1
|
Kulakowski Corá R, Prado Paludo G, Andrade Paes J, Bunselmeyer Ferreira H. In silico comparative analysis of cestode and human NPC1 provides insights for ezetimibe repurposing to visceral cestodiases treatment. Sci Rep 2024; 14:21282. [PMID: 39261546 PMCID: PMC11391042 DOI: 10.1038/s41598-024-72136-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 09/04/2024] [Indexed: 09/13/2024] Open
Abstract
Visceral cestodiases, like cysticercoses and echinococcoses, are caused by cystic larvae from parasites of the Cestoda class and are endemic or hyperendemic in many areas of the world. Current therapeutic approaches for these diseases are complex and present limitations and risks. Therefore, new safer and more effective treatments are urgently needed. The Niemann-Pick C1 (NPC1) protein is a cholesterol transporter that, based on genomic data, would be the solely responsible for cholesterol uptake in cestodes. Considering that human NPC1L1 is a known target of ezetimibe, used in the treatment of hypercholesterolemia, it has the potential for repurposing for the treatment of visceral cestodiases. Here, phylogenetic, selective pressure and structural in silico analyses were carried out to assess NPC1 evolutive and structural conservation, especially between cestode and human orthologs. Two NPC1 orthologs were identified in cestode species (NPC1A and NPC1B), which likely underwent functional divergence, leading to the loss of cholesterol transport capacity in NPC1A. Comparative interaction analyses performed by molecular docking of ezetimibe with human NPC1L1 and cestode NPC1B pointed out to similarities that consolidate the idea of cestode NPC1B as a target for the repurposing of ezetimibe as a drug for the treatment of visceral cestodiases.
Collapse
Affiliation(s)
- Renato Kulakowski Corá
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia (CBiot), Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 9500, Bloco IV, Prédio 43-421, Sala 210, Cx. Postal 15005, Porto Alegre, RS, 91501-970, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, CBiot, UFRGS, Porto Alegre, RS, Brazil
| | - Gabriela Prado Paludo
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia (CBiot), Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 9500, Bloco IV, Prédio 43-421, Sala 210, Cx. Postal 15005, Porto Alegre, RS, 91501-970, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, CBiot, UFRGS, Porto Alegre, RS, Brazil
| | - Jéssica Andrade Paes
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia (CBiot), Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 9500, Bloco IV, Prédio 43-421, Sala 210, Cx. Postal 15005, Porto Alegre, RS, 91501-970, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, CBiot, UFRGS, Porto Alegre, RS, Brazil
| | - Henrique Bunselmeyer Ferreira
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia (CBiot), Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 9500, Bloco IV, Prédio 43-421, Sala 210, Cx. Postal 15005, Porto Alegre, RS, 91501-970, Brazil.
- Programa de Pós-Graduação em Biologia Celular e Molecular, CBiot, UFRGS, Porto Alegre, RS, Brazil.
| |
Collapse
|
2
|
Tanaka Y, Inaba C, Sawa T, Endo K, Saiki T, Haga H, Niitsuma F, Kawahara T, Watanabe J, Tanaka S. Heat-killed Lactiplantibacillus plantarum Shinshu N-07 exerts antiobesity effects in western diet-induced obese mice. J Appl Microbiol 2024; 135:lxae119. [PMID: 38740521 DOI: 10.1093/jambio/lxae119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 03/19/2024] [Accepted: 05/12/2024] [Indexed: 05/16/2024]
Abstract
AIMS The aim of this study was to evaluate the antiobesity effects of heat-killed Lactiplantibacillus plantarum Shinshu N-07 (N-07) isolated from fermented Brassica rapa L. METHODS AND RESULTS Male mice were divided into three groups (n = 10/group); normal diet, western diet (WD), or WD + N-07 (N-07) group and administered each diet for 56 days. The N-07 group showed significant suppression of body weight gain and epididymal fat, perirenal fat, and liver weights compared with the WD group. Higher levels of fecal total cholesterol, triglyceride (TG), and free fatty acid (FFA) were observed in the N-07 group than in the WD group. The mRNA expression of the cholesterol transporter ATP-binding cassette transporter G5 (ABCG5) was significantly increased in the small intestine of N-07-fed mice compared with WD-fed mice. Moreover, N-07 supplementation significantly increased the mRNA expression of ABCG5 and ABCG8 in Caco-2 cells. Furthermore, the TG- and FFA-removal ability of N-07 was confirmed to evaluate its soybean oil- and oleic acid-binding capacities in in vitro experiments. CONCLUSIONS The antiobesity effects of N-07 might be due to its ability to promote lipid excretion by regulating cholesterol transporter expression and lipid-binding ability.
Collapse
MESH Headings
- Animals
- Male
- Mice
- Obesity/metabolism
- Diet, Western
- Humans
- ATP Binding Cassette Transporter, Subfamily G, Member 5/genetics
- ATP Binding Cassette Transporter, Subfamily G, Member 5/metabolism
- Anti-Obesity Agents/pharmacology
- Lactobacillus plantarum
- Mice, Obese
- ATP Binding Cassette Transporter, Subfamily G, Member 8/genetics
- ATP Binding Cassette Transporter, Subfamily G, Member 8/metabolism
- Cholesterol/metabolism
- Probiotics
- Caco-2 Cells
- Brassica rapa/chemistry
- Hot Temperature
- Lipoproteins/metabolism
- Triglycerides/metabolism
- Liver/metabolism
- Mice, Inbred C57BL
Collapse
Affiliation(s)
- Yuna Tanaka
- Division of Food Science and Biotechnology, Department of Agriculture, Graduate School of Science and Technology, Shinshu University, Minami-minowa, Kami-ina, Nagano 399-4598, Japan
| | - Chihiro Inaba
- Division of Food Science and Biotechnology, Department of Agriculture, Graduate School of Science and Technology, Shinshu University, Minami-minowa, Kami-ina, Nagano 399-4598, Japan
| | - Toko Sawa
- Division of Food Science and Biotechnology, Department of Agriculture, Graduate School of Science and Technology, Shinshu University, Minami-minowa, Kami-ina, Nagano 399-4598, Japan
| | - Katsunori Endo
- Division of Food Science and Biotechnology, Department of Science and Technology, Graduate School of Medicine, Science and Technology, Shinshu University, Minami-minowa, Kami-ina, Nagano 399-4598, Japan
| | - Takeru Saiki
- Division of Food Science and Biotechnology, Department of Agriculture, Graduate School of Science and Technology, Shinshu University, Minami-minowa, Kami-ina, Nagano 399-4598, Japan
| | - Hazuki Haga
- Division of Food Science and Biotechnology, Department of Agriculture, Graduate School of Science and Technology, Shinshu University, Minami-minowa, Kami-ina, Nagano 399-4598, Japan
| | - Fumie Niitsuma
- Division of Food Science and Biotechnology, Department of Agriculture, Graduate School of Science and Technology, Shinshu University, Minami-minowa, Kami-ina, Nagano 399-4598, Japan
| | - Takeshi Kawahara
- Division of Food Science and Biotechnology, Department of Agriculture, Graduate School of Science and Technology, Shinshu University, Minami-minowa, Kami-ina, Nagano 399-4598, Japan
- Division of Food Science and Biotechnology, Department of Science and Technology, Graduate School of Medicine, Science and Technology, Shinshu University, Minami-minowa, Kami-ina, Nagano 399-4598, Japan
| | - Jun Watanabe
- Department of Life and Food Sciences, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Japan
| | - Sachi Tanaka
- Division of Food Science and Biotechnology, Department of Agriculture, Graduate School of Science and Technology, Shinshu University, Minami-minowa, Kami-ina, Nagano 399-4598, Japan
- Division of Food Science and Biotechnology, Department of Science and Technology, Graduate School of Medicine, Science and Technology, Shinshu University, Minami-minowa, Kami-ina, Nagano 399-4598, Japan
| |
Collapse
|
3
|
Zhang R, Zeng J, Liu W, Meng J, Wang C, Shi L, Yang S, Chang J, Xing D. The role of NPC1L1 in cancer. Front Pharmacol 2022; 13:956619. [PMID: 36034854 PMCID: PMC9399402 DOI: 10.3389/fphar.2022.956619] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Lipid metabolism appears to play significant roles in the development of cancer. Numerous studies have shown that the evolution of malignancies, including breast, prostate, and colorectal cancers, involves cholesterol in a profound manner. A crucial part in the intestinal absorption of cholesterol is played by Niemann–Pick C1-like 1 (NPC1L1), a cholesterol transporter protein that is widely expressed in the small intestine and liver. The importance of NPC1L1 in tumor prognosis has been demonstrated in investigations in the interim. NPC1L1 also has the potential to develop into a new therapeutic target and a cancer marker. There is, however, no comprehensive review that summarizes NPC1L1’s function in cancer. To this end, we outlined NPC1L1’s functions in carcinogenesis and treatment, along with resources that can be used to further comprehend the connection between NPC1L1 and tumors.
Collapse
Affiliation(s)
- Renshuai Zhang
- Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Jun Zeng
- Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Wenjing Liu
- Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Jingsen Meng
- Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Chao Wang
- Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Lingyu Shi
- Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Shanbo Yang
- Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Jing Chang
- Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Dongming Xing
- Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Life Sciences, Tsinghua University, Beijing, China
- *Correspondence: Dongming Xing,
| |
Collapse
|
4
|
Cao K, Zhang K, Ma M, Ma J, Tian J, Jin Y. Lactobacillus mediates the expression of NPC1L1, CYP7A1, and ABCG5 genes to regulate cholesterol. Food Sci Nutr 2021; 9:6882-6891. [PMID: 34925816 PMCID: PMC8645708 DOI: 10.1002/fsn3.2600] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/09/2021] [Accepted: 09/11/2021] [Indexed: 01/09/2023] Open
Abstract
Hypercholesterolemia is the main cause of cardiovascular disease worldwide, and the regulation of cholesterol homeostasis is essential for human health. Lactobacillus is present in large quantities in the human intestine. As the normal flora in the gut, lactobacillus plays an important role in regulating metabolism in the human body. Lactobacillus can regulate the cholesterol content by regulating the expression of genes involved in cholesterol synthesis, metabolism, and absorption. This article reviews the biological effects and mechanisms of lactobacillus that mediate the expression of NPC1L1, CYP7A1, ABCG5, ABCG8, and other genes to inhibit cholesterol absorption, and discusses the mechanism of reducing cholesterol by lactobacillus in cells in vitro, to provide a theoretical basis for the development and utilization of lactobacillus resources.
