1
|
Guseman AJ, González JJ, Yang D, Gronenborn AM. Cumulative asparagine to aspartate deamidation fails to perturb γD-crystallin structure and stability. Protein Sci 2024; 33:e5120. [PMID: 39022918 PMCID: PMC11255865 DOI: 10.1002/pro.5120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/05/2024] [Accepted: 07/07/2024] [Indexed: 07/20/2024]
Abstract
Deamidation frequently is invoked as an important driver of crystallin aggregation and cataract formation. Here, we characterized the structural and biophysical consequences of cumulative Asn to Asp changes in γD-crystallin. Using NMR spectroscopy, we demonstrate that N- or C-terminal domain-confined or fully Asn to Asp changed γD-crystallin exhibits essentially the same 1H-15N HSQC spectrum as the wild-type protein, implying that the overall structure is retained. Only a very small thermodynamic destabilization for the overall Asn to Asp γD-crystallin variants was noted by chaotropic unfolding, and assessment of the colloidal stability, by measuring diffusion interaction parameters, yielded no substantive differences in association propensities. Furthermore, using molecular dynamics simulations, no significant changes in dynamics for proteins with Asn to Asp or iso-Asp changes were detected. Our combined results demonstrate that substitution of all Asn by Asp residues, reflecting an extreme case of deamidation, did not affect the structure and biophysical properties of γD-crystallin. This suggests that these changes alone cannot be the major determinant in driving cataract formation.
Collapse
Affiliation(s)
- Alex J. Guseman
- Department of Structural BiologyUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Jeremy J. González
- Department of Structural BiologyUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Darian Yang
- Department of Structural BiologyUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Angela M. Gronenborn
- Department of Structural BiologyUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| |
Collapse
|
2
|
Nasiri F, Ebrahimi P, Shahsavani MB, Barati A, Zarei I, Hong J, Hoshino M, Moosavi-Movahedi AA, Yousefi R. Unraveling the impact of the p.R107L mutation on the structure and function of human αB-Crystallin: Implications for cataract formation. Biochimie 2024; 222:151-168. [PMID: 38494110 DOI: 10.1016/j.biochi.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 03/19/2024]
Abstract
To date, several pathogenic mutations have been identified in the primary structure of human α-Crystallin, frequently involving the substitution of arginine with a different amino acid. These mutations can lead to the incidence of cataracts and myopathy. Recently, an important cataract-associated mutation has been reported in the functional α-Crystallin domain (ACD) of human αB-Crystallin protein, where arginine 107 (R107) is replaced by a leucine. In this study, we investigated the structure, chaperone function, stability, oligomerization, and amyloidogenic properties of the p.R107L human αB-Crystallin using a number of different techniques. Our results suggest that the p.R107L mutation can cause significant changes in the secondary, tertiary, and quaternary structures of αB-Crystallin. This cataractogenic mutation led to the formation of protein oligomers with larger sizes than the wild-type protein and reduced the chemical and thermal stability of the mutant chaperone. Both fluorescence and microscopic assessments indicated that this mutation significantly altered the amyloidogenic properties of human αB-Crystallin. Furthermore, the mutant protein indicated an attenuated in vitro chaperone activity. The molecular dynamics (MD) simulation confirmed the experimental results and indicated that p.R107L mutation could alter the proper conformation of human αB-Crystallin dimers. In summary, our results indicated that the p.R107L mutation could promote the formation of larger oligomers, diminish the stability and chaperone activity of human αB-Crystallin, and these changes, in turn, can play a crucial role in the development of cataract disorder.
Collapse
Affiliation(s)
- Farid Nasiri
- Protein Chemistry Laboratory (PCL), Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Parisa Ebrahimi
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | | | - Anis Barati
- Protein Chemistry Laboratory (PCL), Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Issa Zarei
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 1416634793, Iran
| | - Jun Hong
- School of Life Sciences, Henan University, Kaifeng, 475000, People's Republic of China
| | - Masaru Hoshino
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | | | - Reza Yousefi
- Protein Chemistry Laboratory (PCL), Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran.
| |
Collapse
|
3
|
Bulangalire N, Claeyssen C, Agbulut O, Cieniewski-Bernard C. Impact of MG132 induced-proteotoxic stress on αB-crystallin and desmin phosphorylation and O-GlcNAcylation and their partition towards cytoskeleton. Biochimie 2024:S0300-9084(24)00079-8. [PMID: 38636798 DOI: 10.1016/j.biochi.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/19/2024] [Accepted: 04/14/2024] [Indexed: 04/20/2024]
Abstract
Small Heat Shock Proteins are considered as the first line of defense when proteostasis fails. Among them, αB-crystallin is expressed in striated muscles in which it interacts with desmin intermediate filaments to stabilize them, maintaining cytoskeleton's integrity and muscular functionalities. Desmin is a key actor for muscle health; its targeting by αB-crystallin is thus crucial, especially in stress conditions. αB-crystallin is phosphorylated and O-GlcNAcylated. Its phosphorylation increases consecutively to various stresses, correlated with its recruitment for cytoskeleton's safeguarding. However, phosphorylation as unique signal for cytoskeleton translocation remains controversial; indeed, O-GlcNAcylation was also proposed to be involved. Thus, there are still some gaps for a deeper comprehension of how αB-crystallin functions are finely regulated by post-translational modifications. Furthermore, desmin also bears both post-translational modifications; while desmin phosphorylation is closely linked to desmin intermediates filaments turnover, it is unclear whereas its O-GlcNAcylation could impact its proper function. In the herein paper, we aim at identifying whether phosphorylation and/or O-GlcNAcylation are involved in αB-crystallin targeting towards cytoskeleton in proteotoxic stress induced by proteasome inhibition in C2C12 myotubes. We demonstrated that proteotoxicity led to αB-crystallin's phosphorylation and O-GlcNAcylation patterns changes, both presenting a dynamic interplay depending on protein subfraction. Importantly, both post-translational modifications showed a spatio-temporal variation correlated with αB-crystallin translocation towards cytoskeleton. In contrast, we did not detect any change of desmin phosphorylation and O-GlcNAcylation. All together, these data strongly support that αB-crystallin phosphorylation/O-GlcNAcylation interplay rather than changes on desmin is a key regulator for its cytoskeleton translocation, preserving it towards stress.
Collapse
Affiliation(s)
- Nathan Bulangalire
- Univ. Lille, Univ. Artois, Univ. Littoral Côte d'Opale, ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, F-59000, Lille, France; CHU Lille, Université de Lille, F-59000, Lille, France; Sorbonne Université, Institut de Biologie Paris-Seine (IBPS), CNRS UMR 8256, Inserm ERL U1164, Biological Adaptation and Ageing, 75005, Paris, France
| | - Charlotte Claeyssen
- Univ. Lille, Univ. Artois, Univ. Littoral Côte d'Opale, ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, F-59000, Lille, France
| | - Onnik Agbulut
- Sorbonne Université, Institut de Biologie Paris-Seine (IBPS), CNRS UMR 8256, Inserm ERL U1164, Biological Adaptation and Ageing, 75005, Paris, France
| | - Caroline Cieniewski-Bernard
- Univ. Lille, Univ. Artois, Univ. Littoral Côte d'Opale, ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, F-59000, Lille, France.
| |
Collapse
|
4
|
Claeyssen C, Bulangalire N, Bastide B, Agbulut O, Cieniewski-Bernard C. Desmin and its molecular chaperone, the αB-crystallin: How post-translational modifications modulate their functions in heart and skeletal muscles? Biochimie 2024; 216:137-159. [PMID: 37827485 DOI: 10.1016/j.biochi.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/04/2023] [Accepted: 10/02/2023] [Indexed: 10/14/2023]
Abstract
Maintenance of the highly organized striated muscle tissue requires a cell-wide dynamic network through protein-protein interactions providing an effective mechanochemical integrator of morphology and function. Through a continuous and complex trans-cytoplasmic network, desmin intermediate filaments ensure this essential role in heart and in skeletal muscle. Besides their role in the maintenance of cell shape and architecture (permitting contractile activity efficiency and conferring resistance towards mechanical stress), desmin intermediate filaments are also key actors of cell and tissue homeostasis. Desmin participates to several cellular processes such as differentiation, apoptosis, intracellular signalisation, mechanotransduction, vesicle trafficking, organelle biogenesis and/or positioning, calcium homeostasis, protein homeostasis, cell adhesion, metabolism and gene expression. Desmin intermediate filaments assembly requires αB-crystallin, a small heat shock protein. Over its chaperone activity, αB-crystallin is involved in several cellular functions such as cell integrity, cytoskeleton stabilization, apoptosis, autophagy, differentiation, mitochondria function or aggresome formation. Importantly, both proteins are known to be strongly associated to the aetiology of several cardiac and skeletal muscles pathologies related to desmin filaments disorganization and a strong disturbance of desmin interactome. Note that these key proteins of cytoskeleton architecture are extensively modified by post-translational modifications that could affect their functional properties. Therefore, we reviewed in the herein paper the impact of post-translational modifications on the modulation of cellular functions of desmin and its molecular chaperone, the αB-crystallin.
Collapse
Affiliation(s)
- Charlotte Claeyssen
- University of Lille, University of Artois, University of Littoral Côte d'Opale, ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, F-59000 Lille, France
| | - Nathan Bulangalire
- University of Lille, University of Artois, University of Littoral Côte d'Opale, ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, F-59000 Lille, France; Université de Lille, CHU Lille, F-59000 Lille, France
| | - Bruno Bastide
- University of Lille, University of Artois, University of Littoral Côte d'Opale, ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, F-59000 Lille, France
| | - Onnik Agbulut
- Sorbonne Université, Institut de Biologie Paris-Seine (IBPS), CNRS UMR 8256, Inserm ERL U1164, Biological Adaptation and Ageing, 75005, Paris, France
| | - Caroline Cieniewski-Bernard
- University of Lille, University of Artois, University of Littoral Côte d'Opale, ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, F-59000 Lille, France.
| |
Collapse
|
5
|
Zhang X, Liu B, Lal K, Liu H, Tran M, Zhou M, Ezugwu C, Gao X, Dang T, Au ML, Brown E, Wu H, Liao Y. Antioxidant System and Endoplasmic Reticulum Stress in Cataracts. Cell Mol Neurobiol 2023; 43:4041-4058. [PMID: 37874455 PMCID: PMC10842247 DOI: 10.1007/s10571-023-01427-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 10/14/2023] [Indexed: 10/25/2023]
Abstract
The primary underlying contributor for cataract, a leading cause of vision impairment and blindness worldwide, is oxidative stress. Oxidative stress triggers protein damage, cell apoptosis, and subsequent cataract formation. The nuclear factor-erythroid 2-related factor 2 (Nrf2) serves as a principal redox transcriptional factor in the lens, offering a line of defense against oxidative stress. In response to oxidative challenges, Nrf2 dissociates from its inhibitor, Kelch-like ECH-associated protein 1 (Keap1), moves to the nucleus, and binds to the antioxidant response element (ARE) to activate the Nrf2-dependent antioxidant system. In parallel, oxidative stress also induces endoplasmic reticulum stress (ERS). Reactive oxygen species (ROS), generated during oxidative stress, can directly damage proteins, causing them to misfold. Initially, the unfolded protein response (UPR) activates to mitigate excessive misfolded proteins. Yet, under persistent or severe stress, the failure to rectify protein misfolding leads to an accumulation of these aberrant proteins, pushing the UPR towards an apoptotic pathway, further contributing to cataractogenesis. Importantly, there is a dynamic interaction between the Nrf2 antioxidant system and the ERS/UPR mechanism in the lens. This interplay, where ERS/UPR can modulate Nrf2 expression and vice versa, holds potential therapeutic implications for cataract prevention and treatment. This review explores the intricate crosstalk between these systems, aiming to illuminate strategies for future advancements in cataract prevention and intervention. The Nrf2-dependent antioxidant system communicates and cross-talks with the ERS/UPR pathway. Both mechanisms are proposed to play pivotal roles in the onset of cataract formation.
Collapse
Affiliation(s)
- Xi Zhang
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Bingqing Liu
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Kevin Lal
- Pharmaceutical Sciences, College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Haihua Liu
- Peking University First Hospital, Beijing, China
| | - Myhoa Tran
- Pharmaceutical Sciences, College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Manyu Zhou
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Chimdindu Ezugwu
- Pharmaceutical Sciences, College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Xin Gao
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Terry Dang
- Pharmaceutical Sciences, College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - My-Lien Au
- Pharmaceutical Sciences, College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Erica Brown
- School of Medicine, Texas Christian University and University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Hongli Wu
- Pharmaceutical Sciences, College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX, USA.
