1
|
Zhi J, Li F, Jiang X, Bai R. Thyroid receptor β: A promising target for developing novel anti-androgenetic alopecia drugs. Drug Discov Today 2024; 29:104013. [PMID: 38705510 DOI: 10.1016/j.drudis.2024.104013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/22/2024] [Accepted: 04/29/2024] [Indexed: 05/07/2024]
Abstract
Androgenetic alopecia (AGA) significantly impacts the self-confidence and mental well-being of people. Recent research has revealed that thyroid receptor β (TRβ) agonists can activate hair follicles and effectively stimulate hair growth. This review aims to comprehensively elucidate the specific mechanism of action of TRβ in treating AGA from various perspectives, highlighting its potential as a drug target for combating AGA. Moreover, this review provides a thorough summary of the research advances in TRβ agonist candidates with anti-AGA efficacy and outlines the structure-activity relationships (SARs) of TRβ agonists. We hope that this review will provide practical information for the development of effective anti-alopecia drugs.
Collapse
Affiliation(s)
- Jia Zhi
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, P.R. China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Feifan Li
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, P.R. China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Xiaoying Jiang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, P.R. China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China.
| | - Renren Bai
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, P.R. China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China.
| |
Collapse
|
2
|
Sabatino L, Lapi D, Del Seppia C. Factors and Mechanisms of Thyroid Hormone Activity in the Brain: Possible Role in Recovery and Protection. Biomolecules 2024; 14:198. [PMID: 38397435 PMCID: PMC10886502 DOI: 10.3390/biom14020198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/29/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
Thyroid hormones (THs) are essential in normal brain development, and cognitive and emotional functions. THs act through a cascade of events including uptake by the target cells by specific cell membrane transporters, activation or inactivation by deiodinase enzymes, and interaction with nuclear thyroid hormone receptors. Several thyroid responsive genes have been described in the developing and in the adult brain and many studies have demonstrated a systemic or local reduction in TH availability in neurologic disease and after brain injury. In this review, the main factors and mechanisms associated with the THs in the normal and damaged brain will be evaluated in different regions and cellular contexts. Furthermore, the most common animal models used to study the role of THs in brain damage and cognitive impairment will be described and the use of THs as a potential recovery strategy from neuropathological conditions will be evaluated. Finally, particular attention will be given to the link observed between TH alterations and increased risk of Alzheimer's Disease (AD), the most prevalent neurodegenerative and dementing condition worldwide.
Collapse
Affiliation(s)
- Laura Sabatino
- Institute of Clinical Physiology, National Council of Research, Via Moruzzi 1, 56124 Pisa, Italy;
| | - Dominga Lapi
- Department of Biology, University of Pisa, 56127 Pisa, Italy;
| | - Cristina Del Seppia
- Institute of Clinical Physiology, National Council of Research, Via Moruzzi 1, 56124 Pisa, Italy;
| |
Collapse
|
3
|
Schneider M, Köpke MB, Zehni AZ, Vilsmaier T, Kessler M, Kailuweit M, Vattai A, Heidegger HH, Cavaillès V, Jeschke U, Ditsch N. Cytoplasmic Localization of Thyroid Hormone Receptor (TR) Alpha and Nuclear Expression of Its Isoform TRα2 Determine Survival in Breast Cancer in Opposite Ways. Cancers (Basel) 2023; 15:3610. [PMID: 37509273 PMCID: PMC10377287 DOI: 10.3390/cancers15143610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
The aim of this retrospective study was to assess the respective prognostic values of cytoplasmic and nuclear TRα, TRα1, and TRα2 expression in breast cancer (BC) tissue samples and correlate the results with clinico-pathological parameters. In 249 BC patients, the expression patterns of general TRα and the α1 and α2 isoforms were evaluated via immuno-histochemistry. Prognosis-determining aspects were calculated via univariate, as well as multivariate, analysis. Univariate Cox-regression analysis revealed no association between nuclear TRα expression and overall survival (OS) (p = 0.126), whereas cytoplasmic TRα expression was significantly correlated with a poor outcome for both OS (p = 0.034) and ten-year survival (p = 0.009). Strengthening these results, cytoplasmic TRα was found to be an independent marker of OS (p = 0.010) when adjusted to fit clinico-pathological parameters. Analyses of the TRα-subgroups revealed that TRα1 had no prognostic relevance, whereas nuclear TRα2 expression was positively associated with OS (p = 0.014), ten-year survival (p = 0.029), and DFS (p = 0.043). Additionally, nuclear TRα2 expression was found to be an independent positive prognosticator (p = 0.030) when adjusted to fit clinico-pathological parameters. Overall, our results support the hypothesis that subcellular localization of TRα and its isoforms plays an important role in the carcinogenesis and prognosis of breast cancer. Cytoplasmic TRα expression correlates with more aggressive disease progression, whereas nuclear TRα2 expression appears to be a protective factor. These data may help us to prioritize high-risk BC subgroups for possible targeted tumor therapy.
Collapse
Affiliation(s)
- Mariella Schneider
- Department of Obstetrics and Gynecology, University Hospital Augsburg, 86156 Augsburg, Germany
| | - Melitta B Köpke
- Department of Obstetrics and Gynecology, University Hospital Augsburg, 86156 Augsburg, Germany
| | - Alaleh Zati Zehni
- Department of Obstetrics and Gynecology, University Hospital Munich, LMU Munich, 81377 Munich, Germany
| | - Theresa Vilsmaier
- Department of Obstetrics and Gynecology, University Hospital Munich, LMU Munich, 81377 Munich, Germany
| | - Mirjana Kessler
- Department of Obstetrics and Gynecology, University Hospital Munich, LMU Munich, 81377 Munich, Germany
| | - Magdalena Kailuweit
- Department of Obstetrics and Gynecology, University Hospital Munich, LMU Munich, 81377 Munich, Germany
| | - Aurelia Vattai
- Department of Obstetrics and Gynecology, University Hospital Munich, LMU Munich, 81377 Munich, Germany
| | | | - Vincent Cavaillès
- IRCM-Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université Montpellier, Parc Euromédecine, 208 rue des Apothicaires, CEDEX 5, F-34298 Montpellier, France
| | - Udo Jeschke
- Department of Obstetrics and Gynecology, University Hospital Augsburg, 86156 Augsburg, Germany
- Department of Obstetrics and Gynecology, University Hospital Munich, LMU Munich, 81377 Munich, Germany
| | - Nina Ditsch
- Department of Obstetrics and Gynecology, University Hospital Augsburg, 86156 Augsburg, Germany
| |
Collapse
|
4
|
Ren J, Flamant F. Thyroid hormone as a temporal switch in mouse development. Eur Thyroid J 2023; 12:e220225. [PMID: 36715693 PMCID: PMC10083660 DOI: 10.1530/etj-22-0225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 01/30/2023] [Indexed: 01/31/2023] Open
Abstract
Thyroid hormones are known to trigger metamorphosis in an amphibian. This review discusses the hypothesis according to which they act in a similar manner to synchronize the post-natal development of mice, using brain, brown adipose tissue, and heart as examples.
Collapse
Affiliation(s)
- Juan Ren
- ENS de Lyon, INRAE, CNRS, Institut de Génomique Fonctionnelle de Lyon, Lyon, France
| | - Frédéric Flamant
- ENS de Lyon, INRAE, CNRS, Institut de Génomique Fonctionnelle de Lyon, Lyon, France
| |
Collapse
|
5
|
Hernandez A, Martinez ME, Chaves C, Anselmo J. Epigenetic developmental programming and intergenerational effects of thyroid hormones. VITAMINS AND HORMONES 2023; 122:23-49. [PMID: 36863795 PMCID: PMC10938172 DOI: 10.1016/bs.vh.2023.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Mounting evidence is showing that altered signaling through the nuclear hormone receptor superfamily can cause abnormal, long-term epigenetic changes which translate into pathological modifications and susceptibility to disease. These effects seem to be more prominent if the exposure occurs early in life, when transcriptomic profiles are rapidly changing. At this time, the coordination of the complex coordinated processes of cell proliferation and differentiation that characterize mammalian development. Such exposures may also alter the epigenetic information of the germ line, potentially leading to developmental changes and abnormal outcomes in subsequent generations. Thyroid hormone (TH) signaling is mediated by specific nuclear receptors, which have the ability to markedly change chromatin structure and gene transcription, and can also regulate other determinants of epigenetic marks. TH exhibits pleiotropic effects in mammals, and during development, its action is regulated in a highly dynamic manner to suit the rapidly evolving needs of multiple tissues. Their molecular mechanisms of action, timely developmental regulation and broad biological effects place THs in a central position to play a role in the developmental epigenetic programming of adult pathophysiology and, through effects on the germ line, in inter- and trans-generational epigenetic phenomena. These areas of epigenetic research are in their infancy, and studies regarding THs are limited. In the context of their characteristics as epigenetic modifiers and their finely tuned developmental action, here we review some of the observations underscoring the role that altered TH action may play in the developmental programming of adult traits and in the phenotypes of subsequent generations via germ line transmission of altered epigenetic information. Considering the relatively high prevalence of thyroid disease and the ability of some environmental chemicals to disrupt TH action, the epigenetic effects of abnormal levels of TH action may be important contributors to the non-genetic etiology of human disease.
Collapse
Affiliation(s)
- Arturo Hernandez
- Center for Molecular Medicine, MaineHealth Institute for Research, MaineHealth, Scarborough, ME, United States; Graduate School for Biomedical Sciences and Engineering, University of Maine, Orono, ME, United States; Department of Medicine, Tufts University School of Medicine, Boston, MA, United States.
| | - M Elena Martinez
- Center for Molecular Medicine, MaineHealth Institute for Research, MaineHealth, Scarborough, ME, United States
| | - Carolina Chaves
- Serviço de Endocrinologia e Nutrição, Hospital Divino Espírito Santo, Ponta Delgada, Açores, Portugal
| | - Joao Anselmo
- Serviço de Endocrinologia e Nutrição, Hospital Divino Espírito Santo, Ponta Delgada, Açores, Portugal
| |
Collapse
|
6
|
Selenium, Iodine and Iron-Essential Trace Elements for Thyroid Hormone Synthesis and Metabolism. Int J Mol Sci 2023; 24:ijms24043393. [PMID: 36834802 PMCID: PMC9967593 DOI: 10.3390/ijms24043393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/16/2023] [Accepted: 01/31/2023] [Indexed: 02/11/2023] Open
Abstract
The adequate availability and metabolism of three essential trace elements, iodine, selenium and iron, provide the basic requirements for the function and action of the thyroid hormone system in humans, vertebrate animals and their evolutionary precursors. Selenocysteine-containing proteins convey both cellular protection along with H2O2-dependent biosynthesis and the deiodinase-mediated (in-)activation of thyroid hormones, which is critical for their receptor-mediated mechanism of cellular action. Disbalances between the thyroidal content of these elements challenge the negative feedback regulation of the hypothalamus-pituitary-thyroid periphery axis, causing or facilitating common diseases related to disturbed thyroid hormone status such as autoimmune thyroid disease and metabolic disorders. Iodide is accumulated by the sodium-iodide-symporter NIS, and oxidized and incorporated into thyroglobulin by the hemoprotein thyroperoxidase, which requires local H2O2 as cofactor. The latter is generated by the dual oxidase system organized as 'thyroxisome' at the surface of the apical membrane facing the colloidal lumen of the thyroid follicles. Various selenoproteins expressed in thyrocytes defend the follicular structure and function against life-long exposure to H2O2 and reactive oxygen species derived therefrom. The pituitary hormone thyrotropin (TSH) stimulates all processes required for thyroid hormone synthesis and secretion and regulates thyrocyte growth, differentiation and function. Worldwide deficiencies of nutritional iodine, selenium and iron supply and the resulting endemic diseases are preventable with educational, societal and political measures.