Collapse
Affiliation(s)
- Kaihui Cao
- College of Food Science and TechnologyInner Mongolia Agricultural UniversityHohhotChina
| | - Kaiping Zhang
- Department of Cooking & Food ProcessingInner Mongolia Business and Trade Vocational CollegeHohhotChina
| | - Muran Ma
- College of Food Science and TechnologyInner Mongolia Agricultural UniversityHohhotChina
| | - Junjie Ma
- College of Food Science and TechnologyInner Mongolia Agricultural UniversityHohhotChina
| | - Jianjun Tian
- College of Food Science and TechnologyInner Mongolia Agricultural UniversityHohhotChina
| | - Ye Jin
- College of Food Science and TechnologyInner Mongolia Agricultural UniversityHohhotChina
| |
Collapse
|
5
|
Wang HH, Liu M, Portincasa P, Wang DQH. Recent Advances in the Critical Role of the Sterol Efflux Transporters ABCG5/G8 in Health and Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1276:105-136. [PMID: 32705597 PMCID: PMC8118135 DOI: 10.1007/978-981-15-6082-8_8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cardiovascular disease is characterized by lipid accumulation, inflammatory response, cell death, and fibrosis in the arterial wall and is the leading cause of morbidity and mortality worldwide. Cholesterol gallstone disease is caused by complex genetic and environmental factors and is one of the most prevalent and costly digestive diseases in the USA and Europe. Although sitosterolemia is a rare inherited lipid storage disease, its genetic studies led to identification of the sterol efflux transporters ABCG5/G8 that are located on chromosome 2p21 in humans and chromosome 17 in mice. Human and animal studies have clearly demonstrated that ABCG5/G8 play a critical role in regulating hepatic secretion and intestinal absorption of cholesterol and plant sterols. Sitosterolemia is caused by a mutation in either the ABCG5 or the ABCG8 gene alone, but not in both simultaneously. Polymorphisms in the ABCG5/G8 genes are associated with abnormal plasma cholesterol metabolism and may play a key role in the genetic determination of plasma cholesterol concentrations. Moreover, ABCG5/G8 is a new gallstone gene, LITH9. Gallstone-associated variants in ABCG5/G8 are involved in the pathogenesis of cholesterol gallstones in European, Asian, and South American populations. In this chapter, we summarize the latest advances in the critical role of the sterol efflux transporters ABCG5/G8 in regulating hepatic secretion of biliary cholesterol, intestinal absorption of cholesterol and plant sterols, the classical reverse cholesterol transport, and the newly established transintestinal cholesterol excretion, as well as in the pathogenesis and pathophysiology of ABCG5/G8-related metabolic diseases such as sitosterolemia, cardiovascular disease, and cholesterol gallstone disease.
Collapse
Affiliation(s)
- Helen H Wang
- Department of Medicine and Genetics, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Min Liu
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Piero Portincasa
- Department of Biomedical Sciences and Human Oncology, Clinica Medica "A. Murri", University of Bari Medical School, Bari, Italy
| | - David Q-H Wang
- Department of Medicine and Genetics, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
6
|
Supplementation of Non-Dairy Creamer-Enriched High-Fat Diet with D-Allulose Ameliorated Blood Glucose and Body Fat Accumulation in C57BL/6J Mice. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9132750] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
D-allulose, which has 70% of the sweet taste of sucrose but nearly no calories, has been reported to inhibit the absorption of lipids and suppress body weight gain in obese mice. Fats in non-dairy creamer consist of highly saturated fatty acids, which can cause various lipid disorders when consumed over a long period. We investigated whether D-allulose supplementation alleviates the effects of a non-dairy creamer-enriched high-fat diet on lipid metabolism. High-fat diets enriched with non-dairy creamer were administered to C57BL/6J mice with or without D-allulose supplementation for eight weeks by the pair-feeding design. Lipid metabolic markers were compared between the non-dairy creamer control group (NDC) and non-dairy creamer allulose group (NDCA). Body, adipose tissue, and liver weights, and fasting blood glucose levels, were significantly lower in the NDCA group than in the NDC group. Fecal fatty acid and triglyceride levels were significantly higher in the NDCA group than in the NDC group. Supplementing a non-dairy creamer-enriched high-fat diet with D-allulose improved overall lipid metabolism, including the plasma and hepatic lipid profiles, hepatic and adipose tissue morphology, and plasma inflammatory adipokine levels in mice. These results suggest that D-allulose can be used as a functional food component for preventing body fat accumulation from a high-fat diet that includes hydrogenated plant fats.
Collapse
|
7
|
Auclair N, Melbouci L, St-Pierre D, Levy E. Gastrointestinal factors regulating lipid droplet formation in the intestine. Exp Cell Res 2018; 363:1-14. [PMID: 29305172 DOI: 10.1016/j.yexcr.2017.12.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/28/2017] [Accepted: 12/29/2017] [Indexed: 12/22/2022]
Abstract
Cytoplasmic lipid droplets (CLD) are considered as neutral lipid reservoirs, which protect cells from lipotoxicity. It became clear that these fascinating dynamic organelles play a role not only in energy storage and metabolism, but also in cellular lipid and protein handling, inter-organelle communication, and signaling among diverse functions. Their dysregulation is associated with multiple disorders, including obesity, liver steatosis and cardiovascular diseases. The central aim of this review is to highlight the link between intra-enterocyte CLD dynamics and the formation of chylomicrons, the main intestinal dietary lipid vehicle, after overviewing the morphology, molecular composition, biogenesis and functions of CLD.
Collapse
Affiliation(s)
- N Auclair
- Research Centre, CHU Sainte-Justine and Department of Montreal, Quebec, Canada H3T 1C5; Nutrition, Université de Montréal, Montreal, Quebec, Canada H3T 1C5
| | - L Melbouci
- Research Centre, CHU Sainte-Justine and Department of Montreal, Quebec, Canada H3T 1C5; Department of Sciences and Physical Activities, UQAM, Quebec, Canada H2X 1Y4
| | - D St-Pierre
- Research Centre, CHU Sainte-Justine and Department of Montreal, Quebec, Canada H3T 1C5; Department of Sciences and Physical Activities, UQAM, Quebec, Canada H2X 1Y4
| | - E Levy
- Research Centre, CHU Sainte-Justine and Department of Montreal, Quebec, Canada H3T 1C5; Nutrition, Université de Montréal, Montreal, Quebec, Canada H3T 1C5; Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, Quebec, Canada G1V 0A6.
| |
Collapse
|
8
|
Ness GC, Holland RC, Lopez D. Selective Compensatory Induction of Hepatic HMG-CoA Reductase in Response to Inhibition of Cholesterol Absorption. Exp Biol Med (Maywood) 2016; 231:559-65. [PMID: 16636304 DOI: 10.1177/153537020623100510] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The effect of the potent inhibitor of cholesterol absorption, ezetimibe, on serum cholesterol levels was tested in diabetic and thyroidectomized male Sprague-Dawley rats. Feeding diets supplemented with 1% cholesterol to the diabetic rats raised serum cholesterol levels from 132 to 514 mg/dl while decreasing hepatic 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase protein and mRNA levels. Addition of 10 mg/kg/day of ezetimibe to the diets of these animals lowered the serum cholesterol level to 90 mg/dl and produced a large compensatory increase in hepatic HMG-CoA reductase protein without significantly increasing mRNA levels, indicating a post-transcriptional effect. Hepatic LDL receptor protein levels in these diabetic rats were unaffected by ezetimibe treatment. In contrast, ezetimibe treatment of these young normal Sprague-Dawley rats, known to express high levels of hepatic HMG-CoA reductase, did not lower serum cholesterol levels. In thyroidectomized rats, dietary cholesterol increased serum cholesterol levels from 116 to 135 mg/dl and ezetimibe treatment lowered these elevated cholesterol levels to 85 mg/dl. Cholesterol feeding of thyroidectomized rats severely reduced hepatic HMG-CoA reductase protein, while ezetimibe treatment restored reductase protein to normal levels. Again, hepatic LDL receptor protein levels were unaffected by ezetimibe treatment of cholesterol-fed thyroidectomized rats. The data demonstrate that the cholesterol absorption inhibitor ezetimibe profoundly lowers serum cholesterol levels in animals expressing very low rates of hepatic cholesterol synthesis and produces large compensatory increases in hepatic HMG-CoA reductase expression without significantly affecting expression of hepatic LDL receptors. This indicates that ezetimibe should be most effective in lowering serum cholesterol levels in people with low rates of cholesterol synthesis/high rates of cholesterol absorption.
Collapse
Affiliation(s)
- Gene C Ness
- Department of Biochemistry and Molecular Biology, College of Medicine, 12901 Bruce B. Downs Boulevard, University of South Florida, Tampa, FL 33612, USA.
| | | | | |
Collapse
|
9
|
Kawase A, Araki Y, Ueda Y, Nakazaki S, Iwaki M. Impact of a high-cholesterol diet on expression levels of Niemann–Pick C1-like 1 and intestinal transporters in rats and mice. Eur J Drug Metab Pharmacokinet 2015; 41:457-63. [DOI: 10.1007/s13318-015-0269-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 02/13/2015] [Indexed: 10/24/2022]
|
10
|
Kurisu S, Shimonaga T, Iwasaki T, Ishibashi K, Mitsuba N, Dohi Y, Kihara Y. Effects of ezetimibe on serum polyunsaturated fatty acids in patients with coronary artery disease. Int Heart J 2013; 54:254-7. [PMID: 24097212 DOI: 10.1536/ihj.54.254] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Residual risk of cardiovascular disease might stem, at least partially, from low serum concentrations of n-3 polyunsaturated fatty acid (PUFA). The purpose of this study was to evaluate the effects of ezetimibe on serum lipids and PU-FAs in patients with coronary artery disease who were intolerant of new or high-dose statin therapy. The study population consisted of 13 patients who were intolerant of new statin therapy and 10 patients who were intolerant of high-dose statin therapy for the treatment of low-density lipoprotein (LDL) cholesterol. Patients who were intolerant of high-dose statin therapy continued taking a statin, but at a lower dose during the study period. Blood samples were collected before and 12 weeks after ezetimibe (10 mg). We measured serum lipids and PUFAs including dihomo-γ-linolenic acid, arachidonic acid (AA), eicosapentaenoic acid (EPA), and docosahexaenoic acid. Ezetimibe significantly decreased LDL cholesterol (138 ± 19 mg/dL to 97 ± 34 mg/dL, P < 0.01), but did not significantly affect high-density lipoprotein cholesterol, triglyceride, or any of the PUFAs measured during the follow-up period. Consequently, it did not affect the ratio of EPA to AA (0.40 ± 0.17 to 0.43 ± 0.18, P = ns) or the ratio of n-3 PUFA to n-6 PUFA (1.10 ± 0.39 to 1.09 ± 0.36, P = ns) during the follow-up period. Ezetimibe in combination with a low-dose statin, or as monotherapy in statin-intolerant patients, decreased LDL cholesterol, but did not significantly affect serum PUFA concentrations in patients with coronary artery disease.
Collapse
Affiliation(s)
- Satoshi Kurisu
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences
| | | | | | | | | | | | | |
Collapse
|
11
|
Zhu X, Ji J, Huang D, Zhu Y, Tang C, Yang X, Qian H, Huang W. Discovery, Synthesis and Evaluation of Novel Cholesterol Absorption Inhibitors. Chem Biol Drug Des 2012; 80:426-33. [DOI: 10.1111/j.1747-0285.2012.01421.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Huang X, Chen DYK. A Case Study of Single-Pill Combination Therapy: The Ezetimibe/Simvastatin Combination for Treatment of Hyperlipidemia. ChemMedChem 2012; 7:1882-94. [DOI: 10.1002/cmdc.201200287] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Indexed: 12/11/2022]
|
13
|
Nguyen TM, Sawyer JK, Kelley KL, Davis MA, Kent CR, Rudel LL. ACAT2 and ABCG5/G8 are both required for efficient cholesterol absorption in mice: evidence from thoracic lymph duct cannulation. J Lipid Res 2012; 53:1598-609. [PMID: 22669916 PMCID: PMC3540850 DOI: 10.1194/jlr.m026823] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 05/24/2012] [Indexed: 11/20/2022] Open
Abstract
The metabolic fate of newly absorbed cholesterol and phytosterol is orchestrated through adenosine triphosphate-binding cassette transporter G5 and G8 heterodimer (G5G8), and acyl CoA:cholesterol acyltransferase 2 (ACAT2). We hypothesized that intestinal G5G8 limits sterol absorption by reducing substrate availability for ACAT2 esterification and have attempted to define the roles of these two factors using gene deletion studies in mice. Male ACAT2(-/-), G5G8(-/-), ACAT2(-/-)G5G8(-/-) (DKO), and wild-type (WT) control mice were fed a diet with 20% of energy as palm oil and 0.2% (w/w) cholesterol. Sterol absorption efficiency was directly measured by monitoring the appearance of [(3)H]sitosterol and [(14)C]cholesterol tracers in lymph after thoracic lymph duct cannulation. The average percentage (± SEM) absorption of [(14)C]cholesterol after 8 h of lymph collection was 40.55 ± 0.76%, 19.41 ± 1.52%, 32.13 ± 1.60%, and 21.27 ± 1.35% for WT, ACAT2(-/-), G5G8(-/-), and DKO mice, respectively. [(3)H]sitosterol absorption was <2% in WT and ACAT2(-/-) mice, whereas it was up to 6.8% in G5G8(-/-) and DKO mice. G5G8(-/-) mice also produced chylomicrons with ∼70% less cholesterol ester mass than WT mice. In contrast to expectations, the data demonstrated that the absence of G5G8 led to decreased intestinal cholesterol esterification and reduced cholesterol transport efficiency. Intestinal G5G8 appeared to limit the absorption of phytosterols; ACAT2 more efficiently esterified cholesterol than phytosterols. The data indicate that handling of sterols by the intestine involves both G5G8 and ACAT2 but that an additional factor (possibly Niemann-Pick C1-like 1) may be key in determining absorption efficiency.