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, USA.
| | - Yan Liao
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
6
|
Muranov KO, Poliansky NB, Borzova VA, Kleimenov SY. Refolding Increases the Chaperone-like Activity of α H-Crystallin and Reduces Its Hydrodynamic Diameter to That of α-Crystallin. Int J Mol Sci 2023; 24:13473. [PMID: 37686274 PMCID: PMC10487585 DOI: 10.3390/ijms241713473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
αH-Crystallin, a high molecular weight form of α-crystallin, is one of the major proteins in the lens nucleus. This high molecular weight aggregate (HMWA) plays an important role in the pathogenesis of cataracts. We have shown that the chaperone-like activity of HMWA is 40% of that of α-crystallin from the lens cortex. Refolding with urea significantly increased-up to 260%-the chaperone-like activity of α-crystallin and slightly reduced its hydrodynamic diameter (Dh). HMWA refolding resulted in an increase in chaperone-like activity up to 120% and a significant reduction of Dh of protein particles compared with that of α-crystallin. It was shown that the chaperone-like activity of HMWA, α-crystallin, and refolded α-crystallin but not refolded HMWA was strongly correlated with the denaturation enthalpy measured with differential scanning calorimetry (DSC). The DSC data demonstrated a significant increase in the native protein portion of refolded α-crystallin in comparison with authentic α-crystallin; however, the denaturation enthalpy of refolded HMWA was significantly decreased in comparison with authentic HMWA. The authors suggested that the increase in the chaperone-like activity of both α-crystallin and HMWA could be the result of the correction of misfolded proteins during renaturation and the rearrangement of protein supramolecular structures.
Collapse
Affiliation(s)
- Konstantin O. Muranov
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Moscow 119334, Russia;
| | - Nicolay B. Poliansky
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Moscow 119334, Russia;
| | - Vera A. Borzova
- Federal Research Centre “Fundamentals of Biotechnology” of Russian Academy of Sciences, Bach Institute of Biochemistry, Moscow 119334, Russia;
| | - Sergey Y. Kleimenov
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow 119334, Russia;
| |
Collapse
|
7
|
Maity D. Recent advances in the modulation of amyloid protein aggregation using the supramolecular host-guest approaches. Biophys Chem 2023; 297:107022. [PMID: 37058879 DOI: 10.1016/j.bpc.2023.107022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 04/06/2023] [Accepted: 04/06/2023] [Indexed: 04/16/2023]
Abstract
Misfolding of proteins is associated with many incurable diseases in human beings. Understanding the process of aggregation from monomers to fibrils, the characterization of all intermediate species, and the origin of toxicity is very challenging. Extensive research including computational and experimental shed some light on these tricky phenomena. Non-covalent interactions between amyloidogenic domains of proteins play a major role in their self-assembly which can be disrupted by designed chemical tools. This will lead to the development of inhibitors of detrimental amyloid formations. In supramolecular host-guest chemistry approaches, different macrocycles function as hosts for encapsulating hydrophobic guests, i.e. phenylalanine residues of proteins, in their hydrophobic cavities via non-covalent interactions. In this way, they can disrupt the interactions between adjacent amyloidogenic proteins and prevent their self-aggregation. This supramolecular approach has also emerged as a prospective tool to modify the aggregation of several amyloidogenic proteins. In this review, we discussed recent supramolecular host-guest chemistry-based strategies for the inhibition of amyloid protein aggregation.
Collapse
Affiliation(s)
- Debabrata Maity
- Department of Natural Products and Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
8
|
Dixit A, Chakraborty A, Nath JR, Chowdhury PK, Kundu B. Ocular protein optineurin shows reversibility from unfolded states and exhibits chaperone-like activity. RSC Adv 2023; 13:6827-6837. [PMID: 36865578 PMCID: PMC9972007 DOI: 10.1039/d2ra07931c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/16/2023] [Indexed: 03/04/2023] Open
Abstract
Optineurin (OPTN) is a multifunctional, ubiquitously expressed cytoplasmic protein, mutants of which are associated with primary open-angle glaucoma (POAG) and amyotrophic lateral sclerosis (ALS). The most abundant heat shock protein crystallin, known for its remarkable thermodynamic stability and chaperoning activity, allows ocular tissues to withstand stress. The presence of OPTN in ocular tissues is intriguing. Interestingly, OPTN also harbors heat shock elements in its promoter region. Sequence analysis of OPTN exhibits intrinsically disordered regions and nucleic acid binding domains. These properties hinted that OPTN might be endowed with sufficient thermodynamic stability and chaperoning activity. However, these attributes of OPTN have not yet been explored. Here, we studied these properties through thermal and chemical denaturation experiments and monitored the processes using CD, fluorimetry, differential scanning calorimetry, and dynamic light scattering. We found that upon heating, OPTN reversibly forms higher-order multimers. OPTN also displayed a chaperone-like function by reducing the thermal aggregation of bovine carbonic anhydrase. It regains its native secondary structure, RNA-binding property, and melting temperature (T m) after refolding from a thermally as well as chemically denatured state. From our data, we conclude that OPTN, with its unique ability to revert from the stress-mediated unfolded state and its unique chaperoning function, is a valuable protein of the ocular tissues.
Collapse
Affiliation(s)
- Anjali Dixit
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi India
| | - Ankan Chakraborty
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi India
| | - Jyoti Rani Nath
- Department of Chemistry, Indian Institute of TechnologyDelhiIndia
| | | | - Bishwajit Kundu
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi India
| |
Collapse
|
9
|
Bellanger T, Weidmann S. Is the lipochaperone activity of sHSP a key to the stress response encoded in its primary sequence? Cell Stress Chaperones 2023; 28:21-33. [PMID: 36367671 PMCID: PMC9877275 DOI: 10.1007/s12192-022-01308-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 11/13/2022] Open
Abstract
Several strategies have been put in place by organisms to adapt to their environment. One of these strategies is the production of stress proteins such as sHSPs, which have been widely described over the last 30 years for their role as molecular chaperones. Some sHSPs have, in addition, the particularity to exert a lipochaperone role by interacting with membrane lipids to maintain an optimal membrane fluidity. However, the mechanisms involved in this sHSP-lipid interaction remain poorly understood and described rather sporadically in the literature. This review gathers the information concerning the structure and function of these proteins available in the literature in order to highlight the mechanism involved in this interaction. In addition, analysis of primary sequence data of sHSPs available in database shows that sHSPs can interact with lipids via certain amino acid residues present on some β sheets of these proteins. These residues could have a key role in the structure and/or oligomerization dynamics of sHPSs, which is certainly essential for interaction with membrane lipids and consequently for maintaining optimal cell membrane fluidity.
Collapse
Affiliation(s)
- Tiffany Bellanger
- Univ. Bourgogne Franche-comté, AgroSup Dijon, PAM UMR A 02.102, Dijon, France
| | - Stéphanie Weidmann
- Univ. Bourgogne Franche-comté, AgroSup Dijon, PAM UMR A 02.102, Dijon, France
| |
Collapse
|
10
|
Effects of Molecular Crowding and Betaine on HSPB5 Interactions, with Target Proteins Differing in the Quaternary Structure and Aggregation Mechanism. Int J Mol Sci 2022; 23:ijms232315392. [PMID: 36499725 PMCID: PMC9737104 DOI: 10.3390/ijms232315392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
The aggregation of intracellular proteins may be enhanced under stress. The expression of heat-shock proteins (HSPs) and the accumulation of osmolytes are among the cellular protective mechanisms in these conditions. In addition, one should remember that the cell environment is highly crowded. The antiaggregation activity of HSPB5 and the effect on it of either a crowding agent (polyethylene glycol (PEG)) or an osmolyte (betaine), or their mixture, were tested on the aggregation of two target proteins that differ in the order of aggregation with respect to the protein: thermal aggregation of glutamate dehydrogenase and DTT-induced aggregation of lysozyme. The kinetic analysis of the dynamic light-scattering data indicates that crowding can decrease the chaperone-like activity of HSPB5. Nonetheless, the analytical ultracentrifugation shows the protective effect of HSPB5, which retains protein aggregates in a soluble state. Overall, various additives may either improve or impair the antiaggregation activity of HSPB5 against different protein targets. The mixed crowding arising from the presence of PEG and 1 M betaine demonstrates an extraordinary effect on the oligomeric state of protein aggregates. The shift in the equilibrium of HSPB5 dynamic ensembles allows for the regulation of its antiaggregation activity. Crowding can modulate HSPB5 activity by affecting protein-protein interactions.
Collapse
|
11
|
Ghahramani M, Shahsavani MB, Yousefi R. Increased chaperone activity of human αB-crystallin with incomplete oxidation as a new defense mechanism against oxidative stress. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2022; 1870:140794. [PMID: 35643282 DOI: 10.1016/j.bbapap.2022.140794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 05/16/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
Previous research has shown that production of the high levels of oxidants overwhelms the body's antioxidant defense system during diabetes mellitus. Under this circumstance, ocular lens proteins are one of the main molecular targets for oxidative damage. In the present study, the individual effect of partial and extensive oxidation on the structure and function of human αB-crystallin was investigated using electrophoresis and various spectroscopic methods. The results of our study suggested that widespread oxidation causes loss of the chaperone activity of this protein, while partial oxidation significantly enhances this activity. Our studies also suggested that partial and extensive oxidation induces the formation of different structures in this protein. In fact, the chaperone-active and chaperone-inactive states of this protein are respectively associated with a minor and extensive structural alteration. Moreover, the oligomeric size distribution shows an inverse relationship with the chaperone activity of this protein. Increasing the chaperone activity of this protein during partial oxidation may be a natural defense mechanism to overcome the damages caused by oxidative stress, especially in diabetes and other pathological diseases.
Collapse
Affiliation(s)
- Maryam Ghahramani
- Protein Chemistry Laboratory (PCL), Department of Biology, College of Sciences, Shiraz University, Shiraz, Iran
| | - Mohammad Bagher Shahsavani
- Protein Chemistry Laboratory (PCL), Department of Biology, College of Sciences, Shiraz University, Shiraz, Iran
| | - Reza Yousefi
- Protein Chemistry Laboratory (PCL), Department of Biology, College of Sciences, Shiraz University, Shiraz, Iran; Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran.
| |
Collapse
|
12
|
Ruiss M, Findl O, Kronschläger M. The human lens: An antioxidant-dependent tissue revealed by the role of caffeine. Ageing Res Rev 2022; 79:101664. [PMID: 35690384 DOI: 10.1016/j.arr.2022.101664] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/24/2022] [Accepted: 06/04/2022] [Indexed: 11/01/2022]
Abstract
Cataract is the leading cause of blindness worldwide and surgery is the only option to treat the disease. Although the surgery is considered to be relatively safe, complications may occur in a subset of patients and access to ophthalmic care may be limited. Due to a growing and ageing population, an increase in cataract prevalence is expected and its management will become a socioeconomic challenge. Hence, there is a need for an alternative to cataract surgery. It is well known that oxidative stress is one of the main pathological processes leading to the generation of the disease. Antioxidant supplementation may, therefore, be a strategy to delay or to prevent the progression of cataract. Caffeine is a widely consumed high-potency antioxidant and may be of interest for the prevention of the disease. This review aims to give an overview of the anatomy and function of the lens, its antioxidant and reactive oxygen species (ROS) composition, and the role of oxidative stress in cataractogenesis. Also, the pharmacokinetics and -dynamics of caffeine will be described and the literature will be reviewed to give an overview of its anti-cataract potential and its possible role in the prevention of the disease.
Collapse
Affiliation(s)
- Manuel Ruiss
- Vienna Institute for Research in Ocular Surgery (VIROS), a Karl Landsteiner Institute, Department of Ophthalmology, Hanusch Hospital, Vienna 1140 Austria.
| | - Oliver Findl
- Vienna Institute for Research in Ocular Surgery (VIROS), a Karl Landsteiner Institute, Department of Ophthalmology, Hanusch Hospital, Vienna 1140 Austria.
| | - Martin Kronschläger
- Vienna Institute for Research in Ocular Surgery (VIROS), a Karl Landsteiner Institute, Department of Ophthalmology, Hanusch Hospital, Vienna 1140 Austria.
| |
Collapse
|
13
|
Li H, Yu Y, Ruan M, Jiao F, Chen H, Gao J, Weng Y, Bao Y. The mechanism for thermal-enhanced chaperone-like activity of α-crystallin against UV irradiation-induced aggregation of γD-crystallin. Biophys J 2022; 121:2233-2250. [PMID: 35619565 DOI: 10.1016/j.bpj.2022.05.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/11/2022] [Accepted: 05/20/2022] [Indexed: 11/18/2022] Open
Abstract
Exposure to solar UV irradiation damages γ-crystallin, leading to cataract formation via aggregation. α-Crystallin, as a small heat-shock protein (sHsps), efficiently suppresses this irreversible aggregation by selectively binding the denatured γ-crystallin monomer. In this study, liquid chromatography tandem mass spectrometry (LC-MS) was used to evaluate UV-325 nm irradiation-induced photodamage of human γD-crystallin in the presence of bovine α-crystallin, atomic force microscope (AFM) and dynamic light scattering (DLS) techniques were used to detect the quaternary structure changes of α-crystallin oligomer, and Fourier transform infrared (FTIR) spectroscopy and temperature-jump (T-jump) nanosecond time-resolved IR absorbance difference spectroscopy were used to probe the secondary structure changes of bovine α-crystallin. We find that the thermal-induced subunit dissociation of α-crystallin oligomer involves the breaking of hydrogen bonds at the dimeric interface, leading to three different spectral components at varied temperature regions as resolved from temperature-dependent IR spectra. Under UV-325 nm irradiation, unfolded γD-crystallin binds to the dissociated α-crystallin subunit to form αγ-complex, then follows the reassociation of αγ-complex to the partially dissociated α-crystallin oligomer. This prevents the aggregation of denatured γD-crystallin. The formation of the γD-bound α-crystallin oligomer is further confirmed by AFM and DLS analysis, which reveals an obvious size expansion in the reassociated αγ-oligomers. In addition, UV-325 nm irradiation causes a peptide bond cleavage of γD-crystallin at Ala158 in presence of α-crystallin. Our results suggest a very effective protection mechanism for subunits dissociated from α-crystallin oligomers against UV irradiation-induced aggregation of γD-crystallin, at an expense of a loss of a short C-terminal peptide in γD-crystallin.
