1
|
Logan NJ, Broda KL, Pantelireis N, Williams G, Higgins CA. Chromatin accessibility profiling reveals that human fibroblasts respond to mechanical stimulation in a cell-specific manner. JBMR Plus 2024; 8:ziae025. [PMID: 38682000 PMCID: PMC11055960 DOI: 10.1093/jbmrpl/ziae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/24/2024] [Accepted: 02/12/2024] [Indexed: 05/01/2024] Open
Abstract
Fibroblasts in the skin are highly heterogeneous, both in vivo and in vitro. One difference between follicular (dermal papilla fibroblasts [DP]) and interfollicular fibroblasts (papillary fibroblasts [PFi]) in vitro is their ability to differentiate in response to osteogenic media (OM), or mechanical stimulation. Here, we asked whether differences in the ability of DP and PFi to respond to differentiation stimuli are due to differences in chromatin accessibility. We performed chromatin accessibility and transcriptional profiling of DP and PFi in human skin, which arise from a common progenitor during development, yet display distinct characteristics in adult tissue and in vitro. We found that cells cultured in growth media had unique chromatin accessibility profiles; however, these profiles control similar functional networks. Upon introduction of a chemical perturbation (OM) to promote differentiation, we observed a divergence not only in the accessible chromatin signatures but also in the functional networks controlled by these signatures. The biggest divergence between DP and PFi was observed when we applied 2 perturbations to cells: growth in OM and mechanical stimulation (a shock wave [OMSW]). DP readily differentiate into bone in OMSW conditions, while PFi lack differentiation capability in vitro. In the DP we found a number of uniquely accessible promoters that controlled osteogenic interaction networks associated with bone and differentiation functions. Using ATAC-seq and RNA-seq we found that the combination of 2 stimuli (OMSW) could result in significant changes in chromatin accessibility associated with osteogenic differentiation, but only within the DP (capable of osteogenic differentiation). De novo motif analysis identified enrichment of motifs bound by the TEA domain (TEAD) family of transcription factors, and inter-cell comparisons (UpSet analysis) displayed large groups of genes to be unique to single cell types and conditions. Our results suggest that these 2 stimuli (OMSW) elicit cell-specific responses by modifying chromatin accessibility of osteogenic-related gene promoters.
Collapse
Affiliation(s)
- Niall J Logan
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Krystyna L Broda
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Nikolaos Pantelireis
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Greg Williams
- Farjo Hair Institute, Manchester, M3 3EJ, United Kingdom
| | - Claire A Higgins
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, United Kingdom
| |
Collapse
|
2
|
Gao L, Wang Y, Gao Q, Chen Y, Zhang Z. Transcriptional control of CCAAT/enhancer binding protein zeta gene in chicken adipose tissue. Poult Sci 2024; 103:103540. [PMID: 38417330 PMCID: PMC10907851 DOI: 10.1016/j.psj.2024.103540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/25/2024] [Accepted: 02/05/2024] [Indexed: 03/01/2024] Open
Abstract
CCAAT/enhancer binding protein zeta (C/EBPZ) was differentially expressed in abdominal adipose tissues of fat and lean broilers and regulated adipogenesis in chicken. The objective of this study was to elucidate the transcriptional regulation of C/EBPZ gene in chicken adipose tissue. A 2,031-base pair (bp) chicken C/EBPZ sequence (2,025 nucleotides upstream to 6 nucleotides downstream from the initiator codon, -2,025/+6) was studied. The sequence exhibited a significant promoter activity (P < 0.05) and had some cis-acting elements, notably, a core promoter was identified in nucleotides -94 to +6. Additionally, DNA pull-down assay showed that proteins interacted with chicken C/EBPZ promoter (-173/+6) in preadipocytes were implicated in transcription, post-transcriptional regulation and translation. In addition, KLF2 facilitated the activities of chicken C/EBPZ promoter (-2,025/+6, -1,409/+6, -793/+6, -485/+6, -173/+6, and -94/+6) in preadipocytes (P < 0.05). The expression levels of KLF2 and C/EBPZ in chicken abdominal adipose tissue were substantially associated (r = 0.5978278, P < 0.0001), and KLF2 increased C/EBPZ expression in vitro (P < 0.05). Additionally, chromatin immunoprecipitation (ChIP)-PCR analysis revealed that KLF2 has the ability to interact with the chicken C/EBPZ promoter regions at least at the positions -1,245/-1,048 and -571/-397. Mutation analysis showed that the CGCAGCGCCCG motif located in the chicken C/EBPZ promoter at positions -45 to -35 is involved in regulating transcription and facilitates trans activation by KLF2. These results provided some information of transcription control of C/EBPZ in chicken adipose tissue.
Collapse
Affiliation(s)
- Lingyu Gao
- Department of Histology and Embryology, Shihezi University School of Medicine, Shihezi, Xinjiang, 832000, PR China; Key Medical Laboratory of Stem Cell Transformation and Application, The First People's Hospital of Zhengzhou, Zhengzhou, Henan, 450000, PR China
| | - Yingjun Wang
- Department of Histology and Embryology, Shihezi University School of Medicine, Shihezi, Xinjiang, 832000, PR China
| | - Qin Gao
- Department of Histology and Embryology, Shihezi University School of Medicine, Shihezi, Xinjiang, 832000, PR China
| | - Yuechan Chen
- Department of Reproductive Medicine, The First Affiliated Hospital of Shihezi University, Shihezi, Xinjiang, 832000, PR China
| | - Zhiwei Zhang
- Department of Histology and Embryology, Shihezi University School of Medicine, Shihezi, Xinjiang, 832000, PR China.
| |
Collapse
|
3
|
Khalil H, Nada AH, Mahrous H, Hassan A, Rijo P, Ibrahim IA, Mohamed DD, AL-Salmi FA, Mohamed DD, Elmaksoud AIA. Amelioration effect of 18β-Glycyrrhetinic acid on methylation inhibitors in hepatocarcinogenesis -induced by diethylnitrosamine. Front Immunol 2024; 14:1206990. [PMID: 38322013 PMCID: PMC10844948 DOI: 10.3389/fimmu.2023.1206990] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 11/27/2023] [Indexed: 02/08/2024] Open
Abstract
Aim suppression of methylation inhibitors (epigenetic genes) in hepatocarcinogenesis induced by diethylnitrosamine using glycyrrhetinic acid. Method In the current work, we investigated the effect of sole GA combined with different agents such as doxorubicin (DOX) or probiotic bacteria (Lactobacillus rhamanosus) against hepatocarcinogenesis induced by diethylnitrosamine to improve efficiency. The genomic DNA was isolated from rats' liver tissues to evaluate either methylation-sensitive or methylation-dependent resection enzymes. The methylation activity of the targeting genes DLC-1, TET-1, NF-kB, and STAT-3 was examined using specific primers and cleaved DNA products. Furthermore, flow cytometry was used to determine the protein expression profiles of DLC-1 and TET-1 in treated rats' liver tissue. Results Our results demonstrated the activity of GA to reduce the methylation activity in TET-1 and DLC-1 by 33.6% and 78%, respectively. As compared with the positive control. Furthermore, the association of GA with DOX avoided the methylation activity by 88% and 91% for TET-1 and DLC-1, respectively, as compared with the positive control. Similarly, the combined use of GA with probiotics suppressed the methylation activity in the TET-1 and DLC-1 genes by 75% and 81% for TET-1 and DLC-1, respectively. Also, GA and its combination with bacteria attenuated the adverse effect in hepatocarcinogenesis rats by altering potential methylomic genes such as NF-kb and STAT3 genes by 76% and 83%, respectively. Conclusion GA has an ameliorative effect against methylation inhibitors in hepatocellular carcinoma (HCC) by decreasing the methylation activity genes.
Collapse
Affiliation(s)
- Hany Khalil
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute (GEBRI) University of Sadat City, Sadat, Egypt
| | - Alaa H. Nada
- Department of Industrial Biotechnology, Genetic Engineering and Biotechnology Research Institute (GEBRI) University of Sadat City, Sadat, Egypt
| | - Hoda Mahrous
- Department of Industrial Biotechnology, Genetic Engineering and Biotechnology Research Institute (GEBRI) University of Sadat City, Sadat, Egypt
| | - Amr Hassan
- Department of Bioinformatics, Genetic Engineering and Biotechnology Research Institute (GEBRI) University of Sadat City, Sadat, Egypt
| | - Patricia Rijo
- Research Center for Biosciences & Health Technologies (CBIOS), Universidade Lusófona de Humanidades e Tecnologias, Lisboa, Portugal
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
| | - Ibrahim A. Ibrahim
- Department of Plant Biotechnology, Genetic Engineering and Biotechnology Research Institute (GEBRI) University of Sadat City, Sadat, Egypt
| | - Dalia D. Mohamed
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute (GEBRI) University of Sadat City, Sadat, Egypt
| | - Fawziah A. AL-Salmi
- Department of Biology, Faculty of Sciences, Taif University, Taif, Saudi Arabia
| | - Doaa D. Mohamed
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute (GEBRI) University of Sadat City, Sadat, Egypt
| | - Ahmed I. Abd Elmaksoud
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute (GEBRI) University of Sadat City, Sadat, Egypt
- College of Biotechnology, Misr University of Science and Technology, Giza, Egypt
| |
Collapse
|
4
|
Barsoum M, Stenzel AT, Bochyńska A, Kuo CC, Tsompanidis A, Sayadi-Boroujeni R, Bussmann P, Lüscher-Firzlaff J, Costa IG, Lüscher B. Loss of the Ash2l subunit of histone H3K4 methyltransferase complexes reduces chromatin accessibility at promoters. Sci Rep 2022; 12:21506. [PMID: 36513698 PMCID: PMC9747801 DOI: 10.1038/s41598-022-25881-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/06/2022] [Indexed: 12/15/2022] Open
Abstract
Changes in gene expression programs are intimately linked to cell fate decisions. Post-translational modifications of core histones contribute to control gene expression. Methylation of lysine 4 of histone H3 (H3K4) correlates with active promoters and gene transcription. This modification is catalyzed by KMT2 methyltransferases, which require interaction with 4 core subunits, WDR5, RBBP5, ASH2L and DPY30, for catalytic activity. Ash2l is necessary for organismal development and for tissue homeostasis. In mouse embryo fibroblasts (MEFs), Ash2l loss results in gene repression, provoking a senescence phenotype. We now find that upon knockout of Ash2l both H3K4 mono- and tri-methylation (H3K4me1 and me3, respectively) were deregulated. In particular, loss of H3K4me3 at promoters correlated with gene repression, especially at CpG island promoters. Ash2l loss resulted in increased loading of histone H3 and reduced chromatin accessibility at promoters, accompanied by an increase of repressing and a decrease of activating histone marks. Moreover, we observed altered binding of CTCF upon Ash2l loss. Lost and gained binding was noticed at promoter-associated and intergenic sites, respectively. Thus, Ash2l loss and reduction of H3K4me3 correlate with altered chromatin accessibility and transcription factor binding. These findings contribute to a more detailed understanding of mechanistic consequences of H3K4me3 loss and associated repression of gene transcription and thus of the observed cellular consequences.
Collapse
Affiliation(s)
- Mirna Barsoum
- grid.1957.a0000 0001 0728 696XInstitute of Biochemistry and Molecular Biology, Faculty of Medicine, RWTH Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Alexander T. Stenzel
- grid.1957.a0000 0001 0728 696XInstitute of Biochemistry and Molecular Biology, Faculty of Medicine, RWTH Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Agnieszka Bochyńska
- grid.1957.a0000 0001 0728 696XInstitute of Biochemistry and Molecular Biology, Faculty of Medicine, RWTH Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Chao-Chung Kuo
- grid.1957.a0000 0001 0728 696XInstitute for Computational Genomics, Faculty of Medicine, RWTH Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany ,grid.1957.a0000 0001 0728 696XInterdisciplinary Center for Clinical Research (IZKF), Faculty of Medicine, RWTH Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Alexander Tsompanidis
- grid.1957.a0000 0001 0728 696XInstitute of Biochemistry and Molecular Biology, Faculty of Medicine, RWTH Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Roksaneh Sayadi-Boroujeni
- grid.1957.a0000 0001 0728 696XInstitute of Biochemistry and Molecular Biology, Faculty of Medicine, RWTH Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Philip Bussmann
- grid.1957.a0000 0001 0728 696XInstitute of Biochemistry and Molecular Biology, Faculty of Medicine, RWTH Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Juliane Lüscher-Firzlaff
- grid.1957.a0000 0001 0728 696XInstitute of Biochemistry and Molecular Biology, Faculty of Medicine, RWTH Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Ivan G. Costa
- grid.1957.a0000 0001 0728 696XInstitute for Computational Genomics, Faculty of Medicine, RWTH Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Bernhard Lüscher
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany.
| |
Collapse
|
5
|
Einarsson H, Salvatore M, Vaagensø C, Alcaraz N, Bornholdt J, Rennie S, Andersson R. Promoter sequence and architecture determine expression variability and confer robustness to genetic variants. eLife 2022; 11:e80943. [PMID: 36377861 PMCID: PMC9844987 DOI: 10.7554/elife.80943] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 11/14/2022] [Indexed: 11/16/2022] Open
Abstract
Genetic and environmental exposures cause variability in gene expression. Although most genes are affected in a population, their effect sizes vary greatly, indicating the existence of regulatory mechanisms that could amplify or attenuate expression variability. Here, we investigate the relationship between the sequence and transcription start site architectures of promoters and their expression variability across human individuals. We find that expression variability can be largely explained by a promoter's DNA sequence and its binding sites for specific transcription factors. We show that promoter expression variability reflects the biological process of a gene, demonstrating a selective trade-off between stability for metabolic genes and plasticity for responsive genes and those involved in signaling. Promoters with a rigid transcription start site architecture are more prone to have variable expression and to be associated with genetic variants with large effect sizes, while a flexible usage of transcription start sites within a promoter attenuates expression variability and limits genotypic effects. Our work provides insights into the variable nature of responsive genes and reveals a novel mechanism for supplying transcriptional and mutational robustness to essential genes through multiple transcription start site regions within a promoter.