Collapse
Affiliation(s)
- Tam M. Nguyen
- Department of Pathology, Wake Forest School of Medicine, Winston-Salem, NC 27157
| | - Janet K. Sawyer
- Department of Pathology, Wake Forest School of Medicine, Winston-Salem, NC 27157
| | - Kathryn L. Kelley
- Department of Pathology, Wake Forest School of Medicine, Winston-Salem, NC 27157
| | - Matthew A. Davis
- Department of Pathology, Wake Forest School of Medicine, Winston-Salem, NC 27157
| | - Carol R. Kent
- Department of Pathology, Wake Forest School of Medicine, Winston-Salem, NC 27157
| | - Lawrence L. Rudel
- Department of Pathology, Wake Forest School of Medicine, Winston-Salem, NC 27157
| |
Collapse
|
14
|
Niemann-Pick C1-Like 1 and cholesterol uptake. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1821:964-72. [PMID: 22480541 DOI: 10.1016/j.bbalip.2012.03.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2011] [Revised: 03/09/2012] [Accepted: 03/12/2012] [Indexed: 01/27/2023]
Abstract
Niemann-Pick C1-Like 1 (NPC1L1) is a polytopic transmembrane protein responsible for dietary cholesterol and biliary cholesterol absorption. Consistent with its functions, NPC1L1 distributes on the brush border membrane of enterocytes and the canalicular membrane of hepatocytes in humans. As the molecular target of ezetimibe, a hypocholesterolemic drug, its physiological and pathological significance has been recognized and intensively studied for years. Recently, plenty of new findings reveal the molecular mechanism of NPC1L1's role in cholesterol uptake, which may provide new insights on our understanding of cholesterol absorption. In this review, we summarized recent progress in these studies and proposed a working model, hoping to provide new perspectives on the regulation of cholesterol transport and metabolism.
Collapse
|
15
|
Ferreira CM, Chen JL, Li J, Shimomura K, Yang X, Lussier YA, Pinto LH, Solway J. Genetic interactions between chromosomes 11 and 18 contribute to airway hyperresponsiveness in mice. PLoS One 2012; 7:e29579. [PMID: 22253740 PMCID: PMC3254621 DOI: 10.1371/journal.pone.0029579] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 11/30/2011] [Indexed: 01/28/2023] Open
Abstract
We used two-dimensional quantitative trait locus analysis to identify interacting genetic loci that contribute to the native airway constrictor hyperresponsiveness to methacholine that characterizes A/J mice, relative to C57BL/6J mice. We quantified airway responsiveness to intravenous methacholine boluses in eighty-eight (C57BL/6J X A/J) F2 and twenty-seven (A/J X C57BL/6J) F2 mice as well as ten A/J mice and six C57BL/6J mice; all studies were performed in male mice. Mice were genotyped at 384 SNP markers, and from these data two-QTL analyses disclosed one pair of interacting loci on chromosomes 11 and 18; the homozygous A/J genotype at each locus constituted the genetic interaction linked to the hyperresponsive A/J phenotype. Bioinformatic network analysis of potential interactions among proteins encoded by genes in the linked regions disclosed two high priority subnetworks - Myl7, Rock1, Limk2; and Npc1, Npc1l1. Evidence in the literature supports the possibility that either or both networks could contribute to the regulation of airway constrictor responsiveness. Together, these results should stimulate evaluation of the genetic contribution of these networks in the regulation of airway responsiveness in humans.
Collapse
Affiliation(s)
- Caroline M. Ferreira
- Department of Medicine, University of Chicago, Chicago, Illinois, United States of America
- Department of Neurobiology and Physiology, Northwestern University, Evanston, Illinois, United States of America
| | - James L. Chen
- Department of Medicine, University of Chicago, Chicago, Illinois, United States of America
| | - Jianrong Li
- Department of Medicine, University of Chicago, Chicago, Illinois, United States of America
| | - Kazuhiro Shimomura
- Department of Neurobiology and Physiology, Northwestern University, Evanston, Illinois, United States of America
| | - Xinan Yang
- Department of Medicine, University of Chicago, Chicago, Illinois, United States of America
| | - Yves A. Lussier
- Department of Medicine, University of Chicago, Chicago, Illinois, United States of America
| | - Lawrence H. Pinto
- Department of Neurobiology and Physiology, Northwestern University, Evanston, Illinois, United States of America
| | - Julian Solway
- Department of Medicine, University of Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
16
|
Jia L, Betters JL, Yu L. Niemann-pick C1-like 1 (NPC1L1) protein in intestinal and hepatic cholesterol transport. Annu Rev Physiol 2011; 73:239-59. [PMID: 20809793 DOI: 10.1146/annurev-physiol-012110-142233] [Citation(s) in RCA: 247] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Increased blood cholesterol is an independent risk factor for atherosclerotic cardiovascular disease. Cholesterol homeostasis in the body is controlled mainly by endogenous synthesis, intestinal absorption, and hepatic excretion. Niemann-Pick C1-Like 1 (NPC1L1) is a polytopic transmembrane protein localized at the apical membrane of enterocytes and the canalicular membrane of hepatocytes. It functions as a sterol transporter to mediate intestinal cholesterol absorption and counter-balances hepatobiliary cholesterol excretion. NPC1L1 is the molecular target of ezetimibe, a potent cholesterol absorption inhibitor that is widely used in treating hypercholesterolemia. Recent findings suggest that NPC1L1 deficiency or ezetimibe treatment also prevents diet-induced hepatic steatosis and obesity in addition to reducing blood cholesterol. Future studies should focus on molecular mechanisms underlying NPC1L1-dependent cholesterol transport and elucidation of how a cholesterol transporter modulates the pathogenesis of metabolic diseases.
Collapse
Affiliation(s)
- Lin Jia
- Section on Lipid Sciences, Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157-1040, USA
| | | | | |
Collapse
|
17
|
Wang Y, Haiqian, Huang W, Zhang H, Zhou J. Synthesis and Biological Evaluation of Ezetimibe Analogs as Possible Cholesterol Absorption Inhibitors. LETT DRUG DES DISCOV 2011; 8:500-505. [PMID: 21966284 PMCID: PMC3179128 DOI: 10.2174/157018011795906776] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Revised: 03/06/2011] [Accepted: 03/08/2011] [Indexed: 11/30/2022]
Abstract
In order to investigate the SAR of Ezetimibe analogs for cholesterol absorption inhibitions, amide group and electron-deficient pyridine ring were introduced to the C-(3) carbon chain of Ezetimibe. Eight new derivatives of the 2-azetidinone cholesterol absorption inhibitors have been synthesized, and all of them were enantiomerically pure. All the new compounds were evaluated for their activity to inhibit cholesterol absorption in hamsters, and most of them showed comparable effects in lowering the levels of total cholesterol in the serum.
Collapse
Affiliation(s)
- Yubin Wang
- School of Pharmaceutical Sciences, Nanjing University of Technology, NO.5 Xinmofan Road, Nanjing 210009, China
| | | | | | | | | |
Collapse
|
18
|
Abstract
PURPOSE OF REVIEW The discovery of Niemann-Pick C1-like 1 (NPC1L1) and ezetimibe, a drug that lowers intestinal cholesterol absorption, has contributed to the recognition of the intestine as an important organ in whole-body cholesterol homeostasis. Unfortunately, the majority of the studies on NPC1L1 have been conducted in rodent models, which, in contrast to humans, do not express this protein in the liver. Thus the function of NPC1L1 in the liver is still not defined in detail. In this review, we discuss some of the recent progress in the understanding of the role of hepatic NPC1L1 in cholesterol metabolism. RECENT FINDINGS Mice expressing human NPC1L1 in the liver have decreased biliary cholesterol concentration, suggesting the involvement of this protein in the hepatic reabsorption of biliary cholesterol. Studies in gallstone patients have shown that only women have decreased hepatic NPC1L1 expression, suggesting a possible role for the sex-related differences in cholesterol gallstone disease. Also, several transcription factors (e.g., sterol regulatory element-binding protein 2, hepatocyte nuclear factor 1α) appear to modulate the expression of NPC1L1. SUMMARY Evidence suggests the involvement of NPC1L1 in biliary cholesterol uptake, HDL metabolism and cholesterol gallstone disease. Although difficult, studies in humans are required to further elucidate the function of this protein in the liver.
Collapse
Affiliation(s)
- Camilla Pramfalk
- Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | | | | |
Collapse
|
19
|
Skov M, Tønnesen CK, Hansen GH, Danielsen EM. Dietary cholesterol induces trafficking of intestinal Niemann-Pick Type C1 Like 1 from the brush border to endosomes. Am J Physiol Gastrointest Liver Physiol 2011; 300:G33-40. [PMID: 21051527 DOI: 10.1152/ajpgi.00344.2010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The transmembrane protein Niemann-Pick C1 Like 1 (NPC1L1) belongs to the Niemann-Pick C1 (NPC1) family of cholesterol transporters and is mainly expressed in the liver and the small intestine. NPC1L1 is believed to be the main transporter responsible for the absorption of dietary cholesterol. Like NPC1, NPC1L1 contains a sterol sensing domain, suggesting that it might be sensitive to dietary cholesterol. To test this hypothesis, mucosal explants were cultured in the presence or absence of cholesterol. In the absence of cholesterol NPC1L1 was localized mainly in the brush border of the enterocyte, colocalizing with the brush border enzyme aminopeptidase N (APN), and only a minor part was present in intracellular compartments. In contrast, following culture in the presence of cholesterol a major part of NPC1L1 was found in intracellular compartments positive for the early endosomal marker early endosome antigen 1, whereas only a minor fraction was left in the brush border. Neither APN, lactase, nor sucrase-isomaltase was endocytosed in parallel, demonstrating that this is a selective cholesterol-induced endocytosis of NPC1L1. Conceivably either the induced internalization could be due to NPC1L1 acting as an endocytic cholesterol receptor or it could be a mechanism to reduce the cholesterol uptake. The fluorescent cholesterol analog NBD-cholesterol readily labeled the cytoplasm also under conditions nonpermissible for endocytosis, arguing against a receptor-mediated uptake. We therefore propose that cholesterol is absorbed by NPC1L1 acting as a membrane transporter and that NPC1L1 is internalized to an endosomal compartment to reduce the absorption of cholesterol.
