatation and endothelium repair, and difficulty counteracting the production of reactive oxygen species and inflammation.
Collapse
Affiliation(s)
- Damien Denimal
- INSERM, UMR1231, University of Burgundy, 21000 Dijon, France
- Department of Biochemistry, CHU Dijon Bourgogne, 21000 Dijon, France
- Correspondence:
| | - Serge Monier
- INSERM, UMR1231, University of Burgundy, 21000 Dijon, France
| | - Benjamin Bouillet
- INSERM, UMR1231, University of Burgundy, 21000 Dijon, France
- Department of Endocrinology and Diabetology, CHU Dijon Bourgogne, 21000 Dijon, France
| | - Bruno Vergès
- INSERM, UMR1231, University of Burgundy, 21000 Dijon, France
- Department of Endocrinology and Diabetology, CHU Dijon Bourgogne, 21000 Dijon, France
| | - Laurence Duvillard
- INSERM, UMR1231, University of Burgundy, 21000 Dijon, France
- Department of Biochemistry, CHU Dijon Bourgogne, 21000 Dijon, France
| |
Collapse
|
8
|
Topical Glucocorticoid Use and the Risk of Posttransplant Diabetes. Case Rep Endocrinol 2023; 2023:3648178. [PMID: 36718481 PMCID: PMC9884167 DOI: 10.1155/2023/3648178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 01/22/2023] Open
Abstract
Systemically administered glucocorticoids constitute an essential part of the immunosuppressive regimen for transplant recipients, yet their known risks of causing hyperglycemia or posttransplant diabetes require close monitoring and minimisation of use, when possible, to prevent detrimental effects on patient morbidity and graft survival. Topical glucocorticoids, on the other hand, are rarely considered to affect glucose metabolism and therefore seldomly monitored, despite their wide and in some cases, long-term use. We report a case of a renal transplant recipient presenting with acute hyperosmolar hyperglycemia after treatment with topical glucocorticoids and present a mini review of the literature.
Collapse
|
9
|
Del Giudice R, Lindvall M, Nilsson O, Monti DM, Lagerstedt JO. The Apparent Organ-Specificity of Amyloidogenic ApoA-I Variants Is Linked to Tissue-Specific Extracellular Matrix Components. Int J Mol Sci 2022; 24:318. [PMID: 36613763 PMCID: PMC9820410 DOI: 10.3390/ijms24010318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/15/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Apolipoprotein A-I (ApoA-I) amyloidosis is a rare protein misfolding disease where fibrils of the N-terminal domain of the protein accumulate in several organs, leading to their failure. Although ApoA-I amyloidosis is systemic, the different amyloidogenic variants show a preferential tissue accumulation that appears to correlate with the location of the mutation in the protein sequence and with the local extracellular microenvironment. However, the factors leading to cell/tissues damage, as well as the mechanisms behind the observed organ specificity are mostly unknown. Therefore, we investigated the impact of ApoA-I variants on cell physiology and the mechanisms driving the observed tissue specificity. We focused on four ApoA-I amyloidogenic variants and analyzed their cytotoxicity as well as their ability to alter redox homeostasis in cell lines from different tissues (liver, kidney, heart, skin). Moreover, variant-specific interactions with extracellular matrix (ECM) components were measured by synchrotron radiation circular dichroism and enzyme-linked immunosorbent assay. Data indicated that ApoA-I variants exerted a cytotoxic effect in a time and cell-type-specific manner that seems to be due to protein accumulation in lysosomes. Interestingly, the ApoA-I variants exhibited specific preferential binding to the ECM components, reflecting their tissue accumulation pattern in vivo. While the binding did not to appear to affect protein conformations in solution, extended incubation of the amyloidogenic variants in the presence of different ECM components resulted in different aggregation propensity and aggregation patterns.