Collapse
|
7
|
Pape J, Kerp H, Lieder HR, Geist D, Hönes GS, Moeller LC, Kleinbongard P, Führer D. Cardioprotection by Hypothyroidism Is Not Mediated by Favorable Hemodynamics-Role of Canonical Thyroid Hormone Receptor Alpha Signaling. Int J Mol Sci 2022; 23:13340. [PMID: 36362133 PMCID: PMC9656281 DOI: 10.3390/ijms232113340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/22/2022] [Accepted: 10/27/2022] [Indexed: 10/26/2023] Open
Abstract
Hypothyroidism has been shown to reduce infarct size in rats, but the underlying mechanisms are unclear. We used isolated pressure-constant perfused hearts of control, hypothyroid and hyperthyroid mice and measured infarct size, functional parameters and phosphorylation of key molecules in cardioprotective signaling with matched heart rate. Compared with controls, hypothyroidism was cardioprotective, while hyperthyroidism was detrimental with enlarged infarct size. Next, we asked how thyroid hormone receptor α (TRα) affects ischemia/reperfusion (IR) injury. Thus, canonical and noncanonical TRα signaling was investigated in the hearts of (i) mice lacking TRα (TRα0), (ii) with a mutation in TRα DNA-binding domain (TRαGS) and (iii) in hyperthyroid TRα0 (TRα0hyper) and TRαGS mice (TRαGShyper). TRα0 mouse hearts were protected against IR injury. Furthermore, infarct size was reduced in the hearts of TRαGS mice that lack canonical TRα signaling but maintain noncanonical TRα action. Hyperthyroidism did not increase infarct size in TRα0 and TRαGS mouse hearts. These cardioprotective effects were not associated with increased phosphorylation of key proteins of RISK, SAFE and eNOS pathways. In summary, chronic hypothyroidism and the lack of canonical TRα signaling are cardioprotective in IR injury and protection is not due to favorable changes in hemodynamics.
Collapse
Affiliation(s)
- Janina Pape
- Department of Endocrinology, Diabetes and Metabolism, University of Duisburg-Essen, 45122 Essen, Germany
| | - Helena Kerp
- Department of Endocrinology, Diabetes and Metabolism, University of Duisburg-Essen, 45122 Essen, Germany
| | - Helmut R. Lieder
- West German Heart and Vascular Center Essen, Institute for Pathophysiology, University of Essen Medical School, 45122 Essen, Germany
| | - Daniela Geist
- Department of Endocrinology, Diabetes and Metabolism, University of Duisburg-Essen, 45122 Essen, Germany
| | - Georg Sebastian Hönes
- Department of Endocrinology, Diabetes and Metabolism, University of Duisburg-Essen, 45122 Essen, Germany
| | - Lars C. Moeller
- Department of Endocrinology, Diabetes and Metabolism, University of Duisburg-Essen, 45122 Essen, Germany
| | - Petra Kleinbongard
- West German Heart and Vascular Center Essen, Institute for Pathophysiology, University of Essen Medical School, 45122 Essen, Germany
| | - Dagmar Führer
- Department of Endocrinology, Diabetes and Metabolism, University of Duisburg-Essen, 45122 Essen, Germany
| |
Collapse
|
8
|
Liang X, Wang Y, Liu L, Zhang X, Li L, Tang R, Li D. Acute nitrite exposure interferes with intestinal thyroid hormone homeostasis in grass carp (Ctenopharyngodon idellus). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 237:113510. [PMID: 35468440 DOI: 10.1016/j.ecoenv.2022.113510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
Nitrite in the aquatic environment potentially disturbs thyroid hormone (TH) homeostasis in peripheral tissues, but little is known about TH metabolism in the intestine. This study investigated the serum concentrations of THs and thyroid-stimulating hormone (TSH) as well as the activity of intestinal iodothyronine deiodinases (IDs) of grass carp (Ctenopharyngodon idellus) exposed to various concentrations of nitrite (0, 8, 25, or 50 mg/L) for 96 h. Acute nitrite exposure significantly altered the triiodothyronine (T3) levels and the morphology of thyroid follicles at 96 h. Thyroxine (T4), free T4 levels and intestinal IDs activities showed an increase trend under nitrite stress. After 96 h exposure, nitrite down-regulated the expressions levels of intestinal Akt1 protein, sugar transporter genes, and thyroid hormone receptor (TR) signaling pathway genes except for tr ɑ1 and tr ɑ2. Moreover, the expressions levels of pparγ, cpt1α, cd36, fabp2 and fatp4 were down-regulated, whereas fabp6 and lpl were up-regulated in the 50 mg/L exposure group at 96 h. The results indicate that acute nitrite exposure has the potential to disturb the homeostasis of intestinal TH metabolism, which in turn alters TRs genes transcription, down-regulates sugar transporter activities, and promotes the energy expenditure in gut of grass carp.
Collapse
Affiliation(s)
- Xiao Liang
- College of Fisheries, Huazhong Agricultural University; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China; Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yin Wang
- College of Fisheries, Huazhong Agricultural University; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China
| | - Lu Liu
- College of Fisheries, Huazhong Agricultural University; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China
| | - Xi Zhang
- College of Fisheries, Huazhong Agricultural University; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China
| | - Li Li
- College of Fisheries, Huazhong Agricultural University; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China
| | - Rong Tang
- College of Fisheries, Huazhong Agricultural University; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China.
| | - Dapeng Li
- College of Fisheries, Huazhong Agricultural University; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China.
| |
Collapse
|
9
|
Chen Q, Wu C, Yao Z, Cai L, Ni Y, Mao S. Elevated thyroid hormones caused by high concentrate diets participate in hepatic metabolic disorders in dairy cows. Anim Biosci 2022; 35:1184-1194. [PMID: 34991199 PMCID: PMC9262717 DOI: 10.5713/ab.21.0397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 12/17/2021] [Indexed: 11/27/2022] Open
Abstract
Objective High concentrate diets are widely used to satisfy high-yielding dairy cows; however, long-term feeding of high concentrate diets can cause subacute ruminal acidosis (SARA). The endocrine disturbance is one of the important reasons for metabolic disorders caused by SARA. However, there is no current report about thyroid hormones involved in liver metabolic disorders induced by a high concentrate diet. Methods In this study, 12 mid-lactating dairy cows were randomly assigned to HC (high concentrate) group (60% concentrate of dry matter, n = 6) and LC (low concentrate) group (40% concentrate of dry matter, n = 6). All cows were slaughtered on the 21st day, and the samples of blood and liver were collected to analyze the blood biochemistry, histological changes, thyroid hormones, and the expression of genes and proteins. Results Compared with LC group, HC group showed decreased serum triglyceride, free fatty acid, total cholesterol, low-density lipoprotein cholesterol, increased hepatic glycogen, and glucose. For glucose metabolism, the gene and protein expression of glucose-6-phosphatase and phosphoenolpyruvate carboxykinase 1 in the liver were significantly up-regulated in HC group. For lipid metabolism, the expression of sterol regulatory element-binding protein 1, long-chain acyl-CoA synthetase 1, and fatty acid synthase in the liver was decreased in HC group, whereas carnitine palmitoyltransferase 1α and peroxisome proliferator activated receptor α were increased. Serum triiodothyronine, thyroxin, free triiodothyronine (FT3), and hepatic FT3 increased in HC group, accompanied by increased expression of thyroid hormone receptor (THR) in the liver. Conclusion Taken together, thyroid hormones may increase hepatic gluconeogenesis, β-oxidation and reduce fatty acid synthesis through the THR pathway to participate in the metabolic disorders caused by a high concentrate diet.
Collapse
Affiliation(s)
- Qu Chen
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing 210095, China
| | - Chen Wu
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhihao Yao
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing 210095, China
| | - Liuping Cai
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing 210095, China
| | - Yingdong Ni
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing 210095, China
| | - Shengyong Mao
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
10
|
Kapri D, Fanibunda SE, Vaidya VA. Thyroid hormone regulation of adult hippocampal neurogenesis: Putative molecular and cellular mechanisms. VITAMINS AND HORMONES 2021; 118:1-33. [PMID: 35180924 DOI: 10.1016/bs.vh.2021.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Adult hippocampal neurogenesis is sensitive to perturbations in thyroid hormone signaling, with evidence supporting a key role for thyroid hormone and thyroid hormone receptors (TRs) in the regulation of postmitotic progenitor survival and neuronal differentiation. In this book chapter we summarize the current understanding of the effects of thyroid hormone signaling on adult hippocampal progenitor development, and also critically address the role of TRs in regulation of distinct aspects of stage-specific hippocampal progenitor progression. We highlight actions of thyroid hormone on thyroid hormone responsive target genes, and the implications for hippocampal progenitor regulation. Given the influence of thyroid hormone on both mitochondrial and lipid metabolism, we discuss a putative role for regulation of metabolism in the effects of thyroid hormone on adult hippocampal neurogenesis. Finally, we highlight specific ideas that require detailed experimental investigation, and the need for future studies to obtain a deeper mechanistic insight into the influence of thyroid hormone and TRs in the developmental progression of adult hippocampal progenitors.
Collapse
Affiliation(s)
- Darshana Kapri
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Sashaina E Fanibunda
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India; Medical Research Centre, Kasturba Health Society, Mumbai, India
| | - Vidita A Vaidya
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India.
| |
Collapse
|
11
|
D'Imperio S, Monasky MM, Micaglio E, Ciconte G, Anastasia L, Pappone C. Brugada Syndrome: Warning of a Systemic Condition? Front Cardiovasc Med 2021; 8:771349. [PMID: 34722688 PMCID: PMC8553994 DOI: 10.3389/fcvm.2021.771349] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 09/23/2021] [Indexed: 12/19/2022] Open
Abstract
Brugada syndrome (BrS) is a hereditary disorder, characterized by a specific electrocardiogram pattern and highly related to an increased risk of sudden cardiac death. BrS has been associated with other cardiac and non-cardiac pathologies, probably because of protein expression shared by the heart and other tissue types. In fact, the most commonly found mutated gene in BrS, SCN5A, is expressed throughout nearly the entire body. Consistent with this, large meals and alcohol consumption can trigger arrhythmic events in patients with BrS, suggesting a role for organs involved in the digestive and metabolic pathways. Ajmaline, a drug used to diagnose BrS, can have side effects on non-cardiac tissues, such as the liver, further supporting the idea of a role for organs involved in the digestive and metabolic pathways in BrS. The BrS electrocardiogram (ECG) sign has been associated with neural, digestive, and metabolic pathways, and potential biomarkers for BrS have been found in the serum or plasma. Here, we review the known associations between BrS and various organ systems, and demonstrate support for the hypothesis that BrS is not only a cardiac disorder, but rather a systemic one that affects virtually the whole body. Any time that the BrS ECG sign is found, it should be considered not a single disease, but rather the final step in any number of pathways that ultimately threaten the patient's life. A multi-omics approach would be appropriate to study this syndrome, including genetics, epigenomics, transcriptomics, proteomics, metabolomics, lipidomics, and glycomics, resulting eventually in a biomarker for BrS and the ability to diagnose this syndrome using a minimally invasive blood test, avoiding the risk associated with ajmaline testing.