Collapse
Affiliation(s)
- Marianne Skov
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark.
| | | | | | | |
Collapse
|
20
|
Adams MR, Konaniah E, Cash JG, Hui DY. Use of NBD-cholesterol to identify a minor but NPC1L1-independent cholesterol absorption pathway in mouse intestine. Am J Physiol Gastrointest Liver Physiol 2011; 300:G164-9. [PMID: 21071508 PMCID: PMC3025510 DOI: 10.1152/ajpgi.00392.2010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The importance of Niemann-Pick C1 Like-1 (NPC1L1) protein in intestinal absorption of dietary sterols, including both cholesterol and phytosterols, is well documented. However, the exact mechanism by which NPC1L1 facilitates cholesterol transport remains controversial. This study administered 22-(N(-7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-23,24-bisnor-5-cholen-3β-ol (NBD-cholesterol) and [(3)H]cholesterol to Npc1l1(+/+) and Npc1l1(-/-) mice to determine whether NPC1L1 facilitates dietary sterol uptake by enterocytes and/or participates in intracellular sterol delivery to the endoplasmic reticulum (ER) for lipoprotein assembly before secretion into plasma circulation. Results showed that [(3)H]cholesterol absorption was reduced but not abolished in Npc1l1(-/-) mice compared with Npc1l1(+/+) mice. In the presence of Pluronic L-81 to block pre-chylomicron exit from the ER, significant amounts of [(3)H]cholesterol were found to be associated with lipid droplets in the intestinal mucosa of both Npc1l1(+/+) and Npc1l1(-/-) mice, and the intracellular [(3)H]cholesterol can be esterified to cholesteryl esters. These results provided evidence indicating that the main function of NPC1L1 is to promote cholesterol uptake from the intestinal lumen but that it is not necessary for intracellular cholesterol transport to the ER. Surprisingly, NBD-cholesterol was taken up by intestinal mucosa, esterified to NBD-cholesteryl esters, and transported to plasma circulation to similar extent between Npc1l1(+/+) and Npc1l1(-/-) mice. Ezetimibe treatment also had no impact on NBD-cholesterol absorption by Npc1l1(+/+) mice. Thus, NBD-cholesterol absorption proceeds through an NPC1L1-independent and ezetimibe-insensitive sterol absorption mechanism. Taken together, these results indicate that NBD-cholesterol can be used to trace the alternative cholesterol absorption pathway but is not suitable for tracking NPC1L1-mediated cholesterol absorption.
Collapse
Affiliation(s)
- Michelle R. Adams
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Institute, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Eddy Konaniah
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Institute, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - James G. Cash
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Institute, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - David Y. Hui
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Institute, University of Cincinnati College of Medicine, Cincinnati, Ohio
| |
Collapse
|
21
|
Tremblay AJ, Lamarche B, Lemelin V, Hoos L, Benjannet S, Seidah NG, Davis HR, Couture P. Atorvastatin increases intestinal expression of NPC1L1 in hyperlipidemic men. J Lipid Res 2010; 52:558-65. [PMID: 21123766 DOI: 10.1194/jlr.m011080] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Inhibition of cholesterol synthesis by 3-hydroxy-3-methylglutaryl-CoA reductase (HMG-CoAR) inhibitors has been associated with an increase in intestinal cholesterol absorption. This study examined how HMG-CoAR inhibition by atorvastatin modulates expression of key genes involved in intestinal cholesterol metabolism. A crossover study was conducted in which 22 hyperlipidemic men received atorvastatin, 40 mg/day, or placebo, each for 12 weeks. Gene expression was assessed by real-time PCR using duodenal biopsy samples obtained at the end of each phase of treatment. Treatment with atorvastatin was associated with a 76% reduction in lathosterol and significant increases in sitosterol (70%). Atorvastatin significantly increased intestinal mRNA levels of HMG-CoAR (59%), LDL receptor (LDLR) (52%), PCSK9 (187%), SREBP-2 (44%), and HNF-4α (13%). Furthermore, atorvastatin significantly increased intestinal mRNA levels of NPC1L1 by 19% and decreased mRNA levels of both ABCG5 and ABCG8 by 14%. Positive correlations were observed between changes in SREBP-2 and HNF-4α expression and concurrent changes in the intestinal mRNA levels of HMG-CoAR, LDLR, and NPC1L1. These results indicate that HMG-CoAR inhibition with atorvastatin stimulates the intestinal expression of NPC1L1, LDLR, and PCSK9; increases cholesterol absorption; and reduces expression of ABCG5/8; these effects are most likely mediated by upregulation of the transcription factors SREBP-2 and HNF-4α.
Collapse
Affiliation(s)
- André J Tremblay
- Lipid Research Centre, Laval University, Quebec City, Quebec, Canada
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Kobayashi Y, Umemoto T, Ohbayashi M, Kohyama N, Sanada Y, Yamamoto T. Activation of Cyclosporin A Transport by a Novel λ Light Chain of Human Ig Surface Antigen-Related Gene in Xenopus laevisOocytes. Drug Metab Dispos 2010; 38:1427-35. [DOI: 10.1124/dmd.109.030916] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
23
|
Phytosterols and phytosterolemia: gene-diet interactions. GENES AND NUTRITION 2010; 6:17-26. [PMID: 21437027 DOI: 10.1007/s12263-010-0182-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Accepted: 08/14/2010] [Indexed: 01/08/2023]
Abstract
Phytosterol intake is recommended as an adjunctive therapy for hypercholesterolemia, and plant sterols/stanols can reduce cholesterol absorption at the intestinal lumen through the Niemann-Pick C1 Like 1 (NPC1L1) transporter pathway by competitive solubilization in mixed micelles. Phytosterol absorption is of less magnitude than cholesterol and is preferably secreted in the intestinal lumen by ABCG5/G8 transporters. Therefore, plasma levels of plant sterols/stanols are negligible compared with cholesterol, under an ordinary diet. The mechanisms of cholesterol and plant sterols absorption and the whole-body pool of sterols are discussed in this chapter. There is controversy about treatment with statins inducing further increase in plasma non-cholesterol sterols raising concerns about the safety of supplementation of plant sterols to such drugs. In addition, increase in plant sterols has also been reported upon consumption of plant sterol-enriched foods, regardless of other treatments. Rare mutations on ABCG5/G8 transporters affecting cholesterol/non-cholesterol extrusion, causing sitosterolemia with xanthomas and premature atheroslerotic disease are now known, and cholesterol/plant sterols absorption inhibitor, ezetimibe, emerges as the drug that reduces phytosterolemia and promotes xanthoma regression. On the other hand, common polymorphisms affecting the NPC1L1 transporter can interfere with the action of ezetimibe. Gene-diet interactions participate in this intricate network modulating the expression of genetic variants on specific phenotypes and can also affect the individual response to the hypolipidemic treatment. These very interesting aspects promoted a great deal of research in the field.
Collapse
|
24
|
Betters JL, Yu L. NPC1L1 and cholesterol transport. FEBS Lett 2010; 584:2740-7. [PMID: 20307540 PMCID: PMC2909875 DOI: 10.1016/j.febslet.2010.03.030] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Revised: 03/15/2010] [Accepted: 03/16/2010] [Indexed: 12/18/2022]
Abstract
The polytopic transmembrane protein, Niemann-Pick C1-Like 1 (NPC1L1), is enriched in the apical membrane of small intestine absorptive enterocytes where it mediates extracellular sterol transport across the brush border membrane. It is essential for intestinal sterol absorption and is the molecular target of ezetimibe, a potent cholesterol absorption inhibitor that lowers blood cholesterol in humans. NPC1L1 is also highly expressed in human liver. The hepatic function of NPC1L1 may be to limit excessive biliary cholesterol loss. NPC1L1-dependent sterol uptake seems to be a clathrin-mediated endocytic process and is regulated by cellular cholesterol content. Recently, NPC1L1 inhibition has been shown to have beneficial effects on components of the metabolic syndrome, such as obesity, insulin resistance, and fatty liver, in addition to atherosclerosis.
Collapse
Affiliation(s)
- Jenna L. Betters
- Department of Pathology Section on Lipid Sciences, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Liqing Yu
- Department of Pathology Section on Lipid Sciences, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|
25
|
Cui W, Jiang ZY, Cai Q, Zhang RY, Wu WZ, Wang JC, Fei J, Zhang SD, Han TQ. Decreased NPC1L1 expression in the liver from Chinese female gallstone patients. Lipids Health Dis 2010; 9:17. [PMID: 20144195 PMCID: PMC2841174 DOI: 10.1186/1476-511x-9-17] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Accepted: 02/08/2010] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Cholesterol gallstone disease is a very common disease in both industrialized and developing countries. Many studies have found that cholesterol gallstones are more common in women than men. The molecular mechanisms underlying the relationship between female gallstone disease and hepatic sterol transporters are still undergoing definition and have not been evaluated in humans. AIMS The aim of this study is to probe for underlying hepatic molecular defects associated with development of gallstones in female. METHODS/RESULTS Fifty-seven nonobese, normolipidemic Chinese female gallstone patients (GS) were investigated with 12 age- and body mass index-matched female gallstone-free controls (GSF). The bile from the female GS had higher cholesterol saturation than that from the female GSF. The hepatic NPC1L1 mRNA levels were lower in female GS, correlated with SREBP2 mRNA. NPC1L1 downregulation was confirmed at protein levels. Consistently, immunohistochemistry showed decreased NPC1L1 expression in female GS. CONCLUSIONS The decreased hepatic NPC1L1 levels in female GS might indicate a downregulated reabsorption of biliary cholesterol in the liver, which, in turn, leads to the cholesterol supersaturation of bile. Our data are consistent with the possibility that hepatic NPC1L1 may be mediated by SREBP2.
Collapse
Affiliation(s)
- Wei Cui
- Department of Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai Institute of Digestive Surgery, 200025, Shanghai, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Dysregulation of cholesterol balance contributes significantly to atherosclerotic cardiovascular disease (ASCVD), the leading cause of death in the United States. The intestine has the unique capability to act as a gatekeeper for entry of cholesterol into the body, and inhibition of intestinal cholesterol absorption is now widely regarded as an attractive non-statin therapeutic strategy for ASCVD prevention. In this chapter we discuss the current state of knowledge regarding sterol transport across the intestinal brush border membrane. The purpose of this work is to summarize substantial progress made in the last decade in regards to protein-mediated sterol trafficking, and to discuss this in the context of human disease.
Collapse
Affiliation(s)
| | - Liqing Yu
- Address correspondence to: Liqing Yu, M.D., Ph.D., Department of Pathology Section on Lipid Sciences, Wake Forest University School of Medicine, Medical Center Blvd, Winston-Salem, NC 27157-1040, Tel: 336-716-0920, Fax: 336-716-6279,
| |
Collapse
|
27
|
Simeone JP, Braun MP, Leone JF, Lin P, DeVita RJ, Garcia-Calvo M, Bull HG, Lisnock J, Dean DC. Multiple strategies for the preparation of a sulfur-35 labeled NPC1L1 radioligand. Bioorg Med Chem Lett 2009; 19:5033-6. [DOI: 10.1016/j.bmcl.2009.07.051] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Revised: 07/06/2009] [Accepted: 07/08/2009] [Indexed: 11/28/2022]
|
28
|
Abstract
Our knowledge of the uptake and transport of dietary fat and fat-soluble vitamins has advanced considerably. Researchers have identified several new mechanisms by which lipids are taken up by enterocytes and packaged as chylomicrons for export into the lymphatic system or clarified the actions of mechanisms previously known to participate in these processes. Fatty acids are taken up by enterocytes involving protein-mediated as well as protein-independent processes. Net cholesterol uptake depends on the competing activities of NPC1L1, ABCG5, and ABCG8 present in the apical membrane. We have considerably more detailed information about the uptake of products of lipid hydrolysis, the active transport systems by which they reach the endoplasmic reticulum, the mechanisms by which they are resynthesized into neutral lipids and utilized within the endoplasmic reticulum to form lipoproteins, and the mechanisms by which lipoproteins are secreted from the basolateral side of the enterocyte. apoB and MTP are known to be central to the efficient assembly and secretion of lipoproteins. In recent studies, investigators found that cholesterol, phospholipids, and vitamin E can also be secreted from enterocytes as components of high-density apoB-free/apoAI-containing lipoproteins. Several of these advances will probably be investigated further for their potential as targets for the development of drugs that can suppress cholesterol absorption, thereby reducing the risk of hypercholesterolemia and cardiovascular disease.
