1
|
Tersenidis C, Poulios S, Komis G, Panteris E, Vlachonasios K. Roles of Histone Acetylation and Deacetylation in Root Development. PLANTS (BASEL, SWITZERLAND) 2024; 13:2760. [PMID: 39409630 PMCID: PMC11478958 DOI: 10.3390/plants13192760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 09/26/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024]
Abstract
Roots are usually underground plant organs, responsible for anchoring to the soil, absorbing water and nutrients, and interacting with the rhizosphere. During root development, roots respond to a variety of environmental signals, contributing to plant survival. Histone post-translational modifications play essential roles in gene expression regulation, contributing to plant responses to environmental cues. Histone acetylation is one of the most studied post-translational modifications, regulating numerous genes involved in various biological processes, including development and stress responses. Although the effect of histone acetylation on plant responses to biotic and abiotic stimuli has been extensively reviewed, no recent reviews exist focusing on root development regulation by histone acetylation. Therefore, this review brings together all the knowledge about the impact of histone acetylation on root development in several plant species, mainly focusing on Arabidopsis thaliana. Here, we summarize the role of histone acetylation and deacetylation in numerous aspects of root development, such as stem cell niche maintenance, cell division, expansion and differentiation, and developmental zone determination. We also emphasize the gaps in current knowledge and propose new perspectives for research toward deeply understanding the role of histone acetylation in root development.
Collapse
Affiliation(s)
- Christos Tersenidis
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (C.T.); (S.P.); (G.K.); (E.P.)
| | - Stylianos Poulios
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (C.T.); (S.P.); (G.K.); (E.P.)
| | - George Komis
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (C.T.); (S.P.); (G.K.); (E.P.)
| | - Emmanuel Panteris
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (C.T.); (S.P.); (G.K.); (E.P.)
| | - Konstantinos Vlachonasios
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (C.T.); (S.P.); (G.K.); (E.P.)
- Natural Products Research Centre of Excellence (NatPro-AUTh), Center of Interdisciplinary Research and Innovation, Aristotle University of Thessaloniki (CIRI-AUTh), 57001 Thessaloniki, Greece
| |
Collapse
|
2
|
Almasoudi AO, Seyam MK, Sanchez F. The effect of trunk exercises with hip strategy training to maximize independence level and balance for patient with stroke: Randomized controlled study. PHYSIOTHERAPY RESEARCH INTERNATIONAL 2024; 29:e2142. [PMID: 39425530 DOI: 10.1002/pri.2142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 09/04/2024] [Accepted: 09/21/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND Balance while seated and the capacity to conduct selective trunk movements are significant predictors of functional outcomes following stroke. Patients with inappropriate muscle activation and inadequate movement control in the trunk muscles cause mobility and daily function difficulties. Stroke patients have weak leg muscles and decreased balance, resulting in compensatory changes. Functional postural strategy training is necessary to restore balance in these patients. Few studies have examined the effect of physical therapy trunk exercises with hip strategy training on improving balance and increasing independence after stroke. PURPOSE This study aimed to explore the effect of selective trunk exercises (STE) with hip strategy training in improving balance in patients with stroke as well as independence levels. METHOD A multicenter inpatient stroke treatment randomized pre- and post-test control trial. Forty-six stroke survivors were randomly allocated to experimental or control groups (n = 23 each). The experimental group received hip strategy training and trunk exercises. All groups received Neuro-Developmental Treatment (NDT)-based physical therapy four times a week for 6 weeks. Trunk impairment scale, Berg Balance Scale (BBS), and functional independence measure (FIM) measured static and dynamic seated balance, functional balance, and trunk movement coordination pre- and post-therapy. RESULTS The experimental group's post-therapeutic measures were substantially higher than the control group. The experimental group's TIS score, and subscale improved more than the control group. The experimental group considerably increased the BBS score. The experimental group also showed greater FIM gains. CONCLUSIONS This study demonstrated that adding STE in conjunction with hip strategy training to patients after has a positive impact on trunk control while maintaining static and dynamic sitting balance, functional balance, and independence levels which are effective in stroke rehabilitation.
Collapse
Affiliation(s)
- Alanoud O Almasoudi
- Department of Physical Therapy and Rehabilitation, King Khalid Hospital, Second Health Cluster, Ministry of Health, Majmaah, Saudi Arabia
| | - Mohamed K Seyam
- Department of Physical Therapy and Health Rehabilitation, College of Applied Medical Sciences, Al Majmaah University, Al Majmaah, Saudi Arabia
| | - Froiland Sanchez
- Rehab Program & Services, Sultan Bin Abdulaziz Humanitarian City, Riyadh, Saudi Arabia
| |
Collapse
|
3
|
Guo Y, You Y, Chen F, Liao Y. Identification of the histone acetyltransferase gene family in the Artemisia annua genome. FRONTIERS IN PLANT SCIENCE 2024; 15:1389958. [PMID: 39114468 PMCID: PMC11303224 DOI: 10.3389/fpls.2024.1389958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/24/2024] [Indexed: 08/10/2024]
Abstract
As the most effective therapeutic drug for malaria, artemisinin can only be extracted from Artemisia annua L., which is sensitive to the surrounding growing habitat. Histone acetyltransferases (HATs) contain acetyl groups, which modulate mRNA transcription and thereby regulate plant environmental adaptation. Comprehensive analyses of HATs have been performed in many plants, but systematic identification of HATs in medicinal plants is lacking. In the present study, we identified 11 AaHATs and characterized these genes into four classes according to their conserved protein structures. According to the phylogenetic analysis results, potential functions of HAT genes from Arabidopsis thaliana, Oryza sativa, and A. annua were found. According to our results, AaHAT has a highly conserved evolutionary history and is rich in highly variable regions; thus, AaHAT has become a comparatively ideal object of medical plant identification and systematic study. Moreover, motifs commonly present in histone acetyltransferases in the A. annua genome may be associated with functional AaHATs. AaHATs appear to be related to gene-specific functions. AaHATs are regulated by cis-elements, and these genes may affect phytohormone responsiveness, adaptability to stress, and developmental growth. We performed expression analyses to determine the potential roles of AaHATs in response to three environmental stresses. Our results revealed a cluster of AaHATs that potentially plays a role in the response of plants to dynamic environments.
Collapse
Affiliation(s)
| | | | | | - Yong Liao
- Department of Pharmacy, Second Clinical Medical College, China Three Gorges University, Yichang, Hubei, China
| |
Collapse
|
4
|
Wang W, Sung S. Chromatin sensing: integration of environmental signals to reprogram plant development through chromatin regulators. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4332-4345. [PMID: 38436409 PMCID: PMC11263488 DOI: 10.1093/jxb/erae086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/29/2024] [Indexed: 03/05/2024]
Abstract
Chromatin regulation in eukaryotes plays pivotal roles in controlling the developmental regulatory gene network. This review explores the intricate interplay between chromatin regulators and environmental signals, elucidating their roles in shaping plant development. As sessile organisms, plants have evolved sophisticated mechanisms to perceive and respond to environmental cues, orchestrating developmental programs that ensure adaptability and survival. A central aspect of this dynamic response lies in the modulation of versatile gene regulatory networks, mediated in part by various chromatin regulators. Here, we summarized current understanding of the molecular mechanisms through which chromatin regulators integrate environmental signals, influencing key aspects of plant development.
Collapse
Affiliation(s)
- Wenli Wang
- Department of Molecular Biosciences, The University of Texas at Austin, TX 78712, USA
| | - Sibum Sung
- Department of Molecular Biosciences, The University of Texas at Austin, TX 78712, USA
| |
Collapse
|
5
|
Chen L, Ruan J, Li Y, Liu M, Liu Y, Guan Y, Mao Z, Wang W, Yang HQ, Guo T. ADA2b acts to positively regulate blue light-mediated photomorphogenesis in Arabidopsis. Biochem Biophys Res Commun 2024; 717:150050. [PMID: 38718571 DOI: 10.1016/j.bbrc.2024.150050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 05/01/2024] [Indexed: 05/21/2024]
Abstract
Cryptochromes (CRYs) act as blue light photoreceptors to regulate various plant physiological processes including photomorphogenesis and repair of DNA double strand breaks (DSBs). ADA2b is a conserved transcription co-activator that is involved in multiple plant developmental processes. It is known that ADA2b interacts with CRYs to mediate blue light-promoted DSBs repair. Whether ADA2b may participate in CRYs-mediated photomorphogenesis is unknown. Here we show that ADA2b acts to inhibit hypocotyl elongation and hypocotyl cell elongation in blue light. We found that the SWIRM domain-containing C-terminus mediates the blue light-dependent interaction of ADA2b with CRYs in blue light. Moreover, ADA2b and CRYs act to co-regulate the expression of hypocotyl elongation-related genes in blue light. Based on previous studies and these results, we propose that ADA2b plays dual functions in blue light-mediated DNA damage repair and photomorphogenesis.
Collapse
Affiliation(s)
- Li Chen
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China; Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Jiaqi Ruan
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Yupeng Li
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China; Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Minqing Liu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Yao Liu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Yan Guan
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China; Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Zhilei Mao
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China; Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Wenxiu Wang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China; Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Hong-Quan Yang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China; Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Tongtong Guo
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China; Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China.
| |
Collapse
|
6
|
Balouri C, Poulios S, Tsompani D, Spyropoulou Z, Ketikoglou MC, Kaldis A, Doonan JH, Vlachonasios KE. Gibberellin Signaling through RGA Suppresses GCN5 Effects on Arabidopsis Developmental Stages. Int J Mol Sci 2024; 25:6757. [PMID: 38928464 PMCID: PMC11203840 DOI: 10.3390/ijms25126757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Histone acetyltransferases (HATs) modify the amino-terminal tails of the core histone proteins via acetylation, regulating chromatin structure and transcription. GENERAL CONTROL NON-DEREPRESSIBLE 5 (GCN5) is a HAT that specifically acetylates H3K14 residues. GCN5 has been associated with cell division and differentiation, meristem function, root, stem, foliar, and floral development, and plant environmental response. The flowers of gcn5 plants display a reduced stamen length and exhibit male sterility relative to the wild-type plants. We show that these effects may arise from gibberellin (GA)-signaling defects. The signaling pathway of bioactive GAs depends on the proteolysis of their repressors, DELLA proteins. The repressor GA (RGA) DELLA protein represses plant growth, inflorescence, and flower and seed development. Our molecular data indicate that GCN5 is required for the activation and H3K14 acetylation of genes involved in the late stages of GA biosynthesis and catabolism. We studied the genetic interaction of the RGA and GCN5; the RGA can partially suppress GCN5 action during the whole plant life cycle. The reduced elongation of the stamen filament of gcn5-6 mutants is reversed in the rga-t2;gcn5-6 double mutants. RGAs suppress the GCN5 effect on the gene expression and histone acetylation of GA catabolism and GA signaling. Interestingly, the RGA and RGL2 do not suppress ADA2b function, suggesting that ADA2b acts downstream of GA signaling and is distinct from GCN5 activity. In conclusion, we propose that the action of GCN5 on stamen elongation is partially mediated by RGA and GA signaling.
Collapse
Affiliation(s)
- Christina Balouri
- Department of Botany, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (C.B.); (S.P.); (D.T.); (A.K.)
| | - Stylianos Poulios
- Department of Botany, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (C.B.); (S.P.); (D.T.); (A.K.)
| | - Dimitra Tsompani
- Department of Botany, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (C.B.); (S.P.); (D.T.); (A.K.)
| | - Zoe Spyropoulou
- Department of Botany, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (C.B.); (S.P.); (D.T.); (A.K.)
| | - Maria-Christina Ketikoglou
- Department of Botany, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (C.B.); (S.P.); (D.T.); (A.K.)
| | - Athanasios Kaldis
- Department of Botany, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (C.B.); (S.P.); (D.T.); (A.K.)
| | - John H. Doonan
- National Plant Phenomics Centre, Institute of Biological, Environmental, and Rural Sciences, Aberystwyth University, Gogerddan Campus, Aberystwyth SY23 3EE, UK;
| | - Konstantinos E. Vlachonasios
- Department of Botany, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (C.B.); (S.P.); (D.T.); (A.K.)
- Natural Products Research Centre of Excellence (NatPro-AUTh), Center of Interdisciplinary Research and Innovation of Aristotle University of Thessaloniki (CIRI-AUTh), 54124 Thessaloniki, Greece
| |
Collapse
|
7
|
Kuznetsova X, Dodueva I, Afonin A, Gribchenko E, Danilov L, Gancheva M, Tvorogova V, Galynin N, Lutova L. Whole-Genome Sequencing and Analysis of Tumour-Forming Radish ( Raphanus sativus L.) Line. Int J Mol Sci 2024; 25:6236. [PMID: 38892425 PMCID: PMC11172632 DOI: 10.3390/ijms25116236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
Spontaneous tumour formation in higher plants can occur in the absence of pathogen invasion, depending on the plant genotype. Spontaneous tumour formation on the taproots is consistently observed in certain inbred lines of radish (Raphanus sativus var. radicula Pers.). In this paper, using Oxford Nanopore and Illumina technologies, we have sequenced the genomes of two closely related radish inbred lines that differ in their ability to spontaneously form tumours. We identified a large number of single nucleotide variants (amino acid substitutions, insertions or deletions, SNVs) that are likely to be associated with the spontaneous tumour formation. Among the genes involved in the trait, we have identified those that regulate the cell cycle, meristem activity, gene expression, and metabolism and signalling of phytohormones. After identifying the SNVs, we performed Sanger sequencing of amplicons corresponding to SNV-containing regions to validate our results. We then checked for the presence of SNVs in other tumour lines of the radish genetic collection and found the ERF118 gene, which had the SNVs in the majority of tumour lines. Furthermore, we performed the identification of the CLAVATA3/ESR (CLE) and WUSCHEL (WOX) genes and, as a result, identified two unique radish CLE genes which probably encode proteins with multiple CLE domains. The results obtained provide a basis for investigating the mechanisms of plant tumour formation and also for future genetic and genomic studies of radish.