Collapse
Affiliation(s)
| | - Marco Salvatore
- Department of Biology, University of CopenhagenCopenhagenDenmark
| | | | - Nicolas Alcaraz
- Department of Biology, University of CopenhagenCopenhagenDenmark
| | - Jette Bornholdt
- Department of Biology, University of CopenhagenCopenhagenDenmark
| | - Sarah Rennie
- Department of Biology, University of CopenhagenCopenhagenDenmark
| | - Robin Andersson
- Department of Biology, University of CopenhagenCopenhagenDenmark
| |
Collapse
|
6
|
Munk M, Villalobo E, Villalobo A, Berchtold MW. Differential expression of the three independent CaM genes coding for an identical protein: Potential relevance of distinct mRNA stability by different codon usage. Cell Calcium 2022; 107:102656. [DOI: 10.1016/j.ceca.2022.102656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/01/2022] [Accepted: 09/25/2022] [Indexed: 11/24/2022]
|
7
|
Tanemoto F, Nangaku M, Mimura I. Epigenetic memory contributing to the pathogenesis of AKI-to-CKD transition. Front Mol Biosci 2022; 9:1003227. [PMID: 36213117 PMCID: PMC9532834 DOI: 10.3389/fmolb.2022.1003227] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 08/24/2022] [Indexed: 11/18/2022] Open
Abstract
Epigenetic memory, which refers to the ability of cells to retain and transmit epigenetic marks to their daughter cells, maintains unique gene expression patterns. Establishing programmed epigenetic memory at each stage of development is required for cell differentiation. Moreover, accumulating evidence shows that epigenetic memory acquired in response to environmental stimuli may be associated with diverse diseases. In the field of kidney diseases, the “memory” of acute kidney injury (AKI) leads to progression to chronic kidney disease (CKD); epidemiological studies show that patients who recover from AKI are at high risk of developing CKD. The underlying pathological processes include nephron loss, maladaptive epithelial repair, inflammation, and endothelial injury with vascular rarefaction. Further, epigenetic alterations may contribute as well to the pathophysiology of this AKI-to-CKD transition. Epigenetic changes induced by AKI, which can be recorded in cells, exert long-term effects as epigenetic memory. Considering the latest findings on the molecular basis of epigenetic memory and the pathophysiology of AKI-to-CKD transition, we propose here that epigenetic memory contributing to AKI-to-CKD transition can be classified according to the presence or absence of persistent changes in the associated regulation of gene expression, which we designate “driving” memory and “priming” memory, respectively. “Driving” memory, which persistently alters the regulation of gene expression, may contribute to disease progression by activating fibrogenic genes or inhibiting renoprotective genes. This process may be involved in generating the proinflammatory and profibrotic phenotypes of maladaptively repaired tubular cells after kidney injury. “Priming” memory is stored in seemingly successfully repaired tubular cells in the absence of detectable persistent phenotypic changes, which may enhance a subsequent transcriptional response to the second stimulus. This type of memory may contribute to AKI-to-CKD transition through the cumulative effects of enhanced expression of profibrotic genes required for wound repair after recurrent AKI. Further understanding of epigenetic memory will identify therapeutic targets of future epigenetic intervention to prevent AKI-to-CKD transition.
Collapse
|
8
|
Abstract
Transcription elongation by RNA polymerase II (Pol II) has emerged as a regulatory hub in gene expression. A key control point occurs during early transcription elongation when Pol II pauses in the promoter-proximal region at the majority of genes in mammalian cells and at a large set of genes in Drosophila. An increasing number of trans-acting factors have been linked to promoter-proximal pausing. Some factors help to establish the pause, whereas others are required for the release of Pol II into productive elongation. A dysfunction of this elongation control point leads to aberrant gene expression and can contribute to disease development. The BET bromodomain protein BRD4 has been implicated in elongation control. However, only recently direct BRD4-specific functions in Pol II transcription elongation have been uncovered. This mainly became possible with technological advances that allow selective and rapid ablation of BRD4 in cells along with the availability of approaches that capture the immediate consequences on nascent transcription. This review sheds light on the experimental breakthroughs that led to the emerging view of BRD4 as a general regulator of transcription elongation.
Collapse
Affiliation(s)
- Elisabeth Altendorfer
- Otto-Warburg-Laboratory, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Yelizaveta Mochalova
- Otto-Warburg-Laboratory, Max Planck Institute for Molecular Genetics, Berlin, Germany.,Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Andreas Mayer
- Otto-Warburg-Laboratory, Max Planck Institute for Molecular Genetics, Berlin, Germany
| |
Collapse
|
9
|
Scheer E, Luo J, Bernardini A, Ruffenach F, Garnier JM, Kolb-Cheynel I, Gupta K, Berger I, Ranish J, Tora L. TAF8 regions important for TFIID lobe B assembly or for TAF2 interactions are required for embryonic stem cell survival. J Biol Chem 2021; 297:101288. [PMID: 34634302 PMCID: PMC8564675 DOI: 10.1016/j.jbc.2021.101288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 10/01/2021] [Accepted: 10/06/2021] [Indexed: 11/25/2022] Open
Abstract
The human general transcription factor TFIID is composed of the TATA-binding protein (TBP) and 13 TBP-associated factors (TAFs). In eukaryotic cells, TFIID is thought to nucleate RNA polymerase II (Pol II) preinitiation complex formation on all protein coding gene promoters and thus, be crucial for Pol II transcription. TFIID is composed of three lobes, named A, B, and C. A 5TAF core complex can be assembled in vitro constituting a building block for the further assembly of either lobe A or B in TFIID. Structural studies showed that TAF8 forms a histone fold pair with TAF10 in lobe B and participates in connecting lobe B to lobe C. To better understand the role of TAF8 in TFIID, we have investigated the requirement of the different regions of TAF8 for the in vitro assembly of lobe B and C and the importance of certain TAF8 regions for mouse embryonic stem cell (ESC) viability. We have identified a region of TAF8 distinct from the histone fold domain important for assembling with the 5TAF core complex in lobe B. We also delineated four more regions of TAF8 each individually required for interacting with TAF2 in lobe C. Moreover, CRISPR/Cas9-mediated gene editing indicated that the 5TAF core-interacting TAF8 domain and the proline-rich domain of TAF8 that interacts with TAF2 are both required for mouse embryonic stem cell survival. Thus, our study defines distinct TAF8 regions involved in connecting TFIID lobe B to lobe C that appear crucial for TFIID function and consequent ESC survival.
Collapse
Affiliation(s)
- Elisabeth Scheer
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Centre National de la Recherche Scientifique, UMR7104, Institut National de la Santé et de la Recherche Médicale, U964, Université de Strasbourg, Illkirch, France
| | - Jie Luo
- Institute for Systems Biology (ISB), Seattle, Washington, USA
| | - Andrea Bernardini
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Centre National de la Recherche Scientifique, UMR7104, Institut National de la Santé et de la Recherche Médicale, U964, Université de Strasbourg, Illkirch, France
| | - Frank Ruffenach
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Centre National de la Recherche Scientifique, UMR7104, Institut National de la Santé et de la Recherche Médicale, U964, Université de Strasbourg, Illkirch, France
| | - Jean-Marie Garnier
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Centre National de la Recherche Scientifique, UMR7104, Institut National de la Santé et de la Recherche Médicale, U964, Université de Strasbourg, Illkirch, France
| | - Isabelle Kolb-Cheynel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Centre National de la Recherche Scientifique, UMR7104, Institut National de la Santé et de la Recherche Médicale, U964, Université de Strasbourg, Illkirch, France
| | - Kapil Gupta
- School of Biochemistry and Bristol Research Centre for Synthetic Biology BrisSynBio, University of Bristol, Bristol, UK
| | - Imre Berger
- School of Biochemistry and Bristol Research Centre for Synthetic Biology BrisSynBio, University of Bristol, Bristol, UK
| | - Jeff Ranish
- Institute for Systems Biology (ISB), Seattle, Washington, USA
| | - László Tora
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Centre National de la Recherche Scientifique, UMR7104, Institut National de la Santé et de la Recherche Médicale, U964, Université de Strasbourg, Illkirch, France.
| |
Collapse
|
10
|
Evtushenko EV, Elisafenko EA, Gatzkaya SS, Schubert V, Houben A, Vershinin AV. Expression of Two Rye CENH3 Variants and Their Loading into Centromeres. PLANTS (BASEL, SWITZERLAND) 2021; 10:2043. [PMID: 34685852 PMCID: PMC8538535 DOI: 10.3390/plants10102043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 11/22/2022]
Abstract
Gene duplication and the preservation of both copies during evolution is an intriguing evolutionary phenomenon. Their preservation is related to the function they perform. The central component of centromere specification and function is the centromere-specific histone H3 (CENH3). Some cereal species (maize, rice) have one copy of the gene encoding this protein, while some (wheat, barley, rye) have two. Therefore, they represent a good model for a comparative study of the functional activity of the duplicated CENH3 genes and their protein products. We determined the organization of the CENH3 locus in rye (Secale cereale L.) and identified the functional motifs in the vicinity of the CENH3 genes. We compared the expression of these genes at different stages of plant development and the loading of their products, the CENH3 proteins, into nucleosomes during mitosis and meiosis. Using extended chromatin fibers, we revealed patterns of loading CENH3 proteinsinto polynucleosomal domains in centromeric chromatin. Our results indicate no sign of neofunctionalization, subfunctionalization or specialization in the gene copies. The influence of negative selection on the coding part of the genes led them to preserve their conserved function. The advantage of having two functional genes appears as the gene-dosage effect.
Collapse
Affiliation(s)
- Elena V. Evtushenko
- Institute of Molecular and Cellular Biology, SB RAS, Acad. Lavrentiev Ave. 8/2, 630090 Novosibirsk, Russia; (E.V.E.); (E.A.E.); (S.S.G.)
| | - Evgeny A. Elisafenko
- Institute of Molecular and Cellular Biology, SB RAS, Acad. Lavrentiev Ave. 8/2, 630090 Novosibirsk, Russia; (E.V.E.); (E.A.E.); (S.S.G.)
- Institute of Cytology and Genetics, SB RAS, Acad. Lavrentiev Ave. 10, 630090 Novosibirsk, Russia
| | - Sima S. Gatzkaya
- Institute of Molecular and Cellular Biology, SB RAS, Acad. Lavrentiev Ave. 8/2, 630090 Novosibirsk, Russia; (E.V.E.); (E.A.E.); (S.S.G.)
| | - Veit Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstr. 3, 06466 Seeland, Germany; (V.S.); (A.H.)
| | - Andreas Houben
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstr. 3, 06466 Seeland, Germany; (V.S.); (A.H.)
| | - Alexander V. Vershinin
- Institute of Molecular and Cellular Biology, SB RAS, Acad. Lavrentiev Ave. 8/2, 630090 Novosibirsk, Russia; (E.V.E.); (E.A.E.); (S.S.G.)
| |
Collapse
|
11
|
Shaw PJ, Piriyapongsa J, Kaewprommal P, Wongsombat C, Chaosrikul C, Teeravajanadet K, Boonbangyang M, Uthaipibull C, Kamchonwongpaisan S, Tongsima S. Identifying transcript 5' capped ends in Plasmodium falciparum. PeerJ 2021; 9:e11983. [PMID: 34527439 PMCID: PMC8401752 DOI: 10.7717/peerj.11983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 07/26/2021] [Indexed: 12/15/2022] Open
Abstract
Background The genome of the human malaria parasite Plasmodium falciparum is poorly annotated, in particular, the 5' capped ends of its mRNA transcripts. New approaches are needed to fully catalog P. falciparum transcripts for understanding gene function and regulation in this organism. Methods We developed a transcriptomic method based on next-generation sequencing of complementary DNA (cDNA) enriched for full-length fragments using eIF4E, a 5' cap-binding protein, and an unenriched control. DNA sequencing adapter was added after enrichment of full-length cDNA using two different ligation protocols. From the mapped sequence reads, enrichment scores were calculated for all transcribed nucleotides and used to calculate P-values of 5' capped nucleotide enrichment. Sensitivity and accuracy were increased by combining P-values from replicate experiments. Data were obtained for P. falciparum ring, trophozoite and schizont stages of intra-erythrocytic development. Results 5' capped nucleotide signals were mapped to 17,961 non-overlapping P. falciparum genomic intervals. Analysis of the dominant 5' capped nucleotide in these genomic intervals revealed the presence of two groups with distinctive epigenetic features and sequence patterns. A total of 4,512 transcripts were annotated as 5' capped based on the correspondence of 5' end with 5' capped nucleotide annotated from full-length cDNA data. Discussion The presence of two groups of 5' capped nucleotides suggests that alternative mechanisms may exist for producing 5' capped transcript ends in P. falciparum. The 5' capped transcripts that are antisense, outside of, or partially overlapping coding regions may be important regulators of gene function in P. falciparum.