Collapse
Affiliation(s)
- Rita Del Giudice
- Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| | - Mikaela Lindvall
- Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| | - Oktawia Nilsson
- Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| | - Daria Maria Monti
- Department of Chemical Sciences, University of Napoli Federico II, Complesso Universitario Monte Sant’Angelo, 80126 Napoli, Italy
- Istituto Nazionale di Biostrutture e Biosistemi (INBB), 00136 Rome, Italy
| | - Jens O. Lagerstedt
- Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
- Islet Cell Exocytosis, Lund University Diabetes Centre, Department of Clinical Sciences Malmö, Lund University, 20506 Malmö, Sweden
| |
Collapse
|
10
|
Nagao M, Lagerstedt JO, Eliasson L. Secretory granule exocytosis and its amplification by cAMP in pancreatic β-cells. Diabetol Int 2022; 13:471-479. [PMID: 35694000 PMCID: PMC9174382 DOI: 10.1007/s13340-022-00580-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/17/2022] [Indexed: 10/18/2022]
Abstract
The sequence of events for secreting insulin in response to glucose in pancreatic β-cells is termed "stimulus-secretion coupling". The core of stimulus-secretion coupling is a process which generates electrical activity in response to glucose uptake and causes Ca2+ oscillation for triggering exocytosis of insulin-containing secretory granules. Prior to exocytosis, the secretory granules are mobilized and docked to the plasma membrane and primed for fusion with the plasma membrane. Together with the final fusion with the plasma membrane, these steps are named the exocytosis process of insulin secretion. The steps involved in the exocytosis process are crucial for insulin release from β-cells and considered indispensable for glucose homeostasis. We recently confirmed a signature of defective exocytosis process in human islets and β-cells of obese donors with type 2 diabetes (T2D). Furthermore, cyclic AMP (cAMP) potentiates glucose-stimulated insulin secretion through mechanisms including accelerating the exocytosis process. In this mini-review, we aimed to organize essential knowledge of the secretory granule exocytosis and its amplification by cAMP. Then, we suggest the fatty acid translocase CD36 as a predisposition in β-cells for causing defective exocytosis, which is considered a pathogenesis of T2D in relation to obesity. Finally, we propose potential therapeutics of the defective exocytosis based on a CD36-neutralizing antibody and on Apolipoprotein A-I (ApoA-I), for improving β-cell function in T2D.
Collapse
Affiliation(s)
- Mototsugu Nagao
- Department of Endocrinology, Diabetes and Metabolism, Graduate School of Medicine, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8603 Japan
- Department of Clinical Sciences Malmö, Islet Cell Exocytosis, Lund University Diabetes Centre, Lund University, CRC 91-11, Jan Waldenströms Gata 35, 214 28 Malmö, Sweden
| | - Jens O. Lagerstedt
- Department of Clinical Sciences Malmö, Islet Cell Exocytosis, Lund University Diabetes Centre, Lund University, CRC 91-11, Jan Waldenströms Gata 35, 214 28 Malmö, Sweden
- Novo Nordisk A/S, Copenhagen, Denmark
| | - Lena Eliasson
- Department of Clinical Sciences Malmö, Islet Cell Exocytosis, Lund University Diabetes Centre, Lund University, CRC 91-11, Jan Waldenströms Gata 35, 214 28 Malmö, Sweden
| |
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW To critically appraise new insights into HDL structure and function in type 1 diabetes (T1DM) and type 2 diabetes (T2DM). RECENT FINDINGS In young T1DM patients with early renal impairment and a high inflammatory score, both HDL antioxidative activity and endothelial vasodilatory function were impaired, revealing a critical link between HDL dysfunction, subclinical vascular damage, systemic inflammation and end organ damage. HDL may inhibit development of T2DM by attenuating endoplasmic reticulum (ER) stress and apoptotic loss of pancreatic β-cells, an effect due in part to ABC transporter-mediated efflux of specific oxysterols with downstream activation of the hedghehog signalling receptor, Smoothened. The apoM-sphingosine-1-phosphate complex is critical to HDL antidiabetic activity, encompassing protection against insulin resistance, promotion of insulin secretion, enhanced β-cell survival and inhibition of hepatic glucose production. Structure-function studies of HDL in hyperglycemic, dyslipidemic T2DM patients revealed both gain and loss of lipidomic and proteomic components. Such changes attenuated both the optimal protective effects of HDL on mitochondrial function and its capacity to inhibit endothelial cell apoptosis. Distinct structural components associated with individual HDL functions. SUMMARY Extensive evidence indicates that both the proteome and lipidome of HDL are altered in T1DM and T2DM, with impairment of multiple functions.