Collapse
Affiliation(s)
- Xenia Kuznetsova
- Department of Genetics and Biotechnology, Faculty of Biology, Saint Petersburg State University, 199034 Saint Petersburg, Russia; (I.D.); (L.D.); (V.T.); (N.G.); (L.L.)
| | - Irina Dodueva
- Department of Genetics and Biotechnology, Faculty of Biology, Saint Petersburg State University, 199034 Saint Petersburg, Russia; (I.D.); (L.D.); (V.T.); (N.G.); (L.L.)
| | - Alexey Afonin
- All-Russia Research Institute for Agricultural Microbiology, 190608 Saint Petersburg, Russia (E.G.)
| | - Emma Gribchenko
- All-Russia Research Institute for Agricultural Microbiology, 190608 Saint Petersburg, Russia (E.G.)
| | - Lavrentii Danilov
- Department of Genetics and Biotechnology, Faculty of Biology, Saint Petersburg State University, 199034 Saint Petersburg, Russia; (I.D.); (L.D.); (V.T.); (N.G.); (L.L.)
| | - Maria Gancheva
- Department of Genetics and Biotechnology, Faculty of Biology, Saint Petersburg State University, 199034 Saint Petersburg, Russia; (I.D.); (L.D.); (V.T.); (N.G.); (L.L.)
| | - Varvara Tvorogova
- Department of Genetics and Biotechnology, Faculty of Biology, Saint Petersburg State University, 199034 Saint Petersburg, Russia; (I.D.); (L.D.); (V.T.); (N.G.); (L.L.)
- Plant Biology and Biotechnology Department, Sirius University of Science and Technology, 1 Olympic Avenue, 354340 Sochi, Russia
| | - Nikita Galynin
- Department of Genetics and Biotechnology, Faculty of Biology, Saint Petersburg State University, 199034 Saint Petersburg, Russia; (I.D.); (L.D.); (V.T.); (N.G.); (L.L.)
| | - Lyudmila Lutova
- Department of Genetics and Biotechnology, Faculty of Biology, Saint Petersburg State University, 199034 Saint Petersburg, Russia; (I.D.); (L.D.); (V.T.); (N.G.); (L.L.)
- Plant Biology and Biotechnology Department, Sirius University of Science and Technology, 1 Olympic Avenue, 354340 Sochi, Russia
| |
Collapse
|
8
|
Yolcu S, Skorupa M, Uras ME, Mazur J, Ozyiğit II. Genome-wide identification, phylogenetic classification of histone acetyltransferase genes, and their expression analysis in sugar beet (Beta vulgaris L.) under salt stress. PLANTA 2024; 259:85. [PMID: 38448714 PMCID: PMC10917867 DOI: 10.1007/s00425-024-04361-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 02/06/2024] [Indexed: 03/08/2024]
Abstract
MAIN CONCLUSION This study identified seven histone acetyltransferase-encoding genes (HATs) from Beta vulgaris L. (sugar beet) genome through bioinformatics tools and analyzed their expression profiles under salt stress. Sugar beet HATs are phylogenetically divided into four families: GNAT, MYST, CBP, and TAFII250. The BvHAT genes were differentially transcribed in leaves, stems, and roots of B. vulgaris salt-resistant (Casino) and -sensitive (Bravo) cultivars under salt stress. Histone acetylation is regulated by histone acetyltransferases (HATs), which catalyze ɛ-amino bond formation between lysine residues and acetyl groups with a cofactor, acetyl-CoA. Even though the HATs are known to participate in stress response and development in model plants, little is known about the functions of HATs in crops. In sugar beet (Beta vulgaris L.), they have not yet been identified and characterized. Here, an in silico analysis of the HAT gene family in sugar beet was performed, and their expression patterns in leaves, stems, and roots of B. vulgaris were analyzed under salt stress. Salt-resistant (Casino) and -sensitive (Bravo) beet cultivars were used for gene expression assays. Seven HATs were identified from sugar beet genome, and named BvHAG1, BvHAG2, BvHAG3, BvHAG4, BvHAC1, BvHAC2, and BvHAF1. The HAT proteins were divided into 4 groups including MYST, GNAT (GCN5, HAT1, ELP3), CBP and TAFII250. Analysis of cis-acting elements indicated that the BvHAT genes might be involved in hormonal regulation, light response, plant development, and abiotic stress response. The BvHAT genes were differentially expressed in leaves, stems, and roots under control and 300 mM NaCl. In roots of B. vulgaris cv. Bravo, the BvHAG1, BvHAG2, BvHAG4, BvHAF1, and BvHAC1 genes were dramatically expressed after 7 and 14 days of salt stress. Interestingly, the BvHAC2 gene was not expressed under both control and stress conditions. However, the expression of BvHAG2, BvHAG3, BvHAG4, BvHAC1, BvHAC2 genes showed a significant increase in response to salt stress in the roots of cv. Casino. This study provides new insights into the potential roles of histone acetyltransferases in sugar beet.
Collapse
Affiliation(s)
- Seher Yolcu
- Faculty of Engineering and Natural Sciences, Sabanci University, 34956, Istanbul, Türkiye.
| | - Monika Skorupa
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 87-100, Torun, Poland
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, 87-100, Torun, Poland
| | - Mehmet Emin Uras
- Faculty of Arts and Sciences, Department of Molecular Biology and Genetics, Haliç University, 34060, Istanbul, Türkiye
| | - Justyna Mazur
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 87-100, Torun, Poland
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, 87-100, Torun, Poland
| | - Ibrahim Ilker Ozyiğit
- Faculty of Science, Department of Biology, Marmara University, 34722, Istanbul, Türkiye
| |
Collapse
|
9
|
Yu Y, Zhao F, Yue Y, Zhao Y, Zhou DX. Lysine acetylation of histone acetyltransferase adaptor protein ADA2 is a mechanism of metabolic control of chromatin modification in plants. NATURE PLANTS 2024; 10:439-452. [PMID: 38326652 DOI: 10.1038/s41477-024-01623-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 01/12/2024] [Indexed: 02/09/2024]
Abstract
Histone acetylation is a predominant active chromatin mark deposited by histone acetyltransferases (HATs) that transfer the acetyl group from acetyl coenzyme A (acetyl-CoA) to lysine ε-amino groups in histones. GENERAL CONTROL NON-REPRESSED PROTEIN 5 (GCN5) is one of the best-characterized HATs and functions in association with several adaptor proteins such as ADA2 within multiprotein HAT complexes. ADA2-GCN5 interaction increases GCN5 binding to acetyl-CoA and stimulates its HAT activity. It remains unclear whether the HAT activity of GCN5 (which acetylates not only histones but also cellular proteins) is regulated by acetyl-CoA levels, which vary greatly in cells under different metabolic and nutrition conditions. Here we show that the ADA2 protein itself is acetylated by GCN5 in rice cells. Lysine acetylation exposes ADA2 to a specific E3 ubiquitin ligase and reduces its protein stability. In rice plants, ADA2 protein accumulation reversely parallels its lysine acetylation and acetyl-CoA levels, both of which are dynamically regulated under varying growth conditions. Stress-induced ADA2 accumulation could stimulate GCN5 HAT activity to compensate for the reduced acetyl-CoA levels for histone acetylation. These results indicate that ADA2 lysine acetylation that senses cellular acetyl-CoA variations is a mechanism to regulate HAT activity and histone acetylation homeostasis in plants under changing environments.
Collapse
Affiliation(s)
- Yue Yu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Feng Zhao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Yaping Yue
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Yu Zhao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Dao-Xiu Zhou
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China.
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRAE, University Paris-Saclay, Orsay, France.
| |
Collapse
|
10
|
Yan X, Chen X, Li Y, Li Y, Wang F, Zhang J, Ning G, Bao M. The Abundant and Unique Transcripts and Alternative Splicing of the Artificially Autododecaploid London Plane ( Platanus × acerifolia). Int J Mol Sci 2023; 24:14486. [PMID: 37833935 PMCID: PMC10572260 DOI: 10.3390/ijms241914486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/14/2023] [Accepted: 09/16/2023] [Indexed: 10/15/2023] Open
Abstract
Transcription and alternative splicing (AS) are now appreciated in plants, but few studies have examined the effects of changing ploidy on transcription and AS. In this study, we showed that artificially autododecaploid plants of London plane (Platanus × acerifolia (Aiton) Willd) had few flowers relative to their hexaploid progenitors. Transcriptome analysis based on full-length Oxford Nanopore Technologies (ONTs) and next-generation sequencing (NGS) revealed that the increased ploidy level in P. × acerifolia led to more transcribed isoforms, accompanied by an increase in the number of isoforms per gene. The functional enrichment of genes indicated that novel genes transcribed specifically in the dodecaploids may have been highly correlated with the ability to maintain genome stability. The dodecaploids showed a higher number of genes with upregulated differentially expressed genes (DEGs) compared with the hexaploid counterpart. The genome duplication of P. × acerifolia resulted mainly in the DEGs involved in basic biological pathways. It was noted that there was a greater abundance of alternative splicing (AS) events and AS genes in the dodecaploids compared with the hexaploids in P. × acerifolia. In addition, a significant difference between the structure and expression of AS events between the hexaploids and dodecaploids of Platanus was found. Of note, some DEGs and differentially spliced genes (DSGs) related to floral transition and flower development were consistent with the few flower traits in the dodecaploids of P. × acerifolia. Collectively, our findings explored the difference in transcription and AS regulation between the hexaploids and dodecaploids of P. × acerifolia and gained new insight into the molecular mechanisms underlying the few-flower phenotype of P. × acerifolia. These results contribute to uncovering the regulatory role of transcription and AS in polyploids and breeding few-flower germplasms.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Manzhu Bao
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; (X.Y.); (J.Z.)
| |
Collapse
|
11
|
Guo T, Liu M, Chen L, Liu Y, Li L, Li Y, Cao X, Mao Z, Wang W, Yang HQ. Photoexcited cryptochromes interact with ADA2b and SMC5 to promote the repair of DNA double-strand breaks in Arabidopsis. NATURE PLANTS 2023; 9:1280-1290. [PMID: 37488265 DOI: 10.1038/s41477-023-01461-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/20/2023] [Indexed: 07/26/2023]
Abstract
Cryptochromes (CRYs) act as blue-light photoreceptors that regulate development and circadian rhythms in plants and animals and as navigating magnetoreceptors in migratory birds. DNA double-strand breaks (DSBs) are the most serious type of DNA damage and threaten genome stability in all organisms. Although CRYs have been shown to respond to DNA damage, whether and how they participate in DSB repair is not well understood. Here we report that Arabidopsis CRYs promote the repair of DSBs through direct interactions with ADA2b and SMC5 in a blue-light-dependent manner to enhance their interaction. Mutations in CRYs and in ADA2b lead to similar enhanced DNA damage accumulation. In response to DNA damage, CRYs are localized at DSBs, and the recruitment of SMC5 to DSBs is dependent on CRYs. These results suggest that CRY-enhanced ADA2b-SMC5 interaction promotes ADA2b-mediated recruitment of SMC5 to DSBs, leading to DSB repair.
Collapse
Affiliation(s)
- Tongtong Guo
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Minqing Liu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Li Chen
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Yao Liu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Ling Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yupeng Li
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Xiaoli Cao
- School of Life Sciences, Fudan University, Shanghai, China
| | - Zhilei Mao
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Wenxiu Wang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Hong-Quan Yang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China.
| |
Collapse
|
12
|
Lin CC, Lee WJ, Zeng CY, Chou MY, Lin TJ, Lin CS, Ho MC, Shih MC. SUB1A-1 anchors a regulatory cascade for epigenetic and transcriptional controls of submergence tolerance in rice. PNAS NEXUS 2023; 2:pgad229. [PMID: 37492276 PMCID: PMC10364326 DOI: 10.1093/pnasnexus/pgad229] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/28/2023] [Indexed: 07/27/2023]
Abstract
Most rice (Oryza sativa) cultivars cannot survive under prolonged submergence. However, some O. sativa ssp. indica cultivars, such as FR13A, are highly tolerant owing to the SUBMERGENCE 1A-1 (SUB1A-1) allele, which encodes a Group VII ethylene-responsive factor (ERFVII) protein; other submergence-intolerant cultivars contain a SUB1A-2 allele. The two alleles differ only by a single substitution at the 186th amino acid position from serine in SUB1A-1 to proline in SUB1A-2 resulting in only SUB1A-1 being able to be phosphorylated. Two other ERFVIIs, ERF66 and ERF67, function downstream of SUB1A-1 to form a regulatory cascade in response to submergence stress. Here, we show that SUB1A-1, but not SUB1A-2, interacts with ADA2b of the ADA2b-GCN5 acetyltransferase complex, in which GCN5 functions as a histone acetyltransferase. Phosphorylation of SUB1A-1 at serine 186 enhances the interaction of SUB1A-1 with ADA2b. ADA2b and GCN5 expression was induced under submergence, suggesting that these two genes might play roles in response to submergence stress. In transient assays, binding of SUB1A-1 to the ERF67 promoter and ERF67 transcription were highly induced when SUB1A-1 was expressed together with the ADA2b-GCN5 acetyltransferase complex. Taken together, these results suggest that phospho-SUB1A-1 recruits the ADA2-GCN5 acetyltransferase complex to modify the chromatin structure of the ERF66/ERF67 promoter regions and activate gene expression, which in turn enhances rice submergence tolerance.
