1
|
Lindsay RT, Thisted L, Zois NE, Thrane ST, West JA, Fosgerau K, Griffin JL, Fink LN, Murray AJ. Beta-adrenergic agonism protects mitochondrial metabolism in the pancreatectomised rat heart. Sci Rep 2024; 14:19383. [PMID: 39169098 PMCID: PMC11339431 DOI: 10.1038/s41598-024-70335-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 08/14/2024] [Indexed: 08/23/2024] Open
Abstract
The diabetic heart is characterised by functional, morphological and metabolic alterations predisposing it to contractile failure. Chronic sympathetic activation is a feature of the pathogenesis of heart failure, however the type 1 diabetic heart shows desensitisation to β-adrenergic stimulation. Here, we sought to understand the impact of repeated isoprenaline-mediated β-stimulation upon cardiac mitochondrial respiratory capacity and substrate metabolism in the 90% pancreatectomy (Px) rat model of type 1 diabetes. We hypothesised these hearts would be relatively protected against the metabolic impact of stress-induced cardiomyopathy. We found that individually both Px and isoprenaline suppressed cardiac mitochondrial respiration, but that this was preserved in Px rats receiving isoprenaline. Px and isoprenaline had contrasting effects on cardiac substrate metabolism, with increased reliance upon cardiac fatty acid oxidation capacity and altered ketone metabolism in the hearts of Px rats, but enhanced capacity for glucose uptake and metabolism in isoprenaline-treated rats. Moreover, Px rats were protected against isoprenaline-induced mortality, whilst isoprenaline elevated cGMP and protected myocardial energetic status in Px rat hearts. Our work suggests that adrenergic stimulation may be protective in the type 1 diabetic heart, and underlines the importance of studying pathological features in combination when modeling complex disease in rodents.
Collapse
Affiliation(s)
- Ross T Lindsay
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
- Gubra A/S, Hørsholm Kongevej 11B, 2970, Hørsholm, Denmark.
- Department of Biochemistry and Systems Biology Centre, University of Cambridge, Cambridge, UK.
| | - Louise Thisted
- Gubra A/S, Hørsholm Kongevej 11B, 2970, Hørsholm, Denmark
| | - Nora E Zois
- Gubra A/S, Hørsholm Kongevej 11B, 2970, Hørsholm, Denmark
- Ascendis Pharma A/S, Hellerup, Denmark
| | | | - James A West
- Department of Biochemistry and Systems Biology Centre, University of Cambridge, Cambridge, UK
- AstraZeneca, Cambridge, UK
| | - Keld Fosgerau
- Gubra A/S, Hørsholm Kongevej 11B, 2970, Hørsholm, Denmark
- Pephexia Therapeutics ApS, Copenhagen, Denmark
| | - Julian L Griffin
- Department of Biochemistry and Systems Biology Centre, University of Cambridge, Cambridge, UK
- The Rowett Institute, University of Aberdeen, Aberdeen, UK
| | - Lisbeth N Fink
- Gubra A/S, Hørsholm Kongevej 11B, 2970, Hørsholm, Denmark
- Ferring Pharmaceuticals A/S, Kastrup, Denmark
| | - Andrew J Murray
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| |
Collapse
|
2
|
Li Z, Chen J, Huang H, Zhan Q, Wang F, Chen Z, Lu X, Sun G. Post-translational modifications in diabetic cardiomyopathy. J Cell Mol Med 2024; 28:e18158. [PMID: 38494853 PMCID: PMC10945092 DOI: 10.1111/jcmm.18158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 12/29/2023] [Accepted: 01/09/2024] [Indexed: 03/19/2024] Open
Abstract
The increasing attention towards diabetic cardiomyopathy as a distinctive complication of diabetes mellitus has highlighted the need for standardized diagnostic criteria and targeted treatment approaches in clinical practice. Ongoing research is gradually unravelling the pathogenesis of diabetic cardiomyopathy, with a particular emphasis on investigating various post-translational modifications. These modifications dynamically regulate protein function in response to changes in the internal and external environment, and their disturbance of homeostasis holds significant relevance for the development of chronic ailments. This review provides a comprehensive overview of the common post-translational modifications involved in the initiation and progression of diabetic cardiomyopathy, including O-GlcNAcylation, phosphorylation, methylation, acetylation and ubiquitination. Additionally, the review discusses drug development strategies for targeting key post-translational modification targets, such as agonists, inhibitors and PROTAC (proteolysis targeting chimaera) technology that targets E3 ubiquitin ligases.
Collapse
Affiliation(s)
- Zhi Li
- Department of CardiologyThe First Hospital of China Medical UniversityShenyangChina
| | - Jie Chen
- Department of CardiologyThe First Hospital of China Medical UniversityShenyangChina
| | - Hailong Huang
- Department of Obstetrics and GynecologyShengjing Hospital of China Medical UniversityShenyangChina
| | - Qianru Zhan
- Department of CardiologyThe First Hospital of China Medical UniversityShenyangChina
| | - Fengzhi Wang
- Department of Neurology, People's Hospital of Liaoning ProvincePeople's Hospital of China Medical UniversityShenyangChina
| | - Zihan Chen
- Department of CardiologyThe First Hospital of China Medical UniversityShenyangChina
| | - Xinwei Lu
- Department of CardiologySiping Central People's HospitalSipingChina
| | - Guozhe Sun
- Department of CardiologyThe First Hospital of China Medical UniversityShenyangChina
| |
Collapse
|
3
|
Zeng Y, Li Y, Jiang W, Hou N. Molecular mechanisms of metabolic dysregulation in diabetic cardiomyopathy. Front Cardiovasc Med 2024; 11:1375400. [PMID: 38596692 PMCID: PMC11003275 DOI: 10.3389/fcvm.2024.1375400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/08/2024] [Indexed: 04/11/2024] Open
Abstract
Diabetic cardiomyopathy (DCM), one of the most serious complications of diabetes mellitus, has become recognized as a cardiometabolic disease. In normoxic conditions, the majority of the ATP production (>95%) required for heart beating comes from mitochondrial oxidative phosphorylation of fatty acids (FAs) and glucose, with the remaining portion coming from a variety of sources, including fructose, lactate, ketone bodies (KB) and branched chain amino acids (BCAA). Increased FA intake and decreased utilization of glucose and lactic acid were observed in the diabetic hearts of animal models and diabetic patients. Moreover, the polyol pathway is activated, and fructose metabolism is enhanced. The use of ketones as energy sources in human diabetic hearts also increases significantly. Furthermore, elevated BCAA levels and impaired BCAA metabolism were observed in the hearts of diabetic mice and patients. The shift in energy substrate preference in diabetic hearts results in increased oxygen consumption and impaired oxidative phosphorylation, leading to diabetic cardiomyopathy. However, the precise mechanisms by which impaired myocardial metabolic alterations result in diabetes mellitus cardiac disease are not fully understood. Therefore, this review focuses on the molecular mechanisms involved in alterations of myocardial energy metabolism. It not only adds more molecular targets for the diagnosis and treatment, but also provides an experimental foundation for screening novel therapeutic agents for diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Yue Zeng
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- Department of Pharmacy, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, China
| | - Yilang Li
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- Department of Pharmacy, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, China
| | - Wenyue Jiang
- Department of Pharmacy, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, China
| | - Ning Hou
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- Department of Pharmacy, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, China
| |
Collapse
|
4
|
Wang Y, Ping LF, Bai FY, Zhang XH, Li GH. Hmgcs2 is the hub gene in diabetic cardiomyopathy and is negatively regulated by Hmgcs2, promoting high glucose-induced cardiomyocyte injury. Immun Inflamm Dis 2024; 12:e1191. [PMID: 38477658 DOI: 10.1002/iid3.1191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/07/2023] [Accepted: 02/02/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Diabetic cardiomyopathy (DCM) represents a major cause of heart failure and a large medical burden worldwide. This study screened the potentially regulatory targets of DCM and analyzed their roles in high glucose (HG)-induced cardiomyocyte injury. METHODS Through GEO database, we obtained rat DCM expression chips and screened differentially expressed genes. Rat cardiomyocytes (H9C2) were induced with HG. 3-hydroxy-3-methylglutarylcoenzyme A synthase 2 (Hmgcs2) and microRNA (miR)-363-5p expression patterns in cells were measured by real-time quantitative polymerase chain reaction or Western blot assay, with the dual-luciferase assay to analyze their binding relationship. Then, 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide assay, lactate dehydrogenase assay, terminal deoxynucleotidyl transferase dUTP nick end labeling assay, enzyme-linked immunosorbent assay, and various assay kits were applied to evaluate cell viability, cytotoxicity, apoptosis, inflammation responses, and oxidative burden. RESULTS Hmgcs2 was the vital hub gene in DCM. Hmgcs2 was upregulated in HG-induced cardiomyocytes. Hmgcs2 downregulation increased cell viability, decreased TUNEL-positive cell number, reduced HG-induced inflammation and oxidative stress. miR-363-5p is the upstream miRNA of Hmgcs2. miR-363-5p overexpression attenuated HG-induced cell injury. CONCLUSIONS Hmgcs2 had the most critical regulatory role in DCM. We for the first time reported that miR-363-5p inhibited Hmgcs2 expression, thereby alleviating HG-induced cardiomyocyte injury.