Collapse
Affiliation(s)
- M. John Chapman
- Faculty of Medicine, Sorbonne University
- Endocrinology and Cardiovascular Disease Prevention, Pitie-Salpetriere University Hospital
- National Institute for Health and Medical Research (INSERM), Paris, France
| |
Collapse
|
12
|
Arefanian H, Ramji Q, Gupta N, Spigelman AF, Grynoch D, MacDonald PE, Mueller TF, Gazda LS, Rajotte RV, Rayat GR. Yield, cell composition, and function of islets isolated from different ages of neonatal pigs. Front Endocrinol (Lausanne) 2022; 13:1032906. [PMID: 36619563 PMCID: PMC9811407 DOI: 10.3389/fendo.2022.1032906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/01/2022] [Indexed: 12/24/2022] Open
Abstract
The yield, cell composition, and function of islets isolated from various ages of neonatal pigs were characterized using in vitro and in vivo experimental models. Islets from 7- and 10-day-old pigs showed significantly better function both in vitro and in vivo compared to islets from 3- and 5-day-old pigs however, the islet yield from 10-day-old pigs were significantly less than those obtained from the other pigs. Since islets from 3-day-old pigs were used in our previous studies and islets from 7-day-old pigs reversed diabetes more efficiently than islets from other groups, we further evaluated the function of these islets post-transplantation. B6 rag-/- mouse recipients of various numbers of islets from 7-day-old pigs achieved normoglycemia faster and showed significantly improved response to glucose challenge compared to the recipients of the same numbers of islets from 3-day-old pigs. These results are in line with the findings that islets from 7-day-old pigs showed reduced voltage-dependent K+ (Kv) channel activity and their ability to recover from post-hypoxia/reoxygenation stress. Despite more resident immune cells and immunogenic characteristics detected in islets from 7-day-old pigs compared to islets from 3-day-old pigs, the combination of anti-LFA-1 and anti-CD154 monoclonal antibodies are equally effective at preventing the rejection of islets from both age groups of pigs. Collectively, these results suggest that islets from various ages of neonatal pigs vary in yield, cellular composition, and function. Such parameters may be considered when defining the optimal pancreas donor for islet xenotransplantation studies.
Collapse
Affiliation(s)
- Hossein Arefanian
- Alberta Diabetes Institute, Ray Rajotte Surgical-Medical Research Institute, Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
- Department of Immunology & Microbiology, Dasman Diabetes Institute, Dasman, Kuwait
| | - Qahir Ramji
- Alberta Diabetes Institute, Ray Rajotte Surgical-Medical Research Institute, Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Nancy Gupta
- Alberta Diabetes Institute, Ray Rajotte Surgical-Medical Research Institute, Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Aliya F. Spigelman
- Alberta Diabetes Institute, Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Donald Grynoch
- Alberta Precision Labs, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Patrick E. MacDonald
- Alberta Diabetes Institute, Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Thomas F. Mueller
- Division of Nephrology, University Hospital Zurich, Zurich, Switzerland
| | | | - Ray V. Rajotte
- Alberta Diabetes Institute, Ray Rajotte Surgical-Medical Research Institute, Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
- *Correspondence: Gina R. Rayat, ; Ray V. Rajotte,
| | - Gina R. Rayat
- Alberta Diabetes Institute, Ray Rajotte Surgical-Medical Research Institute, Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
- *Correspondence: Gina R. Rayat, ; Ray V. Rajotte,
| |
Collapse
|
13
|
Ochoa-Guzmán A, Guillén-Quintero D, Muñoz-Hernández L, García A, Díaz-Díaz E, Pérez-Méndez O, Rodríguez-Guillén R, Mitre-Aguilar IB, Zentella-Dehesa A, Aguilar-Salinas CA, Tusié-Luna MT. The influence of high-density lipoprotein (HDL) and HDL subfractions on insulin secretion and cholesterol efflux in pancreatic derived β-cells. J Endocrinol Invest 2021; 44:1897-1904. [PMID: 33486704 DOI: 10.1007/s40618-021-01504-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 01/08/2021] [Indexed: 10/22/2022]
Abstract
BACKGROUND High-density lipoprotein (HDL) is considered a complex plasma-circulating particle with subfractions that vary in function, size, and chemical composition. We sought to test the effects of HDL, and HDL subfractions on insulin secretion and cholesterol efflux in the β-cell line MIN-6. METHODS We used total HDL and HDL subfractions 2a, 2b, 3a, 3b, and 3c, isolated from human plasma, to test insulin secretion under different glucose concentrations as well as insulin content and cholesterol efflux in the insulinoma MIN-6 cell line. RESULTS Incubation of MIN-6 cells with low glucose and total HDL increased insulin release two-fold. Meanwhile, when high glucose and HDL were used, insulin release increased more than five times. HDL subfractions 2a, 2b, 3a, 3b, and 3c elicited higher insulin secretion and cholesterol efflux than their respective controls, at both low and high glucose concentrations. The insulin content of the MIN-6 cells incubated with low glucose and any of the five HDL subclasses had a modest reduction compared with their controls. However, there were no statistically significant differences between each HDL subfraction on their capacity of eliciting insulin secretion, insulin content, or cholesterol efflux. CONCLUSIONS HDL can trigger insulin secretion under low, normal, and high glucose conditions. We found that all HDL subfractions exhibit very similar capacity to increase insulin secretion and cholesterol efflux. This is the first report demonstrating that HDL subfractions act both as insulin secretagogues (under low glucose) and insulin secretion enhancers (under high glucose) in the MIN-6 cell line.