Collapse
Affiliation(s)
- Jahangir Iqbal
- Dept. of Anatomy, 450 Clarkson Ave., State University of New York Downstate Medical Center, Brooklyn, NY 11203, USA.
| | | |
Collapse
|
29
|
Alvaro A, Rosales R, Masana L, Vallvé JC. Polyunsaturated fatty acids down-regulate in vitro expression of the key intestinal cholesterol absorption protein NPC1L1: no effect of monounsaturated nor saturated fatty acids. J Nutr Biochem 2009; 21:518-25. [PMID: 19443194 DOI: 10.1016/j.jnutbio.2009.02.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2008] [Revised: 01/20/2009] [Accepted: 02/26/2009] [Indexed: 01/16/2023]
Abstract
Several transporter proteins regulate intestinal cholesterol absorption. Of these proteins, NPC1L1 is a major contributor to this process. Fatty acids (FAs) modulate cholesterol absorption by a mechanism that remains unknown. We evaluate the effect of saturated fatty acids (SFAs), monounsaturated fatty acids (MUFAs) and polyunsaturated fatty acids (PUFAs) on the expression of NPC1L1 and others proteins associated with cholesterol absorption (SR-BI, ABCG5, ABCG8, ABCA1, CAV-1, ANX-2) in human enterocytes in vitro. The role of SREBPs, PPARs, LXR and RXR in this process was also investigated. Caco-2/TC-7 enterocytes were incubated for 24 h with a wide range of concentrations of FA-bovine serum albumin (50-300 microM). Gene expression was analyzed by quantitative real-time PCR. The NPC1L1 protein present in enterocyte membranes was analyzed using Western blot. NPC1L1 mRNA levels were reduced 35-58% by the n-3 PUFAs, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) (P<.05). Linoleic acid (n-6), palmitic acid and oleic acid did not affect NPC1L1 mRNA expression. ABCA1 mRNA levels were reduced 44-70% by n-6 arachidonic acid and 43-55% by n-3 EPA (P<.05). LXR and LXR+RXR agonists decreased NPC1L1 mRNA expression by 28% and 57%, respectively (P<.05). A concentration of 200 microM of EPA and DHA decreased NPC1L1 protein expression in enterocyte membranes by 58% and 59%, respectively. We have demonstrated that the PUFAs n-3 EPA and DHA down-regulate NPC1L1 mRNA expression. In addition, PUFAs also down-regulate NPC1L1 protein expression in enterocyte membranes. LXR and RXR activation induced a similar repression effect. The lipid-lowering effect of n-3 PUFAs could be mediated in part by their action at the NPC1L1 gene level.
Collapse
Affiliation(s)
- Adriana Alvaro
- Research Unit on Lipids and Atherosclerosis, Sant Joan University Hospital, University Rovira and Virgili, Reus, CIBER de Diabetes y Enfermedades Metabólicas Asociadas, IISPV, Spain
| | | | | | | |
Collapse
|
30
|
Brown JM, Yu L. Opposing Gatekeepers of Apical Sterol Transport: Niemann-Pick C1-Like 1 (NPC1L1) and ATP-Binding Cassette Transporters G5 and G8 (ABCG5/ABCG8). IMMUNOLOGY, ENDOCRINE & METABOLIC AGENTS IN MEDICINAL CHEMISTRY 2009; 9:18-29. [PMID: 20174593 PMCID: PMC2824437 DOI: 10.2174/187152209788009797] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cholesterol is essential for the growth and function of all mammalian cells, but abnormally elevated levels of circulating low-density lipoprotein cholesterol (LDL-C) are a major risk factor for the development of atherosclerotic cardiovascular disease (ASCVD). For many years, statin drugs have been used to effectively lower LDL-C, but ASCVD still persists in most of the world. Hence, additional LDL-C lowering is now recommended, and the search for therapeutic strategies that work in synergy with statins has now begun. Intestinal absorption and biliary excretion of cholesterol represent two major pathways and continue to show promise as druggable processes. Importantly, both of these complex physiological pathways are tightly regulated by key proteins located at the apical surface of the small intestine and the liver. One of these proteins, the target of ezetimibe Niemann-Pick C1-Like 1 (NPC1L1), was recently identified to be essential for intestinal cholesterol absorption and protect against excessive biliary sterol loss. In direct opposition of NPC1L1, the heterodimer of ATP-binding cassette transporters G5 and G8 (ABCG5/ABCG8) has been shown to be critical for promoting biliary cholesterol secretion in the liver, and has also been proposed to play a direct role in intestinal disposal of sterols. The purpose of this review is to summarize the current state of knowledge regarding the function of these opposing apical cholesterol transporters, and provide a framework for future studies examining these proteins.
Collapse
Affiliation(s)
- J. Mark Brown
- Department of Pathology-Section on Lipid Sciences, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Liqing Yu
- Department of Pathology-Section on Lipid Sciences, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|
31
|
Davis HR, Altmann SW. Niemann-Pick C1 Like 1 (NPC1L1) an intestinal sterol transporter. Biochim Biophys Acta Mol Cell Biol Lipids 2009; 1791:679-83. [PMID: 19272334 DOI: 10.1016/j.bbalip.2009.01.002] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Revised: 01/06/2009] [Accepted: 01/06/2009] [Indexed: 01/02/2023]
Abstract
Niemann-Pick C1 Like 1 (NPC1L1) has been identified and characterized as an essential protein in the intestinal cholesterol absorption process. NPC1L1 localizes to the brush border membrane of absorptive enterocytes in the small intestine. Intestinal expression of NPC1L1 is down regulated by diets containing high levels of cholesterol. While otherwise phenotypically normal, Npc1l1 null mice exhibit a significant reduction in the intestinal uptake and absorption of cholesterol and phytosterols. Characterization of the NPC1L1 pathway revealed that cholesterol absorption inhibitor ezetimibe specifically binds to an extracellular loop of NPC1L1 and inhibits its sterol transport function. Npc1l1 null mice are resistant to diet-induced hypercholesterolemia, and when crossed with apo E null mice, are completely resistant to the development of atherosclerosis. Intestinal gene expression studies in Npc1l1 null mice indicated that no exogenous cholesterol was entering enterocytes lacking NPC1L1, which resulted in an upregulation of intestinal and hepatic LDL receptor and cholesterol biosynthetic gene expression. Polymorphisms in the human NPC1L1 gene have been found to influence cholesterol absorption and plasma low density lipoprotein levels. Therefore, NPC1L1 is a critical intestinal sterol uptake transporter which influences whole body cholesterol homeostasis.
Collapse
Affiliation(s)
- Harry R Davis
- Department of Cardiovascular/Metabolic Disease, Schering-Plough Research Institute, 2015 Galloping Hill Road, Kenilworth, NJ 07033, USA.
| | | |
Collapse
|
32
|
Kidambi S, Patel SB. Cholesterol and non-cholesterol sterol transporters: ABCG5, ABCG8 and NPC1L1: a review. Xenobiotica 2008; 38:1119-39. [PMID: 18668442 DOI: 10.1080/00498250802007930] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
1. Whole-body sterol (cholesterol and xenosterol) balance is delicately regulated by the gastrointestinal tract and liver, which control sterol absorption and excretion, respectively, in addition to the contribution to the cholesterol pool by whole-body cholesterol synthesis. In the past ten years enormous strides have been made not only in establishing that specific transporters mediate the entry and exit of sterols and how these may regulate selective sterol access to the body pools, but also in how these pathways operate to integrate these physiological pathways. 2. The entry of sterols from the gastrointestinal and biliary canalicular lumen into the body is mediated by NPC1L1, which was discovered by a novel method, via a genomics-bioinformatics approach. 3. Identification of the genetic basis responsible for causing sitosterolaemia, characterized by plant sterol accumulation, led to the identification of two half-transporters (ABCG5 and ABCG8) that normally efflux plant sterols (and cholesterol) into the intestinal and biliary lumen for faecal excretion. 4. The objective of this review is to provide up-to-date knowledge on genomics, proteomics and function of these two transporter systems.
Collapse
Affiliation(s)
- S Kidambi
- Division of Endocrinology, Metabolism and Clinical Nutrition, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | | |
Collapse
|
33
|
Labonté ED, Camarota LM, Rojas JC, Jandacek RJ, Gilham DE, Davies JP, Ioannou YA, Tso P, Hui DY, Howles PN. Reduced absorption of saturated fatty acids and resistance to diet-induced obesity and diabetes by ezetimibe-treated and Npc1l1-/- mice. Am J Physiol Gastrointest Liver Physiol 2008; 295:G776-83. [PMID: 18718999 PMCID: PMC2575916 DOI: 10.1152/ajpgi.90275.2008] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The impact of NPC1L1 and ezetimibe on cholesterol absorption are well documented. However, their potential consequences relative to absorption and metabolism of other nutrients have been only minimally investigated. Thus studies were undertaken to investigate the possible effects of this protein and drug on fat absorption, weight gain, and glucose metabolism by using Npc1l1(-/-) and ezetimibe-treated mice fed control and high-fat, high-sucrose diets. Results show that lack of NPC1L1 or treatment with ezetimibe reduces weight gain when animals are fed a diabetogenic diet. This resistance to diet-induced obesity results, at least in part, from significantly reduced absorption of dietary saturated fatty acids, particularly stearate and palmitate, since food intake did not differ between groups. Expression analysis showed less fatty acid transport protein 4 (FATP4) in intestinal scrapings of Npc1l1(-/-) and ezetimibe-treated mice, suggesting an important role for FATP4 in intestinal absorption of long-chain fatty acids. Concomitant with resistance to weight gain, lack of NPC1L1 or treatment with ezetimibe also conferred protection against diet-induced hyperglycemia and insulin resistance. These unexpected beneficial results may be clinically important, given the focus on NPC1L1 as a target for the treatment of hypercholesterolemia.