Collapse
Affiliation(s)
| | | | - Cyong-Yu Zeng
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan
- Institute of Plant Biology, National Taiwan University, Taipei 10617, Taiwan
| | - Mei-Yi Chou
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Ting-Jhen Lin
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Choun-Sea Lin
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Meng-Chiao Ho
- To whom correspondence should be addressed: (M.C.S.); (M.C.H.)
| | - Ming-Che Shih
- To whom correspondence should be addressed: (M.C.S.); (M.C.H.)
| |
Collapse
|
13
|
Xia S, Zhang H, He S. Genome-Wide Identification and Expression Analysis of ACTIN Family Genes in the Sweet Potato and Its Two Diploid Relatives. Int J Mol Sci 2023; 24:10930. [PMID: 37446107 DOI: 10.3390/ijms241310930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
ACTINs are structural proteins widely distributed in plants. They are the main components of microfilaments and participate in many crucial physiological activities, including the maintenance of cell shape and cytoplasmic streaming. Meanwhile, ACTIN, as a housekeeping gene, is widely used in qRT-PCR analyses of plants. However, ACTIN family genes have not been explored in the sweet potato. In this study, we identified 30, 39, and 44 ACTINs in the cultivated hexaploid sweet potato (Ipomoea batatas, 2n = 6x = 90) and its two diploid relatives, Ipomoea trifida (2n = 2x = 30) and Ipomoea triloba (2n = 2x = 30), respectively, via analysis of their genome structure and by phylogenetic characterization. These ACTINs were divided into six subgroups according to their phylogenetic relationships with Arabidopsis thaliana. The physiological properties of the protein, chromosome localization, phylogenetic relationship, gene structure, promoter cis-elements, protein interaction networks, and expression patterns of these 113 ACTINs were systematically investigated. The results suggested that homologous ACTINs are differentiated in the sweet potato and its two diploid relatives, and play various vital roles in plant growth, tuberous root development, hormone crosstalk, and abiotic stress responses. Some stable ACTINs that could be used as internal reference genes were found in the sweet potato and its two diploid relatives, e.g., IbACTIN18, -20, and -16.2; ItfACTIN2.2, -16, and -10; ItbACTIN18 and -19.1. This work provides a comprehensive comparison and furthers our understanding of the ACTIN genes in the sweet potato and its two diploid relatives, thereby supplying a theoretical foundation for their functional study and further facilitating the molecular breeding of sweet potatoes.
Collapse
Affiliation(s)
- Shuanghong Xia
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Huan Zhang
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
- Sanya Institute of China Agricultural University, Sanya 572025, China
| | - Shaozhen He
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
- Sanya Institute of China Agricultural University, Sanya 572025, China
| |
Collapse
|
14
|
Poulios S, Tsilimigka F, Mallioura A, Pappas D, Seira E, Vlachonasios K. Histone Acetyltransferase GCN5 Affects Auxin Transport during Root Growth by Modulating Histone Acetylation and Gene Expression of PINs. PLANTS (BASEL, SWITZERLAND) 2022; 11:3572. [PMID: 36559684 PMCID: PMC9781282 DOI: 10.3390/plants11243572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/29/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
General Control Non-Derepressible 5 (GCN5) is a histone acetyltransferase that targets multiple genes and is essential for the acetylation of Lysine residues in the N-terminal tail of histone H3 in Arabidopsis. GCN5 interacts with the transcriptional coactivator Alteration/Deficiency in Activation 2b (ADA2b), which enhances its activity functioning in multiprotein complexes, such as the Spt-Ada-Gcn5-Acetyltransferase complex (SAGA). Mutations in GCN5 and ADA2b result in pleiotropic phenotypes, including alterations in the growth of roots. Auxin is known to regulate root development by modulating gene expression patterns. Auxin moves polarly during plant growth via the Pin-formed (PIN) auxin efflux transport proteins. The effect of GCN5 and ADA2b on auxin distribution at different stages of early root growth (4 to 7 days post-germination) was studied using the reporter lines DR5rev::GFP and PIN1::PIN1-GFP. In wild-type plants, auxin efflux transporter PIN1 expression increases from the fourth to the seventh day of root growth. The PIN1 expression was reduced in the roots of gcn5-1 and ada2b-1 compared to the wild type. The expression of PIN1 in ada2b-1 mutants is confined only to the meristematic zone, specifically in the stele cells, whereas it is almost abolished in the elongation zone. Gene expression analysis showed that genes associated with auxin transport, PIN1, PIN3 and PIN4, are downregulated in gcn5-1 and ada2b-1 mutants relative to the wild type. As a result, auxin accumulation was also reduced in gcn5-1 and ada2b-1 compared to wild-type roots. Furthermore, acetylation of Lysine 14 of histone H3 (H3K14) was also affected in the promoter and coding region of PIN1, PIN3 and PIN4 genes during root growth of Arabidopsis in gcn5 mutants. In conclusion, GCN5 acts as a positive regulator of auxin distribution in early root growth by modulating histone H3 acetylation and the expression of auxin efflux transport genes.
Collapse
Affiliation(s)
- Stylianos Poulios
- Department of Botany, School of Biology, Faculty of Science, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Foteini Tsilimigka
- Department of Botany, School of Biology, Faculty of Science, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Postgraduate Program Studies “Applications of Biology—Biotechnology, Molecular and Microbial Analysis of Food and Products”, School of Biology, Faculty of Science, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Areti Mallioura
- Department of Botany, School of Biology, Faculty of Science, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Postgraduate Program Studies “Applications of Biology—Biotechnology, Molecular and Microbial Analysis of Food and Products”, School of Biology, Faculty of Science, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Dimitris Pappas
- Department of Botany, School of Biology, Faculty of Science, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Eleftheria Seira
- Department of Botany, School of Biology, Faculty of Science, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Postgraduate Program Studies “Applications of Biology—Biotechnology, Molecular and Microbial Analysis of Food and Products”, School of Biology, Faculty of Science, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Konstantinos Vlachonasios
- Department of Botany, School of Biology, Faculty of Science, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Natural Products Research Centre of Excellence (NatPro-AUTh), Center of Interdisciplinary Research and Innovation of Aristotle University of Thessaloniki (CIRI-AUTh), 57001 Thessaloniki, Greece
| |
Collapse
|
15
|
Zhao Z, Qi Y, Yang Z, Cheng L, Sharif R, Raza A, Chen P, Hou D, Li Y. Exploring the Agrobacterium-mediated transformation with CRISPR/Cas9 in cucumber (Cucumis sativus L.). Mol Biol Rep 2022; 49:11481-11490. [PMID: 36057005 DOI: 10.1007/s11033-022-07558-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 05/03/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUNDS The narrow genetic basis of cucumber makes breeding of this species difficult. CRISPR/Cas9 system is characteristic of simple design, low cost and high efficiency, which has opened a new path for cucumber functional genetics and the development of cucumber mocular breeding. However, the immature genetic transformation system is the main limiting factor for applying this technology in cucumber. METHODS AND RESULTS In this study, a Histochemical β-glucuronidase (GUS) assay was used to analyze the effect of various parameters, including slight scratch of explants, pre-culture time, acetosyringone (AS) concentration, infection time in Agrobacterium solution, and co-culture period on the transformation efficiency. The results showed that the explants slightly scratched after cutting, pre-cultured for 1 day, Agrobacterium bacterial solution containing AS, and 20 min length of infection could significantly increase the GUS staining rate of explants. On this basis, two sequences with high specificity (sgRNA-1 and sgRNA-2) targeted different loci of gene CsGCN5 were designed. The corresponding vectors Cas9-sgRNA-1 and Cas9-sgRNA-2 were constructed and transformed using the above-optimized cucumber genetic transformation system, and three and two PCR positive lines were obtained from 210 and 207 explants, respectively. No sequence mutation at target loci of CsGCN5 was detected in the Cas9-sgRNA-1 transformed three PCR positive lines. However, one mutant line with targeted homozygous change was recognized from the Cas9-sgRNA-2 transformed two PCR positive lines. CONCLUSION In this study, 2.4‰ of total explants had directed mutation in the CsGCN5 gene. The results in the present study would be beneficial to further optimize and improve the efficiency of the genetic transformation of cucumber.
Collapse
Affiliation(s)
- Ziyao Zhao
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Yaguang Qi
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zhimin Yang
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Liyu Cheng
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Rahat Sharif
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Ali Raza
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
| | - Peng Chen
- College of Life Science, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Dong Hou
- Vegetable Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, 730070, Gansu, China
| | - Yuhong Li
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
16
|
Xing G, Jin M, Qu R, Zhang J, Han Y, Han Y, Wang X, Li X, Ma F, Zhao X. Genome-wide investigation of histone acetyltransferase gene family and its responses to biotic and abiotic stress in foxtail millet (Setaria italica [L.] P. Beauv). BMC PLANT BIOLOGY 2022; 22:292. [PMID: 35701737 PMCID: PMC9199193 DOI: 10.1186/s12870-022-03676-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 06/01/2022] [Indexed: 05/09/2023]
Abstract
BACKGROUND Modification of histone acetylation is a ubiquitous and reversible process in eukaryotes and prokaryotes and plays crucial roles in the regulation of gene expression during plant development and stress responses. Histone acetylation is co-regulated by histone acetyltransferase (HAT) and histone deacetylase (HDAC). HAT plays an essential regulatory role in various growth and development processes by modifying the chromatin structure through interactions with other histone modifications and transcription factors in eukaryotic cells, affecting the transcription of genes. Comprehensive analyses of HAT genes have been performed in Arabidopsis thaliana and Oryza sativa. However, little information is available on the HAT genes in foxtail millet (Setaria italica [L.] P. Beauv). RESULTS In this study, 24 HAT genes (SiHATs) were identified and divided into four groups with conserved gene structures via motif composition analysis. Phylogenetic analysis of the genes was performed to predict functional similarities between Arabidopsis thaliana, Oryza sativa, and foxtail millet; 19 and 2 orthologous gene pairs were individually identified. Moreover, all identified HAT gene pairs likely underwent purified selection based on their non-synonymous/synonymous nucleotide substitutions. Using published transcriptome data, we found that SiHAT genes were preferentially expressed in some tissues and organs. Stress responses were also examined, and data showed that SiHAT gene transcription was influenced by drought, salt, low nitrogen, and low phosphorus stress, and that the expression of four SiHATs was altered as a result of infection by Sclerospora graminicola. CONCLUSIONS Results indicated that histone acetylation may play an important role in plant growth and development and stress adaptations. These findings suggest that SiHATs play specific roles in the response to abiotic stress and viral infection. This study lays a foundation for further analysis of the biological functions of SiHATs in foxtail millet.
Collapse
Affiliation(s)
- Guofang Xing
- State Key Laboratory of Sustainable Dryland Agriculture, Shanxi Agricultural University, 030031, Taiyuan, China
- College of Agricultural, Shanxi Agricultural University, 030801, Jinzhong, China
- Shanxi Key Laboratory of Minor Crop Germplasm Innovation and Molecular Breeding, Shanxi Agricultural University, 030031, Taiyuan, China
| | - Minshan Jin
- College of Agricultural, Shanxi Agricultural University, 030801, Jinzhong, China
- Shanxi Key Laboratory of Minor Crop Germplasm Innovation and Molecular Breeding, Shanxi Agricultural University, 030031, Taiyuan, China
| | - Ruifang Qu
- College of Agricultural, Shanxi Agricultural University, 030801, Jinzhong, China
- Shanxi Key Laboratory of Minor Crop Germplasm Innovation and Molecular Breeding, Shanxi Agricultural University, 030031, Taiyuan, China
| | - Jiewei Zhang
- Beijing Academy of Agriculture and Forestry Sciences, 100097, Beijing, China
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, 100097, Beijing, China
| | - Yuanhuai Han
- College of Agricultural, Shanxi Agricultural University, 030801, Jinzhong, China
- Shanxi Key Laboratory of Minor Crop Germplasm Innovation and Molecular Breeding, Shanxi Agricultural University, 030031, Taiyuan, China
| | - Yanqing Han
- Shanxi Key Laboratory of Minor Crop Germplasm Innovation and Molecular Breeding, Shanxi Agricultural University, 030031, Taiyuan, China
| | - Xingchun Wang
- Shanxi Key Laboratory of Minor Crop Germplasm Innovation and Molecular Breeding, Shanxi Agricultural University, 030031, Taiyuan, China
| | - Xukai Li
- Shanxi Key Laboratory of Minor Crop Germplasm Innovation and Molecular Breeding, Shanxi Agricultural University, 030031, Taiyuan, China
| | - Fangfang Ma
- College of Agricultural, Shanxi Agricultural University, 030801, Jinzhong, China.
- Shanxi Key Laboratory of Minor Crop Germplasm Innovation and Molecular Breeding, Shanxi Agricultural University, 030031, Taiyuan, China.
| | - Xiongwei Zhao
- Shanxi Key Laboratory of Minor Crop Germplasm Innovation and Molecular Breeding, Shanxi Agricultural University, 030031, Taiyuan, China.
- College of Life Sciences, Shanxi Agricultural University, Jinzhong, 030801, China.
| |
Collapse
|
17
|
ADA2b and GCN5 Affect Cytokinin Signaling by Modulating Histone Acetylation and Gene Expression during Root Growth of Arabidopsis thaliana. PLANTS 2022; 11:plants11101335. [PMID: 35631760 PMCID: PMC9148027 DOI: 10.3390/plants11101335] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/14/2022] [Accepted: 05/16/2022] [Indexed: 11/16/2022]
Abstract
In Arabidopsis thaliana, the histone acetyltransferase GCN5 and the associated coactivator ADA2b regulate root growth and affect gene expression. The cytokinin signaling reporter TCS::GFP was introduced into gcn5-1, ada2b-1, and ada2a-2, as well as the ada2a-2ada2b-1 mutants. The early root growth (4 to 7 days post-germination) was analyzed using cellular and molecular approaches. TCS signal accumulated from the fourth to seventh days of root growth in the wild-type columella cells. In contrast, ada2b-1 and gcn5-1 and ada2a-2ada2b-1 double mutants displayed reduced TCS expression relative to wild type. Gene expression analysis showed that genes associated with cytokinin homeostasis were downregulated in the roots of gcn5-1 and ada2b-1 mutants compared to wild-type plants. H3K14 acetylation was affected in the promoters of cytokinin synthesis and catabolism genes during root growth of Arabidopsis. Therefore, GCN5 and ADA2b are positive regulators of cytokinin signaling during root growth by modulating histone acetylation and the expression of genes involved in cytokinin synthesis and catabolism. Auxin application in the roots of wild-type seedlings increased TCS::GFP expression. In contrast, ada2b and ada2ada2b mutant plants do not show the auxin-induced TCS signal, suggesting that GCN5 and ADA2b are required for the auxin-induced cytokinin signaling in early root growth.
