1
|
Bélanger V, Morel S, Napartuk M, Bouchard I, Meloche C, Curnier D, Sultan S, Laverdière C, Sinnett D, Marcil V. Abnormal HDL lipid and protein composition following pediatric cancer treatment: an associative study. Lipids Health Dis 2023; 22:72. [PMID: 37301877 DOI: 10.1186/s12944-023-01822-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/24/2023] [Indexed: 06/12/2023] Open
Abstract
BACKGROUND Long-term childhood cancer survivors (CCS) are at high risk of having dyslipidemia including low high density lipoprotein cholesterol (HDL-C). However, little is known about the prevalence of low HDL-C and the impact of therapy exposure on HDL composition early after treatment is terminated. METHODS This associative study included 50 children and adolescents who had completed their cancer treatments (< 4 years). Clinical characteristics (demographic, diagnosis, treatment, anthropometric parameters), fasting plasma lipids, apoliporoteins (Apo) A-I and composition of HDL fractions (HDL2 and HDL3) were assessed. Data were stratified according to the presence of dyslipidemia and median doses of therapeutic agents and compared using Fisher exact or Mann-Whitney tests. Univariate binary logistic regression analyses were carried out to evaluate the associations between the clinical and biochemical characteristics and having low HDL-C. Composition of HDL2 and HDL3 particles was assessed in a sub-group of 15 patients and compared to 15 age- and sex-matched healthy controls using Wilcoxon paired test. RESULTS Of the 50 pediatric cancer patients included in this study (mean age: 11.30 ± 0.72 y; mean time since end of treatment: 1.47 ± 0.12 y; male: 38%), 8 had low HDL-C (16%), all of which were adolescent at diagnosis. Higher doses of doxorubicin were associated with lower HDL-C and Apo A-I levels. In hypertriglyceridemic patients and compared to normolipidemics, triglycerides (TG) content was greater in HDL2 and HDL3 fractions whereas esterified cholesterol (EC) content was lower in HDL2. Enrich TG content of HDL3 and lower EC of HDL2 was found in patients exposed to ≥ 90 mg/m2 doxorubicin. Factors positively associated with the risk of having low HDL-C were age, being overweight or obese and exposure to doxorubicin ≥ 90 mg/m2. Compared to healthy controls, a sub-group of 15 patients showed higher TG and free cholesterol (FC) content of HDL2 and HDL3 and lower EC content in HDL3. CONCLUSIONS Overall, we found abnormalities in HDL-C and Apo A-I levels and in HDL composition early after pediatric cancer treatment that are influenced by age, overweight or obesity status and exposure to doxorubicin.
Collapse
Affiliation(s)
- Véronique Bélanger
- Research Centre, CHU Sainte-Justine, 3175 Chem. de la Côte-Sainte-Catherine, Montreal, QC, H3T 1C5, Canada
- Department of Nutrition, Université de Montréal, Montreal, QC, Canada
| | - Sophia Morel
- Research Centre, CHU Sainte-Justine, 3175 Chem. de la Côte-Sainte-Catherine, Montreal, QC, H3T 1C5, Canada
- Department of Nutrition, Université de Montréal, Montreal, QC, Canada
| | - Mélanie Napartuk
- Research Centre, CHU Sainte-Justine, 3175 Chem. de la Côte-Sainte-Catherine, Montreal, QC, H3T 1C5, Canada
- Department of Nutrition, Université de Montréal, Montreal, QC, Canada
| | - Isabelle Bouchard
- Research Centre, CHU Sainte-Justine, 3175 Chem. de la Côte-Sainte-Catherine, Montreal, QC, H3T 1C5, Canada
| | - Caroline Meloche
- Research Centre, CHU Sainte-Justine, 3175 Chem. de la Côte-Sainte-Catherine, Montreal, QC, H3T 1C5, Canada
| | - Daniel Curnier
- Research Centre, CHU Sainte-Justine, 3175 Chem. de la Côte-Sainte-Catherine, Montreal, QC, H3T 1C5, Canada
- School of Kinesiology and Physical Activity Sciences, Université de Montréal, Montreal, QC, Canada
| | - Serge Sultan
- Research Centre, CHU Sainte-Justine, 3175 Chem. de la Côte-Sainte-Catherine, Montreal, QC, H3T 1C5, Canada
- Department of Psychology, Université de Montréal, Montreal, QC, Canada
| | - Caroline Laverdière
- Research Centre, CHU Sainte-Justine, 3175 Chem. de la Côte-Sainte-Catherine, Montreal, QC, H3T 1C5, Canada
- Department of Pediatrics, Université de Montréal, Montreal, QC, Canada
| | - Daniel Sinnett
- Research Centre, CHU Sainte-Justine, 3175 Chem. de la Côte-Sainte-Catherine, Montreal, QC, H3T 1C5, Canada
- Department of Pediatrics, Université de Montréal, Montreal, QC, Canada
| | - Valérie Marcil
- Research Centre, CHU Sainte-Justine, 3175 Chem. de la Côte-Sainte-Catherine, Montreal, QC, H3T 1C5, Canada.
- Department of Nutrition, Université de Montréal, Montreal, QC, Canada.
| |
Collapse
|
2
|
Nartea R, Mitoiu BI, Ghiorghiu I. The Link between Magnesium Supplements and Statin Medication in Dyslipidemic Patients. Curr Issues Mol Biol 2023; 45:3146-3167. [PMID: 37185729 PMCID: PMC10136538 DOI: 10.3390/cimb45040205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 05/17/2023] Open
Abstract
Many investigations have discovered a connection between statins and magnesium supplements. On one hand, increasing research suggests that chronic hypomagnesemia may be an important factor in the etiology of some metabolic illnesses, including obesity and overweight, insulin resistance and type 2 diabetes mellitus, hypertension, alterations in lipid metabolism, and low-grade inflammation. Chronic metabolic problems seem to be prevented by a high Mg intake combined with diet and/or supplements. On the other hand, it is known that statins lower the frequency of cardiac events, stroke, and mortality, not by lowering LDL-C, but by the capacity to reduce mevalonate formation. That will enhance endothelial function, inhibit vascular smooth muscle cell proliferation and migration and encourage macrophages to promote plaque stability and regression while reducing inflammation. Taking these factors into consideration, we did an extensive analysis of the relevant literature, comparing the effects of Mg2 and statin medications on lipoproteins and, implicitly, on the key enzymes involved in cholesterol metabolism.