Collapse
Affiliation(s)
- Philip J Shaw
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Jittima Piriyapongsa
- National Biobank of Thailand (NBT), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Pavita Kaewprommal
- National Biobank of Thailand (NBT), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Chayaphat Wongsombat
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Chadapohn Chaosrikul
- National Biobank of Thailand (NBT), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Krirkwit Teeravajanadet
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Manon Boonbangyang
- National Biobank of Thailand (NBT), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Chairat Uthaipibull
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Sumalee Kamchonwongpaisan
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Sissades Tongsima
- National Biobank of Thailand (NBT), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| |
Collapse
|
12
|
Sloutskin A, Shir-Shapira H, Freiman RN, Juven-Gershon T. The Core Promoter Is a Regulatory Hub for Developmental Gene Expression. Front Cell Dev Biol 2021; 9:666508. [PMID: 34568311 PMCID: PMC8461331 DOI: 10.3389/fcell.2021.666508] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 08/25/2021] [Indexed: 11/13/2022] Open
Abstract
The development of multicellular organisms and the uniqueness of each cell are achieved by distinct transcriptional programs. Multiple processes that regulate gene expression converge at the core promoter region, an 80 bp region that directs accurate transcription initiation by RNA polymerase II (Pol II). In recent years, it has become apparent that the core promoter region is not a passive DNA component, but rather an active regulatory module of transcriptional programs. Distinct core promoter compositions were demonstrated to result in different transcriptional outputs. In this mini-review, we focus on the role of the core promoter, particularly its downstream region, as the regulatory hub for developmental genes. The downstream core promoter element (DPE) was implicated in the control of evolutionarily conserved developmental gene regulatory networks (GRNs) governing body plan in both the anterior-posterior and dorsal-ventral axes. Notably, the composition of the basal transcription machinery is not universal, but rather promoter-dependent, highlighting the importance of specialized transcription complexes and their core promoter target sequences as key hubs that drive embryonic development, differentiation and morphogenesis across metazoan species. The extent of transcriptional activation by a specific enhancer is dependent on its compatibility with the relevant core promoter. The core promoter content also regulates transcription burst size. Overall, while for many years it was thought that the specificity of gene expression is primarily determined by enhancers, it is now clear that the core promoter region comprises an important regulatory module in the intricate networks of developmental gene expression.
Collapse
Affiliation(s)
- Anna Sloutskin
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Hila Shir-Shapira
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Richard N. Freiman
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, United States
| | - Tamar Juven-Gershon
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
13
|
Tomicic MT, Dawood M, Efferth T. Epigenetic Alterations Upstream and Downstream of p53 Signaling in Colorectal Carcinoma. Cancers (Basel) 2021; 13:cancers13164072. [PMID: 34439227 PMCID: PMC8394868 DOI: 10.3390/cancers13164072] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/03/2021] [Accepted: 08/10/2021] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) belongs to the most common tumor types, and half of all CRC harbor missense mutations in the TP53 tumor suppressor gene. In addition to genetically caused loss of function of p53, epigenetic alterations (DNA methylation, histone modifications, micro-RNAs) contribute to CRC development. In this review, we focused on epigenetic alterations related to the entire p53 signaling pathway upstream and downstream of p53. Methylation of genes which activate p53 function has been reported, and methylation of APC and MGMT was associated with increased mutation rates of TP53. The micro-RNA 34a activates TP53 and was methylated in CRC. Proteins that regulate TP53 DNA methylation, mutations, and acetylation of TP53-related histones were methylated in CRC. P53 regulates the activity of numerous downstream proteins. Even if TP53 is not mutated, the function of wildtype p53 may be compromised if corresponding downstream genes are epigenetically inactivated. Thus, the role of p53 for CRC development, therapy response, and survival prognosis of patients may be much more eminent than previously estimated. Therefore, we propose that novel diagnostic devices measuring the entirety of genetic and epigenetic changes in the "p53 signalome" have the potential to improve the predictive and prognostic power in CRC diagnostics and management.
Collapse
Affiliation(s)
- Maja T. Tomicic
- Department of Toxicology, University Medical Center, 55131 Mainz, Germany;
| | - Mona Dawood
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, 55128 Mainz, Germany;
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, 55128 Mainz, Germany;
- Correspondence: ; Tel.: +49-6131-3925751; Fax: +49-6131-3923752
| |
Collapse
|
14
|
Wu Q, Fu J, Sun J, Wang X, Tang X, Lu W, Tan C, Li L, Deng X, Xu Q. A plant CitPITP1 protein-coding exon sequence serves as a promoter in bacteria. J Biotechnol 2021; 339:1-13. [PMID: 34298024 DOI: 10.1016/j.jbiotec.2021.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/17/2021] [Accepted: 07/18/2021] [Indexed: 11/19/2022]
Abstract
Genetic manipulation of plant genes in prokaryotes has been widely used in molecular biology, but the function of a DNA sequence is far from being fully known. Here, we discovered that a plant protein-coding gene containing the CRAL_TRIO domain serves as a promoter in bacteria. We firstly characterized CitPITP1 from Citrus, which contains the CRAL_TRIO domain, and identified a 64-bp sequence (key64) that is critical for prokaryotic promoter activity. In vitro experiments indicated that the bacterial RNA polymerase subunit RpoD specifically binds to key64. We then expanded our research to fungi, plant and animal species to identify key64-like sequences. Five such prokaryotic promoters were isolated from Amborella, Rice, Arabidopsis and Citrus. Two conserved motifs were identified, and mutation analysis indicated that the nucleotides at positions 7, 29 and 30 are crucial for key64-like transcription activity. We detected full-length recombinant CitPITP1 from E. coli, and visualized a CitPITP1-GFP fusion protein in plant cells, supporting the idea that CitPITP1 encodes a protein. However, although exon 4 of CitPITP1 contained key64, it did not demonstrate promoter activity in plants. Our study describes a new basal promoter, provides evidence for neofunction of gene elements across different kingdoms, and provides new knowledge for the modular design of promoters.
Collapse
Affiliation(s)
- Qingjiang Wu
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan, 430000, China
| | - Jialing Fu
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan, 430000, China
| | - Juan Sun
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan, 430000, China
| | - Xia Wang
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan, 430000, China
| | - Xiaomei Tang
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan, 430000, China
| | - Wenjia Lu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430000, China
| | - Chen Tan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430000, China
| | - Li Li
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA; Robert W. Holley Center for Agriculture and Health, USDA-Agricultural Research Service, Cornell University, Ithaca, NY, 14853, USA
| | - Xiuxin Deng
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan, 430000, China
| | - Qiang Xu
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan, 430000, China.
| |
Collapse
|
15
|
Luse DS, Parida M, Spector BM, Nilson KA, Price DH. A unified view of the sequence and functional organization of the human RNA polymerase II promoter. Nucleic Acids Res 2020; 48:7767-7785. [PMID: 32597978 PMCID: PMC7641323 DOI: 10.1093/nar/gkaa531] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/31/2020] [Accepted: 06/24/2020] [Indexed: 12/20/2022] Open
Abstract
To better understand human RNA polymerase II (Pol II) promoters in the context of promoter-proximal pausing and local chromatin organization, 5′ and 3′ ends of nascent capped transcripts and the locations of nearby nucleosomes were accurately identified through sequencing at exceptional depth. High-quality visualization tools revealed a preferred sequence that defines over 177 000 core promoters with strengths varying by >10 000-fold. This sequence signature encompasses and better defines the binding site for TFIID and is surprisingly invariant over a wide range of promoter strength. We identified a sequence motif associated with promoter-proximal pausing and demonstrated that cap methylation only begins once transcripts are about 30 nt long. Mapping also revealed a ∼150 bp periodic downstream sequence element (PDE) following the typical pause location, strongly suggestive of a +1 nucleosome positioning element. A nuclear run-off assay utilizing the unique properties of the DNA fragmentation factor (DFF) coupled with sequencing of DFF protected fragments demonstrated that a +1 nucleosome is present downstream of paused Pol II. Our data more clearly define the human Pol II promoter: a TFIID binding site with built-in downstream information directing ubiquitous promoter-proximal pausing and downstream nucleosome location.
Collapse
Affiliation(s)
- Donal S Luse
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Mrutyunjaya Parida
- Department of Biochemistry, The University of Iowa, Iowa City, IA 52242, USA
| | - Benjamin M Spector
- Department of Biochemistry, The University of Iowa, Iowa City, IA 52242, USA
| | - Kyle A Nilson
- Department of Biochemistry, The University of Iowa, Iowa City, IA 52242, USA
| | - David H Price
- Department of Biochemistry, The University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
16
|
Wragg JW, Roos L, Vucenovic D, Cvetesic N, Lenhard B, Müller F. Embryonic tissue differentiation is characterized by transitions in cell cycle dynamic-associated core promoter regulation. Nucleic Acids Res 2020; 48:8374-8392. [PMID: 32619237 PMCID: PMC7470974 DOI: 10.1093/nar/gkaa563] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 06/10/2020] [Accepted: 06/19/2020] [Indexed: 12/30/2022] Open
Abstract
The core-promoter, a stretch of DNA surrounding the transcription start site (TSS), is a major integration-point for regulatory-signals controlling gene-transcription. Cellular differentiation is marked by divergence in transcriptional repertoire and cell-cycling behaviour between cells of different fates. The role promoter-associated gene-regulatory-networks play in development-associated transitions in cell-cycle-dynamics is poorly understood. This study demonstrates in a vertebrate embryo, how core-promoter variations define transcriptional output in cells transitioning from a proliferative to cell-lineage specifying phenotype. Assessment of cell proliferation across zebrafish embryo segmentation, using the FUCCI transgenic cell-cycle-phase marker, revealed a spatial and lineage-specific separation in cell-cycling behaviour. To investigate the role differential promoter usage plays in this process, cap-analysis-of-gene-expression (CAGE) was performed on cells segregated by cycling dynamics. This analysis revealed a dramatic increase in tissue-specific gene expression, concurrent with slowed cycling behaviour. We revealed a distinct sharpening in TSS utilization in genes upregulated in slowly cycling, differentiating tissues, associated with enhanced utilization of the TATA-box, in addition to Sp1 binding-sites. In contrast, genes upregulated in rapidly cycling cells carry broad distribution of TSS utilization, coupled with enrichment for the CCAAT-box. These promoter features appear to correspond to cell-cycle-dynamic rather than tissue/cell-lineage origin. Moreover, we observed genes with cell-cycle-dynamic-associated transitioning in TSS distribution and differential utilization of alternative promoters. These results demonstrate the regulatory role of core-promoters in cell-cycle-dependent transcription regulation, during embryo-development.
Collapse
Affiliation(s)
| | | | - Dunja Vucenovic
- Institute of Clinical Sciences and MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College London, London, W12 0NN, UK
| | - Nevena Cvetesic
- Institute of Clinical Sciences and MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College London, London, W12 0NN, UK
| | - Boris Lenhard
- Correspondence may also be addressed to Boris Lenhard. Tel: +44 20 3313 8353;
| | - Ferenc Müller
- To whom correspondence should be addressed. Tel: +44 121 414 2895;
| |
Collapse
|
17
|
Liquid-liquid phase separation in biology: mechanisms, physiological functions and human diseases. SCIENCE CHINA. LIFE SCIENCES 2020; 63:953-985. [PMID: 32548680 DOI: 10.1007/s11427-020-1702-x] [Citation(s) in RCA: 173] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 04/20/2020] [Indexed: 02/06/2023]
Abstract
Cells are compartmentalized by numerous membrane-enclosed organelles and membraneless compartments to ensure that a wide variety of cellular activities occur in a spatially and temporally controlled manner. The molecular mechanisms underlying the dynamics of membrane-bound organelles, such as their fusion and fission, vesicle-mediated trafficking and membrane contactmediated inter-organelle interactions, have been extensively characterized. However, the molecular details of the assembly and functions of membraneless compartments remain elusive. Mounting evidence has emerged recently that a large number of membraneless compartments, collectively called biomacromolecular condensates, are assembled via liquid-liquid phase separation (LLPS). Phase-separated condensates participate in various biological activities, including higher-order chromatin organization, gene expression, triage of misfolded or unwanted proteins for autophagic degradation, assembly of signaling clusters and actin- and microtubule-based cytoskeletal networks, asymmetric segregations of cell fate determinants and formation of pre- and post-synaptic density signaling assemblies. Biomacromolecular condensates can transition into different material states such as gel-like structures and solid aggregates. The material properties of condensates are crucial for fulfilment of their distinct functions, such as biochemical reaction centers, signaling hubs and supporting architectures. Cells have evolved multiple mechanisms to ensure that biomacromolecular condensates are assembled and disassembled in a tightly controlled manner. Aberrant phase separation and transition are causatively associated with a variety of human diseases such as neurodegenerative diseases and cancers. This review summarizes recent major progress in elucidating the roles of LLPS in various biological pathways and diseases.
