1
|
Mourkogianni E, Karavasili K, Xanthopoulos A, Enake MK, Menounou L, Papadimitriou E. Pleiotrophin Activates cMet- and mTORC1-Dependent Protein Synthesis through PTPRZ1-The Role of α νβ 3 Integrin. Int J Mol Sci 2024; 25:10839. [PMID: 39409168 PMCID: PMC11477150 DOI: 10.3390/ijms251910839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/02/2024] [Accepted: 10/07/2024] [Indexed: 10/20/2024] Open
Abstract
Pleiotrophin (PTN) is a secreted factor that regulates endothelial cell migration through protein tyrosine phosphatase receptor zeta 1 (PTPRZ1) and αvβ3 integrin. Genetic deletion of Ptprz1 results in enhanced endothelial cell proliferation and migration, due to the decreased expression of β3 integrin and the subsequent, enhanced cMet phosphorylation. In the present study, we investigated the effect of PTN and PTPRZ1 on activating the mTORC1 kinase and protein synthesis and identified part of the implicated signaling pathway in endothelial cells. PTN or genetic deletion of Ptprz1 activates protein synthesis in a mTORC1-dependent manner, as shown by the enhanced phosphorylation of the mTORC1-downstream targets ribosomal protein S6 kinase 1 (SK61) and 4E-binding protein 1 (4EBP1) and the upregulation of HIF-1α. The cMet tyrosine kinase inhibitor crizotinib abolishes the stimulatory effects of PTN or PTPRZ1 deletion on mTORC1 activation and protein synthesis, suggesting that mTORC1 activation is downstream of cMet. The mTORC1 inhibitor rapamycin abolishes the stimulatory effect of PTN or PTPRZ1 deletion on endothelial cell migration, suggesting that mTORC1 is involved in the PTN/PTPRZ1-dependent cell migration. The αvβ3 integrin blocking antibody LM609 and the peptide PTN112-136, both known to bind to ανβ3 and inhibit PTN-induced endothelial cell migration, increase cMet phosphorylation and activate mTORC1, suggesting that cMet and mTORC1 activation are required but are not sufficient to stimulate cell migration. Overall, our data highlight novel aspects of the signaling pathway downstream of the PTN/PTPRZ1 axis that regulates endothelial cell functions.
Collapse
Affiliation(s)
| | | | | | | | | | - Evangelia Papadimitriou
- Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, 26504 Patras, Greece; (E.M.); (K.K.); (A.X.); (M.-K.E.); (L.M.)
| |
Collapse
|
2
|
Fuentes P, Pelletier J, Gentilella A. Decoding ribosome complexity: role of ribosomal proteins in cancer and disease. NAR Cancer 2024; 6:zcae032. [PMID: 39045153 PMCID: PMC11263879 DOI: 10.1093/narcan/zcae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/31/2024] [Accepted: 07/02/2024] [Indexed: 07/25/2024] Open
Abstract
The ribosome is a remarkably complex machinery, at the interface with diverse cellular functions and processes. Evolutionarily conserved, yet intricately regulated, ribosomes play pivotal roles in decoding genetic information into the synthesis of proteins and in the generation of biomass critical for cellular physiological functions. Recent insights have revealed the existence of ribosome heterogeneity at multiple levels. Such heterogeneity extends to cancer, where aberrant ribosome biogenesis and function contribute to oncogenesis. This led to the emergence of the concept of 'onco-ribosomes', specific ribosomal variants with altered structural dynamics, contributing to cancer initiation and progression. Ribosomal proteins (RPs) are involved in many of these alterations, acting as critical factors for the translational reprogramming of cancer cells. In this review article, we highlight the roles of RPs in ribosome biogenesis, how mutations in RPs and their paralogues reshape the translational landscape, driving clonal evolution and therapeutic resistance. Furthermore, we present recent evidence providing new insights into post-translational modifications of RPs, such as ubiquitylation, UFMylation and phosphorylation, and how they regulate ribosome recycling, translational fidelity and cellular stress responses. Understanding the intricate interplay between ribosome complexity, heterogeneity and RP-mediated regulatory mechanisms in pathology offers profound insights into cancer biology and unveils novel therapeutic avenues targeting the translational machinery in cancer.
Collapse
Affiliation(s)
- Pedro Fuentes
- Laboratory of Cancer Metabolism, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908, L'Hospitalet de Llpbregat, Barcelona, Spain
| | - Joffrey Pelletier
- Laboratory of Cancer Metabolism, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908, L'Hospitalet de Llpbregat, Barcelona, Spain
- Department of Physiological Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, 08908, L’Hospitalet de Llobregat, Barcelona, Spain
| | - Antonio Gentilella
- Laboratory of Cancer Metabolism, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908, L'Hospitalet de Llpbregat, Barcelona, Spain
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, 08028, Barcelona, Spain
| |
Collapse
|
3
|
Elbahoty MH, Papineni B, Samant RS. Multiple myeloma: clinical characteristics, current therapies and emerging innovative treatments targeting ribosome biogenesis dynamics. Clin Exp Metastasis 2024:10.1007/s10585-024-10305-2. [PMID: 39162964 DOI: 10.1007/s10585-024-10305-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/01/2024] [Indexed: 08/21/2024]
Abstract
Multiple myeloma (MM) is a clinical disorder characterized by aberrant plasma cell growth in the bone marrow microenvironment. Globally, the prevalence of MM has been steadily increasing at an alarming rate. In the United States, more than 30,000 cases will be diagnosed in 2024 and it accounts for about 2% of cancer diagnoses and more than 2% of cancer deaths, more than double the worldwide figure. Both symptomatic and active MM are distinguished by uncontrolled plasma cell growth, which results in severe renal impairment, anemia, hypercalcemia, and bone loss. Multiple drugs have been approved by the FDA and are now widely used in clinical practice for MM. Although triplet and quadruplet induction regimens, autologous stem cell transplantation (ASCT), and maintenance treatment are used, MM continues to be an incurable illness characterized by relapses that may occur at various phases of its progression. MM patients with frailty, extramedullary disease, plasma cell leukemia, central nervous system recurrence, functional high risk, and the elderly are among those with the greatest current unmet needs. The high cost of care is an additional challenge. MM cells are highly protein secretary cells and thus are dependent on the activation of certain translation pathways. MM also has a high chance of altering ribosomal protein-encoding genes like MYC mutation. In this article we discuss the importance of ribosome biogenesis in promoting MM and RNA polymerase I inhibition as an upcoming treatment with potential promise for MM patients.
Collapse
Affiliation(s)
- Mohamed H Elbahoty
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
- Hematology Unit, Department of Internal Medicine, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Bhavyasree Papineni
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Rajeev S Samant
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA.
- Birmingham VA Medical Center, Birmingham, AL, USA.
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA.
- , WTI 320E, 1824 6th Ave South, Birmingham, AL, 35294, USA.
| |
Collapse
|
4
|
Marafie SK, Al-Mulla F, Abubaker J. mTOR: Its Critical Role in Metabolic Diseases, Cancer, and the Aging Process. Int J Mol Sci 2024; 25:6141. [PMID: 38892329 PMCID: PMC11173325 DOI: 10.3390/ijms25116141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/26/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
The mammalian target of rapamycin (mTOR) is a pivotal regulator, integrating diverse environmental signals to control fundamental cellular functions, such as protein synthesis, cell growth, survival, and apoptosis. Embedded in a complex network of signaling pathways, mTOR dysregulation is implicated in the onset and progression of a range of human diseases, including metabolic disorders such as diabetes and cardiovascular diseases, as well as various cancers. mTOR also has a notable role in aging. Given its extensive biological impact, mTOR signaling is a prime therapeutic target for addressing these complex conditions. The development of mTOR inhibitors has proven advantageous in numerous research domains. This review delves into the significance of mTOR signaling, highlighting the critical components of this intricate network that contribute to disease. Additionally, it addresses the latest findings on mTOR inhibitors and their clinical implications. The review also emphasizes the importance of developing more effective next-generation mTOR inhibitors with dual functions to efficiently target the mTOR pathways. A comprehensive understanding of mTOR signaling will enable the development of effective therapeutic strategies for managing diseases associated with mTOR dysregulation.
Collapse
Affiliation(s)
- Sulaiman K. Marafie
- Biochemistry and Molecular Biology Department, Dasman Diabetes Institute, P.O. Box 1180, Dasman 15462, Kuwait
| | - Fahd Al-Mulla
- Department of Translational Research, Dasman Diabetes Institute, P.O. Box 1180, Dasman 15462, Kuwait;
| | - Jehad Abubaker
- Biochemistry and Molecular Biology Department, Dasman Diabetes Institute, P.O. Box 1180, Dasman 15462, Kuwait
| |
Collapse
|
5
|
Yang Y, Li Y, Sears RC, Sun XX, Dai MS. SUMOylation regulation of ribosome biogenesis: Emerging roles for USP36. FRONTIERS IN RNA RESEARCH 2024; 2:1389104. [PMID: 38764604 PMCID: PMC11101209 DOI: 10.3389/frnar.2024.1389104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
Ribosome biogenesis is essential for cell growth, proliferation, and animal development. Its deregulation leads to various human disorders such as ribosomopathies and cancer. Thus, tight regulation of ribosome biogenesis is crucial for normal cell homeostasis. Emerging evidence suggests that posttranslational modifications such as ubiquitination and SUMOylation play a crucial role in regulating ribosome biogenesis. Our recent studies reveal that USP36, a nucleolar deubiquitinating enzyme (DUB), acts also as a SUMO ligase to regulate nucleolar protein group SUMOylation, thereby being essential for ribosome biogenesis. Here, we provide an overview of the current understanding of the SUMOylation regulation of ribosome biogenesis and discuss the role of USP36 in nucleolar SUMOylation.
Collapse
Affiliation(s)
- Yunhan Yang
- Department of Molecular & Medical Genetics, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Yanping Li
- Department of Molecular & Medical Genetics, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Rosalie C. Sears
- Department of Molecular & Medical Genetics, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Xiao-Xin Sun
- Department of Molecular & Medical Genetics, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Mu-Shui Dai
- Department of Molecular & Medical Genetics, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| |
Collapse
|
6
|
Mu S, Tian Q, Shen L. NOP16 promotes hepatocellular carcinoma progression and triggers EMT through the Keap1-Nrf2 signaling pathway. Technol Health Care 2024; 32:2463-2483. [PMID: 38251077 PMCID: PMC11322705 DOI: 10.3233/thc-231256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/29/2023] [Indexed: 01/23/2024]
Abstract
BACKGROUND Nucleolar protein 16 (NOP16) is present in the protein complex of the nucleolus. The NOP16 promoter contains a c-Myc binding site, and the transcriptional regulation by c-Myc directly regulates NOP16 expression levels. OBJECTIVE Dysregulation of NOP 16 is currently reported in only a small number of cancers. In this study, the expression profile of NOP 16 in hepatocellular carcinoma (LIHC) and its clinical significance were analyzed. METHODS NOP16 expression in hepatocellular carcinoma (LIHC) and its relationship with the clinical characters of LIHC were examined using the Cancer Genome Atlas (TCGA), the Gene Expression comprehensive database (GEO), Kaplan-Meier survival analysis, univariate Cox analysis, multivariate Cox analysis, ROC curve analysis of KEGG enrichment, GSEA enrichment, in vitro experiments (e.g., siRNA interference of NOP16 expression in hepatoma cells, Keap1-Nrf2 pathway, cell cycle, cell apoptosis and Transwell assays), and LIHC single-cell sequencing (scRNA). RESULTS Pan-cancer analysis revealed that NOP16 was highly expressed in 20 cancer types, including LIHC, and high NOP16 expression was an independent adverse prognostic factor in LIHC patients. The expression levels of NOP16 mRNA and protein were significantly increased in tumour tissues of LIHC patients compared to normal tissues. The functions of co-expressed genes were primarily enriched in the cell cycle and reactive oxygen species metabolism. The experimental results showed that knockdown of NOP16 activated the Keap/Nrf2 signalling pathway and inhibited the invasion, migration, and EMT progression of LIHC cells. LIHC scRNA-seq data showed that NOP16 was primarily expressed in T lymphocytes. CONCLUSIONS NOP16 promoted cancer development in LIHC and caused an imbalance in Keap/Nrf2 signalling, which subsequently caused the aberrant expression of genes typical for EMT, cell cycle progression and apoptosis. NOP16 is a potential prognostic marker and therapeutic target for hepatocellular carcinoma progression.
Collapse
Affiliation(s)
- Shangdong Mu
- Department of Oncology, Health Science Center, 3201 Hospital of Xi’an Jiaotong University, Hanzhong, Shaanxi, China
| | - Qiusi Tian
- Department of Neurosurgery, Health Science Center, 3201 Hospital of Xi’an Jiaotong University, Hanzhong, Shaanxi, China
| | - Liangyu Shen
- Department of Anesthesia, Operation Center, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| |
Collapse
|
7
|
Wragg JW, White PL, Hadzhiev Y, Wanigasooriya K, Stodolna A, Tee L, Barros-Silva JD, Beggs AD, Müller F. Intra-promoter switch of transcription initiation sites in proliferation signaling-dependent RNA metabolism. Nat Struct Mol Biol 2023; 30:1970-1984. [PMID: 37996663 PMCID: PMC10716046 DOI: 10.1038/s41594-023-01156-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 10/19/2023] [Indexed: 11/25/2023]
Abstract
Global changes in transcriptional regulation and RNA metabolism are crucial features of cancer development. However, little is known about the role of the core promoter in defining transcript identity and post-transcriptional fates, a potentially crucial layer of transcriptional regulation in cancer. In this study, we use CAGE-seq analysis to uncover widespread use of dual-initiation promoters in which non-canonical, first-base-cytosine (C) transcription initiation occurs alongside first-base-purine initiation across 59 human cancers and healthy tissues. C-initiation is often followed by a 5' terminal oligopyrimidine (5'TOP) sequence, dramatically increasing the range of genes potentially subjected to 5'TOP-associated post-transcriptional regulation. We show selective, dynamic switching between purine and C-initiation site usage, indicating transcription initiation-level regulation in cancers. We additionally detail global metabolic changes in C-initiation transcripts that mark differentiation status, proliferative capacity, radiosensitivity, and response to irradiation and to PI3K-Akt-mTOR and DNA damage pathway-targeted radiosensitization therapies in colorectal cancer organoids and cancer cell lines and tissues.