Collapse
Affiliation(s)
- Hao Li
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China; College of Chemical Biology and Biotechnology, Beijing University Shenzhen Graduate School, Shenzhen, China; Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yingying Yu
- Department of Ophthalmology, Peking University People's Hospital, Eye Diseases and Optometry Institute, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, College of Optometry, Peking University Health Science Center, Beijing, China
| | - Meixia Ruan
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Fang Jiao
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Hailong Chen
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jiali Gao
- College of Chemical Biology and Biotechnology, Beijing University Shenzhen Graduate School, Shenzhen, China; Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Yuxiang Weng
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China.
| | - Yongzhen Bao
- Department of Ophthalmology, Peking University People's Hospital, Eye Diseases and Optometry Institute, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, College of Optometry, Peking University Health Science Center, Beijing, China.
| |
Collapse
|
14
|
Hao H, Zhang J, Wu S, Bai J, Zhuo X, Zhang J, Kuai B, Chen H. Transcriptomic analysis of Stropharia rugosoannulata reveals carbohydrate metabolism and cold resistance mechanisms under low-temperature stress. AMB Express 2022; 12:56. [PMID: 35567721 PMCID: PMC9107548 DOI: 10.1186/s13568-022-01400-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 05/05/2022] [Indexed: 11/10/2022] Open
Abstract
Low temperature is an important environmental factor that restricts the growth of Stropharia rugosoannulata; however, the molecular mechanisms underlying S. rugosoannulata responses to low-temperature stress are largely unknown. In this study, we performed a transcriptome analysis of a high-sensitivity strain (DQ-1) and low-sensitivity strain (DQ-3) under low-temperature stress. The liquid hyphae of S. rugosoannulata treated at 25 °C and 10 °C were analyzed by RNA-Seq, and a total of 9499 differentially expressed genes (DEGs) were identified. GO and KEGG enrichment analyses showed that these genes were enriched in "xenobiotic biodegradation and metabolism", "carbohydrate metabolism", "lipid metabolism" and "oxidoreductase activity". Further research found that carbohydrate enzyme (AA, GH, CE, and GT) genes were downregulated more significantly in DQ-1 than DQ-3 and several cellulase activities were also reduced to a greater extent. Moreover, the CAT1, CAT2, GR, and POD genes and more heat shock protein genes (HSP20, HSP78 and sHSP) were upregulated in the two strains after low-temperature stress, and the GPX gene and more heat shock protein genes were upregulated in DQ-3. In addition, the enzyme activity and qRT-PCR results showed trends similar to those of the RNA-Seq results. This result indicates that low-temperature stress reduces the expression of different AA, GH, CE, and GT enzyme genes and reduces the secretion of cellulase, thereby reducing the carbohydrate metabolism process and mycelial growth of S. rugosoannulata. Moreover, the expression levels of different types of antioxidant enzymes and heat shock proteins are also crucial for S. rugosoannulata to resist low-temperature stress. In short, this study will provide a basis for further research on important signaling pathways, gene functions and variety breeding of S. rugosoannulata related to low-temperature stress.
Collapse
|
15
|
Budnar P, Tangirala R, Bakthisaran R, Rao CM. Protein Aggregation and Cataract: Role of Age-Related Modifications and Mutations in α-Crystallins. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:225-241. [PMID: 35526854 DOI: 10.1134/s000629792203004x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
* The article is published as a part of the Special Issue "Protein Misfolding and Aggregation in Cataract Disorders" (Vol. 87, No. 2). ** To whom correspondence should be addressed. Cataract is a major cause of blindness. Due to the lack of protein turnover, lens proteins accumulate age-related and environmental modifications that alter their native conformation, leading to the formation of aggregation-prone intermediates, as well as insoluble and light-scattering aggregates, thus compromising lens transparency. The lens protein, α-crystallin, is a molecular chaperone that prevents protein aggregation, thereby maintaining lens transparency. However, mutations or post-translational modifications, such as oxidation, deamidation, truncation and crosslinking, can render α-crystallins ineffective and lead to the disease exacerbation. Here, we describe such mutations and alterations, as well as their consequences. Age-related modifications in α-crystallins affect their structure, oligomerization, and chaperone function. Mutations in α-crystallins can lead to the aggregation/intracellular inclusions attributable to the perturbation of structure and oligomeric assembly and resulting in the rearrangement of aggregation-prone regions. Such rearrangements can lead to the exposure of hitherto buried aggregation-prone regions, thereby populating aggregation-prone state(s) and facilitating amorphous/amyloid aggregation and/or inappropriate interactions with cellular components. Investigations of the mutation-induced changes in the structure, oligomer assembly, aggregation mechanisms, and interactomes of α-crystallins will be useful in fighting protein aggregation-related diseases.
Collapse
Affiliation(s)
- Prashanth Budnar
- Centre for Cellular and Molecular Biology (CCMB), Council of Scientific and Industrial Research (CSIR), Uppal Road, Hyderabad, 500007, India
| | - Ramakrishna Tangirala
- Centre for Cellular and Molecular Biology (CCMB), Council of Scientific and Industrial Research (CSIR), Uppal Road, Hyderabad, 500007, India
| | - Raman Bakthisaran
- Centre for Cellular and Molecular Biology (CCMB), Council of Scientific and Industrial Research (CSIR), Uppal Road, Hyderabad, 500007, India
| | - Ch Mohan Rao
- Centre for Cellular and Molecular Biology (CCMB), Council of Scientific and Industrial Research (CSIR), Uppal Road, Hyderabad, 500007, India.
| |
Collapse
|
16
|
Muranov KO, Ostrovsky MA. Biochemistry of Eye Lens in the Norm and in Cataractogenesis. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:106-120. [PMID: 35508906 DOI: 10.1134/s0006297922020031] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/30/2021] [Accepted: 09/30/2021] [Indexed: 06/14/2023]
Abstract
The absence of cellular organelles in fiber cells and very high cytoplasmic protein concentration (up to 900 mg/ml) minimize light scattering in the lens and ensure its transparency. Low oxygen concentration, powerful defense systems (antioxidants, antioxidant enzymes, chaperone-like protein alpha-crystallin, etc.) maintain lens transparency. On the other hand, the ability of crystallins to accumulate age-associated post-translational modifications, which reduce the resistance of lens proteins to oxidative stress, is an important factor contributing to the cataract formation. Here, we suggest a mechanism of cataractogenesis common for the action of different cataractogenic factors, such as age, radiation, ultraviolet light, diabetes, etc. Exposure to these factors leads to the damage and death of lens epithelium, which allows oxygen to penetrate into the lens through the gaps in the epithelial layer and cause oxidative damage to crystallins, resulting in protein denaturation, aggregation, and formation of multilamellar bodies (the main cause of lens opacification). The review discusses various approaches to the inhibition of lens opacification (cataract development), in particular, a combined use of antioxidants and compounds enhancing the chaperone-like properties of alpha-crystallin. We also discuss the paradox of high efficiency of anti-cataract drugs in laboratory settings with the lack of their clinical effect, which might be due to the late use of the drugs at the stage, when the opacification has already formed. A probable solution to this situation will be development of new diagnostic methods that will allow to predict the emergence of cataract long before the manifestation of its clinical signs and to start early preventive treatment.
Collapse
Affiliation(s)
- Konstantin O Muranov
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, 119334, Russia.
| | - Mikhail A Ostrovsky
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, 119334, Russia
| |
Collapse
|
17
|
Chebotareva NA, Eronina TB, Mikhaylova VV, Roman SG, Tugaeva KV, Kurganov BI. Effect of Trehalose on Oligomeric State and Anti-Aggregation Activity of αB-Crystallin. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:121-130. [PMID: 35508907 DOI: 10.1134/s0006297922020043] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 06/14/2023]
Abstract
αB-Crystallin (αB-Cr), one of the main crystalline lens proteins, along with other crystallins maintains lens transparency suppressing protein aggregation and thus preventing cataractogenesis. αB-Cr belongs to the class of molecular chaperones; being expressed in many tissues it has a dynamic quaternary structure, which is essential for its chaperone-like activity. Shift in the equilibrium between ensembles of oligomers of different size allows regulating the chaperone activity. Trehalose is known to inhibit protein aggregation in vivo and in vitro, and it is widely used in biotechnology. The results of studying the effect of trehalose on the chaperone-like activity of crystallins can serve as a basis for the design of drugs delaying cataractogenesis. We have studied the trehalose effect on the quaternary structure and anti-aggregation activity of αB-Cr using muscle glycogen phosphorylase b (Phb) as a target protein. According to the dynamic light scattering data, trehalose affects the nucleation stage of Phb thermal aggregation at 48°C, and an increase in the αB-Cr adsorption capacity (AC0) is the main effect of trehalose on the aggregation process in the presence of the protein chaperone (AC0 increases 1.5-fold in the presence of 66 mM trehalose). According to the sedimentation analysis data, trehalose stabilizes the dimeric form of Phb at the stages of denaturation and dissociation and enhances the interaction of αB-Cr with the target protein. Moreover, trehalose shifts the equilibrium between the αB-Cr oligomers towards the smaller forms. Thus, trehalose affects the quaternary structure of αB-Cr and increases its anti-aggregation activity at the nucleation stage.
Collapse
Affiliation(s)
- Natalia A Chebotareva
- Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Moscow, 119071, Russia.
| | - Tatiana B Eronina
- Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Moscow, 119071, Russia
| | - Valeriya V Mikhaylova
- Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Moscow, 119071, Russia
| | - Svetlana G Roman
- Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Moscow, 119071, Russia
| | - Kristina V Tugaeva
- Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Moscow, 119071, Russia
| | - Boris I Kurganov
- Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Moscow, 119071, Russia
| |
Collapse
|
18
|
Galzitskaya O, Selivanova O, Dzhus U, Marchenkov V, Suvorina MY, Surin A. Influence of Chaperones on Amyloid Formation of Аβ Peptide. Curr Protein Pept Sci 2022; 23:44-51. [DOI: 10.2174/1389203723666220127152545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 12/15/2021] [Accepted: 12/20/2021] [Indexed: 11/22/2022]
Abstract
Background:
An extensive study of the folding and stability of proteins and their complexes
has revealed a number of problems and questions that need to be answered. One of them is the
effect of chaperones on the process of fibrillation of various proteins and peptides.
Methods:
We studied the effect of molecular chaperones, such as GroEL and α-crystallin, on the fibrillogenesis
of the Aβ(1-42) peptide using electron microscopy and surface plasmon resonance.
Results:
Recombinant GroEL and Aβ(1-42) were isolated and purified. It was shown that the assembly
of GroEL occurs without the addition of magnesium and potassium ions, as is commonly believed.
According to the electron microscopy results, GroEL insignificantly affects the fibrillogenesis of the
Aβ(1-42) peptide, while α-crystallin prevents the elongation of the Aβ(1-42) peptide fibrils. We have
demonstrated that GroEL interacts nonspecifically with Aβ(1-42), while α-crystallin does not interact
with Aβ(1-42) at all using surface plasmon resonance.
Conclusion:
The data obtained will help us understand the process of amyloid formation and the effect
of various components on it.