Collapse
|
18
|
Comparative Genomics Reveals a Significant Sequence Variability of Myticin Genes in Mytilus galloprovincialis. Biomolecules 2020; 10:biom10060943. [PMID: 32580501 PMCID: PMC7356231 DOI: 10.3390/biom10060943] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/18/2020] [Accepted: 06/20/2020] [Indexed: 12/11/2022] Open
Abstract
Myticins are cysteine-rich antimicrobial peptides highly expressed in hemocytes of Mytilus galloprovincialis. Along with other antimicrobial peptides (AMPs), myticins are potent effectors in the mussel immune response to pathogenic infections. As intertidal filter-feeders, mussels are constantly exposed to mutable environmental conditions, as well as to the presence of many pathogens, and myticins may be key players in the great ability of these organisms to withstand these conditions. These AMPs are known to be characterized by a remarkable sequence diversity, which was further explored in this work, thanks to the analysis of the recently released genome sequencing data from 16 specimens. Altogether, we collected 120 different sequence variants, evidencing the important impact of presence/absence variation and positive selection in shaping the repertoire of myticin genes of each individual. From a functional point of view, both the isoelectric point (pI) and the predicted charge of the mature peptide show unusually low values compared with other cysteine-rich AMPs, reinforcing previous observations that myticins may have accessory functions not directly linked with microbe killing. Finally, we report the presence of highly conserved regulatory elements in the promoter region of myticin genes, which might explain their strong hemocyte-specific expression.
Collapse
|
19
|
Organization and regulation of gene transcription. Nature 2019; 573:45-54. [PMID: 31462772 DOI: 10.1038/s41586-019-1517-4] [Citation(s) in RCA: 373] [Impact Index Per Article: 74.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 07/30/2019] [Indexed: 12/18/2022]
Abstract
The regulated transcription of genes determines cell identity and function. Recent structural studies have elucidated mechanisms that govern the regulation of transcription by RNA polymerases during the initiation and elongation phases. Microscopy studies have revealed that transcription involves the condensation of factors in the cell nucleus. A model is emerging for the transcription of protein-coding genes in which distinct transient condensates form at gene promoters and in gene bodies to concentrate the factors required for transcription initiation and elongation, respectively. The transcribing enzyme RNA polymerase II may shuttle between these condensates in a phosphorylation-dependent manner. Molecular principles are being defined that rationalize transcriptional organization and regulation, and that will guide future investigations.
Collapse
|
20
|
Oldfield AJ, Henriques T, Kumar D, Burkholder AB, Cinghu S, Paulet D, Bennett BD, Yang P, Scruggs BS, Lavender CA, Rivals E, Adelman K, Jothi R. NF-Y controls fidelity of transcription initiation at gene promoters through maintenance of the nucleosome-depleted region. Nat Commun 2019; 10:3072. [PMID: 31296853 PMCID: PMC6624317 DOI: 10.1038/s41467-019-10905-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 05/27/2019] [Indexed: 12/22/2022] Open
Abstract
Faithful transcription initiation is critical for accurate gene expression, yet the mechanisms underlying specific transcription start site (TSS) selection in mammals remain unclear. Here, we show that the histone-fold domain protein NF-Y, a ubiquitously expressed transcription factor, controls the fidelity of transcription initiation at gene promoters in mouse embryonic stem cells. We report that NF-Y maintains the region upstream of TSSs in a nucleosome-depleted state while simultaneously protecting this accessible region against aberrant and/or ectopic transcription initiation. We find that loss of NF-Y binding in mammalian cells disrupts the promoter chromatin landscape, leading to nucleosomal encroachment over the canonical TSS. Importantly, this chromatin rearrangement is accompanied by upstream relocation of the transcription pre-initiation complex and ectopic transcription initiation. Further, this phenomenon generates aberrant extended transcripts that undergo translation, disrupting gene expression profiles. These results suggest NF-Y is a central player in TSS selection in metazoans and highlight the deleterious consequences of inaccurate transcription initiation. The mechanisms underlying specific TSS selection in mammals remain unclear. Here the authors show that the ubiquitously expressed transcription factor NF-Y regulate fidelity of transcription initiation at gene promoters, maintaining the region upstream of TSSs in a nucleosome-depleted state, while protecting this region from ectopic transcription initiation.
Collapse
Affiliation(s)
- Andrew J Oldfield
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC, 27709, USA. .,Institute of Human Genetics, CNRS, University of Montpellier, Montpellier, 34396, France.
| | - Telmo Henriques
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC, 27709, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Dhirendra Kumar
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC, 27709, USA
| | - Adam B Burkholder
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC, 27709, USA
| | - Senthilkumar Cinghu
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC, 27709, USA
| | - Damien Paulet
- Department of Computer Science, LIRMM, CNRS et Université de Montpellier, Montpellier, 34095, France.,Institut de Biologie Computationnelle (IBC), Université de Montpellier, Montpellier, 34095, France
| | - Brian D Bennett
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC, 27709, USA
| | - Pengyi Yang
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC, 27709, USA.,Charles Perkins Centre and School of Mathematics and Statistics, University of Sydney, Sydney, NSW 2006, Australia
| | - Benjamin S Scruggs
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC, 27709, USA
| | - Christopher A Lavender
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC, 27709, USA
| | - Eric Rivals
- Department of Computer Science, LIRMM, CNRS et Université de Montpellier, Montpellier, 34095, France.,Institut de Biologie Computationnelle (IBC), Université de Montpellier, Montpellier, 34095, France
| | - Karen Adelman
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC, 27709, USA. .,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA.
| | - Raja Jothi
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC, 27709, USA.
| |
Collapse
|
21
|
Shir-Shapira H, Sloutskin A, Adato O, Ovadia-Shochat A, Ideses D, Zehavi Y, Kassavetis G, Kadonaga JT, Unger R, Juven-Gershon T. Identification of evolutionarily conserved downstream core promoter elements required for the transcriptional regulation of Fushi tarazu target genes. PLoS One 2019; 14:e0215695. [PMID: 30998799 PMCID: PMC6472829 DOI: 10.1371/journal.pone.0215695] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 04/07/2019] [Indexed: 12/21/2022] Open
Abstract
The regulation of transcription initiation is critical for developmental and cellular processes. RNA polymerase II (Pol II) is recruited by the basal transcription machinery to the core promoter where Pol II initiates transcription. The core promoter encompasses the region from -40 to +40 bp relative to the +1 transcription start site (TSS). Core promoters may contain one or more core promoter motifs that confer specific properties to the core promoter, such as the TATA box, initiator (Inr) and motifs that are located downstream of the TSS, namely, motif 10 element (MTE), the downstream core promoter element (DPE) and the Bridge, a bipartite core promoter element. We had previously shown that Caudal, an enhancer-binding homeodomain transcription factor and a key regulator of the Hox gene network, is a DPE-specific activator. Interestingly, pair-rule proteins have been implicated in enhancer-promoter communication at the engrailed locus. Fushi tarazu (Ftz) is an enhancer-binding homeodomain transcription factor encoded by the ftz pair-rule gene. Ftz works in concert with its co-factor, Ftz-F1, to activate transcription. Here, we examined whether Ftz and Ftz-F1 activate transcription with a preference for a specific core promoter motif. Our analysis revealed that similarly to Caudal, Ftz and Ftz-F1 activate the promoter containing a TATA box mutation to significantly higher levels than the promoter containing a DPE mutation, thus demonstrating a preference for the DPE motif. We further discovered that Ftz target genes are enriched for a combination of functional downstream core promoter elements that are conserved among Drosophila species. Thus, the unique combination (Inr, Bridge and DPE) of functional downstream core promoter elements within Ftz target genes highlights the complexity of transcriptional regulation via the core promoter in the transcription of different developmental gene regulatory networks.
Collapse
Affiliation(s)
- Hila Shir-Shapira
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Anna Sloutskin
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Orit Adato
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Avital Ovadia-Shochat
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Diana Ideses
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Yonathan Zehavi
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - George Kassavetis
- Section of Molecular Biology, University of California, San Diego, La Jolla, CA, United States of America
| | - James T. Kadonaga
- Section of Molecular Biology, University of California, San Diego, La Jolla, CA, United States of America
| | - Ron Unger
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Tamar Juven-Gershon
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
- * E-mail:
| |
Collapse
|
22
|
Huang JH, Kwan RSY, Tsai ZTY, Lin TC, Tsai HK. Borders of Cis-Regulatory DNA Sequences Preferentially Harbor the Divergent Transcription Factor Binding Motifs in the Human Genome. Front Genet 2018; 9:571. [PMID: 30524473 PMCID: PMC6261980 DOI: 10.3389/fgene.2018.00571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 11/06/2018] [Indexed: 11/17/2022] Open
Abstract
Changes in cis-regulatory DNA sequences and transcription factor (TF) repertoires provide major sources of phenotypic diversity that shape the evolution of gene regulation in eukaryotes. The DNA-binding specificities of TFs may be diversified or produce new variants in different eukaryotic species. However, it is currently unclear how various levels of divergence in TF DNA-binding specificities or motifs became introduced into the cis-regulatory DNA regions of the genome over evolutionary time. Here, we first estimated the evolutionary divergence levels of TF binding motifs and quantified their occurrence at DNase I-hypersensitive sites. Results from our in silico motif scan and experimentally derived chromatin immunoprecipitation (TF-ChIP) show that the divergent motifs tend to be introduced in the edges of cis-regulatory regions, which is probably accompanied by the expansion of the accessible core of promoter-associated regulatory elements during evolution. We also find that the genes neighboring the expanded cis-regulatory regions with the most divergent motifs are associated with functions like development and morphogenesis. Accordingly, we propose that the accumulation of divergent motifs in the edges of cis-regulatory regions provides a functional mechanism for the evolution of divergent regulatory circuits.
Collapse
Affiliation(s)
- Jia-Hsin Huang
- Institute of Information Science, Academia Sinica, Nankang, Taipei, Taiwan
| | | | - Zing Tsung-Yeh Tsai
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, United States
| | - Tzu-Chieh Lin
- Institute of Information Science, Academia Sinica, Nankang, Taipei, Taiwan
| | - Huai-Kuang Tsai
- Institute of Information Science, Academia Sinica, Nankang, Taipei, Taiwan
| |
Collapse
|
23
|
Fitz E, Wanka F, Seiboth B. The Promoter Toolbox for Recombinant Gene Expression in Trichoderma reesei. Front Bioeng Biotechnol 2018; 6:135. [PMID: 30364340 PMCID: PMC6193071 DOI: 10.3389/fbioe.2018.00135] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 09/12/2018] [Indexed: 01/05/2023] Open
Abstract
The ascomycete Trichoderma reesei is one of the main fungal producers of cellulases and xylanases based on its high production capacity. Its enzymes are applied in food, feed, and textile industry or in lignocellulose hydrolysis in biofuel and biorefinery industry. Over the last years, the demand to expand the molecular toolbox for T. reesei to facilitate genetic engineering and improve the production of heterologous proteins grew. An important instrument to modify the expression of key genes are promoters to initiate and control their transcription. To date, the most commonly used promoter for T. reesei is the strong inducible promoter of the main cellobiohydrolase cel7a. Beside this one, there is a number of alternative inducible promoters derived from other cellulase- and xylanase encoding genes and a few constitutive promoters. With the advances in genomics and transcriptomics the identification of new constitutive and tunable promoters with different expression strength was simplified. In this review, we will discuss new developments in the field of promoters and compare their advantages and disadvantages. Synthetic expression systems constitute a new option to control gene expression and build up complex gene circuits. Therefore, we will address common structural features of promoters and describe options for promoter engineering and synthetic design of promoters. The availability of well-characterized gene expression control tools is essential for the analysis of gene function, detection of bottlenecks in gene networks and yield increase for biotechnology applications.