Collapse
Affiliation(s)
- Ying Wang
- Department of Endocrinology, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, China
| | - Li-Feng Ping
- Department of General Medicine, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, China
| | - Fu-Yan Bai
- Department of Endocrinology, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, China
| | - Xin-Huan Zhang
- Department of Endocrinology, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, China
| | - Guang-Hong Li
- Department of Endocrinology, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, China
| |
Collapse
|
5
|
Ritterhoff J, Tian R. Metabolic mechanisms in physiological and pathological cardiac hypertrophy: new paradigms and challenges. Nat Rev Cardiol 2023; 20:812-829. [PMID: 37237146 DOI: 10.1038/s41569-023-00887-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/02/2023] [Indexed: 05/28/2023]
Abstract
Cardiac metabolism is vital for heart function. Given that cardiac contraction requires a continuous supply of ATP in large quantities, the role of fuel metabolism in the heart has been mostly considered from the perspective of energy production. However, the consequence of metabolic remodelling in the failing heart is not limited to a compromised energy supply. The rewired metabolic network generates metabolites that can directly regulate signalling cascades, protein function, gene transcription and epigenetic modifications, thereby affecting the overall stress response of the heart. In addition, metabolic changes in both cardiomyocytes and non-cardiomyocytes contribute to the development of cardiac pathologies. In this Review, we first summarize how energy metabolism is altered in cardiac hypertrophy and heart failure of different aetiologies, followed by a discussion of emerging concepts in cardiac metabolic remodelling, that is, the non-energy-generating function of metabolism. We highlight challenges and open questions in these areas and finish with a brief perspective on how mechanistic research can be translated into therapies for heart failure.
Collapse
Affiliation(s)
- Julia Ritterhoff
- Molecular and Translational Cardiology, Department of Internal Medicine III, Heidelberg University Hospital, Heidelberg, Germany.
- Mitochondria and Metabolism Center, Department of Anaesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA.
| | - Rong Tian
- Mitochondria and Metabolism Center, Department of Anaesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA.
| |
Collapse
|
6
|
Zhu Z, Li X, Cao X, Qin H, Yue D, Liu D, Tan G, Xuan X, Zhu H. Extracellular Matrix and Protein Phosphorylation Dysregulation Related to Diabetes-Induced Erectile Dysfunction. Andrologia 2023. [DOI: 10.1155/2023/5488279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023] Open
Abstract
Diabetes can cause erectile dysfunction (ED) in more than half of male patients. However, the mechanisms underlying diabetes-induced erectile dysfunction (DED) remain unknown. This study is aimed at systematically analyzing the cellular and molecular mechanisms leading to DED using bioinformatic analysis and providing molecular targets for predicting and treating DED. In total, we identified 800 DEGs in the DED samples compared with those in the control group. The 407 upregulated DEGs were mainly enriched in glucose and lipid metabolism-related pathways, and the 393 downregulated DEGs were primarily enriched in tissue development and structure. Dysregulated extracellular matrix genes (especially collagen and elastin) may be closely related to damage to the erectile function of the corpus cavernosum. Sixteen hub genes and 24 modules were detected with hub genes and MCODE analysis. The consensus sequence AAA (G/C) AAA was observed at the promoter sites of most genes that were enriched in the “posttranslational protein phosphorylation” pathway. These genes had abundant phosphorylation sites. Furthermore, 20 TFs targeting DEGs were identified using ChEA3 tool. In conclusion, our research comprehensively and systematically describes the molecular characteristics of DED and suggests that dysregulated extracellular matrix genes and protein phosphorylation may play critical roles in DED. Therefore, they may be potential markers for diagnosing and treating DED.
Collapse
Affiliation(s)
- Zhiguo Zhu
- Department of Urology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
- Postdoctoral Mobile Station of Shandong University of Traditional Chinese Medicine, Jining, Shandong, China
- Department of Andrology, The Seventh Affiliated Hospital Sun Yet-sen University, Shenzhen, Guangdong, China
| | - Xiaoli Li
- Department of Outpatient Office & Outpatient Operating Room, The Seventh Affiliated Hospital Sun Yet-sen University, Shenzhen, Guangdong, China
| | - Xiande Cao
- Department of Urology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Huisheng Qin
- Department of Urology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Dong Yue
- Department of Urology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Deqian Liu
- Department of Urology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Guigeng Tan
- Department of Urology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Xujun Xuan
- Department of Andrology, The Seventh Affiliated Hospital Sun Yet-sen University, Shenzhen, Guangdong, China
| | - Haizhou Zhu
- Department of Urology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| |
Collapse
|
7
|
Peng C, Zhang Y, Lang X, Zhang Y. Role of mitochondrial metabolic disorder and immune infiltration in diabetic cardiomyopathy: new insights from bioinformatics analysis. J Transl Med 2023; 21:66. [PMID: 36726122 PMCID: PMC9893675 DOI: 10.1186/s12967-023-03928-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 01/25/2023] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Diabetic cardiomyopathy (DCM) is one of the common cardiovascular complications of diabetes and a leading cause of death in diabetic patients. Mitochondrial metabolism and immune-inflammation are key for DCM pathogenesis, but their crosstalk in DCM remains an open issue. This study explored the separate roles of mitochondrial metabolism and immune microenvironment and their crosstalk in DCM with bioinformatics. METHODS DCM chip data (GSE4745, GSE5606, and GSE6880) were obtained from NCBI GEO, while mitochondrial gene data were downloaded from MitoCarta3.0 database. Differentially expressed genes (DEGs) were screened by GEO2R and processed for GSEA, GO and KEGG pathway analyses. Mitochondria-related DEGs (MitoDEGs) were obtained. A PPI network was constructed, and the hub MitoDEGs closely linked to DCM or heart failure were identified with CytoHubba, MCODE and CTD scores. Transcription factors and target miRNAs of the hub MitoDEGs were predicted with Cytoscape and miRWalk database, respectively, and a regulatory network was established. The immune infiltration pattern in DCM was analyzed with ImmuCellAI, while the relationship between MitoDEGs and immune infiltration abundance was investigated using Spearman method. A rat model of DCM was established to validate the expression of hub MitoDEGs and their relationship with cardiac function. RESULTS MitoDEGs in DCM were significantly enriched in pathways involved in mitochondrial metabolism, immunoregulation, and collagen synthesis. Nine hub MitoDEGs closely linked to DCM or heart failure were obtained. Immune analysis revealed significantly increased infiltration of B cells while decreased infiltration of DCs in immune microenvironment of DCM. Spearman analysis demonstrated that the hub MitoDEGs were positively associated with the infiltration of pro-inflammatory immune cells, but negatively associated with the infiltration of anti-inflammatory or regulatory immune cells. In the animal experiment, 4 hub MitoDEGs (Pdk4, Hmgcs2, Decr1, and Ivd) showed an expression trend consistent with bioinformatics analysis result. Additionally, the up-regulation of Pdk4, Hmgcs2, Decr1 and the down-regulation of Ivd were distinctly linked to reduced cardiac function. CONCLUSIONS This study unraveled the interaction between mitochondrial metabolism and immune microenvironment in DCM, providing new insights into the research on potential pathogenesis of DCM and the exploration of novel targets for medical interventions.
Collapse
Affiliation(s)
- Cheng Peng
- grid.412463.60000 0004 1762 6325Department of Cardiology, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150001 China ,grid.410736.70000 0001 2204 9268Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, 150001 China
| | - Yanxiu Zhang
- grid.412463.60000 0004 1762 6325Department of Cardiology, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150001 China ,grid.410736.70000 0001 2204 9268Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, 150001 China
| | - Xueyan Lang
- grid.412463.60000 0004 1762 6325Department of Cardiology, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150001 China ,grid.410736.70000 0001 2204 9268Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, 150001 China
| | - Yao Zhang
- Department of Cardiology, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, China. .,Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, 150001, China.
| |
Collapse
|
8
|
Qi J, Gan L, Fang J, Zhang J, Yu X, Guo H, Cai D, Cui H, Gou L, Deng J, Wang Z, Zuo Z. Beta-Hydroxybutyrate: A Dual Function Molecular and Immunological Barrier Function Regulator. Front Immunol 2022; 13:805881. [PMID: 35784364 PMCID: PMC9243231 DOI: 10.3389/fimmu.2022.805881] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 05/09/2022] [Indexed: 12/27/2022] Open
Abstract
Ketone bodies are crucial intermediate metabolites widely associated with treating metabolic diseases. Accumulating evidence suggests that ketone bodies may act as immunoregulators in humans and animals to attenuate pathological inflammation through multiple strategies. Although the clues are scattered and untrimmed, the elevation of these ketone bodies in the circulation system and tissues induced by ketogenic diets was reported to affect the immunological barriers, an important part of innate immunity. Therefore, beta-hydroxybutyrate, a key ketone body, might also play a vital role in regulating the barrier immune systems. In this review, we retrospected the endogenous ketogenesis in animals and the dual roles of ketone bodies as energy carriers and signal molecules focusing on beta-hydroxybutyrate. In addition, the research regarding the effects of beta-hydroxybutyrate on the function of the immunological barrier, mainly on the microbiota, chemical, and physical barriers of the mucosa, were outlined and discussed. As an inducible endogenous metabolic small molecule, beta-hydroxybutyrate deserves delicate investigations focusing on its immunometabolic efficacy. Comprehending the connection between ketone bodies and the barrier immunological function and its underlining mechanisms may help exploit individualised approaches to treat various mucosa or skin-related diseases.