Collapse
Affiliation(s)
- Sara D'Imperio
- Arrhythmology Department, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Donato, Milan, Italy
| | - Michelle M Monasky
- Arrhythmology Department, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Donato, Milan, Italy
| | - Emanuele Micaglio
- Arrhythmology Department, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Donato, Milan, Italy
| | - Giuseppe Ciconte
- Arrhythmology Department, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Donato, Milan, Italy
| | - Luigi Anastasia
- Faculty of Medicine and Surgery, University of Vita-Salute San Raffaele, Milan, Italy
| | - Carlo Pappone
- Arrhythmology Department, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Donato, Milan, Italy.,Faculty of Medicine and Surgery, University of Vita-Salute San Raffaele, Milan, Italy
| |
Collapse
|
12
|
Capelli V, Diéguez C, Mittag J, López M. Thyroid wars: the rise of central actions. Trends Endocrinol Metab 2021; 32:659-671. [PMID: 34294513 DOI: 10.1016/j.tem.2021.05.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/30/2021] [Accepted: 05/24/2021] [Indexed: 12/19/2022]
Abstract
In the field of thyroid hormone (TH) action on energy balance, huge advances have been achieved in the past decade, from human, animal, and in vitro studies. A key achievement was the demonstration of the TH 'central' metabolic action, which was recently discovered in rodent models and challenged the previous 'peripheral' paradigm. In this opinion, we dissect and try to unify the two paradigms, from analyzing the respective bench models to extrapolating the possible translational bedside implications.
Collapse
Affiliation(s)
- Valentina Capelli
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain
| | - Carlos Diéguez
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain
| | - Jens Mittag
- University of Lübeck, Institute for Endocrinology and Diabetes, Center of Brain Behavior and Metabolism (CBBM), Lübeck, Germany.
| | - Miguel López
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain.
| |
Collapse
|
13
|
Luongo C, Butruille L, Sébillot A, Le Blay K, Schwaninger M, Heuer H, Demeneix BA, Remaud S. Absence of Both Thyroid Hormone Transporters MCT8 and OATP1C1 Impairs Neural Stem Cell Fate in the Adult Mouse Subventricular Zone. Stem Cell Reports 2021; 16:337-353. [PMID: 33450189 PMCID: PMC7878696 DOI: 10.1016/j.stemcr.2020.12.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 12/15/2020] [Accepted: 12/15/2020] [Indexed: 02/06/2023] Open
Abstract
Adult neural stem cell (NSC) generation in vertebrate brains requires thyroid hormones (THs). How THs enter the NSC population is unknown, although TH availability determines proliferation and neuronal versus glial progenitor determination in murine subventricular zone (SVZ) NSCs. Mice display neurological signs of the severely disabling human disease, Allan-Herndon-Dudley syndrome, if they lack both MCT8 and OATP1C1 transporters, or MCT8 and deiodinase type 2. We analyzed the distribution of MCT8 and OATP1C1 in adult mouse SVZ. Both are strongly expressed in NSCs and at a lower level in neuronal cell precursors but not in oligodendrocyte progenitors. Next, we analyzed Mct8/Oatp1c1 double-knockout mice, where brain uptake of THs is strongly reduced. NSC proliferation and determination to neuronal fates were severely affected, but not SVZ-oligodendroglial progenitor generation. This work highlights how tight control of TH availability determines NSC function and glial-neuron cell-fate choice in adult brains.
Collapse
Affiliation(s)
- Cristina Luongo
- UMR 7221 Phyma, CNRS/Muséum National d'Histoire Naturelle, 75005 Paris, France
| | - Lucile Butruille
- UMR 7221 Phyma, CNRS/Muséum National d'Histoire Naturelle, 75005 Paris, France
| | - Anthony Sébillot
- UMR 7221 Phyma, CNRS/Muséum National d'Histoire Naturelle, 75005 Paris, France
| | - Karine Le Blay
- UMR 7221 Phyma, CNRS/Muséum National d'Histoire Naturelle, 75005 Paris, France
| | - Markus Schwaninger
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, 23562 Lübeck, Germany
| | - Heike Heuer
- Department of Endocrinology, Diabetes and Metabolism, University of Duisburg-Essen, 45122 Essen, Germany
| | - Barbara A Demeneix
- UMR 7221 Phyma, CNRS/Muséum National d'Histoire Naturelle, 75005 Paris, France
| | - Sylvie Remaud
- UMR 7221 Phyma, CNRS/Muséum National d'Histoire Naturelle, 75005 Paris, France.
| |
Collapse
|
14
|
Hu L, Wu C. Using Single-Cell RNA-Seq Data to Trace Tissue Cells Responsive to Thyroid Hormones. Front Endocrinol (Lausanne) 2021; 12:609308. [PMID: 33716967 PMCID: PMC7943891 DOI: 10.3389/fendo.2021.609308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 01/13/2021] [Indexed: 11/23/2022] Open
Abstract
Thyroid hormones mediate a remarkable range of functions in many tissues and organ systems through the thyroid hormone receptors-THRA and THRB. Tissues and organs are composed of heterogeneous cells of different cell types. These different cell types have varying receptor expression abilities, which lead to variable responses in thyroid hormone regulation. The tissue-specific Thra and Thrb gene expression patterns help us understand the action of thyroid hormones at the tissue level. However, the situation becomes complicated if we wish to focus on tissues more closely to trace the responsive cells, which is a vital step in the process of understanding the molecular mechanism of diseases related to thyroid hormone regulation. Single-cell RNA sequencing technology is a powerful tool used to profile gene expression programs in individual cells. The Tabula Muris Consortium generates a single-cell transcriptomic atlas across the life span of Mus musculus that includes data from 23 tissues and organs. It provides an unprecedented opportunity to understand thyroid hormone regulation at the cell type resolution. We demonstrated the approaches that allow application of the single-cell RNA-Seq data generated by the Tabula Muris Consortium to trace responsive cells in tissues. First, employing the single-cell RNA-Seq data, we calculated the ability of different cell types to express Thra and Thrb, which direct us to the cell types sensitive to thyroid hormone regulation in tissues and organs. Next, using a cell clustering algorithm, we explored the subtypes with low Thra or Thrb expression within the different cell types and identified the potentially responsive cell subtypes. Finally, in the liver tissue treated with thyroid hormones, using the single-cell RNA-Seq data, we successfully traced the responsive cell types. We acknowledge that the computational predictions reported here need to be further validated using wet-lab experiments. However, we believe our results provide powerful information and will be beneficial for wet lab researchers.
Collapse
Affiliation(s)
- Liang Hu
- Department of Thyroid Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chao Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Chao Wu,
| |
Collapse
|
15
|
Martínez-Iglesias O, Ruiz-Llorente L, Jurado CC, Aranda A. Thyroid Hormone Receptors and their Role in Cell Proliferation and Cancer. CELLULAR ENDOCRINOLOGY IN HEALTH AND DISEASE 2021:229-246. [DOI: 10.1016/b978-0-12-819801-8.00011-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
16
|
Nock S, Johann K, Harder L, Wirth EK, Renko K, Hoefig CS, Kracke V, Hackler J, Engelmann B, Rauner M, Köhrle J, Schomburg L, Homuth G, Völker U, Brabant G, Mittag J. CD5L Constitutes a Novel Biomarker for Integrated Hepatic Thyroid Hormone Action. Thyroid 2020; 30:908-923. [PMID: 32183611 DOI: 10.1089/thy.2019.0635] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background: Pathological conditions of the thyroid hormone (TH) system are routinely diagnosed by using serum concentrations of thyrotropin (TSH), which is sufficient in most cases. However, in certain conditions, such as resistance to TH due to mutations in THRB (RTHb) or TSH-releasing pituitary adenoma (TSHoma), TSH may be insufficient for a correct diagnosis, even in combination with serum TH concentrations. Likewise, under TH replacement therapy, these parameters can be misleading and do not always allow optimal treatment. Hence, additional biomarkers to assess challenging clinical conditions would be highly beneficial. Methods: Data from untargeted multi-omics analyses of plasma samples from experimental thyrotoxicosis in human and mouse were exploited to identify proteins that might represent possible biomarkers of TH function. Subsequent mouse studies were used to identify the tissue of origin and the involvement of the two different TH receptors (TR). For in-depth characterization of the underlying cellular mechanisms, primary mouse cells were used. Results: The analysis of the plasma proteome data sets revealed 16 plasma proteins that were concordantly differentially abundant under thyroxine treatment compared with euthyroid controls across the two species. These originated predominantly from liver, spleen, and bone. Independent studies in a clinical cohort and different mouse models identified CD5L as the most robust putative biomarker under different serum TH states and treatment periods. In vitro studies revealed that CD5L originates from proinflammatory M1 macrophages, which are similar to liver-residing Kupffer cells, and is regulated by an indirect mechanism requiring the secretion of a yet unknown factor from hepatocytes. In agreement with the role of TRα1 in immune cells and the TRβ-dependent hepatocyte-derived signaling, the in vivo regulation of Cd5l expression depended on both TR isoforms. Conclusion: Our results identify several novel targets of TH action in serum, with CD5L as the most robust marker. Although further studies will be needed to validate the specificity of these targets, CD5L seems to be a promising candidate to assess TH action in hepatocyte-macrophage crosstalk.
Collapse
Affiliation(s)
- Sebastian Nock
- Department of Molecular Endocrinology, Center of Brain, Behavior and Metabolism, Institute for Endocrinology and Diabetes, University of Lübeck, Lübeck, Germany
| | - Kornelia Johann
- Department of Molecular Endocrinology, Center of Brain, Behavior and Metabolism, Institute for Endocrinology and Diabetes, University of Lübeck, Lübeck, Germany
| | - Lisbeth Harder
- Department of Molecular Endocrinology, Center of Brain, Behavior and Metabolism, Institute for Endocrinology and Diabetes, University of Lübeck, Lübeck, Germany
| | - Eva Katrin Wirth
- Institut für Experimentelle Endokrinologie, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, CVK, Berlin, Germany
- Medizinische Klinik für Endokrinologie und Stoffwechselmedizin, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany
| | - Kostja Renko
- Institut für Experimentelle Endokrinologie, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, CVK, Berlin, Germany
| | - Carolin S Hoefig
- Institut für Experimentelle Endokrinologie, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, CVK, Berlin, Germany
| | - Vanessa Kracke
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Julian Hackler
- Institut für Experimentelle Endokrinologie, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, CVK, Berlin, Germany
| | - Beatrice Engelmann
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Martina Rauner
- Department of Medicine III; Technische Universität Dresden Medical Center, Dresden, Germany
- Center for Healthy Aging, Technische Universität Dresden Medical Center, Dresden, Germany
| | - Josef Köhrle
- Institut für Experimentelle Endokrinologie, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, CVK, Berlin, Germany
| | - Lutz Schomburg
- Institut für Experimentelle Endokrinologie, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, CVK, Berlin, Germany
| | - Georg Homuth
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Uwe Völker
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Georg Brabant
- Department of Molecular Endocrinology, Center of Brain, Behavior and Metabolism, Institute for Endocrinology and Diabetes, University of Lübeck, Lübeck, Germany
| | - Jens Mittag
- Department of Molecular Endocrinology, Center of Brain, Behavior and Metabolism, Institute for Endocrinology and Diabetes, University of Lübeck, Lübeck, Germany
| |
Collapse
|
17
|
Mayerl S, Heuer H, Ffrench-Constant C. Hippocampal Neurogenesis Requires Cell-Autonomous Thyroid Hormone Signaling. Stem Cell Reports 2020; 14:845-860. [PMID: 32302557 PMCID: PMC7220957 DOI: 10.1016/j.stemcr.2020.03.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 03/14/2020] [Accepted: 03/17/2020] [Indexed: 02/07/2023] Open
Abstract
Adult hippocampal neurogenesis is strongly dependent on thyroid hormone (TH). Whether TH signaling regulates this process in a cell-autonomous or non-autonomous manner remains unknown. To answer this question, we used global and conditional knockouts of the TH transporter monocarboxylate transporter 8 (MCT8), having first used FACS and immunohistochemistry to demonstrate that MCT8 is the only TH transporter expressed on neuroblasts and adult slice cultures to confirm a necessary role for MCT8 in neurogenesis. Both mice with a global deletion or an adult neural stem cell-specific deletion of MCT8 showed decreased expression of the cell-cycle inhibitor P27KIP1, reduced differentiation of neuroblasts, and impaired generation of new granule cell neurons, with global knockout mice also showing enhanced neuroblast proliferation. Together, our results reveal a cell-autonomous role for TH signaling in adult hippocampal neurogenesis alongside non-cell-autonomous effects on cell proliferation earlier in the lineage.