Collapse
Affiliation(s)
- Roxana Nartea
- Clinical Department 9, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
- National Institute for Rehabilitation, Physical Medicine and Balneoclimatology, 030079 Bucharest, Romania
| | - Brindusa Ilinca Mitoiu
- Clinical Department 9, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Agrippa Ionescu Clinical Emergency Hospital, 077016 Bucharest, Romania
| | - Ioana Ghiorghiu
- Clinical Department 9, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
- National Institute for Rehabilitation, Physical Medicine and Balneoclimatology, 030079 Bucharest, Romania
| |
Collapse
|
3
|
Yamauchi K, Kawakami Y. The redox status of cysteine thiol residues of apolipoprotein E impacts on its lipid interactions. Biol Chem 2021; 401:617-627. [PMID: 31913846 DOI: 10.1515/hsz-2019-0414] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 01/03/2020] [Indexed: 11/15/2022]
Abstract
Redox-mediated modulation of cysteine (Cys) thiols has roles in various pathophysiological functions. We recently found that formation of disulfide-linked complexes of apolipoprotein (apo) E3 prevented apoE3 from irreversible oxidation. In this report, the influence of modification of Cys thiols in apoE2 and apoE3 on interactions with lipids was investigated. The apoE redox status was examined by a band-shift assay using a maleimide compound, and interactions with lipids were evaluated by a kinetic assay using dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and non-denaturing polyacrylamide gel electrophoresis. A reduction in DMPC clearance activity of apoE2 and apoE3 but not apoE4 was observed. Although hydrogen peroxide-induced oxidation decreased the clearance activity of the isoforms, apoE2 showed the greatest residual activity. Both Cys thiol masking and dimerization decreased the activity of apoE2 and apoE3 but not apoE4. In contrast, apoAII preincubation markedly increased the activity (apoE2 > apoE3 > apoE4), in accordance with the formation of apoE-AII and apoAII-E2-AII complexes. ApoAII preincubation also reduced the particle size of apoE-DMPC liposome complexes, especially for apoE2. Redox-mediated modification of Cys thiols of apoE2 or apoE3, especially disulfide bond formation with apoAII, affects lipid metabolism and consequently may be responsible for the diverse isoform specificity of apoE.
Collapse
Affiliation(s)
- Kazuyoshi Yamauchi
- Department of Laboratory Medicine, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba305-8575, Japan
| | - Yasushi Kawakami
- Department of Laboratory Medicine, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba305-8575, Japan
| |
Collapse
|
4
|
Yelamanchili D, Liu J, Gotto AM, Hurley AE, Lagor WR, Gillard BK, Davidson WS, Pownall HJ, Rosales C. Highly conserved amino acid residues in apolipoprotein A1 discordantly induce high density lipoprotein assembly in vitro and in vivo. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158794. [PMID: 32810603 DOI: 10.1016/j.bbalip.2020.158794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 08/10/2020] [Accepted: 08/13/2020] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Apolipoprotein A1 (APOA1) is essential to reverse cholesterol transport, a physiologically important process that protects against atherosclerotic cardiovascular disease. APOA1 is a 28 kDa protein comprising multiple lipid-binding amphiphatic helices initialized by proline residues, which are conserved across multiple species. We tested the hypothesis that the evolutionarily conserved residues are essential to high density lipoprotein (HDL) function. APPROACH We used biophysical and physiological assays of the function of APOA1P➔A variants, i.e., rHDL formation via dimyristoylphosphatidylcholine (DMPC) microsolubilization, activation of lecithin: cholesterol acyltransferase, cholesterol efflux from human monocyte-derived macrophages (THP-1) to each variant, and comparison of the size and composition of HDL from APOA1-/- mice receiving adeno-associated virus delivery of each human variant. RESULTS Differences in microsolubilization were profound and showed that conserved prolines, especially those in the C-terminus of APOA1, are essential to efficient rHDL formation. In contrast, P➔A substitutions produced small changes (-25 to +25%) in rates of cholesterol efflux and no differences in the rates of LCAT activation. The HDL particles formed following ectopic expression of each variant in APOA1-/- mice were smaller and more heterogeneous than those from control animals. CONCLUSION Studies of DMPC microsolubilization show that proline residues are essential to the optimal interaction of APOA1 with membranes, the initial step in cholesterol efflux and HDL production. In contrast, P➔A substitutions modestly reduce the cholesterol efflux capacity of APOA1, have no effect on LCAT activation, but according to the profound reduction in the size of HDL formed in vivo, P➔A substitutions alter HDL biogenesis, thereby implicating other cellular and in vivo processes as determinants of HDL metabolism and function.
Collapse
Affiliation(s)
- Dedipya Yelamanchili
- Center for Bioenergetics, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX 77030, USA.
| | - Jing Liu
- Center for Bioenergetics, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX 77030, USA; Department of Cardiovascular Surgery, Xiangya Hospital, Central South University, Changsha 410008, China.
| | - Antonio M Gotto
- Center for Bioenergetics, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX 77030, USA; Weill Cornell Medicine, 1305 York Avenue, New York, NY 10065, USA.
| | - Ayrea E Hurley
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| | - Willam R Lagor
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| | - Baiba K Gillard
- Center for Bioenergetics, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX 77030, USA; Weill Cornell Medicine, 1305 York Avenue, New York, NY 10065, USA.
| | - W Sean Davidson
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH 45237, USA.
| | - Henry J Pownall
- Center for Bioenergetics, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX 77030, USA; Weill Cornell Medicine, 1305 York Avenue, New York, NY 10065, USA.