Collapse
Affiliation(s)
- Jiancheng Qi
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Linli Gan
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Jing Fang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Jizong Zhang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xin Yu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Hongrui Guo
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dongjie Cai
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Hengmin Cui
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Liping Gou
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Junliang Deng
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhisheng Wang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Zhicai Zuo
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- *Correspondence: Zhicai Zuo,
| |
Collapse
|
9
|
Joseph LC, Shi J, Nguyen QN, Pensiero V, Goulbourne C, Bauer RC, Zhang H, Morrow JP. Combined metabolomic and transcriptomic profiling approaches reveal the cardiac response to high-fat diet. iScience 2022; 25:104184. [PMID: 35494220 PMCID: PMC9038541 DOI: 10.1016/j.isci.2022.104184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/04/2022] [Accepted: 03/29/2022] [Indexed: 12/24/2022] Open
Abstract
The response of vital organs to different types of nutrition or diet is a fundamental question in physiology. We examined the cardiac response to 4 weeks of high-fat diet in mice, measuring cardiac metabolites and mRNA. Metabolomics showed dramatic differences after a high-fat diet, including increases in several acyl-carnitine species. The RNA-seq data showed changes consistent with adaptations to use more fatty acid as substrate and an increase in the antioxidant protein catalase. Changes in mRNA were correlated with changes in protein level for several highly responsive genes. We also found significant sex differences in both metabolomics and RNA-seq datasets, both at baseline and after high fat diet. This work reveals the response of a vital organ to dietary intervention at both metabolomic and transcriptomic levels, which is a fundamental question in physiology. This work also reveals significant sex differences in cardiac metabolites and gene expression.
Collapse
Affiliation(s)
- Leroy C. Joseph
- Department of Medicine, College of Physicians and Surgeons of Columbia University, 650 W 168 Street, New York, NY 10032, USA
| | - Jianting Shi
- Department of Medicine, College of Physicians and Surgeons of Columbia University, 650 W 168 Street, New York, NY 10032, USA
- Cardiometabolic Genomics Program, Department of Medicine, College of Physicians and Surgeons of Columbia University, New York, NY 10032, USA
| | - Quynh N. Nguyen
- Department of Medicine, College of Physicians and Surgeons of Columbia University, 650 W 168 Street, New York, NY 10032, USA
| | - Victoria Pensiero
- Department of Medicine, College of Physicians and Surgeons of Columbia University, 650 W 168 Street, New York, NY 10032, USA
| | - Chris Goulbourne
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY, USA
| | - Robert C. Bauer
- Department of Medicine, College of Physicians and Surgeons of Columbia University, 650 W 168 Street, New York, NY 10032, USA
| | - Hanrui Zhang
- Department of Medicine, College of Physicians and Surgeons of Columbia University, 650 W 168 Street, New York, NY 10032, USA
- Cardiometabolic Genomics Program, Department of Medicine, College of Physicians and Surgeons of Columbia University, New York, NY 10032, USA
| | - John P. Morrow
- Department of Medicine, College of Physicians and Surgeons of Columbia University, 650 W 168 Street, New York, NY 10032, USA
| |
Collapse
|
10
|
Chen D, Ruan X, Liu Y, He Y. HMGCS2 silencing attenuates high glucose-induced in vitro diabetic cardiomyopathy by increasing cell viability, and inhibiting apoptosis, inflammation, and oxidative stress. Bioengineered 2022; 13:11417-11429. [PMID: 35506308 PMCID: PMC9275940 DOI: 10.1080/21655979.2022.2063222] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Diabetic cardiomyopathy (DCM) is a diabetic mellitus-related complications and progression of DCM may eventually lead to heart failure, while mechanisms related to DCM pathophysiology remain unclear. The study was undertaken to identify possible hub genes associated with DCM progression through bioinformatics analysis and to validate the role of 3-hydroxy-3-methylglutaryl-CoA synthase 2 (HMGCS2) in DCM progression using a cellular model of high glucose (HG)-induced DCM. The common differentially expressed genes (DEGs) between GSE173884 and GSE161827 were used for PPI network analysis. Our results identified 17 common DEGs between GSE173384 and GSE161827. Further analysis of the protein–protein interaction network identified nine hub genes and HMGCS2. The in vitro functional assays showed that HG induced up-regulation of HMGCS2, suppressed cardiomyocyte viability, enhanced apoptosis, inflammation, and oxidative stress of cardiomyocytes. Gain-of-function assays showed that HMGCS2 overexpression reduced cell viability, increased apoptosis, caspase-3/-9 activity, up-regulated interleukin (IL)-1β, IL-6 and tumor necrosis factor-α (TNF-α) expression, decreased superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase expression, increased malondialdehyde (MDA) content, and reactive oxygen species (ROS) level but inhibited total antioxidant activity, SOD activity, CAT activity, and glutathione content in cardiomyocytes. Rescue experiments demonstrated HMGCS2 silence attenuated HG-induced decrease in cardiomyocyte viability and increase in cardiomyocyte apoptosis, inflammation, and oxidative stress. All in all, our study identified HMGCS2 as a hub gene in DCM pathophysiology and further functional studies indicated that HMGCS2 may aggravate DCM progression by reducing cardiomyocyte viability, increasing cardiomyocyte apoptosis, and promoting inflammation and oxidative stress in cardiomyocytes.
Collapse
Affiliation(s)
- Donglin Chen
- Department of General Geriatrics Division, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xiang Ruan
- Department of General Geriatrics Division, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yu Liu
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, Nanning, Guangxi, China
| | - Yan He
- Department of General Geriatrics Division, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
11
|
Tao LC, Wang TT, Zheng L, Hua F, Li JJ. The Role of Mitochondrial Biogenesis Dysfunction in Diabetic Cardiomyopathy. Biomol Ther (Seoul) 2022; 30:399-408. [PMID: 35410981 PMCID: PMC9424338 DOI: 10.4062/biomolther.2021.192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/28/2022] [Accepted: 02/22/2022] [Indexed: 11/26/2022] Open
Abstract
Diabetic cardiomyopathy (DCM) is described as abnormalities of myocardial structure and function in diabetic patients without other well-established cardiovascular factors. Although multiple pathological mechanisms involving in this unique myocardial disorder, mitochondrial dysfunction may play an important role in its development of DCM. Recently, considerable progresses have suggested that mitochondrial biogenesis is a tightly controlled process initiating mitochondrial generation and maintaining mitochondrial function, appears to be associated with DCM. Nonetheless, an outlook on the mechanisms and clinical relevance of dysfunction in mitochondrial biogenesis among patients with DCM is not completely understood. In this review, hence, we will summarize the role of mitochondrial biogenesis dysfunction in the development of DCM, especially the molecular underlying mechanism concerning the signaling pathways beyond the stimulation and inhibition of mitochondrial biogenesis. Additionally, the evaluations and potential therapeutic strategies regarding mitochondrial biogenesis dysfunction in DCM is also presented.
Collapse
Affiliation(s)
- Li-Chan Tao
- The Third Affiliated Hospital of Soochow University, Juqian Road, Changzhou 213000, China
| | - Ting-Ting Wang
- The Third Affiliated Hospital of Soochow University, Juqian Road, Changzhou 213000, China
| | - Lu Zheng
- The Third Affiliated Hospital of Soochow University, Juqian Road, Changzhou 213000, China
| | - Fei Hua
- The Third Affiliated Hospital of Soochow University, Juqian Road, Changzhou 213000, China
| | - Jian-Jun Li
- State Key Laboratory of Cardiovascular Diseases, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| |
Collapse
|
12
|
Mishra PK. Why the diabetic heart is energy inefficient: a ketogenesis and ketolysis perspective. Am J Physiol Heart Circ Physiol 2021; 321:H751-H755. [PMID: 34533402 DOI: 10.1152/ajpheart.00260.2021] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Lack of glucose uptake compromises metabolic flexibility and reduces energy efficiency in the diabetes mellitus (DM) heart. Although increased use of fatty acid to compensate glucose substrate has been studied, less is known about ketone body metabolism in the DM heart. Ketogenic diet reduces obesity, a risk factor for T2DM. How ketogenic diet affects ketone metabolism in the DM heart remains unclear. At the metabolic level, the DM heart differs from the non-DM heart because of altered metabolic substrate and the T1DM heart differs from the T2DM heart because of insulin levels. How these changes affect ketone body metabolism in the DM heart are poorly understood. Ketogenesis produces ketone bodies by using acetyl-CoA, whereas ketolysis consumes ketone bodies to produce acetyl-CoA, showing their opposite roles in the ketone body metabolism. Cardiac-specific transgenic upregulation of ketogenesis enzyme or knockout of ketolysis enzyme causes metabolic abnormalities leading to cardiac dysfunction. Empirical evidence demonstrates upregulated transcription of ketogenesis enzymes, no change in the levels of ketone body transporters, very high levels of ketone bodies, and reduced expression and activity of ketolysis enzymes in the T1DM heart. Based on these observations, I hypothesize that increased transcription and activity of cardiac ketogenesis enzyme suppresses ketolysis enzyme in the DM heart, which decreases cardiac energy efficiency. The T1DM heart exhibits highly upregulated ketogenesis compared with the T2DM heart because of the lack of insulin, which inhibits ketogenesis enzyme.