Collapse
Affiliation(s)
- Joseph W Wragg
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.
| | - Paige-Louise White
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Yavor Hadzhiev
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Kasun Wanigasooriya
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Department of Surgery, University Hospitals Birmingham National Health Service (NHS) Foundation Trust, Birmingham, UK
| | - Agata Stodolna
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Louise Tee
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Joao D Barros-Silva
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Andrew D Beggs
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.
- Department of Surgery, University Hospitals Birmingham National Health Service (NHS) Foundation Trust, Birmingham, UK.
| | - Ferenc Müller
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.
| |
Collapse
|
8
|
Sherwood DR, Kenny-Ganzert IW, Balachandar Thendral S. Translational regulation of cell invasion through extracellular matrix-an emerging role for ribosomes. F1000Res 2023; 12:1528. [PMID: 38628976 PMCID: PMC11019292 DOI: 10.12688/f1000research.143519.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/22/2023] [Indexed: 04/19/2024] Open
Abstract
Many developmental and physiological processes require cells to invade and migrate through extracellular matrix barriers. This specialized cellular behavior is also misregulated in many diseases, such as immune disorders and cancer. Cell invasive activity is driven by pro-invasive transcriptional networks that activate the expression of genes encoding numerous different proteins that expand and regulate the cytoskeleton, endomembrane system, cell adhesion, signaling pathways, and metabolic networks. While detailed mechanistic studies have uncovered crucial insights into pro-invasive transcriptional networks and the distinct cell biological attributes of invasive cells, less is known about how invasive cells modulate mRNA translation to meet the robust, dynamic, and unique protein production needs of cell invasion. In this review we outline known modes of translation regulation promoting cell invasion and focus on recent studies revealing elegant mechanisms that expand ribosome biogenesis within invasive cells to meet the increased protein production requirements to invade and migrate through extracellular matrix barriers.
Collapse
|
9
|
Chen YC, Liao CC, Shui HA, Huang PH, Shih LJ. A Proteomics-Based Identification of the Biological Networks Mediating the Impact of Epigallocatechin-3-Gallate on Trophoblast Cell Migration and Invasion, with Potential Implications for Maternal and Fetal Health. Proteomes 2023; 11:31. [PMID: 37873873 PMCID: PMC10594419 DOI: 10.3390/proteomes11040031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/21/2023] [Accepted: 09/29/2023] [Indexed: 10/25/2023] Open
Abstract
Trophoblast migration and invasion play crucial roles in placental development. However, the effects of (-)-epigallocatechin-3-gallate (EGCG) on trophoblast cell functions remain largely unexplored. In this study, we investigated the impact of EGCG on the survival of trophoblast cells and employed a proteomics analysis to evaluate its influence on trophoblast cell migration and invasion. Be-Wo trophoblast cells were treated with EGCG, and a zone closure assay was conducted to assess the cell migration and invasion. Subsequently, a proteomics analysis was performed on the treated and control groups, followed by a bioinformatics analysis to evaluate the affected biological pathways and protein networks. A quantitative real-time PCR and Western blot analysis were carried out to validate the proteomics findings. Our results showed that EGCG significantly suppressed the trophoblast migration and invasion at a concentration not affecting cell survival. The proteomics analysis revealed notable differences in the protein expression between the EGCG-treated and control groups. Specifically, EGCG downregulated the signaling pathways related to EIF2, mTOR, and estrogen response, as well as the processes associated with the cytoskeleton, extracellular matrix, and protein translation. Conversely, EGCG upregulated the pathways linked to lipid degradation and oxidative metabolism. The quantitative PCR showed that EGCG modulated protein expression by regulating gene transcription, and the Western blot analysis confirmed its impact on cytoskeleton and extracellular matrix reorganization. These findings suggest EGCG may inhibit trophoblast migration and invasion through multiple signaling pathways, highlighting the potential risks associated with consuming EGCG-containing products during pregnancy. Future research should investigate the impact of EGCG intake on maternal and fetal proteoforms.
Collapse
Affiliation(s)
- Yueh-Chung Chen
- Department of Medicine, School of Medicine, National Defense Medical Center, Taipei 114201, Taiwan;
- Division of Cardiology, Department of Internal Medicine, Taipei City Hospital, Renai Branch, Taipei 106243, Taiwan
- Department of Health Promotion and Gerontological Care, Taipei University of Marine Technology, Taipei 111078, Taiwan
- Department of Special Education, University of Taipei, Taipei 100234, Taiwan
| | - Chen-Chung Liao
- Mass Spectrometry Facility, Instrumentation Resource Center, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan; (C.-C.L.)
- Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Hao-Ai Shui
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 114201, Taiwan
| | - Pei-Hsuan Huang
- Mass Spectrometry Facility, Instrumentation Resource Center, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan; (C.-C.L.)
| | - Li-Jane Shih
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 114201, Taiwan
- Department of Medical Laboratory, Taoyuan Armed Forces General Hospital, Longtan, Taoyuan 325208, Taiwan
| |
Collapse
|
10
|
Eastham M, Pelava A, Wells G, Lee J, Lawrence I, Stewart J, Deichner M, Hertle R, Watkins N, Schneider C. The induction of p53 correlates with defects in the production, but not the levels, of the small ribosomal subunit and stalled large ribosomal subunit biogenesis. Nucleic Acids Res 2023; 51:9397-9414. [PMID: 37526268 PMCID: PMC10516649 DOI: 10.1093/nar/gkad637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 07/12/2023] [Accepted: 07/20/2023] [Indexed: 08/02/2023] Open
Abstract
Ribosome biogenesis is one of the biggest consumers of cellular energy. More than 20 genetic diseases (ribosomopathies) and multiple cancers arise from defects in the production of the 40S (SSU) and 60S (LSU) ribosomal subunits. Defects in the production of either the SSU or LSU result in p53 induction through the accumulation of the 5S RNP, an LSU assembly intermediate. While the mechanism is understood for the LSU, it is still unclear how SSU production defects induce p53 through the 5S RNP since the production of the two subunits is believed to be uncoupled. Here, we examined the response to SSU production defects to understand how this leads to the activation of p53 via the 5S RNP. We found that p53 activation occurs rapidly after SSU production is blocked, prior to changes in mature ribosomal RNA (rRNA) levels but correlated with early, middle and late SSU pre-rRNA processing defects. Furthermore, both nucleolar/nuclear LSU maturation, in particular late stages in 5.8S rRNA processing, and pre-LSU export were affected by SSU production defects. We have therefore uncovered a novel connection between the SSU and LSU production pathways in human cells, which explains how p53 is induced in response to SSU production defects.
Collapse
Affiliation(s)
- Matthew John Eastham
- Biosciences Institute, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Andria Pelava
- Biosciences Institute, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Graeme Raymond Wells
- Biosciences Institute, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Justine Katherine Lee
- Biosciences Institute, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Isabella Rachel Lawrence
- Biosciences Institute, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Joshua Stewart
- Biosciences Institute, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Maria Deichner
- Biosciences Institute, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Regina Hertle
- Biosciences Institute, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Nicholas James Watkins
- Biosciences Institute, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Claudia Schneider
- Biosciences Institute, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
11
|
Folgado-Marco V, Ames K, Chuen J, Gritsman K, Baker NE. Haploinsufficiency of the essential gene Rps12 causes defects in erythropoiesis and hematopoietic stem cell maintenance. eLife 2023; 12:e69322. [PMID: 37272618 PMCID: PMC10287158 DOI: 10.7554/elife.69322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 04/26/2023] [Indexed: 06/06/2023] Open
Abstract
Ribosomal protein (Rp) gene haploinsufficiency can result in Diamond-Blackfan Anemia (DBA), characterized by defective erythropoiesis and skeletal defects. Some mouse Rp mutations recapitulate DBA phenotypes, although others lack erythropoietic or skeletal defects. We generated a conditional knockout mouse to partially delete Rps12. Homozygous Rps12 deletion resulted in embryonic lethality. Mice inheriting the Rps12KO/+ genotype had growth and morphological defects, pancytopenia, and impaired erythropoiesis. A striking reduction in hematopoietic stem cells (HSCs) and progenitors in the bone marrow (BM) was associated with decreased ability to repopulate the blood system after competitive and non-competitive BM transplantation. Rps12KO/+ lost HSC quiescence, experienced ERK and MTOR activation, and increased global translation in HSC and progenitors. Post-natal heterozygous deletion of Rps12 in hematopoietic cells using Tal1-Cre-ERT also resulted in pancytopenia with decreased HSC numbers. However, post-natal Cre-ERT induction led to reduced translation in HSCs and progenitors, suggesting that this is the most direct consequence of Rps12 haploinsufficiency in hematopoietic cells. Thus, RpS12 has a strong requirement in HSC function, in addition to erythropoiesis.
Collapse
Affiliation(s)
| | - Kristina Ames
- Department of Medical Oncology, Albert Einstein College of MedicineBronxUnited States
- Department of Cell Biology, Albert Einstein College of MedicineBronxUnited States
| | - Jacky Chuen
- Department of Genetics, Albert Einstein College of MedicineBronxUnited States
| | - Kira Gritsman
- Department of Medical Oncology, Albert Einstein College of MedicineBronxUnited States
- Department of Cell Biology, Albert Einstein College of MedicineBronxUnited States
| | - Nicholas E Baker
- Department of Genetics, Albert Einstein College of MedicineBronxUnited States
| |
Collapse
|
12
|
Eastham MJ, Pelava A, Wells GR, Watkins NJ, Schneider C. RPS27a and RPL40, Which Are Produced as Ubiquitin Fusion Proteins, Are Not Essential for p53 Signalling. Biomolecules 2023; 13:898. [PMID: 37371478 DOI: 10.3390/biom13060898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Two of the four human ubiquitin-encoding genes express ubiquitin as an N-terminal fusion precursor polypeptide, with either ribosomal protein (RP) RPS27a or RPL40 at the C-terminus. RPS27a and RPL40 have been proposed to be important for the induction of the tumour suppressor p53 in response to defects in ribosome biogenesis, suggesting that they may play a role in the coordination of ribosome production, ubiquitin levels and p53 signalling. Here, we report that RPS27a is cleaved from the ubiquitin-RP precursor in a process that appears independent of ribosome biogenesis. In contrast to other RPs, the knockdown of either RPS27a or RPL40 did not stabilise the tumour suppressor p53 in U2OS cells. Knockdown of neither protein blocked p53 stabilisation following inhibition of ribosome biogenesis by actinomycin D, indicating that they are not needed for p53 signalling in these cells. However, the knockdown of both RPS27a and RPL40 in MCF7 and LNCaP cells robustly induced p53, consistent with observations made with the majority of other RPs. Importantly, RPS27a and RPL40 are needed for rRNA production in all cell lines tested. Our data suggest that the role of RPS27a and RPL40 in p53 signalling, but not their importance in ribosome biogenesis, differs between cell types.
Collapse
Affiliation(s)
- Matthew John Eastham
- Biosciences Institute, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Andria Pelava
- Biosciences Institute, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Graeme Raymond Wells
- Biosciences Institute, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Nicholas James Watkins
- Biosciences Institute, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Claudia Schneider
- Biosciences Institute, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
13
|
Paccosi E, Balzerano A, Proietti-De-Santis L. Interfering with the Ubiquitin-Mediated Regulation of Akt as a Strategy for Cancer Treatment. Int J Mol Sci 2023; 24:ijms24032809. [PMID: 36769122 PMCID: PMC9917864 DOI: 10.3390/ijms24032809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
The serine/threonine kinase Akt modulates the functions of numerous substrates, many of them being involved in cell proliferation and growth, metabolism, angiogenesis, resistance to hypoxia and migration. Akt is frequently deregulated in many types of human cancers, its overexpression or abnormal activation being associated with the increased proliferation and survival of cancer cells. A promising avenue for turning off the functionality of Akt is to either interfere with the K63-linked ubiquitination that is necessary for Akt membrane recruitment and activation or increase the K48-linked polyubiquitination that aims to target Akt to the proteasome for its degradation. Recent evidence indicates that targeting the ubiquitin proteasome system is effective for certain cancer treatments. In this review, the functions and roles of Akt in human cancer will be discussed, with a main focus on molecules and compounds that target various elements of the ubiquitination processes that regulate the activation and inactivation of Akt. Moreover, their possible and attractive implications for cancer therapy will be discussed.
Collapse
|
14
|
Scalia P, Williams SJ, Fujita-Yamaguchi Y, Giordano A. Cell cycle control by the insulin-like growth factor signal: at the crossroad between cell growth and mitotic regulation. Cell Cycle 2023; 22:1-37. [PMID: 36005738 PMCID: PMC9769454 DOI: 10.1080/15384101.2022.2108117] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
In proliferating cells and tissues a number of checkpoints (G1/S and G2/M) preceding cell division (M-phase) require the signal provided by growth factors present in serum. IGFs (I and II) have been demonstrated to constitute key intrinsic components of the peptidic active fraction of mammalian serum. In vivo genetic ablation studies have shown that the cellular signal triggered by the IGFs through their cellular receptors represents a non-replaceable requirement for cell growth and cell cycle progression. Retroactive and current evaluation of published literature sheds light on the intracellular circuitry activated by these factors providing us with a better picture of the pleiotropic mechanistic actions by which IGFs regulate both cell size and mitogenesis under developmental growth as well as in malignant proliferation. The present work aims to summarize the cumulative knowledge learned from the IGF ligands/receptors and their intracellular signaling transducers towards control of cell size and cell-cycle with particular focus to their actionable circuits in human cancer. Furthermore, we bring novel perspectives on key functional discriminants of the IGF growth-mitogenic pathway allowing re-evaluation on some of its signal components based upon established evidences.