Collapse
Affiliation(s)
- Steffen Mayerl
- MRC Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK.
| | - Heike Heuer
- University of Duisburg-Essen, University Hospital Essen, Department of Endocrinology, Essen, Germany
| | - Charles Ffrench-Constant
- MRC Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| |
Collapse
|
18
|
Lee SH, Seo H, Lee HS, Park Y. Development and characterization of a human cell line-based transactivation assay to assess thyroid EDCs. ENVIRONMENTAL RESEARCH 2020; 182:109110. [PMID: 31918317 DOI: 10.1016/j.envres.2020.109110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/31/2019] [Accepted: 01/01/2020] [Indexed: 06/10/2023]
Abstract
Thyroid hormones (THs) are one of the most important hormones, playing key roles in the regulation of various physiological functions. Although THs have important function in human, in vitro test methods based on human cells are currently insufficient to effectively screen and test TH-related endocrine disrupting chemicals (EDCs). We established a TH agonist TA assay using the adenocarcinomic human alveolar basal epithelial cell line A549 to test and screen potential TH agonists. To establish the TH agonist TA assay, a TRE-secNluc-IRES-EGFP reporter cassette was constructed and transfected into the A549 cell line using a retrovirus. We evaluated the TH agonistic properties of several chemicals which were tested by existing thyroid agonists testing method (OECD GD 207). Comparing the results of the TH agonist TA assay with the OECD GD 207, T3, T4, tiratricol, and tetrac (natural TH and 3,3',5,5'-tetraiodothyroacetic acid derivatives), which are TH agonists according to the OECD GD 207, also tested positive in the TH agonist TA assay using the A549 cell line. These results suggested that the TH agonist TA assay developed in this study using a human cell line can provide the information, such as accuracy and specificity to TH agonistic properties of chemicals.
Collapse
Affiliation(s)
- Seok-Hee Lee
- Department of Food Science and Biotechnology, Dongguk University, Goyang, 10326, Republic of Korea
| | - Hyeyeong Seo
- Department of Integrated Biomedical and Life Science, Korea University, Seoul, 02841, Republic of Korea
| | - Hee-Seok Lee
- Department of Food Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Yooheon Park
- Department of Food Science and Biotechnology, Dongguk University, Goyang, 10326, Republic of Korea.
| |
Collapse
|
19
|
Cytoplasmic and Nuclear Forms of Thyroid Hormone Receptor β1 Are Inversely Associated with Survival in Primary Breast Cancer. Int J Mol Sci 2020; 21:ijms21010330. [PMID: 31947762 PMCID: PMC6981495 DOI: 10.3390/ijms21010330] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/24/2019] [Accepted: 12/31/2019] [Indexed: 12/24/2022] Open
Abstract
The aim of this study was to investigate the expression of thyroid hormone receptor β1 (THRβ1) by immunohistochemistry in breast cancer (BC) tissues and to correlate the results with clinico-biological parameters. In a well-characterized cohort of 274 primary BC patients, THRβ1 was widely expressed with a predominant nuclear location, although cytoplasmic staining was also frequently observed. Both nuclear and cytoplasmic THRβ1 were correlated with high-risk BC markers such as human epidermal growth factor receptor 2 (HER2), Ki67 (also known as MKI67), prominin-1 (CD133), and N-cadherin. Overall survival analysis demonstrated that cytoplasmic THRβ1 was correlated with favourable survival (p = 0.015), whereas nuclear THRβ1 had a statistically significant correlation with poor outcome (p = 0.038). Interestingly, in our cohort, nuclear and cytoplasmic THRβ1 appeared to be independent markers either for poor (p = 0.0004) or for good (p = 0.048) prognosis, respectively. Altogether, these data indicate that the subcellular expression of THRβ1 may play an important role in oncogenesis. Moreover, the expression of nuclear THRβ1 is a negative outcome marker, which may help to identify high-risk BC subgroups.
Collapse
|
20
|
Neves JS, Vale C, von Hafe M, Borges-Canha M, Leite AR, Almeida-Coelho J, Lourenço A, Falcão-Pires I, Carvalho D, Leite-Moreira A. Thyroid hormones and modulation of diastolic function: a promising target for heart failure with preserved ejection fraction. Ther Adv Endocrinol Metab 2020; 11:2042018820958331. [PMID: 33088475 PMCID: PMC7543162 DOI: 10.1177/2042018820958331] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 08/20/2020] [Indexed: 12/16/2022] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a clinical syndrome with high mortality for which there is no proven therapy to improve its prognosis. Thyroid dysfunction is common in heart failure (HF) and is associated with worse prognosis. In this review, we discuss the cardiovascular effects of thyroid hormones, the pathophysiology of HFpEF, the prognostic impact of thyroid function, and the potential of thyroid hormones for treatment of HFpEF. Thyroid hormones have a central role in cardiovascular homeostasis, improving cardiac function through genomic and non-genomic mechanisms. Both overt and subclinical hypothyroidism are associated with increased risk of HF. Even when plasmatic thyroid hormones levels are normal, patients with HF may have local cardiac hypothyroidism due to upregulation of type 3 iodothyronine deiodinase. Thyroid hormones improve several pathophysiological mechanisms of HFpEF, including diastolic dysfunction and extra-cardiac abnormalities. Supplementation with thyroid hormones (levothyroxine and/or liothyronine), modulation of deiodinase activity, and heart-specific thyroid receptor agonists are potential therapeutic approaches for the treatment of HFpEF. Further preclinical and clinical studies are needed to clarify the role of thyroid hormones in the treatment of HFpEF.
Collapse
Affiliation(s)
- João Sérgio Neves
- Departamento de Cirurgia e Fisiologia, Unidade
de Investigação Cardiovascular, Faculdade de Medicina, Universidade do
Porto, Porto, Portugal
- Department of Endocrinology, Diabetes and
Metabolism, Centro Hospitalar Universitário de São João, Faculdade de
Medicina, Universidade do Porto, Porto, Portugal
| | - Catarina Vale
- Departamento de Cirurgia e Fisiologia, Unidade
de Investigação Cardiovascular, Faculdade de Medicina, Universidade do
Porto, Porto, Portugal
| | - Madalena von Hafe
- Departamento de Cirurgia e Fisiologia, Unidade
de Investigação Cardiovascular, Faculdade de Medicina, Universidade do
Porto, Porto, Portugal
| | - Marta Borges-Canha
- Departamento de Cirurgia e Fisiologia, Unidade
de Investigação Cardiovascular, Faculdade de Medicina, Universidade do
Porto, Porto, Portugal
- Department of Endocrinology, Diabetes and
Metabolism, Centro Hospitalar Universitário de São João, Faculdade de
Medicina, Universidade do Porto, Porto, Portugal
| | - Ana Rita Leite
- Departamento de Cirurgia e Fisiologia, Unidade
de Investigação Cardiovascular, Faculdade de Medicina, Universidade do
Porto, Porto, Portugal
| | - João Almeida-Coelho
- Departamento de Cirurgia e Fisiologia, Unidade
de Investigação Cardiovascular, Faculdade de Medicina, Universidade do
Porto, Porto, Portugal
| | - André Lourenço
- Departamento de Cirurgia e Fisiologia, Unidade
de Investigação Cardiovascular, Faculdade de Medicina, Universidade do
Porto, Porto, Portugal
| | - Inês Falcão-Pires
- Departamento de Cirurgia e Fisiologia, Unidade
de Investigação Cardiovascular, Faculdade de Medicina, Universidade do
Porto, Porto, Portugal
| | - Davide Carvalho
- Department of Endocrinology, Diabetes and
Metabolism, Centro Hospitalar Universitário de São João, Faculdade de
Medicina, Universidade do Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde
da Universidade do Porto, Portugal
| | | |
Collapse
|
21
|
Femia MR, Evans RM, Zhang J, Sun X, Lebegue CJ, Roggero VR, Allison LA. Mediator subunit MED1 modulates intranuclear dynamics of the thyroid hormone receptor. J Cell Biochem 2019; 121:2909-2926. [PMID: 31692077 DOI: 10.1002/jcb.29532] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 10/10/2019] [Indexed: 12/26/2022]
Abstract
The thyroid hormone receptors (TRs) mediate thyroid hormone (T3 )-dependent gene expression. The nuclear import and export signals that direct TR shuttling are well characterized, but little is known about factors modulating nuclear retention. We used fluorescence-based nucleocytoplasmic scoring and fluorescence recovery after photobleaching in transfected cells to investigate whether Mediator subunits MED1 and MED13 play a role in nuclear retention of TR. When MED1 was overexpressed, there was a striking shift towards a greater nuclear localization of TRβ1 and the oncoprotein v-ErbA, subtypes with cytosolic populations at steady-state, and TRβ1 intranuclear mobility was reduced. For TRα1, there was no observable change in its predominantly nuclear distribution pattern or mobility. Consistent with a role for MED1 in nuclear retention, the cytosolic TRα1 and TRβ1 population were significantly greater in MED1-/- cells, compared with MED1+/+ cells. Exposure to T3 and epidermal growth factor, which induces MED1 phosphorylation, also altered TR intranuclear dynamics. Overexpression of miR-208a, which downregulates MED13, led to a more cytosolic distribution of nuclear-localized TRα1; however, overexpression of MED13 had no effect on TRβ1 localization. The known binding site of MED1 overlaps with a transactivation domain and nuclear export signal in helix 12 of TR's ligand-binding domain (LBD). Coimmunoprecipitation assays demonstrated that TR's LBD interacts directly with exportins 5 and 7, suggesting that binding of exportins and MED1 to TR may be mutually exclusive. Collectively, our data provide evidence that MED1 promotes nuclear retention of TR, and highlight the dual functionality of helix 12 in TR transactivation and nuclear export.