Collapse
Affiliation(s)
- Paras Kumar Mishra
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
13
|
Lindsay RT, Dieckmann S, Krzyzanska D, Manetta-Jones D, West JA, Castro C, Griffin JL, Murray AJ. β-hydroxybutyrate accumulates in the rat heart during low-flow ischaemia with implications for functional recovery. eLife 2021; 10:e71270. [PMID: 34491199 PMCID: PMC8423437 DOI: 10.7554/elife.71270] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/23/2021] [Indexed: 12/15/2022] Open
Abstract
Extrahepatic tissues which oxidise ketone bodies also have the capacity to accumulate them under particular conditions. We hypothesised that acetyl-coenzyme A (acetyl-CoA) accumulation and altered redox status during low-flow ischaemia would support ketone body production in the heart. Combining a Langendorff heart model of low-flow ischaemia/reperfusion with liquid chromatography coupled tandem mass spectrometry (LC-MS/MS), we show that β-hydroxybutyrate (β-OHB) accumulated in the ischaemic heart to 23.9 nmol/gww and was secreted into the coronary effluent. Sodium oxamate, a lactate dehydrogenase (LDH) inhibitor, increased ischaemic β-OHB levels 5.3-fold and slowed contractile recovery. Inhibition of β-hydroxy-β-methylglutaryl (HMG)-CoA synthase (HMGCS2) with hymeglusin lowered ischaemic β-OHB accumulation by 40%, despite increased flux through succinyl-CoA-3-oxaloacid CoA transferase (SCOT), resulting in greater contractile recovery. Hymeglusin also protected cardiac mitochondrial respiratory capacity during ischaemia/reperfusion. In conclusion, net ketone generation occurs in the heart under conditions of low-flow ischaemia. The process is driven by flux through both HMGCS2 and SCOT, and impacts on cardiac functional recovery from ischaemia/reperfusion.
Collapse
Affiliation(s)
- Ross T Lindsay
- Department of Physiology, Development and Neuroscience, University of CambridgeLondonUnited Kingdom
- Department of Biochemistry and Cambridge Systems Biology Centre, University of CambridgeLondonUnited Kingdom
| | - Sophie Dieckmann
- Department of Physiology, Development and Neuroscience, University of CambridgeLondonUnited Kingdom
| | - Dominika Krzyzanska
- Department of Physiology, Development and Neuroscience, University of CambridgeLondonUnited Kingdom
| | - Dominic Manetta-Jones
- Department of Physiology, Development and Neuroscience, University of CambridgeLondonUnited Kingdom
| | - James A West
- Department of Biochemistry and Cambridge Systems Biology Centre, University of CambridgeLondonUnited Kingdom
| | - Cecilia Castro
- Department of Biochemistry and Cambridge Systems Biology Centre, University of CambridgeLondonUnited Kingdom
| | - Julian L Griffin
- Department of Biochemistry and Cambridge Systems Biology Centre, University of CambridgeLondonUnited Kingdom
- Section of Biomolecular Medicine, Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College LondonLondonUnited Kingdom
| | - Andrew J Murray
- Department of Physiology, Development and Neuroscience, University of CambridgeLondonUnited Kingdom
| |
Collapse
|
14
|
Song JP, Chen L, Chen X, Ren J, Zhang NN, Tirasawasdichai T, Hu ZL, Hua W, Hu YR, Tang HR, Chen HSV, Hu SS. Elevated plasma β-hydroxybutyrate predicts adverse outcomes and disease progression in patients with arrhythmogenic cardiomyopathy. Sci Transl Med 2021; 12:12/530/eaay8329. [PMID: 32051229 DOI: 10.1126/scitranslmed.aay8329] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 11/12/2019] [Accepted: 01/03/2020] [Indexed: 12/17/2022]
Abstract
Sudden death could be the first symptom of patients with arrhythmogenic cardiomyopathy (AC), a disease for which clinical indicators predicting adverse progression remain lacking. Recent findings suggest that metabolic dysregulation is present in AC. We performed this study to identify metabolic indicators that predicted major adverse cardiac events (MACEs) in patients with AC and their relatives. Comparing explanted hearts from patients with AC and healthy donors, we identified deregulated metabolic pathways using quantitative proteomics. Right ventricles (RVs) from patients with AC displayed elevated ketone metabolic enzymes, OXCT1 and HMGCS2, suggesting higher ketone metabolism in AC RVs. Analysis of matched coronary artery and sinus plasma suggested potential ketone body synthesis at early-stage AC, which was validated using patient-derived induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) in vitro. Targeted metabolomics analysis in RVs from end-stage AC revealed a "burned-out" state, with predominant medium-chain fatty acid rather than ketone body utilization. In an independent validation cohort, 65 probands with mostly non-heart failure manifestations of AC had higher plasma β-hydroxybutyrate (β-OHB) than 62 healthy volunteers (P < 0.001). Probands with AC with MACE had higher β-OHB than those without MACE (P < 0.001). Among 94 relatives of probands, higher plasma β-OHB distinguished 25 relatives having suspected AC from nonaffected relatives. This study demonstrates that elevated plasma β-OHB predicts MACE in probands and disease progression in patients with AC and their clinically asymptomatic relatives.
Collapse
Affiliation(s)
- Jiang-Ping Song
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital; National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100037, China.
| | - Liang Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital; National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100037, China
| | - Xiao Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital; National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100037, China
| | - Jie Ren
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital; National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100037, China
| | - Ning-Ning Zhang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital; National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100037, China
| | - Tiara Tirasawasdichai
- Krannert Institute of Cardiology (KIC), Indiana University, Indianapolis, IN 46202, USA
| | - Zhen-Liang Hu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital; National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100037, China
| | - Wei Hua
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital; National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100037, China
| | - Yi-Ran Hu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital; National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100037, China
| | - Hui-Ru Tang
- State Key Laboratory of Genetic Engineering, Zhongshan Hospital and School of Life Sciences, Human Phenome Institute, Metabonomics and Systems Biology Laboratory at Shanghai International Centre for Molecular Phenomics, Fudan University, Shanghai 200438, China
| | | | - Sheng-Shou Hu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital; National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100037, China.
| |
Collapse
|
15
|
Qian X, Wang T, Gong J, Wang L, Chen X, Lin H, Tu W, Jiang S, Li S. Exercise in mice ameliorates high-fat diet-induced nonalcoholic fatty liver disease by lowering HMGCS2. Aging (Albany NY) 2021; 13:8960-8974. [PMID: 33647884 PMCID: PMC8034885 DOI: 10.18632/aging.202717] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 01/14/2021] [Indexed: 12/18/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a common chronic liver disease worldwide. Exercise is a therapeutic strategy for preventing NAFLD. However, the underlying molecular mechanisms by which NAFLD can be ameliorated through exercise are still not clear. This study investigates the mechanisms by which exercise suppresses NAFLD development induced by a high-fat diet (HFD) in mice. Male 6-week-old C57BL/6J mice were fed a normal diet or HFD for 12 weeks and then induced to swim or remain sedentary for 8 weeks. Histomorphology, inflammatory factors, fat metabolizing enzymes, fibrosis, and steatosis were determined in HFD-fed mouse liver, and levels of hepatic enzymes and molecules in the related pathways were analyzed. NAFLD mice showed evident steatosis, fibrosis, and liver injury, and an increased expression of HMGCS2, Wnt3a/ β-catenin, and phosphorylated (p)-AMPK in the liver. Exercise significantly attenuated these symptoms and downregulated the level of Wnt3a/β-catenin in lipotoxic liver tissue. Inhibition of HMGCS2 expression decreased the activation of the Wnt3a/β-catenin pathway and lowered p-AMPK in palmitate-treated HepG2. Our results suggest that exercise prevents NAFLD-associated liver injury, steatosis, and fibrosis. Exercise-mediated hepatoprotection was achieved partly via the blocking of the upregulation of HMGCS2 and the attenuation of the Wnt3a/β-catenin pathway.