Collapse
Affiliation(s)
- Eric D. Labonté
- Department of Pathology, Genome Research Institute, University of Cincinnati, Cincinnati, Ohio, and the Department of Human Genetics, The Mount Sinai School of Medicine, New York, New York
| | - Lisa M. Camarota
- Department of Pathology, Genome Research Institute, University of Cincinnati, Cincinnati, Ohio, and the Department of Human Genetics, The Mount Sinai School of Medicine, New York, New York
| | - Juan C. Rojas
- Department of Pathology, Genome Research Institute, University of Cincinnati, Cincinnati, Ohio, and the Department of Human Genetics, The Mount Sinai School of Medicine, New York, New York
| | - Ronald J. Jandacek
- Department of Pathology, Genome Research Institute, University of Cincinnati, Cincinnati, Ohio, and the Department of Human Genetics, The Mount Sinai School of Medicine, New York, New York
| | - Dean E. Gilham
- Department of Pathology, Genome Research Institute, University of Cincinnati, Cincinnati, Ohio, and the Department of Human Genetics, The Mount Sinai School of Medicine, New York, New York
| | - Joanna P. Davies
- Department of Pathology, Genome Research Institute, University of Cincinnati, Cincinnati, Ohio, and the Department of Human Genetics, The Mount Sinai School of Medicine, New York, New York
| | - Yiannis A. Ioannou
- Department of Pathology, Genome Research Institute, University of Cincinnati, Cincinnati, Ohio, and the Department of Human Genetics, The Mount Sinai School of Medicine, New York, New York
| | - Patrick Tso
- Department of Pathology, Genome Research Institute, University of Cincinnati, Cincinnati, Ohio, and the Department of Human Genetics, The Mount Sinai School of Medicine, New York, New York
| | - David Y. Hui
- Department of Pathology, Genome Research Institute, University of Cincinnati, Cincinnati, Ohio, and the Department of Human Genetics, The Mount Sinai School of Medicine, New York, New York
| | - Philip N. Howles
- Department of Pathology, Genome Research Institute, University of Cincinnati, Cincinnati, Ohio, and the Department of Human Genetics, The Mount Sinai School of Medicine, New York, New York
| |
Collapse
|
34
|
Chan DC, Watts GF, Wang J, Hegele RA, van Bockxmeer FM, Barrett PHR. Variation in Niemann-Pick C1-like 1 gene as a determinant of apolipoprotein B-100 kinetics and response to statin therapy in centrally obese men. Clin Endocrinol (Oxf) 2008; 69:45-51. [PMID: 18031309 DOI: 10.1111/j.1365-2265.2007.03144.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Niemann-Pick C1-like 1 protein (NPC1L1) plays a key role in lipoprotein metabolism. We examined the association of common genetic polymorphisms in NPC1L1 on apolipoprotein (apo) B-100 metabolism and the response to statin treatment in 37 men with central obesity. RESEARCH METHODS AND PROCEDURE Very-low density lipoprotein (VLDL) and low-density lipoprotein (LDL)-apoB kinetics were determined using stable isotope method. NPC1L1 genotypes (1735G > C, 25432A > C and 27677T > C) were determined by allele-specific methods. These three polymorphisms are defined as haplotype, namely 1735C-25432A-27677T, and was designated as 'haplotype 2'. RESULTS Relative to non-2/2 haplotype (n = 23), subjects with the 2/2 haplotype (n = 14) had significantly increased plasma concentrations of total, LDL-cholesterol, and total apoB (P < 0.05). The fractional catabolic rate (FCR) of LDL-apoB was significantly lower in 2/2 subjects compared with non-2/2 subjects (P < 0.05), with an associated increase in LDL-apoB pool size in the former group. Sixteen subjects were then treated with 40 mg atorvastatin (6 weeks): 2/2 subjects (n = 8) had a significantly greater reduction in plasma concentrations of cholesterol and total apoB and in LDL-apoB pool size, as well as a greater increase in LDL-apoB FCR compared with non-2/2 subjects. There were no significant treatment-related between-haplotype differences in VLDL-apoB kinetics or in plasma concentrations of lathosterol and campesterol. CONCLUSION Our data demonstrate that NPC1L1 2/2 haplotype was associated with variation in LDL-apoB metabolism and its response to statin therapy in centrally obese men, by a mechanism that did not involve changes in VLDL-apoB kinetics, nor cholesterol synthesis or absorption.
Collapse
Affiliation(s)
- Dick C Chan
- Metabolic Research Centre, School of Medicine and Pharmacology, University of Western Australia, Perth, Australia
| | | | | | | | | | | |
Collapse
|
35
|
Davis HR, Basso F, Hoos LM, Tetzloff G, Lally SM, Altmann SW. Cholesterol homeostasis by the intestine: lessons from Niemann-Pick C1 Like 1 [NPC1L1). ATHEROSCLEROSIS SUPP 2008; 9:77-81. [PMID: 18585981 DOI: 10.1016/j.atherosclerosissup.2008.05.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2008] [Revised: 02/14/2008] [Accepted: 05/13/2008] [Indexed: 01/07/2023]
Abstract
Ezetimibe is a selective cholesterol absorption inhibitor, which potently inhibits the uptake and absorption of biliary and dietary cholesterol from the small intestine without affecting the absorption of fat-soluble vitamins, triglycerides or bile acids. Identification and characterization of Niemann-Pick C1 Like 1 (NPC1L1) has established NPC1L1 as an essential protein in the intestinal cholesterol absorption process. While otherwise phenotypically normal, Npc1l1 null mice exhibit a significant reduction in the intestinal uptake and absorption of cholesterol and phytosterols. Characterization of the NPC1L1 pathway revealed that ezetimibe specifically binds to NPC1L1 and inhibits its sterol transport function. Npc1l1 null mice were resistant to diet-induced hypercholesterolemia, and when crossed with apoE null mice, were completely resistant to the development of atherosclerosis. In Npc1l1/apoE null mice or apoE null mice treated with ezetimibe plasma cholesterol levels were reduced primarily in the apoB48 containing chylomicron remnant lipoproteins relative to untreated apoE null mice. SR-B1 has been proposed to play a role in intestinal cholesterol uptake, but in Npc1l1/SR-B1 double null mice intestinal cholesterol absorption was not different than Npc1l1 null alone mice. Therefore, NPC1L1 is the critical intestinal sterol transporter which influences whole body cholesterol homeostasis, and is the molecular target of ezetimibe.
Collapse
Affiliation(s)
- Harry R Davis
- Department of Cardiovascular/Metabolic Disease, Schering-Plough Research Institute, K15-2-2600, 2015 Galloping Hill Road, Kenilworth, NJ 07033, USA.
| | | | | | | | | | | |
Collapse
|
36
|
Abstract
PURPOSE OF REVIEW Intestinal absorption and biliary excretion of cholesterol represent two major pathways by which the body regulates cholesterol homeostasis. Niemann-Pick C1-like 1 (NPC1L1) is a polytopic transmembrane protein containing a sterol-sensing domain of unknown function. In 2004, NPC1L1 was identified to be essential for intestinal cholesterol absorption, a process that is sensitive to a cholesterol absorption inhibitor ezetimibe. This review summarizes recent studies on NPC1L1 function and proposes a model for NPC1L1-dependent cholesterol uptake. RECENT FINDINGS Cell culture experiments have shown that NPC1L1 mediates cellular uptake of various sterols but seems to have lower affinity to plant sterols than cholesterol. Transgenic animal studies have demonstrated that hepatic NPC1L1 has the potential to regulate biliary cholesterol excretion. Cholesterol and many transcriptional factors appear to regulate NPC1L1 gene expression. NPC1L1 protein is enriched in the apical membrane of polarized cells and its intracellular itineraries are clearly regulated by cholesterol availability. Evidence suggests cholesterol-regulated clathrin-mediated endocytosis is likely the cellular basis for NPC1L1-dependent cholesterol uptake, which may reconcile disagreement regarding NPC1L1 subcellular localization. SUMMARY NPC1L1 may have evolved at two sites (apical membrane of enterocytes and canalicular membrane of hepatocytes) to mediate cholesterol uptake through a clathrin-mediated endocytic process, protecting the body against fecal and biliary loss of cholesterol.
Collapse
Affiliation(s)
- Liqing Yu
- Department of Pathology Section on Lipid Sciences, Wake Forest University School of Medicine, Medical Center Blvd, Winston-Salem, NC 27157-1040, USA.
| |
Collapse
|
37
|
Ge L, Wang J, Qi W, Miao HH, Cao J, Qu YX, Li BL, Song BL. The cholesterol absorption inhibitor ezetimibe acts by blocking the sterol-induced internalization of NPC1L1. Cell Metab 2008; 7:508-19. [PMID: 18522832 DOI: 10.1016/j.cmet.2008.04.001] [Citation(s) in RCA: 261] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2007] [Revised: 03/06/2008] [Accepted: 04/01/2008] [Indexed: 02/06/2023]
Abstract
Niemann-Pick C1-like 1 (NPC1L1) is a polytopic transmembrane protein that plays a critical role in cholesterol absorption. Ezetimibe, a hypocholesterolemic drug, has been reported to bind NPC1L1 and block cholesterol absorption. However, the molecular mechanism of NPC1L1-mediated cholesterol uptake and how ezetimibe inhibits this process are poorly defined. Here we find that cholesterol specifically promotes the internalization of NPC1L1 and that this process requires microfilaments and the clathrin/AP2 complex. Blocking NPC1L1 endocytosis dramatically decreases cholesterol internalization, indicating that NPC1L1 mediates cholesterol uptake via its vesicular endocytosis. Ezetimibe prevents NPC1L1 from incorporating into clathrin-coated vesicles and thus inhibits cholesterol uptake. Together, our data suggest a model wherein cholesterol is internalized into cells with NPC1L1 through clathrin/AP2-mediated endocytosis and ezetimibe inhibits cholesterol absorption by blocking the internalization of NPC1L1.
Collapse
Affiliation(s)
- Liang Ge
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Hui DY, Labonté ED, Howles PN. Development and physiological regulation of intestinal lipid absorption. III. Intestinal transporters and cholesterol absorption. Am J Physiol Gastrointest Liver Physiol 2008; 294:G839-43. [PMID: 18276831 DOI: 10.1152/ajpgi.00061.2008] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Intestinal cholesterol absorption is modulated by transport proteins in enterocytes. Cholesterol uptake from intestinal lumen requires several proteins on apical brush-border membranes, including Niemann-Pick C1-like 1 (NPC1L1), scavenger receptor B-I, and CD36, whereas two ATP-binding cassette half transporters, ABCG5 and ABCG8, on apical membranes work together for cholesterol efflux back to the intestinal lumen to limit cholesterol absorption. NPC1L1 is essential for cholesterol absorption, but its function as a cell surface transporter or an intracellular cholesterol transport protein needs clarification. Another ATP transporter, ABCA1, is present in the basolateral membrane to mediate HDL secretion from enterocytes.
Collapse
Affiliation(s)
- David Y Hui
- Dept. of Pathology and Laboratory Medicine, Genome Research Institute, Univ. of Cincinnati College of Medicine, 2120 E. Galbraith Rd., Cincinnati, OH 45237, USA.
| | | | | |
Collapse
|
39
|
NPC1L1 and SR-BI are involved in intestinal cholesterol absorption from small-size lipid donors. Lipids 2008; 43:401-8. [PMID: 18373109 DOI: 10.1007/s11745-008-3172-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2007] [Accepted: 03/03/2008] [Indexed: 10/22/2022]
Abstract
In the human intestinal content after a meal, cholesterol is dispersed in a complex mixture of emulsified droplets, vesicles, mixed micelles and precipitated material. The aim of this study was to determine the contribution of the main intestinal cholesterol transporters (NPC1L1, SR-BI) to the absorption processes, using different cholesterol-solubilizing donors. Cholesterol donors prepared with different taurocholate concentrations were added to an apical medium of differentiated TC7/Caco-2 cells. As the taurocholate concentrations increased, cholesterol donor size decreased (from 712 to 7 nm in diameter), which enhanced cholesterol absorption in a dose-dependent manner (38-fold). Two transport processes were observed: (1) absorption from large donors exhibited low-capacity transport with no noticeable transporter contribution; (2) efficient cholesterol absorption occurs from small lipid donors (<or=23 nm diameter), mainly due to NPC1L1 and SR-BI involvement. In addition, bile acids significantly increased mRNA and protein expression of NPC1L1, but not of SR-BI. In conclusion, bile acids present in the intestinal lumen and the micelles enhance intestinal cholesterol transport into the cell by two different regulatory processes: by reducing the lipid donor size, so that small-size mixed micelles can more easily access brush-border membrane transporters, and by increasing the expression level of the enterocyte NPC1L1. These mechanisms could account for the important inter-individual variations observed in cholesterol intestinal absorption.