Collapse
Affiliation(s)
- Pierluigi Scalia
- ISOPROG-Somatolink EPFP Research Network, Philadelphia, PA, USA, Caltanissetta, Italy,CST, Biology, Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, PA, United states,CONTACT Pierluigi Scalia ISOPROG-Somatolink EPFP Research Network, Philadelphia, PA9102, USA
| | - Stephen J Williams
- ISOPROG-Somatolink EPFP Research Network, Philadelphia, PA, USA, Caltanissetta, Italy,CST, Biology, Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, PA, United states
| | - Yoko Fujita-Yamaguchi
- Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Antonio Giordano
- ISOPROG-Somatolink EPFP Research Network, Philadelphia, PA, USA, Caltanissetta, Italy,School of Medical Biotechnology, University of Siena, Italy
| |
Collapse
|
15
|
Differential Regulation of Two Arms of mTORC1 Pathway Fine-Tunes Global Protein Synthesis in Resting B Lymphocytes. Int J Mol Sci 2022; 23:ijms232416017. [PMID: 36555660 PMCID: PMC9784905 DOI: 10.3390/ijms232416017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/18/2022] [Accepted: 11/24/2022] [Indexed: 12/23/2022] Open
Abstract
Protein synthesis is tightly regulated by both gene-specific and global mechanisms to match the metabolic and proliferative demands of the cell. While the regulation of global protein synthesis in response to mitogen or stress signals is relatively well understood in multiple experimental systems, how different cell types fine-tune their basal protein synthesis rate is not known. In a previous study, we showed that resting B and T lymphocytes exhibit dramatic differences in their metabolic profile, with implications for their post-activation function. Here, we show that resting B cells, despite being quiescent, exhibit increased protein synthesis in vivo as well as ex vivo. The increased protein synthesis in B cells is driven by mTORC1, which exhibits an intermediate level of activation in these cells when compared with resting T cells and activated B cells. A comparative analysis of the transcriptome and translatome of these cells indicates that the genes encoding the MHC Class II molecules and their chaperone CD74 are highly translated in B cells. These data suggest that the translatome of B cells shows enrichment for genes associated with antigen processing and presentation. Even though the B cells exhibit higher mTORC1 levels, they prevent the translational activation of TOP mRNAs, which are mostly constituted by ribosomal proteins and other translation factors, by upregulating 4EBP1 levels. This mechanism may keep the protein synthesis machinery under check while enabling higher levels of translation in B cells.
Collapse
|
16
|
TRIM27 is an adverse prognostic biomarker and associated with immune and molecular profiles in right-sided colon cancer. Am J Cancer Res 2022; 12:4988-5003. [PMID: 36504896 PMCID: PMC9729902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 10/26/2022] [Indexed: 12/15/2022] Open
Abstract
Right-sided colon cancer (RCC), as an independent tumor entity, shows a poor prognosis. It is imperative to detect immune microenvironment-related genes for predicting RCC patient prognosis and study their function in RCC. Tripartite motif-containing 27 (TRIM27) was identified as a risk signature from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) datasets by using weighted gene co-expression network analysis, differentially expressed analysis, and univariate Cox analysis. It predicted a poorer overall survival and increased lymph node metastasis, which were then validated in our 48 clinical samples. Using immunohistochemistry, TRIM27 was found to be highly expressed in both cancer cells and surrounding immunocytes, and its expression in tumor or immune cells both predicted a poorer prognosis. Thereafter, the functional mechanism, immune and molecular characteristics of TRIM27 were investigated using gene set enrichment analysis (GSEA), ESTIMATE, CIBERSORT, and gene set variation analysis (GSVA) at the single-cell, somatic mutation, and RNA-seq level. Patients with highly expressed TRIM27 presented lower CD4+ T cell infiltration and activation of the mTORC1/glycolysis pathway. In addition, patients with highly expressed TRIM27 were characterized by hypermetabolism, higher tumor purity, more BRAF mutation, and more chromosomal instability. Collectively, TRIM27 is an important immune-related prognostic biomarker in patients with RCC. It may function via activating the mTORC1/glycolysis pathway and suppressing CD4+ T cells. These results indicated that TRIM27 could be a promising therapeutic target in RCC.
Collapse
|
17
|
Li YF, Cheng T, Zhang YJ, Fu XX, Mo J, Zhao GQ, Xue MG, Zhuo DH, Xing YY, Huang Y, Sun XZ, Wang D, Liu X, Dong Y, Zhu XS, He F, Ma J, Chen D, Jin X, Xu PF. Mycn regulates intestinal development through ribosomal biogenesis in a zebrafish model of Feingold syndrome 1. PLoS Biol 2022; 20:e3001856. [PMID: 36318514 PMCID: PMC9624419 DOI: 10.1371/journal.pbio.3001856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 09/27/2022] [Indexed: 11/05/2022] Open
Abstract
Feingold syndrome type 1, caused by loss-of-function of MYCN, is characterized by varied phenotypes including esophageal and duodenal atresia. However, no adequate model exists for studying the syndrome's pathological or molecular mechanisms, nor is there a treatment strategy. Here, we developed a zebrafish Feingold syndrome type 1 model with nonfunctional mycn, which had severe intestinal atresia. Single-cell RNA-seq identified a subcluster of intestinal cells that were highly sensitive to Mycn, and impaired cell proliferation decreased the overall number of intestinal cells in the mycn mutant fish. Bulk RNA-seq and metabolomic analysis showed that expression of ribosomal genes was down-regulated and that amino acid metabolism was abnormal. Northern blot and ribosomal profiling analysis showed abnormal rRNA processing and decreases in free 40S, 60S, and 80S ribosome particles, which led to impaired translation in the mutant. Besides, both Ribo-seq and western blot analysis showed that mTOR pathway was impaired in mycn mutant, and blocking mTOR pathway by rapamycin treatment can mimic the intestinal defect, and both L-leucine and Rheb, which can elevate translation via activating TOR pathway, could rescue the intestinal phenotype of mycn mutant. In summary, by this zebrafish Feingold syndrome type 1 model, we found that disturbance of ribosomal biogenesis and blockage of protein synthesis during development are primary causes of the intestinal defect in Feingold syndrome type 1. Importantly, our work suggests that leucine supplementation may be a feasible and easy treatment option for this disease.
Collapse
Affiliation(s)
- Yun-Fei Li
- Institute of Genetics and Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, China
| | - Tao Cheng
- Institute of Genetics and Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, China
- Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ying-Jie Zhang
- Institute of Genetics and Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, China
| | - Xin-Xin Fu
- Institute of Genetics and Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, China
| | - Jing Mo
- Department of Immunology, Guizhou Medical University, Guiyang, China
| | - Guo-Qin Zhao
- Department of Immunology, Guizhou Medical University, Guiyang, China
| | - Mao-Guang Xue
- Institute of Genetics and Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, China
| | - Ding-Hao Zhuo
- Institute of Genetics and Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, China
- Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yan-Yi Xing
- Institute of Genetics and Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, China
- Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ying Huang
- Institute of Genetics and Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao-Zhi Sun
- Institute of Genetics and Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, China
| | - Dan Wang
- Institute of Genetics and Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiang Liu
- Institute of Genetics and Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, China
| | - Yang Dong
- Institute of Genetics and Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, China
- Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao-Sheng Zhu
- Institute of Genetics and Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, China
| | - Feng He
- Institute of Genetics and Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, China
- Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jun Ma
- Institute of Genetics and Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, China
- Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dong Chen
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xi Jin
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- * E-mail: (XJ); (P-FX)
| | - Peng-Fei Xu
- Institute of Genetics and Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, China
- Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- * E-mail: (XJ); (P-FX)
| |
Collapse
|
18
|
Donati G, Amati B. MYC and therapy resistance in cancer: risks and opportunities. Mol Oncol 2022; 16:3828-3854. [PMID: 36214609 PMCID: PMC9627787 DOI: 10.1002/1878-0261.13319] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/08/2022] [Accepted: 10/06/2022] [Indexed: 12/24/2022] Open
Abstract
The MYC transcription factor, encoded by the c-MYC proto-oncogene, is activated by growth-promoting signals, and is a key regulator of biosynthetic and metabolic pathways driving cell growth and proliferation. These same processes are deregulated in MYC-driven tumors, where they become critical for cancer cell proliferation and survival. As other oncogenic insults, overexpressed MYC induces a series of cellular stresses (metabolic, oxidative, replicative, etc.) collectively known as oncogenic stress, which impact not only on tumor progression, but also on the response to therapy, with profound, multifaceted consequences on clinical outcome. On one hand, recent evidence uncovered a widespread role for MYC in therapy resistance in multiple cancer types, with either standard chemotherapeutic or targeted regimens. Reciprocally, oncogenic MYC imparts a series of molecular and metabolic dependencies to cells, thus giving rise to cancer-specific vulnerabilities that may be exploited to obtain synthetic-lethal interactions with novel anticancer drugs. Here we will review the current knowledge on the links between MYC and therapeutic responses, and will discuss possible strategies to overcome resistance through new, targeted interventions.
Collapse
Affiliation(s)
- Giulio Donati
- European Institute of Oncology (IEO) – IRCCSMilanItaly
| | - Bruno Amati
- European Institute of Oncology (IEO) – IRCCSMilanItaly
| |
Collapse
|
19
|
Panels of mRNAs and miRNAs for decoding molecular mechanisms of Renal Cell Carcinoma (RCC) subtypes utilizing Artificial Intelligence approaches. Sci Rep 2022; 12:16393. [PMID: 36180558 PMCID: PMC9525704 DOI: 10.1038/s41598-022-20783-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 09/19/2022] [Indexed: 11/12/2022] Open
Abstract
Renal Cell Carcinoma (RCC) encompasses three histological subtypes, including clear cell RCC (KIRC), papillary RCC (KIRP), and chromophobe RCC (KICH) each of which has different clinical courses, genetic/epigenetic drivers, and therapeutic responses. This study aimed to identify the significant mRNAs and microRNA panels involved in the pathogenesis of RCC subtypes. The mRNA and microRNA transcripts profile were obtained from The Cancer Genome Atlas (TCGA), which were included 611 ccRCC patients, 321 pRCC patients, and 89 chRCC patients for mRNA data and 616 patients in the ccRCC subtype, 326 patients in the pRCC subtype, and 91 patients in the chRCC for miRNA data, respectively. To identify mRNAs and miRNAs, feature selection based on filter and graph algorithms was applied. Then, a deep model was used to classify the subtypes of the RCC. Finally, an association rule mining algorithm was used to disclose features with significant roles to trigger molecular mechanisms to cause RCC subtypes. Panels of 77 mRNAs and 73 miRNAs could discriminate the KIRC, KIRP, and KICH subtypes from each other with 92% (F1-score ≥ 0.9, AUC ≥ 0.89) and 95% accuracy (F1-score ≥ 0.93, AUC ≥ 0.95), respectively. The Association Rule Mining analysis could identify miR-28 (repeat count = 2642) and CSN7A (repeat count = 5794) along with the miR-125a (repeat count = 2591) and NMD3 (repeat count = 2306) with the highest repeat counts, in the KIRC and KIRP rules, respectively. This study found new panels of mRNAs and miRNAs to distinguish among RCC subtypes, which were able to provide new insights into the underlying responsible mechanisms for the initiation and progression of KIRC and KIRP. The proposed mRNA and miRNA panels have a high potential to be as biomarkers of RCC subtypes and should be examined in future clinical studies.
Collapse
|
20
|
Temaj G, Saha S, Dragusha S, Ejupi V, Buttari B, Profumo E, Beqa L, Saso L. Ribosomopathies and cancer: pharmacological implications. Expert Rev Clin Pharmacol 2022; 15:729-746. [PMID: 35787725 DOI: 10.1080/17512433.2022.2098110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION The ribosome is a ribonucleoprotein organelle responsible for protein synthesis, and its biogenesis is a highly coordinated process that involves many macromolecular components. Any acquired or inherited impairment in ribosome biogenesis or ribosomopathies is associated with the development of different cancers and rare genetic diseases. Interference with multiple steps of protein synthesis has been shown to promote tumor cell death. AREAS COVERED We discuss the current insights about impaired ribosome biogenesis and their secondary consequences on protein synthesis, transcriptional and translational responses, proteotoxic stress, and other metabolic pathways associated with cancer and rare diseases. Studies investigating the modulation of different therapeutic chemical entities targeting cancer in in vitro and in vivo models have also been detailed. EXPERT OPINION Despite the association between inherited mutations affecting ribosome biogenesis and cancer biology, the development of therapeutics targeting the essential cellular machinery has only started to emerge. New chemical entities should be designed to modulate different checkpoints (translating oncoproteins, dysregulation of specific ribosome-assembly machinery, ribosomal stress, and rewiring ribosomal functions). Although safe and effective therapies are lacking, consideration should also be given to using existing drugs alone or in combination for long-term safety, with known risks for feasibility in clinical trials and synergistic effects.