Collapse
|
18
|
Hawar A, Xiong S, Yang Z, Sun B. Histone Acetyltransferase SlGCN5 Regulates Shoot Meristem and Flower Development in Solanum lycopersicum. FRONTIERS IN PLANT SCIENCE 2022; 12:805879. [PMID: 35126431 PMCID: PMC8814577 DOI: 10.3389/fpls.2021.805879] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 12/21/2021] [Indexed: 06/02/2023]
Abstract
The histone acetyltransferase (HAT) general control non-repressed protein 5 (GCN5) plays important roles in plant development via epigenetic regulation of its target genes. However, the role of GCN5 in tomato, especially in the regulation of tomato shoot meristem and flower development, has not been well-understood. In this study, we found that silencing of Solanum lycopersicum GCN5 (SlGCN5, Solyc10g045400.1.1) by virus-induced gene silencing (VIGS) and RNA interference (RNAi) resulted in the loss of shoot apical dominance, reduced shoot apical meristem (SAM) size, and dwarf and bushy plant phenotype. Besides, we occasionally observed extra carpelloid stamens and carpels fused with stamens at the late stages of flower development. Through gene expression analysis, we noticed that SlGCN5 could enhance SlWUS transcript levels in both SAM and floral meristem (FM). Similar to the known function of GCN5 in Arabidopsis, we demonstrated that SIGCN5 may form a HAT unit with S. lycopersicum alteration/deficiency in activation 2a (SlADA2a) and SlADA2b proteins in tomato. Therefore, our results provide insights in the SlGCN5-mediated regulation of SAM maintenance and floral development in tomato.
Collapse
|
19
|
Epigenetic control of abiotic stress signaling in plants. Genes Genomics 2021; 44:267-278. [PMID: 34515950 DOI: 10.1007/s13258-021-01163-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/02/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Although plants may be regularly exposed to various abiotic stresses, including drought, salt, cold, heat, heavy metals, and UV-B throughout their lives, it is not possible to actively escape from such stresses due to the immobile nature of plants. To overcome adverse environmental stresses, plants have developed adaptive systems that allow appropriate responses to diverse environmental cues; such responses can be achieved by fine-tuning or controlling genetic and epigenetic regulatory systems. Epigenetic mechanisms such as DNA or histone modifications and modulation of chromatin accessibility have been shown to regulate the expression of stress-responsive genes in struggles against abiotic stresses. OBJECTIVE Herein, the current progress in elucidating the epigenetic regulation of abiotic stress signaling in plants has been summarized in order to further understand the systems plants utilize to effectively respond to abiotic stresses. METHODS This review focuses on the action mechanisms of various components that epigenetically regulate plant abiotic stress responses, mainly in terms of DNA methylation, histone methylation/acetylation, and chromatin remodeling. CONCLUSIONS This review can be considered a basis for further research into understanding the epigenetic control system for abiotic stress responses in plants. Moreover, the knowledge of such systems can be effectively applied in developing novel methods to generate abiotic stress resistant crops.
Collapse
|
20
|
Miao J, Wang C, Lucky AB, Liang X, Min H, Adapa SR, Jiang R, Kim K, Cui L. A unique GCN5 histone acetyltransferase complex controls erythrocyte invasion and virulence in the malaria parasite Plasmodium falciparum. PLoS Pathog 2021; 17:e1009351. [PMID: 34403450 PMCID: PMC8396726 DOI: 10.1371/journal.ppat.1009351] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 08/27/2021] [Accepted: 07/21/2021] [Indexed: 12/14/2022] Open
Abstract
The histone acetyltransferase GCN5-associated SAGA complex is evolutionarily conserved from yeast to human and functions as a general transcription co-activator in global gene regulation. In this study, we identified a divergent GCN5 complex in Plasmodium falciparum, which contains two plant homeodomain (PHD) proteins (PfPHD1 and PfPHD2) and a plant apetela2 (AP2)-domain transcription factor (PfAP2-LT). To dissect the functions of the PfGCN5 complex, we generated parasite lines with either the bromodomain in PfGCN5 or the PHD domain in PfPHD1 deleted. The two deletion mutants closely phenocopied each other, exhibiting significantly reduced merozoite invasion of erythrocytes and elevated sexual conversion. These domain deletions caused dramatic decreases not only in histone H3K9 acetylation but also in H3K4 trimethylation, indicating synergistic crosstalk between the two euchromatin marks. Domain deletion in either PfGCN5 or PfPHD1 profoundly disturbed the global transcription pattern, causing altered expression of more than 60% of the genes. At the schizont stage, these domain deletions were linked to specific down-regulation of merozoite genes involved in erythrocyte invasion, many of which contain the AP2-LT binding motif and are also regulated by AP2-I and BDP1, suggesting targeted recruitment of the PfGCN5 complex to the invasion genes by these specific factors. Conversely, at the ring stage, PfGCN5 or PfPHD1 domain deletions disrupted the mutually exclusive expression pattern of the entire var gene family, which encodes the virulent factor PfEMP1. Correlation analysis between the chromatin state and alteration of gene expression demonstrated that up- and down-regulated genes in these mutants are highly correlated with the silent and active chromatin states in the wild-type parasite, respectively. Collectively, the PfGCN5 complex represents a novel HAT complex with a unique subunit composition including an AP2 transcription factor, which signifies a new paradigm for targeting the co-activator complex to regulate general and parasite-specific cellular processes in this low-branching parasitic protist. Epigenetic regulation of gene expression plays essential roles in orchestrating the general and parasite-specific cellular pathways in the malaria parasite Plasmodium falciparum. To better understand the epigenetic mechanisms in this parasite, we characterized the histone acetyltransferase GCN5-mediated transcription regulation during intraerythrocytic development of the parasite. Using tandem affinity purification and proteomic characterization, we identified that the PfGCN5-associated complex contains nine core components, including two PHD domain proteins (PfPHD1 and PfPHD2) and an AP2-domain transcription factor, which is divergent from the canonical GCN5 complexes evolutionarily conserved from yeast to human. To understand the functions of the PfGCN5 complex, we performed domain deletions in two subunits of this complex, PfGCN5 and PfPHD1. We found that the two deletion mutants displayed very similar growth phenotypes, including significantly reduced merozoite invasion rates and elevated sexual conversion. These two mutants were associated with dramatic decreases in histone H3K9 acetylation and H3K4 trimethylation, which led to global changes in chromatin states and gene expression. Consistent with the phenotypes, genes significantly affected by the PfGCN5 and PfPHD1 gene disruption include those participating in parasite-specific pathways such as invasion, virulence, and sexual development. In conclusion, this study presents a new model of the PfGCN5 complex for targeting the co-activator complex to regulate general and parasite-specific cellular processes in this low-branching parasitic protist.
Collapse
Affiliation(s)
- Jun Miao
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
- * E-mail: (JM); (LC)
| | - Chengqi Wang
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, Florida, United States of America
| | - Amuza Byaruhanga Lucky
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
| | - Xiaoying Liang
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
| | - Hui Min
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
| | - Swamy Rakesh Adapa
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, Florida, United States of America
| | - Rays Jiang
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, Florida, United States of America
| | - Kami Kim
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
| | - Liwang Cui
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
- * E-mail: (JM); (LC)
| |
Collapse
|
21
|
Ramirez-Prado JS, Benhamed M. Three bona fide plant-specific SAGA subunits and their regulatory function. MOLECULAR PLANT 2021; 14:1033-1035. [PMID: 34058400 DOI: 10.1016/j.molp.2021.05.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 05/21/2021] [Accepted: 05/26/2021] [Indexed: 06/12/2023]
Affiliation(s)
- J S Ramirez-Prado
- Centre of Microbial and Plant Genetics, KU Leuven, 3001 Leuven, Belgium; Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Univ Evry, Orsay 91405, France; Institute of Plant Sciences Paris-Saclay, Université de Paris, CNRS, INRAE, Orsay (IPS2) 91405, France
| | - M Benhamed
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Univ Evry, Orsay 91405, France; Institute of Plant Sciences Paris-Saclay, Université de Paris, CNRS, INRAE, Orsay (IPS2) 91405, France; Institut Universitaire de France (IUF), Paris, France.
| |
Collapse
|
22
|
Gan L, Wei Z, Yang Z, Li F, Wang Z. Updated Mechanisms of GCN5-The Monkey King of the Plant Kingdom in Plant Development and Resistance to Abiotic Stresses. Cells 2021; 10:979. [PMID: 33922251 PMCID: PMC8146787 DOI: 10.3390/cells10050979] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/12/2021] [Accepted: 04/19/2021] [Indexed: 12/12/2022] Open
Abstract
Histone modifications are the main epigenetic mechanisms that regulate gene expression, chromatin structure, and plant development, among which histone acetylation is one of the most important and studied epigenetic modifications. Histone acetylation is believed to enhance DNA access and promote transcription. GENERAL CONTROL NON-REPRESSIBLE 5 (GCN5), a well-known enzymatic protein responsible for the lysine acetylation of histone H3 and H4, is a universal and crucial histone acetyltransferase involved in gene transcription and plant development. Many studies have found that GCN5 plays important roles in the different development stages of Arabidopsis. In terms of exogenous stress conditions, GCN5 is also involved in the responses to heat stress, cold stress, and nutrient element deficiency by regulating the related gene expression to maintain the homeostasis of some key metabolites (e.g., cellulose) or ions (e.g., phosphate, iron); in addition, GCN5 is involved in the phytohormone pathways such as ethylene, auxin, and salicylic acid to play various roles during the plant lifecycle. Some of the pathways involved by GCN5 also interwind to regulate specific physiological processes or developmental stages. Here, interactions between various developmental events and stress-resistant pathways mediated by GCN5 are comprehensively addressed and the underlying mechanisms are discussed in the plant. Studies with some interacting factors such as ADA2b provided valuable information for the complicated histone acetylation mechanisms. We also suggest the future focuses for GCN5 functions and mechanisms such as functions in seed development/germination stages, exploration of novel interaction factors, identification of more protein substrates, and application of advanced biotechnology-CRISPR in crop genetic improvement, which would be helpful for the complete illumination of roles and mechanisms of GCN5.
Collapse
Affiliation(s)
- Lei Gan
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China; (L.G.); (Z.W.); (Z.Y.); (F.L.)
| | - Zhenzhen Wei
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China; (L.G.); (Z.W.); (Z.Y.); (F.L.)
| | - Zuoren Yang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China; (L.G.); (Z.W.); (Z.Y.); (F.L.)
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Fuguang Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China; (L.G.); (Z.W.); (Z.Y.); (F.L.)
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Zhi Wang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China; (L.G.); (Z.W.); (Z.Y.); (F.L.)
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| |
Collapse
|
23
|
The Transcriptional Adaptor Protein ADA3a Modulates Flowering of Arabidopsis thaliana. Cells 2021; 10:cells10040904. [PMID: 33920019 PMCID: PMC8071052 DOI: 10.3390/cells10040904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/11/2021] [Accepted: 04/12/2021] [Indexed: 12/11/2022] Open
Abstract
Histone acetylation is directly related to gene expression. In yeast, the acetyltransferase general control nonderepressible-5 (GCN5) targets histone H3 and associates with transcriptional co-activators alteration/deficiency in activation-2 (ADA2) and alteration/deficiency in activation-3 (ADA3) in complexes like SAGA. Arabidopsis thaliana has two genes encoding proteins, designated ADA3a and ADA3b, that correspond to yeast ADA3. We investigated the role of ADA3a and ADA3b in regulating gene expression during flowering time. Specifically, we found that knock out mutants ada3a-2 and the double mutant ada3a-2 ada3b-2 lead to early flowering compared to the wild type plants under long day (LD) conditions and after moving plants from short days to LD. Consistent with ADA3a being a repressor of floral initiation, FLOWERING LOCUS T (FT) expression was increased in ada3a mutants. In contrast, other genes involved in multiple pathways leading to floral transition, including FT repressors, players in GA signaling, and members of the SPL transcriptional factors, displayed reduced expression. Chromatin immunoprecipitation analysis revealed that ADA3a affects the histone H3K14 acetylation levels in SPL3, SPL5, RGA, GAI, and SMZ loci. In conclusion, ADA3a is involved in floral induction through a GCN5-containing complex that acetylates histone H3 in the chromatin of flowering related genes.
Collapse
|
24
|
Vlachonasios K, Poulios S, Mougiou N. The Histone Acetyltransferase GCN5 and the Associated Coactivators ADA2: From Evolution of the SAGA Complex to the Biological Roles in Plants. PLANTS (BASEL, SWITZERLAND) 2021; 10:308. [PMID: 33562796 PMCID: PMC7915528 DOI: 10.3390/plants10020308] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/28/2021] [Accepted: 02/01/2021] [Indexed: 01/08/2023]
Abstract
Transcription of protein-encoding genes starts with forming a pre-initiation complex comprised of RNA polymerase II and several general transcription factors. To activate gene expression, transcription factors must overcome repressive chromatin structure, which is accomplished with multiprotein complexes. One such complex, SAGA, modifies the nucleosomal histones through acetylation and other histone modifications. A prototypical histone acetyltransferase (HAT) known as general control non-repressed protein 5 (GCN5), was defined biochemically as the first transcription-linked HAT with specificity for histone H3 lysine 14. In this review, we analyze the components of the putative plant SAGA complex during plant evolution, and current knowledge on the biological role of the key components of the HAT module, GCN5 and ADA2b in plants, will be summarized.