| | - Corina Rosales
- Center for Bioenergetics, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX 77030, USA; Weill Cornell Medicine, 1305 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
5
|
Satta N, Frias MA, Vuilleumier N, Pagano S. Humoral Immunity Against HDL Particle: A New Perspective in Cardiovascular Diseases? Curr Pharm Des 2020; 25:3128-3146. [PMID: 31470782 DOI: 10.2174/1381612825666190830164917] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 08/24/2019] [Indexed: 01/03/2023]
Abstract
BACKGROUND Autoimmune diseases are closely associated with cardiovascular diseases (CVD). Over the last decades, the comprehension of atherosclerosis, the principal initiator of CVD, evolved from a lipidcentered disease to a predominant inflammatory and immune response-driven disease displaying features of autoimmunity against a broad range of auto-antigens, including lipoproteins. Among them, high density lipoproteins (HDL) are important actors of cholesterol transport and bear several anti-atherogenic properties, raising a growing interest as therapeutic targets to decrease atherosclerosis and CVD burden, with nevertheless rather disappointing results so far. Reflecting HDL composition complexity, autoimmune responses and autoantibodies against various HDL components have been reported. RESULTS In this review, we addressed the important complexity of humoral autoimmunity towards HDL and particularly how this autoimmune response could help improving our understanding of HDL biological implication in atherosclerosis and CVD. We also discussed several issues related to specific HDL autoantibody subclasses characteristics, including etiology, prognosis and pathological mechanisms according to Rose criteria. CONCLUSION Finally, we addressed the possible clinical value of using these antibodies not only as potential biomarkers of atherogenesis and CVD, but also as a factor potentially mitigating the benefit of HDL-raising therapies.
Collapse
Affiliation(s)
- Nathalie Satta
- Division of Laboratory Medicine, Department of Diagnostic, Geneva University Hospitals, 4 rue Gabrielle Perret-Gentil, 1205 Geneva, Switzerland.,Department of Medical Specialties, Faculty of Medicine, University of Geneva, 1 rue Michel Servet, 1211 Geneva, Switzerland
| | - Miguel A Frias
- Division of Laboratory Medicine, Department of Diagnostic, Geneva University Hospitals, 4 rue Gabrielle Perret-Gentil, 1205 Geneva, Switzerland.,Department of Medical Specialties, Faculty of Medicine, University of Geneva, 1 rue Michel Servet, 1211 Geneva, Switzerland
| | - Nicolas Vuilleumier
- Division of Laboratory Medicine, Department of Diagnostic, Geneva University Hospitals, 4 rue Gabrielle Perret-Gentil, 1205 Geneva, Switzerland.,Department of Medical Specialties, Faculty of Medicine, University of Geneva, 1 rue Michel Servet, 1211 Geneva, Switzerland
| | - Sabrina Pagano
- Division of Laboratory Medicine, Department of Diagnostic, Geneva University Hospitals, 4 rue Gabrielle Perret-Gentil, 1205 Geneva, Switzerland.,Department of Medical Specialties, Faculty of Medicine, University of Geneva, 1 rue Michel Servet, 1211 Geneva, Switzerland
| |
Collapse
|
6
|
Hafiane A, Favari E, Daskalopoulou SS, Vuilleumier N, Frias MA. High-density lipoprotein cholesterol efflux capacity and cardiovascular risk in autoimmune and non-autoimmune diseases. Metabolism 2020; 104:154141. [PMID: 31923386 DOI: 10.1016/j.metabol.2020.154141] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/23/2019] [Accepted: 01/05/2020] [Indexed: 12/22/2022]
Abstract
Functional assessment of cholesterol efflux capacity (CEC) to high-density lipoprotein (HDL) is an emerging tool for evaluating morbidity and mortality associated with cardiovascular disease (CVD). By promoting macrophage reverse cholesterol transport (RCT), HDL-mediated CEC is believed to play an important role in atherosclerotic lesion progression in the vessel wall. Furthermore, recent evidence indicates that the typical inverse associations between various forms of CEC and CV events may be strongly modulated by environmental systemic factors and traditional CV risk factors, in addition to autoimmune diseases. These factors influence the complex and dynamic composition of HDL particles, which in turn positively or negatively affect HDL-CEC. Herein, we review recent findings connecting HDL-CEC to traditional CV risk factors and cardiometabolic conditions (non-autoimmune diseases) as well as autoimmune diseases, with a specific focus on how these factors may influence the associations between HDL-CEC and CVD risk.
Collapse
Affiliation(s)
- Anouar Hafiane
- Department of Medicine, Faculty of Medicine, Research Institute of the McGill University Health Centre, McGill University, 1001 Decarie Blvd, Bloc E01. 3370H, Montréal, Qc H4A 3J1, Canada.
| | - Elda Favari
- Department of Food and Drug, University of Parma, Parco Area delle Scienze, 27/A, 43124 Parma, Italy.
| | - Stella S Daskalopoulou
- Department of Medicine, Division of Internal Medicine, McGill University, Research Institute of the McGill University Health Centre, 1001 Decarie Blvd, EM1.2230, Montreal, Quebec H4A 3J1, Canada.
| | - Nicolas Vuilleumier
- Division of Laboratory Medicine, Diagnostic Department, Geneva University Hospitals, 1211 Geneva, Switzerland; Division of Laboratory Medicine, Department of Medical Specialties, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland.
| | - Miguel A Frias
- Division of Laboratory Medicine, Diagnostic Department, Geneva University Hospitals, 1211 Geneva, Switzerland; Division of Laboratory Medicine, Department of Medical Specialties, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland.