Collapse
Affiliation(s)
- O.V. Galzitskaya
- Institute of Protein Research, Russian Academy of Sciences, 4 Institutskaya str., Pushchino, Moscow Region, 142290,
Russia
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino Moscow
Region, Russia
| | - O.M. Selivanova
- Institute of Protein Research, Russian Academy of Sciences, 4 Institutskaya str., Pushchino, Moscow Region, 142290,
Russia
| | - U.F. Dzhus
- Institute of Protein Research, Russian Academy of Sciences, 4 Institutskaya str., Pushchino, Moscow Region, 142290,
Russia
| | - V.V. Marchenkov
- Institute of Protein Research, Russian Academy of Sciences, 4 Institutskaya str., Pushchino, Moscow Region, 142290,
Russia
| | - M. Yu. Suvorina
- Institute of Protein Research, Russian Academy of Sciences, 4 Institutskaya str., Pushchino, Moscow Region, 142290,
Russia
| | - A.K. Surin
- Institute of Protein Research, Russian Academy of Sciences, 4 Institutskaya str., Pushchino, Moscow Region, 142290,
Russia
- State Research Center for Applied Microbiology and Biotechnology, 142279 Obolensk Moscow Region, Russia
- The Branch of the Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino
Moscow Region, Russia
| |
Collapse
|
19
|
Fürsch J, Voormann C, Kammer KM, Stengel F. Structural Probing of Hsp26 Activation and Client Binding by Quantitative Cross-Linking Mass Spectrometry. Anal Chem 2021; 93:13226-13234. [PMID: 34542282 DOI: 10.1021/acs.analchem.1c02282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Small heat-shock proteins (sHSPs) are important members of the cellular stress response in all species. Their best-described function is the binding of early unfolding states and the resulting prevention of protein aggregation. Many sHSPs exist as a polydisperse composition of oligomers, which undergoes changes in subunit composition, folding status, and relative distribution upon heat activation. To date, only an incomplete picture of the mechanism of sHSP activation exists; in particular, the molecular basis of how sHSPs bind client proteins and mediate client specificity is not fully understood. In this study, we have applied cross-linking mass spectrometry (XL-MS) to obtain detailed structural information on sHSP activation and client binding for yeast Hsp26. Our cross-linking data reveals the middle domain of Hsp26 as a client-independent interface in multiple Hsp26::client complexes and indicates that client specificity is likely mediated via additional binding sites within its α-crystallin domain and C-terminal extension. Our quantitative XL-MS data underpins the middle domain as the main driver of heat-induced activation and client binding but shows that global rearrangements spanning all domains of Hsp26 take place simultaneously. We also investigated a Hsp26::client complex in the presence of Ssa1 (Hsp70) and Ydj1(Hsp40) at the initial stage of refolding and observe that the interaction between refolding chaperones is altered by the presence of a client protein, pointing to a mechanism where the interaction of Ydj1 with the HSP::client complex initiates the assembly of the active refolding machinery.
Collapse
Affiliation(s)
- Julius Fürsch
- Department of Biology, University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany.,Konstanz Research School Chemical Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Carsten Voormann
- Department of Biology, University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany
| | - Kai-Michael Kammer
- Department of Biology, University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany.,Konstanz Research School Chemical Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Florian Stengel
- Department of Biology, University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany.,Konstanz Research School Chemical Biology, University of Konstanz, 78457 Konstanz, Germany
| |
Collapse
|
20
|
Shiels A, Hejtmancik JF. Inherited cataracts: Genetic mechanisms and pathways new and old. Exp Eye Res 2021; 209:108662. [PMID: 34126080 PMCID: PMC8595562 DOI: 10.1016/j.exer.2021.108662] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/13/2021] [Accepted: 06/01/2021] [Indexed: 12/15/2022]
Abstract
Cataract(s) is the clinical equivalent of lens opacity and is caused by light scattering either by high molecular weight protein aggregates in lens cells or disruption of the lens microarchitecture itself. Genetic mutations underlying inherited cataract can provide insight into the biological processes and pathways critical for lens homeostasis and transparency, classically including the lens crystallins, connexins, membrane proteins or components, and intermediate filament proteins. More recently, cataract genes have been expanded to include newly identified biological processes such as chaperone or protein degradation components, transcription or growth factors, channels active in the lens circulation, and collagen and extracellular matrix components. Cataracts can be classified by age, and in general congenital cataracts are caused by severe mutations resulting in major damage to lens proteins, while age related cataracts are associated with variants that merely destabilize proteins thereby increasing susceptibility to environmental insults over time. Thus there might be separate pathways to opacity for congenital and age-related cataracts whereby congenital cataracts induce the unfolded protein response (UPR) and apoptosis to destroy the lens microarchitecture, while in age related cataract high molecular weight (HMW) aggregates formed by denatured crystallins bound by α-crystallin result in light scattering without severe damage to the lens microarchitecture.
Collapse
Affiliation(s)
- Alan Shiels
- Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| | - J Fielding Hejtmancik
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892-1860, USA.
| |
Collapse
|
21
|
Phadte AS, Sluzala ZB, Fort PE. Therapeutic Potential of α-Crystallins in Retinal Neurodegenerative Diseases. Antioxidants (Basel) 2021; 10:1001. [PMID: 34201535 PMCID: PMC8300683 DOI: 10.3390/antiox10071001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/12/2021] [Accepted: 06/15/2021] [Indexed: 11/18/2022] Open
Abstract
The chaperone and anti-apoptotic activity of α-crystallins (αA- and αB-) and their derivatives has received increasing attention due to their tremendous potential in preventing cell death. While originally known and described for their role in the lens, the upregulation of these proteins in cells and animal models of neurodegenerative diseases highlighted their involvement in adaptive protective responses to neurodegeneration associated stress. However, several studies also suggest that chronic neurodegenerative conditions are associated with progressive loss of function of these proteins. Thus, while external supplementation of α-crystallin shows promise, their potential as a protein-based therapeutic for the treatment of chronic neurodegenerative diseases remains ambiguous. The current review aims at assessing the current literature supporting the anti-apoptotic potential of αA- and αB-crystallins and its potential involvement in retinal neurodegenerative diseases. The review further extends into potentially modulating the chaperone and the anti-apoptotic function of α-crystallins and the use of such functionally enhanced proteins for promoting neuronal viability in retinal neurodegenerative disease.
Collapse
Affiliation(s)
- Ashutosh S. Phadte
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA; (A.S.P.); (Z.B.S.)
| | - Zachary B. Sluzala
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA; (A.S.P.); (Z.B.S.)
| | - Patrice E. Fort
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA; (A.S.P.); (Z.B.S.)
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48105, USA
| |
Collapse
|
22
|
Sprague-Piercy MA, Rocha MA, Kwok AO, Martin RW. α-Crystallins in the Vertebrate Eye Lens: Complex Oligomers and Molecular Chaperones. Annu Rev Phys Chem 2021; 72:143-163. [PMID: 33321054 PMCID: PMC8062273 DOI: 10.1146/annurev-physchem-090419-121428] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
α-Crystallins are small heat-shock proteins that act as holdase chaperones. In humans, αA-crystallin is expressed only in the eye lens, while αB-crystallin is found in many tissues. α-Crystallins have a central domain flanked by flexible extensions and form dynamic, heterogeneous oligomers. Structural models show that both the C- and N-terminal extensions are important for controlling oligomerization through domain swapping. α-Crystallin prevents aggregation of damaged β- and γ-crystallins by binding to the client protein using a variety of binding modes. α-Crystallin chaperone activity can be compromised by mutation or posttranslational modifications, leading to protein aggregation and cataract. Because of their high solubility and their ability to form large, functional oligomers, α-crystallins are particularly amenable to structure determination by solid-state nuclear magnetic resonance (NMR) and solution NMR, as well as cryo-electron microscopy.
Collapse
Affiliation(s)
- Marc A Sprague-Piercy
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697, USA;
| | - Megan A Rocha
- Department of Chemistry, University of California, Irvine, California 92697, USA
| | - Ashley O Kwok
- Department of Chemistry, University of California, Irvine, California 92697, USA
| | - Rachel W Martin
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697, USA;
- Department of Chemistry, University of California, Irvine, California 92697, USA
| |
Collapse
|
23
|
Hernebring M, Adelöf J, Wiseman J, Petersen A, Zetterberg M. H 2O 2-induced cataract as a model of age-related cataract: Lessons learned from overexpressing the proteasome activator PA28αβ in mouse eye lens. Exp Eye Res 2020; 203:108395. [PMID: 33310056 DOI: 10.1016/j.exer.2020.108395] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 11/18/2020] [Accepted: 12/07/2020] [Indexed: 02/06/2023]
Abstract
Cataract, the world-leading cause of blindness, is formed when crystallin aggregates cloud the eye lens. We overexpressed PA28αβ, a proteasome activator with properties protective against aggregation and oxidative stress, and examined whether they are less prone to develop cataract arisen from aging and/or hydrogen peroxide (H2O2) treatment. Another objective of this work was to compare the H2O2-induced cataracts of mouse lenses ex vivo to cataracts formed upon aging in mice. As part of an aging study of F2 hybrid C57BL/6NxBALB/c mice, ocular lenses of mature adult (7 months), middle-aged (15 months), and old (22 months of age) PA28αOE mice and their wildtype littermates (n = 22-44 lenses per group) were dissected and evaluated with regard to their cataractous state. In parallel, ocular lenses from 3 to 4 months old PA28αOE and wildtype C57BL/6 N littermates were treated with 100 μM H2O2 every 24 h for 7 days, with progression of cataract and physical appearance monitored daily. Lenses from both studies were also subjected to analysis of oxidative protein damage (carbonylation) and protein solubility. We found that overexpression of PA28αβ had no effect on neither age-related nor H2O2-induced cataract and conclude that overexpression of PA28αβ does not protect mice from developing cataract. The inefficiency of PA28αβ against cataract could be due to its anti-aggregation activity being already excessively present in the eye lens, exerted by crystallins. Crystallins are likely also constituting the 20-25 kDa proteins that were the dominant carbonyl targets in the eye lens irrespective of cataractous state. Assessment of H2O2-induced cataract in relation to age-related cataract demonstrated that high molecular weight protein carbonylation correlates to cataract both in vivo and ex vivo, while reduced protein solubility is more pronounced in age-related cataract. Furthermore, this work highlights vast dissimilarities in the physical manifestations of cataract upon aging and H2O2 ex vivo treatment. Age-related cataract initiation can take various forms, as a vague general blurriness or as a barely visible demarcated opacity, while H2O2-induced cataractogenesis seems to follow a specific scheme. In mice, this scheme begins with relatively opaque peripheral areas emerging that clear up later on as the lenses start to display a hat-like appearance. This transformation takes place synchronous to swelling of the eye lens, and is likely a result of osmotic disturbances causing a phase separation between the viscous lens cortex and the more solid fibers of the lens nucleus.
Collapse
Affiliation(s)
- Malin Hernebring
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Medicinaregatan 9A, PO Box 440, SE 405 30, Gothenburg, Sweden.
| | - Julia Adelöf
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Medicinaregatan 9A, PO Box 440, SE 405 30, Gothenburg, Sweden; Discovery Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Pepparedsleden 1, SE 431 53, Mölndal, Sweden
| | - John Wiseman
- Discovery Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Pepparedsleden 1, SE 431 53, Mölndal, Sweden
| | - Anne Petersen
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Medicinaregatan 9A, PO Box 440, SE 405 30, Gothenburg, Sweden
| | - Madeleine Zetterberg
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Medicinaregatan 9A, PO Box 440, SE 405 30, Gothenburg, Sweden; Department of Ophthalmology, Sahlgrenska University Hospital, Area 3, Göteborgsvägen 31, SE 431 80, Mölndal, Sweden
| |
Collapse
|
24
|
Bartelt-Kirbach B, Wiegreffe C, Birk S, Baur T, Moron M, Britsch S, Golenhofen N. HspB5/αB-crystallin phosphorylation at S45 and S59 is essential for protection of the dendritic tree of rat hippocampal neurons. J Neurochem 2020; 157:2055-2069. [PMID: 33220080 DOI: 10.1111/jnc.15247] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/26/2020] [Accepted: 11/18/2020] [Indexed: 12/15/2022]
Abstract
Rarefaction of the dendritic tree leading to neuronal dysfunction is a hallmark of many neurodegenerative diseases and we have shown previously that heat shock protein B5 (HspB5)/αB-crystallin is able to increase dendritic complexity in vitro. The aim of this study was to investigate if this effect is also present in vivo, if HspB5 can counteract dendritic rarefaction under pathophysiological conditions and the impact of phosphorylation of HspB5 in this process. HspB5 and eight mutants inhibiting or mimicking phosphorylation at the three phosphorylation sites serine (S)19, S45, and S59 were over-expressed in cultured rat hippocampal neurons with subsequent investigation of the complexity of the dendritic tree. Sholl analysis revealed significant higher complexity of the dendritic tree after over-expression of wild-type HspB5 and the mutant HspB5-AEE. All other mutants showed no or minor effects. For in vivo investigation in utero electroporation of mouse embryos was applied. At embryonal day E15.5 the respective plasmids were injected, cornu ammonis 1 (CA1) pyramidal cells transfected by electroporation and their basal dendritic trees were analyzed at post-natal day P15. In vivo, HspB5 and HspB5-AEE led to an increase of total dendritic length as well as a higher complexity. Finally, the dendritic effect of HspB5 was investigated under a pathophysiological condition, that is, iron deficiency which reportedly results in dendritic rarefaction. HspB5 and HspB5-AEE but not the non-phosphorylatable mutant HspB5-AAA significantly counteracted the dendritic rarefaction. Thus, our data suggest that up-regulation and selective phosphorylation of HspB5 in neurodegenerative diseases may preserve dendritic morphology and counteract neuronal dysfunction.