Collapse
Affiliation(s)
- Konstantinos Vlachonasios
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (S.P.); (N.M.)
| | | | | |
Collapse
|
25
|
Gao S, Li L, Han X, Liu T, Jin P, Cai L, Xu M, Zhang T, Zhang F, Chen J, Yang J, Zhong K. Genome-wide identification of the histone acetyltransferase gene family in Triticum aestivum. BMC Genomics 2021; 22:49. [PMID: 33430760 PMCID: PMC7802222 DOI: 10.1186/s12864-020-07348-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 12/23/2020] [Indexed: 02/07/2023] Open
Abstract
Background Histone acetylation is a ubiquitous and reversible post-translational modification in eukaryotes and prokaryotes that is co-regulated by histone acetyltransferase (HAT) and histone deacetylase (HDAC). HAT activity is important for the modification of chromatin structure in eukaryotic cells, affecting gene transcription and thereby playing a crucial regulatory role in plant development. Comprehensive analyses of HAT genes have been performed in Arabidopsis thaliana, Oryza sativa, barley, grapes, tomato, litchi and Zea mays, but comparable identification and analyses have not been conducted in wheat (Triticum aestivum). Results In this study, 31 TaHATs were identified and divided into six groups with conserved gene structures and motif compositions. Phylogenetic analysis was performed to predict functional similarities between Arabidopsis thaliana, Oryza sativa and Triticum aestivum HAT genes. The TaHATs appeared to be regulated by cis-acting elements such as LTR and TC-rich repeats. The qRT–PCR analysis showed that the TaHATs were differentially expressed in multiple tissues. The TaHATs in expression also responded to temperature changes, and were all significantly upregulated after being infected by barley streak mosaic virus (BSMV), Chinese wheat mosaic virus (CWMV) and wheat yellow mosaic virus (WYMV). Conclusions These results suggest that TaHATs may have specific roles in the response to viral infection and provide a basis for further study of TaHAT functions in T. aestivum plant immunity. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-020-07348-6.
Collapse
Affiliation(s)
- Shiqi Gao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China.,Yantai Academy of Agricultural Science, Yantai, 265500, China.,School of Life Sciences, Yantai University, Yantai, 264005, China
| | - Linzhi Li
- Yantai Academy of Agricultural Science, Yantai, 265500, China
| | - Xiaolei Han
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China.,Yantai Academy of Agricultural Science, Yantai, 265500, China.,School of Life Sciences, Yantai University, Yantai, 264005, China
| | - Tingting Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Peng Jin
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Linna Cai
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Miaoze Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Tianye Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Fan Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Jian Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China.
| | - Kaili Zhong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
26
|
Kim S, Piquerez SJM, Ramirez-Prado JS, Mastorakis E, Veluchamy A, Latrasse D, Manza-Mianza D, Brik-Chaouche R, Huang Y, Rodriguez-Granados NY, Concia L, Blein T, Citerne S, Bendahmane A, Bergounioux C, Crespi M, Mahfouz MM, Raynaud C, Hirt H, Ntoukakis V, Benhamed M. GCN5 modulates salicylic acid homeostasis by regulating H3K14ac levels at the 5' and 3' ends of its target genes. Nucleic Acids Res 2020; 48:5953-5966. [PMID: 32396165 PMCID: PMC7293002 DOI: 10.1093/nar/gkaa369] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 04/27/2020] [Accepted: 05/02/2020] [Indexed: 01/01/2023] Open
Abstract
The modification of histones by acetyl groups has a key role in the regulation of chromatin structure and transcription. The Arabidopsis thaliana histone acetyltransferase GCN5 regulates histone modifications as part of the Spt-Ada-Gcn5 Acetyltransferase (SAGA) transcriptional coactivator complex. GCN5 was previously shown to acetylate lysine 14 of histone 3 (H3K14ac) in the promoter regions of its target genes even though GCN5 binding did not systematically correlate with gene activation. Here, we explored the mechanism through which GCN5 controls transcription. First, we fine-mapped its GCN5 binding sites genome-wide and then used several global methodologies (ATAC-seq, ChIP-seq and RNA-seq) to assess the effect of GCN5 loss-of-function on the expression and epigenetic regulation of its target genes. These analyses provided evidence that GCN5 has a dual role in the regulation of H3K14ac levels in their 5′ and 3′ ends of its target genes. While the gcn5 mutation led to a genome-wide decrease of H3K14ac in the 5′ end of the GCN5 down-regulated targets, it also led to an increase of H3K14ac in the 3′ ends of GCN5 up-regulated targets. Furthermore, genome-wide changes in H3K14ac levels in the gcn5 mutant correlated with changes in H3K9ac at both 5′ and 3′ ends, providing evidence for a molecular link between the depositions of these two histone modifications. To understand the biological relevance of these regulations, we showed that GCN5 participates in the responses to biotic stress by repressing salicylic acid (SA) accumulation and SA-mediated immunity, highlighting the role of this protein in the regulation of the crosstalk between diverse developmental and stress-responsive physiological programs. Hence, our results demonstrate that GCN5, through the modulation of H3K14ac levels on its targets, controls the balance between biotic and abiotic stress responses and is a master regulator of plant-environmental interactions.
Collapse
Affiliation(s)
- Soonkap Kim
- Institute of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405 Orsay, France.,Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Sophie J M Piquerez
- Institute of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405 Orsay, France.,School of Life Sciences and Warwick Integrative Synthetic Biology Centre, University of Warwick, Coventry CV4 7AL, UK
| | - Juan S Ramirez-Prado
- Institute of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405 Orsay, France
| | - Emmanouil Mastorakis
- School of Life Sciences and Warwick Integrative Synthetic Biology Centre, University of Warwick, Coventry CV4 7AL, UK
| | - Alaguraj Veluchamy
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - David Latrasse
- Institute of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405 Orsay, France
| | - Deborah Manza-Mianza
- Institute of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405 Orsay, France
| | - Rim Brik-Chaouche
- Institute of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405 Orsay, France
| | - Ying Huang
- Institute of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405 Orsay, France
| | - Natalia Y Rodriguez-Granados
- Institute of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405 Orsay, France
| | - Lorenzo Concia
- Institute of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405 Orsay, France
| | - Thomas Blein
- Institute of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405 Orsay, France
| | - Sylvie Citerne
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles 78000, France
| | - Abdelhafid Bendahmane
- Institute of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405 Orsay, France
| | - Catherine Bergounioux
- Institute of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405 Orsay, France
| | - Martin Crespi
- Institute of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405 Orsay, France
| | - Magdy M Mahfouz
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Cécile Raynaud
- Institute of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405 Orsay, France
| | - Heribert Hirt
- Institute of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405 Orsay, France.,Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Vardis Ntoukakis
- School of Life Sciences and Warwick Integrative Synthetic Biology Centre, University of Warwick, Coventry CV4 7AL, UK
| | - Moussa Benhamed
- Institute of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405 Orsay, France.,Institut Universitaire de France (IUF)
| |
Collapse
|
27
|
Jiang J, Ding AB, Liu F, Zhong X. Linking signaling pathways to histone acetylation dynamics in plants. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5179-5190. [PMID: 32333777 PMCID: PMC7475247 DOI: 10.1093/jxb/eraa202] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 04/22/2020] [Indexed: 05/04/2023]
Abstract
As sessile organisms, plants face versatile environmental challenges and require proper responses at multiple levels for survival. Epigenetic modification of DNA and histones is a conserved gene-regulatory mechanism and plays critical roles in diverse aspects of biological processes, ranging from genome defense and imprinting to development and physiology. In recent years, emerging studies have revealed the interplay between signaling transduction pathways, epigenetic modifications, and chromatin cascades. Specifically, histone acetylation and deacetylation dictate plant responses to environmental cues by modulating chromatin dynamics to regulate downstream gene expression as signaling outputs. In this review, we summarize current understandings of the link between plant signaling pathways and epigenetic modifications with a focus on histone acetylation and deacetylation.
Collapse
Affiliation(s)
- Jianjun Jiang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, Jiangsu, China
- Laboratory of Genetics & Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
| | - Adeline B Ding
- Laboratory of Genetics & Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
| | - Fengquan Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, Jiangsu, China
- Correspondence: or
| | - Xuehua Zhong
- Laboratory of Genetics & Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
- Correspondence: or
| |
Collapse
|
28
|
Wang L, Zhang F, Qiao H. Chromatin Regulation in the Response of Ethylene: Nuclear Events in Ethylene Signaling. SMALL METHODS 2020; 4:1900288. [PMID: 34189257 PMCID: PMC8238466 DOI: 10.1002/smtd.201900288] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Indexed: 05/15/2023]
Abstract
Plant hormones, produced in response to environmental stimuli, regulate almost all aspects of plant growth and development. Ethylene is a gaseous plant hormone that plays pleotropic roles in plant growth, plant development, fruit ripening, stress responses, and pathogen defenses. After decades of research, the key components of ethylene signaling have been identified and characterized. Although the molecular mechanisms of the sensing of ethylene signal and the transduction of ethylene signaling have been studied extensively, how chromatin influences ethylene signaling and ethylene response is a new area of research. This review describes the current understanding of how chromatin modifications, specifically histone acetylation, regulate ethylene signaling and the ethylene response.
Collapse
Affiliation(s)
- Likai Wang
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Fan Zhang
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Hong Qiao
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
29
|
Grasser KD, Rubio V, Barneche F. Multifaceted activities of the plant SAGA complex. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1864:194613. [PMID: 32745625 DOI: 10.1016/j.bbagrm.2020.194613] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 07/27/2020] [Accepted: 07/27/2020] [Indexed: 12/22/2022]
Abstract
From yeast to human, the Spt-Ada-GCN5-acetyltransferase (SAGA) gigantic complex modifies chromatin during RNA polymerase II initiation and elongation steps to facilitate transcription. Its enzymatic activity involves a histone acetyltransferase module (HATm) that acetylates multiple lysine residues on the N-terminal tails of histones H2B and H3 and a deubiquitination module (DUBm) that triggers co-transcriptional deubiquitination of histone H2B. With a few notable exceptions described in this review, most SAGA subunits identified in yeast and metazoa are present in plants. Studies from the last 20 years have unveiled that different SAGA subunits are involved in gene expression regulation during the plant life cycle and in response to various types of stress or environmental cues. Their functional analysis in the Arabidopsis thaliana model species is increasingly shedding light on their intrinsic properties and how they can themselves be regulated during plant adaptive responses. Recent biochemical studies have also uncovered multiple associations between plant SAGA and chromatin machineries linked to RNA Pol II transcription. Still, considerably less is known about the molecular links between SAGA or SAGA-like complexes and chromatin dynamics during transcription in Arabidopsis and other plant species. We summarize the emerging knowledge on plant SAGA complex composition and activity, with a particular focus on the best-characterized subunits from its HAT (such as GCN5) and DUB (such as UBP22) modules, and implication of these ensembles in plant development and adaptive responses.
Collapse
Affiliation(s)
- Klaus D Grasser
- Cell Biology & Plant Biochemistry, Biochemistry Centre, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany.
| | - Vicente Rubio
- Plant Molecular Genetics Dept., Centro Nacional de Biotecnología (CNB-CSIC), Darwin, 3, 28049 Madrid, Spain.
| | - Fredy Barneche
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France.
| |
Collapse
|
30
|
Yu J, Xu F, Wei Z, Zhang X, Chen T, Pu L. Epigenomic landscape and epigenetic regulation in maize. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:1467-1489. [PMID: 31965233 DOI: 10.1007/s00122-020-03549-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 01/14/2020] [Indexed: 05/12/2023]
Abstract
Epigenetic regulation has been implicated in the control of multiple agronomic traits in maize. Here, we review current advances in our understanding of epigenetic regulation, which has great potential for improving agronomic traits and the environmental adaptability of crops. Epigenetic regulation plays vital role in the control of complex agronomic traits. Epigenetic variation could contribute to phenotypic diversity and can be used to improve the quality and productivity of crops. Maize (Zea mays L.), one of the most widely cultivated crops for human food, animal feed, and ethanol biofuel, is a model plant for genetic studies. Recent advances in high-throughput sequencing technology have made possible the study of epigenetic regulation in maize on a genome-wide scale. In this review, we discuss recent epigenetic studies in maize many achieved by Chinese research groups. These studies have explored the roles of DNA methylation, posttranslational modifications of histones, chromatin remodeling, and noncoding RNAs in the regulation of gene expression in plant development and environment response. We also provide our future prospects for manipulating epigenetic regulation to improve crops.
Collapse
Affiliation(s)
- Jia Yu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fan Xu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ziwei Wei
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Xiangxiang Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tao Chen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Li Pu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
31
|
Chang YN, Zhu C, Jiang J, Zhang H, Zhu JK, Duan CG. Epigenetic regulation in plant abiotic stress responses. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:563-580. [PMID: 31872527 DOI: 10.1111/jipb.12901] [Citation(s) in RCA: 240] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 02/20/2020] [Indexed: 05/18/2023]
Abstract
In eukaryotic cells, gene expression is greatly influenced by the dynamic chromatin environment. Epigenetic mechanisms, including covalent modifications to DNA and histone tails and the accessibility of chromatin, create various chromatin states for stress-responsive gene expression that is important for adaptation to harsh environmental conditions. Recent studies have revealed that many epigenetic factors participate in abiotic stress responses, and various chromatin modifications are changed when plants are exposed to stressful environments. In this review, we summarize recent progress on the cross-talk between abiotic stress response pathways and epigenetic regulatory pathways in plants. Our review focuses on epigenetic regulation of plant responses to extreme temperatures, drought, salinity, the stress hormone abscisic acid, nutrient limitations and ultraviolet stress, and on epigenetic mechanisms of stress memory.