Collapse
Affiliation(s)
- Matthew R Femia
- Department of Biology, William and Mary, Williamsburg, Viginia
| | | | - Jibo Zhang
- Department of Biology, William and Mary, Williamsburg, Viginia
| | - Xiaopeng Sun
- Department of Biology, William and Mary, Williamsburg, Viginia
| | | | | | | |
Collapse
|
22
|
Talhada D, Santos CRA, Gonçalves I, Ruscher K. Thyroid Hormones in the Brain and Their Impact in Recovery Mechanisms After Stroke. Front Neurol 2019; 10:1103. [PMID: 31681160 PMCID: PMC6814074 DOI: 10.3389/fneur.2019.01103] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 10/02/2019] [Indexed: 12/23/2022] Open
Abstract
Thyroid hormones are of fundamental importance for brain development and essential factors to warrant brain functions throughout life. Their actions are mediated by binding to specific intracellular and membranous receptors regulating genomic and non-genomic mechanisms in neurons and populations of glial cells, respectively. Among others, mechanisms include the regulation of neuronal plasticity processes, stimulation of angiogenesis and neurogenesis as well modulating the dynamics of cytoskeletal elements and intracellular transport processes. These mechanisms overlap with those that have been identified to enhance recovery of lost neurological functions during the first weeks and months after ischemic stroke. Stimulation of thyroid hormone signaling in the postischemic brain might be a promising therapeutic strategy to foster endogenous mechanisms of repair. Several studies have pointed to a significant association between thyroid hormones and outcome after stroke. With this review, we will provide an overview on functions of thyroid hormones in the healthy brain and summarize their mechanisms of action in the developing and adult brain. Also, we compile the major thyroid-modulated molecular pathways in the pathophysiology of ischemic stroke that can enhance recovery, highlighting thyroid hormones as a potential target for therapeutic intervention.
Collapse
Affiliation(s)
- Daniela Talhada
- Laboratory for Experimental Brain Research, Division of Neurosurgery, Department of Clinical Sciences, Lund University, Lund, Sweden
- CICS-UBI-Health Sciences Research Centre, Faculdade de Ciências da Saúde, Universidade da Beira Interior, Covilha, Portugal
- LUBIN Lab-Lunds Laboratorium för Neurokirurgisk Hjärnskadeforskning, Division of Neurosurgery, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Cecília Reis Alves Santos
- CICS-UBI-Health Sciences Research Centre, Faculdade de Ciências da Saúde, Universidade da Beira Interior, Covilha, Portugal
| | - Isabel Gonçalves
- CICS-UBI-Health Sciences Research Centre, Faculdade de Ciências da Saúde, Universidade da Beira Interior, Covilha, Portugal
| | - Karsten Ruscher
- Laboratory for Experimental Brain Research, Division of Neurosurgery, Department of Clinical Sciences, Lund University, Lund, Sweden
- LUBIN Lab-Lunds Laboratorium för Neurokirurgisk Hjärnskadeforskning, Division of Neurosurgery, Department of Clinical Sciences, Lund University, Lund, Sweden
| |
Collapse
|
23
|
Sainath SB, André A, Castro LFC, Santos MM. The evolutionary road to invertebrate thyroid hormone signaling: Perspectives for endocrine disruption processes. Comp Biochem Physiol C Toxicol Pharmacol 2019; 223:124-138. [PMID: 31136851 DOI: 10.1016/j.cbpc.2019.05.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 05/23/2019] [Accepted: 05/23/2019] [Indexed: 12/14/2022]
Abstract
Thyroid hormones (THs) are the only iodine-containing hormones that play fundamental roles in chordates and non-chordates. The chemical nature, mode of action and the synthesis of THs are well established in mammals and other vertebrates. Although thyroid-like hormones have been detected in protostomes and non-chordate deuterostomes, TH signaling is poorly understood as compared to vertebrates, particularly in protostomes. Therefore, the central objective of this article is to review TH system components and TH-induced effects in non-vertebrate chordates, non-chordate deuterostomes and protostomes based on available genomes and functional information. To accomplish this task, we integrate here the available knowledge on the THs signaling across non-vertebrate chordates, non-chordate deuterostomes and protostomes by considering studies encompassing TH system components and physiological actions of THs. We also address the possible interactions of thyroid disrupting chemicals and their effects in protostomes and non-chordate deuterostomes. Finally, the perspectives on current and future challenges are discussed.
Collapse
Affiliation(s)
- S B Sainath
- CIMAR/CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal; Department of Biotechnology, Vikrama Simhapuri University, Nellore 524 003, AP, India.
| | - A André
- CIMAR/CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal
| | - L Filipe C Castro
- CIMAR/CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal.
| | - M M Santos
- CIMAR/CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal.
| |
Collapse
|
24
|
Abstract
Thyroid hormone has profound effects on skeletal development and adult bone maintenance. Here, we review the current literature concerning thyroid hormone action in bone and cartilage in relation to human disease and animal models. We describe state-of-the-art imaging and biomechanical methods used to determine structural and functional parameters in the skeletal phenotyping of mouse models.
Collapse
|
25
|
Abstract
Thyroid hormone receptors (TRs) were cloned based on their homology with the retroviral oncogene v-ERBA. In Vertebrates two genes, THRA and THRB, encode respectively many isotypes and isoforms of receptors TRα and TRβ, resulting from alternative splicing and/or internal transcription start sites. We present here a wide overview of this diversity and of their mechanisms of action as transcription regulators, as well as alternative actions through cytoplasmic signaling.
Collapse
|
26
|
Jakobsson T, Vedin LL, Parini P. Potential Role of Thyroid Receptor β Agonists in the Treatment of Hyperlipidemia. Drugs 2019; 77:1613-1621. [PMID: 28865063 PMCID: PMC5613055 DOI: 10.1007/s40265-017-0791-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Thyroid hormones have important effects on cellular development, growth, and metabolism and are necessary for the healthy function of almost all tissues. Hyperthyroid patients with excess thyroid hormone levels experience tachycardia, fatigue, muscle wasting, and osteoporosis. However, although high thyroid hormone levels have adverse effects, efforts have been made to harness the beneficial effects, such as reduced serum low-density lipoprotein (LDL) cholesterol levels, elevated basal metabolic rate, and weight loss. Thyroid hormones interact with nuclear thyroid hormone receptors (TRs), and cholesterol levels are reduced through TRβ, whereas extrahepatic adverse actions are primarily connected to TRα. Thus, to develop a useful compound for clinical use, efforts have been focusing on developing compounds with isomer-specific functions based on the structure of thyroid hormones, i.e., thyromimetics that are liver and/or TRβ specific. In this short review, we discuss the development of the early thyromimetics that enabled, through modern molecular techniques, the progress towards improved design of TRβ-selective thyromimetics. We also address the early promise shown in human clinical trials and the current status of these drugs and other emerging compounds.
Collapse
Affiliation(s)
- Tomas Jakobsson
- Division of Clinical Chemistry, C1:74, Department of Laboratory Medicine, Karolinska University Hospital Huddinge, 141 86, Stockholm, Sweden
| | - Lise-Lotte Vedin
- Division of Clinical Chemistry, C1:74, Department of Laboratory Medicine, Karolinska University Hospital Huddinge, 141 86, Stockholm, Sweden
| | - Paolo Parini
- Division of Clinical Chemistry, C1:74, Department of Laboratory Medicine, Karolinska University Hospital Huddinge, 141 86, Stockholm, Sweden. .,Metabolism Unit, Department of Medicine, Karolinska Institutet, Stockholm, Sweden. .,Inflammation and Infection Theme, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
27
|
Stepien BK, Huttner WB. Transport, Metabolism, and Function of Thyroid Hormones in the Developing Mammalian Brain. Front Endocrinol (Lausanne) 2019; 10:209. [PMID: 31001205 PMCID: PMC6456649 DOI: 10.3389/fendo.2019.00209] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 03/14/2019] [Indexed: 12/22/2022] Open
Abstract
Ever since the discovery of thyroid hormone deficiency as the primary cause of cretinism in the second half of the 19th century, the crucial role of thyroid hormone (TH) signaling in embryonic brain development has been established. However, the biological understanding of TH function in brain formation is far from complete, despite advances in treating thyroid function deficiency disorders. The pleiotropic nature of TH action makes it difficult to identify and study discrete roles of TH in various aspect of embryogenesis, including neurogenesis and brain maturation. These challenges notwithstanding, enormous progress has been achieved in understanding TH production and its regulation, their conversions and routes of entry into the developing mammalian brain. The endocrine environment has to adjust when an embryo ceases to rely solely on maternal source of hormones as its own thyroid gland develops and starts to produce endogenous TH. A number of mechanisms are in place to secure the proper delivery and action of TH with placenta, blood-brain interface, and choroid plexus as barriers of entry that need to selectively transport and modify these hormones thus controlling their active levels. Additionally, target cells also possess mechanisms to import, modify and bind TH to further fine-tune their action. A complex picture of a tightly regulated network of transport proteins, modifying enzymes, and receptors has emerged from the past studies. TH have been implicated in multiple processes related to brain formation in mammals-neuronal progenitor proliferation, neuronal migration, functional maturation, and survival-with their exact roles changing over developmental time. Given the plethora of effects thyroid hormones exert on various cell types at different developmental periods, the precise spatiotemporal regulation of their action is of crucial importance. In this review we summarize the current knowledge about TH delivery, conversions, and function in the developing mammalian brain. We also discuss their potential role in vertebrate brain evolution and offer future directions for research aimed at elucidating TH signaling in nervous system development.
Collapse
|
28
|
The Antiarrhythmic Drug, Dronedarone, Demonstrates Cytotoxic Effects in Breast Cancer Independent of Thyroid Hormone Receptor Alpha 1 (THRα1) Antagonism. Sci Rep 2018; 8:16562. [PMID: 30410118 PMCID: PMC6224430 DOI: 10.1038/s41598-018-34348-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 10/10/2018] [Indexed: 01/22/2023] Open
Abstract
Previous research has suggested that thyroid hormone receptor alpha 1 (THRα1), a hormone responsive splice variant, may play a role in breast cancer progression. Whether THRα1 can be exploited for anti-cancer therapy is unknown. The antiproliferative and antitumor effects of dronedarone, an FDA-approved anti-arrhythmic drug which has been shown to antagonize THRα1, was evaluated in breast cancer cell lines in vitro and in vivo. The THRα1 splice variant and the entire receptor, THRα, were also independently targeted using siRNA to determine the effect of target knockdown in vitro. In our study, dronedarone demonstrates cytotoxic effects in vitro and in vivo in breast cancer cell lines at doses and concentrations that may be clinically relevant. However, knockdown of either THRα1 or THRα did not cause substantial anti-proliferative or cytotoxic effects in vitro, nor did it alter the sensitivity to dronedarone. Thus, we conclude that dronedarone’s cytotoxic effect in breast cancer cell lines are independent of THRα or THRα1 antagonism. Further, the depletion of THRα or THRα1 does not affect cell viability or proliferation. Characterizing the mechanism of dronedarone’s anti-tumor action may facilitate drug repurposing or the development of new anti-cancer agents.
Collapse
|
29
|
Hernandez A, Stohn JP. The Type 3 Deiodinase: Epigenetic Control of Brain Thyroid Hormone Action and Neurological Function. Int J Mol Sci 2018; 19:ijms19061804. [PMID: 29921775 PMCID: PMC6032375 DOI: 10.3390/ijms19061804] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 06/13/2018] [Accepted: 06/15/2018] [Indexed: 12/31/2022] Open
Abstract
Thyroid hormones (THs) influence multiple processes in the developing and adult central nervous system, and their local availability needs to be maintained at levels that are tailored to the requirements of their biological targets. The local complement of TH transporters, deiodinase enzymes, and receptors is critical to ensure specific levels of TH action in neural cells. The type 3 iodothyronine deiodinase (DIO3) inactivates THs and is highly present in the developing and adult brain, where it limits their availability and action. DIO3 deficiency in mice results in a host of neurodevelopmental and behavioral abnormalities, demonstrating the deleterious effects of TH excess, and revealing the critical role of DIO3 in the regulation of TH action in the brain. The fact the Dio3 is an imprinted gene and that its allelic expression pattern varies across brain regions and during development introduces an additional level of control to deliver specific levels of hormone action in the central nervous system (CNS). The sensitive epigenetic nature of the mechanisms controlling the genomic imprinting of Dio3 renders brain TH action particularly susceptible to disruption due to exogenous treatments and environmental exposures, with potential implications for the etiology of human neurodevelopmental disorders.