| |
Collapse
|
7
|
Li X, Su T, Xiao H, Gao P, Xiong C, Liu J, Zou H. Association of the HDL-c Level with HsCRP, IL-6, U-NAG, RBP and Cys-C in Type 2 Diabetes Mellitus, Hypertension, and Chronic Kidney Disease: An Epidemiological Survey. Diabetes Metab Syndr Obes 2020; 13:3645-3654. [PMID: 33116716 PMCID: PMC7568590 DOI: 10.2147/dmso.s265735] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 09/10/2020] [Indexed: 12/22/2022] Open
Abstract
PURPOSE To explore the association between the anti-inflammatory and renal protective roles of high-density lipoprotein cholesterol (HDL-c) and its different levels in type 2 diabetes mellitus (T2D), hypertension (HTN), and chronic kidney disease (CKD) and to lay a theoretical basis for precise, maximum-benefit HDL-c-raising therapy for patients with these diseases. PATIENTS AND METHODS A total of 2127 participants (195 with T2D, 618 with HTN, 162 with CKD, and 1152 controls) were selected and divided into four groups according to their baseline HDL-c level, namely, low HDL-c (L-HDL-c, ≤1.03 mmol/L), medium HDL-c (M-HDL-c, 1.04-1.55 mmol/L), high HDL-c (H-HDL-c, 1.56-2.05 mmol/L) and extremely high HDL-c (E-HDL-c, ≥ 2.06 mmol/L). Serum and morning urine samples were collected to analyze the correlation between high-sensitivity C-reactive protein (HsCRP), interleukin-6 (IL-6), urine n-acetyl-β-d-glucosidase (U-NAG), retinol binding protein (RBP), and cystatin c (Cys-C) levels with the HDL-c levels. RESULTS The HDL-c levels of patients with T2D, HTN and CKD were universally lower than those in the control group in both sexes (p<0.05), while male patients also manifested a lower level of HDL-c than female patients. However, although they had lower values of the renal impairment index, female patients were found to have anomalously higher amounts of proinflammatory cytokines. In addition, the correlations between HsCRP and RBP levels and HDL-c levels were most significant in patients with HTN (p<0.05), whereas in patients with T2D and CKD, such relevance was less significant. CONCLUSION Existence of substantial differences in HDL-c levels between different types of disease and sex highlighted that a higher HDL level does not always predict a better clinical outcome of patients. Moreover, we found that both HsCRP and RBP correlated negatively with HDL-c in HTN patients, indicating that monitoring HsCRP and RBP may serve as indicators for therapeutic efficacy of HDL-c-raising medications in HTN patients.
Collapse
Affiliation(s)
- Xiaolin Li
- Department of Nephrology, The Third Affiliated Hospital, Southern Medical University, Guangzhou510630, People’s Republic of China
- Department of Endocrinology, Hunan University of Medicine, Huaihua 418000, Hunan, People’s Republic of China
| | - Ting Su
- Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou510515, People’s Republic of China
| | - Hua Xiao
- Department of Nephrology, The Third Affiliated Hospital, Southern Medical University, Guangzhou510630, People’s Republic of China
| | - Peichun Gao
- School of Public Health, Southern Medical University, Guangzhou510080, People’s Republic of China
| | - Chongxiang Xiong
- Department of Nephrology, The Third Affiliated Hospital, Southern Medical University, Guangzhou510630, People’s Republic of China
| | - Jinghua Liu
- Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou510515, People’s Republic of China
- Correspondence: Jinghua Liu Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou510515, People’s Republic of ChinaTel +86 20 61648392Fax +86 20 61648231 Email
| | - Hequn Zou
- Department of Nephrology, The Third Affiliated Hospital, Southern Medical University, Guangzhou510630, People’s Republic of China
- Hequn ZouDepartment of Nephrology, The Third Affiliated Hospital, Southern Medical University, 183 Zhongshan Dadao, Tianhe District, Guangzhou510630, People’s Republic of ChinaTel +86 20 62784393Fax +86 20 62784399 Email
| |
Collapse
|
8
|
Kajani S, Curley S, McGillicuddy FC. Unravelling HDL-Looking beyond the Cholesterol Surface to the Quality Within. Int J Mol Sci 2018; 19:ijms19071971. [PMID: 29986413 PMCID: PMC6073561 DOI: 10.3390/ijms19071971] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/03/2018] [Accepted: 07/04/2018] [Indexed: 12/11/2022] Open
Abstract
High-density lipoprotein (HDL) particles have experienced a turbulent decade of falling from grace with widespread demotion from the most-sought-after therapeutic target to reverse cardiovascular disease (CVD), to mere biomarker status. HDL is slowly emerging from these dark times due to the HDL flux hypothesis wherein measures of HDL cholesterol efflux capacity (CEC) are better predictors of reduced CVD risk than static HDL-cholesterol (HDL-C) levels. HDL particles are emulsions of metabolites, lipids, protein, and microRNA (miR) built on the backbone of Apolipoprotein A1 (ApoA1) that are growing in their complexity due to the higher sensitivity of the respective “omic” technologies. Our understanding of particle composition has increased dramatically within this era and has exposed how our understanding of these particles to date has been oversimplified. Elucidation of the HDL proteome coupled with the identification of specific miRs on HDL have highlighted the “hormonal” characteristics of HDL in that it carries and delivers messages systemically. HDL can dock to most peripheral cells via its receptors, including SR-B1, ABCA1, and ABCG1, which may be a critical step for facilitating HDL-to-cell communication. The composition of HDL particles is, in turn, altered in numerous disease states including diabetes, auto-immune disease, and CVD. The consequence of changes in composition, however, on subsequent biological activities of HDL is currently poorly understood and this is an important avenue for the field to explore in the future. Improving HDL particle quality as opposed to HDL quantity may, in turn, prove a more beneficial investment to reduce CVD risk.
Collapse
Affiliation(s)
- Sarina Kajani
- Cardiometabolic Research Group, Diabetes Complications Research Centre, UCD Conway Institute, University College Dublin, Belfield, 4 Dublin, Ireland.
| | - Sean Curley
- Cardiometabolic Research Group, Diabetes Complications Research Centre, UCD Conway Institute, University College Dublin, Belfield, 4 Dublin, Ireland.
| | - Fiona C McGillicuddy
- Cardiometabolic Research Group, Diabetes Complications Research Centre, UCD Conway Institute, University College Dublin, Belfield, 4 Dublin, Ireland.
| |
Collapse
|
9
|
Woudberg NJ, Pedretti S, Lecour S, Schulz R, Vuilleumier N, James RW, Frias MA. Pharmacological Intervention to Modulate HDL: What Do We Target? Front Pharmacol 2018; 8:989. [PMID: 29403378 PMCID: PMC5786575 DOI: 10.3389/fphar.2017.00989] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 12/22/2017] [Indexed: 12/24/2022] Open
Abstract
The cholesterol concentrations of low-density lipoprotein (LDL) and high-density lipoprotein (HDL) have traditionally served as risk factors for cardiovascular disease. As such, novel therapeutic interventions aiming to raise HDL cholesterol have been tested in the clinical setting. However, most trials led to a significant increase in HDL cholesterol with no improvement in cardiovascular events. The complexity of the HDL particle, which exerts multiple physiological functions and is comprised of a number of subclasses, has raised the question as to whether there should be more focus on HDL subclass and function rather than cholesterol quantity. We review current data regarding HDL subclasses and subclass-specific functionality and highlight how current lipid modifying drugs such as statins, cholesteryl ester transfer protein inhibitors, fibrates and niacin often increase cholesterol concentrations of specific HDL subclasses. In addition this review sets out arguments suggesting that the HDL3 subclass may provide better protective effects than HDL2.