Collapse
Affiliation(s)
| | - Christoph Wiegreffe
- Institute of Molecular and Cellular Anatomy, University of Ulm, Ulm, Germany
| | - Samuel Birk
- Institute of Anatomy and Cell Biology, University of Ulm, Ulm, Germany
| | - Tina Baur
- Institute of Anatomy and Cell Biology, University of Ulm, Ulm, Germany
| | - Margarethe Moron
- Institute of Anatomy and Cell Biology, University of Ulm, Ulm, Germany
| | - Stefan Britsch
- Institute of Molecular and Cellular Anatomy, University of Ulm, Ulm, Germany
| | - Nikola Golenhofen
- Institute of Anatomy and Cell Biology, University of Ulm, Ulm, Germany
| |
Collapse
|
25
|
Guseman AJ, Whitley MJ, González JJ, Rathi N, Ambarian M, Gronenborn AM. Assessing the Structures and Interactions of γD-Crystallin Deamidation Variants. Structure 2020; 29:284-291.e3. [PMID: 33264606 DOI: 10.1016/j.str.2020.11.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 10/12/2020] [Accepted: 11/06/2020] [Indexed: 11/25/2022]
Abstract
Cataracts involve the deposition of the crystallin proteins in the vertebrate eye lens, causing opacification and blindness. They are associated with either genetic mutation or protein damage that accumulates over the lifetime of the organism. Deamidation of Asn residues in several different crystallins has been observed and is frequently invoked as a cause of cataract. Here, we investigated the properties of Asp variants, deamidation products of γD-crystallin, by solution NMR, X-ray crystallography, and other biophysical techniques. No substantive structural or stability changes were noted for all seven Asn to Asp γD-crystallins. Importantly, no changes in diffusion interaction behavior could be detected. Our combined experimental results demonstrate that introduction of single Asp residues on the surface of γD-crystallin by deamidation is unlikely to be the driver of cataract formation in the eye lens.
Collapse
Affiliation(s)
- Alex J Guseman
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 Fifth Avenue, Pittsburgh, PA 15261, USA
| | - Matthew J Whitley
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 Fifth Avenue, Pittsburgh, PA 15261, USA
| | - Jeremy J González
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 Fifth Avenue, Pittsburgh, PA 15261, USA
| | - Nityam Rathi
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 Fifth Avenue, Pittsburgh, PA 15261, USA
| | - Mikayla Ambarian
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 Fifth Avenue, Pittsburgh, PA 15261, USA
| | - Angela M Gronenborn
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 Fifth Avenue, Pittsburgh, PA 15261, USA.
| |
Collapse
|
26
|
Grosas AB, Rekas A, Mata JP, Thorn DC, Carver JA. The Aggregation of αB-Crystallin under Crowding Conditions Is Prevented by αA-Crystallin: Implications for α-Crystallin Stability and Lens Transparency. J Mol Biol 2020; 432:5593-5613. [PMID: 32827531 DOI: 10.1016/j.jmb.2020.08.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/13/2020] [Accepted: 08/13/2020] [Indexed: 02/08/2023]
Abstract
One of the most crowded biological environments is the eye lens which contains a high concentration of crystallin proteins. The molecular chaperones αB-crystallin (αBc) with its lens partner αA-crystallin (αAc) prevent deleterious crystallin aggregation and cataract formation. However, some forms of cataract are associated with structural alteration and dysfunction of αBc. While many studies have investigated the structure and function of αBc under dilute in vitro conditions, the effect of crowding on these aspects is not well understood despite its in vivo relevance. The structure and chaperone ability of αBc under conditions that mimic the crowded lens environment were investigated using the polysaccharide Ficoll 400 and bovine γ-crystallin as crowding agents and a variety of biophysical methods, principally contrast variation small-angle neutron scattering. Under crowding conditions, αBc unfolds, increases its size/oligomeric state, decreases its thermal stability and chaperone ability, and forms kinetically distinct amorphous and fibrillar aggregates. However, the presence of αAc stabilizes αBc against aggregation. These observations provide a rationale, at the molecular level, for the aggregation of αBc in the crowded lens, a process that exhibits structural and functional similarities to the aggregation of cataract-associated αBc mutants R120G and D109A under dilute conditions. Strategies that maintain or restore αBc stability, as αAc does, may provide therapeutic avenues for the treatment of cataract.
Collapse
Affiliation(s)
- Aidan B Grosas
- Research School of Chemistry, The Australian National University, Canberra, ACT, 2601, Australia
| | - Agata Rekas
- National Deuteration Facility, Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, NSW 2234, Australia
| | - Jitendra P Mata
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, NSW 2234, Australia
| | - David C Thorn
- Research School of Chemistry, The Australian National University, Canberra, ACT, 2601, Australia
| | - John A Carver
- Research School of Chemistry, The Australian National University, Canberra, ACT, 2601, Australia.
| |
Collapse
|
27
|
Hasan S, Isar M, Naeem A. Macromolecular crowding stabilises native structure of α-chymotrypsinogen-A against hexafluoropropanol-induced aggregates. Int J Biol Macromol 2020; 164:3780-3788. [PMID: 32835802 DOI: 10.1016/j.ijbiomac.2020.08.149] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 08/06/2020] [Accepted: 08/19/2020] [Indexed: 12/20/2022]
Abstract
Cell interior is extremely congested with tightly packed biological macromolecules that exerts macromolecular crowding effect, influencing biophysical properties of proteins. To have a deeper insight into it we studied consequences of crowding on aggregation susceptibility and structural stability of α-chymotrypsinogen-A, pro-enzyme of serine protease family, upon addition of co-solvent reported to exert stress on polypeptides crafting favourable conditions for aggregation. Hexafluoropropan-2-ol (HFIP), a fluorinated alcohol caused structural disruption at 5% v/v unveiled by reduced intrinsic intensity and blue shifted ANS spectra. Significantly enhanced, red-shifted ThT and Congo red spectra sustained conformational changes concomitant with aggregation. FTIR and CD results confirmed transition of native structure to non-native extended, cross-linked beta-sheets. Transmission electron micrographs visibly exhibited incidence of amorphous aggregates. Macromolecular crowding, typically mimicked by concentrated solutions of dextran 70, was noticeably witnessed to defend conformational stability under denaturing condition. The native structure was retained maximally in presence of 100 mg/ml followed by 200 and 300 mg/ml dextran indicating concentration dependent deceleration of aggregate formation. It can be established that explicit consideration of crowding effects using relevant range of inert crowding agents must be a requisite for presumptions on intracellular conformational behaviour of proteins deduced from in vitro experiments.
Collapse
Affiliation(s)
- Samra Hasan
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, U.P., India
| | - Mohd Isar
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, U.P., India
| | - Aabgeena Naeem
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, U.P., India.
| |
Collapse
|
28
|
Mischiati C, Feriotto G, Tabolacci C, Domenici F, Melino S, Borromeo I, Forni C, De Martino A, Beninati S. Polyamine Oxidase Is Involved in Spermidine Reduction of Transglutaminase Type 2-Catalyzed βH-Crystallins Polymerization in Calcium-Induced Experimental Cataract. Int J Mol Sci 2020; 21:E5427. [PMID: 32751462 PMCID: PMC7432200 DOI: 10.3390/ijms21155427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/23/2020] [Accepted: 07/27/2020] [Indexed: 12/25/2022] Open
Abstract
In an in vitro Ca2+-induced cataract model, the progression of opacification is paralleled by a rapid decrease of the endogenous levels of spermidine (SPD) and an increase of transglutaminase type 2 (TG2, EC 2.3.2.13)-catalyzed lens crystallins cross-linking by protein-bound N1-N8-bis(γ-glutamyl) SPD. This pattern was reversed adding exogenous SPD to the incubation resulting in a delayed loss of transparency of the rabbit lens. The present report shows evidence on the main incorporation of SPD by the catalytic activity of TG2, toward βH-crystallins and in particular to the βB2- and mostly in βB3-crystallins. The increase of endogenous SPD in the cultured rabbit lens showed the activation of a flavin adenine dinucleotide (FAD)-dependent polyamine oxidases (PAO EC 1.5.3.11). As it is known that FAD-PAO degrades the N8-terminal reactive portion of N1-mono(γ-glutamyl) SPD, the protein-bound N8-mono(γ-glutamyl) SPD was found the mainly available derivative for the potential formation of βB3-crystallins cross-links by protein-bound N1-N8-bis(γ-glutamyl)SPD. In conclusion, FAD-PAO degradation of the N8-terminal reactive residue of the crystallins bound N1-mono(γ-glutamyl)SPD together with the increased concentration of exogenous SPD, leading to saturation of glutamine residues on the substrate proteins, drastically reduces N1-N8-bis(γ-glutamyl)SPD crosslinks formation, preventing crystallins polymerization and avoiding rabbit lens opacification. The ability of SPD and MDL 72527 to modulate the activities of TG2 and FAD-PAO involved in the mechanism of lens opacification suggests a potential strategy for the prevention of senile cataract.
Collapse
Affiliation(s)
- Carlo Mischiati
- Department of Biomedical Sciences and Surgical Specialties, University of Ferrara, 44121 Ferrara, Italy;
| | - Giordana Feriotto
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, 44121 Ferrara, Italy;
| | - Claudio Tabolacci
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Fabio Domenici
- Department of Chemical Sciences and Technology, University of Rome “Tor Vergata”, 00133 Rome, Italy; (F.D.); (S.M.)
| | - Sonia Melino
- Department of Chemical Sciences and Technology, University of Rome “Tor Vergata”, 00133 Rome, Italy; (F.D.); (S.M.)
| | - Ilaria Borromeo
- Department of Physics, University of Rome “Tor Vergata”, 00133 Rome, Italy;
| | - Cinzia Forni
- Department of Biology, University of Rome “Tor Vergata”, 00133 Rome, Italy; (C.F.); (A.D.M.)
| | - Angelo De Martino
- Department of Biology, University of Rome “Tor Vergata”, 00133 Rome, Italy; (C.F.); (A.D.M.)
| | - Simone Beninati
- Department of Biology, University of Rome “Tor Vergata”, 00133 Rome, Italy; (C.F.); (A.D.M.)
| |
Collapse
|
29
|
Proteinaceous Transformers: Structural and Functional Variability of Human sHsps. Int J Mol Sci 2020; 21:ijms21155448. [PMID: 32751672 PMCID: PMC7432308 DOI: 10.3390/ijms21155448] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/27/2020] [Accepted: 07/29/2020] [Indexed: 02/04/2023] Open
Abstract
The proteostasis network allows organisms to support and regulate the life cycle of proteins. Especially regarding stress, molecular chaperones represent the main players within this network. Small heat shock proteins (sHsps) are a diverse family of ATP-independent molecular chaperones acting as the first line of defense in many stress situations. Thereby, the promiscuous interaction of sHsps with substrate proteins results in complexes from which the substrates can be refolded by ATP-dependent chaperones. Particularly in vertebrates, sHsps are linked to a broad variety of diseases and are needed to maintain the refractive index of the eye lens. A striking key characteristic of sHsps is their existence in ensembles of oligomers with varying numbers of subunits. The respective dynamics of these molecules allow the exchange of subunits and the formation of hetero-oligomers. Additionally, these dynamics are closely linked to the chaperone activity of sHsps. In current models a shift in the equilibrium of the sHsp ensemble allows regulation of the chaperone activity, whereby smaller oligomers are commonly the more active species. Different triggers reversibly change the oligomer equilibrium and regulate the activity of sHsps. However, a finite availability of high-resolution structures of sHsps still limits a detailed mechanistic understanding of their dynamics and the correlating recognition of substrate proteins. Here we summarize recent advances in understanding the structural and functional relationships of human sHsps with a focus on the eye-lens αA- and αB-crystallins.
Collapse
|
30
|
Chebotareva NA, Roman SG, Borzova VA, Eronina TB, Mikhaylova VV, Kurganov BI. Chaperone-Like Activity of HSPB5: The Effects of Quaternary Structure Dynamics and Crowding. Int J Mol Sci 2020; 21:ijms21144940. [PMID: 32668633 PMCID: PMC7404038 DOI: 10.3390/ijms21144940] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/04/2020] [Accepted: 07/10/2020] [Indexed: 11/16/2022] Open
Abstract
Small heat-shock proteins (sHSPs) are ATP-independent molecular chaperones that interact with partially unfolded proteins, preventing their aberrant aggregation, thereby exhibiting a chaperone-like activity. Dynamics of the quaternary structure plays an important role in the chaperone-like activity of sHSPs. However, relationship between the dynamic structure of sHSPs and their chaperone-like activity remains insufficiently characterized. Many factors (temperature, ions, a target protein, crowding etc.) affect the structure and activity of sHSPs. The least studied is an effect of crowding on sHSPs activity. In this work the chaperone-like activity of HSPB5 was quantitatively characterized by dynamic light scattering using two test systems, namely test systems based on heat-induced aggregation of muscle glycogen phosphorylase b (Phb) at 48 °C and dithiothreitol-induced aggregation of α-lactalbumin at 37 °C. Analytical ultracentrifugation was used to control the oligomeric state of HSPB5 and target proteins. The possible anti-aggregation functioning of suboligomeric forms of HSPB5 is discussed. The effect of crowding on HSPB5 anti-aggregation activity was characterized using Phb as a target protein. The duration of the nucleation stage was shown to decrease with simultaneous increase in the relative rate of aggregation of Phb in the presence of HSPB5 under crowded conditions. Crowding may subtly modulate sHSPs activity.