Collapse
Affiliation(s)
- Xiaoli Qian
- Rehabilitation Medicine Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China.,Integrative and Optimized Medicine Research Center, China-USA Institute for Acupuncture and Rehabilitation, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Ting Wang
- Rehabilitation Medicine Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China.,Integrative and Optimized Medicine Research Center, China-USA Institute for Acupuncture and Rehabilitation, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Jiahong Gong
- Rehabilitation Medicine Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China.,Integrative and Optimized Medicine Research Center, China-USA Institute for Acupuncture and Rehabilitation, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Li Wang
- Rehabilitation Medicine Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China.,Integrative and Optimized Medicine Research Center, China-USA Institute for Acupuncture and Rehabilitation, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Xuyan Chen
- Rehabilitation Medicine Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China.,Integrative and Optimized Medicine Research Center, China-USA Institute for Acupuncture and Rehabilitation, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Haiyan Lin
- Rehabilitation Medicine Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China.,Integrative and Optimized Medicine Research Center, China-USA Institute for Acupuncture and Rehabilitation, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Wenzhan Tu
- Rehabilitation Medicine Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China.,Integrative and Optimized Medicine Research Center, China-USA Institute for Acupuncture and Rehabilitation, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Songhe Jiang
- Rehabilitation Medicine Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China.,Integrative and Optimized Medicine Research Center, China-USA Institute for Acupuncture and Rehabilitation, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Shengcun Li
- Rehabilitation Medicine Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China.,Integrative and Optimized Medicine Research Center, China-USA Institute for Acupuncture and Rehabilitation, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| |
Collapse
|
16
|
Miranda-Silva D, Lima T, Rodrigues P, Leite-Moreira A, Falcão-Pires I. Mechanisms underlying the pathophysiology of heart failure with preserved ejection fraction: the tip of the iceberg. Heart Fail Rev 2021; 26:453-478. [PMID: 33411091 DOI: 10.1007/s10741-020-10042-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/15/2020] [Indexed: 12/18/2022]
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a multifaceted syndrome with a complex aetiology often associated with several comorbidities, such as left ventricle pressure overload, diabetes mellitus, obesity, and kidney disease. Its pathophysiology remains obscure mainly due to the complex phenotype induced by all these associated comorbidities and to the scarcity of animal models that adequately mimic HFpEF. Increased oxidative stress, inflammation, and endothelial dysfunction are currently accepted as key players in HFpEF pathophysiology. However, we have just started to unveil HFpEF complexity and the role of calcium handling, energetic metabolism, and mitochondrial function remain to clarify. Indeed, the enlightenment of such cellular and molecular mechanisms represents an opportunity to develop novel therapeutic approaches and thus to improve HFpEF treatment options. In the last decades, the number of research groups dedicated to studying HFpEF has increased, denoting the importance and the magnitude achieved by this syndrome. In the current technological and web world, the amount of information is overwhelming, driving us not only to compile the most relevant information about the theme but also to explore beyond the tip of the iceberg. Thus, this review aims to encompass the most recent knowledge related to HFpEF or HFpEF-associated comorbidities, focusing mainly on myocardial metabolism, oxidative stress, and energetic pathways.
Collapse
Affiliation(s)
- Daniela Miranda-Silva
- Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Porto, Portugal.
| | - Tânia Lima
- Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Patrícia Rodrigues
- Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Adelino Leite-Moreira
- Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Inês Falcão-Pires
- Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Porto, Portugal
| |
Collapse
|
17
|
Gropler RJ. Imaging Myocardial Metabolism. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00083-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
18
|
Li S, Qian X, Gong J, Chen J, Tu W, Chen X, Chu M, Yang G, Li L, Jiang S. Exercise Training Reverses Lipotoxicity-induced Cardiomyopathy by Inhibiting HMGCS2. Med Sci Sports Exerc 2021; 53:47-57. [PMID: 32826638 DOI: 10.1249/mss.0000000000002453] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE This study aimed to determine the effect of exercise training on preventing lipotoxic cardiomyopathy and to investigate the role of the 3-hydroxy-3-methylglutaryl-CoA synthase 2 (HMGCS2) and miR-344g-5p in cardiomyocytes. METHODS Male C57BL/6 mice were fed a 60% high-fat diet (HFD) for 12 wk then began swimming exercise or remained sedentary for 8 wk. Thereafter, cardiac function was assessed by echocardiography, and heart tissue and plasma were collected for further measurements. The molecular mechanism of exercise was investigated after treating Hmgcs2 siRNA in palmitate-induced neonatal mouse cardiomyocytes. RESULTS HFD induced myocardial hypertrophy and fibrosis and reduced coronary reserve and cardiac function. HMGCS2 levels increased, but junctophilin-2 (JPH2) levels decreased in HFD mice hearts. Such effects were attenuated by swimming exercise. Mechanistically, Hmgcs2 silencing prevented apoptosis and caspase-3 cleavage and elevated the expression of JPH2 in palmitate-stimulated cardiomyocytes. In addition, exercise promoted miR-344g-5p expression in HFD hearts. The overexpression of miR-344g-5p by chemical mimic reduced HMGCS2, apoptosis, and caspase-3 cleavage and elevated JPH2 expression in palmitate-induced cardiomyocytes. CONCLUSION Our results suggest that exercise limits lipid metabolic disorder, cardiac hypertrophy, and fibrosis and aids in the prevention of lipotoxic cardiomyopathy. Exercise-mediated cardioprotection by upregulating miR-344g-5p, which targets Hmgcs2 mRNA, prohibits HMGCS2 upregulation and thus lipotoxicity.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Maoping Chu
- Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, CHINA
| | | | - Lei Li
- Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, CHINA
| | | |
Collapse
|
19
|
Dai L, Xie Y, Zhang W, Zhong X, Wang M, Jiang H, He Z, Liu X, Zeng H, Wang H. Weighted Gene Co-Expression Network Analysis Identifies ANGPTL4 as a Key Regulator in Diabetic Cardiomyopathy via FAK/SIRT3/ROS Pathway in Cardiomyocyte. Front Endocrinol (Lausanne) 2021; 12:705154. [PMID: 34616362 PMCID: PMC8488438 DOI: 10.3389/fendo.2021.705154] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/27/2021] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Diabetic cardiomyopathy (DbCM) is characterized by initial impairment of left ventricular relaxation followed by contractile dysfunction. Despite intensive research, the exact mechanism remains so far unsolved. METHODS We constructed weighted gene co-expression network analysis (WGCNA) to screen gene modules that were closely related with DbCM based on the GSE5606 dataset, which contained expression data of the cardiac left ventricle in a rodent model of streptozotocin (STZ)-induced DbCM. Then, the most related hub gene, angiopoietin-like 4 (ANGPTL4), was selected for functional ex vivo and in vitro assays. In our experiments, STZ-induced diabetic mice (C57BL/6J) and human cardiomyocytes (AC16) were used to study the functional roles and potential mechanisms of ANGPTL4 in DbCM. RESULTS WGCNA analysis revealed the yellow and green modules were most correlated with DbCM, and identified ANGPTL4 as one of the most significantly upregulated hub genes (ANGPTL4, ACOT1, DECR1, HMGCS2, and PDK4). Consistent with the bioinformatic analysis, the amount of ANGPTL4 was significantly upregulated in diabetic mouse heart. DbCM group, compared with the control group, had increased phosphorylation of focal adhesion kinase (FAK), reduced SIRT3 expression, increased SOD2 acetylation, upregulated NADPH oxidase activation, elevated reactive oxygen species (ROS) produciton, and enhanced apoptosis in the diabetic mouse heart. Moreover, ANGPTL4 induced apoptosis via FAK/SIRT3/ROS pathway in human cardiomyocytes (AC16) under high glucose condition in vitro.These effects were abrogated by treatment of two independent siRNA for ANGPTL4, whereas exogenous recombinant ANGPLT4 protein treatment exacerbated those effects in AC16. CONCLUSION We found ANGPTL4, ACOT1, DECR1, HMGCS2, and PDK4 were significantly increased in diabetic heart. ANGPTL4 could promote cardiac apoptosis via a FAK/SIRT3/ROS dependent signaling pathway in DbCM.