Collapse
Affiliation(s)
- Ya-Nan Chang
- Shanghai Center for Plant Stress Biology and Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chen Zhu
- Shanghai Center for Plant Stress Biology and Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Jing Jiang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Huiming Zhang
- Shanghai Center for Plant Stress Biology and Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology and Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, 47907, USA
| | - Cheng-Guo Duan
- Shanghai Center for Plant Stress Biology and Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| |
Collapse
|
32
|
Dodueva IE, Lebedeva MA, Kuznetsova KA, Gancheva MS, Paponova SS, Lutova LL. Plant tumors: a hundred years of study. PLANTA 2020; 251:82. [PMID: 32189080 DOI: 10.1007/s00425-020-03375-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 03/11/2020] [Indexed: 05/21/2023]
Abstract
The review provides information on the mechanisms underlying the development of spontaneous and pathogen-induced tumors in higher plants. The activation of meristem-specific regulators in plant tumors of various origins suggests the meristem-like nature of abnormal plant hyperplasia. Plant tumor formation has more than a century of research history. The study of this phenomenon has led to a number of important discoveries, including the development of the Agrobacterium-mediated transformation technique and the discovery of horizontal gene transfer from bacteria to plants. There are two main groups of plant tumors: pathogen-induced tumors (e.g., tumors induced by bacteria, viruses, fungi, insects, etc.), and spontaneous ones, which are formed in the absence of any pathogen in plants with certain genotypes (e.g., interspecific hybrids, inbred lines, and mutants). The causes of the transition of plant cells to tumor growth are different from those in animals, and they include the disturbance of phytohormonal balance and the acquisition of meristematic characteristics by differentiated cells. The aim of this review is to discuss the mechanisms underlying the development of most known examples of plant tumors.
Collapse
Affiliation(s)
- Irina E Dodueva
- Department of Genetics and Biotechnology, Saint-Petersburg State University, Saint-Petersburg, Russia.
| | - Maria A Lebedeva
- Department of Genetics and Biotechnology, Saint-Petersburg State University, Saint-Petersburg, Russia
| | - Kseniya A Kuznetsova
- Department of Genetics and Biotechnology, Saint-Petersburg State University, Saint-Petersburg, Russia
| | - Maria S Gancheva
- Department of Genetics and Biotechnology, Saint-Petersburg State University, Saint-Petersburg, Russia
| | - Svetlana S Paponova
- Department of Genetics and Biotechnology, Saint-Petersburg State University, Saint-Petersburg, Russia
| | - Ludmila L Lutova
- Department of Genetics and Biotechnology, Saint-Petersburg State University, Saint-Petersburg, Russia
| |
Collapse
|
33
|
Wang T, Jia Q, Wang W, Hussain S, Ahmed S, Zhou DX, Ni Z, Wang S. GCN5 modulates trichome initiation in Arabidopsis by manipulating histone acetylation of core trichome initiation regulator genes. PLANT CELL REPORTS 2019; 38:755-765. [PMID: 30927071 DOI: 10.1007/s00299-019-02404-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 03/19/2019] [Indexed: 05/25/2023]
Abstract
Histone acetyltransferase GCN5 affects trichome initiation via mediating the expression of some core trichome initiation regulator genes in Arabidopsis. GENERAL CONTROL NON-REPRESSED PROTEIN5 (GCN5), a histone acetyltransferase involved in the regulation of cell differentiation, organ development, secondary metabolism, and plant responses to abiotic stresses, has recently been shown to modulate trichome branching in Arabidopsis. Here, we provide evidence that GCN5 is also involved in the regulation of trichome initiation. We found that mutation of GCN5 led to increased leaf trichome density in Arabidopsis. Quantitative RT-PCR results showed that the expression of CPC, GL1, GL2, and GL3, four well-known core trichome initiation regulator genes, was decreased in the gcn5 mutants. ChIP assays indicated that these four trichome initiation regulator genes are direct targets of GCN5. Consistent with these results, GCN5-mediated H3K14/K9 acetylation levels on the TSS regions of these genes were decreased. On the other hand, leaf trichome density was reduced in plants overexpressing GCN5, and both the transcript levels and GCN5-binding enrichments of CPC, GL1, GL2, and GL3 genes were elevated. Taken together, these data suggests that GCN5 affects trichome initiation by modulating the transcription activities of trichome initiation regulator genes via H3K9/14 acetylation.
Collapse
Affiliation(s)
- Tianya Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Qiming Jia
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Wei Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Saddam Hussain
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Sajjad Ahmed
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Dao-Xiu Zhou
- Institute of Plant Science Paris-Saclay, Université Paris Sud, 91405, Orsay, France
| | - Zhongfu Ni
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Shucai Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China.
- College of Life Science, Linyi University, Linyi, 276000, China.
| |
Collapse
|
34
|
Baier M, Bittner A, Prescher A, van Buer J. Preparing plants for improved cold tolerance by priming. PLANT, CELL & ENVIRONMENT 2019; 42:782-800. [PMID: 29974962 DOI: 10.1111/pce.13394] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/21/2018] [Accepted: 06/25/2018] [Indexed: 05/26/2023]
Abstract
Cold is a major stressor, which limits plant growth and development in many parts of the world, especially in the temperate climate zones. A large number of experimental studies has demonstrated that not only acclimation and entrainment but also the experience of single short stress events of various abiotic or biotic kinds (priming stress) can improve the tolerance of plants to chilling temperatures. This process, called priming, depends on a stress "memory". It does not change cold sensitivity per se but beneficially modifies the response to cold and can last for days, months, or even longer. Elicitor factors and antagonists accumulate due to increased biosynthesis or decreased degradation either during or after the priming stimulus. Comparison of priming studies investigating improved tolerance to chilling temperatures highlighted key regulatory functions of ROS/RNS and antioxidant enzymes, plant hormones, especially jasmonates, salicylates, and abscisic acid, and signalling metabolites, such as β- and γ-aminobutyric acid (BABA and GABA) and melatonin. We conclude that these elicitors and antagonists modify local and systemic cold tolerance by integration into cold-induced signalling cascades.
Collapse
Affiliation(s)
- Margarete Baier
- Plant Physiology, Dahlem Centre of Plant Sciences, Free University of Berlin, Berlin, Germany
| | - Andras Bittner
- Plant Physiology, Dahlem Centre of Plant Sciences, Free University of Berlin, Berlin, Germany
| | - Andreas Prescher
- Plant Physiology, Dahlem Centre of Plant Sciences, Free University of Berlin, Berlin, Germany
| | - Jörn van Buer
- Plant Physiology, Dahlem Centre of Plant Sciences, Free University of Berlin, Berlin, Germany
| |
Collapse
|
35
|
Poulios S, Vlachonasios KE. Synergistic action of GCN5 and CLAVATA1 in the regulation of gynoecium development in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2018; 220:593-608. [PMID: 30027613 DOI: 10.1111/nph.15303] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 05/24/2018] [Indexed: 05/29/2023]
Abstract
In Arabidopsis thaliana the CLAVATA1 (CLV1) receptor and GENERAL CONTROL NON DEREPRESSIBLE 5 (GCN5) histone acetyltransferase both regulate inflorescence meristem size and affect the expression of the meristem-promoting transcription factor WUSCHEL (WUS). Single and multiple mutants of GCN5 and CLAVATA members, were analysed for their gynoecium development, using morphological, physiological, genetic and molecular approaches. The clv1-1gcn5-1 double mutants exhibited novel phenotypes including elongated gynoecia with reduced valves and enlarged stigma and style, indicating a synergistic action of CLAVATA signaling and GCN5 action in the development of the gynoecium. Reporter line and gene expression analysis showed that clv1-1gcn5-1 plants have altered auxin and cytokinin response, distribution and ectopic overexpression of WUS. WUS expression was found in the style of wild-type gynoecia stage 10-13, suggesting a possible novel role for WUS in the development of the style. CLV1 and GCN5 are regulators of apical-basal and mediolateral polarity of the Arabidopsis gynoecium. They affect gynoecium morphogenesis through the negative regulation of auxin biosynthesis and promotion of polar auxin transport. They also promote cytokinin signaling in the carpel margin meristem and negatively regulate it at the stigma. Finally, they synergistically suppress WUS at the centre of the gynoecium.
Collapse
Affiliation(s)
- Stylianos Poulios
- Department of Botany, School of Biology, Faculty of Science, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| | - Konstantinos E Vlachonasios
- Department of Botany, School of Biology, Faculty of Science, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| |
Collapse
|
36
|
Park J, Lim CJ, Shen M, Park HJ, Cha JY, Iniesto E, Rubio V, Mengiste T, Zhu JK, Bressan RA, Lee SY, Lee BH, Jin JB, Pardo JM, Kim WY, Yun DJ. Epigenetic switch from repressive to permissive chromatin in response to cold stress. Proc Natl Acad Sci U S A 2018; 115:E5400-E5409. [PMID: 29784800 PMCID: PMC6003311 DOI: 10.1073/pnas.1721241115] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Switching from repressed to active status in chromatin regulation is part of the critical responses that plants deploy to survive in an ever-changing environment. We previously reported that HOS15, a WD40-repeat protein, is involved in histone deacetylation and cold tolerance in Arabidopsis However, it remained unknown how HOS15 regulates cold responsive genes to affect cold tolerance. Here, we show that HOS15 interacts with histone deacetylase 2C (HD2C) and both proteins together associate with the promoters of cold-responsive COR genes, COR15A and COR47 Cold induced HD2C degradation is mediated by the CULLIN4 (CUL4)-based E3 ubiquitin ligase complex in which HOS15 acts as a substrate receptor. Interference with the association of HD2C and the COR gene promoters by HOS15 correlates with increased acetylation levels of histone H3. HOS15 also interacts with CBF transcription factors to modulate cold-induced binding to the COR gene promoters. Our results here demonstrate that cold induces HOS15-mediated chromatin modifications by degrading HD2C. This switches the chromatin structure status and facilitates recruitment of CBFs to the COR gene promoters. This is an apparent requirement to acquire cold tolerance.
Collapse
Affiliation(s)
- Junghoon Park
- Department of Biomedical Science and Engineering, Konkuk University, 05029 Seoul, South Korea
- Division of Applied Life Science (BK21 plus Program), Plant Molecular Biology and Biotechnology Research Center, Institute of Agriculture and Life Science, Gyeongsang National University, 52828 Jinju, Republic of Korea
| | - Chae Jin Lim
- Department of Biomedical Science and Engineering, Konkuk University, 05029 Seoul, South Korea
- Division of Applied Life Science (BK21 plus Program), Plant Molecular Biology and Biotechnology Research Center, Institute of Agriculture and Life Science, Gyeongsang National University, 52828 Jinju, Republic of Korea
| | - Mingzhe Shen
- Division of Applied Life Science (BK21 plus Program), Plant Molecular Biology and Biotechnology Research Center, Institute of Agriculture and Life Science, Gyeongsang National University, 52828 Jinju, Republic of Korea
| | - Hee Jin Park
- Department of Biomedical Science and Engineering, Konkuk University, 05029 Seoul, South Korea
- Institute of Glocal Disease Control, Konkuk University, 05029 Seoul, Republic of Korea
| | - Joon-Yung Cha
- Division of Applied Life Science (BK21 plus Program), Plant Molecular Biology and Biotechnology Research Center, Institute of Agriculture and Life Science, Gyeongsang National University, 52828 Jinju, Republic of Korea
| | - Elisa Iniesto
- Plant Molecular Genetics Department, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Cientificas, Campus de la Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Vicente Rubio
- Plant Molecular Genetics Department, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Cientificas, Campus de la Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Tesfaye Mengiste
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907
| | - Jian-Kang Zhu
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907
| | - Ray A Bressan
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907
| | - Sang Yeol Lee
- Division of Applied Life Science (BK21 plus Program), Plant Molecular Biology and Biotechnology Research Center, Institute of Agriculture and Life Science, Gyeongsang National University, 52828 Jinju, Republic of Korea
| | - Byeong-Ha Lee
- Department of Life Science, Sogang University, 04107 Seoul, South Korea
| | - Jing Bo Jin
- Institute of Botany, Chinese Academy of Sciences, 100093 Beijing, China
| | - Jose M Pardo
- Institute of Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Cientificas, 41092 Seville, Spain
| | - Woe-Yeon Kim
- Division of Applied Life Science (BK21 plus Program), Plant Molecular Biology and Biotechnology Research Center, Institute of Agriculture and Life Science, Gyeongsang National University, 52828 Jinju, Republic of Korea
| | - Dae-Jin Yun
- Department of Biomedical Science and Engineering, Konkuk University, 05029 Seoul, South Korea;
| |
Collapse
|
37
|
Pfab A, Bruckmann A, Nazet J, Merkl R, Grasser KD. The Adaptor Protein ENY2 Is a Component of the Deubiquitination Module of the Arabidopsis SAGA Transcriptional Co-activator Complex but not of the TREX-2 Complex. J Mol Biol 2018; 430:1479-1494. [PMID: 29588169 DOI: 10.1016/j.jmb.2018.03.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 03/20/2018] [Accepted: 03/20/2018] [Indexed: 12/26/2022]
Abstract
The conserved nuclear protein ENY2 (Sus1 in yeast) is involved in coupling transcription and mRNA export in yeast and metazoa, as it is a component both of the transcriptional co-activator complex SAGA and of the mRNA export complex TREX-2. Arabidopsis thaliana ENY2 is widely expressed in the plant and it localizes to the nucleoplasm, but unlike its yeast/metazoan orthologs, it is not enriched in the nuclear envelope. Affinity purification of ENY2 in combination with mass spectrometry revealed that it co-purified with SAGA components, but not with the nuclear pore-associated TREX-2. In addition, further targeted proteomics analyses by reciprocal tagging established the composition of the Arabidopsis SAGA complex consisting of the four modules HATm, SPTm, TAFm and DUBm, and that several SAGA subunits occur in alternative variants. While the HATm, SPTm and TAFm robustly co-purified with each other, the deubiquitination module (DUBm) appears to associate with the other SAGA modules more weakly/dynamically. Consistent with a homology model of the Arabidopsis DUBm, the SGF11 protein interacts directly with ENY2 and UBP22. Plants depleted in the DUBm components, SGF11 or ENY2, are phenotypically only mildly affected, but they contain increased levels of ubiquitinated histone H2B, indicating that the SAGA-DUBm has histone deubiquitination activity in plants. In addition to transcription-related proteins (i.e., transcript elongation factors, Mediator), many splicing factors were found to associate with SAGA, linking the SAGA complex and ongoing transcription with mRNA processing.