Collapse
Affiliation(s)
- Elisabeth Fitz
- Research Division Biochemical Technology, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Vienna, Austria.,Austrian Centre of Industrial Biotechnology (ACIB) GmbH, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Vienna, Austria
| | - Franziska Wanka
- Austrian Centre of Industrial Biotechnology (ACIB) GmbH, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Vienna, Austria
| | - Bernhard Seiboth
- Research Division Biochemical Technology, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Vienna, Austria.,Austrian Centre of Industrial Biotechnology (ACIB) GmbH, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Vienna, Austria
| |
Collapse
|
24
|
Gurova K, Chang HW, Valieva ME, Sandlesh P, Studitsky VM. Structure and function of the histone chaperone FACT - Resolving FACTual issues. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2018; 1861:S1874-9399(18)30159-7. [PMID: 30055319 PMCID: PMC6349528 DOI: 10.1016/j.bbagrm.2018.07.008] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 07/17/2018] [Accepted: 07/19/2018] [Indexed: 12/12/2022]
Abstract
FAcilitates Chromatin Transcription (FACT) has been considered essential for transcription through chromatin mostly based on cell-free experiments. However, FACT inactivation in cells does not cause a significant reduction in transcription. Moreover, not all mammalian cells require FACT for viability. Here we synthesize information from different organisms to reveal the core function(s) of FACT and propose a model that reconciles the cell-free and cell-based observations. We describe FACT structure and nucleosomal interactions, and their roles in FACT-dependent transcription, replication and repair. The variable requirements for FACT among different tumor and non-tumor cells suggest that various FACT-dependent processes have significantly different levels of relative importance in different eukaryotic cells. We propose that the stability of chromatin, which might vary among different cell types, dictates these diverse requirements for FACT to support cell viability. Since tumor cells are among the most sensitive to FACT inhibition, this vulnerability could be exploited for cancer treatment.
Collapse
Affiliation(s)
- Katerina Gurova
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA.
| | - Han-Wen Chang
- Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Maria E Valieva
- Biology Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - Poorva Sandlesh
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | - Vasily M Studitsky
- Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Biology Faculty, Lomonosov Moscow State University, Moscow, Russia.
| |
Collapse
|
25
|
Bardales JA, Wieser E, Kawaji H, Murakawa Y, Darzacq X. Selective Activation of Alternative MYC Core Promoters by Wnt-Responsive Enhancers. Genes (Basel) 2018; 9:genes9060270. [PMID: 29882899 PMCID: PMC6027352 DOI: 10.3390/genes9060270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/14/2018] [Accepted: 05/15/2018] [Indexed: 11/16/2022] Open
Abstract
In Metazoans, transcription of most genes is driven by the use of multiple alternative promoters. Although the precise regulation of alternative promoters is important for proper gene expression, the mechanisms that mediates their differential utilization remains unclear. Here, we investigate how the two alternative promoters (P1, P2) that drive MYC expression are regulated. We find that P1 and P2 can be differentially regulated across cell-types and that their selective usage is largely mediated by distal regulatory sequences. Moreover, we show that in colon carcinoma cells, Wnt-responsive enhancers preferentially upregulate transcription from the P1 promoter using reporter assays and in the context of the endogenous Wnt induction. In addition, multiple enhancer deletions using CRISPR/Cas9 corroborate the regulatory specificity of P1. Finally, we show that preferential activation between Wnt-responsive enhancers and the P1 promoter is influenced by the distinct core promoter elements that are present in the MYC promoters. Taken together, our results provide new insight into how enhancers can specifically target alternative promoters and suggest that formation of these selective interactions could allow more precise combinatorial regulation of transcription initiation.
Collapse
Affiliation(s)
- Jorge A Bardales
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA.
- Biophysics Graduate Group, University of California, Berkeley, CA 94720, USA.
| | - Evin Wieser
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA.
| | - Hideya Kawaji
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama 230-0045, Japan.
- RIKEN Preventive Medicine and Diagnosis Innovation Program, Yokohama 230-0045, Japan.
- Preventive Medicine and Applied Genomics Unit, RIKEN Advanced Center for Computing and Communication, Yokohama 230-0045, Japan.
| | - Yasuhiro Murakawa
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama 230-0045, Japan.
- RIKEN Preventive Medicine and Diagnosis Innovation Program, Yokohama 230-0045, Japan.
| | - Xavier Darzacq
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA.
- Li Ka Shing Center for Biomedical and Health Sciences, CIRM Center of Excellence, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
26
|
Gupta K, Watson AA, Baptista T, Scheer E, Chambers AL, Koehler C, Zou J, Obong-Ebong I, Kandiah E, Temblador A, Round A, Forest E, Man P, Bieniossek C, Laue ED, Lemke EA, Rappsilber J, Robinson CV, Devys D, Tora L, Berger I. Architecture of TAF11/TAF13/TBP complex suggests novel regulation properties of general transcription factor TFIID. eLife 2017; 6:e30395. [PMID: 29111974 PMCID: PMC5690282 DOI: 10.7554/elife.30395] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 11/03/2017] [Indexed: 11/13/2022] Open
Abstract
General transcription factor TFIID is a key component of RNA polymerase II transcription initiation. Human TFIID is a megadalton-sized complex comprising TATA-binding protein (TBP) and 13 TBP-associated factors (TAFs). TBP binds to core promoter DNA, recognizing the TATA-box. We identified a ternary complex formed by TBP and the histone fold (HF) domain-containing TFIID subunits TAF11 and TAF13. We demonstrate that TAF11/TAF13 competes for TBP binding with TATA-box DNA, and also with the N-terminal domain of TAF1 previously implicated in TATA-box mimicry. In an integrative approach combining crystal coordinates, biochemical analyses and data from cross-linking mass-spectrometry (CLMS), we determine the architecture of the TAF11/TAF13/TBP complex, revealing TAF11/TAF13 interaction with the DNA binding surface of TBP. We identify a highly conserved C-terminal TBP-interaction domain (CTID) in TAF13, which is essential for supporting cell growth. Our results thus have implications for cellular TFIID assembly and suggest a novel regulatory state for TFIID function.
Collapse
Affiliation(s)
- Kapil Gupta
- BrisSynBio Centre, The School of Biochemistry, Faculty of Biomedical SciencesUniversity of BristolBristolUnited Kingdom
- European Molecular Biology LaboratoryGrenobleFrance
| | | | - Tiago Baptista
- Institut de Génétique et de Biologie Moléculaire et Cellulaire IGBMCIllkirchFrance
- Centre National de la Recherche ScientifiqueIllkirchFrance
- Institut National de la Santé et de la Recherche MédicaleIllkirchFrance
- Université de StrasbourgIllkirchFrance
| | - Elisabeth Scheer
- Institut de Génétique et de Biologie Moléculaire et Cellulaire IGBMCIllkirchFrance
- Centre National de la Recherche ScientifiqueIllkirchFrance
- Institut National de la Santé et de la Recherche MédicaleIllkirchFrance
- Université de StrasbourgIllkirchFrance
| | - Anna L Chambers
- BrisSynBio Centre, The School of Biochemistry, Faculty of Biomedical SciencesUniversity of BristolBristolUnited Kingdom
| | | | - Juan Zou
- Wellcome Trust Centre for Cell BiologyUniversity of EdinburghEdinburghUnited Kingdom
- Chair of BioanalyticsInstitute of Biotechnology, Technische Universität BerlinBerlinGermany
| | - Ima Obong-Ebong
- Physical and Theoretical Chemistry LaboratoryOxfordUnited Kingdom
| | - Eaazhisai Kandiah
- European Molecular Biology LaboratoryGrenobleFrance
- Institut de Biologie Structurale IBSGrenobleFrance
| | | | - Adam Round
- European Molecular Biology LaboratoryGrenobleFrance
| | - Eric Forest
- Institut de Biologie Structurale IBSGrenobleFrance
| | - Petr Man
- Institute of MicrobiologyThe Czech Academy of SciencesVestecCzech Republic
- BioCeV - Faculty of ScienceCharles UniversityPragueCzech Republic
| | | | - Ernest D Laue
- Department of BiochemistryUniversity of CambridgeCambridgeUnited Kingdom
| | | | - Juri Rappsilber
- Wellcome Trust Centre for Cell BiologyUniversity of EdinburghEdinburghUnited Kingdom
- Chair of BioanalyticsInstitute of Biotechnology, Technische Universität BerlinBerlinGermany
| | - Carol V Robinson
- Physical and Theoretical Chemistry LaboratoryOxfordUnited Kingdom
| | - Didier Devys
- Institut de Génétique et de Biologie Moléculaire et Cellulaire IGBMCIllkirchFrance
- Centre National de la Recherche ScientifiqueIllkirchFrance
- Institut National de la Santé et de la Recherche MédicaleIllkirchFrance
- Université de StrasbourgIllkirchFrance
| | - Làszlò Tora
- Institut de Génétique et de Biologie Moléculaire et Cellulaire IGBMCIllkirchFrance
- Centre National de la Recherche ScientifiqueIllkirchFrance
- Institut National de la Santé et de la Recherche MédicaleIllkirchFrance
- Université de StrasbourgIllkirchFrance
| | - Imre Berger
- BrisSynBio Centre, The School of Biochemistry, Faculty of Biomedical SciencesUniversity of BristolBristolUnited Kingdom
| |
Collapse
|
27
|
Baptista T, Grünberg S, Minoungou N, Koster MJE, Timmers HTM, Hahn S, Devys D, Tora L. SAGA Is a General Cofactor for RNA Polymerase II Transcription. Mol Cell 2017; 68:130-143.e5. [PMID: 28918903 PMCID: PMC5632562 DOI: 10.1016/j.molcel.2017.08.016] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 06/28/2017] [Accepted: 08/18/2017] [Indexed: 12/13/2022]
Abstract
Prior studies suggested that SAGA and TFIID are alternative factors that promote RNA polymerase II transcription with about 10% of genes in S. cerevisiae dependent on SAGA. We reassessed the role of SAGA by mapping its genome-wide location and role in global transcription in budding yeast. We find that SAGA maps to the UAS elements of most genes, overlapping with Mediator binding and irrespective of previous designations of SAGA or TFIID-dominated genes. Disruption of SAGA through mutation or rapid subunit depletion reduces transcription from nearly all genes, measured by newly-synthesized RNA. We also find that the acetyltransferase Gcn5 synergizes with Spt3 to promote global transcription and that Spt3 functions to stimulate TBP recruitment at all tested genes. Our data demonstrate that SAGA acts as a general cofactor required for essentially all RNA polymerase II transcription and is not consistent with the previous classification of SAGA and TFIID-dominated genes.
Collapse
Affiliation(s)
- Tiago Baptista
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, 67404 Illkirch, France; Université de Strasbourg, 67404 Illkirch, France
| | - Sebastian Grünberg
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Nadège Minoungou
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Université Paris Diderot, Sorbonne Paris Cité, 75205 Paris, France
| | - Maria J E Koster
- Molecular Cancer Research and Stem Cell Section, Regenerative Medicine Center and Center for Molecular Medicine, University Medical Center Utrecht c/o Hubrecht Institute, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - H T Marc Timmers
- Molecular Cancer Research and Stem Cell Section, Regenerative Medicine Center and Center for Molecular Medicine, University Medical Center Utrecht c/o Hubrecht Institute, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands; German Cancer Consortium (DKTK) partner site Freiburg, German Cancer Research Center (DKFZ) and Department of Urology, Medical Center-University of Freiburg, 79106 Freiburg, Germany
| | - Steve Hahn
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Didier Devys
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, 67404 Illkirch, France; Université de Strasbourg, 67404 Illkirch, France.
| | - László Tora
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, 67404 Illkirch, France; Université de Strasbourg, 67404 Illkirch, France.
| |
Collapse
|
28
|
Warfield L, Ramachandran S, Baptista T, Devys D, Tora L, Hahn S. Transcription of Nearly All Yeast RNA Polymerase II-Transcribed Genes Is Dependent on Transcription Factor TFIID. Mol Cell 2017; 68:118-129.e5. [PMID: 28918900 DOI: 10.1016/j.molcel.2017.08.014] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 06/28/2017] [Accepted: 08/18/2017] [Indexed: 11/17/2022]
Abstract
Previous studies suggested that expression of most yeast mRNAs is dominated by either transcription factor TFIID or SAGA. We re-examined the role of TFIID by rapid depletion of S. cerevisiae TFIID subunits and measurement of changes in nascent transcription. We find that transcription of nearly all mRNAs is strongly dependent on TFIID function. Degron-dependent depletion of Taf1, Taf2, Taf7, Taf11, and Taf13 showed similar transcription decreases for genes in the Taf1-depleted, Taf1-enriched, TATA-containing, and TATA-less gene classes. The magnitude of TFIID dependence varies with growth conditions, although this variation is similar genome-wide. Many studies have suggested differences in gene-regulatory mechanisms between TATA and TATA-less genes, and these differences have been attributed in part to differential dependence on SAGA or TFIID. Our work indicates that TFIID participates in expression of nearly all yeast mRNAs and that differences in regulation between these two gene categories is due to other properties.