Collapse
|
31
|
Collier MP, Benesch JLP. Small heat-shock proteins and their role in mechanical stress. Cell Stress Chaperones 2020; 25:601-613. [PMID: 32253742 PMCID: PMC7332611 DOI: 10.1007/s12192-020-01095-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2020] [Indexed: 12/13/2022] Open
Abstract
The ability of cells to respond to stress is central to health. Stress can damage folded proteins, which are vulnerable to even minor changes in cellular conditions. To maintain proteostasis, cells have developed an intricate network in which molecular chaperones are key players. The small heat-shock proteins (sHSPs) are a widespread family of molecular chaperones, and some sHSPs are prominent in muscle, where cells and proteins must withstand high levels of applied force. sHSPs have long been thought to act as general interceptors of protein aggregation. However, evidence is accumulating that points to a more specific role for sHSPs in protecting proteins from mechanical stress. Here, we briefly introduce the sHSPs and outline the evidence for their role in responses to mechanical stress. We suggest that sHSPs interact with mechanosensitive proteins to regulate physiological extension and contraction cycles. It is likely that further study of these interactions - enabled by the development of experimental methodologies that allow protein contacts to be studied under the application of mechanical force - will expand our understanding of the activity and functions of sHSPs, and of the roles played by chaperones in general.
Collapse
Affiliation(s)
- Miranda P Collier
- Department of Biology, Stanford University, 318 Campus Drive, Stanford, CA, 94305, USA
| | - Justin L P Benesch
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK.
| |
Collapse
|
32
|
Therapeutic Effect of Mongolian Medicine RuXian-I on Hyperplasia of Mammary Gland Induced by Estrogen/Progesterone through CRYAB-Promoted Apoptosis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:5707106. [PMID: 32595729 PMCID: PMC7273489 DOI: 10.1155/2020/5707106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 04/13/2020] [Accepted: 05/15/2020] [Indexed: 12/30/2022]
Abstract
The traditional Mongolian medicine (TMM) RuXian-I is an empirical formula specifically used for treating the hyperplasia of mammary gland (HMG) in clinic based on the principles of traditional Mongolian medicine, but the treatment mechanism is not completely clear. In this paper, we elaborated the mechanism of RuXian-I in the treatment of HMG induced by estrogen and progestogen from its toxicity and activity. Firstly, RuXian-I exhibited no toxic effect on HMG rats through no changes of body weight and food intake measurement and no pathologic changes of the organs (heart, liver, spleen, lung, and kidney) detected. Secondly, RuXian-I could decrease the increased nipple height and diameter and remarkably relieve the pathologic changes of HMG rats and also alleviate serum sex hormone levels (estradiol (E2), luteinizing hormone (LH), progesterone (P), and testosterone (T)) of HMG rats. Finally, RuXian-I could obviously inhibit the upregulation level of antiapoptotic protein CRYAB of HMG rats and promote mammary gland cell apoptosis of HMG rats via increases of promoting apoptosis protein caspases-3, 8, and 9 and Bax and tumor suppressor protein p53, decreases of antiapoptosis protein Bcl-2, and release of cytochrome c. These results suggested that RuXian-I has protective and therapeutic effects on HMG rats induced by estrogen and progestogen possibly via promoting apoptotic pathway regulated by CRYAB and is a promising agent for treating HMG.
Collapse
|
33
|
Svilenov HL, Menzen T, Richter K, Winter G. Modulated Scanning Fluorimetry Can Quickly Assess Thermal Protein Unfolding Reversibility in Microvolume Samples. Mol Pharm 2020; 17:2638-2647. [DOI: 10.1021/acs.molpharmaceut.0c00330] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Hristo L. Svilenov
- Department of Pharmacy, Ludwig-Maximilians-University, Butenandtstr. 5, 81377 Munich, Germany
| | - Tim Menzen
- Coriolis Pharma Research GmbH, Fraunhoferstr. 18 b, 82152 Martinsried, Germany
| | - Klaus Richter
- Coriolis Pharma Research GmbH, Fraunhoferstr. 18 b, 82152 Martinsried, Germany
| | - Gerhard Winter
- Department of Pharmacy, Ludwig-Maximilians-University, Butenandtstr. 5, 81377 Munich, Germany
| |
Collapse
|
34
|
Small heat shock protein genes are developmentally regulated during stress and non-stress conditions in Blastocladiella emersonii. Fungal Biol 2020; 124:482-489. [PMID: 32389311 DOI: 10.1016/j.funbio.2020.02.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/31/2020] [Accepted: 02/19/2020] [Indexed: 11/23/2022]
Abstract
Small heat shock proteins (sHsps) are molecular chaperones of low molecular weight involved in an early association with misfolded proteins. In response to heat shock, B. emersonii induces the synthesis of a number of proteins. As sHsps are still poorly studied in B. emersonii and in fungi overall, the aim of this work was to carry out a in-depth characterization of sHsps during B. emersonni life cycle, as well as in response to thermal stress. We verified a strong induction of the hsp17 gene in cells exposed to heat shock both in germination and sporulation stages, and that Hsp17 protein levels show the same pattern of variation of its mRNA. Unlike hsp17 and hsp30, hsp16 gene is not significantly induced during heat shock, in germination or sporulation cells. However, at normal temperatures, the hsp16 gene presents high mRNA levels in sporulation cells, whereas the hsp30 gene presents high mRNA levels in germination cells. Interestingly, heat shock mRNA levels for hsp17 and hsp30 genes are 10 times higher in germination cells than in sporulation cells. Thus, our data show that the expression of these sHsp genes is quite distinct, both under normal temperature as during heat shock.
Collapse
|
35
|
Selivanova OM, Galzitskaya OV. Structural and Functional Peculiarities of α-Crystallin. BIOLOGY 2020; 9:biology9040085. [PMID: 32340218 PMCID: PMC7235859 DOI: 10.3390/biology9040085] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/03/2020] [Accepted: 04/15/2020] [Indexed: 12/23/2022]
Abstract
α-Crystallin is the major protein of the eye lens and a member of the family of small heat-shock proteins. Its concentration in the human eye lens is extremely high (about 450 mg/mL). Three-dimensional structure of native α-crystallin is unknown. First of all, this is the result of the highly heterogeneous nature of α-crystallin, which hampers obtaining it in a crystalline form. The modeling based on the electron microscopy (EM) analysis of α-crystallin preparations shows that the main population of the α-crystallin polydisperse complex is represented by oligomeric particles of rounded, slightly ellipsoidal shape with the diameter of about 13.5 nm. These complexes have molecular mass of about 700 kDa. In our opinion, the heterogeneity of the α-crystallin complex makes it impossible to obtain a reliable 3D model. In the literature, there is evidence of an enhanced chaperone function of α-crystallin during its dissociation into smaller components. This may indirectly indicate that the formation of heterogeneous complexes is probably necessary to preserve α-crystallin in a state inactive before stressful conditions. Then, not only the heterogeneity of the α-crystallin complex is an evolutionary adaptation that protects α-crystallin from crystallization but also the enhancement of the function of α-crystallin during its dissociation is also an evolutionary acquisition. An analysis of the literature on the study of α-crystallin in vitro led us to the assumption that, of the two α-crystallin isoforms (αA- and αB-crystallins), it is αA-crystallin that plays the role of a special chaperone for αB-crystallin. In addition, our data on X-ray diffraction analysis of α-crystallin at the sample concentration of about 170-190 mg/mL allowed us to assume that, at a high concentration, the eye lens α-crystallin can be in a gel-like stage. Finally, we conclude that, since all the accumulated data on structural-functional studies of α-crystallin were carried out under conditions far from native, they cannot adequately reflect the features of the functioning of α-crystallin in vivo.
Collapse
Affiliation(s)
- Olga M. Selivanova
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia;
| | - Oxana V. Galzitskaya
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia;
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
- Correspondence: ; Tel.: +7-903-675-0156
| |
Collapse
|
36
|
Honisch C, Donadello V, Hussain R, Peterle D, De Filippis V, Arrigoni G, Gatto C, Giurgola L, Siligardi G, Ruzza P. Application of Circular Dichroism and Fluorescence Spectroscopies To Assess Photostability of Water-Soluble Porcine Lens Proteins. ACS OMEGA 2020; 5:4293-4301. [PMID: 32149259 PMCID: PMC7057709 DOI: 10.1021/acsomega.9b04234] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 02/04/2020] [Indexed: 06/10/2023]
Abstract
The eye lens is mainly composed of the highly ordered water-soluble (WS) proteins named crystallins. The aggregation and insolubilization of these proteins lead to progressive lens opacification until cataract onset. Although this is a well-known disease, the mechanism of eye lens protein aggregation is not well understood; however, one of the recognized causes of proteins modification is related to the exposure to UV light. For this reason, the spectroscopic properties of WS lens proteins and their stability to UV irradiation have been evaluated by different biophysical methods including synchrotron radiation circular dichroism, fluorescence, and circular dichroism spectroscopies. Moreover, dynamic light scattering, gel electrophoresis, transmission electron microscopy, and protein digestion followed by tandem LC-MS/MS analysis were used to study the morphological and structural changes in protein aggregates induced by exposure to UV light. Our results clearly indicated that the exposure to UV radiation modified the protein conformation, inducing a loss of ordered structure and aggregation. Furthermore, we confirmed that these changes were attributable to the generation of reactive oxygen species due to the irradiation of the protein sample. This approach, involving the photodenaturation of proteins, provides a benchmark in high-throughput screening of small molecules suitable to prevent protein denaturation and aggregation.
Collapse
Affiliation(s)
- Claudia Honisch
- Institute
of Biomolecular Chemistry of CNR, Padua
Unit, 35131 Padova, Italy
- Department
of Chemical Sciences, University of Padova, 35131 Padova, Italy
| | - Viola Donadello
- Institute
of Biomolecular Chemistry of CNR, Padua
Unit, 35131 Padova, Italy
| | - Rohanah Hussain
- Diamond
Light Source Ltd., Harwell Science and
Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - Daniele Peterle
- Department
of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| | - Vincenzo De Filippis
- Department
of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| | - Giorgio Arrigoni
- Department
of Biomedical Sciences, University of Padova, 35131 Padova, Italy
- Proteomics
Center, University of Padova and Azienda
Ospedaliera di Padova, 35129 Padova, Italy
| | - Claudio Gatto
- Alchilife
Srl, R&D, Viale Austria
14, 35020 Ponte
San Nicolò (PD), Italy
| | - Laura Giurgola
- Alchilife
Srl, R&D, Viale Austria
14, 35020 Ponte
San Nicolò (PD), Italy
| | - Giuliano Siligardi
- Diamond
Light Source Ltd., Harwell Science and
Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - Paolo Ruzza
- Institute
of Biomolecular Chemistry of CNR, Padua
Unit, 35131 Padova, Italy
| |
Collapse
|
37
|
Armiento V, Spanopoulou A, Kapurniotu A. Peptide-Based Molecular Strategies To Interfere with Protein Misfolding, Aggregation, and Cell Degeneration. Angew Chem Int Ed Engl 2020; 59:3372-3384. [PMID: 31529602 PMCID: PMC7064928 DOI: 10.1002/anie.201906908] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Indexed: 12/31/2022]
Abstract
Protein misfolding into amyloid fibrils is linked to more than 40 as yet incurable cell- and neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and type 2 diabetes. So far, however, only one of the numerous anti-amyloid molecules has reached patients. This Minireview gives an overview of molecular strategies and peptide chemistry "tools" to design, develop, and discover peptide-based molecules as anti-amyloid drug candidates. We focus on two major inhibitor rational design strategies: 1) the oldest and most common strategy, based on molecular recognition elements of amyloid self-assembly, and 2) a more recent approach, based on cross-amyloid interactions. We discuss why peptide-based amyloid inhibitors, in particular their advanced generations, can be promising leads or candidates for anti-amyloid drugs as well as valuable tools for deciphering amyloid-mediated cell damage and its link to disease pathogenesis.
Collapse
Affiliation(s)
- Valentina Armiento
- Division of Peptide BiochemistryTUM School of Life SciencesTechnische Universität MünchenEmil-Erlenmeyer-Forum 585354FreisingGermany
| | - Anna Spanopoulou
- Division of Peptide BiochemistryTUM School of Life SciencesTechnische Universität MünchenEmil-Erlenmeyer-Forum 585354FreisingGermany
- Current address: Coriolis Pharma Research GmbHFraunhoferstrasse 18B82152PlaneggGermany
| | - Aphrodite Kapurniotu
- Division of Peptide BiochemistryTUM School of Life SciencesTechnische Universität MünchenEmil-Erlenmeyer-Forum 585354FreisingGermany
| |
Collapse
|
38
|
Armiento V, Spanopoulou A, Kapurniotu A. Peptid‐basierte molekulare Strategien zum Einsatz bei Proteinfehlfaltung, Proteinaggregation und Zelldegeneration. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201906908] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Valentina Armiento
- Fachgebiet PeptidbiochemieTUM School of Life SciencesTechnische Universität München Emil-Erlenmeyer-Forum 5 85354 Freising Deutschland
| | - Anna Spanopoulou
- Fachgebiet PeptidbiochemieTUM School of Life SciencesTechnische Universität München Emil-Erlenmeyer-Forum 5 85354 Freising Deutschland
- Aktuelle Adresse: Coriolis Pharma Research GmbH Fraunhoferstraße 18B 82152 Planegg Deutschland
| | - Aphrodite Kapurniotu
- Fachgebiet PeptidbiochemieTUM School of Life SciencesTechnische Universität München Emil-Erlenmeyer-Forum 5 85354 Freising Deutschland
| |
Collapse
|
39
|
Ramirez LM, Shekhtman A, Pande J. Hydrophobic residues of melittin mediate its binding to αA-crystallin. Protein Sci 2019; 29:572-588. [PMID: 31762096 DOI: 10.1002/pro.3792] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/13/2019] [Accepted: 11/15/2019] [Indexed: 01/01/2023]
Abstract
The molecular chaperone αA-crystallin, mainly localized in the human ocular lens, is believed to protect the lens from opacification and cataract, by suppressing the aggregation of the other lens proteins. The present study provides structural and thermodynamic insights into the ability of human αA-crystallin (HAA) to bind to its partially unfolded clients in the lens, using a small peptide, melittin from bee venom, as a model client. We characterized the thermodynamic parameters of the binding process between melittin and HAA through isothermal titration calorimetry (ITC), and found the binding to be endothermic and entropy-driven. We identified the amino acids in melittin important for binding to HAA by saturation-transfer difference (STD) nuclear magnetic resonance (NMR) experiments, and analysis of NMR line broadening upon titration of melittin with HAA. Our results suggest that hydrophobic residues Ile17 and Ile20 on the C-terminal region of melittin are in close contact with HAA in the melittin-HAA complex. Information obtained from NMR experiments was used to generate structural models of the melittin-HAA complex by molecular docking with high-ambiguity driven docking (HADDOCK). Structural models of the melittin-HAA complex reveal important principles underlying the interaction of HAA with its clients.