Collapse
Affiliation(s)
- Nicholas J. Woudberg
- Hatter Institute for Cardiovascular Research in Africa and South African Medical Research Council Inter-University Cape Heart Group, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Sarah Pedretti
- Hatter Institute for Cardiovascular Research in Africa and South African Medical Research Council Inter-University Cape Heart Group, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Division of Endocrinology, Diabetes, Hypertension and Nutrition, Department of Internal Medicine Specialities, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Sandrine Lecour
- Hatter Institute for Cardiovascular Research in Africa and South African Medical Research Council Inter-University Cape Heart Group, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Rainer Schulz
- Institute of Physiology, Justus Liebig University Giessen, Giessen, Germany
| | - Nicolas Vuilleumier
- Division of Laboratory Medicine, Department of Genetics and Laboratory Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Richard W. James
- Division of Endocrinology, Diabetes, Hypertension and Nutrition, Department of Internal Medicine Specialities, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Miguel A. Frias
- Division of Endocrinology, Diabetes, Hypertension and Nutrition, Department of Internal Medicine Specialities, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Division of Laboratory Medicine, Department of Genetics and Laboratory Medicine, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
10
|
Gillard BK, Bassett GR, Gotto AM, Rosales C, Pownall HJ. Scavenger receptor B1 (SR-B1) profoundly excludes high density lipoprotein (HDL) apolipoprotein AII as it nibbles HDL-cholesteryl ester. J Biol Chem 2017; 292:8864-8873. [PMID: 28373285 DOI: 10.1074/jbc.m117.781963] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 03/24/2017] [Indexed: 01/12/2023] Open
Abstract
Reverse cholesterol transport (transfer of macrophage-cholesterol in the subendothelial space of the arterial wall to the liver) is terminated by selective high density lipoprotein (HDL)-cholesteryl ester (CE) uptake, mediated by scavenger receptor class B, type 1 (SR-B1). We tested the validity of two models for this process: "gobbling," i.e. one-step transfer of all HDL-CE to the cell and "nibbling," multiple successive cycles of SR-B1-HDL association during which a few CEs transfer to the cell. Concurrently, we compared cellular uptake of apoAI with that of apoAII, which is more lipophilic than apoAI, using HDL-[3H]CE labeled with [125I]apoAI or [125I]apoAII. The studies were conducted in CHO-K1 and CHO-ldlA7 cells (LDLR-/-) with (CHO-SR-B1) and without SR-B1 overexpression and in human Huh7 hepatocytes. Relative to CE, both apoAI and apoAII were excluded from uptake by all cells. However, apoAII was more highly excluded from uptake (2-4×) than apoAI. To distinguish gobbling versus nibbling mechanisms, media from incubations of HDL with CHO-SR-B1 cells were analyzed by non-denaturing PAGE, size-exclusion chromatography, and the distribution of apoAI, apoAII, cholesterol, and phospholipid among HDL species as a function of incubation time. HDL size gradually decreased, i.e. nibbling, with the concurrent release of lipid-free apoAI; apoAII was retained in an HDL remnant. Our data support an SR-B1 nibbling mechanism that is similar to that of streptococcal serum opacity factor, which also selectively removes CE and releases apoAI, leaving an apoAII-rich remnant.
Collapse
Affiliation(s)
- Baiba K Gillard
- From the Houston Methodist Research Institute, Houston Texas 77030, .,Weill Cornell Medicine, New York, New York 10065, and
| | | | - Antonio M Gotto
- From the Houston Methodist Research Institute, Houston Texas 77030.,Weill Cornell Medicine, New York, New York 10065, and
| | - Corina Rosales
- From the Houston Methodist Research Institute, Houston Texas 77030.,Weill Cornell Medicine, New York, New York 10065, and
| | - Henry J Pownall
- From the Houston Methodist Research Institute, Houston Texas 77030.,Weill Cornell Medicine, New York, New York 10065, and
| |
Collapse
|
11
|
Neglected but Important Role of Apolipoprotein E Exchange in Hepatitis C Virus Infection. J Virol 2016; 90:9632-9643. [PMID: 27535051 DOI: 10.1128/jvi.01353-16] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 08/03/2016] [Indexed: 12/22/2022] Open
Abstract
Hepatitis C virus (HCV) is a major cause of chronic liver disease, infecting approximately 170 million people worldwide. HCV assembly is tightly associated with the lipoprotein pathway. Exchangeable apolipoprotein E (apoE) is incorporated on infectious HCV virions and is important for infectious HCV virion morphogenesis and entry. Moreover, the virion apoE level is positively correlated with its ability to escape E2 antibody neutralization. However, the role of apoE exchange in the HCV life cycle is unclear. In this study, the relationship between apoE expression and cell permissiveness to HCV infection was assessed by infecting apoE knockdown and derived apoE rescue cell lines with HCV. Exchange of apoE between lipoproteins and HCV lipoviral particles (LVPs) was evaluated by immunoprecipitation, infectivity testing, and viral genome quantification. Cell and heparin column binding assays were applied to determine the attachment efficiency of LVPs with different levels of incorporated apoE. The results showed that cell permissiveness for HCV infection was determined by exogenous apoE-associated lipoproteins. Furthermore, apoE exchange did occur between HCV LVPs and lipoproteins, which was important to maintain a high apoE level on LVPs. Lipid-free apoE was capable of enhancing HCV infectivity for apoE knockdown cells but not apoE rescue cells. A higher apoE level on LVPs conferred more efficient LVP attachment to both the cell surface and heparin beads. This study revealed that exogenous apoE-incorporating lipoproteins from uninfected hepatocytes safeguarded the apoE level of LVPs for more efficient attachment during HCV infection. IMPORTANCE In this study, a neglected but important role of apoE exchange in HCV LVP infectivity after virus assembly and release was identified. The data indicated that apoE expression level in uninfected cells is important for high permissiveness to HCV infection. Secreted apoE-associated lipoprotein specifically enhances infection of HCV LVPs. apoE exchange between HCV LVP and lipoproteins is important to maintain an adequate apoE level on LVPs for their efficient attachment to cell surface. These data defined for the first time an extracellular role of exchangeable apoE in HCV infection and suggested that exchangeable apolipoproteins reach a natural equilibrium between HCV LVPs and lipoprotein particles, which provides a new perspective to the understanding of the heterogeneity of HCV LVPs in composition.