Collapse
Affiliation(s)
- Linda Warfield
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Srinivas Ramachandran
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Howard Hughes Medical Institute, Seattle, WA 98109, USA
| | - Tiago Baptista
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France; UMR7104, Centre National de la Recherche Scientifique, 67404 Illkirch, France; U964, Institut National de la Santé et de la Recherche Médicale, 67404 Illkirch, France; Université de Strasbourg, 67404 Illkirch, Cedex, France
| | - Didier Devys
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France; UMR7104, Centre National de la Recherche Scientifique, 67404 Illkirch, France; U964, Institut National de la Santé et de la Recherche Médicale, 67404 Illkirch, France; Université de Strasbourg, 67404 Illkirch, Cedex, France
| | - Laszlo Tora
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France; UMR7104, Centre National de la Recherche Scientifique, 67404 Illkirch, France; U964, Institut National de la Santé et de la Recherche Médicale, 67404 Illkirch, France; Université de Strasbourg, 67404 Illkirch, Cedex, France
| | - Steven Hahn
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
| |
Collapse
|
29
|
Nizovtseva EV, Clauvelin N, Todolli S, Polikanov YS, Kulaeva OI, Wengrzynek S, Olson WK, Studitsky VM. Nucleosome-free DNA regions differentially affect distant communication in chromatin. Nucleic Acids Res 2017; 45:3059-3067. [PMID: 27940560 PMCID: PMC5389534 DOI: 10.1093/nar/gkw1240] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 11/29/2016] [Indexed: 11/13/2022] Open
Abstract
Communication between distantly spaced genomic regions is one of the key features of gene regulation in eukaryotes. Chromatin per se can stimulate efficient enhancer-promoter communication (EPC); however, the role of chromatin structure and dynamics in this process remains poorly understood. Here we show that nucleosome spacing and the presence of nucleosome-free DNA regions can modulate chromatin structure/dynamics and, in turn, affect the rate of EPC in vitro and in silico. Increasing the length of internucleosomal linker DNA from 25 to 60 bp results in more efficient EPC. The presence of longer nucleosome-free DNA regions can positively or negatively affect the rate of EPC, depending upon the length and location of the DNA region within the chromatin fiber. Thus the presence of histone-free DNA regions can differentially affect the efficiency of EPC, suggesting that gene regulation over a distance could be modulated by changes in the length of internucleosomal DNA spacers.
Collapse
Affiliation(s)
- Ekaterina V Nizovtseva
- Cancer Epigenetics Program, Fox Chase Cancer Center, 333 Cottman Ave., Philadelphia, PA 19422, USA.,Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers, the State University of New Jersey, 675 Hoes Lane, Piscataway, NJ 08854, USA
| | - Nicolas Clauvelin
- Department of Chemistry and Chemical Biology, Center for Quantitative Biology, Rutgers, the State University of New Jersey, 610 Taylor Rd., Piscataway, NJ 08854, USA
| | - Stefjord Todolli
- Department of Chemistry and Chemical Biology, Center for Quantitative Biology, Rutgers, the State University of New Jersey, 610 Taylor Rd., Piscataway, NJ 08854, USA
| | - Yury S Polikanov
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers, the State University of New Jersey, 675 Hoes Lane, Piscataway, NJ 08854, USA
| | - Olga I Kulaeva
- Cancer Epigenetics Program, Fox Chase Cancer Center, 333 Cottman Ave., Philadelphia, PA 19422, USA.,Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers, the State University of New Jersey, 675 Hoes Lane, Piscataway, NJ 08854, USA.,Biology Faculty, Moscow State University, Moscow 119991, Russia
| | - Scott Wengrzynek
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers, the State University of New Jersey, 675 Hoes Lane, Piscataway, NJ 08854, USA
| | - Wilma K Olson
- Department of Chemistry and Chemical Biology, Center for Quantitative Biology, Rutgers, the State University of New Jersey, 610 Taylor Rd., Piscataway, NJ 08854, USA
| | - Vasily M Studitsky
- Cancer Epigenetics Program, Fox Chase Cancer Center, 333 Cottman Ave., Philadelphia, PA 19422, USA.,Laboratory of Epigenetics, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
30
|
Functional Screening of Core Promoter Activity. Methods Mol Biol 2017; 1651:77-91. [PMID: 28801901 DOI: 10.1007/978-1-4939-7223-4_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The core promoter is the DNA sequence that recruits the basal transcription machinery and directs accurate initiation of transcription. It is an active contributor to gene expression that can be rationally designed to manipulate the levels of expression. Core promoter function can be analyzed using different experimental approaches. Here, we describe the qualitative and quantitative analysis of engineered core promoter functions using the EGFP reporter gene that is driven by distinct core promoters. Expression plasmids are transfected into different mammalian cell lines, and the resulting fluorescence is monitored by live cell imaging , as well as by flow cytometry. In order to verify that the transcriptional activity of the examined core promoters is indeed a function of their activity, as opposed to differences in DNA uptake, real-time quantitative PCR analysis is performed. Importantly, the described methodology for functional screening of core promoter activity has enabled the analysis of engineered potent core promoters for extended time periods.
Collapse
|
31
|
Oka R, Zicola J, Weber B, Anderson SN, Hodgman C, Gent JI, Wesselink JJ, Springer NM, Hoefsloot HCJ, Turck F, Stam M. Genome-wide mapping of transcriptional enhancer candidates using DNA and chromatin features in maize. Genome Biol 2017; 18:137. [PMID: 28732548 PMCID: PMC5522596 DOI: 10.1186/s13059-017-1273-4] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 07/05/2017] [Indexed: 11/10/2022] Open
Abstract
Background While most cells in multicellular organisms carry the same genetic information, in each cell type only a subset of genes is being transcribed. Such differentiation in gene expression depends, for a large part, on the activation and repression of regulatory sequences, including transcriptional enhancers. Transcriptional enhancers can be located tens of kilobases from their target genes, but display characteristic chromatin and DNA features, allowing their identification by genome-wide profiling. Here we show that integration of chromatin characteristics can be applied to predict distal enhancer candidates in Zea mays, thereby providing a basis for a better understanding of gene regulation in this important crop plant. Result To predict transcriptional enhancers in the crop plant maize (Zea mays L. ssp. mays), we integrated available genome-wide DNA methylation data with newly generated maps for chromatin accessibility and histone 3 lysine 9 acetylation (H3K9ac) enrichment in young seedling and husk tissue. Approximately 1500 intergenic regions, displaying low DNA methylation, high chromatin accessibility and H3K9ac enrichment, were classified as enhancer candidates. Based on their chromatin profiles, candidate sequences can be classified into four subcategories. Tissue-specificity of enhancer candidates is defined based on the tissues in which they are identified and putative target genes are assigned based on tissue-specific expression patterns of flanking genes. Conclusions Our method identifies three previously identified distal enhancers in maize, validating the new set of enhancer candidates and enlarging the toolbox for the functional characterization of gene regulation in the highly repetitive maize genome. Electronic supplementary material The online version of this article (doi:10.1186/s13059-017-1273-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rurika Oka
- Swammerdam Institute for Life Sciences, Universiteit van Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Johan Zicola
- Department Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Köln, Germany
| | - Blaise Weber
- Swammerdam Institute for Life Sciences, Universiteit van Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Sarah N Anderson
- Department of Plant Biology, University of Minnesota, 40 Gortner Laboratory, 1479 Gortner Avenue, St. Paul, MN, 55108, USA
| | - Charlie Hodgman
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Sutton Bonington, LE12 5RD, UK
| | - Jonathan I Gent
- Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA
| | | | - Nathan M Springer
- Department of Plant Biology, University of Minnesota, 40 Gortner Laboratory, 1479 Gortner Avenue, St. Paul, MN, 55108, USA
| | - Huub C J Hoefsloot
- Swammerdam Institute for Life Sciences, Universiteit van Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Franziska Turck
- Department Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Köln, Germany.
| | - Maike Stam
- Swammerdam Institute for Life Sciences, Universiteit van Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands.
| |
Collapse
|
32
|
Abstract
The leap from simple unicellularity to complex multicellularity remains one of life's major enigmas. The origins of metazoan developmental gene regulatory mechanisms are sought by analyzing gene regulation in extant eumetazoans, sponges, and unicellular organisms. The main hypothesis of this manuscript is that, developmental enhancers evolved from unicellular inducible promoters that diversified the expression of regulatory genes during metazoan evolution. Promoters and enhancers are functionally similar; both can regulate the transcription of distal promoters and both direct local transcription. Additionally, enhancers have experimentally characterized structural features that reveal their origin from inducible promoters. The distal co-operative regulation among promoters identified in unicellular opisthokonts possibly represents the precursor of distal regulation of promoters by enhancers. During metazoan evolution, constitutive-type promoters of regulatory genes would have acquired novel receptivity to distal regulatory inputs from promoters of inducible genes that eventually specialized as enhancers. The novel regulatory interactions would have caused constitutively expressed genes controlling differential gene expression in unicellular organisms to become themselves differentially expressed. The consequence of the novel regulatory interactions was that regulatory pathways of unicellular organisms became interlaced and ultimately evolved into the intricate developmental gene regulatory networks (GRNs) of extant metazoans.
Collapse
Affiliation(s)
- César Arenas-Mena
- Department of Biology, College of Staten Island and Graduate Center, The City University of New York (CUNY), Staten Island, NY 10314, USA
| |
Collapse
|
33
|
de Jonge WJ, O'Duibhir E, Lijnzaad P, van Leenen D, Groot Koerkamp MJ, Kemmeren P, Holstege FC. Molecular mechanisms that distinguish TFIID housekeeping from regulatable SAGA promoters. EMBO J 2016; 36:274-290. [PMID: 27979920 PMCID: PMC5286361 DOI: 10.15252/embj.201695621] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 10/18/2016] [Accepted: 11/01/2016] [Indexed: 11/28/2022] Open
Abstract
An important distinction is frequently made between constitutively expressed housekeeping genes versus regulated genes. Although generally characterized by different DNA elements, chromatin architecture and cofactors, it is not known to what degree promoter classes strictly follow regulatability rules and which molecular mechanisms dictate such differences. We show that SAGA‐dominated/TATA‐box promoters are more responsive to changes in the amount of activator, even compared to TFIID/TATA‐like promoters that depend on the same activator Hsf1. Regulatability is therefore an inherent property of promoter class. Further analyses show that SAGA/TATA‐box promoters are more dynamic because TATA‐binding protein recruitment through SAGA is susceptible to removal by Mot1. In addition, the nucleosome configuration upon activator depletion shifts on SAGA/TATA‐box promoters and seems less amenable to preinitiation complex formation. The results explain the fundamental difference between housekeeping and regulatable genes, revealing an additional facet of combinatorial control: an activator can elicit a different response dependent on core promoter class.
Collapse
Affiliation(s)
- Wim J de Jonge
- Molecular Cancer Research, University Medical Center Utrecht, Utrecht, The Netherlands.,Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Eoghan O'Duibhir
- Molecular Cancer Research, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Philip Lijnzaad
- Molecular Cancer Research, University Medical Center Utrecht, Utrecht, The Netherlands.,Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Dik van Leenen
- Molecular Cancer Research, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marian Ja Groot Koerkamp
- Molecular Cancer Research, University Medical Center Utrecht, Utrecht, The Netherlands.,Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Patrick Kemmeren
- Molecular Cancer Research, University Medical Center Utrecht, Utrecht, The Netherlands.,Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Frank Cp Holstege
- Molecular Cancer Research, University Medical Center Utrecht, Utrecht, The Netherlands .,Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| |
Collapse
|
34
|
Influence of Rotational Nucleosome Positioning on Transcription Start Site Selection in Animal Promoters. PLoS Comput Biol 2016; 12:e1005144. [PMID: 27716823 PMCID: PMC5055345 DOI: 10.1371/journal.pcbi.1005144] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 09/11/2016] [Indexed: 01/20/2023] Open
Abstract
The recruitment of RNA-Pol-II to the transcription start site (TSS) is an important step in gene regulation in all organisms. Core promoter elements (CPE) are conserved sequence motifs that guide Pol-II to the TSS by interacting with specific transcription factors (TFs). However, only a minority of animal promoters contains CPEs. It is still unknown how Pol-II selects the TSS in their absence. Here we present a comparative analysis of promoters' sequence composition and chromatin architecture in five eukaryotic model organisms, which shows the presence of common and unique DNA-encoded features used to organize chromatin. Analysis of Pol-II initiation patterns uncovers that, in the absence of certain CPEs, there is a strong correlation between the spread of initiation and the intensity of the 10 bp periodic signal in the nearest downstream nucleosome. Moreover, promoters' primary and secondary initiation sites show a characteristic 10 bp periodicity in the absence of CPEs. We also show that DNA natural variants in the region immediately downstream the TSS are able to affect both the nucleosome-DNA affinity and Pol-II initiation pattern. These findings support the notion that, in addition to CPEs mediated selection, sequence-induced nucleosome positioning could be a common and conserved mechanism of TSS selection in animals.