Collapse
Affiliation(s)
- Arturo Hernandez
- Center for Molecular Medicine, Maine Medical Center Research Institute, Maine Medical Center, Scarborough, ME 04074, USA.
- Graduate School for Biomedical Science and Engineering, University of Maine, Orono, ME 04469, USA.
- Department of Medicine, Tufts University School of Medicine, Boston, MA 02111, USA.
| | - J Patrizia Stohn
- Center for Molecular Medicine, Maine Medical Center Research Institute, Maine Medical Center, Scarborough, ME 04074, USA.
| |
Collapse
|
30
|
Teng X, Liu YY, Teng W, Brent GA. COUP-TF1 Modulates Thyroid Hormone Action in an Embryonic Stem-Cell Model of Cortical Pyramidal Neuronal Differentiation. Thyroid 2018; 28:667-678. [PMID: 29205104 PMCID: PMC5952340 DOI: 10.1089/thy.2017.0256] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Thyroid hormone is critical for normal brain development and acts in a spatial and temporal specific pattern. Thyroid hormone excess, or deficiency, can lead to irreversible impairment of brain and sensory development. Chicken ovalbumin upstream-transcription factor 1 (COUP-TF1), expressed early in neuronal development, is essential to achieve normal brain structure. Thyroid hormone stimulation of gene expression is inversely correlated with the level of COUP-TF1 expression. METHODS An in vitro method of differentiating mouse embryonic stem (mES) cells into cortical neurons was utilized to study the influence of COUP-TF1 on thyroid hormone signaling in brain development. mES cells were cultured and differentiated in specific conditioned media, and a high percentage of nestin-positive progenitor neurons in the first stage, and cortical neurons in the second stage, was obtained with characteristic neuronal firing. RESULTS The number of nestin-positive progenitors, as determined by fluorescence-activated cell sorting analysis, was significantly greater with triiodothyronine (T3) treatment compared to control (p < 0.05). T3 enhanced the expression of cortical neuron marker (Tbr1 and Rc3) mRNAs. After COUP-TF1 knockdown, the number of nestin-positive progenitors was reduced compared to control (p < 0.05), but the number increased with T3 treatment. The mRNA of cortical neuronal gene markers was measured after COUP-TF1 knockdown. In the presence of T3, the peak expression of neuron markers Emx1, Tbr1, Camkiv, and Rc3 mRNA was earlier, at day 18 of differentiation, compared to control cells, at day 22. Furthermore, after COUP-TF1 knockdown, T3 induction of Rc3 and Tbr1 mRNA was significantly enhanced compared to cells expressing COUP-TF1. CONCLUSION These results indicate that COUP-TF1 plays an important role in modulating the timing and magnitude of T3-stimulated gene expression required for normal corticogenesis.
Collapse
Affiliation(s)
- Xiaochun Teng
- Molecular Endocrinology Laboratory, VA Greater Los Angeles Healthcare System, Departments of Medicine and Physiology, David Geffen School of Medicine at UCLA, Los Angeles, California
- Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Affiliated Hospital of China Medical University, Shenyang, P. R. China
| | - Yan-Yun Liu
- Molecular Endocrinology Laboratory, VA Greater Los Angeles Healthcare System, Departments of Medicine and Physiology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Weiping Teng
- Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Affiliated Hospital of China Medical University, Shenyang, P. R. China
| | - Gregory A. Brent
- Molecular Endocrinology Laboratory, VA Greater Los Angeles Healthcare System, Departments of Medicine and Physiology, David Geffen School of Medicine at UCLA, Los Angeles, California
| |
Collapse
|
31
|
Anyetei-Anum CS, Roggero VR, Allison LA. Thyroid hormone receptor localization in target tissues. J Endocrinol 2018; 237:R19-R34. [PMID: 29440347 PMCID: PMC5843491 DOI: 10.1530/joe-17-0708] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 02/12/2018] [Indexed: 12/28/2022]
Abstract
The thyroid hormone receptors, TRα1, TRβ1 and other subtypes, are members of the nuclear receptor superfamily that mediate the action of thyroid hormone signaling in numerous tissues to regulate important physiological and developmental processes. Their most well-characterized role is as ligand-dependent transcription factors; TRs bind thyroid hormone response elements in the presence or absence of thyroid hormone to facilitate the expression of target genes. Although primarily residing in the nucleus, TRα1 and TRβ1 shuttle rapidly between the nucleus and cytoplasm. We have identified multiple nuclear localization signals and nuclear export signals within TRα1 and TRβ1 that interact with importins and exportins, respectively, to mediate translocation across the nuclear envelope. More recently, enigmatic cytoplasmic functions have been ascribed to other TR subtypes, expanding the diversity of the cellular response to thyroid hormone. By integrating data on localization signal motifs, this review provides an overview of the complex interplay between TR's dynamic transport pathways and thyroid hormone signaling activities. We examine the variation in TR subtype response to thyroid hormone signaling, and what is currently known about regulation of the variety of tissue-specific localization patterns, including targeting to the nucleus, the mitochondria and the inner surface of the plasma membrane.
Collapse
Affiliation(s)
| | - Vincent R Roggero
- Department of BiologyCollege of William and Mary, Williamsburg, Virginia, USA
| | - Lizabeth A Allison
- Department of BiologyCollege of William and Mary, Williamsburg, Virginia, USA
| |
Collapse
|
32
|
Gutleb AC, Cambier S, Serchi T. Impact of Endocrine Disruptors on the Thyroid Hormone System. Horm Res Paediatr 2018; 86:271-278. [PMID: 26771660 DOI: 10.1159/000443501] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 12/14/2015] [Indexed: 11/19/2022] Open
Abstract
The thyroid hormone (TH) system plays a central role in central physiological processes of many species, including mammals and humans, ranging from growth and cell differentiation, energy metabolism, thermoregulation and phasing of hibernation or annual movements of migratory species, metamorphosis from larvae to adult forms, brain development, reproduction, or the cardiovascular system. Several chemicals are known to be TH-disrupting compounds (THDCs) and have been shown to interact with virtually all elements of TH homeostasis such as feedback mechanisms with the hypothalamus-pituitary axis, TH synthesis, TH storage and release from the thyroid gland, transport protein binding and TH distribution in tissues and organs, cellular TH uptake, intracellular TH metabolism, and TH receptor binding. Therefore, chemicals interfering with the TH homeostasis have the potential to interact with many of these important processes, and especially early-life stage exposure results in permanent alterations of tissue organization and homeostatic regulation of adaptive processes. This is not only of theoretical importance as the reported plasma concentrations of THDCs in human plasma fall well within the range of reported in vitro effect concentrations, and this is of even higher importance as the developing fetus and young children are in a sensitive developmental stage.
Collapse
Affiliation(s)
- Arno C Gutleb
- Environmental Health Group, Life Cycle Sustainability and Risk Assessment (LiSRA) Unit, Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), Esch/Alzette, Luxembourg
| | | | | |
Collapse
|
33
|
Little AG. Local Regulation of Thyroid Hormone Signaling. VITAMINS AND HORMONES 2018; 106:1-17. [DOI: 10.1016/bs.vh.2017.06.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
34
|
Markossian S, Guyot R, Richard S, Teixeira M, Aguilera N, Bouchet M, Plateroti M, Guan W, Gauthier K, Aubert D, Flamant F. CRISPR/Cas9 Editing of the Mouse Thra Gene Produces Models with Variable Resistance to Thyroid Hormone. Thyroid 2018; 28:139-150. [PMID: 29205102 DOI: 10.1089/thy.2017.0389] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND Resistance to thyroid hormone due to THRA mutations (RTHα) is a recently discovered genetic disease, displaying important variability in its clinical presentation. The mutations alter the function of TRα1, one of the two nuclear receptors for thyroid hormone. METHODS The aim of this study was to understand the relationship between specific THRA mutations and phenotype. CRISPR/Cas9 genome editing was used to generate five new mouse models of RTHα, with frameshift or missense mutations. RESULTS Like human patients, mutant mice displayed a hypothyroid-like phenotype, with altered development. Phenotype severity varied between the different mouse models, mainly depending on the ability of the mutant receptor to interact with transcription corepressor in the presence of thyroid hormone. CONCLUSION The present mutant mice represent highly relevant models for the human genetic disease which will be useful for future investigations.
Collapse
Affiliation(s)
- Suzy Markossian
- 1 Institut de Génomique Fonctionnelle de Lyon, Université de Lyon CNRS UMR 5242, INRA USC 1370, Ecole Normale Supérieure de Lyon , Lyon, France
| | - Romain Guyot
- 1 Institut de Génomique Fonctionnelle de Lyon, Université de Lyon CNRS UMR 5242, INRA USC 1370, Ecole Normale Supérieure de Lyon , Lyon, France
| | - Sabine Richard
- 1 Institut de Génomique Fonctionnelle de Lyon, Université de Lyon CNRS UMR 5242, INRA USC 1370, Ecole Normale Supérieure de Lyon , Lyon, France
| | - Marie Teixeira
- 2 Plateau de Biologie Expérimentale de la Souris SFR Biosciences, Ecole Normale Supérieure de Lyon , Lyon, France
| | - Nadine Aguilera
- 2 Plateau de Biologie Expérimentale de la Souris SFR Biosciences, Ecole Normale Supérieure de Lyon , Lyon, France
| | - Mathilde Bouchet
- 1 Institut de Génomique Fonctionnelle de Lyon, Université de Lyon CNRS UMR 5242, INRA USC 1370, Ecole Normale Supérieure de Lyon , Lyon, France
| | | | - Wenyue Guan
- 1 Institut de Génomique Fonctionnelle de Lyon, Université de Lyon CNRS UMR 5242, INRA USC 1370, Ecole Normale Supérieure de Lyon , Lyon, France
| | - Karine Gauthier
- 1 Institut de Génomique Fonctionnelle de Lyon, Université de Lyon CNRS UMR 5242, INRA USC 1370, Ecole Normale Supérieure de Lyon , Lyon, France
| | - Denise Aubert
- 1 Institut de Génomique Fonctionnelle de Lyon, Université de Lyon CNRS UMR 5242, INRA USC 1370, Ecole Normale Supérieure de Lyon , Lyon, France
| | - Frédéric Flamant
- 1 Institut de Génomique Fonctionnelle de Lyon, Université de Lyon CNRS UMR 5242, INRA USC 1370, Ecole Normale Supérieure de Lyon , Lyon, France
| |
Collapse
|
35
|
Fanibunda SE, Desouza LA, Kapoor R, Vaidya RA, Vaidya VA. Thyroid Hormone Regulation of Adult Neurogenesis. VITAMINS AND HORMONES 2018; 106:211-251. [DOI: 10.1016/bs.vh.2017.04.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
36
|
Wrutniak-Cabello C, Casas F, Cabello G. Mitochondrial T3 receptor and targets. Mol Cell Endocrinol 2017; 458:112-120. [PMID: 28167126 DOI: 10.1016/j.mce.2017.01.054] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 01/28/2017] [Accepted: 01/31/2017] [Indexed: 12/25/2022]
Abstract
The demonstration that TRα1 mRNA encodes a nuclear thyroid hormone receptor and two proteins imported into mitochondria with molecular masses of 43 and 28 kDa has brought new clues to better understand the pleiotropic influence of iodinated hormones. If p28 activity remains unknown, p43 binds to T3 responsive elements occurring in the organelle genome, and, in the T3 presence, stimulates mitochondrial transcription and the subsequent synthesis of mitochondrial encoded proteins. This influence increases mitochondrial activity and through changes in the mitochondrial/nuclear cross talk affects important nuclear target genes regulating cell proliferation and differentiation, oncogenesis, or apoptosis. In addition, this pathway influences muscle metabolic and contractile phenotype, as well as glycaemia regulation. Interestingly, according to the process considered, p43 exerts opposite or cooperative effects with the well-known T3 pathway, thus allowing a fine tuning of the physiological influence of this hormone.