Collapse
Affiliation(s)
| | - Sarmistha Saha
- Department of Cardiovascular, Endocrine-metabolic Diseases, and Aging, Italian National Institute of Health, Rome, Italy
| | | | - Valon Ejupi
- College UBT, Faculty of Pharmacy, Prishtina, Kosovo
| | - Brigitta Buttari
- Department of Cardiovascular, Endocrine-metabolic Diseases, and Aging, Italian National Institute of Health, Rome, Italy
| | - Elisabetta Profumo
- Department of Cardiovascular, Endocrine-metabolic Diseases, and Aging, Italian National Institute of Health, Rome, Italy
| | - Lule Beqa
- College UBT, Faculty of Pharmacy, Prishtina, Kosovo
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Italy
| |
Collapse
|
21
|
Oxe KC, Larsen DH. Treacle is Upregulated in Cancer and Correlates With Poor Prognosis. Front Cell Dev Biol 2022; 10:918544. [PMID: 35794866 PMCID: PMC9251355 DOI: 10.3389/fcell.2022.918544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/01/2022] [Indexed: 11/13/2022] Open
Abstract
Treacle/TCOF1 is an adaptor protein specifically associated with nucleolar chromatin. In the nucleolus it stimulates ribosome biogenesis, thereby promoting growth and proliferation. A second role of Treacle has emerged as a coordinator of the nucleolar responses to DNA damage, where it facilitates nucleolar DNA repair and cellular survival after genotoxic insults. The involvement of Treacle in multiple fundamental processes such as growth, proliferation, and genome stability, which are tightly linked to cancer, raises the question of Treacle’s role in the development of this disease. On one hand, overexpression of Treacle could stimulate nucleolar transcription and ribosome biogenesis providing a growth advantage in cancer cells. On the other hand, the function of Treacle as a gatekeeper in response to nucleolar DNA damage could favor mutations that would impair its function. In this perspective, we analyze paired Treacle expression data from the Cancer Genome Atlas (TCGA) and correlate expression with patient survival in different cancer types. We also discuss other recently published observations of relevance to the role of Treacle in cancer. In light of these new observations, we propose possible roles of Treacle in carcinogenesis and discuss its potential as a therapeutic target.
Collapse
|
22
|
Bruno G, Bergolis VL, Piscazzi A, Crispo F, Condelli V, Zoppoli P, Maddalena F, Pietrafesa M, Giordano G, Matassa DS, Esposito F, Landriscina M. TRAP1 regulates the response of colorectal cancer cells to hypoxia and inhibits ribosome biogenesis under conditions of oxygen deprivation. Int J Oncol 2022; 60:79. [PMID: 35543151 PMCID: PMC9097768 DOI: 10.3892/ijo.2022.5369] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/12/2022] [Indexed: 11/24/2022] Open
Abstract
Metabolic rewiring fuels rapid cancer cell proliferation by promoting adjustments in energetic resources, and increasing glucose uptake and its conversion into lactate, even in the presence of oxygen. Furthermore, solid tumors often contain hypoxic areas and can rapidly adapt to low oxygen conditions by activating hypoxia inducible factor (HIF)‑1α and several downstream pathways, thus sustaining cell survival and metabolic reprogramming. Since TNF receptor‑associated protein 1 (TRAP1) is a HSP90 molecular chaperone upregulated in several human malignancies and is involved in cancer cell adaptation to unfavorable environments and metabolic reprogramming, in the present study, its role was investigated in the adaptive response to hypoxia in human colorectal cancer (CRC) cells and organoids. In the present study, glucose uptake, lactate production and the expression of key metabolic genes were evaluated in TRAP1‑silenced CRC cell models under conditions of hypoxia/normoxia. Whole genome gene expression profiling was performed in TRAP1‑silenced HCT116 cells exposed to hypoxia to establish the role of TRAP1 in adaptive responses to oxygen deprivation. The results revealed that TRAP1 was involved in regulating hypoxia‑induced HIF‑1α stabilization and glycolytic metabolism and that glucose transporter 1 expression, glucose uptake and lactate production were partially impaired in TRAP1‑silenced CRC cells under hypoxic conditions. At the transcriptional level, the gene expression reprogramming of cancer cells driven by HIF‑1α was partially inhibited in TRAP1‑silenced CRC cells and organoids exposed to hypoxia. Moreover, Gene Set Enrichment Analysis of TRAP1‑silenced HCT116 cells exposed to hypoxia demonstrated that TRAP1 was involved in the regulation of ribosome biogenesis and this occurred with the inhibition of the mTOR pathway. Therefore, as demonstrated herein, TRAP1 is a key factor in maintaining HIF‑1α‑induced genetic/metabolic program under hypoxic conditions and may represent a promising target for novel metabolic therapies.
Collapse
Affiliation(s)
- Giuseppina Bruno
- Medical Oncology Unit, Department of Medical and Surgical Sciences, University of Foggia, I-71122 Foggia, Italy
| | - Valeria Li Bergolis
- Medical Oncology Unit, Department of Medical and Surgical Sciences, University of Foggia, I-71122 Foggia, Italy
| | - Annamaria Piscazzi
- Medical Oncology Unit, Department of Medical and Surgical Sciences, University of Foggia, I-71122 Foggia, Italy
| | - Fabiana Crispo
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, I-85028 Rionero in Vulture, Potenza, Italy
| | - Valentina Condelli
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, I-85028 Rionero in Vulture, Potenza, Italy
| | - Pietro Zoppoli
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, I-85028 Rionero in Vulture, Potenza, Italy
| | - Francesca Maddalena
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, I-85028 Rionero in Vulture, Potenza, Italy
| | - Michele Pietrafesa
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, I-85028 Rionero in Vulture, Potenza, Italy
| | - Guido Giordano
- Medical Oncology Unit, Department of Medical and Surgical Sciences, University of Foggia, I-71122 Foggia, Italy
| | - Danilo Swann Matassa
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, I-80131 Naples, Italy
| | - Franca Esposito
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, I-80131 Naples, Italy
| | - Matteo Landriscina
- Medical Oncology Unit, Department of Medical and Surgical Sciences, University of Foggia, I-71122 Foggia, Italy
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, I-85028 Rionero in Vulture, Potenza, Italy
| |
Collapse
|
23
|
Zhuo Y, Li S, Hu W, Zhang Y, Shi Y, Zhang F, Zhang J, Wang J, Liao M, Chen J, Qian H, Li D, Sun C. Targeting SNORA38B attenuates tumorigenesis and sensitizes immune checkpoint blockade in non-small cell lung cancer by remodeling the tumor microenvironment via regulation of GAB2/AKT/mTOR signaling pathway. J Immunother Cancer 2022; 10:e004113. [PMID: 35577506 PMCID: PMC9115109 DOI: 10.1136/jitc-2021-004113] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2022] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Non-coding RNAs (ncRNAs), including small nucleolar RNAs (snoRNAs), are widely involved in the physiological and pathological processes of human beings. While up to date, although considerable progress has been achieved in ncRNA-related pathogenesis of non-small cell lung cancer (NSCLC), the underlying mechanisms and biological significance of snoRNAs in NSCLC still need to be further clarified. METHODS Quantitative real-time polymerase chain reaction or RNAscope was performed to verify the expression of Small Nucleolar RNA, H/ACA Box 38B (SNORA38B) in NSCLC cell lines or clinical samples. BALB/c nude mice xenograft model or C57BL/6J mice syngeneic tumor model were estimated to detect the effects of SNORA38B in tumor growth or tumor immune microenvironment in vivo. Cytometry by time of flight, enzyme-linked immunosorbent assay and flow cytometry assay were conducted to clarify the effects and mechanisms of SNORA38B-mediated tumor immunosuppressive microenvironment. The binding activity between SNORA38B and E2F transcription factor 1(E2F1) was detected by RNA immunoprecipitation and RNA pull-down assays. Then, bioinformatics analysis and chromatin immunoprecipitation were utilized to demonstrate the regulation of GRB2-associated-binding protein 2 (GAB2) by E2F1. Moreover, the combinatorial treatment of SNORA38B locked nucleic acid (LNA) and immune checkpoint blockade (ICB) was used to treat murine Lewis lung carcinoma-derived tumor burden C57BL/6J mice to clarify the effectiveness of targeting SNORA38B in NSCLC immunotherapy. RESULTS SNORA38B was found highly expressed in NSCLC tissues and cell lines, and associated with worse prognosis. Further results showed that SNORA38B functioned as an oncogene via facilitating cell proliferation, migration, invasion, and inhibiting cell apoptosis in vitro and promoting tumorigenesis of NSCLC cells in vivo. SNORA38B could also recruit the CD4+FOXP3+ regulatory T cells by triggering tumor cells to secrete interleukin 10, which in turn reduced the infiltration of CD3+CD8+ T cells in NSCLC tumor microenvironment (TME), favoring tumor progression and poorer immune efficacy. Mechanistically, SNORA38B mainly distributed in the nucleus, and promoted NSCLC progression by regulating GAB2 transcription to activate protein kinase B (AKT)/mammalian target of rapamycin (mTOR) pathway through directly binding with E2F1. Moreover, we found that SNORA38B LNAs were able to ameliorate CD3+CD8+ T cell infiltration in TME, which sensitized NSCLC to the treatment of ICB. CONCLUSIONS In conclusion, our data demonstrated that SNORA38B functioned as an oncogene in NSCLC both in vitro and in vivo at least in part by regulating the GAB2/AKT/mTOR pathway via directly binding to E2F1. SNORA38B could also sensitize NSCLC to immunotherapy, which may be a critical therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Yue Zhuo
- Department of Occupational and Environmental Health, Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Shujun Li
- Department of Physical Examination, Wuhan Hospital for the Prevention and Treatment of Occupational Diseases, Wuhan, Hubei, People's Republic of China
| | - Wei Hu
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, Shanghai, China
| | - Yu Zhang
- Department of Occupational and Environmental Health, Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Yufan Shi
- Department of Occupational and Environmental Health, Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Faxue Zhang
- Department of Occupational and Environmental Health, Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Jian Zhang
- Department of Occupational and Environmental Health, Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Juan Wang
- Department of Occupational and Environmental Health, Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Meijuan Liao
- Department of Occupational and Environmental Health, Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Jiahao Chen
- Department of Occupational and Environmental Health, Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Huiling Qian
- Department of Occupational and Environmental Health, Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Dejia Li
- Department of Occupational and Environmental Health, Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Chengcao Sun
- Department of Occupational and Environmental Health, Wuhan University, Wuhan, Hubei, People's Republic of China
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
24
|
Gutiérrez-Santiago F, Cintas-Galán M, Martín-Expósito M, del Carmen Mota-Trujillo M, Cobo-Huesa C, Perez-Fernandez J, Navarro Gómez F. A High-Copy Suppressor Screen Reveals a Broad Role of Prefoldin-like Bud27 in the TOR Signaling Pathway in Saccharomyces cerevisiae. Genes (Basel) 2022; 13:genes13050748. [PMID: 35627133 PMCID: PMC9141189 DOI: 10.3390/genes13050748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/18/2022] [Accepted: 04/21/2022] [Indexed: 11/16/2022] Open
Abstract
Bud27 is a prefoldin-like, a member of the family of ATP-independent molecular chaperones that associates with RNA polymerases I, II, and III in Saccharomyces cerevisiae. Bud27 and its human ortholog URI perform several functions in the cytoplasm and the nucleus. Both proteins participate in the TOR signaling cascade by coordinating nutrient availability with gene expression, and lack of Bud27 partially mimics TOR pathway inactivation. Bud27 regulates the transcription of the three RNA polymerases to mediate the synthesis of ribosomal components for ribosome biogenesis through the TOR cascade. This work presents a high-copy suppression screening of the temperature sensitivity of the bud27Δ mutant. It shows that Bud27 influences different TOR-dependent processes. Our data also suggest that Bud27 can impact some of these TOR-dependent processes: cell wall integrity and autophagy induction.
Collapse
Affiliation(s)
- Francisco Gutiérrez-Santiago
- Departamento de Biología Experimental-Genética, Universidad de Jaén, Paraje de las Lagunillas, s/n, E-23071 Jaén, Spain; (F.G.-S.); (M.C.-G.); (M.M.-E.); (M.d.C.M.-T.); (C.C.-H.); (J.P.-F.)
| | - María Cintas-Galán
- Departamento de Biología Experimental-Genética, Universidad de Jaén, Paraje de las Lagunillas, s/n, E-23071 Jaén, Spain; (F.G.-S.); (M.C.-G.); (M.M.-E.); (M.d.C.M.-T.); (C.C.-H.); (J.P.-F.)
| | - Manuel Martín-Expósito
- Departamento de Biología Experimental-Genética, Universidad de Jaén, Paraje de las Lagunillas, s/n, E-23071 Jaén, Spain; (F.G.-S.); (M.C.-G.); (M.M.-E.); (M.d.C.M.-T.); (C.C.-H.); (J.P.-F.)
| | - Maria del Carmen Mota-Trujillo
- Departamento de Biología Experimental-Genética, Universidad de Jaén, Paraje de las Lagunillas, s/n, E-23071 Jaén, Spain; (F.G.-S.); (M.C.-G.); (M.M.-E.); (M.d.C.M.-T.); (C.C.-H.); (J.P.-F.)
| | - Cristina Cobo-Huesa
- Departamento de Biología Experimental-Genética, Universidad de Jaén, Paraje de las Lagunillas, s/n, E-23071 Jaén, Spain; (F.G.-S.); (M.C.-G.); (M.M.-E.); (M.d.C.M.-T.); (C.C.-H.); (J.P.-F.)
| | - Jorge Perez-Fernandez
- Departamento de Biología Experimental-Genética, Universidad de Jaén, Paraje de las Lagunillas, s/n, E-23071 Jaén, Spain; (F.G.-S.); (M.C.-G.); (M.M.-E.); (M.d.C.M.-T.); (C.C.-H.); (J.P.-F.)
| | - Francisco Navarro Gómez
- Departamento de Biología Experimental-Genética, Universidad de Jaén, Paraje de las Lagunillas, s/n, E-23071 Jaén, Spain; (F.G.-S.); (M.C.-G.); (M.M.-E.); (M.d.C.M.-T.); (C.C.-H.); (J.P.-F.)