Collapse
Affiliation(s)
- Alexander Pfab
- Department of Cell Biology & Plant Biochemistry, Biochemistry Centre, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| | - Astrid Bruckmann
- Department for Biochemistry I, Biochemistry Centre, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| | - Julian Nazet
- Department for Biochemistry II, Biochemistry Centre, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| | - Rainer Merkl
- Department for Biochemistry II, Biochemistry Centre, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| | - Klaus D Grasser
- Department of Cell Biology & Plant Biochemistry, Biochemistry Centre, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany.
| |
Collapse
|
38
|
Füßl M, Lassowskat I, Née G, Koskela MM, Brünje A, Tilak P, Giese J, Leister D, Mulo P, Schwarzer D, Finkemeier I. Beyond Histones: New Substrate Proteins of Lysine Deacetylases in Arabidopsis Nuclei. FRONTIERS IN PLANT SCIENCE 2018; 9:461. [PMID: 29692793 PMCID: PMC5902713 DOI: 10.3389/fpls.2018.00461] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Accepted: 03/23/2018] [Indexed: 05/03/2023]
Abstract
The reversible acetylation of lysine residues is catalyzed by the antagonistic action of lysine acetyltransferases and deacetylases, which can be considered as master regulators of their substrate proteins. Lysine deacetylases, historically referred to as histone deacetylases, have profound functions in regulating stress defenses and development in plants. Lysine acetylation of the N-terminal histone tails promotes gene transcription and decondensation of chromatin, rendering the DNA more accessible to the transcription machinery. In plants, the classical lysine deacetylases from the RPD3/HDA1-family have thus far mainly been studied in the context of their deacetylating activities on histones, and their versatility in molecular activities is still largely unexplored. Here we discuss the potential impact of lysine acetylation on the recently identified nuclear substrate proteins of lysine deacetylases from the Arabidopsis RPD3/HDA1-family. Among the deacetylase substrate proteins, many interesting candidates involved in nuclear protein import, transcriptional regulation, and chromatin remodeling have been identified. These candidate proteins represent key starting points for unraveling new molecular functions of the Arabidopsis lysine deacetylases. Site-directed engineering of lysine acetylation sites on these target proteins might even represent a new approach for optimizing plant growth under climate change conditions.
Collapse
Affiliation(s)
- Magdalena Füßl
- Plant Physiology, Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany
- Plant Molecular Biology, Department Biology I, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Ines Lassowskat
- Plant Physiology, Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany
| | - Guillaume Née
- Plant Physiology, Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany
| | - Minna M. Koskela
- Molecular Plant Biology, Department of Biochemistry, University of Turku, Turku, Finland
| | - Annika Brünje
- Plant Physiology, Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany
| | - Priyadarshini Tilak
- Plant Physiology, Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany
| | - Jonas Giese
- Plant Physiology, Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany
| | - Dario Leister
- Plant Molecular Biology, Department Biology I, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Paula Mulo
- Molecular Plant Biology, Department of Biochemistry, University of Turku, Turku, Finland
| | - Dirk Schwarzer
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Iris Finkemeier
- Plant Physiology, Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany
- *Correspondence: Iris Finkemeier,
| |
Collapse
|
39
|
Martel A, Brar H, Mayer BF, Charron JB. Diversification of the Histone Acetyltransferase GCN5 through Alternative Splicing in Brachypodium distachyon. FRONTIERS IN PLANT SCIENCE 2017; 8:2176. [PMID: 29312415 PMCID: PMC5743026 DOI: 10.3389/fpls.2017.02176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 12/12/2017] [Indexed: 06/07/2023]
Abstract
The epigenetic modulatory SAGA complex is involved in various developmental and stress responsive pathways in plants. Alternative transcripts of the SAGA complex's enzymatic subunit GCN5 have been identified in Brachypodium distachyon. These splice variants differ based on the presence and integrity of their conserved domain sequences: the histone acetyltransferase domain, responsible for catalytic activity, and the bromodomain, involved in acetyl-lysine binding and genomic loci targeting. GCN5 is the wild-type transcript, while alternative splice sites result in the following transcriptional variants: L-GCN5, which is missing the bromodomain and S-GCN5, which lacks the bromodomain as well as certain motifs of the histone acetyltransferase domain. Absolute mRNA quantification revealed that, across eight B. distachyon accessions, GCN5 was the dominant transcript isoform, accounting for up to 90% of the entire transcript pool, followed by L-GCN5 and S-GCN5. A cycloheximide treatment further revealed that the S-GCN5 splice variant was degraded through the nonsense-mediated decay pathway. All alternative BdGCN5 transcripts displayed similar transcript profiles, being induced during early exposure to heat and displaying higher levels of accumulation in the crown, compared to aerial tissues. All predicted protein isoforms localize to the nucleus, which lends weight to their purported epigenetic functions. S-GCN5 was incapable of forming an in vivo protein interaction with ADA2, the transcriptional adaptor that links the histone acetyltransferase subunit to the SAGA complex, while both GCN5 and L-GCN5 interacted with ADA2, which suggests that a complete histone acetyltransferase domain is required for BdGCN5-BdADA2 interaction in vivo. Thus, there has been a diversification in BdGCN5 through alternative splicing that has resulted in differences in conserved domain composition, transcript fate and in vivo protein interaction partners. Furthermore, our results suggest that B. distachyon may harbor compositionally distinct SAGA-like complexes that differ based on their histone acetyltransferase subunit.
Collapse
|
40
|
Che1/AATF interacts with subunits of the histone acetyltransferase core module of SAGA complexes. PLoS One 2017; 12:e0189193. [PMID: 29232376 PMCID: PMC5726650 DOI: 10.1371/journal.pone.0189193] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 11/21/2017] [Indexed: 12/12/2022] Open
Abstract
General Control Non-derepressible 5 (GCN5) and Alteration/Deficiency in Activation 2 and 3 proteins (ADA2 and ADA3, respectively) are subunits of the Histone AcetylTransferase (HAT) module of SAGA- and ATAC-type co-activators. We previously reported four new interacting partners of human ADA3 identified by screening a human fetal brain cDNA library using yeast two hybrid technology. One of these partners was Apoptosis-Antagonizing Transcription Factor (AATF), also known as Che-1, an RNA polymerase II-binding protein with a number of roles in different cellular processes including regulation of transcription, cell proliferation, cell cycle control, DNA damage responses and apoptosis. Che-1/AATF is a potential therapeutic target for cancer treatments. In this study, we aimed to identify whether besides ADA3, other components of the HAT modules of SAGA and ATAC complexes, human ADA2 and GCN5 also interact with Che-1/AATF. Co-immunoprecipitation and co-localization experiments were used to demonstrate association of AATF both with two ADA2 isoforms, ADA2A and ADA2B and with GCN5 proteins in human cells and yeast two-hybrid assays to delineate domains in the ADA2 and GCN5 proteins required for these interactions. These findings provide new insights into the pathways regulated by ADA-containing protein complexes.
Collapse
|
41
|
Integument Development in Arabidopsis Depends on Interaction of YABBY Protein INNER NO OUTER with Coactivators and Corepressors. Genetics 2017; 207:1489-1500. [PMID: 28971961 DOI: 10.1534/genetics.117.300140] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 09/28/2017] [Indexed: 01/28/2023] Open
Abstract
Arabidopsis thaliana INNER NO OUTER (INO) is a YABBY protein that is essential for the initiation and development of the outer integument of ovules. Other YABBY proteins have been shown to be involved in both negative and positive regulation of expression of putative target genes. YABBY proteins have also been shown to interact with the corepressor LEUNIG (LUG) in several systems. In support of a repressive role for INO, we confirm that INO interacts with LUG and also find that INO directly interacts with SEUSS (SEU), a known corepressive partner of LUG. Further, we find that INO can directly interact with ADA2b/PROPORZ1 (PRZ1), a transcriptional coactivator that is known to interact with the histone acetyltransferase GENERAL CONTROL NONREPRESSIBLE PROTEIN 5 (GCN5, also known as HAG1). Mutations in LUG, SEU, and ADA2b/PRZ1 all lead to pleiotropic effects including a deficiency in the extension of the outer integument. Additive and synergistic effects of ada2b/prz1 and lug mutations on outer integument formation indicate that these two genes function independently to promote outer integument growth. The ino mutation is epistatic to both lug and ada2b/prz1 in the outer integument, and all three proteins are present in the nuclei of a common set of outer integument cells. This is consistent with a model where INO utilizes these coregulator proteins to activate and repress separate sets of target genes. Other Arabidopsis YABBY proteins were shown to also form complexes with ADA2b/PRZ1, and have been previously shown to interact with SEU and LUG. Thus, interaction with these corepressors and coactivator may represent a general mechanism to explain the positive and negative activities of YABBY proteins in transcriptional regulation. The LUG, SEU, and ADA2b/PRZ1 proteins would also separately be recruited to targets of other transcription factors, consistent with their roles as general coregulators, explaining the pleiotropic effects not associated with YABBY function.
Collapse
|
42
|
Kong L, Qiu X, Kang J, Wang Y, Chen H, Huang J, Qiu M, Zhao Y, Kong G, Ma Z, Wang Y, Ye W, Dong S, Ma W, Wang Y. A Phytophthora Effector Manipulates Host Histone Acetylation and Reprograms Defense Gene Expression to Promote Infection. Curr Biol 2017; 27:981-991. [PMID: 28318979 DOI: 10.1016/j.cub.2017.02.044] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 02/17/2017] [Accepted: 02/20/2017] [Indexed: 11/28/2022]
Abstract
Immune response during pathogen infection requires extensive transcription reprogramming. A fundamental mechanism of transcriptional regulation is histone acetylation. However, how pathogens interfere with this process to promote disease remains largely unknown. Here we demonstrate that the cytoplasmic effector PsAvh23 produced by the soybean pathogen Phytophthora sojae acts as a modulator of histone acetyltransferase (HAT) in plants. PsAvh23 binds to the ADA2 subunit of the HAT complex SAGA and disrupts its assembly by interfering with the association of ADA2 with the catalytic subunit GCN5. As such, PsAvh23 suppresses H3K9 acetylation mediated by the ADA2/GCN5 module and increases plant susceptibility. Expression of PsAvh23 or silencing of GmADA2/GmGCN5 resulted in misregulation of defense-related genes, most likely due to decreased H3K9 acetylation levels at the corresponding loci. This study highlights an effective counter-defense mechanism by which a pathogen effector suppresses the activation of defense genes by interfering with the function of the HAT complex during infection.
Collapse
Affiliation(s)
- Liang Kong
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Xufang Qiu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Jiangang Kang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yang Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Han Chen
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Jie Huang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Min Qiu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yao Zhao
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Department of Plant Pathology and Microbiology, University of California, Riverside, Riverside, CA 92521, USA
| | - Guanghui Kong
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Zhenchuan Ma
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yan Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; The Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, Jiangsu 210095, China
| | - Wenwu Ye
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; The Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, Jiangsu 210095, China
| | - Suomeng Dong
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; The Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, Jiangsu 210095, China.
| | - Wenbo Ma
- Department of Plant Pathology and Microbiology, University of California, Riverside, Riverside, CA 92521, USA
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; The Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, Jiangsu 210095, China.
| |
Collapse
|
43
|
Wong MM, Chong GL, Verslues PE. Epigenetics and RNA Processing: Connections to Drought, Salt, and ABA? Methods Mol Biol 2017; 1631:3-21. [PMID: 28735388 DOI: 10.1007/978-1-4939-7136-7_1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
There have been great research advances in epigenetics, RNA splicing, and mRNA processing over recent years. In parallel, there have been many advances in abiotic stress and Abscisic Acid (ABA) signaling. Here we overview studies that have examined stress-induced changes in the epigenome and RNA processing as well as cases where disrupting these processes changes the plant response to abiotic stress. We also highlight some examples where specific connections of stress or ABA signaling to epigenetics or RNA processing have been found. By implication, this also points out cases where such mechanistic connections are likely to exist but are yet to be characterized. In the absence of such specific connections to stress signaling, it should be kept in mind that stress sensitivity phenotypes of some epigenetic or RNA processing mutants maybe the result of indirect, pleiotropic effects and thus may perhaps not indicate a direct function in stress acclimation.
Collapse
Affiliation(s)
- Min May Wong
- Institute of Plant and Microbial Biology, Academia Sinica, 128 Academia Road, Taipei, 11529, Taiwan.,Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica, Taipei, 11529, Taiwan.,Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung, 40227, Taiwan
| | - Geeng Loo Chong
- Institute of Plant and Microbial Biology, Academia Sinica, 128 Academia Road, Taipei, 11529, Taiwan.,Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica, Taipei, 11529, Taiwan.,Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung, 40227, Taiwan
| | - Paul E Verslues
- Institute of Plant and Microbial Biology, Academia Sinica, 128 Academia Road, Taipei, 11529, Taiwan. .,Biotechnology Center, National Chung-Hsing University, Taichung, 40227, Taiwan.
| |
Collapse
|
44
|
Abstract
Reversible histone acetylation and deacetylation at the N-terminus of histone tails play a crucial role in regulation of gene activity. Hyperacetylation of histones relaxes chromatin structure and is associated with transcriptional activation, whereas hypoacetylation of histones induces chromatin compaction and gene repression. Histone acetylation and deacetylation are catalyzed by histone acetyltransferases (HATs) and histone deacetylases (HDACs), respectively. Emerging evidences revealed that plant HATs and HDACs play essential roles in regulation of gene expression in plant development and plant responses to environmental stresses. Furthermore, HATs and HDACs were shown to interact with various chromatin-remodeling factors and transcription factors involved in transcriptional regulation of multiple developmental processes.