Collapse
Affiliation(s)
- Lisa M Ramirez
- Department of Chemistry, University at Albany, State University of New York, Albany, New York
| | - Alexander Shekhtman
- Department of Chemistry, University at Albany, State University of New York, Albany, New York
| | - Jayanti Pande
- Department of Chemistry, University at Albany, State University of New York, Albany, New York
| |
Collapse
|
40
|
Abstract
Cataract, the clinical correlate of opacity or light scattering in the eye lens, is usually caused by the presence of high-molecular-weight (HMW) protein aggregates or disruption of the lens microarchitecture. In general, genes involved in inherited cataracts reflect important processes and pathways in the lens including lens crystallins, connexins, growth factors, membrane proteins, intermediate filament proteins, and chaperones. Usually, mutations causing severe damage to proteins cause congenital cataracts, while milder variants increasing susceptibility to environmental insults are associated with age-related cataracts. These may have different pathogenic mechanisms: Congenital cataracts induce the unfolded protein response and apoptosis. By contrast, denatured crystallins in age-related cataracts are bound by α-crystallin and form light-scattering HMW aggregates. New therapeutic approaches to age-related cataracts use chemical chaperones to solubilize HMW aggregates, while attempts are being made to regenerate lenses using endogenous stem cells to treat congenital cataracts.
Collapse
Affiliation(s)
- Alan Shiels
- Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri 63110, USA;
| | - J Fielding Hejtmancik
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892-1860, USA;
| |
Collapse
|
41
|
Zeng L, Deng X, Zhong J, Yuan L, Tao X, Zhang S, Zeng Y, He G, Tan P, Tao Y. Prognostic value of biomarkers EpCAM and αB-crystallin associated with lymphatic metastasis in breast cancer by iTRAQ analysis. BMC Cancer 2019; 19:831. [PMID: 31443698 PMCID: PMC6708189 DOI: 10.1186/s12885-019-6016-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 08/05/2019] [Indexed: 02/08/2023] Open
Abstract
Background Metastasis is responsible for the majority of deaths in a variety of cancer types, including breast cancer. Although several factors or biomarkers have been identified to predict the outcome of patients with breast cancer, few studies have been conducted to identify metastasis-associated biomarkers. Methods Quantitative iTRAQ proteomics analysis was used to detect differentially expressed proteins between lymph node metastases and their paired primary tumor tissues from 23 patients with metastatic breast cancer. Immunohistochemistry was performed to validate the expression of two upregulated (EpCAM, FADD) and two downregulated (NDRG1, αB-crystallin) proteins in 190 paraffin-embedded tissue samples. These four proteins were further analyzed for their correlation with clinicopathological features in 190 breast cancer patients. Results We identified 637 differentially regulated proteins (397 upregulated and 240 downregulated) in lymph node metastases compared with their paired primary tumor tissues. Data are available via ProteomeXchange with identifier PXD013931. Furthermore, bioinformatics analysis using GEO profiling confirmed the difference in the expression of EpCAM between metastases and primary tumors tissues. Two upregulated (EpCAM, FADD) and two downregulated (NDRG1, αB-crystallin) proteins were associated with the progression of breast cancer. Obviously, EpCAM plays a role in the metastasis of breast cancer cells to the lymph node. We further identified αB-crystallin as an independent biomarker to predict lymph node metastasis and the outcome of breast cancer patients. Conclusion We have identified that EpCAM plays a role in the metastasis of breast cancer cells to the lymph node. αB-crystallin, a stress-related protein that has recently been shown to be important for cell invasion and survival, was identified as a potential prognostic biomarker to predict the outcome of breast cancer patients. Electronic supplementary material The online version of this article (10.1186/s12885-019-6016-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Liang Zeng
- Department of Pathology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiyun Deng
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, Hunan, China.
| | - Jingmin Zhong
- Department of Pathology, Union Hospital, Tongji Medical College, HuaZhong University of Science and Technology, WuHan, China
| | - Li Yuan
- Department of Pathology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiaojun Tao
- Department of Pharmacy, Hunan Normal University School of Medicine, Changsha, Hunan, China
| | - Sai Zhang
- Department of Oncology, Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yong Zeng
- College of Life Science, Hunan Normal University, Changsha, Hunan, China
| | - Guangchun He
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, Hunan, China
| | - Pingping Tan
- Department of Pathology, Hunan Cancer Hospital & The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yongguang Tao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Key Laboratory of Carcinogenesis, Ministry of Health, Cancer Research Institute, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
42
|
Muranov KO, Poliansky NB, Chebotareva NA, Kleimenov SY, Bugrova AE, Indeykina MI, Kononikhin AS, Nikolaev EN, Ostrovsky MA. The mechanism of the interaction of α-crystallin and UV-damaged β L-crystallin. Int J Biol Macromol 2019; 140:736-748. [PMID: 31445149 DOI: 10.1016/j.ijbiomac.2019.08.178] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 08/18/2019] [Accepted: 08/20/2019] [Indexed: 12/24/2022]
Abstract
α-Crystallin maintains the transparency of the lens by preventing the aggregation of damaged proteins. The aim of our work was to study the chaperone-like activity of native α-crystallin in near physiological conditions (temperature, ionic power, pH) using UV-damaged βL-crystallin as the target protein. α-Crystallin in concentration depended manner inhibits the aggregation of UV-damaged βL-crystallin. DSC investigation has shown that refolding of denatured UV-damaged βL-crystallin was not observed under incubation with α-crystallin. α-Crystallin and UV-damaged βL-crystallin form dynamic complexes with masses from 75 to several thousand kDa. The content of UV-damaged βL-crystallin in such complexes increases with the mass of the complex. Complexes containing >10% of UV-damaged βL-crystallin are prone to precipitation whereas those containing <10% of the target protein are relatively stable. Formation of a stable 75 kDa complex is indicative of α-crystallin dissociation. We suppose that α-crystallin dissociation is the result of an interaction of comparable amounts of the chaperone-like protein and the target protein. In the lens simultaneous damage of such amounts of protein, mainly β and gamma-crystallins, is impossible. The authors suggest that in the lens rare molecules of the damaged protein interact with undissociated oligomers of α-crystallin, and thus preventing aggregation.
Collapse
Affiliation(s)
- K O Muranov
- Emanuel Institute of Biochemical Physics of the Russian Academy of Sciences, Moscow, Russia.
| | - N B Poliansky
- Emanuel Institute of Biochemical Physics of the Russian Academy of Sciences, Moscow, Russia
| | - N A Chebotareva
- Bach Institute of Biochemistry, Federal State Institution "Federal Research Centre "Fundamentals of Biotechnology"of the Russian Academy of Sciences", Moscow, Russia
| | - S Yu Kleimenov
- Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Russia
| | - A E Bugrova
- Emanuel Institute of Biochemical Physics of the Russian Academy of Sciences, Moscow, Russia
| | - M I Indeykina
- Emanuel Institute of Biochemical Physics of the Russian Academy of Sciences, Moscow, Russia; Talrose Institute for Energy Problems of Chemical Physics, Semenov Federal Center of Chemical Physic, Russian Academy of Sciences, Moscow, Russia
| | - A S Kononikhin
- Talrose Institute for Energy Problems of Chemical Physics, Semenov Federal Center of Chemical Physic, Russian Academy of Sciences, Moscow, Russia; Skolkovo Institute of Science and Technology, Skolkovo, Russia
| | - E N Nikolaev
- Talrose Institute for Energy Problems of Chemical Physics, Semenov Federal Center of Chemical Physic, Russian Academy of Sciences, Moscow, Russia; Skolkovo Institute of Science and Technology, Skolkovo, Russia
| | - M A Ostrovsky
- Emanuel Institute of Biochemical Physics of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
43
|
Carra S, Alberti S, Benesch JLP, Boelens W, Buchner J, Carver JA, Cecconi C, Ecroyd H, Gusev N, Hightower LE, Klevit RE, Lee HO, Liberek K, Lockwood B, Poletti A, Timmerman V, Toth ME, Vierling E, Wu T, Tanguay RM. Small heat shock proteins: multifaceted proteins with important implications for life. Cell Stress Chaperones 2019; 24:295-308. [PMID: 30758704 PMCID: PMC6439001 DOI: 10.1007/s12192-019-00979-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2019] [Indexed: 12/21/2022] Open
Abstract
Small Heat Shock Proteins (sHSPs) evolved early in the history of life; they are present in archaea, bacteria, and eukaryota. sHSPs belong to the superfamily of molecular chaperones: they are components of the cellular protein quality control machinery and are thought to act as the first line of defense against conditions that endanger the cellular proteome. In plants, sHSPs protect cells against abiotic stresses, providing innovative targets for sustainable agricultural production. In humans, sHSPs (also known as HSPBs) are associated with the development of several neurological diseases. Thus, manipulation of sHSP expression may represent an attractive therapeutic strategy for disease treatment. Experimental evidence demonstrates that enhancing the chaperone function of sHSPs protects against age-related protein conformation diseases, which are characterized by protein aggregation. Moreover, sHSPs can promote longevity and healthy aging in vivo. In addition, sHSPs have been implicated in the prognosis of several types of cancer. Here, sHSP upregulation, by enhancing cellular health, could promote cancer development; on the other hand, their downregulation, by sensitizing cells to external stressors and chemotherapeutics, may have beneficial outcomes. The complexity and diversity of sHSP function and properties and the need to identify their specific clients, as well as their implication in human disease, have been discussed by many of the world's experts in the sHSP field during a dedicated workshop in Québec City, Canada, on 26-29 August 2018.
Collapse
Affiliation(s)
- Serena Carra
- Department of Biomedical, Metabolic and Neural Sciences, and Centre for Neuroscience and Nanotechnology, University of Modena and Reggio Emilia, via G. Campi 287, 41125, Modena, Italy.
| | - Simon Alberti
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307, Dresden, Germany
- Center for Molecular and Cellular Bioengineering (CMCB), Biotechnology Center (BIOTEC), Technische Universität Dresden, Tatzberg 47/49, 01307, Dresden, Germany
| | - Justin L P Benesch
- Department of Chemistry, Physical and Theoretical Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK
| | - Wilbert Boelens
- Department of Biomolecular Chemistry, Institute of Molecules and Materials, Radboud University, NL-6500, Nijmegen, The Netherlands
| | - Johannes Buchner
- Center for Integrated Protein Science Munich (CIPSM) and Department Chemie, Technische Universität München, D-85748, Garching, Germany
| | - John A Carver
- Research School of Chemistry, The Australian National University, Acton, ACT, 2601, Australia
| | - Ciro Cecconi
- Department of Physics, Informatics and Mathematics, University of Modena and Reggio Emilia, 41125, Modena, Italy
- Center S3, CNR Institute Nanoscience, Via Campi 213/A, 41125, Modena, Italy
| | - Heath Ecroyd
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
| | - Nikolai Gusev
- Department of Biochemistry, School of Biology, Moscow State University, Moscow, Russian Federation, 117234
| | - Lawrence E Hightower
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, CT, 06269-3125, USA
| | - Rachel E Klevit
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Hyun O Lee
- Department of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Krzysztof Liberek
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology UG-MUG, University of Gdansk, Abrahama 58, 80-307, Gdansk, Poland
| | - Brent Lockwood
- Department of Biology, University of Vermont, Burlington, VT, 05405, USA
| | - Angelo Poletti
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza sulle Malattie Neurodegenerative, Univrsità degli Studi di Milano, Milan, Italy
| | - Vincent Timmerman
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, University of Antwerp, 2610, Antwerp, Belgium
| | - Melinda E Toth
- Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary
| | - Elizabeth Vierling
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Tangchun Wu
- MOE Key Lab of Environment and Health, Tongji School of Public Health, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, 430030, Hubei, China
| | - Robert M Tanguay
- Laboratory of Cell and Developmental Genetics, IBIS, and Department of Molecular Biology, Medical Biochemistry and Pathology, Medical School, Université Laval, QC, Québec, G1V 0A6, Canada.