Collapse
Affiliation(s)
- Lei Dai
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Xie
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan, China
| | - Wenjun Zhang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaodan Zhong
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan, China
| | - Mengwen Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan, China
| | - Hongcheng Jiang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan, China
| | - Zhen He
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaolei Liu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan, China
| | - Hesong Zeng
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Hesong Zeng, ; Hongjie Wang,
| | - Hongjie Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Hesong Zeng, ; Hongjie Wang,
| |
Collapse
|
20
|
Morsy MD, Aboonq MS, ALsleem MA, Abusham AA. Taurine prevents high-fat diet-induced-hepatic steatosis in rats by direct inhibition of hepatic sterol regulatory element-binding proteins and activation of AMPK. Clin Exp Pharmacol Physiol 2021; 48:72-85. [PMID: 32691860 DOI: 10.1111/1440-1681.13387] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/30/2020] [Accepted: 07/16/2020] [Indexed: 12/12/2022]
Abstract
This study investigated if the protective effect of taurine against high fat diet-induced hepatic steatosis involves modulating the hepatic activity of 5' AMP-activated protein kinase (AMPK) and levels/activity of the sterol regulatory element-binding proteins-1/2 (SREBP1/2). Rats were divided into four groups (n = 12/group) as (a) STD, fed standard diet (3.85 kcal/g); (b) STD + taurine (500 mg/kg); (c) HFD, fed HFD (4.73 kcal/g); and (d) HFD + taurine. All treatments were conducted for 12 weeks. Independent of food intake or modulating glucose or insulin levels, taurine administration to STD and HFD-fed rats significantly lowered weekly weight gain and the accumulation of the retroperitoneal, visceral and subcutaneous fats. In both groups, taurine also reduced serum and hepatic levels of triglycerides and cholesterol and reduced hepatic mRNA and protein levels of fatty acid synthase (FAS), acetyl CoA carboxylase-1 (ACC-1), HMG-CoA-reductase and HMG-CoA synthetase. In control rats only, taurine reduced hepatic levels of mature forms of sterol regulatory element-binding proteins (SREBP)-1/2. In HFD-fed rats, taurine reduced SREBP-1/2 precursor and mature forms in the livers of HFD-fed rats. Besides, taurine significantly increased levels of glutathione (GSH), the activity of superoxide dismutase (SOD), and the activity of AMPK and its downstream β-oxidation genes including peroxisome proliferator-activated receptor-α (PPAR-α) and carnitine palmitoyltransferase (CPT-1) in the livers of both the control and HFD-fed rats. In conclusion, taurine protects against HFD-induced hepatic steatosis stimulating antioxidant levels, and concomitant stimulating hepatic β-oxidation and suppressing lipid synthesis, mediated by activation of AMPK and suppression of SREBP-1.
Collapse
Affiliation(s)
- Mohamed Darwesh Morsy
- Department of Physiology, College of Medicine, King Khalid University, Abha, Saudi Arabia
- Department of Physiology, College of Medicine, Menoufia University, Shebeen Alkoom, Egypt
| | - Moutasem Salih Aboonq
- Department of Physiology, College of Medicine, Taibah University, Al-Madinah Al-Munawwarah, Saudi Arabia
| | - Mohammed Abadi ALsleem
- Department of Family and Community Medicine, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Abdalla Abdelrahim Abusham
- Department of Obstetrics and Gynecology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
21
|
Changes in gene expression of lactate carriers (MCT1 and CD147) in cardiac muscle of diabetic male rats: the effect of dichloroacetate and endurance training. UKRAINIAN BIOCHEMICAL JOURNAL 2020. [DOI: 10.15407/ubj92.05.111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
22
|
Lopaschuk GD, Karwi QG, Ho KL, Pherwani S, Ketema EB. Ketone metabolism in the failing heart. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158813. [PMID: 32920139 DOI: 10.1016/j.bbalip.2020.158813] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/26/2020] [Accepted: 09/05/2020] [Indexed: 12/13/2022]
Abstract
The high energy demands of the heart are met primarily by the mitochondrial oxidation of fatty acids and glucose. However, in heart failure there is a decrease in cardiac mitochondrial oxidative metabolism and glucose oxidation that can lead to an energy starved heart. Ketone bodies are readily oxidized by the heart, and can provide an additional source of energy for the failing heart. Ketone oxidation is increased in the failing heart, which may be an adaptive response to lessen the severity of heart failure. While ketone have been widely touted as a "thrifty fuel", increasing ketone oxidation in the heart does not increase cardiac efficiency (cardiac work/oxygen consumed), but rather does provide an additional fuel source for the failing heart. Increasing ketone supply to the heart and increasing mitochondrial ketone oxidation increases mitochondrial tricarboxylic acid cycle activity. In support of this, increasing circulating ketone by iv infusion of ketone bodies acutely improves heart function in heart failure patients. Chronically, treatment with sodium glucose co-transporter 2 inhibitors, which decreases the severity of heart failure, also increases ketone body supply to the heart. While ketogenic diets increase circulating ketone levels, minimal benefit on cardiac function in heart failure has been observed, possibly due to the fact that these dietary regimens also markedly increase circulating fatty acids. Recent studies, however, have suggested that administration of ketone ester cocktails may improve cardiac function in heart failure. Combined, emerging data suggests that increasing cardiac ketone oxidation may be a therapeutic strategy to treat heart failure.
Collapse
Affiliation(s)
- Gary D Lopaschuk
- Cardiovascular Research Centre, Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada.
| | - Qutuba G Karwi
- Cardiovascular Research Centre, Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada; Department of Pharmacology, College of Medicine, University of Diyala, Diyala, Iraq
| | - Kim L Ho
- Cardiovascular Research Centre, Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Simran Pherwani
- Cardiovascular Research Centre, Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Ezra B Ketema
- Cardiovascular Research Centre, Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
23
|
Brahma MK, Ha C, Pepin ME, Mia S, Sun Z, Chatham JC, Habegger KM, Abel ED, Paterson AJ, Young ME, Wende AR. Increased Glucose Availability Attenuates Myocardial Ketone Body Utilization. J Am Heart Assoc 2020; 9:e013039. [PMID: 32750298 PMCID: PMC7792234 DOI: 10.1161/jaha.119.013039] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 06/05/2020] [Indexed: 02/06/2023]
Abstract
Background Perturbations in myocardial substrate utilization have been proposed to contribute to the pathogenesis of cardiac dysfunction in diabetic subjects. The failing heart in nondiabetics tends to decrease reliance on fatty acid and glucose oxidation, and increases reliance on ketone body oxidation. In contrast, little is known regarding the mechanisms mediating this shift among all 3 substrates in diabetes mellitus. Therefore, we tested the hypothesis that changes in myocardial glucose utilization directly influence ketone body catabolism. Methods and Results We examined ventricular-cardiac tissue from the following murine models: (1) streptozotocin-induced type 1 diabetes mellitus; (2) high-fat-diet-induced glucose intolerance; and transgenic inducible cardiac-restricted expression of (3) glucose transporter 4 (transgenic inducible cardiac restricted expression of glucose transporter 4); or (4) dominant negative O-GlcNAcase. Elevated blood glucose (type 1 diabetes mellitus and high-fat diet mice) was associated with reduced cardiac expression of β-hydroxybutyrate-dehydrogenase and succinyl-CoA:3-oxoacid CoA transferase. Increased myocardial β-hydroxybutyrate levels were also observed in type 1 diabetes mellitus mice, suggesting a mismatch between ketone body availability and utilization. Increased cellular glucose delivery in transgenic inducible cardiac restricted expression of glucose transporter 4 mice attenuated cardiac expression of both Bdh1 and Oxct1 and reduced rates of myocardial BDH1 activity and β-hydroxybutyrate oxidation. Moreover, elevated cardiac protein O-GlcNAcylation (a glucose-derived posttranslational modification) by dominant negative O-GlcNAcase suppressed β-hydroxybutyrate dehydrogenase expression. Consistent with the mouse models, transcriptomic analysis confirmed suppression of BDH1 and OXCT1 in patients with type 2 diabetes mellitus and heart failure compared with nondiabetic patients. Conclusions Our results provide evidence that increased glucose leads to suppression of cardiac ketolytic capacity through multiple mechanisms and identifies a potential crosstalk between glucose and ketone body metabolism in the diabetic myocardium.
Collapse
Affiliation(s)
- Manoja K. Brahma
- Departments of PathologyDivision of Molecular and Cellular PathologyUniversity of Alabama at BirminghamALUSA
| | - Chae‐Myeong Ha
- Departments of PathologyDivision of Molecular and Cellular PathologyUniversity of Alabama at BirminghamALUSA
| | - Mark E. Pepin
- Departments of PathologyDivision of Molecular and Cellular PathologyUniversity of Alabama at BirminghamALUSA
- Biomedical EngineeringUniversity of Alabama at BirminghamALUSA
| | - Sobuj Mia
- Medicine, Division of Cardiovascular DiseasesUniversity of Alabama at BirminghamALUSA
| | - Zhihuan Sun
- Departments of PathologyDivision of Molecular and Cellular PathologyUniversity of Alabama at BirminghamALUSA
| | - John C. Chatham
- Departments of PathologyDivision of Molecular and Cellular PathologyUniversity of Alabama at BirminghamALUSA
| | - Kirk M. Habegger
- Medicine, Division of Endocrinology, Diabetes, and MetabolismUniversity of Alabama at BirminghamALUSA
| | - Evan Dale Abel
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and MetabolismCarver College of MedicineUniversity of IowaIowa CityIAUSA
| | - Andrew J. Paterson
- Medicine, Division of Endocrinology, Diabetes, and MetabolismUniversity of Alabama at BirminghamALUSA
| | - Martin E. Young
- Medicine, Division of Cardiovascular DiseasesUniversity of Alabama at BirminghamALUSA
| | - Adam R. Wende
- Departments of PathologyDivision of Molecular and Cellular PathologyUniversity of Alabama at BirminghamALUSA
- Biomedical EngineeringUniversity of Alabama at BirminghamALUSA
| |
Collapse
|
24
|
Abstract
The term diabetic cardiomyopathy is defined as the presence of abnormalities in myocardial structure and function that occur in the absence of, or in addition to, well-established cardiovascular risk factors. A key contributor to this abnormal structural-functional relation is the complex interplay of myocardial metabolic remodeling, defined as the loss the flexibility in myocardial substrate metabolism and its downstream detrimental effects, such as mitochondrial dysfunction, inflammation, and fibrosis. In parallel with the growth in understanding of these biological underpinnings has been developmental advances in imaging tools such as positron emission tomography and magnetic resonance imaging and spectroscopy that permit the detection and in many cases quantification, of the processes that typifies the myocardial metabolic remodeling in diabetic cardiomyopathy. The imaging readouts can be obtained in both preclinical models of diabetes mellitus and patients with diabetes mellitus facilitating the bi-directional movement of information between bench and bedside. Moreover, imaging biomarkers provided by these tools are now being used to enhance discovery and development of therapies designed to reduce the myocardial effects of diabetes mellitus through metabolic modulation. In this review, the use of these imaging tools in the patient with diabetes mellitus from a mechanistic, therapeutic effect, and clinical management perspective will be discussed.