Collapse
Affiliation(s)
- A Ochoa-Guzmán
- Unit of Molecular Biology and Genomic Medicine, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga #15, Tlalpan, Belisario Domínguez Sección XVI, P.C. 14080, Mexico City, Mexico
| | - D Guillén-Quintero
- Unit of Molecular Biology and Genomic Medicine, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga #15, Tlalpan, Belisario Domínguez Sección XVI, P.C. 14080, Mexico City, Mexico
| | - L Muñoz-Hernández
- Research Unit on Metabolic Diseases, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - A García
- Unit of Biochemistry Dr. Guillermo Soberón Acevedo, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - E Díaz-Díaz
- Department of Reproductive Biology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - O Pérez-Méndez
- Department of Molecular Biology, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
- School of Engineering and Sciences, Tecnológico de Monterrey, Campus CDMX, Mexico City, Mexico
| | - R Rodríguez-Guillén
- Unit of Molecular Biology and Genomic Medicine, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga #15, Tlalpan, Belisario Domínguez Sección XVI, P.C. 14080, Mexico City, Mexico
| | - I B Mitre-Aguilar
- Unit of Biochemistry Dr. Guillermo Soberón Acevedo, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - A Zentella-Dehesa
- Unit of Biochemistry Dr. Guillermo Soberón Acevedo, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - C A Aguilar-Salinas
- Research Unit on Metabolic Diseases, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
- Division of Nutrition, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
- Departamento de Endocrinología y Metabolismo, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
- Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, NL, Mexico
| | - M T Tusié-Luna
- Unit of Molecular Biology and Genomic Medicine, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga #15, Tlalpan, Belisario Domínguez Sección XVI, P.C. 14080, Mexico City, Mexico.
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| |
Collapse
|
14
|
MicroRNA Sequences Modulated by Beta Cell Lipid Metabolism: Implications for Type 2 Diabetes Mellitus. BIOLOGY 2021; 10:biology10060534. [PMID: 34203703 PMCID: PMC8232095 DOI: 10.3390/biology10060534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 12/23/2022]
Abstract
Alterations in lipid metabolism within beta cells and islets contributes to dysfunction and apoptosis of beta cells, leading to loss of insulin secretion and the onset of type 2 diabetes. Over the last decade, there has been an explosion of interest in understanding the landscape of gene expression which influences beta cell function, including the importance of small non-coding microRNA sequences in this context. This review sought to identify the microRNA sequences regulated by metabolic challenges in beta cells and islets, their targets, highlight their function and assess their possible relevance as biomarkers of disease progression in diabetic individuals. Predictive analysis was used to explore networks of genes targeted by these microRNA sequences, which may offer new therapeutic strategies to protect beta cell function and delay the onset of type 2 diabetes.