Collapse
|
12
|
Quach D, Vitali C, La FM, Xiao AX, Millar JS, Tang C, Rader DJ, Phillips MC, Lyssenko NN. Cell lipid metabolism modulators 2-bromopalmitate, D609, monensin, U18666A and probucol shift discoidal HDL formation to the smaller-sized particles: implications for the mechanism of HDL assembly. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1968-1979. [PMID: 27671775 DOI: 10.1016/j.bbalip.2016.09.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 08/27/2016] [Accepted: 09/23/2016] [Indexed: 12/17/2022]
Abstract
ATP-binding cassette transporter A1 (ABCA1) mediates formation of disc-shaped high-density lipoprotein (HDL) from cell lipid and lipid-free apolipoprotein A-I (apo A-I). Discoidal HDL particles are heterogeneous in physicochemical characteristics for reasons that are understood incompletely. Discoidal lipoprotein particles similar in characteristics and heterogeneity to cell-formed discoidal HDL can be reconstituted from purified lipids and apo A-I by cell-free, physicochemical methods. The heterogeneity of reconstituted HDL (rHDL) is sensitive to the lipid composition of the starting lipid/apo A-I mixture. To determine whether the heterogeneity of cell-formed HDL is similarly sensitive to changes in cell lipids, we investigated four compounds that have well-established effects on cell lipid metabolism and ABCA1-mediated cell cholesterol efflux. 2-Bromopalmitate, D609, monensin and U18666A decreased formation of the larger-sized, but dramatically increased formation of the smaller-sized HDL. 2-Bromopalmitate did not appear to affect ABCA1 activity, subcellular localization or oligomerization, but induced dissolution of the cholesterol-phospholipid complexes in the plasma membrane. Arachidonic and linoleic acids shifted HDL formation to the smaller-sized species. Tangier disease mutations and inhibitors of ABCA1 activity wheat germ agglutinin and AG 490 reduced formation of both larger-sized and smaller-sized HDL. The effect of probucol was similar to the effect of 2-bromopalmitate. Taking rHDL formation as a paradigm, we propose that ABCA1 mutations and activity inhibitors reduce the amount of cell lipid available for HDL formation, and the compounds in the 2-bromopalmitate group and the polyunsaturated fatty acids change cell lipid composition from one that favors formation of the larger-sized HDL particles to one that favors formation of the smaller-sized species.
Collapse
Affiliation(s)
- Duyen Quach
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Cecilia Vitali
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Fiona M La
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Angel X Xiao
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - John S Millar
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Chongren Tang
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Daniel J Rader
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Michael C Phillips
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Nicholas N Lyssenko
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
13
|
|
14
|
Papageorgiou N, Zacharia E, Androulakis E, Briasoulis A, Charakida M, Tousoulis D. HDL as a prognostic biomarker for coronary atherosclerosis: the role of inflammation. Expert Opin Ther Targets 2016; 20:907-21. [PMID: 26854521 DOI: 10.1517/14728222.2016.1152264] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
INTRODUCTION Emerging evidence suggests that the role of high density lipoprotein (HDL) in the atherosclerotic process is not as clear as previously thought, since atheroprotective HDL becomes atherogenic in states of increased inflammatory processes. AREAS COVERED In this review we aim to elucidate the role of HDL as a prognostic biomarker and we discuss therapeutic approaches that aim to increase HDL and their possible clinical benefit. EXPERT OPINION Given the structural variability and biological complexity of the HDL particle, its role in the atherosclerotic process is far from clear. According to current evidence, the atheroprotective role of HDL turns atherogenic in states of increased inflammatory processes, while even minor alterations in systemic inflammation are likely to hinder the endothelial protective effects of HDL. In accordance, significant data have revealed that HDL-related drugs may be effective in reducing cardiovascular mortality; however they are not as encouraging or unanimous as expected. Possible future goals could be to quantify either HDL subclasses or functions in an attempt to reach safer conclusions as to the prognostic importance of HDL in coronary atherosclerosis. Having achieved that, a more targeted therapy that would aim to raise either HDL functionality or to remodel HDL structure would be more easily designed.