Collapse
|
40
|
Weinglass AB, Köhler MG, Nketiah EO, Liu J, Schmalhofer W, Thomas A, Williams B, Beers L, Smith L, Hafey M, Bleasby K, Leone J, Tang YS, Braun M, Ujjainwalla F, McCann ME, Kaczorowski GJ, Garcia ML. Madin-Darby canine kidney II cells: a pharmacologically validated system for NPC1L1-mediated cholesterol uptake. Mol Pharmacol 2008; 73:1072-84. [PMID: 18187582 DOI: 10.1124/mol.107.043844] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Absorption of dietary cholesterol in the proximal region of the intestine is mediated by Niemann-Pick C1-like protein (NPC1L1) and is sensitive to the cholesterol absorption inhibitor ezetimibe (EZE). Although a correlation exists between EZE binding to NPC1L1 in vitro and efficacy in vivo, the precise nature of interaction(s) between NPC1L1, EZE, and cholesterol remain unclear. Here, we analyze the direct relationship between EZE analog binding to NPC1L1 and its influence on cholesterol influx in a novel in vitro system. Using the EZE analog [(3)H]AS, an assay that quantitatively measures the expression of NPC1L1 on the cell surface has been developed. It is noteworthy that whereas two cell lines (CaCo-2 and HepG2) commonly used for studying NPC1L1-dependent processes express almost undetectable levels of NPC1L1 at the cell surface, polarized Madin-Darby canine kidney (MDCKII) cells endogenously express 4 x 10(5) [(3)H]AS sites/cell under basal conditions. Depleting endogenous cholesterol with the HMG CoA reductase inhibitor lovastatin leads to a 2-fold increase in the surface expression of NPC1L1, supporting the contention that MDCKII cells respond to changes in cholesterol homeostasis by up-regulating a pathway for cholesterol influx. However, a significant increase in surface expression levels of NPC1L1 is necessary to characterize a pharmacologically sensitive, EZE-dependent pathway of cholesterol uptake in these cells. Remarkably, the affinity of EZE analogs for binding to NPC1L1 is almost identical to the IC(50) blocking cholesterol flux through NPC1L1 in MDCKII cells. From a mechanistic standpoint, these observations support the contention that EZE analogs and cholesterol share the same/overlapping binding site(s) or are tightly coupled through allosteric interactions.
Collapse
Affiliation(s)
- Adam B Weinglass
- Department of Ion Channels, Merck Research Laboratories, P.O. Box 2000, Rahway, NJ 07065, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Niemann-Pick C1-like 1 (NPC1L1) has recently been identified and has been shown to have features of a plasma membrane transporter, including a secretion signal, 13 predicted transmembrane domains, extensive N-linked glycosylation sites and a sterol-sensing domain. It is highly expressed on the surface of absorptive jejunal enterocytes. NPC1L1 has been shown to be a direct target of ezetimibe, and an ezetimibe-sensitive pathway plays a role in intestinal cholesterol absorption. Ezetimibe-based therapy represents an exciting new area in the treatment of dyslipidemia.
Collapse
Affiliation(s)
- Shin-ichiro Miura
- Department of Cardiology, Fukuoka University School of Medicine, Fukuoka, Japan
| | | |
Collapse
|
42
|
Spener F. Ezetimibe in search of receptor(s)--still a never-ending challenge in cholesterol absorption and transport. Biochim Biophys Acta Mol Cell Biol Lipids 2007; 1771:1113-6. [PMID: 17884645 DOI: 10.1016/j.bbalip.2007.08.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
43
|
Dixit S, Sleat D, Stock A, Lobel P. Do mammalian NPC1 and NPC2 play a role in intestinal cholesterol absorption? Biochem J 2007; 408:1-5. [PMID: 17880278 PMCID: PMC2049080 DOI: 10.1042/bj20071167] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
NPC1L1 (Niemann-Pick C1-like 1), the pharmacological target of the cholesterol-uptake inhibitor ezetimibe, is a transporter localized on the brush border of enterocytes. Although this protein plays a key role in intestinal uptake of sterols, multiple molecular events that underlie intestinal cholesterol absorption have not been fully characterized. Two proteins that might be involved in this process are NPC1 and NPC2 (Niemann-Pick disease type C proteins 1 and 2), which function in the endosomal/lysosomal cholesterol egress pathway and whose deficiency results in NPC (Niemann-Pick type C) disease. The involvement of these proteins in intestinal cholesterol absorption was examined in mutant mice lacking either NPC1 or NPC2. Our data indicate that deficiencies in either protein do not have an effect on cholesterol uptake or absorption. This contrasts with recent results obtained for the fruitfly Drosophila melanogaster, which indicate that a deficiency of NPC1 (dNPC1a being its Drosophila homologue) leads to activation of an NPC1L1 (Drosophila homologue dNPC1b)-independent cholesterol uptake pathway, underscoring fundamental differences in mammalian and non-mammalian cholesterol metabolism.
Collapse
Affiliation(s)
- Sayali S. Dixit
- *Center for Advanced Biotechnology and Medicine, 679 Hoes Lane, Piscataway, NJ 08854, U.S.A
- †675 Hoes Lane, Piscataway, NJ 08854, U.S.A
- ‡Department of Biochemistry, University of Medicine and Dentistry of New Jersey–Robert Wood Johnson Medical School (UMDNJ–RWJMS), Piscataway, NJ 08854, U.S.A
| | - David E. Sleat
- *Center for Advanced Biotechnology and Medicine, 679 Hoes Lane, Piscataway, NJ 08854, U.S.A
- §Department of Pharmacology, UMDNJ–RWJMS, Piscataway, NJ 08854, U.S.A
| | - Ann M. Stock
- *Center for Advanced Biotechnology and Medicine, 679 Hoes Lane, Piscataway, NJ 08854, U.S.A
- ‡Department of Biochemistry, University of Medicine and Dentistry of New Jersey–Robert Wood Johnson Medical School (UMDNJ–RWJMS), Piscataway, NJ 08854, U.S.A
- ¶Howard Hughes Medical Institute, Piscataway, NJ 08854, U.S.A
- To whom correspondence should be addressed (email or )
| | - Peter Lobel
- *Center for Advanced Biotechnology and Medicine, 679 Hoes Lane, Piscataway, NJ 08854, U.S.A
- §Department of Pharmacology, UMDNJ–RWJMS, Piscataway, NJ 08854, U.S.A
- To whom correspondence should be addressed (email or )
| |
Collapse
|
44
|
Temel RE, Tang W, Ma Y, Rudel LL, Willingham MC, Ioannou YA, Davies JP, Nilsson LM, Yu L. Hepatic Niemann-Pick C1-like 1 regulates biliary cholesterol concentration and is a target of ezetimibe. J Clin Invest 2007; 117:1968-78. [PMID: 17571164 PMCID: PMC1888567 DOI: 10.1172/jci30060] [Citation(s) in RCA: 284] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2006] [Accepted: 04/10/2007] [Indexed: 12/13/2022] Open
Abstract
Niemann-Pick C1-like 1 (NPC1L1) is required for cholesterol absorption. Intestinal NPC1L1 appears to be a target of ezetimibe, a cholesterol absorption inhibitor that effectively lowers plasma LDL-cholesterol in humans. However, human liver also expresses NPC1L1. Hepatic function of NPC1L1 was previously unknown, but we recently discovered that NPC1L1 localizes to the canalicular membrane of primate hepatocytes and that NPC1L1 facilitates cholesterol uptake in hepatoma cells. Based upon these findings, we hypothesized that hepatic NPC1L1 allows the retention of biliary cholesterol by hepatocytes and that ezetimibe disrupts hepatic function of NPC1L1. To test this hypothesis, transgenic mice expressing human NPC1L1 in hepatocytes (L1-Tg mice) were created. Hepatic overexpression of NPC1L1 resulted in a 10- to 20-fold decrease in biliary cholesterol concentration, but not phospholipid and bile acid concentrations. This decrease was associated with a 30%-60% increase in plasma cholesterol, mainly because of the accumulation of apoE-rich HDL. Biliary and plasma cholesterol concentrations in these animals were virtually returned to normal with ezetimibe treatment. These findings suggest that in humans, ezetimibe may reduce plasma cholesterol by inhibiting NPC1L1 function in both intestine and liver, and hepatic NPC1L1 may have evolved to protect the body from excessive biliary loss of cholesterol.
Collapse
Affiliation(s)
- Ryan E. Temel
- Department of Pathology, Section on Lipid Sciences, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA.
Department of Human Genetics, Mount Sinai School of Medicine, New York, New York, USA.
Division of Gastroenterology and Hepatology, Department of Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Weiqing Tang
- Department of Pathology, Section on Lipid Sciences, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA.
Department of Human Genetics, Mount Sinai School of Medicine, New York, New York, USA.
Division of Gastroenterology and Hepatology, Department of Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Yinyan Ma
- Department of Pathology, Section on Lipid Sciences, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA.
Department of Human Genetics, Mount Sinai School of Medicine, New York, New York, USA.
Division of Gastroenterology and Hepatology, Department of Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Lawrence L. Rudel
- Department of Pathology, Section on Lipid Sciences, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA.
Department of Human Genetics, Mount Sinai School of Medicine, New York, New York, USA.
Division of Gastroenterology and Hepatology, Department of Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Mark C. Willingham
- Department of Pathology, Section on Lipid Sciences, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA.
Department of Human Genetics, Mount Sinai School of Medicine, New York, New York, USA.
Division of Gastroenterology and Hepatology, Department of Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Yiannis A. Ioannou
- Department of Pathology, Section on Lipid Sciences, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA.
Department of Human Genetics, Mount Sinai School of Medicine, New York, New York, USA.
Division of Gastroenterology and Hepatology, Department of Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Joanna P. Davies
- Department of Pathology, Section on Lipid Sciences, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA.
Department of Human Genetics, Mount Sinai School of Medicine, New York, New York, USA.
Division of Gastroenterology and Hepatology, Department of Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Lisa-Mari Nilsson
- Department of Pathology, Section on Lipid Sciences, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA.
Department of Human Genetics, Mount Sinai School of Medicine, New York, New York, USA.
Division of Gastroenterology and Hepatology, Department of Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Liqing Yu
- Department of Pathology, Section on Lipid Sciences, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA.
Department of Human Genetics, Mount Sinai School of Medicine, New York, New York, USA.
Division of Gastroenterology and Hepatology, Department of Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| |
Collapse
|
45
|
Brown J, Rudel L, Yu L. NPC1L1 (Niemann-Pick C1-like 1) mediates sterol-specific unidirectional transport of non-esterified cholesterol in McArdle-RH7777 hepatoma cells. Biochem J 2007; 406:273-83. [PMID: 17523925 PMCID: PMC1948962 DOI: 10.1042/bj20070168] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Recent evidence suggests that NPC1L1 (Niemann-Pick C1-like 1) is critical for intestinal sterol absorption in mice, yet mechanisms by which NPC1L1 regulates cellular sterol transport are lacking. In the study we used a McArdle-RH7777 rat hepatoma cell line stably expressing NPC1L1 to examine the sterol-specificity and directionality of NPC1L1-mediated sterol transport. As previously described, cholesterol-depletion-driven recycling of NPC1L1 to the cell surface facilitates cellular uptake of non-esterified (free) cholesterol. However, it has no impact on the uptake of esterified cholesterol, indicating free sterol specificity. Interestingly, the endocytic recycling of NPC1L1 was also without effect on beta-sitosterol uptake, indicating that NPC1L1 can differentiate between free sterols of animal and plant origin in hepatoma cells. Furthermore, NPC1L1-driven free cholesterol transport was unidirectional, since cellular cholesterol efflux to apolipoprotein A-I, high-density lipoprotein or serum was unaffected by NPC1L1 expression or localization. Additionally, NPC1L1 facilitates mass non-esterified-cholesterol uptake only when it is located on the cell surface and not when it resides intracellularly. Finally, NPC1L1-dependent cholesterol uptake required adequate intracellular K(+), yet did not rely on intracellular Ca(2+), the cytoskeleton or signalling downstream of protein kinase A, protein kinase C or pertussis-toxin-sensitive G-protein-coupled receptors. Collectively, these findings support the notion that NPC1L1 can selectively recognize non-esterified cholesterol and promote its unidirectional transport into hepatoma cells.