Collapse
Affiliation(s)
- Chantal Wrutniak-Cabello
- INRA, UMR 866 Dynamique Musculaire et Métabolisme, 34060 Montpellier, France; Université de Montpellier, UMR 866 Dynamique Musculaire et Métabolisme, 34060 Montpellier, France.
| | - François Casas
- INRA, UMR 866 Dynamique Musculaire et Métabolisme, 34060 Montpellier, France; Université de Montpellier, UMR 866 Dynamique Musculaire et Métabolisme, 34060 Montpellier, France
| | - Gérard Cabello
- INRA, UMR 866 Dynamique Musculaire et Métabolisme, 34060 Montpellier, France; Université de Montpellier, UMR 866 Dynamique Musculaire et Métabolisme, 34060 Montpellier, France
| |
Collapse
|
37
|
Zhang J, Roggero VR, Allison LA. Nuclear Import and Export of the Thyroid Hormone Receptor. VITAMINS AND HORMONES 2017; 106:45-66. [PMID: 29407444 DOI: 10.1016/bs.vh.2017.04.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The thyroid hormone receptors, TRα1 and TRβ1, are members of the nuclear receptor superfamily that forms one of the most abundant classes of transcription factors in multicellular organisms. Although primarily localized to the nucleus, TRα1 and TRβ1 shuttle rapidly between the nucleus and cytoplasm. The fine balance between nuclear import and export of TRs has emerged as a critical control point for modulating thyroid hormone-responsive gene expression. Mutagenesis studies have defined two nuclear localization signal (NLS) motifs that direct nuclear import of TRα1: NLS-1 in the hinge domain and NLS-2 in the N-terminal A/B domain. Three nuclear export signal (NES) motifs reside in the ligand-binding domain. A combined approach of shRNA-mediated knockdown and coimmunoprecipitation assays revealed that nuclear entry of TRα1 is facilitated by importin 7, likely through interactions with NLS-2, and importin β1 and the adapter importin α1 interacting with both NLS-1 and NLS-2. Interestingly, TRβ1 lacks NLS-2 and nuclear import depends solely on the importin α1/β1 heterodimer. Heterokaryon and fluorescence recovery after photobleaching shuttling assays identified multiple exportins that play a role in nuclear export of TRα1, including CRM1 (exportin 1), and exportins 4, 5, and 7. Even single amino acid changes in TRs dramatically alter their intracellular distribution patterns. We conclude that mutations within NLS and NES motifs affect nuclear shuttling activity, and propose that TR mislocalization contributes to the development of some types of cancer and Resistance to Thyroid Hormone syndrome.
Collapse
Affiliation(s)
- Jibo Zhang
- College of William and Mary, Williamsburg, VA, United States
| | | | | |
Collapse
|
38
|
Delitala AP, Fanciulli G, Maioli M, Delitala G. Subclinical hypothyroidism, lipid metabolism and cardiovascular disease. Eur J Intern Med 2017; 38:17-24. [PMID: 28040402 DOI: 10.1016/j.ejim.2016.12.015] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Revised: 12/16/2016] [Accepted: 12/19/2016] [Indexed: 12/13/2022]
Abstract
Subclinical hypothyroidism is defined by elevated serum thyrotropin in presence of normal free thyroid hormones. Lipid metabolism is influenced by thyroid hormone and many reports showed that lipids status worsen along with TSH level. Subclinical hypothyroidism has been also linked to other cardiovascular risk factors such as alteration in blood pressure and increased atherosclerosis. Further evidences suggested that mild dysfunction of thyroid gland is associated with metabolic syndrome and heart failure. Thyrotropin level seems the best predictor of cardiovascular disease, in particular when its levels are above 10mU/L. However, despite these observations, there is no clear evidence that levothyroxine therapy in subjects with milder form of subclinical hypothyroidism could improve lipid status and the other cardiovascular risk factors. In this review, we address the effect of thyroid hormone and cardiovascular risk, with a focus on lipid metabolism.
Collapse
Affiliation(s)
- Alessandro P Delitala
- Clinica Medica, Azienda Ospedaliero Universitaria di Sassari, Viale San Pietro 8, 07100, Sassari, Italy.
| | - Giuseppe Fanciulli
- Department of Clinical and Experimental Medicine, University of Sassari - Azienda Ospedaliero Universitaria di Sassari, Viale San Pietro 8, 07100 Sassari, Italy
| | - Margherita Maioli
- Center for developmental biology and reprogramming - CEDEBIOR, Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Monserrato, Cagliari, Italy; National Institute of Biostructures and Biosystems at the Department of Experimental, Diagnostic and Specialty Medicine, S. Orsola - Malpighi Hospital, University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
| | - Giuseppe Delitala
- Department of Clinical and Experimental Medicine, University of Sassari - Azienda Ospedaliero Universitaria di Sassari, Viale San Pietro 8, 07100 Sassari, Italy
| |
Collapse
|
39
|
Ligand Independent and Subtype-Selective Actions of Thyroid Hormone Receptors in Human Adipose Derived Stem Cells. PLoS One 2016; 11:e0164407. [PMID: 27732649 PMCID: PMC5061422 DOI: 10.1371/journal.pone.0164407] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 09/23/2016] [Indexed: 12/14/2022] Open
Abstract
Thyroid hormone (TH) receptors (TRs α and β) are homologous ligand-dependent transcription factors (TFs). While the TRs display distinct actions in development, metabolic regulation and other processes, comparisons of TRα and TRβ dependent gene regulation mostly reveal similar mechanisms of action and few TR subtype specific genes. Here, we show that TRα predominates in multipotent human adipose derived stem cells (hADSC) whereas TRβ is expressed at lower levels and is upregulated during hADSC differentiation. The TRs display several unusual properties in parental hADSC. First, TRs display predominantly cytoplasmic intracellular distribution and major TRα variants TRα1 and TRα2 colocalize with mitochondria. Second, knockdown experiments reveal that endogenous TRs influence hADSC cell morphology and expression of hundreds of genes in the absence of hormone, but do not respond to exogenous TH. Third, TRα and TRβ affect hADSC in completely distinct ways; TRα regulates cell cycle associated processes while TRβ may repress aspects of differentiation. TRα splice variant specific knockdown reveals that TRα1 and TRα2 both contribute to TRα-dependent gene expression in a gene specific manner. We propose that TRs work in a non-canonical and hormone independent manner in hADSC and that prominent subtype-specific activities emerge in the context of these unusual actions.
Collapse
|
40
|
Lee JY, Petratos S. Thyroid Hormone Signaling in Oligodendrocytes: from Extracellular Transport to Intracellular Signal. Mol Neurobiol 2016; 53:6568-6583. [PMID: 27427390 DOI: 10.1007/s12035-016-0013-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 07/10/2016] [Indexed: 01/24/2023]
Abstract
Thyroid hormone plays an important role in central nervous system (CNS) development, including the myelination of variable axonal calibers. It is well-established that thyroid hormone is required for the terminal differentiation of oligodendrocyte precursor cells (OPCs) into myelinating oligodendrocytes by inducing rapid cell-cycle arrest and constant transcription of pro-differentiation genes. This is well supported by the hypomyelinating phenotypes exhibited by patients with congenital hypothyroidism, cretinism. During development, myelinating oligodendrocytes only appear after the formation of neural circuits, indicating that the timing of oligodendrocyte differentiation is important. Since fetal and post-natal serum thyroid hormone levels peak at the stage of active myelination, it is suspected that the timing of oligodendrocyte development is finely controlled by thyroid hormone. The essential machinery for thyroid hormone signaling such as deiodinase activity (utilized by cells to auto-regulate the level of thyroid hormone), and nuclear thyroid hormone receptors (for gene transcription) are expressed on oligodendrocytes. In this review, we discuss the known and potential thyroid hormone signaling pathways that may regulate oligodendrocyte development and CNS myelination. Moreover, we evaluate the potential of targeting thyroid hormone signaling for white matter injury or disease.
Collapse
Affiliation(s)
- Jae Young Lee
- Department of Medicine, Central Clinical School, Monash University, Prahran, Victoria, 3004, Australia.,ToolGen, Inc., #1204, Byucksan Digital Valley 6-cha, Seoul, South Korea
| | - Steven Petratos
- Department of Medicine, Central Clinical School, Monash University, Prahran, Victoria, 3004, Australia.
| |
Collapse
|
41
|
|
42
|
Abstract
The skeleton is an exquisitely sensitive and archetypal T3-target tissue that demonstrates the critical role for thyroid hormones during development, linear growth, and adult bone turnover and maintenance. Thyrotoxicosis is an established cause of secondary osteoporosis, and abnormal thyroid hormone signaling has recently been identified as a novel risk factor for osteoarthritis. Skeletal phenotypes in genetically modified mice have faithfully reproduced genetic disorders in humans, revealing the complex physiological relationship between centrally regulated thyroid status and the peripheral actions of thyroid hormones. Studies in mutant mice also established the paradigm that T3 exerts anabolic actions during growth and catabolic effects on adult bone. Thus, the skeleton represents an ideal physiological system in which to characterize thyroid hormone transport, metabolism, and action during development and adulthood and in response to injury. Future analysis of T3 action in individual skeletal cell lineages will provide new insights into cell-specific molecular mechanisms and may ultimately identify novel therapeutic targets for chronic degenerative diseases such as osteoporosis and osteoarthritis. This review provides a comprehensive analysis of the current state of the art.
Collapse
Affiliation(s)
- J H Duncan Bassett
- Molecular Endocrinology Laboratory, Department of Medicine, Imperial College London, Hammersmith Campus, London W12 0NN, United Kingdom
| | - Graham R Williams
- Molecular Endocrinology Laboratory, Department of Medicine, Imperial College London, Hammersmith Campus, London W12 0NN, United Kingdom
| |
Collapse
|
43
|
A Rare Mutation in Patients With Resistance to Thyroid Hormone and Review of Therapeutic Strategies. Am J Med Sci 2015; 350:167-74. [PMID: 26273722 DOI: 10.1097/maj.0000000000000538] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Resistance to thyroid hormone (RTH) is a rare syndrome characterized by elevated thyroid hormone (TH) along with nonsuppressed thyroid-stimulating hormone (TSH). The clinical symptoms can vary considerably, and no definite treatment has been established thus far. METHODS A family with RTH harboring a TH receptor (THR)-β gene mutation (A234T) is described, the therapeutic strategies for RTH are reviewed, and optimization of the treatment strategies was attempted. RESULTS Gene sequencing revealed a point mutation (A234T) in the THR-β gene of the proposita, her elder brother and her mother. During the 20-month follow-up period, it was found that the proposita experienced apparently higher TSH level and normal TH level on taking antithyroid medication. However, on discontinuing the medication, her thyroid function returned to the baseline of elevated FT3, FT4 level along with inappropriately normal TSH. Thus far, there is no guideline regarding the treatment strategies for the RTH. Antithyroid drugs are effective for patients with thyrotoxic symptoms but pose an increased risk of thyrotroph hyperplasia. The efficacy and safety of D-T4 and bromocriptine still remains debatable, TRIAC may be the most promising drug, as it is effective and can reduce both TH and TSH level. However, L-T3 or L-T4 may be necessary for some RTH patients who exhibit massive goiter or hypothyroid symptoms. CONCLUSIONS It is demonstrated in this article that the A234T mutation in the THR-β gene can cause the RTH. Treatment of this condition is challenging, and individualized therapy is required because of the variable clinical features.