Collapse
Affiliation(s)
| | - Effimia Zacharia
- b 1st Department of Cardiology , Hippokration Hospital, University of Athens , Athens , Greece
| | | | - Alexandros Briasoulis
- d Division of Cardiology , Wayne State University/Detroit Medical Center , Detroit , MI , USA
| | - Marietta Charakida
- e Vascular Physiology Unit, Institute of Cardiovascular Science , University College London , London , UK
| | - Dimitris Tousoulis
- b 1st Department of Cardiology , Hippokration Hospital, University of Athens , Athens , Greece
| |
Collapse
|
15
|
Gillard BK, Rodriguez PJ, Fields DW, Raya JL, Lagor WR, Rosales C, Courtney HS, Gotto AM, Pownall HJ. Streptococcal serum opacity factor promotes cholesterol ester metabolism and bile acid secretion in vitro and in vivo. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1861:196-204. [PMID: 26709142 DOI: 10.1016/j.bbalip.2015.12.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 11/16/2015] [Accepted: 12/11/2015] [Indexed: 11/15/2022]
Abstract
Plasma high density lipoprotein-cholesterol (HDL-C) concentrations negatively correlate with atherosclerotic cardiovascular disease. HDL is thought to have several atheroprotective functions, which are likely distinct from the epidemiological inverse relationship between HDL-C levels and risk. Specifically, strategies that reduce HDL-C while promoting reverse cholesterol transport (RCT) may have therapeutic value. The major product of the serum opacity factor (SOF) reaction versus HDL is a cholesteryl ester (CE)-rich microemulsion (CERM), which contains apo E and the CE of ~400,000 HDL particles. Huh7 hepatocytes take up CE faster when delivered as CERM than as HDL, in part via the LDL-receptor (LDLR). Here we compared the final RCT step, hepatic uptake and subsequent intracellular processing to cholesterol and bile salts for radiolabeled HDL-, CERM- and LDL-CE by Huh7 cells and in vivo in C57BL/6J mice. In Huh7 cells, uptake from LDL was greater than from CERM (2-4X) and HDL (5-10X). Halftimes for [(14)C]CE hydrolysis were 3.0±0.2, 4.4±0.6 and 5.4±0.7h respectively for HDL, CERM and LDL-CE. The fraction of sterols secreted as bile acids was ~50% by 8h for all three particles. HDL, CERM and LDL-CE metabolism in mice showed efficient plasma clearance of CERM-CE, liver uptake and metabolism, and secretion as bile acids into the gall bladder. This work supports the therapeutic potential of the SOF reaction, which diverts HDL-CE to the LDLR, thereby increasing hepatic CE uptake, and sterol disposal as bile acids.
Collapse
Affiliation(s)
- Baiba K Gillard
- The Laboratory of Atherosclerosis and Lipoprotein Research, Houston Methodist Research Institute, 6670 Bertner St., Houston, TX 77030, USA.
| | - Perla J Rodriguez
- The Laboratory of Atherosclerosis and Lipoprotein Research, Houston Methodist Research Institute, 6670 Bertner St., Houston, TX 77030, USA.
| | - David W Fields
- The Laboratory of Atherosclerosis and Lipoprotein Research, Houston Methodist Research Institute, 6670 Bertner St., Houston, TX 77030, USA.
| | - Joe L Raya
- Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| | - William R Lagor
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| | - Corina Rosales
- The Laboratory of Atherosclerosis and Lipoprotein Research, Houston Methodist Research Institute, 6670 Bertner St., Houston, TX 77030, USA.
| | - Harry S Courtney
- University of Tennessee Health Science Center, 956 Court Avenue Room H300A, Memphis, TN 38163 USA.
| | - Antonio M Gotto
- The Laboratory of Atherosclerosis and Lipoprotein Research, Houston Methodist Research Institute, 6670 Bertner St., Houston, TX 77030, USA; Department of Medicine, Weill Cornell Medical College, 1305 York Ave., New York, NY 10021, USA.
| | - Henry J Pownall
- The Laboratory of Atherosclerosis and Lipoprotein Research, Houston Methodist Research Institute, 6670 Bertner St., Houston, TX 77030, USA; Department of Medicine, Weill Cornell Medical College, 1305 York Ave., New York, NY 10021, USA.
| |
Collapse
|
16
|
Rosales C, Patel N, Gillard BK, Yelamanchili D, Yang Y, Courtney HS, Santos RD, Gotto AM, Pownall HJ. Apolipoprotein AI deficiency inhibits serum opacity factor activity against plasma high density lipoprotein via a stabilization mechanism. Biochemistry 2015; 54:2295-302. [PMID: 25790332 DOI: 10.1021/bi501486z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The reaction of Streptococcal serum opacity factor (SOF) against plasma high-density lipoproteins (HDL) produces a large cholesteryl ester-rich microemulsion (CERM), a smaller neo HDL that is apolipoprotein (apo) AI-poor, and lipid-free apo AI. SOF is active versus both human and mouse plasma HDL. In vivo injection of SOF into mice reduces plasma cholesterol ∼40% in 3 h while forming the same products observed in vitro, but at different ratios. Previous studies supported the hypothesis that labile apo AI is required for the SOF reaction vs HDL. Here we further tested that hypothesis by studies of SOF against HDL from apo AI-null mice. When injected into apo AI-null mice, SOF reduced plasma cholesterol ∼35% in 3 h. The reaction of SOF vs apo AI-null HDL in vitro produced a CERM and neo HDL, but no lipid-free apo. Moreover, according to the rate of CERM formation, the extent and rate of the SOF reaction versus apo AI-null mouse HDL were less than that against wild-type (WT) mouse HDL. Chaotropic perturbation studies using guanidine hydrochloride showed that apo AI-null HDL was more stable than WT HDL. Human apo AI added to apo AI-null HDL was quantitatively incorporated, giving reconstituted HDL. Both SOF and guanidine hydrochloride displaced apo AI from the reconstituted HDL. These results support the conclusion that apo AI-null HDL is more stable than WT HDL because it lacks apo AI, a labile protein that is readily displaced by physicochemical and biochemical perturbations. Thus, apo AI-null HDL is less SOF-reactive than WT HDL. The properties of apo AI-null HDL can be partially restored to those of WT HDL by the spontaneous incorporation of human apo AI. It remains to be determined what other HDL functions are affected by apo AI deletion.