Collapse
|
35
|
Vernimmen D, Bickmore WA. The Hierarchy of Transcriptional Activation: From Enhancer to Promoter. Trends Genet 2016; 31:696-708. [PMID: 26599498 DOI: 10.1016/j.tig.2015.10.004] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 09/18/2015] [Accepted: 10/15/2015] [Indexed: 12/20/2022]
Abstract
Regulatory elements (enhancers) that are remote from promoters play a critical role in the spatial, temporal, and physiological control of gene expression. Studies on specific loci, together with genome-wide approaches, suggest that there may be many common mechanisms involved in enhancer-promoter communication. Here, we discuss the multiprotein complexes that are recruited to enhancers and the hierarchy of events taking place between regulatory elements and promoters.
Collapse
Affiliation(s)
- Douglas Vernimmen
- The Roslin Institute, Developmental Biology Division, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK.
| | - Wendy A Bickmore
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| |
Collapse
|
36
|
Wragg J, Müller F. Transcriptional Regulation During Zygotic Genome Activation in Zebrafish and Other Anamniote Embryos. ADVANCES IN GENETICS 2016; 95:161-94. [PMID: 27503357 DOI: 10.1016/bs.adgen.2016.05.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Embryo development commences with the fusion of two terminally differentiated haploid gametes into the totipotent fertilized egg, which through a series of major cellular and molecular transitions generate a pluripotent cell mass. The activation of the zygotic genome occurs during the so-called maternal to zygotic transition and prepares the embryo for zygotic takeover from maternal factors, in the control of the development of cellular lineages during differentiation. Recent advances in next generation sequencing technologies have allowed the dissection of the genomic and epigenomic processes mediating this transition. These processes include reorganization of the chromatin structure to a transcriptionally permissive state, changes in composition and function of structural and regulatory DNA-binding proteins, and changeover of the transcriptome as it is overhauled from that deposited by the mother in the oocyte to a zygotically transcribed complement. Zygotic genome activation in zebrafish occurs 10 cell cycles after fertilization and provides an ideal experimental platform for elucidating the temporal sequence and dynamics of establishment of a transcriptionally active chromatin state and helps in identifying the determinants of transcription activation at polymerase II transcribed gene promoters. The relatively large number of pluripotent cells generated by the fast cell divisions before zygotic transcription provides sufficient biomass for next generation sequencing technology approaches to establish the temporal dynamics of events and suggest causative relationship between them. However, genomic and genetic technologies need to be improved further to capture the earliest events in development, where cell number is a limiting factor. These technologies need to be complemented with precise, inducible genetic interference studies using the latest genome editing tools to reveal the function of candidate determinants and to confirm the predictions made by classic embryological tools and genome-wide assays. In this review we summarize recent advances in the characterization of epigenetic regulation, transcription control, and gene promoter function during zygotic genome activation and how they fit with old models for the mechanisms of the maternal to zygotic transition. This review will focus on the zebrafish embryo but draw comparisons with other vertebrate model systems and refer to invertebrate models where informative.
Collapse
Affiliation(s)
- J Wragg
- University of Birmingham, Birmingham, United Kingdom
| | - F Müller
- University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
37
|
Simandi Z, Horvath A, Nagy P, Nagy L. Prediction and Validation of Gene Regulatory Elements Activated During Retinoic Acid Induced Embryonic Stem Cell Differentiation. J Vis Exp 2016. [PMID: 27403939 DOI: 10.3791/53978] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Embryonic development is a multistep process involving activation and repression of many genes. Enhancer elements in the genome are known to contribute to tissue and cell-type specific regulation of gene expression during the cellular differentiation. Thus, their identification and further investigation is important in order to understand how cell fate is determined. Integration of gene expression data (e.g., microarray or RNA-seq) and results of chromatin immunoprecipitation (ChIP)-based genome-wide studies (ChIP-seq) allows large-scale identification of these regulatory regions. However, functional validation of cell-type specific enhancers requires further in vitro and in vivo experimental procedures. Here we describe how active enhancers can be identified and validated experimentally. This protocol provides a step-by-step workflow that includes: 1) identification of regulatory regions by ChIP-seq data analysis, 2) cloning and experimental validation of putative regulatory potential of the identified genomic sequences in a reporter assay, and 3) determination of enhancer activity in vivo by measuring enhancer RNA transcript level. The presented protocol is detailed enough to help anyone to set up this workflow in the lab. Importantly, the protocol can be easily adapted to and used in any cellular model system.
Collapse
Affiliation(s)
- Zoltan Simandi
- Sanford-Burnham-Prebys Medical Discovery Institute at Lake Nona
| | - Attila Horvath
- Department of Biochemistry and Molecular Biology, Research Center for Molecular Medicine, Medical and Health Science Center, University of Debrecen
| | - Peter Nagy
- Sanford-Burnham-Prebys Medical Discovery Institute at Lake Nona
| | - Laszlo Nagy
- Sanford-Burnham-Prebys Medical Discovery Institute at Lake Nona; Department of Biochemistry and Molecular Biology, Research Center for Molecular Medicine, Medical and Health Science Center, University of Debrecen; MTA-DE "Lendulet" Immunogenomics Research Group, University of Debrecen;
| |
Collapse
|
38
|
Ichikawa Y, Morohashi N, Tomita N, Mitchell AP, Kurumizaka H, Shimizu M. Sequence-directed nucleosome-depletion is sufficient to activate transcription from a yeast core promoter in vivo. Biochem Biophys Res Commun 2016; 476:57-62. [PMID: 27208777 DOI: 10.1016/j.bbrc.2016.05.063] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 05/12/2016] [Indexed: 11/18/2022]
Abstract
Nucleosome-depleted regions (NDRs) (also called nucleosome-free regions or NFRs) are often found in the promoter regions of many yeast genes, and are formed by multiple mechanisms, including the binding of activators and enhancers, the actions of chromatin remodeling complexes, and the specific DNA sequences themselves. However, it remains unclear whether NDR formation per se is essential for transcriptional activation. Here, we examined the relationship between nucleosome organization and gene expression using a defined yeast reporter system, consisting of the CYC1 minimal core promoter and the lacZ gene. We introduced simple repeated sequences that should be either incorporated in nucleosomes or excluded from nucleosomes in the site upstream of the TATA boxes. The (CTG)12, (GAA)12 and (TGTAGG)6 inserts were incorporated into a positioned nucleosome in the core promoter region, and did not affect the reporter gene expression. In contrast, the insertion of (CGG)12, (TTAGGG)6, (A)34 or (CG)8 induced lacZ expression by 10-20 fold. Nucleosome mapping analyses revealed that the inserts that induced the reporter gene expression prevented nucleosome formation, and created an NDR upstream of the TATA boxes. Thus, our results demonstrated that NDR formation dictated by DNA sequences is sufficient for transcriptional activation from the core promoter in vivo.
Collapse
Affiliation(s)
- Yuichi Ichikawa
- Graduate School of Advanced Science and Engineering/RISE, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8640, Japan; Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - Nobuyuki Morohashi
- Program in Chemistry and Life Science, School of Science and Engineering, Department of Chemistry, Graduate School of Science and Engineering, Meisei University, 2-1-1 Hodokubo, Hino, Tokyo 191-8506, Japan
| | - Nobuyuki Tomita
- Program in Chemistry and Life Science, School of Science and Engineering, Department of Chemistry, Graduate School of Science and Engineering, Meisei University, 2-1-1 Hodokubo, Hino, Tokyo 191-8506, Japan
| | - Aaron P Mitchell
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - Hitoshi Kurumizaka
- Graduate School of Advanced Science and Engineering/RISE, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Mitsuhiro Shimizu
- Program in Chemistry and Life Science, School of Science and Engineering, Department of Chemistry, Graduate School of Science and Engineering, Meisei University, 2-1-1 Hodokubo, Hino, Tokyo 191-8506, Japan.
| |
Collapse
|
39
|
Sloutskin A, Danino YM, Orenstein Y, Zehavi Y, Doniger T, Shamir R, Juven-Gershon T. ElemeNT: a computational tool for detecting core promoter elements. Transcription 2016. [PMID: 26226151 PMCID: PMC4581360 DOI: 10.1080/21541264.2015.1067286] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Core promoter elements play a pivotal role in the transcriptional output, yet they are often detected manually within sequences of interest. Here, we present 2 contributions to the detection and curation of core promoter elements within given sequences. First, the Elements Navigation Tool (ElemeNT) is a user-friendly web-based, interactive tool for prediction and display of putative core promoter elements and their biologically-relevant combinations. Second, the CORE database summarizes ElemeNT-predicted core promoter elements near CAGE and RNA-seq-defined Drosophila melanogaster transcription start sites (TSSs). ElemeNT's predictions are based on biologically-functional core promoter elements, and can be used to infer core promoter compositions. ElemeNT does not assume prior knowledge of the actual TSS position, and can therefore assist in annotation of any given sequence. These resources, freely accessible at http://lifefaculty.biu.ac.il/gershon-tamar/index.php/resources, facilitate the identification of core promoter elements as active contributors to gene expression.
Collapse
Affiliation(s)
- Anna Sloutskin
- a The Mina and Everard Goodman Faculty of Life Sciences ; Bar-Ilan University ; Ramat Gan , Israel
| | | | | | | | | | | | | |
Collapse
|
40
|
Liu T, Zhang J, Zhou T. Effect of Interaction between Chromatin Loops on Cell-to-Cell Variability in Gene Expression. PLoS Comput Biol 2016; 12:e1004917. [PMID: 27153118 PMCID: PMC4859557 DOI: 10.1371/journal.pcbi.1004917] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 04/14/2016] [Indexed: 01/09/2023] Open
Abstract
According to recent experimental evidence, the interaction between chromatin loops, which can be characterized by three factors-connection pattern, distance between regulatory elements, and communication form, play an important role in determining the level of cell-to-cell variability in gene expression. These quantitative experiments call for a corresponding modeling effect that addresses the question of how changes in these factors affect variability at the expression level in a systematic rather than case-by-case fashion. Here we make such an effort, based on a mechanic model that maps three fundamental patterns for two interacting DNA loops into a 4-state model of stochastic transcription. We first show that in contrast to side-by-side loops, nested loops enhance mRNA expression and reduce expression noise whereas alternating loops have just opposite effects. Then, we compare effects of facilitated tracking and direct looping on gene expression. We find that the former performs better than the latter in controlling mean expression and in tuning expression noise, but this control or tuning is distance-dependent, remarkable for moderate loop lengths, and there is a limit loop length such that the difference in effect between two communication forms almost disappears. Our analysis and results justify the facilitated chromatin-looping hypothesis.
Collapse
Affiliation(s)
- Tuoqi Liu
- School of Mathematics and Computational Science, Sun Yat-Sen University, Guangzhou, People’s Republic of China
| | - Jiajun Zhang
- School of Mathematics and Computational Science, Sun Yat-Sen University, Guangzhou, People’s Republic of China
- Guangdong Province Key Laboratory of Computational Science, Sun Yat-Sen University, Guangzhou, People’s Republic of China
| | - Tianshou Zhou
- School of Mathematics and Computational Science, Sun Yat-Sen University, Guangzhou, People’s Republic of China
- Guangdong Province Key Laboratory of Computational Science, Sun Yat-Sen University, Guangzhou, People’s Republic of China
| |
Collapse
|
41
|
Gazdag E, Jacobi UG, van Kruijsbergen I, Weeks DL, Veenstra GJC. Activation of a T-box-Otx2-Gsc gene network independent of TBP and TBP-related factors. Development 2016; 143:1340-50. [PMID: 26952988 PMCID: PMC4852510 DOI: 10.1242/dev.127936] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 02/24/2016] [Indexed: 12/15/2022]
Abstract
Embryonic development relies on activating and repressing regulatory influences that are faithfully integrated at the core promoter of individual genes. In vertebrates, the basal machinery recognizing the core promoter includes TATA-binding protein (TBP) and two TBP-related factors. In Xenopus embryos, the three TBP family factors are all essential for development and are required for expression of distinct subsets of genes. Here, we report on a non-canonical TBP family-insensitive (TFI) mechanism of transcription initiation that involves mesoderm and organizer gene expression. Using TBP family single- and triple-knockdown experiments, α-amanitin treatment, transcriptome profiling and chromatin immunoprecipitation, we found that TFI gene expression cannot be explained by functional redundancy, is supported by active transcription and shows normal recruitment of the initiating form of RNA polymerase II to the promoter. Strikingly, recruitment of Gcn5 (also known as Kat2a), a co-activator that has been implicated in transcription initiation, to TFI gene promoters is increased upon depletion of TBP family factors. TFI genes are part of a densely connected TBP family-insensitive T-box-Otx2-Gsc interaction network. The results indicate that this network of genes bound by Vegt, Eomes, Otx2 and Gsc utilizes a novel, flexible and non-canonical mechanism of transcription that does not require TBP or TBP-related factors. Highlighted article: A network of embryonic genes, many of which are expressed in the mesoderm and the organiser, can initiate transcription through a non-canonical mechanism.