- Centro de Estudios Avanzados en Aceite de Oliva y Olivar, Universidad de Jaén, Paraje de las Lagunillas, s/n, E-23071 Jaén, Spain
- Correspondence: ; Tel.: +34-953-212771; Fax: +34-953-211875
| |
Collapse
|
25
|
Moudry P, Chroma K, Bursac S, Volarevic S, Bartek J. RNA-interference screen for p53 regulators unveils a role of WDR75 in ribosome biogenesis. Cell Death Differ 2022; 29:687-696. [PMID: 34611297 PMCID: PMC8901908 DOI: 10.1038/s41418-021-00882-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 01/05/2023] Open
Abstract
Ribosome biogenesis is an essential, energy demanding process whose deregulation has been implicated in cancer, aging, and neurodegeneration. Ribosome biogenesis is therefore under surveillance of pathways including the p53 tumor suppressor. Here, we first performed a high-content siRNA-based screen of 175 human ribosome biogenesis factors, searching for impact on p53. Knock-down of 4 and 35 of these proteins in U2OS cells reduced and increased p53 abundance, respectively, including p53 accumulation after depletion of BYSL, DDX56, and WDR75, the effects of which were validated in several models. Using complementary approaches including subcellular fractionation, we demonstrate that endogenous human WDR75 is a nucleolar protein and immunofluorescence analysis of ectopic GFP-tagged WDR75 shows relocation to nucleolar caps under chemically induced nucleolar stress, along with several canonical nucleolar proteins. Mechanistically, we show that WDR75 is required for pre-rRNA transcription, through supporting the maintenance of physiological levels of RPA194, a key subunit of the RNA polymerase I. Furthermore, WDR75 depletion activated the RPL5/RPL11-dependent p53 stabilization checkpoint, ultimately leading to impaired proliferation and cellular senescence. These findings reveal a crucial positive role of WDR75 in ribosome biogenesis and provide a resource of human ribosomal factors the malfunction of which affects p53.
Collapse
Affiliation(s)
- Pavel Moudry
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic.
| | - Katarina Chroma
- grid.10979.360000 0001 1245 3953Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Sladana Bursac
- grid.22939.330000 0001 2236 1630Department of Molecular Medicine and Biotechnology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Sinisa Volarevic
- grid.22939.330000 0001 2236 1630Department of Molecular Medicine and Biotechnology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Jiri Bartek
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic. .,Genome Integrity, Danish Cancer Society Research Center, Copenhagen, Denmark. .,Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Science for Life Laboratory, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
26
|
Effective therapy for AML with RUNX1 mutation by cotreatment with inhibitors of protein translation and BCL2. Blood 2022; 139:907-921. [PMID: 34601571 PMCID: PMC8832475 DOI: 10.1182/blood.2021013156] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/19/2021] [Indexed: 11/20/2022] Open
Abstract
The majority of RUNX1 mutations in acute myeloid leukemia (AML) are missense or deletion-truncation and behave as loss-of-function mutations. Following standard therapy, AML patients expressing mtRUNX1 exhibit inferior clinical outcome than those without mutant RUNX1. Studies presented here demonstrate that as compared with AML cells lacking mtRUNX1, their isogenic counterparts harboring mtRUNX1 display impaired ribosomal biogenesis and differentiation, as well as exhibit reduced levels of wild-type RUNX1, PU.1, and c-Myc. Compared with AML cells with only wild-type RUNX1, AML cells expressing mtRUNX1 were also more sensitive to the protein translation inhibitor homoharringtonine (omacetaxine) and BCL2 inhibitor venetoclax. Homoharringtonine treatment repressed enhancers and their BRD4 occupancy and was associated with reduced levels of c-Myc, c-Myb, MCL1, and Bcl-xL. Consistent with this, cotreatment with omacetaxine and venetoclax or BET inhibitor induced synergistic in vitro lethality in AML expressing mtRUNX1. Compared with each agent alone, cotreatment with omacetaxine and venetoclax or BET inhibitor also displayed improved in vivo anti-AML efficacy, associated with improved survival of immune-depleted mice engrafted with AML cells harboring mtRUNX1. These findings highlight superior efficacy of omacetaxine-based combination therapies for AML harboring mtRUNX1.
Collapse
|
27
|
TEX10 Promotes the Tumorigenesis and Radiotherapy Resistance of Urinary Bladder Carcinoma by Stabilizing XRCC6. J Immunol Res 2021; 2021:5975893. [PMID: 34966825 PMCID: PMC8712183 DOI: 10.1155/2021/5975893] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 08/10/2021] [Accepted: 09/12/2021] [Indexed: 11/26/2022] Open
Abstract
Urinary bladder carcinoma refers to the commonest carcinoma with weak prognostic result for the patient as impacted by the limited treatment possibilities and challenging diagnosing process. Nevertheless, the molecular underpinning of bladder carcinoma malignant progression is still not clear. As a novel core part of pluripotency circuitry, testicular expression 10 (TEX10) plays an actively noticeable effect on reprogramming, early embryo development, and embryonic stem cell self-renewal. Nevertheless, TEX10 expressions and functions within bladder carcinoma are still not known. The present work is aimed at revealing TEX10 expression and biological function within urinary bladder carcinoma and elucidating the potential mechanisms. Results showed that TEX10 is abundant in urinary bladder carcinoma, and its protein level was related to poor disease-free survival in a positive manner. Reduced TEX10 level inhibited urinary bladder carcinoma cell proliferating process and metastasis in vitro and xenograft tumorigenicity in vivo. Notably, TEX10 might regulate carcinoma cell proliferating process and metastasis via XRCC6, thereby controlling the signaling of Wnt/β-catenin and DNA repair channel. Moreover, TEX10 gene knockout reduced the radiotherapy resistance of urinary bladder carcinoma. In brief, this work revealed that TEX10 could exert a significant carcinogenic effect on urinary bladder carcinoma tumorigenesis and radiotherapy resistance through the activation of XRCC6-related channels. Accordingly, targeting TEX10 is likely to offer a novel and feasible therapeutically related strategy for inhibiting urinary bladder carcinoma tumorigenicity.
Collapse
|
28
|
Fuentes P, Pelletier J, Martinez-Herráez C, Diez-Obrero V, Iannizzotto F, Rubio T, Garcia-Cajide M, Menoyo S, Moreno V, Salazar R, Tauler A, Gentilella A. The 40 S-LARP1 complex reprograms the cellular translatome upon mTOR inhibition to preserve the protein synthetic capacity. SCIENCE ADVANCES 2021; 7:eabg9275. [PMID: 34818049 PMCID: PMC8612684 DOI: 10.1126/sciadv.abg9275] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 10/06/2021] [Indexed: 06/13/2023]
Abstract
Ribosomes execute the transcriptional program in every cell. Critical to sustain nearly all cellular activities, ribosome biogenesis requires the translation of ~200 factors of which 80 are ribosomal proteins (RPs). As ribosome synthesis depends on RP mRNA translation, a priority within the translatome architecture should exist to ensure the preservation of ribosome biogenesis capacity, particularly under adverse growth conditions. Here, we show that under critical metabolic constraints characterized by mTOR inhibition, LARP1 complexed with the 40S subunit protects from ribophagy the mRNAs regulon for ribosome biogenesis and protein synthesis, acutely preparing the translatome to promptly resume ribosomes production after growth conditions return permissive. Characterizing the LARP1-protected translatome revealed a set of 5′TOP transcript isoforms other than RPs involved in energy production and in mitochondrial function, among other processes, indicating that the mTOR-LARP1-5′TOP axis acts at the translational level as a primary guardian of the cellular anabolic capacity.
Collapse
Affiliation(s)
- Pedro Fuentes
- Laboratory of Cancer Metabolism, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Joffrey Pelletier
- Laboratory of Cancer Metabolism, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Carolina Martinez-Herráez
- Laboratory of Cancer Metabolism, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain
| | - Virginia Diez-Obrero
- Unit of Biomarkers and Susceptibility, Oncology Data Analytics Program, Catalan Institute of Oncology (ICO). Hospitalet de Llobregat, Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Spain
- Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona, Spain
- Colorectal Cancer Group, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL). L’Hospitalet de Llobregat, Barcelona, Spain
| | - Flavia Iannizzotto
- Laboratory of Cancer Metabolism, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Teresa Rubio
- Laboratory of Cancer Metabolism, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Marta Garcia-Cajide
- Laboratory of Cancer Metabolism, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Sandra Menoyo
- Laboratory of Cancer Metabolism, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Victor Moreno
- Laboratory of Cancer Metabolism, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
- Unit of Biomarkers and Susceptibility, Oncology Data Analytics Program, Catalan Institute of Oncology (ICO). Hospitalet de Llobregat, Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Spain
- Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona, Spain
- Colorectal Cancer Group, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL). L’Hospitalet de Llobregat, Barcelona, Spain
- Consortium for Biomedical Research in Oncology (CIBERONC), Spain
| | - Ramón Salazar
- Laboratory of Cancer Metabolism, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Spain
- Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Albert Tauler
- Laboratory of Cancer Metabolism, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain
| | - Antonio Gentilella
- Laboratory of Cancer Metabolism, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain
| |
Collapse
|
29
|
Dalal JS, Winden KD, Salussolia CL, Sundberg M, Singh A, Pham TT, Zhou P, Pu WT, Miller MT, Sahin M. Loss of Tsc1 in cerebellar Purkinje cells induces transcriptional and translation changes in FMRP target transcripts. eLife 2021; 10:e67399. [PMID: 34259631 PMCID: PMC8279760 DOI: 10.7554/elife.67399] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 06/29/2021] [Indexed: 12/19/2022] Open
Abstract
Tuberous sclerosis complex (TSC) is a genetic disorder that is associated with multiple neurological manifestations. Previously, we demonstrated that Tsc1 loss in cerebellar Purkinje cells (PCs) can cause altered social behavior in mice. Here, we performed detailed transcriptional and translational analyses of Tsc1-deficient PCs to understand the molecular alterations in these cells. We found that target transcripts of the Fragile X Mental Retardation Protein (FMRP) are reduced in mutant PCs with evidence of increased degradation. Surprisingly, we observed unchanged ribosomal binding for many of these genes using translating ribosome affinity purification. Finally, we found that multiple FMRP targets, including SHANK2, were reduced, suggesting that compensatory increases in ribosomal binding efficiency may be unable to overcome reduced transcript levels. These data further implicate dysfunction of FMRP and its targets in TSC and suggest that treatments aimed at restoring the function of these pathways may be beneficial.
Collapse
Affiliation(s)
- Jasbir Singh Dalal
- Department of Neurology, Rosamund Stone Zander Translational Neuroscience Center, Kirby Neurobiology Center, Boston Children’s HospitalBostonUnited States
| | - Kellen Diamond Winden
- Department of Neurology, Rosamund Stone Zander Translational Neuroscience Center, Kirby Neurobiology Center, Boston Children’s HospitalBostonUnited States
| | - Catherine Lourdes Salussolia
- Department of Neurology, Rosamund Stone Zander Translational Neuroscience Center, Kirby Neurobiology Center, Boston Children’s HospitalBostonUnited States
| | - Maria Sundberg
- Department of Neurology, Rosamund Stone Zander Translational Neuroscience Center, Kirby Neurobiology Center, Boston Children’s HospitalBostonUnited States
| | - Achint Singh
- Department of Neurology, Rosamund Stone Zander Translational Neuroscience Center, Kirby Neurobiology Center, Boston Children’s HospitalBostonUnited States
| | - Truc Thanh Pham
- Department of Neurology, Rosamund Stone Zander Translational Neuroscience Center, Kirby Neurobiology Center, Boston Children’s HospitalBostonUnited States
| | - Pingzhu Zhou
- Department of Cardiology, Boston Children’s HospitalBostonUnited States
| | - William T Pu
- Department of Cardiology, Boston Children’s HospitalBostonUnited States
- Harvard Medical SchoolBostonUnited States
| | - Meghan T Miller
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center BaselBaselSwitzerland
| | - Mustafa Sahin
- Department of Neurology, Rosamund Stone Zander Translational Neuroscience Center, Kirby Neurobiology Center, Boston Children’s HospitalBostonUnited States
- Harvard Medical SchoolBostonUnited States
| |
Collapse
|
30
|
Ikeda Y, Hirayama A, Kofuji S, Hirota Y, Kamata R, Osaka N, Fujii Y, Sasaki M, Ikeda S, Smith EP, Bachoo R, Soga T, Sasaki AT. SI-MOIRAI: A new method to identify and quantify the metabolic fate of nucleotides. J Biochem 2021; 170:699-711. [PMID: 34244779 DOI: 10.1093/jb/mvab077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 06/22/2021] [Indexed: 11/13/2022] Open
Abstract
Since the discovery of nucleotides over 100 years ago, extensive studies have revealed the importance of nucleotides for homeostasis, health, and disease. However, there remains no established method to investigate quantitively and accurately intact nucleotide incorporation into RNA and DNA. Herein, we report a new method, Stable-Isotope Measure Of Influxed Ribonucleic Acid Index (SI-MOIRAI), for the identification and quantification of the metabolic fate of ribonucleotides and their precursors. SI-MOIRAI, named after Greek goddesses of fate, combines a stable isotope-labeling flux assay with mass spectrometry to enable quantification of the newly synthesized ribonucleotides into r/m/tRNA under a metabolic stationary state. Using glioblastoma U87MG cells and a patient-derived xenograft (PDX) glioblastoma mouse model, SI-MOIRAI analyses showed that newly synthesized GTP was particularly and disproportionally highly utilized for rRNA and tRNA synthesis but not for mRNA synthesis in glioblastoma (GBM) in vitro and in vivo. Furthermore, newly synthesized pyrimidine nucleotides exhibited a significantly lower utilization rate for RNA synthesis than newly synthesized purine nucleotides. The results reveal the existence of discrete pathways and compartmentalization of purine and pyrimidine metabolism designated for RNA synthesis, demonstrating the capacity of SI-MOIRAI to reveal previously unknown aspects of nucleotide biology.