Collapse
Affiliation(s)
- Linda R Peterson
- From the Cardiovascular Division, Department of Medicine (L.R.P.), Washington University School of Medicine, St Louis, MO
| | - Robert J Gropler
- Division of Radiological Sciences, Edward Mallinckrodt Institute of Radiology (R.J.G.), Washington University School of Medicine, St Louis, MO
| |
Collapse
|
25
|
Rezaei Nasab H, Habibi AH, Nikbakht M, Rashno M, Shakerian S. Changes in Serum Levels and Gene Expression of PGC-1α in The Cardiac Muscle of Diabetic Rats: The Effect of Dichloroacetate and Endurance Training. CELL JOURNAL 2020; 22:425-430. [PMID: 32347035 PMCID: PMC7211283 DOI: 10.22074/cellj.2021.6942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/24/2019] [Indexed: 11/26/2022]
Abstract
Objective Physical activity leads to changes in the level of gene expression in different kinds of cells, including
changes in mitochondrial biogenesis in the myocardium in diabetic patients. Peroxisome proliferator-activated receptor
γ coactivator 1α (PGC-1α) is a gene that plays an important role in regulating mitochondrial biogenesis. The purpose
of this study was to investigate changes in serum levels and cardiac muscle expression of PGC-1α in diabetic rats in
response to the administration of dichloroacetate (DCA) and endurance training.
Materials and Methods In this experimental study, 64 male Wistar rats were selected and randomly divided into eight
groups after induction of diabetes with streptozotocin (STZ). The endurance training protocol was performed on a
treadmill for 6 weeks. Intraperitoneal injection of DCA of 50 mg/ kg body weight was used for the inhibition of Pyruvate
Dehydrogenase Kinase 4 (PDK4) in the myocardium. Gene expression were measured using real-time polymerase
chain reaction (PCR). One-way ANOVA and Tukey’s test were used to statistically analyze the data.
Results The results of the study showed that PDK4 gene expression in the endurance training group, diabetes+endurance
training group, diabetes+endurance training+DCA group and endurance training+DCA group was higher compared to
the control group. Expression of PGC-1α was higher in the endurance training group compared to the control group
but was lower compared to the control group in diabetes+endurance training+DCA group and diabetes+DCA group
(P<0.05).
Conclusion Considering that PGC-1α plays an important role in mitochondrial biogenesis, it is likely that by inhibiting
PDK4 and subsequently controlling oxidation of fatty acid (FA) in the heart tissue, oxidative stress in the heart tissue of
diabetic patients will be reduced and cardiac efficiency will be increased.
Collapse
Affiliation(s)
- Hamed Rezaei Nasab
- Department of Exercise Physiology, Faculty of Sport Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran. Electronic Address:
| | - Abdol Hamid Habibi
- Department of Exercise Physiology, Faculty of Sport Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Masoud Nikbakht
- Department of Exercise Physiology, Faculty of Sport Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mohammad Rashno
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Saeed Shakerian
- Department of Exercise Physiology, Faculty of Sport Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
26
|
Shimamura Y, Shibata M, Sato M, Nagai R, Yang P, Shiokawa KI, Kikuchi H, Masuda S. Anti-hyperglycemic Activity and Inhibition of Advanced Glycation End Products by Lonicera japonica Thunb. in Streptozotocin-induced Diabetic Rats. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2020. [DOI: 10.3136/fstr.26.825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Yuko Shimamura
- School of Food and Nutritional Sciences, University of Shizuoka
| | | | - Midori Sato
- School of Food and Nutritional Sciences, University of Shizuoka
| | - Ryoji Nagai
- Graduate School of Agriculture, Tokai University
| | - Ping Yang
- Japan Preventive Medical Laboratory Co., Ltd
| | | | | | - Shuichi Masuda
- School of Food and Nutritional Sciences, University of Shizuoka
| |
Collapse
|
27
|
|
28
|
Effect of Ethyl Acetate Extract of Ferula asafoetida Oleo-Gum Resin on the Glucose Level and Lipid Profile in Streptozotocin-Induced Diabetic Rats. Jundishapur J Nat Pharm Prod 2019. [DOI: 10.5812/jjnpp.67042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
29
|
Abstract
Significance: Diabetic cardiomyopathy (DCM) is a frequent complication occurring even in well-controlled asymptomatic diabetic patients, and it may advance to heart failure (HF). Recent Advances: The diabetic heart is characterized by a state of "metabolic rigidity" involving enhanced rates of fatty acid uptake and mitochondrial oxidation as the predominant energy source, and it exhibits mitochondrial electron transport chain defects. These alterations promote redox state changes evidenced by a decreased NAD+/NADH ratio associated with an increase in acetyl-CoA/CoA ratio. NAD+ is a co-substrate for deacetylases, sirtuins, and a critical molecule in metabolism and redox signaling; whereas acetyl-CoA promotes protein lysine acetylation, affecting mitochondrial integrity and causing epigenetic changes. Critical Issues: DCM lacks specific therapies with treatment only in later disease stages using standard, palliative HF interventions. Traditional therapy targeting neurohormonal signaling and hemodynamics failed to improve mortality rates. Though mitochondrial redox state changes occur in the heart with obesity and diabetes, how the mitochondrial NAD+/NADH redox couple connects the remodeled energy metabolism with mitochondrial and cytosolic antioxidant defense and nuclear epigenetic changes remains to be determined. Mitochondrial therapies targeting the mitochondrial NAD+/NADH redox ratio may alleviate cardiac dysfunction. Future Directions: Specific therapies must be supported by an optimal understanding of changes in mitochondrial redox state and how it influences other cellular compartments; this field has begun to surface as a therapeutic target for the diabetic heart. We propose an approach based on an alternate mitochondrial electron transport that normalizes the mitochondrial redox state and improves cardiac function in diabetes.
Collapse
Affiliation(s)
- Jessica M Berthiaume
- 1 Department of Physiology & Biophysics, School of Medicine, Case Western Reserve University , Cleveland, Ohio
| | - Jacob G Kurdys
- 2 Department of Foundational Sciences, College of Medicine, Central Michigan University , Mount Pleasant, Michigan
| | - Danina M Muntean
- 3 Department of Functional Sciences-Pathophysiology, "Victor Babes" University of Medicine and Pharmacy , Timisoara, Romania
| | - Mariana G Rosca
- 2 Department of Foundational Sciences, College of Medicine, Central Michigan University , Mount Pleasant, Michigan
| |
Collapse
|
30
|
Park S, Jeon JH, Min BK, Ha CM, Thoudam T, Park BY, Lee IK. Role of the Pyruvate Dehydrogenase Complex in Metabolic Remodeling: Differential Pyruvate Dehydrogenase Complex Functions in Metabolism. Diabetes Metab J 2018; 42:270-281. [PMID: 30136450 PMCID: PMC6107359 DOI: 10.4093/dmj.2018.0101] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Accepted: 07/05/2018] [Indexed: 01/18/2023] Open
Abstract
Mitochondrial dysfunction is a hallmark of metabolic diseases such as obesity, type 2 diabetes mellitus, neurodegenerative diseases, and cancers. Dysfunction occurs in part because of altered regulation of the mitochondrial pyruvate dehydrogenase complex (PDC), which acts as a central metabolic node that mediates pyruvate oxidation after glycolysis and fuels the Krebs cycle to meet energy demands. Fine-tuning of PDC activity has been mainly attributed to post-translational modifications of its subunits, including the extensively studied phosphorylation and de-phosphorylation of the E1α subunit of pyruvate dehydrogenase (PDH), modulated by kinases (pyruvate dehydrogenase kinase [PDK] 1-4) and phosphatases (pyruvate dehydrogenase phosphatase [PDP] 1-2), respectively. In addition to phosphorylation, other covalent modifications, including acetylation and succinylation, and changes in metabolite levels via metabolic pathways linked to utilization of glucose, fatty acids, and amino acids, have been identified. In this review, we will summarize the roles of PDC in diverse tissues and how regulation of its activity is affected in various metabolic disorders.