Collapse
|
44
|
Vujovic M, Dudazy-Gralla S, Hård J, Solsjö P, Warner A, Vennström B, Mittag J. Thyroid hormone drives the expression of mouse carbonic anhydrase Car4 in kidney, lung and brain. Mol Cell Endocrinol 2015; 416:19-26. [PMID: 26319697 DOI: 10.1016/j.mce.2015.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 08/11/2015] [Accepted: 08/11/2015] [Indexed: 10/23/2022]
Abstract
Thyroid hormone is a well-known regulator of brain, lung and kidney development and function. However, the molecular mechanisms by which the hormone exerts its function have remained largely enigmatic, and only a limited set of target genes have been identified in these tissues. Using a mouse model with a mutation in thyroid hormone receptor α1 (TRα1), we here demonstrate that the expression of carbonic anhydrase 4 in lung and brain of the adult animal depends on intact TRα1 signaling. In the kidney, carbonic anhydrase 4 mRNA and protein are not affected by the mutant TRα1, but are acutely repressed by thyroid hormone. However, neither lung function--as measured by respiration rate and oxygen saturation--nor urine pH levels were affected by altered carbonic anhydrase 4 levels, suggesting that other carbonic anhydrases are likely to compensate. Taken together, our findings identify a previously unknown marker of TRα1 action in brain and lung, and provide a novel negatively regulated target gene to assess renal thyroid hormone status.
Collapse
Affiliation(s)
- Milica Vujovic
- Karolinska Institutet, Department of Cell and Molecular Biology, 17177 Stockholm, Sweden
| | - Susi Dudazy-Gralla
- Karolinska Institutet, Department of Cell and Molecular Biology, 17177 Stockholm, Sweden
| | - Joanna Hård
- Karolinska Institutet, Department of Cell and Molecular Biology, 17177 Stockholm, Sweden
| | - Peter Solsjö
- Karolinska Institutet, Department of Cell and Molecular Biology, 17177 Stockholm, Sweden
| | - Amy Warner
- Karolinska Institutet, Department of Cell and Molecular Biology, 17177 Stockholm, Sweden
| | - Björn Vennström
- Karolinska Institutet, Department of Cell and Molecular Biology, 17177 Stockholm, Sweden
| | - Jens Mittag
- Karolinska Institutet, Department of Cell and Molecular Biology, 17177 Stockholm, Sweden; Universität zu Lübeck, Medizinische Klinik 1/Center of Brain, Behavior and Metabolism, Ratzeburger Allee 160, 23562 Lübeck, Germany.
| |
Collapse
|
45
|
Roman C, Fuior EV, Trusca VG, Kardassis D, Simionescu M, Gafencu AV. Thyroid hormones upregulate apolipoprotein E gene expression in astrocytes. Biochem Biophys Res Commun 2015; 468:190-5. [PMID: 26519880 DOI: 10.1016/j.bbrc.2015.10.132] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 10/24/2015] [Indexed: 11/19/2022]
Abstract
Apolipoprotein E (apoE), a protein mainly involved in lipid metabolism, is associated with several neurodegenerative disorders including Alzheimer's disease. Despite numerous attempts to elucidate apoE gene regulation in the brain, the exact mechanism is still uncovered. The mechanism of apoE gene regulation in the brain involves the proximal promoter and multienhancers ME.1 and ME.2, which evolved by gene duplication. Herein we questioned whether thyroid hormones and their nuclear receptors have a role in apoE gene regulation in astrocytes. Our data showed that thyroid hormones increase apoE gene expression in HTB14 astrocytes in a dose-dependent manner. This effect can be intermediated by the thyroid receptor β (TRβ) which is expressed in these cells. In the presence of triiodothyronine (T3) and 9-cis retinoic acid, in astrocytes transfected to overexpress TRβ and retinoid X receptor α (RXRα), apoE promoter was indirectly activated through the interaction with ME.2. To determine the location of TRβ/RXRα binding site on ME.2, we performed DNA pull down assays and found that TRβ/RXRα complex bound to the region 341-488 of ME.2. This result was confirmed by transient transfection experiments in which a series of 5'- and 3'-deletion mutants of ME.2 were used. These data support the existence of a biologically active TRβ binding site starting at 409 in ME.2. In conclusion, our data revealed that ligand-activated TRβ/RXRα heterodimers bind with high efficiency on tissue-specific distal regulatory element ME.2 and thus modulate apoE gene expression in the brain.
Collapse
Affiliation(s)
- Corina Roman
- Institute of Cellular Biology and Pathology "Nicolae Simionescu", Bucharest, Romania
| | - Elena V Fuior
- Institute of Cellular Biology and Pathology "Nicolae Simionescu", Bucharest, Romania
| | - Violeta G Trusca
- Institute of Cellular Biology and Pathology "Nicolae Simionescu", Bucharest, Romania
| | - Dimitris Kardassis
- University of Crete Medical School and Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology of Hellas, Heraklion, Crete, Greece
| | - Maya Simionescu
- Institute of Cellular Biology and Pathology "Nicolae Simionescu", Bucharest, Romania
| | - Anca V Gafencu
- Institute of Cellular Biology and Pathology "Nicolae Simionescu", Bucharest, Romania.
| |
Collapse
|
46
|
Mengeling BJ, Furlow JD. Pituitary specific retinoid-X receptor ligand interactions with thyroid hormone receptor signaling revealed by high throughput reporter and endogenous gene responses. Toxicol In Vitro 2015; 29:1609-18. [PMID: 26096596 DOI: 10.1016/j.tiv.2015.06.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 05/26/2015] [Accepted: 06/18/2015] [Indexed: 11/25/2022]
Abstract
Disruption of thyroid hormone (TH) signaling can compromise vital processes both during development and in the adult. We previously reported on high-throughput screening experiments for man-made TH disruptors using a stably integrated line of rat pituitary cells, GH3.TRE-Luc, in which a thyroid hormone receptor (TR) response element drives luciferase (Luc) expression. In these experiments, several retinoid/rexinoid compounds activated the reporter. Here we show that all-trans and 13-cis retinoic acid appear to function through the heterodimer partners of TRs, retinoid-X receptors (RXRs), as RXR antagonists abrogated retinoid-induced activation. The retinoids also induced known endogenous TR target genes, showing good correlation with Luc activity. Synthetic RXR-specific agonists significantly activated all tested TR target genes, but interestingly, retinoid/rexinoid activation was more consistent between genes than the extent of T3-induced activation. In contrast, the retinoids neither activated the Luc reporter construct in transient transfection assays in the human hepatocarcinoma cell line HuH7, nor two of the same T3-induced genes examined in pituitary cells. These data demonstrate the suitability and sensitivity of GH3.TRE-Luc cells for screening chemical compound libraries for TH disruption and suggest that the extent of disruption can vary on a cell type and gene-specific bases, including an underappreciated contribution by RXRs.
Collapse
Affiliation(s)
- Brenda J Mengeling
- Department of Neurobiology, Physiology and Behavior, 1 Shields Avenue, University of California Davis, Davis, CA 95616, United States
| | - J David Furlow
- Department of Neurobiology, Physiology and Behavior, 1 Shields Avenue, University of California Davis, Davis, CA 95616, United States.
| |
Collapse
|
47
|
Vargas-Uricoechea H, Sierra-Torres CH. Thyroid hormones and the heart. Horm Mol Biol Clin Investig 2015; 18:15-26. [PMID: 25389997 DOI: 10.1515/hmbci-2013-0059] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 11/20/2013] [Indexed: 01/08/2023]
Abstract
Thyroid hormones have a significant impact on heart function, mediated by genomic and non-genomic effects. Consequently, thyroid hormones deficit as well as excess are expected to result in profound changes in cardiac function regulation and cardiovascular hemodynamics. Thyroid hormones upregulate the expression of the sarcoplasmic reticulum calcium-activated ATPase and downregulate the expression of phospholamban. Overall, hyperthyroidism is characterized by an increase in resting heart rate, blood volume, stroke volume, myocardial contractility, and ejection fraction. The development of "high-output heart failure" in hyperthyroidism may be due to "tachycardia-mediated cardiomyopathy." In contrast, in the hypothyroid state, thyroid hormone deficiency results in lower heart rate and weakening of myocardial contraction and relaxation, with prolonged systolic and early diastolic times. Cardiac preload is decreased owing to impaired diastolic function, cardiac afterload is increased, and chronotropic and inotropic functions are reduced. Subclinical thyroid dysfunction is relatively common in patients >65 years of age. In general, subclinical hypothyroidism increases the risk of cardiovascular heart disease (CHD) mortality and CHD events, but not of total mortality. The risk of CHD mortality and atrial fibrillation (but not other outcomes) in subclinical hyperthyroidism is higher among patients with very low levels of thyrotropin. Finally, medications such as amiodarone may induce hypothyroidism (mediated by the Wolff-Chaikoff effect) as well as hyperthyroidism (mediated by the Jod-Basedow effect). In both instances, the underlying cause is the high concentration of iodine in this medication. The purpose of this review is to assess the effects of thyroid hormones on the heart, and their clinical repercussions.
Collapse
|
48
|
Kapoor R, Fanibunda SE, Desouza LA, Guha SK, Vaidya VA. Perspectives on thyroid hormone action in adult neurogenesis. J Neurochem 2015; 133:599-616. [DOI: 10.1111/jnc.13093] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 02/18/2015] [Accepted: 02/24/2015] [Indexed: 12/25/2022]
Affiliation(s)
- Richa Kapoor
- Department of Biological Sciences; Tata Institute of Fundamental Research; Mumbai India
| | - Sashaina E. Fanibunda
- Department of Biological Sciences; Tata Institute of Fundamental Research; Mumbai India
| | - Lynette A. Desouza
- Department of Biological Sciences; Tata Institute of Fundamental Research; Mumbai India
| | - Suman K. Guha
- Department of Biological Sciences; Tata Institute of Fundamental Research; Mumbai India
| | - Vidita A. Vaidya
- Department of Biological Sciences; Tata Institute of Fundamental Research; Mumbai India
| |
Collapse
|
49
|
Abstract
Skeletal and cardiac muscles play key roles in the regulation of systemic energy homeostasis and display remarkable plasticity in their metabolic responses to caloric availability and physical activity. In this Perspective we discuss recent studies highlighting transcriptional mechanisms that govern systemic metabolism by striated muscles. We focus on the participation of the Mediator complex in this process, and suggest that tissue-specific regulation of Mediator subunits impacts metabolic homeostasis.
Collapse
Affiliation(s)
- Kedryn K Baskin
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9148, USA
| | - Benjamin R Winders
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9148, USA; Cardiology Division, Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9148, USA
| | - Eric N Olson
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9148, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9148, USA.
| |
Collapse
|
50
|
Darras VM, Houbrechts AM, Van Herck SL. Intracellular thyroid hormone metabolism as a local regulator of nuclear thyroid hormone receptor-mediated impact on vertebrate development. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1849:130-41. [DOI: 10.1016/j.bbagrm.2014.05.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 04/17/2014] [Accepted: 05/07/2014] [Indexed: 01/13/2023]
|