| |
Collapse
|
44
|
Lyon YA, Collier MP, Riggs DL, Degiacomi MT, Benesch JLP, Julian RR. Structural and functional consequences of age-related isomerization in α-crystallins. J Biol Chem 2019; 294:7546-7555. [PMID: 30804217 PMCID: PMC6514633 DOI: 10.1074/jbc.ra118.007052] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 02/15/2019] [Indexed: 12/31/2022] Open
Abstract
Long-lived proteins are subject to spontaneous degradation and may accumulate a range of modifications over time, including subtle alterations such as side-chain isomerization. Recently, tandem MS has enabled identification and characterization of such peptide isomers, including those differing only in chirality. However, the structural and functional consequences of these perturbations remain largely unexplored. Here, we examined the impact of isomerization of aspartic acid or epimerization of serine at four sites mapping to crucial oligomeric interfaces in human αA- and αB-crystallin, the most abundant chaperone proteins in the eye lens. To characterize the effect of isomerization on quaternary assembly, we utilized synthetic peptide mimics, enzyme assays, molecular dynamics calculations, and native MS experiments. The oligomerization of recombinant forms of αA- and αB-crystallin that mimic isomerized residues deviated from native behavior in all cases. Isomerization also perturbs recognition of peptide substrates, either enhancing or inhibiting kinase activity. Specifically, epimerization of serine (αASer-162) dramatically weakened inter-subunit binding. Furthermore, phosphorylation of αBSer-59, known to play an important regulatory role in oligomerization, was severely inhibited by serine epimerization and altered by isomerization of nearby αBAsp-62. Similarly, isomerization of αBAsp-109 disrupted a vital salt bridge with αBArg-120, a contact that when broken has previously been shown to yield aberrant oligomerization and aggregation in several disease-associated variants. Our results illustrate how isomerization of amino acid residues, which may seem to be only a minor structural perturbation, can disrupt native structural interactions with profound consequences for protein assembly and activity.
Collapse
Affiliation(s)
- Yana A Lyon
- From the Department of Chemistry, University of California, Riverside, Riverside, California 92521
| | - Miranda P Collier
- the Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom, and
| | - Dylan L Riggs
- From the Department of Chemistry, University of California, Riverside, Riverside, California 92521
| | - Matteo T Degiacomi
- the Department of Chemistry, Durham University, South Road, Durham DH1 3LE, United Kingdom
| | - Justin L P Benesch
- the Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom, and
| | - Ryan R Julian
- From the Department of Chemistry, University of California, Riverside, Riverside, California 92521,
| |
Collapse
|
45
|
Malitan HS, Cohen AM, MacRae TH. Knockdown of the small heat-shock protein p26 by RNA interference modifies the diapause proteome of Artemia franciscana. Biochem Cell Biol 2019; 97:471-479. [PMID: 30620618 DOI: 10.1139/bcb-2018-0231] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Embryos of the crustacean Artemia franciscana may arrest as gastrulae, forming cysts that enter diapause, which is a state of reduced metabolism and enhanced stress tolerance. Diapausing cysts survive physiological stresses for years due, in part, to molecular chaperones. p26, a small heat-shock protein, is an abundant diapause-specific molecular chaperone in cysts, and it affects embryo development and stress tolerance. p26 is therefore thought to influence many proteins in cysts, and this study was undertaken to determine how the loss of p26 by RNA interference (RNAi) affects the diapause proteome of A. franciscana. The proteome was analyzed by shot-gun proteomics coupled to differential isotopic labeling and tandem mass spectrometry. Proteins in the diapause proteome included metabolic enzymes, antioxidants, binding proteins, structural proteins, transporters, translation factors, receptors, and signal transducers. Proteins within the diapause proteome either disappeared or were reduced in amount when p26 was knocked down, or conversely, proteins appeared or increased in amount. Those proteins that disappeared may be p26 substrates, whereas the synthesis of those proteins that appeared or increased may be regulated by p26. This study provides the first global characterization of the diapause proteome of A. franciscana and demonstrates that the sHsp p26 influences proteome composition.
Collapse
Affiliation(s)
| | - Alejandro M Cohen
- b Proteomics and Mass Spectrometry Core Facility, Life Sciences Research Institute, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Thomas H MacRae
- a Department of Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
46
|
Wang R, Chen ZH, Wang Y, Huang HB, Fan SJ, Chen LL. Recombination and identification of human alpha B-crystallin. Int J Ophthalmol 2018; 11:1916-1921. [PMID: 30588422 DOI: 10.18240/ijo.2018.12.06] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 10/22/2018] [Indexed: 11/23/2022] Open
Abstract
AIM To recombine the human alpha B-crystallin (αB-crystallin) using gene cloning technology and prokaryotic expression vector and confirm the biological activity of recombinant human αB-crystallin. METHODS Cloning the human αB-crystallin cDNA according to the nucleotide sequence of the human αB-crystallin, constructing the pET-28/CRYAB prokaryotic expression plasmid by restriction enzyme digestion method, and stably expressing transformed into the Escherichia coli (E. coli) DH5 alpha. The recombinant human αB-crystallin was purified by Q sepharose. By enzyme digestion analysis, Western blotting and sequencing, the recombinant human αB-crystallin was identified and the activity of its molecular protein was detected. RESULTS Compared with the gene bank (GeneBank), the cloned human sequence of human αB-crystallin cDNA has the same open reading frame. Identification and sequencing of the cloned human αB-crystallin cDNA in prokaryotic expression vector confirmed the full length sequence, and the vector was constructed successfully. The E. coli containing plasmid pET-28/CRYAB induced by isopropyl-β-D-thiogalactoside successfully expressed the human αB-crystallin. Insulin confirmed that the recombinant human αB-crystallin has a molecular chaperone activity. CONCLUSION The prokaryotic expression vector pET-28/CRYAB of recombinant human αB-crystallin is successfully constructed, and the recombinant human αB-crystallin with molecular chaperone activity is obtained, which lay a foundation for the research and application of the recombinant human αB-crystallin and its chaperone activity.
Collapse
Affiliation(s)
- Rui Wang
- Department of Ophthalmology, Hainan Branch of PLA General Hospital, Sanya 572000, Hainan Province, China
| | - Ze-Hua Chen
- Department of Ophthalmology, Hainan Branch of PLA General Hospital, Sanya 572000, Hainan Province, China
| | - Yi Wang
- Chongqing Aier General Hospital, Aier School of Ophthalmology, Central South University, Chongqing 400020, China
| | - Hou-Bin Huang
- Department of Ophthalmology, Hainan Branch of PLA General Hospital, Sanya 572000, Hainan Province, China
| | - Si-Jun Fan
- PLA Rocket Force General Hospital, Beijing 100088, China
| | - Lan-Lan Chen
- Department of Ophthalmology, Hainan Branch of PLA General Hospital, Sanya 572000, Hainan Province, China
| |
Collapse
|
47
|
Chebotareva NA, Eronina TB, Roman SG, Mikhaylova VV, Sluchanko NN, Gusev NB, Kurganov BI. Oligomeric state of αB-crystallin under crowded conditions. Biochem Biophys Res Commun 2018; 508:1101-1105. [PMID: 30551876 DOI: 10.1016/j.bbrc.2018.12.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 12/03/2018] [Indexed: 12/12/2022]
Abstract
Small heat shock proteins (sHsps) are molecular chaperones preventing protein aggregation. Dynamics of quaternary structure plays an important role in the chaperone-like activity of sHsps. However, an interrelation between the oligomeric state and chaperone-like activity of sHsps remains insufficiently characterized. Most of the accumulated data were obtained in dilute protein solutions, leaving the question of the oligomeric state of sHsps in crowded intracellular media largely unanswered. Here, we analyzed the effect of crowding on the oligomeric state of αB-crystallin (αB-Cr) using analytical ultracentrifugation. Marked increase in the sedimentation coefficient of αB-Cr was observed in the presence of polyethylene glycol (PEG), polyvinylpyrrolidone (PVP) and trimethylamine N-oxide (TMAO) at 48 °C. An especially pronounced effect was detected for the PEG and TMAO mixture, where the sedimentation coefficient (s20,w) of αB-Cr increased from 10.7 S in dilute solution up to 40.7 S in the presence of crowding agents. In the PEG + TMAO mixture, addition of model protein substrate (muscle glycogen phosphorylase b) induced dissociation of large αB-Cr oligomers and formation of complexes with smaller sedimentation coefficients, supporting the idea that, under crowding conditions, protein substrates can promote dissociation of large αB-Cr oligomers.
Collapse
Affiliation(s)
- Natalia A Chebotareva
- Laboratory of Structural Biochemistry of Proteins, Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Leninsky pr. 33, Moscow, 119071, Russia.
| | - Tatiana B Eronina
- Laboratory of Structural Biochemistry of Proteins, Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Leninsky pr. 33, Moscow, 119071, Russia
| | - Svetlana G Roman
- Laboratory of Structural Biochemistry of Proteins, Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Leninsky pr. 33, Moscow, 119071, Russia
| | - Valeriya V Mikhaylova
- Laboratory of Structural Biochemistry of Proteins, Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Leninsky pr. 33, Moscow, 119071, Russia
| | - Nikolai N Sluchanko
- Laboratory of Structural Biochemistry of Proteins, Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Leninsky pr. 33, Moscow, 119071, Russia; Department of Biophysics, School of Biology, M.V. Lomonosov Moscow State University, Lenin Hills 1, Building 24, Moscow, 119991, Russia
| | - Nikolai B Gusev
- Department of Biochemistry, School of Biology, M.V. Lomonosov Moscow State University, Lenin Hills 1, Building 12, Moscow, 119991, Russia
| | - Boris I Kurganov
- Laboratory of Structural Biochemistry of Proteins, Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Leninsky pr. 33, Moscow, 119071, Russia
| |
Collapse
|
48
|
Green synthesis of silver nanoparticles, its characterization, and chaperone-like activity in the aggregation inhibition of α-chymotrypsinogen A. Int J Biol Macromol 2018; 120:2381-2389. [DOI: 10.1016/j.ijbiomac.2018.09.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 08/25/2018] [Accepted: 09/03/2018] [Indexed: 02/01/2023]
|
49
|
Dahiya V, Buchner J. Functional principles and regulation of molecular chaperones. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2018; 114:1-60. [PMID: 30635079 DOI: 10.1016/bs.apcsb.2018.10.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
To be able to perform their biological function, a protein needs to be correctly folded into its three dimensional structure. The protein folding process is spontaneous and does not require the input of energy. However, in the crowded cellular environment where there is high risk of inter-molecular interactions that may lead to protein molecules sticking to each other, hence forming aggregates, protein folding is assisted. Cells have evolved robust machinery called molecular chaperones to deal with the protein folding problem and to maintain proteins in their functional state. Molecular chaperones promote efficient folding of newly synthesized proteins, prevent their aggregation and ensure protein homeostasis in cells. There are different classes of molecular chaperones functioning in a complex interplay. In this review, we discuss the principal characteristics of different classes of molecular chaperones, their structure-function relationships, their mode of regulation and their involvement in human disorders.
Collapse
Affiliation(s)
- Vinay Dahiya
- Center for Integrated Protein Science Munich CIPSM at the Department Chemie, Technische Universität München, Garching, Germany
| | - Johannes Buchner
- Center for Integrated Protein Science Munich CIPSM at the Department Chemie, Technische Universität München, Garching, Germany.
| |
Collapse
|
50
|
Haslbeck M, Weinkauf S, Buchner J. Small heat shock proteins: Simplicity meets complexity. J Biol Chem 2018; 294:2121-2132. [PMID: 30385502 DOI: 10.1074/jbc.rev118.002809] [Citation(s) in RCA: 172] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Small heat shock proteins (sHsps) are a ubiquitous and ancient family of ATP-independent molecular chaperones. A key characteristic of sHsps is that they exist in ensembles of iso-energetic oligomeric species differing in size. This property arises from a unique mode of assembly involving several parts of the subunits in a flexible manner. Current evidence suggests that smaller oligomers are more active chaperones. Thus, a shift in the equilibrium of the sHsp ensemble allows regulating the chaperone activity. Different mechanisms have been identified that reversibly change the oligomer equilibrium. The promiscuous interaction with non-native proteins generates complexes that can form aggregate-like structures from which native proteins are restored by ATP-dependent chaperones such as Hsp70 family members. In recent years, this basic paradigm has been expanded, and new roles and new cofactors, as well as variations in structure and regulation of sHsps, have emerged.
Collapse
Affiliation(s)
- Martin Haslbeck
- From the Department of Chemie and Center for Integrated Protein Science, Technische Universität München, Lichtenbergstrasse 4, 85 748 Garching, Germany
| | - Sevil Weinkauf
- From the Department of Chemie and Center for Integrated Protein Science, Technische Universität München, Lichtenbergstrasse 4, 85 748 Garching, Germany
| | - Johannes Buchner
- From the Department of Chemie and Center for Integrated Protein Science, Technische Universität München, Lichtenbergstrasse 4, 85 748 Garching, Germany
| |
Collapse
|