Collapse
Affiliation(s)
- Sungmi Park
- Leading-edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Daegu, Korea.
| | - Jae Han Jeon
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Byong Keol Min
- Department of Biomedical Science & BK21 plus KNU Biomedical Convergence Programs, Kyungpook National University, Daegu, Korea
| | - Chae Myeong Ha
- Department of Biomedical Science & BK21 plus KNU Biomedical Convergence Programs, Kyungpook National University, Daegu, Korea
| | - Themis Thoudam
- Department of Biomedical Science & BK21 plus KNU Biomedical Convergence Programs, Kyungpook National University, Daegu, Korea
| | - Bo Yoon Park
- Department of Biomedical Science & BK21 plus KNU Biomedical Convergence Programs, Kyungpook National University, Daegu, Korea
| | - In Kyu Lee
- Leading-edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Daegu, Korea
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Korea
- Department of Biomedical Science & BK21 plus KNU Biomedical Convergence Programs, Kyungpook National University, Daegu, Korea.
| |
Collapse
|
31
|
Starčević K, Filipović N, Galan A, Micek V, Gudan Kurilj A, Mašek T. Hepatic Lipogenesis and Brain Fatty Acid Profile in Response to Different Dietary n6/n3 Ratios and DHA/EPA Supplementation in Streptozotocin Treated Rats. Mol Nutr Food Res 2018; 62:e1701007. [PMID: 29579359 DOI: 10.1002/mnfr.201701007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 03/07/2018] [Indexed: 11/06/2022]
Abstract
SCOPE We investigated the interaction between streptozotocin (STZ)-induced diabetes and dietary n6/n3 ratio, and its influence on lipogenesis. METHODS AND RESULTS The animals were treated with STZ and fed with different dietary n6/n3 ratios: 1, 7, and 60, or supplemented with DHA/EPA. Gene expression was assessed by RT-PCR and protein expression by western blotting and immunohistochemistry. Fatty acid profile was determined by GC-MS. Pancreas and liver histology were assessed by hematoxylin and eosin (H&E) staining. STZ-induced characteristic changes in all STZ treated groups, including: increased blood glucose, decreased body mass, increased lipid peroxidation and CD36 expression, decreased 16:1n7 and 18:1n7, increases in 20:3n6, decreases in phospholipid (PL) content of 20:4n6, as well as decreases in the expression of SREBP1c, Δ-9-desaturase (Δ9D), and Δ-5-desaturase (Δ5D). Additionally, other changes occurred that were dependent on the n6/n3 ratio. Among the diabetic groups, the lower n6/n3 ratio caused higher lipid peroxidation and CD36 expression, a greater decrease in 20:4n6 and decreased Δ6-desaturase (Δ6D) expression, while the higher n6/n3 ratio caused increased partitioning of 20:4n6 into hepatic neutral lipids (NL), a decrease in 20:5n3 content, and increased β-oxidation. CONCLUSION Presented data suggest that the n6/n3 ratio could significantly influence lipogenesis, lipid peroxidation, and β-oxidation in STZ-induced diabetes, which could have clinical significance.
Collapse
Affiliation(s)
- Kristina Starčević
- Department of Animal Husbandry, University of Zagreb, Faculty of Veterinary Medicine, 10000, Zagreb, Croatia
| | - Natalija Filipović
- Department of Anatomy, Histology and Embryology, University of Split, School of Medicine, 21000, Split, Croatia
| | - Asier Galan
- VetMedZg ERA Chair project, University of Zagreb, Faculty of Veterinary Medicine, 10000, Zagreb, Croatia
| | - Vedran Micek
- Institute for Medical Research and Occupational Health, 10000, Zagreb, Croatia
| | - Andrea Gudan Kurilj
- Department of Veterinary Pathology, University of Zagreb, Faculty of Veterinary Medicine, 10000, Zagreb, Croatia
| | - Tomislav Mašek
- Department of Animal Nutrition and Dietetics, University of Zagreb, Faculty of Veterinary Medicine, 10000, Zagreb, Croatia
| |
Collapse
|
32
|
Molecular mechanisms of cardiac pathology in diabetes - Experimental insights. Biochim Biophys Acta Mol Basis Dis 2017; 1864:1949-1959. [PMID: 29109032 DOI: 10.1016/j.bbadis.2017.10.035] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 10/09/2017] [Accepted: 10/27/2017] [Indexed: 12/11/2022]
Abstract
Diabetic cardiomyopathy is a distinct pathology independent of co-morbidities such as coronary artery disease and hypertension. Diminished glucose uptake due to impaired insulin signaling and decreased expression of glucose transporters is associated with a shift towards increased reliance on fatty acid oxidation and reduced cardiac efficiency in diabetic hearts. The cardiac metabolic profile in diabetes is influenced by disturbances in circulating glucose, insulin and fatty acids, and alterations in cardiomyocyte signaling. In this review, we focus on recent preclinical advances in understanding the molecular mechanisms of diabetic cardiomyopathy. Genetic manipulation of cardiomyocyte insulin signaling intermediates has demonstrated that partial cardiac functional rescue can be achieved by upregulation of the insulin signaling pathway in diabetic hearts. Inconsistent findings have been reported relating to the role of cardiac AMPK and β-adrenergic signaling in diabetes, and systemic administration of agents targeting these pathways appear to elicit some cardiac benefit, but whether these effects are related to direct cardiac actions is uncertain. Overload of cardiomyocyte fuel storage is evident in the diabetic heart, with accumulation of glycogen and lipid droplets. Cardiac metabolic dysregulation in diabetes has been linked with oxidative stress and autophagy disturbance, which may lead to cell death induction, fibrotic 'backfill' and cardiac dysfunction. This review examines the weight of evidence relating to the molecular mechanisms of diabetic cardiomyopathy, with a particular focus on metabolic and signaling pathways. Areas of uncertainty in the field are highlighted and important knowledge gaps for further investigation are identified. This article is part of a Special issue entitled Cardiac adaptations to obesity, diabetes and insulin resistance, edited by Professors Jan F.C. Glatz, Jason R.B. Dyck and Christine Des Rosiers.
Collapse
|
33
|
Rescigno T, Capasso A, Tecce MF. Involvement of nutrients and nutritional mediators in mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase gene expression. J Cell Physiol 2017; 233:3306-3314. [DOI: 10.1002/jcp.26177] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 08/24/2017] [Indexed: 12/16/2022]
Affiliation(s)
- Tania Rescigno
- Department of Pharmacy; University of Salerno; Fisciano Salerno Italy
| | - Anna Capasso
- Department of Pharmacy; University of Salerno; Fisciano Salerno Italy
| | | |
Collapse
|
34
|
HMGCS2 is a key ketogenic enzyme potentially involved in type 1 diabetes with high cardiovascular risk. Sci Rep 2017; 7:4590. [PMID: 28676675 PMCID: PMC5496911 DOI: 10.1038/s41598-017-04469-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 05/08/2017] [Indexed: 02/06/2023] Open
Abstract
Diabetes increases the risk of Cardio-vascular disease (CVD). CVD is more prevalent in type 2 diabetes (T2D) than type 1 diabetes (T1D), but the mortality risk is higher in T1D than in T2D. The pathophysiology of CVD in T1D is poorly defined. To learn more about biological pathways that are potentially involved in T1D with cardiac dysfunction, we sought to identify differentially expressed genes in the T1D heart. Our study used T1D mice with severe hyperglycemia along with significant deficits in echocardiographic measurements. Microarray analysis of heart tissue RNA revealed that the T1D mice differentially expressed 10 genes compared to control. Using Ingenuity Pathway Analysis (IPA), we showed that these genes were significantly involved in ketogenesis, cardiovascular disease, apoptosis and other toxicology functions. Of these 10 genes, the 3-Hydroxy-3-Methylglutaryl-CoA Synthase 2 (HMGCS2) was the highest upregulated gene in T1D heart. IPA analysis showed that HMGCS2 was center to many biological networks and pathways. Our data also suggested that apart from heart, the expression of HMGCS2 was also different in kidney and spleen between control and STZ treated mice. In conclusion, The HMGCS2 molecule may potentially be involved in T1D induced cardiac dysfunction.
Collapse
|
35
|
Abstract
Ketone body metabolism is a central node in physiological homeostasis. In this review, we discuss how ketones serve discrete fine-tuning metabolic roles that optimize organ and organism performance in varying nutrient states and protect from inflammation and injury in multiple organ systems. Traditionally viewed as metabolic substrates enlisted only in carbohydrate restriction, observations underscore the importance of ketone bodies as vital metabolic and signaling mediators when carbohydrates are abundant. Complementing a repertoire of known therapeutic options for diseases of the nervous system, prospective roles for ketone bodies in cancer have arisen, as have intriguing protective roles in heart and liver, opening therapeutic options in obesity-related and cardiovascular disease. Controversies in ketone metabolism and signaling are discussed to reconcile classical dogma with contemporary observations.
Collapse
Affiliation(s)
- Patrycja Puchalska
- Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL 32827, USA
| | - Peter A Crawford
- Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL 32827, USA.
| |
Collapse
|