Collapse
Affiliation(s)
- J. Mark Brown
- Department of Pathology, Section on Lipid Sciences, Wake Forest University School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157-1040, U.S.A
| | - Lawrence L. Rudel
- Department of Pathology, Section on Lipid Sciences, Wake Forest University School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157-1040, U.S.A
| | - Liqing Yu
- Department of Pathology, Section on Lipid Sciences, Wake Forest University School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157-1040, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
46
|
Smith MM, Levitan DJ. Human NPC1L1 and NPC1 can functionally substitute for the ncr genes to promote reproductive development in C. elegans. Biochim Biophys Acta Gen Subj 2007; 1770:1345-51. [PMID: 17662536 DOI: 10.1016/j.bbagen.2007.06.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2007] [Revised: 05/15/2007] [Accepted: 06/13/2007] [Indexed: 11/18/2022]
Abstract
The NPC1 and NPC1L1 are related genes whose general role is in cholesterol trafficking. However, reduction of activity of these genes results in very different phenotypes. Niemann-Pick C disease type 1 is a neurodegenerative disease with no current treatment, where cholesterol accumulates in lysosomes. The disease arises due to autosomal recessive mutations in the NPC1 gene. The NPC1L1 gene has recently been identified as the target for the drug ezetimibe (Zetia), a cholesterol absorption inhibitor, and has been shown to be an intestinal cholesterol transporter. We demonstrate that human NPC1L1, as well as human NPC1, can functionally substitute for the Caenorhabditis elegans genes ncr-1 and/or ncr-2. These genes are known to play a role in the process of dauer formation, a process which can be modulated by cholesterol in sensitized genetic backgrounds. Our results demonstrate that these human proteins retain some functional conservation, though their biological roles are vastly different.
Collapse
Affiliation(s)
- Marsha M Smith
- Schering-Plough Research Institute, 2015 Galloping Hill Road, Kenilworth, NJ 07033, USA
| | | |
Collapse
|
47
|
Davis HR, Veltri EP. Zetia: inhibition of Niemann-Pick C1 Like 1 (NPC1L1) to reduce intestinal cholesterol absorption and treat hyperlipidemia. J Atheroscler Thromb 2007; 14:99-108. [PMID: 17587760 DOI: 10.5551/jat.14.99] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Zetia (ezetimibe) is a selective cholesterol absorption inhibitor, which potently inhibits the absorption of biliary and dietary cholesterol from the small intestine without affecting the absorption of fat-soluble vitamins, triglycerides or bile acids. Ezetimibe reduces the small intestinal enterocyte uptake and absorption of cholesterol by binding to Niemann-Pick C1 Like 1 (NPC1L1), which keeps cholesterol in the intestinal lumen for excretion. Ezetimibe undergoes glucuronidation to a single metabolite and localizes at the intestinal wall, where it binds with higher affinity for NPC1L1 than ezetimibe to prevent cholesterol absorption. Enterohepatic recirculation of ezetimibe and/or its glucuronide ensures repeated delivery to the intestinal site of action and limited peripheral exposure. Ezetimibe has no effect on the activity of major drug metabolizing enzymes (CYP450), which reduces any potential drug-drug interactions with other medications. Ezetimibe (10 mg/day) was found to inhibit cholesterol absorption by an average of 54% in hypercholesterolemic individuals and by 58% in vegetarians. Ezetimibe alone reduced plasma total and LDL-Cholesterol (18%) levels in patients with primary hypercholesterolemia. When ezetimibe was added to on-going statin treatment, an additional 25% reduction in LDL-C was found in patients with primary hypercholesterolemia and an additional 21% reduction in LDL-C in homozygous familial hypercholesterolemia. Ezetimibe in combination with statins produces additional reductions in plasma cholesterol levels and allows for more patients to achieve their LDL-C goals.
Collapse
Affiliation(s)
- Harry R Davis
- Department of Cardiovascular/Metabolic Disease Schering-Plough Research Institute, Kenilworth, NJ 07033, USA.
| | | |
Collapse
|
48
|
Knöpfel M, Davies JP, Duong PT, Kvaernø L, Carreira EM, Phillips MC, Ioannou YA, Hauser H. Multiple plasma membrane receptors but not NPC1L1 mediate high-affinity, ezetimibe-sensitive cholesterol uptake into the intestinal brush border membrane. Biochim Biophys Acta Mol Cell Biol Lipids 2007; 1771:1140-7. [PMID: 17689140 DOI: 10.1016/j.bbalip.2007.05.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2007] [Revised: 05/01/2007] [Accepted: 05/02/2007] [Indexed: 11/30/2022]
Abstract
We compared cholesterol uptake into brush border membrane vesicles (BBMV) made from the small intestines of either wild-type or Niemann-Pick C1-like 1 (NPC1L1) knockout mice to elucidate the contribution of NPC1L1 to facilitated uptake; this uptake involves cholesterol transport from lipid donor particles into the BBM of enterocytes. The lack of NPC1L1 in the BBM of the knockout mice had no effect on the rate of cholesterol uptake. It follows that NPC1L1 cannot be the putative high-affinity, ezetimibe-sensitive cholesterol transporter in the brush border membrane (BBM) as has been proposed by others. The following findings substantiate this conclusion: (I) NPC1L1 is not a brush border membrane protein but very likely localized to intracellular membranes; (II) the cholesterol absorption inhibitor ezetimibe and its analogues reduce cholesterol uptake to the same extent in wild-type and NPC1L1 knockout mouse BBMV. These findings indicate that the prevailing belief that NPC1L1 facilitates intestinal cholesterol uptake into the BBM and its interaction with ezetimibe is responsible for the inhibition of this process can no longer be sustained.
Collapse
Affiliation(s)
- Martin Knöpfel
- Laboratorium für Organische Chemie, ETH Zürich, CH-8093 Zürich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Orlowski S, Coméra C, Tercé F, Collet X. Lipid rafts: dream or reality for cholesterol transporters? EUROPEAN BIOPHYSICS JOURNAL: EBJ 2007; 36:869-85. [PMID: 17576551 DOI: 10.1007/s00249-007-0193-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2007] [Revised: 05/11/2007] [Accepted: 05/15/2007] [Indexed: 01/12/2023]
Abstract
As a key constituent of the cell membranes, cholesterol is an endogenous component of mammalian cells of primary importance, and is thus subjected to highly regulated homeostasis at the cellular level as well as at the level of the whole body. This regulation requires adapted mechanisms favoring the handling of cholesterol in aqueous compartments, as well as its transfer into or out of membranes, involving membrane proteins. A membrane exhibits functional properties largely depending on its lipid composition and on its structural organization, which very often involves cholesterol-rich microdomains. Then there is the appealing possibility that cholesterol may regulate its own transmembrane transport at a purely functional level, independently of any transcriptional regulation based on cholesterol-sensitive nuclear factors controling the expression level of lipid transport proteins. Indeed, the main cholesterol "transporters" presently believed to mediate for instance the intestinal absorption of cholesterol, that are SR-BI, NPC1L1, ABCA1, ABCG1, ABCG5/G8 and even P-glycoprotein, all present privileged functional relationships with membrane cholesterol-containing microdomains. In particular, they all more or less clearly induce membrane disorganization, supposed to facilitate cholesterol exchanges with the close aqueous medium. The actual lipid substrates handled by these transporters are not yet unambiguously determined, but they likely concern the components of membrane microdomains. Conversely, raft alterations may provide specific modulations of the transporter activities, as well as they can induce indirect effects via local perturbations of the membrane. Finally, these cholesterol transporters undergo regulated intracellular trafficking, with presumably some relationships to rafts which remain to be clarified.
Collapse
Affiliation(s)
- Stéphane Orlowski
- SB2SM/IBTS and URA 2096 CNRS, CEA, Centre de Saclay, 91191, Gif-sur-Yvette cedex, France.
| | | | | | | |
Collapse
|
50
|
Labonté ED, Howles PN, Granholm NA, Rojas JC, Davies JP, Ioannou YA, Hui DY. Class B type I scavenger receptor is responsible for the high affinity cholesterol binding activity of intestinal brush border membrane vesicles. Biochim Biophys Acta Mol Cell Biol Lipids 2007; 1771:1132-9. [PMID: 17442616 PMCID: PMC2071925 DOI: 10.1016/j.bbalip.2007.03.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Revised: 03/05/2007] [Accepted: 03/06/2007] [Indexed: 11/30/2022]
Abstract
Recent studies have documented the importance of Niemann-Pick C1-like 1 protein (NPC1L1), a putative physiological target of the drug ezetimibe, in mediating intestinal cholesterol absorption. However, whether NPC1L1 is the high affinity cholesterol binding protein on intestinal brush border membranes is still controversial. In this study, brush border membrane vesicles (BBMV) from wild type and NPC1L1-/- mice were isolated and assayed for micellar cholesterol binding in the presence or absence of ezetimibe. Results confirmed the loss of the high affinity component of cholesterol binding when wild type BBMV preparations were incubated with antiserum against the class B type 1 scavenger receptor (SR-BI) in the reaction mixture similar to previous studies. Subsequently, second order binding of cholesterol was observed with BBMV from wild type and NPC1L1-/- mice. The inclusion of ezetimibe in these in vitro reaction assays resulted in the loss of the high affinity component of cholesterol interaction. Surprisingly, BBMVs from NPC1L1-/- mice maintained active binding of cholesterol. These results documented that SR-BI, not NPC1L1, is the major protein responsible for the initial high affinity cholesterol ligand binding process in the cholesterol absorption pathway. Additionally, ezetimibe may inhibit BBM cholesterol binding through targets such as SR-BI in addition to its inhibition of NPC1L1.
Collapse
Affiliation(s)
- Eric D. Labonté
- Department of Pathology, Genome Research Institute, University of Cincinnati, Cincinnati, Ohio
| | - Philip N. Howles
- Department of Pathology, Genome Research Institute, University of Cincinnati, Cincinnati, Ohio
| | - Norman A. Granholm
- Department of Pathology, Genome Research Institute, University of Cincinnati, Cincinnati, Ohio
| | - Juan C. Rojas
- Department of Pathology, Genome Research Institute, University of Cincinnati, Cincinnati, Ohio
| | - Joanna P. Davies
- Department of Human Genetics, The Mount Sinai School of Medicine, New York, New York
| | - Yiannis A. Ioannou
- Department of Human Genetics, The Mount Sinai School of Medicine, New York, New York
| | - David Y. Hui
- Department of Pathology, Genome Research Institute, University of Cincinnati, Cincinnati, Ohio
- Correspondence to: David Y. Hui, Ph.D., Department of Pathology (ML0507), Genome Research Institute, University of Cincinnati, 2120 E. Galbraith Rd., Cincinnati, OH 45237. Ph: 513-338-9152; FAX: 513-558-1312; E-mail:
| |
Collapse
|