Collapse
Affiliation(s)
- Yoshiki Ikeda
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA.,Department of Molecular Genetics, Institute of Biomedical Science, Kansai Medical University, Hirakata, Osaka, 573-1010, Japan
| | - Akiyoshi Hirayama
- Institute for Advanced Biosciences, Keio University, Tsuruoka, 997-0052, Japan
| | - Satoshi Kofuji
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA.,Department of Developmental and Regenerative Biology, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510, Japan
| | - Yoshihisa Hirota
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA.,Department of Bioscience and Engineering, College of Systems Engineering and Science, Shibaura Institute of Technology, Saitama, 337-8570, Japan
| | - Ryo Kamata
- Institute for Advanced Biosciences, Keio University, Tsuruoka, 997-0052, Japan
| | - Natsuki Osaka
- Institute for Advanced Biosciences, Keio University, Tsuruoka, 997-0052, Japan
| | - Yuki Fujii
- Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka, 558-8585, Japan
| | - Mika Sasaki
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Satsuki Ikeda
- Institute for Advanced Biosciences, Keio University, Tsuruoka, 997-0052, Japan
| | - Eric P Smith
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Robert Bachoo
- Department of Internal Medicine; Harold C. Simmons Comprehensive Cancer Center; Annette G. Strauss Center for Neuro-Oncology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.,Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Tomoyoshi Soga
- Institute for Advanced Biosciences, Keio University, Tsuruoka, 997-0052, Japan
| | - Atsuo T Sasaki
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA.,Institute for Advanced Biosciences, Keio University, Tsuruoka, 997-0052, Japan.,Department of Cancer Biology, University of Cincinnati College of Medicine, OH, 45267, USA.,Department of Neurosurgery, Brain Tumor Center at UC Gardner Neuroscience Institute, Cincinnati, OH, 45267, USA
| |
Collapse
|
31
|
Werlen G, Jain R, Jacinto E. MTOR Signaling and Metabolism in Early T Cell Development. Genes (Basel) 2021; 12:genes12050728. [PMID: 34068092 PMCID: PMC8152735 DOI: 10.3390/genes12050728] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/10/2021] [Accepted: 05/10/2021] [Indexed: 12/12/2022] Open
Abstract
The mechanistic target of rapamycin (mTOR) controls cell fate and responses via its functions in regulating metabolism. Its role in controlling immunity was unraveled by early studies on the immunosuppressive properties of rapamycin. Recent studies have provided insights on how metabolic reprogramming and mTOR signaling impact peripheral T cell activation and fate. The contribution of mTOR and metabolism during early T-cell development in the thymus is also emerging and is the subject of this review. Two major T lineages with distinct immune functions and peripheral homing organs diverge during early thymic development; the αβ- and γδ-T cells, which are defined by their respective TCR subunits. Thymic T-regulatory cells, which have immunosuppressive functions, also develop in the thymus from positively selected αβ-T cells. Here, we review recent findings on how the two mTOR protein complexes, mTORC1 and mTORC2, and the signaling molecules involved in the mTOR pathway are involved in thymocyte differentiation. We discuss emerging views on how metabolic remodeling impacts early T cell development and how this can be mediated via mTOR signaling.
Collapse
|
32
|
Adeshakin FO, Adeshakin AO, Afolabi LO, Yan D, Zhang G, Wan X. Mechanisms for Modulating Anoikis Resistance in Cancer and the Relevance of Metabolic Reprogramming. Front Oncol 2021; 11:626577. [PMID: 33854965 PMCID: PMC8039382 DOI: 10.3389/fonc.2021.626577] [Citation(s) in RCA: 123] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 02/08/2021] [Indexed: 12/12/2022] Open
Abstract
The attachment of cells to the extracellular matrix (ECM) is the hallmark of structure–function stability and well-being. ECM detachment in localized tumors precedes abnormal dissemination of tumor cells culminating in metastasis. Programmed cell death (PCD) is activated during tumorigenesis to clear off ECM-detached cells through “anoikis.” However, cancer cells develop several mechanisms for abrogating anoikis, thus promoting their invasiveness and metastasis. Specific factors, such as growth proteins, pH, transcriptional signaling pathways, and oxidative stress, have been reported as drivers of anoikis resistance, thus enhancing cancer proliferation and metastasis. Recent studies highlighted the key contributions of metabolic pathways, enabling the cells to bypass anoikis. Therefore, understanding the mechanisms driving anoikis resistance could help to counteract tumor progression and prevent metastasis. This review elucidates the dynamics employed by cancer cells to impede anoikis, thus promoting proliferation, invasion, and metastasis. In addition, the authors have discussed other metabolic intermediates (especially amino acids and nucleotides) that are less explored, which could be crucial for anoikis resistance and metastasis.
Collapse
Affiliation(s)
- Funmilayo O Adeshakin
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Adeleye O Adeshakin
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Lukman O Afolabi
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Dehong Yan
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Guizhong Zhang
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xiaochun Wan
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
33
|
Jiang X, Prabhakar A, Van der Voorn SM, Ghatpande P, Celona B, Venkataramanan S, Calviello L, Lin C, Wang W, Black BL, Floor SN, Lagna G, Hata A. Control of ribosomal protein synthesis by the Microprocessor complex. Sci Signal 2021; 14:14/671/eabd2639. [PMID: 33622983 DOI: 10.1126/scisignal.abd2639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Ribosome biogenesis in eukaryotes requires the coordinated production and assembly of 80 ribosomal proteins and four ribosomal RNAs (rRNAs), and its rate must be synchronized with cellular growth. Here, we showed that the Microprocessor complex, which mediates the first step of microRNA processing, potentiated the transcription of ribosomal protein genes by eliminating DNA/RNA hybrids known as R-loops. Nutrient deprivation triggered the nuclear export of Drosha, a key component of the Microprocessor complex, and its subsequent degradation by the E3 ubiquitin ligase Nedd4, thereby reducing ribosomal protein production and protein synthesis. In mouse erythroid progenitors, conditional deletion of Drosha led to the reduced production of ribosomal proteins, translational inhibition of the mRNA encoding the erythroid transcription factor Gata1, and impaired erythropoiesis. This phenotype mirrored the clinical presentation of human "ribosomopathies." Thus, the Microprocessor complex plays a pivotal role in synchronizing protein synthesis capacity with cellular growth rate and is a potential drug target for anemias caused by ribosomal insufficiency.
Collapse
Affiliation(s)
- Xuan Jiang
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Amit Prabhakar
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Stephanie M Van der Voorn
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA.,Department of Medical Physiology, University Medical Center Utrecht, Utrecht, 3584 CM, Netherlands
| | - Prajakta Ghatpande
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Barbara Celona
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Srivats Venkataramanan
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Lorenzo Calviello
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Chuwen Lin
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Wanpeng Wang
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Brian L Black
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA.,Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143, USA
| | - Stephen N Floor
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA.,Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Giorgio Lagna
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA.,Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Akiko Hata
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA. .,Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
34
|
Abstract
Cells metabolize nutrients for biosynthetic and bioenergetic needs to fuel growth and proliferation. The uptake of nutrients from the environment and their intracellular metabolism is a highly controlled process that involves cross talk between growth signaling and metabolic pathways. Despite constant fluctuations in nutrient availability and environmental signals, normal cells restore metabolic homeostasis to maintain cellular functions and prevent disease. A central signaling molecule that integrates growth with metabolism is the mechanistic target of rapamycin (mTOR). mTOR is a protein kinase that responds to levels of nutrients and growth signals. mTOR forms two protein complexes, mTORC1, which is sensitive to rapamycin, and mTORC2, which is not directly inhibited by this drug. Rapamycin has facilitated the discovery of the various functions of mTORC1 in metabolism. Genetic models that disrupt either mTORC1 or mTORC2 have expanded our knowledge of their cellular, tissue, as well as systemic functions in metabolism. Nevertheless, our knowledge of the regulation and functions of mTORC2, particularly in metabolism, has lagged behind. Since mTOR is an important target for cancer, aging, and other metabolism-related pathologies, understanding the distinct and overlapping regulation and functions of the two mTOR complexes is vital for the development of more effective therapeutic strategies. This review discusses the key discoveries and recent findings on the regulation and metabolic functions of the mTOR complexes. We highlight findings from cancer models but also discuss other examples of the mTOR-mediated metabolic reprogramming occurring in stem and immune cells, type 2 diabetes/obesity, neurodegenerative disorders, and aging.
Collapse
Affiliation(s)
- Angelia Szwed
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey
| | - Eugene Kim
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey
| | - Estela Jacinto
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey
| |
Collapse
|
35
|
Zhang J, Yang G, Li Q, Xie F. Increased fibrillarin expression is associated with tumor progression and an unfavorable prognosis in hepatocellular carcinoma. Oncol Lett 2020; 21:92. [PMID: 33376525 PMCID: PMC7751345 DOI: 10.3892/ol.2020.12353] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 11/02/2020] [Indexed: 12/19/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the sixth most common cancer and third most common cause of cancer-associated mortality worldwide. Hepatectomy and liver transplantation are the main treatments for early HCC. Immunotherapy and targeted therapy for advanced HCC have become increasingly popular; however, their clinical benefits are limited. Thus, identification of novel therapeutic targets for advanced HCC remains essential. Fibrillarin (FBL) is an essential nucleolar protein that catalyzes the 2′-O-methylation of ribosomal RNAs. Recently, experimental data have suggested that FBL can influence breast-cancer progression. However, the association between FBL expression and HCC remains known. In the present study, the UALCAN database was used to assess FBL mRNA expression in HCC. Immunohistochemistry analysis was performed to detect FBL protein expression in 139 patients with HCC. In addition, bioinformatic analysis was performed using the UALCAN, the Database for Annotation, Visualization and Integrated Discovery, cBioportal and TargetScan databases. Data were analyzed using Kaplan-Meier curves and the log-rank test, and a Cox proportional hazards regression model. The results demonstrated that FBL expression was significantly higher in tumor tissues compared with para-tumor tissues. Furthermore, high FBL expression was significantly associated with tumor diameter and advanced TNM stage in HCC. High FBL expression also predicted a shorter overall survival time and disease-free survival time in patients with HCC. Bioinformatics analysis demonstrated that FBL may be regulated by methylation modification. In addition, analyses of functional annotations using the Gene Ontology database indicated that FBL-related genes were predominantly enriched in DNA repair and proliferation-related cell-signaling pathways. Notably, high FBL expression signified larger tumor diameter, advanced tumor stage and a poor prognosis. Taken together, the results of the present study suggest that FBL may be a potential target for HCC treatment.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Gang Yang
- Department of Hepatobiliary Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Qiang Li
- Department of Hepatobiliary Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Fei Xie
- Department of Hepatobiliary Surgery, The First People's Hospital of Neijiang, Neijiang, Sichuan 641000, P.R. China
| |
Collapse
|
36
|
Dermit M, Dodel M, Lee FCY, Azman MS, Schwenzer H, Jones JL, Blagden SP, Ule J, Mardakheh FK. Subcellular mRNA Localization Regulates Ribosome Biogenesis in Migrating Cells. Dev Cell 2020; 55:298-313.e10. [PMID: 33171110 PMCID: PMC7660134 DOI: 10.1016/j.devcel.2020.10.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 09/01/2020] [Accepted: 10/08/2020] [Indexed: 12/24/2022]
Abstract
Translation of ribosomal protein-coding mRNAs (RP-mRNAs) constitutes a key step in ribosome biogenesis, but the mechanisms that modulate RP-mRNA translation in coordination with other cellular processes are poorly defined. Here, we show that subcellular localization of RP-mRNAs acts as a key regulator of their translation during cell migration. As cells migrate into their surroundings, RP-mRNAs localize to the actin-rich cell protrusions. This localization is mediated by La-related protein 6 (LARP6), an RNA-binding protein that is enriched in protrusions. Protrusions act as hotspots of translation for RP-mRNAs, enhancing RP synthesis, ribosome biogenesis, and the overall protein synthesis in migratory cells. In human breast carcinomas, epithelial-to-mesenchymal transition (EMT) upregulates LARP6 expression to enhance protein synthesis and support invasive growth. Our findings reveal LARP6-mediated mRNA localization as a key regulator of ribosome biogenesis during cell migration and demonstrate a role for this process in cancer progression downstream of EMT.
Collapse
Affiliation(s)
- Maria Dermit
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Martin Dodel
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Flora C Y Lee
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Muhammad S Azman
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Hagen Schwenzer
- Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - J Louise Jones
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Sarah P Blagden
- Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Jernej Ule
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Faraz K Mardakheh
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK.
| |
Collapse
|
37
|
Dai D, Shi R, Han S, Jin H, Wang X. Weighted gene coexpression network analysis identifies hub genes related to KRAS mutant lung adenocarcinoma. Medicine (Baltimore) 2020; 99:e21478. [PMID: 32769881 PMCID: PMC7593058 DOI: 10.1097/md.0000000000021478] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The aim of current study was to use Weighted Gene Coexpression Network Analysis (WGCNA) to identify hub genes related to the incidence and prognosis of KRAS mutant (MT) lung adenocarcinoma (LUAD).We involved 184 stage IIB to IV LUAD samples and 59 normal lung tissue samples from The Cancer Genome Atlas (TCGA) database. The R package "limma" was used to identify differentially expressed genes (DEGs). WGCNA and survival analyses were performed by R packages "WGCNA" and "survival," respectively. The functional analyses were performed by R package "clusterProfiler" and GSEA software. Network construction and MCODE analysis were performed by Cytoscape_v3.6.1.Totally 2590 KRAS MT specific DEGs were found between LUAD and normal lung tissues, and 10 WGCNA modules were identified. Functional analysis of the key module showed the ribosome biogenesis related terms were enriched. We observed the expression of 8 genes were positively correlated to the worse survival of KRAS MT LUAD patients, the 7 of them were validated by Kaplan-Meier plotter database (kmplot.com/) (thymosin Beta 10 [TMSB10], ribosomal Protein S16 [RPS16], mitochondrial ribosomal protein L27 [MRPL27], cytochrome c oxidase subunit 6A1 [COX6A1], HCLS1-associated protein X-1 [HAX1], ribosomal protein L38 [RPL38], and ATP Synthase Membrane Subunit DAPIT [ATP5MD]). The GSEA analysis found mTOR and STK33 pathways were upregulated in KRAS MT LUAD (P < .05, false discovery rate [FDR] < 0.25).In summary, our study firstly used WGCNA to identify hub genes in the development of KRAS MT LUAD. The identified prognostic factors would be potential biomarkers in clinical use. Further molecular studies are required to confirm the mechanism of those genes in KRAS MT LUAD.