Collapse
Affiliation(s)
- Emese Gazdag
- Department of Molecular Developmental Biology, Radboud Institute for Molecular Life Sciences, Radboud University, 6500 HB Nijmegen, The Netherlands
| | - Ulrike G Jacobi
- Department of Molecular Developmental Biology, Radboud Institute for Molecular Life Sciences, Radboud University, 6500 HB Nijmegen, The Netherlands
| | - Ila van Kruijsbergen
- Department of Molecular Developmental Biology, Radboud Institute for Molecular Life Sciences, Radboud University, 6500 HB Nijmegen, The Netherlands
| | - Daniel L Weeks
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA
| | - Gert Jan C Veenstra
- Department of Molecular Developmental Biology, Radboud Institute for Molecular Life Sciences, Radboud University, 6500 HB Nijmegen, The Netherlands
| |
Collapse
|
42
|
Even DY, Kedmi A, Basch-Barzilay S, Ideses D, Tikotzki R, Shir-Shapira H, Shefi O, Juven-Gershon T. Engineered Promoters for Potent Transient Overexpression. PLoS One 2016; 11:e0148918. [PMID: 26872062 PMCID: PMC4752495 DOI: 10.1371/journal.pone.0148918] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 01/23/2016] [Indexed: 12/25/2022] Open
Abstract
The core promoter, which is generally defined as the region to which RNA Polymerase II is recruited to initiate transcription, plays a pivotal role in the regulation of gene expression. The core promoter consists of different combinations of several short DNA sequences, termed core promoter elements or motifs, which confer specific functional properties to each promoter. Earlier studies that examined the ability to modulate gene expression levels via the core promoter, led to the design of strong synthetic core promoters, which combine different core elements into a single core promoter. Here, we designed a new core promoter, termed super core promoter 3 (SCP3), which combines four core promoter elements (the TATA box, Inr, MTE and DPE) into a single promoter that drives prolonged and potent gene expression. We analyzed the effect of core promoter architecture on the temporal dynamics of reporter gene expression by engineering EGFP expression vectors that are driven by distinct core promoters. We used live cell imaging and flow cytometric analyses in different human cell lines to demonstrate that SCPs, particularly the novel SCP3, drive unusually strong long-term EGFP expression. Importantly, this is the first demonstration of long-term expression in transiently transfected mammalian cells, indicating that engineered core promoters can provide a novel non-viral strategy for biotechnological as well as gene-therapy-related applications that require potent expression for extended time periods.
Collapse
Affiliation(s)
- Dan Y. Even
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Adi Kedmi
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Shani Basch-Barzilay
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Diana Ideses
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Ravid Tikotzki
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Hila Shir-Shapira
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Orit Shefi
- Faculty of Engineering and Bar-Ilan Institute of Nanotechnologies and Advanced Materials, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Tamar Juven-Gershon
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
- * E-mail:
| |
Collapse
|
43
|
Mora A, Sandve GK, Gabrielsen OS, Eskeland R. In the loop: promoter-enhancer interactions and bioinformatics. Brief Bioinform 2015; 17:980-995. [PMID: 26586731 PMCID: PMC5142009 DOI: 10.1093/bib/bbv097] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 09/26/2015] [Indexed: 12/17/2022] Open
Abstract
Enhancer-promoter regulation is a fundamental mechanism underlying differential transcriptional regulation. Spatial chromatin organization brings remote enhancers in contact with target promoters in cis to regulate gene expression. There is considerable evidence for promoter-enhancer interactions (PEIs). In the recent years, genome-wide analyses have identified signatures and mapped novel enhancers; however, being able to precisely identify their target gene(s) requires massive biological and bioinformatics efforts. In this review, we give a short overview of the chromatin landscape and transcriptional regulation. We discuss some key concepts and problems related to chromatin interaction detection technologies, and emerging knowledge from genome-wide chromatin interaction data sets. Then, we critically review different types of bioinformatics analysis methods and tools related to representation and visualization of PEI data, raw data processing and PEI prediction. Lastly, we provide specific examples of how PEIs have been used to elucidate a functional role of non-coding single-nucleotide polymorphisms. The topic is at the forefront of epigenetic research, and by highlighting some future bioinformatics challenges in the field, this review provides a comprehensive background for future PEI studies.
Collapse
|
44
|
Watanabe K, Yabe M, Kasahara K, Kokubo T. A Random Screen Using a Novel Reporter Assay System Reveals a Set of Sequences That Are Preferred as the TATA or TATA-Like Elements in the CYC1 Promoter of Saccharomyces cerevisiae. PLoS One 2015; 10:e0129357. [PMID: 26046838 PMCID: PMC4457894 DOI: 10.1371/journal.pone.0129357] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 05/08/2015] [Indexed: 12/11/2022] Open
Abstract
In Saccharomyces cerevisiae, the core promoters of class II genes contain either TATA or TATA-like elements to direct accurate transcriptional initiation. Genome-wide analyses show that the consensus sequence of the TATA element is TATAWAWR (8 bp), whereas TATA-like elements carry one or two mismatches to this consensus. The fact that several functionally distinct TATA sequences have been identified indicates that these elements may function, at least to some extent, in a gene-specific manner. The purpose of the present study was to identify functional TATA sequences enriched in one particular core promoter and compare them with the TATA or TATA-like elements that serve as the pre-initiation complex (PIC) assembly sites on the yeast genome. For this purpose, we conducted a randomized screen of the TATA element in the CYC1 promoter by using a novel reporter assay system and identified several hundreds of unique sequences that were tentatively classified into nine groups. The results indicated that the 7 bp TATA element (i.e., TATAWAD) and several sets of TATA-like sequences are preferred specifically by this promoter. Furthermore, we find that the most frequently isolated TATA-like sequence, i.e., TATTTAAA, is actually utilized as a functional core promoter element for the endogenous genes, e.g., ADE5,7 and ADE6. Collectively, these results indicate that the sequence requirements for the functional TATA or TATA-like elements in one particular core promoter are not as stringent. However, the variation of these sequences differs significantly from that of the PIC assembly sites on the genome, presumably depending on promoter structures and reflecting the gene-specific function of these sequences.
Collapse
Affiliation(s)
- Kiyoshi Watanabe
- Molecular and Cellular Biology Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Makoto Yabe
- Molecular and Cellular Biology Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Koji Kasahara
- Molecular and Cellular Biology Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Tetsuro Kokubo
- Molecular and Cellular Biology Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa, Japan
- * E-mail:
| |
Collapse
|
45
|
Koster M, Snel B, Timmers H. Genesis of Chromatin and Transcription Dynamics in the Origin of Species. Cell 2015; 161:724-36. [DOI: 10.1016/j.cell.2015.04.033] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Indexed: 11/15/2022]
|
46
|
Danino YM, Even D, Ideses D, Juven-Gershon T. The core promoter: At the heart of gene expression. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1849:1116-31. [PMID: 25934543 DOI: 10.1016/j.bbagrm.2015.04.003] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 04/19/2015] [Accepted: 04/23/2015] [Indexed: 12/17/2022]
Abstract
The identities of different cells and tissues in multicellular organisms are determined by tightly controlled transcriptional programs that enable accurate gene expression. The mechanisms that regulate gene expression comprise diverse multiplayer molecular circuits of multiple dedicated components. The RNA polymerase II (Pol II) core promoter establishes the center of this spatiotemporally orchestrated molecular machine. Here, we discuss transcription initiation, diversity in core promoter composition, interactions of the basal transcription machinery with the core promoter, enhancer-promoter specificity, core promoter-preferential activation, enhancer RNAs, Pol II pausing, transcription termination, Pol II recycling and translation. We further discuss recent findings indicating that promoters and enhancers share similar features and may not substantially differ from each other, as previously assumed. Taken together, we review a broad spectrum of studies that highlight the importance of the core promoter and its pivotal role in the regulation of metazoan gene expression and suggest future research directions and challenges.
Collapse
Affiliation(s)
- Yehuda M Danino
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Dan Even
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Diana Ideses
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Tamar Juven-Gershon
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel.
| |
Collapse
|
47
|
TAF10 Interacts with the GATA1 Transcription Factor and Controls Mouse Erythropoiesis. Mol Cell Biol 2015; 35:2103-18. [PMID: 25870109 DOI: 10.1128/mcb.01370-14] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 03/27/2015] [Indexed: 01/21/2023] Open
Abstract
The ordered assembly of a functional preinitiation complex (PIC), composed of general transcription factors (GTFs), is a prerequisite for the transcription of protein-coding genes by RNA polymerase II. TFIID, comprised of the TATA binding protein (TBP) and 13 TBP-associated factors (TAFs), is the GTF that is thought to recognize the promoter sequences allowing site-specific PIC assembly. Transcriptional cofactors, such as SAGA, are also necessary for tightly regulated transcription initiation. The contribution of the two TAF10-containing complexes (TFIID, SAGA) to erythropoiesis remains elusive. By ablating TAF10 specifically in erythroid cells in vivo, we observed a differentiation block accompanied by deregulated GATA1 target genes, including Gata1 itself, suggesting functional cross talk between GATA1 and TAF10. Additionally, we analyzed by mass spectrometry the composition of TFIID and SAGA complexes in mouse and human cells and found that their global integrity is maintained, with minor changes, during erythroid cell differentiation and development. In agreement with our functional data, we show that TAF10 interacts directly with GATA1 and that TAF10 is enriched on the GATA1 locus in human fetal erythroid cells. Thus, our findings demonstrate a cross talk between canonical TFIID and SAGA complexes and cell-specific transcription activators during development and differentiation.
Collapse
|
48
|
Hu Z, Chen K, Li W, Tyler JK. A matter of access. Nucleosome disassembly from gene promoters is the central goal of transcriptional activators. Transcription 2015; 5:e29355. [PMID: 25764221 DOI: 10.4161/trns.29355] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The mechanism whereby transcriptional activators facilitate transcription activation has been debated. Our recent genome-wide profiling of gene expression during aging, where nucleosomes are depleted, indicates that the function of seemingly all transcriptional activators is to trigger nucleosome disassembly from promoters to allow the general transcription machinery access to the DNA.
Collapse
Affiliation(s)
- Zheng Hu
- a Department of Biochemistry and Molecular Biology; The University of Texas MD Anderson Cancer Center; Houston, TX USA
| | | | | | | |
Collapse
|
49
|
Maeshima K, Kaizu K, Tamura S, Nozaki T, Kokubo T, Takahashi K. The physical size of transcription factors is key to transcriptional regulation in chromatin domains. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2015; 27:064116. [PMID: 25563431 DOI: 10.1088/0953-8984/27/6/064116] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Genetic information, which is stored in the long strand of genomic DNA as chromatin, must be scanned and read out by various transcription factors. First, gene-specific transcription factors, which are relatively small (∼50 kDa), scan the genome and bind regulatory elements. Such factors then recruit general transcription factors, Mediators, RNA polymerases, nucleosome remodellers, and histone modifiers, most of which are large protein complexes of 1-3 MDa in size. Here, we propose a new model for the functional significance of the size of transcription factors (or complexes) for gene regulation of chromatin domains. Recent findings suggest that chromatin consists of irregularly folded nucleosome fibres (10 nm fibres) and forms numerous condensed domains (e.g., topologically associating domains). Although the flexibility and dynamics of chromatin allow repositioning of genes within the condensed domains, the size exclusion effect of the domain may limit accessibility of DNA sequences by transcription factors. We used Monte Carlo computer simulations to determine the physical size limit of transcription factors that can enter condensed chromatin domains. Small gene-specific transcription factors can penetrate into the chromatin domains and search their target sequences, whereas large transcription complexes cannot enter the domain. Due to this property, once a large complex binds its target site via gene-specific factors it can act as a 'buoy' to keep the target region on the surface of the condensed domain and maintain transcriptional competency. This size-dependent specialization of target-scanning and surface-tethering functions could provide novel insight into the mechanisms of various DNA transactions, such as DNA replication and repair/recombination.
Collapse
Affiliation(s)
- Kazuhiro Maeshima
- Biological Macromolecules Laboratory, Structural Biology Center, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan. Department of Genetics, School of Life Science, Graduate University for Advanced Studies (Sokendai), Mishima, Shizuoka 411-8540, Japan
| | | | | | | | | | | |
Collapse
|
50
|
Roy AL, Singer DS. Core promoters in transcription: old problem, new insights. Trends Biochem Sci 2015; 40:165-71. [PMID: 25680757 DOI: 10.1016/j.tibs.2015.01.007] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 01/09/2015] [Accepted: 01/15/2015] [Indexed: 12/11/2022]
Abstract
Early studies established that transcription initiates within an approximately 50 bp DNA segment capable of nucleating the assembly of RNA polymerase II (Pol II) and associated general transcription factors (GTFs) necessary for transcriptional initiation; this region is called a core promoter. Subsequent analyses identified a series of conserved DNA sequence elements, present in various combinations or not at all, in core promoters. Recent genome-wide analyses have provided further insights into the complexity of core promoter architecture and function. Here we review recent studies that delineate the active role of core promoters in the transcriptional regulation of diverse physiological systems.
Collapse
Affiliation(s)
- Ananda L Roy
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, MA, USA.
| | - Dinah S Singer
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|