Collapse
|
15
|
HDL Cholesterol and Non-Cardiovascular Disease: A Narrative Review. Int J Mol Sci 2021; 22:ijms22094547. [PMID: 33925284 PMCID: PMC8123633 DOI: 10.3390/ijms22094547] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 12/19/2022] Open
Abstract
High density lipoprotein (HDL) cholesterol has traditionally been considered the “good cholesterol”, and most of the research regarding HDL cholesterol has for decades revolved around the possible role of HDL in atherosclerosis and its therapeutic potential within atherosclerotic cardiovascular disease. Randomized trials aiming at increasing HDL cholesterol have, however, failed and left questions to what role HDL cholesterol plays in human health and disease. Recent observational studies involving non-cardiovascular diseases have shown that high levels of HDL cholesterol are not necessarily associated with beneficial outcomes as observed for age-related macular degeneration, type II diabetes, dementia, infection, and mortality. In this narrative review, we discuss these interesting associations between HDL cholesterol and non-cardiovascular diseases, covering observational studies, human genetics, and plausible mechanisms.
Collapse
|
16
|
Cochran BJ, Ong KL, Manandhar B, Rye KA. High Density Lipoproteins and Diabetes. Cells 2021; 10:cells10040850. [PMID: 33918571 PMCID: PMC8069617 DOI: 10.3390/cells10040850] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/01/2021] [Accepted: 04/01/2021] [Indexed: 12/11/2022] Open
Abstract
Epidemiological studies have established that a high plasma high density lipoprotein cholesterol (HDL-C) level is associated with reduced cardiovascular risk. However, recent randomised clinical trials of interventions that increase HDL-C levels have failed to establish a causal basis for this relationship. This has led to a shift in HDL research efforts towards developing strategies that improve the cardioprotective functions of HDLs, rather than simply increasing HDL-C levels. These efforts are also leading to the discovery of novel HDL functions that are unrelated to cardiovascular disease. One of the most recently identified functions of HDLs is their potent antidiabetic properties. The antidiabetic functions of HDLs, and recent key advances in this area are the subject of this review. Given that all forms of diabetes are increasing at an alarming rate globally, there is a clear unmet need to identify and develop new approaches that will complement existing therapies and reduce disease progression as well as reverse established disease. Exploration of a potential role for HDLs and their constituent lipids and apolipoproteins in this area is clearly warranted. This review highlights focus areas that have yet to be investigated and potential strategies for exploiting the antidiabetic functions of HDLs.
Collapse
Affiliation(s)
| | | | | | - Kerry-Anne Rye
- Correspondence: ; Tel.: +61-2-9385-1219; Fax: +61-2-9385-1389
| |
Collapse
|
17
|
Protection against Glucolipotoxicity by High Density Lipoprotein in Human PANC-1 Hybrid 1.1B4 Pancreatic Beta Cells: The Role of microRNA. BIOLOGY 2021; 10:biology10030218. [PMID: 33805674 PMCID: PMC8000094 DOI: 10.3390/biology10030218] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 03/11/2021] [Indexed: 02/06/2023]
Abstract
High-density lipoproteins provide protection against the damaging effects of glucolipotoxicity in beta cells, a factor which sustains insulin secretion and staves off onset of type 2 diabetes mellitus. This study examines epigenetic changes in small non-coding microRNA sequences induced by high density lipoproteins in a human hybrid beta cell model, and tests the impact of delivery of a single sequence in protecting against glucolipotoxicity. Human PANC-1.1B4 cells were used to establish Bmax and Kd for [3H]cholesterol efflux to high density lipoprotein, and minimum concentrations required to protect cell viability and reduce apoptosis to 30mM glucose and 0.25 mM palmitic acid. Microchip array identified the microRNA signature associated with high density lipoprotein treatment, and one sequence, hsa-miR-21-5p, modulated via delivery of a mimic and inhibitor. The results confirm that low concentrations of high-density lipoprotein can protect against glucolipotoxicity, and report the global microRNA profile associated with this lipoprotein; delivery of miR-21-5p mimic altered gene targets, similar to high density lipoprotein, but could not provide sufficient protection against glucolipotoxicity. We conclude that the complex profile of microRNA changes due to HDL treatment may be difficult to replicate using a single microRNA, findings which may inform current drug strategies focused on this approach.