Collapse
Affiliation(s)
- X Liu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - S Yang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - C-W Yu
- Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - C-Y Chen
- Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - K Wu
- Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
45
|
Huang PY, Catinot J, Zimmerli L. Ethylene response factors in Arabidopsis immunity. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:1231-41. [PMID: 26663391 DOI: 10.1093/jxb/erv518] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Pathogen attack leads to transcriptional changes and metabolic modifications allowing the establishment of appropriate plant defences. Transcription factors (TFs) are key players in plant innate immunity. Notably, ethylene response factor (ERF) TFs are integrators of hormonal pathways and are directly responsible for the transcriptional regulation of several jasmonate (JA)/ethylene (ET)-responsive defence genes. Transcriptional activation or repression by ERFs is achieved through the binding to JA/ET-responsive gene promoters. In this review, we describe the regulation and mode of action at a molecular level of ERFs involved in Arabidopsis thaliana immunity. In particular, we focus on defence activators such as ERF1, ORA59, ERF6, and the recently described ERF96.
Collapse
|
46
|
Poulios S, Vlachonasios KE. Synergistic action of histone acetyltransferase GCN5 and receptor CLAVATA1 negatively affects ethylene responses in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:905-18. [PMID: 26596766 DOI: 10.1093/jxb/erv503] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
GENERAL CONTROL NON-REPRESSIBLE 5 (GCN5) is a histone acetyltransferase (HAT) and the catalytic subunit of several multicomponent HAT complexes that acetylate lysine residues of histone H3. Mutants in AtGCN5 display pleiotropic developmental defects including aberrant meristem function. Shoot apical meristem (SAM) maintenance is regulated by CLAVATA1 (CLV1), a receptor kinase that controls the size of the shoot and floral meristems. Upon activation through CLV3 binding, CLV1 signals to the transcription factor WUSCHEL (WUS), restricting WUS expression and thus the meristem size. We hypothesized that GCN5 and CLV1 act together to affect SAM function. Using genetic and molecular approaches, we generated and characterized clv gcn5 mutants. Surprisingly, the clv1-1 gcn5-1 double mutant exhibited constitutive ethylene responses, suggesting that GCN5 and CLV signaling act synergistically to inhibit ethylene responses in Arabidopsis. This genetic and molecular interaction was mediated by ETHYLENE INSENSITIVE 3/ EIN3-LIKE1 (EIN3/EIL1) transcription factors. Our data suggest that signals from the CLV transduction pathway reach the GCN5-containing complexes in the nucleus and alter the histone acetylation status of ethylene-responsive genes, thus translating the CLV information to transcriptional activity and uncovering a link between histone acetylation and SAM maintenance in the complex mode of ethylene signaling.
Collapse
Affiliation(s)
- Stylianos Poulios
- Department of Botany, School of Biology, Faculty of Science, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Konstantinos E Vlachonasios
- Department of Botany, School of Biology, Faculty of Science, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| |
Collapse
|
47
|
Yamamuro C, Zhu JK, Yang Z. Epigenetic Modifications and Plant Hormone Action. MOLECULAR PLANT 2016; 9:57-70. [PMID: 26520015 PMCID: PMC5575749 DOI: 10.1016/j.molp.2015.10.008] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 09/27/2015] [Accepted: 10/22/2015] [Indexed: 05/18/2023]
Abstract
The action of phytohormones in plants requires the spatiotemporal regulation of their accumulation and responses at various levels. Recent studies reveal an emerging relationship between the function of phytohormones and epigenetic modifications. In particular, evidence suggests that auxin biosynthesis, transport, and signal transduction is modulated by microRNAs and epigenetic factors such as histone modification, chromatin remodeling, and DNA methylation. Furthermore, some phytohormones have been shown to affect epigenetic modifications. These findings are shedding light on the mode of action of phytohormones and are opening up a new avenue of research on phytohormones as well as on the mechanisms regulating epigenetic modifications.
Collapse
Affiliation(s)
- Chizuko Yamamuro
- Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China; Horticultural Biology and Metabolomics Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, PRC.
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China; Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907, USA
| | - Zhenbiao Yang
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, Institute of Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| |
Collapse
|
48
|
Takatsuka H, Umeda M. Epigenetic Control of Cell Division and Cell Differentiation in the Root Apex. FRONTIERS IN PLANT SCIENCE 2015; 6:1178. [PMID: 26734056 PMCID: PMC4689806 DOI: 10.3389/fpls.2015.01178] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 12/09/2015] [Indexed: 05/25/2023]
Abstract
Epigenetics is defined as heritable changes in gene expression and genome integrity that are accompanied by no alteration in DNA sequence. Throughout plant life cycle, many processes, including genome imprinting, stress responses, and cellular differentiation, are known to be determined by epigenetic regulation. The root apex is also considered to be under the control of epigenetic regulation for optimal growth under variable environments. Recent reports reveal that epigenetic control is especially important in the stem cell niche and the meristematic zone where both cell production and cell specification occur. DNA methylation, histone methylation, and histone acetylation are well-known epigenetic modifications, and each epigenetic modification has distinct roles in roots. Here, we review the updated findings that demonstrate the significance of epigenetic regulation in root apex of Arabidopsis.
Collapse
Affiliation(s)
- Hirotomo Takatsuka
- Graduate School of Biological Sciences, Nara Institute of Science and TechnologyNara, Japan
| | - Masaaki Umeda
- Graduate School of Biological Sciences, Nara Institute of Science and TechnologyNara, Japan
- Japan Science and Technology, Core Research for Evolutional Science and Technology AgencyIkoma, Japan
| |
Collapse
|
49
|
Hu Z, Song N, Zheng M, Liu X, Liu Z, Xing J, Ma J, Guo W, Yao Y, Peng H, Xin M, Zhou DX, Ni Z, Sun Q. Histone acetyltransferase GCN5 is essential for heat stress-responsive gene activation and thermotolerance in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 84:1178-91. [PMID: 26576681 DOI: 10.1111/tpj.13076] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 10/29/2015] [Accepted: 11/03/2015] [Indexed: 05/22/2023]
Abstract
Exposure to temperatures exceeding the normal optimum levels, or heat stress (HS), constitutes an environmental disruption for plants, resulting in severe growth and development retardation. Here we show that loss of function of the Arabidopsis histone acetyltransferase GCN5 results in serious defects in terms of thermotolerance, and considerably impairs the transcriptional activation of HS-responsive genes. Notably, expression of several key regulators such as the HS transcription factors HSFA2 and HSFA3, Multiprotein Bridging Factor 1c (MBF1c) and UV-HYPERSENSITIVE 6 (UVH6) is down-regulated in the gcn5 mutant under HS compared with the wild-type. Chromatin immunoprecipitation (ChIP) assays indicated that GCN5 protein is enriched at the promoter regions of HSFA3 and UVH6 genes, but not in HSFA2 and MBF1c, and that GCN5 facilitates H3K9 and H3K14 acetylation, which are associated with HSFA3 and UVH6 activation under HS. Moreover, constitutive expression of UVH6 in the gcn5 mutant partially restores heat tolerance. Taken together, our data indicate that GCN5 plays a key role in the preservation of thermotolerance via versatile regulation in Arabidopsis. In addition, expression of the wheat TaGCN5 gene re-establishes heat tolerance in Arabidopsis gcn5 mutant plants, suggesting that GCN5-mediated thermotolerance may be conserved between Arabidopsis and wheat.
Collapse
Affiliation(s)
- Zhaorong Hu
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre (Beijing), Beijing, 100193, China
- Department of Plant Genetics & Breeding, China Agricultural University, Yuanmingyuan Xi Road No. 2, Haidian District, Beijing, 100193, China
| | - Na Song
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre (Beijing), Beijing, 100193, China
- Department of Plant Genetics & Breeding, China Agricultural University, Yuanmingyuan Xi Road No. 2, Haidian District, Beijing, 100193, China
| | - Mei Zheng
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre (Beijing), Beijing, 100193, China
- Department of Plant Genetics & Breeding, China Agricultural University, Yuanmingyuan Xi Road No. 2, Haidian District, Beijing, 100193, China
| | - Xinye Liu
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre (Beijing), Beijing, 100193, China
- Department of Plant Genetics & Breeding, China Agricultural University, Yuanmingyuan Xi Road No. 2, Haidian District, Beijing, 100193, China
| | - Zhenshan Liu
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre (Beijing), Beijing, 100193, China
- Department of Plant Genetics & Breeding, China Agricultural University, Yuanmingyuan Xi Road No. 2, Haidian District, Beijing, 100193, China
| | - Jiewen Xing
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre (Beijing), Beijing, 100193, China
- Department of Plant Genetics & Breeding, China Agricultural University, Yuanmingyuan Xi Road No. 2, Haidian District, Beijing, 100193, China
| | - Junhua Ma
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre (Beijing), Beijing, 100193, China
- Department of Plant Genetics & Breeding, China Agricultural University, Yuanmingyuan Xi Road No. 2, Haidian District, Beijing, 100193, China
| | - Weiwei Guo
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre (Beijing), Beijing, 100193, China
- Department of Plant Genetics & Breeding, China Agricultural University, Yuanmingyuan Xi Road No. 2, Haidian District, Beijing, 100193, China
| | - Yingyin Yao
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre (Beijing), Beijing, 100193, China
- Department of Plant Genetics & Breeding, China Agricultural University, Yuanmingyuan Xi Road No. 2, Haidian District, Beijing, 100193, China
| | - Huiru Peng
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre (Beijing), Beijing, 100193, China
- Department of Plant Genetics & Breeding, China Agricultural University, Yuanmingyuan Xi Road No. 2, Haidian District, Beijing, 100193, China
| | - Mingming Xin
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre (Beijing), Beijing, 100193, China
- Department of Plant Genetics & Breeding, China Agricultural University, Yuanmingyuan Xi Road No. 2, Haidian District, Beijing, 100193, China
| | - Dao-Xiu Zhou
- Institute of Plant Science Paris Saclay, Université Paris Sud, 91405, Orsay, France
| | - Zhongfu Ni
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre (Beijing), Beijing, 100193, China
- Department of Plant Genetics & Breeding, China Agricultural University, Yuanmingyuan Xi Road No. 2, Haidian District, Beijing, 100193, China
| | - Qixin Sun
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre (Beijing), Beijing, 100193, China
- Department of Plant Genetics & Breeding, China Agricultural University, Yuanmingyuan Xi Road No. 2, Haidian District, Beijing, 100193, China
| |
Collapse
|
50
|
Sinha S, Raxwal VK, Joshi B, Jagannath A, Katiyar-Agarwal S, Goel S, Kumar A, Agarwal M. De novo transcriptome profiling of cold-stressed siliques during pod filling stages in Indian mustard (Brassica juncea L.). FRONTIERS IN PLANT SCIENCE 2015; 6:932. [PMID: 26579175 PMCID: PMC4626631 DOI: 10.3389/fpls.2015.00932] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Accepted: 10/15/2015] [Indexed: 05/07/2023]
Abstract
Low temperature is a major abiotic stress that impedes plant growth and development. Brassica juncea is an economically important oil seed crop and is sensitive to freezing stress during pod filling subsequently leading to abortion of seeds. To understand the cold stress mediated global perturbations in gene expression, whole transcriptome of B. juncea siliques that were exposed to sub-optimal temperature was sequenced. Manually self-pollinated siliques at different stages of development were subjected to either short (6 h) or long (12 h) durations of chilling stress followed by construction of RNA-seq libraries and deep sequencing using Illumina's NGS platform. De-novo assembly of B. juncea transcriptome resulted in 133,641 transcripts, whose combined length was 117 Mb and N50 value was 1428 bp. We identified 13,342 differentially regulated transcripts by pair-wise comparison of 18 transcriptome libraries. Hierarchical clustering along with Spearman correlation analysis identified that the differentially expressed genes segregated in two major clusters representing early (5-15 DAP) and late stages (20-30 DAP) of silique development. Further analysis led to the discovery of sub-clusters having similar patterns of gene expression. Two of the sub-clusters (one each from the early and late stages) comprised of genes that were inducible by both the durations of cold stress. Comparison of transcripts from these clusters led to identification of 283 transcripts that were commonly induced by cold stress, and were referred to as "core cold-inducible" transcripts. Additionally, we found that 689 and 100 transcripts were specifically up-regulated by cold stress in early and late stages, respectively. We further explored the expression patterns of gene families encoding for transcription factors (TFs), transcription regulators (TRs) and kinases, and found that cold stress induced protein kinases only during early silique development. We validated the digital gene expression profiles of selected transcripts by qPCR and found a high degree of concordance between the two analyses. To our knowledge this is the first report of transcriptome sequencing of cold-stressed B. juncea siliques. The data generated in this study would be a valuable resource for not only understanding the cold stress signaling pathway but also for introducing cold hardiness in B. juncea.
Collapse
Affiliation(s)
- Somya Sinha
- Department of Botany, University of DelhiNew Delhi, India
| | - Vivek K. Raxwal
- Department of Botany, University of DelhiNew Delhi, India
- Department of Plant Molecular Biology, Central European Institute of TechnologyBrno, Czech Republic
| | - Bharat Joshi
- Department of Botany, University of DelhiNew Delhi, India
| | - Arun Jagannath
- Department of Botany, University of DelhiNew Delhi, India
| | | | | | - Amar Kumar
- Department of Botany, University of DelhiNew Delhi, India
| | - Manu Agarwal
- Department of Botany, University of DelhiNew Delhi, India
| |
Collapse
|