Collapse
Affiliation(s)
| | | | | | - Hongchuan Jin
- Laboratory of Cancer Biology, Key Lab of Biotherapy, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| | | |
Collapse
|
38
|
Dai X, Zhu M. Coupling of Ribosome Synthesis and Translational Capacity with Cell Growth. Trends Biochem Sci 2020; 45:681-692. [DOI: 10.1016/j.tibs.2020.04.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/11/2020] [Accepted: 04/27/2020] [Indexed: 12/31/2022]
|
39
|
Zeng A, Wei Z, Rabinovsky R, Jun HJ, El Fatimy R, Deforzh E, Arora R, Yao Y, Yao S, Yan W, Uhlmann EJ, Charest A, You Y, Krichevsky AM. Glioblastoma-Derived Extracellular Vesicles Facilitate Transformation of Astrocytes via Reprogramming Oncogenic Metabolism. iScience 2020; 23:101420. [PMID: 32795915 PMCID: PMC7424213 DOI: 10.1016/j.isci.2020.101420] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 06/24/2020] [Accepted: 07/26/2020] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma (GBM) may arise from astrocytes through a multistep process involving a progressive accumulation of mutations. We explored whether GBM-derived extracellular vesicles (EVs) may facilitate neoplastic transformation and malignant growth of astrocytes. We utilized conditioned media (CM) of cultured glioma cells, its sequential filtration, diverse cell-based assays, RNA sequencing, and metabolic assays to compare the effects of EV-containing and EV-depleted CM. GBM EVs facilitated the neoplastic growth of pre-transformed astrocytes but not normal human or mouse astrocytes. They induced proliferation, self-renewal, and colony formation of pre-transformed astrocytes and enhanced astrocytoma growth in a mouse allograft model. GBM EVs appear to reprogram astrocyte metabolism by inducing a shift in gene expression that may be partly associated with EV-mediated transfer of full-length mRNAs encoding ribosomal proteins, oxidative phosphorylation, and glycolytic factors. Our study suggests an EV/extracellular RNA (exRNA)-mediated mechanism that contributes to astrocyte transformation via metabolic reprograming and implicates horizontal mRNA transfer. Extracellular vesicles (EVs) shed by glioma cells are taken up by astrocytes Glioma EVs facilitate astrocyte transformation and tumor growth EVs reprogram glycolysis and oxidative phosphorylation of transformed astrocytes mRNAs coding ribosomal proteins and other factors are dispersed via EVs
Collapse
Affiliation(s)
- Ailiang Zeng
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Zhiyun Wei
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China.
| | - Rosalia Rabinovsky
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Hyun Jung Jun
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | - Rachid El Fatimy
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Evgeny Deforzh
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Ramil Arora
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Yizheng Yao
- Department of Neurosurgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Shun Yao
- Department of Neurosurgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Center for Pituitary Tumor Surgery, Department of Neurosurgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510062, China
| | - Wei Yan
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Erik J Uhlmann
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Alain Charest
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Yongping You
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Anna M Krichevsky
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
40
|
Destefanis F, Manara V, Bellosta P. Myc as a Regulator of Ribosome Biogenesis and Cell Competition: A Link to Cancer. Int J Mol Sci 2020; 21:ijms21114037. [PMID: 32516899 PMCID: PMC7312820 DOI: 10.3390/ijms21114037] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 12/14/2022] Open
Abstract
The biogenesis of ribosomes is a finely regulated multistep process linked to cell proliferation and growth-processes which require a high rate of protein synthesis. One of the master regulators of ribosome biogenesis is Myc, a well-known proto-oncogene that has an important role in ribosomal function and in the regulation of protein synthesis. The relationship between Myc and the ribosomes was first highlighted in Drosophila, where Myc's role in controlling Pol-I, II and III was evidenced by both microarrays data, and by the ability of Myc to control growth (mass), and cellular and animal size. Moreover, Myc can induce cell competition, a physiological mechanism through which cells with greater fitness grow better and thereby prevail over less competitive cells, which are actively eliminated by apoptosis. Myc-induced cell competition was shown to regulate both vertebrate development and tumor promotion; however, how these functions are linked to Myc's control of ribosome biogenesis, protein synthesis and growth is not clear yet. In this review, we will discuss the major pathways that link Myc to ribosomal biogenesis, also in light of its function in cell competition, and how these mechanisms may reflect its role in favoring tumor promotion.
Collapse
Affiliation(s)
- Francesca Destefanis
- Department of Cellular, Computational and Integrative Biology (CiBio), University of Trento, 38123 Trento, Italy; (F.D.); (V.M.)
| | - Valeria Manara
- Department of Cellular, Computational and Integrative Biology (CiBio), University of Trento, 38123 Trento, Italy; (F.D.); (V.M.)
| | - Paola Bellosta
- Department of Cellular, Computational and Integrative Biology (CiBio), University of Trento, 38123 Trento, Italy; (F.D.); (V.M.)
- Department of Medicine, NYU Langone Medical Center, New York, NY 10016, USA
- Correspondence: ; Tel.: +39-0461-283070
| |
Collapse
|
41
|
Ferreira R, Schneekloth JS, Panov KI, Hannan KM, Hannan RD. Targeting the RNA Polymerase I Transcription for Cancer Therapy Comes of Age. Cells 2020; 9:cells9020266. [PMID: 31973211 PMCID: PMC7072222 DOI: 10.3390/cells9020266] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 01/14/2020] [Accepted: 01/15/2020] [Indexed: 12/24/2022] Open
Abstract
Transcription of the ribosomal RNA genes (rDNA) that encode the three largest ribosomal RNAs (rRNA), is mediated by RNA Polymerase I (Pol I) and is a key regulatory step for ribosomal biogenesis. Although it has been reported over a century ago that the number and size of nucleoli, the site of ribosome biogenesis, are increased in cancer cells, the significance of this observation for cancer etiology was not understood. The realization that the increase in rRNA expression has an active role in cancer progression, not only through increased protein synthesis and thus proliferative capacity but also through control of cellular check points and chromatin structure, has opened up new therapeutic avenues for the treatment of cancer through direct targeting of Pol I transcription. In this review, we discuss the rational of targeting Pol I transcription for the treatment of cancer; review the current cancer therapeutics that target Pol I transcription and discuss the development of novel Pol I-specific inhibitors, their therapeutic potential, challenges and future prospects.
Collapse
Affiliation(s)
- Rita Ferreira
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, Australian National University, Acton 2601, NSW, Australia; (K.I.P.); (K.M.H.); (R.D.H.)
- Correspondence:
| | - John S. Schneekloth
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA;
| | - Konstantin I. Panov
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, Australian National University, Acton 2601, NSW, Australia; (K.I.P.); (K.M.H.); (R.D.H.)
- CCRCB and School of Biological Sciences, Queen’s University Belfast Medical Biology Centre, School of Biological Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK
| | - Katherine M. Hannan
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, Australian National University, Acton 2601, NSW, Australia; (K.I.P.); (K.M.H.); (R.D.H.)
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Ross D. Hannan
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, Australian National University, Acton 2601, NSW, Australia; (K.I.P.); (K.M.H.); (R.D.H.)
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC 3010, Australia
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
42
|
Magaway C, Kim E, Jacinto E. Targeting mTOR and Metabolism in Cancer: Lessons and Innovations. Cells 2019; 8:cells8121584. [PMID: 31817676 PMCID: PMC6952948 DOI: 10.3390/cells8121584] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 12/14/2022] Open
Abstract
Cancer cells support their growth and proliferation by reprogramming their metabolism in order to gain access to nutrients. Despite the heterogeneity in genetic mutations that lead to tumorigenesis, a common alteration in tumors occurs in pathways that upregulate nutrient acquisition. A central signaling pathway that controls metabolic processes is the mTOR pathway. The elucidation of the regulation and functions of mTOR can be traced to the discovery of the natural compound, rapamycin. Studies using rapamycin have unraveled the role of mTOR in the control of cell growth and metabolism. By sensing the intracellular nutrient status, mTOR orchestrates metabolic reprogramming by controlling nutrient uptake and flux through various metabolic pathways. The central role of mTOR in metabolic rewiring makes it a promising target for cancer therapy. Numerous clinical trials are ongoing to evaluate the efficacy of mTOR inhibition for cancer treatment. Rapamycin analogs have been approved to treat specific types of cancer. Since rapamycin does not fully inhibit mTOR activity, new compounds have been engineered to inhibit the catalytic activity of mTOR to more potently block its functions. Despite highly promising pre-clinical studies, early clinical trial results of these second generation mTOR inhibitors revealed increased toxicity and modest antitumor activity. The plasticity of metabolic processes and seemingly enormous capacity of malignant cells to salvage nutrients through various mechanisms make cancer therapy extremely challenging. Therefore, identifying metabolic vulnerabilities in different types of tumors would present opportunities for rational therapeutic strategies. Understanding how the different sources of nutrients are metabolized not just by the growing tumor but also by other cells from the microenvironment, in particular, immune cells, will also facilitate the design of more sophisticated and effective therapeutic regimen. In this review, we discuss the functions of mTOR in cancer metabolism that have been illuminated from pre-clinical studies. We then review key findings from clinical trials that target mTOR and the lessons we have learned from both pre-clinical and clinical studies that could provide insights on innovative therapeutic strategies, including immunotherapy to target mTOR signaling and the metabolic network in cancer.
Collapse
|
43
|
Binal Z, Açıkgöz E, Kızılay F, Öktem G, Altay B. Cross-talk between ribosome biogenesis, translation, and mTOR in CD133+ 4/CD44+ prostate cancer stem cells. Clin Transl Oncol 2019; 22:1040-1048. [PMID: 31630355 DOI: 10.1007/s12094-019-02229-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 10/04/2019] [Indexed: 12/18/2022]
Abstract
OBJECTIVE To investigate the gene expression profile of CSCs and to explore the key pathways and specific molecular signatures involved in the characteristic of CSCs. MATERIALS AND METHODS CD133+ /CD44+ CSCs and bulk population (non-CSCs) were isolated from DU-145 cells using fluorescence-activated cell sorting (FACS). We used Illumina HumanHT-12 v4 Expression to investigate gene expression profiling of CSCs and non-CSCs. Protein-protein interaction (PPI) network analysis was performed using the STRING database. Biomarkers selected based on gene expression profiling were visually analyzed using immunofluorescence staining method. An image analysis program, ImageJ®, was used for the analysis of fluorescence intensity. RESULTS In microarray analysis, we found that many ribosomal proteins and translation initiation factors that constitute the mTOR complex were highly expressed. PPI analysis using the 33 genes demonstrated that there was a close interaction between ribosome biogenesis, translation, and mTOR signaling. The fluorescence amount of mTOR and MLST8 were higher in CSCs compared to non-CSCs. CONCLUSIONS The increase in a number of genes associated with ribosome biogenesis, translation, and mTOR signaling may be important to evaluate prognosis and determine treatment approach for prostate cancer (PCa). A better understanding of the molecular pathways associated with CSCs may be promising to develop targeted therapies to prolong survival in PCa.
Collapse
Affiliation(s)
- Z Binal
- Department of Urology, Faculty of Medicine, Ege University School of Medicine, Ege University, Bornova, PO Box: 35100, 35100, İzmir, Turkey
| | - E Açıkgöz
- Department of Histology and Embryology, Faculty of Medicine, Yuzuncu Yıl University, 65080, Van, Turkey
| | - F Kızılay
- Department of Urology, Faculty of Medicine, Ege University School of Medicine, Ege University, Bornova, PO Box: 35100, 35100, İzmir, Turkey.
| | - G Öktem
- Department of Histology and Embryology, Faculty of Medicine, Ege University, 35100, Izmir, Turkey
| | - B Altay
- Department of Urology, Faculty of Medicine, Ege University School of Medicine, Ege University, Bornova, PO Box: 35100, 35100, İzmir, Turkey
| |
Collapse
|
44
|
Starski P, Peyton L, Oliveros A, Heppelmann CJ, Dasari S, Choi DS. Proteomic Profile of a Chronic Binge Ethanol Exposure Model. J Proteome Res 2019; 18:3492-3502. [PMID: 31329447 DOI: 10.1021/acs.jproteome.9b00394] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Chronic binge alcohol drinking is known to increase risky decision through pathological impulsive behaviors. Recently, we established a novel rodent model of ethanol-induced waiting impulsivity using 5-choice serial reaction time task (5-CSRTT) in mice. However, molecular mechanisms underlying the chronic binge ethanol-induced waiting impulsivity is not well characterized. Among brain regions involved in impulsivity, the anterior cingulate cortex (ACC) is a major neural substrate for mediating the 5-CSRTT-based waiting impulsivity. Thus, we sought to determine the ACC proteomic profile using label-free proteomics of mice exhibiting ethanol-induced impulsivity. Ingenuity pathway analysis revealed that impulsivity-related proteins involved in ion channel complexes such as KCNIP3 (potassium voltage-gated channel interacting protein 3) and CACNG2 (calcium voltage-gated channel auxiliary subunit gamma 2) are downregulated in the ACC. We identified significant protein expression changes in the mechanistic target of rapamycin (mTOR) canonical pathway between control and ethanol-induced impulsive mice. Impulsive mice showed over 60% of proteins involved in the mTOR canonical pathway have been altered. This pathway has been previously implicated in the neuroadaptation in drugs of abuse and impulsivity. We found substantial changes in the protein levels involved in neurological disorders such as schizophrenia and Alzheimer's disease. Our findings provide a neuroproteomic profile of ethanol-induced impulsive mice.