Collapse
|
18
|
Cochran BJ, Ong KL, Manandhar B, Rye KA. APOA1: a Protein with Multiple Therapeutic Functions. Curr Atheroscler Rep 2021; 23:11. [PMID: 33591433 DOI: 10.1007/s11883-021-00906-7] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2021] [Indexed: 01/11/2023]
Abstract
PURPOSE OF THE REVIEW Apolipoprotein (APO) A1, the main apolipoprotein of plasma high-density lipoproteins (HDLs), has several well documented cardioprotective functions. A number of additional potentially beneficial functions of APOA1 have recently been identified. This review is concerned with the therapeutic potential of all of these functions in multiple disease states. RECENT FINDINGS Knowledge of the beneficial functions of APOA1 in atherosclerosis, thrombosis, diabetes, cancer, and neurological disorders is increasing exponentially. These insights have led to the development of clinically relevant peptides and APOA1-containing, synthetic reconstituted HDL (rHDL) preparations that mimic the functions of full-length APOA1. APOA1 is a multifunctional apolipoprotein that has therapeutic potential in several diseases. Translation of this knowledge into the clinic is likely to be dependent on the efficacy and bioavailability of small peptides and synthetic rHDL preparations that are currently under investigation, or in development.
Collapse
Affiliation(s)
- Blake J Cochran
- Lipid Research Group, School of Medical Sciences, Faculty of Medicine, University of New South Wales Sydney, Level 4E Wallace Wurth Building, Kensington, New South Wales, 2052, Australia
| | - Kwok-Leung Ong
- Lipid Research Group, School of Medical Sciences, Faculty of Medicine, University of New South Wales Sydney, Level 4E Wallace Wurth Building, Kensington, New South Wales, 2052, Australia
| | - Bikash Manandhar
- Lipid Research Group, School of Medical Sciences, Faculty of Medicine, University of New South Wales Sydney, Level 4E Wallace Wurth Building, Kensington, New South Wales, 2052, Australia
| | - Kerry-Anne Rye
- Lipid Research Group, School of Medical Sciences, Faculty of Medicine, University of New South Wales Sydney, Level 4E Wallace Wurth Building, Kensington, New South Wales, 2052, Australia.
| |
Collapse
|
19
|
Edmunds SJ, Liébana-García R, Stenkula KG, Lagerstedt JO. A short peptide of the C-terminal class Y helices of apolipoprotein A-I has preserved functions in cholesterol efflux and in vivo metabolic control. Sci Rep 2020; 10:18070. [PMID: 33093642 PMCID: PMC7582918 DOI: 10.1038/s41598-020-75232-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 10/12/2020] [Indexed: 12/25/2022] Open
Abstract
Apolipoprotein A-I (ApoA-I) of high-density lipoprotein (HDL) induces glucose uptake by muscle tissues and stimulates pancreatic insulin secretion, and also facilitates cholesterol transport in circulation, and is explored for anti-diabetic and anti-atherosclerotic treatments. As the better alternative to complex protein-lipid formulations it was recently established that the C-terminal region of the ApoA-I protein singly improves the metabolic control and prevents formation of atherosclerotic plaques. Additional investigations of peptides based on the ApoA-I structure may lead to novel anti-diabetic drugs. We here investigate a short peptide (33mer, RG33) that corresponds to the two last helical segments (aa 209-241) of the ApoA-I structure (so-called class Y-helices which forms amphipathic helices) for stability and solubility in serum, for in vitro cholesterol efflux capability, and for providing in vivo glucose control in an insulin resistant mouse model. The RG33 peptide efficiently solubilizes lipid-vesicles, and promotes the efflux of cholesterol from cultured macrophages. The efflux capacity is significantly increased in the presence of lipids compared to non-lipidated RG33. Finally, acute treatment with the RG33 peptide significantly improves the glucose clearance capacity of insulin resistant mice. The impact of the RG33 peptide on glucose control and cholesterol transport, as well as the physicochemical properties, makes it a good candidate for translational exploration of its therapeutic potential in diabetes treatment.
Collapse
Affiliation(s)
- Shelley J Edmunds
- Biomedical Center Floor C13, Lund University Diabetes Center, Tornavagen 10, 221 84, Lund, Sweden
| | - Rebeca Liébana-García
- Biomedical Center Floor C13, Lund University Diabetes Center, Tornavagen 10, 221 84, Lund, Sweden
| | - Karin G Stenkula
- Biomedical Center Floor C13, Lund University Diabetes Center, Tornavagen 10, 221 84, Lund, Sweden
| | - Jens O Lagerstedt
- Biomedical Center Floor C13, Lund University Diabetes Center, Tornavagen 10, 221 84, Lund, Sweden. .,Lund Institute of Advanced Neutron and X-ray Science (LINXS), Lund, Sweden.
| |
Collapse
|