Collapse
|
45
|
García-Aguilar A, Martínez-Reyes I, Cuezva JM. Changes in the Turnover of the Cellular Proteome during Metabolic Reprogramming: A Role for mtROS in Proteostasis. J Proteome Res 2019; 18:3142-3155. [DOI: 10.1021/acs.jproteome.9b00239] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ana García-Aguilar
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Centro de Investigación Biomédica en Red de Enfermedades Raras CIBERER-ISCIII, Instituto de Investigación Hospital 12 de Octubre (i+12), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Inmaculada Martínez-Reyes
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Centro de Investigación Biomédica en Red de Enfermedades Raras CIBERER-ISCIII, Instituto de Investigación Hospital 12 de Octubre (i+12), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - José M. Cuezva
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Centro de Investigación Biomédica en Red de Enfermedades Raras CIBERER-ISCIII, Instituto de Investigación Hospital 12 de Octubre (i+12), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
46
|
Kumar J, Murugaiah V, Sotiriadis G, Kaur A, Jeyaneethi J, Sturniolo I, Alhamlan FS, Chatterjee J, Hall M, Kishore U, Karteris E. Surfactant Protein D as a Potential Biomarker and Therapeutic Target in Ovarian Cancer. Front Oncol 2019; 9:542. [PMID: 31338320 PMCID: PMC6629871 DOI: 10.3389/fonc.2019.00542] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 06/04/2019] [Indexed: 12/11/2022] Open
Abstract
Surfactant protein D (SP-D) is an important innate immune molecule that is involved in clearing pathogens and regulating inflammation at pulmonary as well as extra-pulmonary sites. Recent studies have established the role of SP-D as an innate immune surveillance molecule against lung and pancreatic cancer, but little is known about its involvement in signaling pathways it can potentially activate in ovarian cancer. We focused our study on ovarian cancer by performing bioinformatics analysis (Oncomine) of datasets and survival analysis (Kaplan-Meier plotter), followed by immunohistochemistry using ovarian cancer tissue microarrays. SP-D mRNA was found to be expressed widely in different types of ovarian cancer irrespective of stage or grade. These in silico data were further validated by immunohistochemistry of clinical tissues. High transcriptional levels of SP-D were associated with unfavorable prognosis (overall and progression-free survival). We also detected SP-D protein in Circulating Tumor Cells of three ovarian cancer patients, suggesting that SP-D can also be used as a potential biomarker. Previous studies have shown that a recombinant fragment of human SP-D (rfhSP-D) induced apoptosis in pancreatic cancer cells via Fas-mediated pathway. In this study, we report that treatment of SKOV3 cells (an ovarian cancer cell line) with rfhSP-D led to a decrease in cell motility and cell proliferation. This was followed by an inhibition of the mTOR pathway activity, increase in caspase 3 cleavage, and induction of pro-apoptotic genes Fas and TNF-α. These data, suggesting a likely protective role of rfhSP-D against ovarian cancer, together with the observation that the ovarian cancer microenvironment overexperesses SP-D leading to poor prognosis, seems to suggest that the tumor microenvironment components manipulate the protective effect of SP-D in vivo.
Collapse
Affiliation(s)
- Juhi Kumar
- Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Valamarthy Murugaiah
- Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Georgios Sotiriadis
- Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Anuvinder Kaur
- Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Jeyarooban Jeyaneethi
- Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Isotta Sturniolo
- Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Fatimah S Alhamlan
- Department of Infection and Immunity, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Jayanta Chatterjee
- Faculty of Health and Medical Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, United Kingdom
| | - Marcia Hall
- Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom.,Mount Vernon Cancer Centre, Northwood, United Kingdom
| | - Uday Kishore
- Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Emmanouil Karteris
- Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom.,Institute of Environment, Health and Societies, Brunel University London, Uxbridge, United Kingdom
| |
Collapse
|
47
|
Hua H, Kong Q, Zhang H, Wang J, Luo T, Jiang Y. Targeting mTOR for cancer therapy. J Hematol Oncol 2019; 12:71. [PMID: 31277692 PMCID: PMC6612215 DOI: 10.1186/s13045-019-0754-1] [Citation(s) in RCA: 553] [Impact Index Per Article: 110.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 06/14/2019] [Indexed: 02/05/2023] Open
Abstract
Mechanistic target of rapamycin (mTOR) is a protein kinase regulating cell growth, survival, metabolism, and immunity. mTOR is usually assembled into several complexes such as mTOR complex 1/2 (mTORC1/2). In cooperation with raptor, rictor, LST8, and mSin1, key components in mTORC1 or mTORC2, mTOR catalyzes the phosphorylation of multiple targets such as ribosomal protein S6 kinase β-1 (S6K1), eukaryotic translation initiation factor 4E binding protein 1 (4E-BP1), Akt, protein kinase C (PKC), and type-I insulin-like growth factor receptor (IGF-IR), thereby regulating protein synthesis, nutrients metabolism, growth factor signaling, cell growth, and migration. Activation of mTOR promotes tumor growth and metastasis. Many mTOR inhibitors have been developed to treat cancer. While some of the mTOR inhibitors have been approved to treat human cancer, more mTOR inhibitors are being evaluated in clinical trials. Here, we update recent advances in exploring mTOR signaling and the development of mTOR inhibitors for cancer therapy. In addition, we discuss the mechanisms underlying the resistance to mTOR inhibitors in cancer cells.
Collapse
Affiliation(s)
- Hui Hua
- State Key Laboratory of Biotherapy, Laboratory of Stem Cell Biology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qingbin Kong
- Laboratory of Oncogene, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Hongying Zhang
- Laboratory of Oncogene, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jiao Wang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ting Luo
- Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yangfu Jiang
- Laboratory of Oncogene, Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
48
|
Khandia R, Dadar M, Munjal A, Dhama K, Karthik K, Tiwari R, Yatoo MI, Iqbal HMN, Singh KP, Joshi SK, Chaicumpa W. A Comprehensive Review of Autophagy and Its Various Roles in Infectious, Non-Infectious, and Lifestyle Diseases: Current Knowledge and Prospects for Disease Prevention, Novel Drug Design, and Therapy. Cells 2019; 8:cells8070674. [PMID: 31277291 PMCID: PMC6678135 DOI: 10.3390/cells8070674] [Citation(s) in RCA: 145] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/04/2019] [Accepted: 06/04/2019] [Indexed: 02/05/2023] Open
Abstract
Autophagy (self-eating) is a conserved cellular degradation process that plays important roles in maintaining homeostasis and preventing nutritional, metabolic, and infection-mediated stresses. Autophagy dysfunction can have various pathological consequences, including tumor progression, pathogen hyper-virulence, and neurodegeneration. This review describes the mechanisms of autophagy and its associations with other cell death mechanisms, including apoptosis, necrosis, necroptosis, and autosis. Autophagy has both positive and negative roles in infection, cancer, neural development, metabolism, cardiovascular health, immunity, and iron homeostasis. Genetic defects in autophagy can have pathological consequences, such as static childhood encephalopathy with neurodegeneration in adulthood, Crohn's disease, hereditary spastic paraparesis, Danon disease, X-linked myopathy with excessive autophagy, and sporadic inclusion body myositis. Further studies on the process of autophagy in different microbial infections could help to design and develop novel therapeutic strategies against important pathogenic microbes. This review on the progress and prospects of autophagy research describes various activators and suppressors, which could be used to design novel intervention strategies against numerous diseases and develop therapeutic drugs to protect human and animal health.
Collapse
Affiliation(s)
- Rekha Khandia
- Department of Genetics, Barkatullah University, Bhopal 462 026, Madhya Pradesh, India
| | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj 31975/148, Iran
| | - Ashok Munjal
- Department of Genetics, Barkatullah University, Bhopal 462 026, Madhya Pradesh, India.
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243 122, Uttar Pradesh, India.
| | - Kumaragurubaran Karthik
- Central University Laboratory, Tamil Nadu Veterinary and Animal Sciences University, Madhavaram Milk Colony, Chennai, Tamil Nadu 600051, India
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, UP Pandit Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go-Anusandhan Sansthan (DUVASU), Mathura, Uttar Pradesh 281 001, India
| | - Mohd Iqbal Yatoo
- Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Srinagar 190025, Jammu and Kashmir, India
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N. L., CP 64849, Mexico
| | - Karam Pal Singh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243 122, Uttar Pradesh, India
| | - Sunil K Joshi
- Department of Pediatrics, Division of Hematology, Oncology and Bone Marrow Transplantation, University of Miami School of Medicine, Miami, FL 33136, USA.
| | - Wanpen Chaicumpa
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| |
Collapse
|
49
|
Robichaud N, Sonenberg N, Ruggero D, Schneider RJ. Translational Control in Cancer. Cold Spring Harb Perspect Biol 2019; 11:cshperspect.a032896. [PMID: 29959193 DOI: 10.1101/cshperspect.a032896] [Citation(s) in RCA: 170] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The translation of messenger RNAs (mRNAs) into proteins is a key event in the regulation of gene expression. This is especially true in the cancer setting, as many oncogenes and transforming events are regulated at this level. Cancer-promoting factors that are translationally regulated include cyclins, antiapoptotic factors, proangiogenic factors, regulators of cell metabolism, prometastatic factors, immune modulators, and proteins involved in DNA repair. This review discusses the diverse means by which cancer cells deregulate and reprogram translation, and the resulting oncogenic impacts, providing insights into the complexity of translational control in cancer and its targeting for cancer therapy.
Collapse
Affiliation(s)
- Nathaniel Robichaud
- Goodman Cancer Research Centre and Department of Biochemistry, McGill University, Montreal, Quebec H3A 1A3, Canada
| | - Nahum Sonenberg
- Goodman Cancer Research Centre and Department of Biochemistry, McGill University, Montreal, Quebec H3A 1A3, Canada
| | - Davide Ruggero
- Helen Diller Family Comprehensive Cancer Center, and Departments of Urology and of Cellular and Molecular Pharmacology, University of California, San Francisco, California 94158
| | - Robert J Schneider
- NYU School of Medicine, Alexandria Center for Life Science, New York, New York 10016
| |
Collapse
|
50
|
Zhang Y, Li Y, Li T, Shen X, Zhu T, Tao Y, Li X, Wang D, Ma Q, Hu Z, Liu J, Ruan J, Cai J, Wang HY, Lu X. Genetic Load and Potential Mutational Meltdown in Cancer Cell Populations. Mol Biol Evol 2019; 36:541-552. [PMID: 30649444 DOI: 10.1093/molbev/msy231] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Large genomes with elevated mutation rates are prone to accumulating deleterious mutations more rapidly than natural selection can purge (Muller's ratchet). As a consequence, it may lead to the extinction of small populations. Relative to most unicellular organisms, cancer cells, with large and nonrecombining genome and high mutation rate, could be particularly susceptible to such "mutational meltdown." However, the most common type of mutation in organismal evolution, namely, deleterious mutation, has received relatively little attention in the cancer biology literature. Here, by monitoring single-cell clones from HeLa cell lines, we characterize deleterious mutations that retard the rate of cell proliferation. The main mutation events are copy number variations (CNVs), which, estimated from fitness data, happen at a rate of 0.29 event per cell division on average. The mean fitness reduction, estimated reaching 18% per mutation, is very high. HeLa cell populations therefore have very substantial genetic load and, at this level, natural population would likely face mutational meltdown. We suspect that HeLa cell populations may avoid extinction only after the population size becomes large enough. Because CNVs are common in most cell lines and tumor tissues, the observations hint at cancer cells' vulnerability, which could be exploited by therapeutic strategies.
Collapse
Affiliation(s)
- Yuezheng Zhang
- Key Laboratory of Genomics and Precision Medicine, Beijing Institute of Genomics, Beijing, China
| | - Yawei Li
- Key Laboratory of Genomics and Precision Medicine, Beijing Institute of Genomics, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Tao Li
- Key Laboratory of Genomics and Precision Medicine, Beijing Institute of Genomics, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xu Shen
- Key Laboratory of Genomics and Precision Medicine, Beijing Institute of Genomics, Beijing, China.,State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Tianqi Zhu
- National Center for Mathematics and Interdisciplinary Sciences, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China.,Key Laboratory of Random Complex Structures and Data Science, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China
| | - Yong Tao
- Key Laboratory of Genomics and Precision Medicine, Beijing Institute of Genomics, Beijing, China
| | - Xueying Li
- School of Life Sciences, Peking University, Beijing, China
| | - Di Wang
- Key Laboratory of Genomics and Precision Medicine, Beijing Institute of Genomics, Beijing, China
| | - Qin Ma
- Key Laboratory of Genomics and Precision Medicine, Beijing Institute of Genomics, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zheng Hu
- Key Laboratory of Genomics and Precision Medicine, Beijing Institute of Genomics, Beijing, China
| | - Jialin Liu
- Key Laboratory of Genomics and Precision Medicine, Beijing Institute of Genomics, Beijing, China
| | - Jue Ruan
- Key Laboratory of Genomics and Precision Medicine, Beijing Institute of Genomics, Beijing, China
| | - Jun Cai
- Key Laboratory of Genomics and Precision Medicine, Beijing Institute of Genomics, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Hurng-Yi Wang
- Graduate Institute of Clinical Medicine, National Taiwan University, Taipei, Taiwan.,Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei, Taiwan
| | - Xuemei Lu
- Key Laboratory of Genomics and Precision Medicine, Beijing Institute of Genomics, Beijing, China.,CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|