Collapse
Affiliation(s)
- Corina Rosales
- †Laboratory of Atherosclerosis and Lipoprotein Research, Department of Cardiology, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, Texas 77030, United States
| | - Niket Patel
- †Laboratory of Atherosclerosis and Lipoprotein Research, Department of Cardiology, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, Texas 77030, United States
| | - Baiba K Gillard
- †Laboratory of Atherosclerosis and Lipoprotein Research, Department of Cardiology, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, Texas 77030, United States
| | - Dedipya Yelamanchili
- †Laboratory of Atherosclerosis and Lipoprotein Research, Department of Cardiology, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, Texas 77030, United States
| | - Yaliu Yang
- †Laboratory of Atherosclerosis and Lipoprotein Research, Department of Cardiology, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, Texas 77030, United States
| | - Harry S Courtney
- ‡Veterans Affairs Medical Center and Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee 38104, United States
| | - Raul D Santos
- §Heart Institute-INCOR, University of Sao Paulo, 05409-003 Sao Paulo, Brazil
| | - Antonio M Gotto
- †Laboratory of Atherosclerosis and Lipoprotein Research, Department of Cardiology, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, Texas 77030, United States.,⊥Weill Cornell Medical College, 1305 York Avenue, New York, New York 10021, United States
| | - Henry J Pownall
- †Laboratory of Atherosclerosis and Lipoprotein Research, Department of Cardiology, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, Texas 77030, United States.,⊥Weill Cornell Medical College, 1305 York Avenue, New York, New York 10021, United States
| |
Collapse
|
17
|
Amyloid-Forming Properties of Human Apolipoproteins: Sequence Analyses and Structural Insights. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 855:175-211. [PMID: 26149931 DOI: 10.1007/978-3-319-17344-3_8] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Apolipoproteins are protein constituents of lipoproteins that transport cholesterol and fat in circulation and are central to cardiovascular health and disease. Soluble apolipoproteins can transiently dissociate from the lipoprotein surface in a labile free form that can misfold, potentially leading to amyloid disease. Misfolding of apoA-I, apoA-II, and serum amyloid A (SAA) causes systemic amyloidoses, apoE4 is a critical risk factor in Alzheimer's disease, and apolipoprotein misfolding is also implicated in cardiovascular disease. To explain why apolipoproteins are over-represented in amyloidoses, it was proposed that the amphipathic α-helices, which form the lipid surface-binding motif in this protein family, have high amyloid-forming propensity. Here, we use 12 sequence-based bioinformatics approaches to assess amyloid-forming potential of human apolipoproteins and to identify segments that are likely to initiate β-aggregation. Mapping such segments on the available atomic structures of apolipoproteins helps explain why some of them readily form amyloid while others do not. Our analysis shows that nearly all amyloidogenic segments: (i) are largely hydrophobic, (ii) are located in the lipid-binding amphipathic α-helices in the native structures of soluble apolipoproteins, (iii) are predicted in both native α-helices and β-sheets in the insoluble apoB, and (iv) are predicted to form parallel in-register β-sheet in amyloid. Most of these predictions have been verified experimentally for apoC-II, apoA-I, apoA-II and SAA. Surprisingly, the rank order of the amino acid sequence propensity to form amyloid (apoB>apoA-II>apoC-II≥apoA-I, apoC-III, SAA, apoC-I>apoA-IV, apoA-V, apoE) does not correlate with the proteins' involvement in amyloidosis. Rather, it correlates directly with the strength of the protein-lipid association, which increases with increasing protein hydrophobicity. Therefore, the lipid surface-binding function and the amyloid-forming propensity are both rooted in apolipoproteins' hydrophobicity, suggesting that functional constraints make it difficult to completely eliminate pathogenic apolipoprotein misfolding. We propose that apolipoproteins have evolved protective mechanisms against misfolding, such as the sequestration of the amyloidogenic segments via the native protein-lipid and protein-protein interactions involving amphipathic α-helices and, in case of apoB, β-sheets.
Collapse
|
18
|
Nesan D, Ng DS. Revising the high-density lipoprotein targeting strategies - insights from human and preclinical studies. Crit Rev Clin Lab Sci 2014; 51:321-31. [PMID: 25115413 DOI: 10.3109/10408363.2014.937523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In recent years, the high-density lipoprotein (HDL) hypothesis has been challenged. Several completed randomized clinical trials continue to fall short in demonstrating HDL, or at least HDL-cholesterol (HDL-C) levels, as being a consistent target in the prevention of cardiovascular diseases. However, population studies and findings in lipid modifying trials continue to strongly support HDL-C as a superb risk predictor. It is increasingly evident that the complexity of HDL metabolism confounds the use of HDL-C concentration as a unified target. However, important insights continue to emerge from the post hoc analyses of recently completed (i) fibrate-based FIELD and ACCORD trials, including the unexpected beneficial effect of fibrates in microvascular diseases, (ii) the niacin-based AIM-HIGH and HPS2-THRIVE studies, (iii) recombinant HDL-based as well as (iv) the completed CETP inhibitor-based trials. These together with on-going mechanistic studies on novel pathways, which include the unique roles of microRNAs, post-translational remodeling of HDL and novel pathways related to HDL modulators will provide valuable insights to guide how best to refocus and redesign the conceptual framework for selecting HDL-based targets.
Collapse
Affiliation(s)
- Dinushan Nesan
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital , Toronto, Ontario , Canada
| | | |
Collapse
|
19
|
Abstract
There is compelling evidence from human population studies that plasma levels of high-density lipoprotein (HDL) cholesterol correlate inversely with cardiovascular risk. Identification of this relationship has stimulated research designed to understand how HDL metabolism is regulated. The ultimate goal of these studies has been to develop HDL-raising therapies that have the potential to decrease the morbidity and mortality associated with atherosclerotic cardiovascular disease. However, the situation has turned out to be much more complex than originally envisaged. This is partly because the HDL fraction consists of multiple subpopulations of particles that vary in terms of shape, size, composition, and surface charge, as well as in their potential cardioprotective properties. This heterogeneity is a consequence of the continual remodeling and interconversion of HDL subpopulations by multiple plasma factors. Evidence that the remodeling of HDLs may impact on their cardioprotective properties is beginning to emerge. This serves to highlight the importance of understanding not only how the remodeling and interconversion of HDL subpopulations is regulated but also how these processes are affected by agents that increase HDL levels. This review provides an overview of what is currently understood about HDL metabolism and how the subpopulation distribution of these lipoproteins is regulated.
Collapse
Affiliation(s)
- Kerry-Anne Rye
- From the Lipid Research Group, Centre for Vascular Research, Lowy Center, University of New South Wales, Sydney, New South Wales, Australia
| | | |
Collapse
|
20
|
Gursky O. Hot spots in apolipoprotein A-II misfolding and amyloidosis in mice and men. FEBS Lett 2014; 588:845-50. [PMID: 24561203 DOI: 10.1016/j.febslet.2014.01.066] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 01/08/2014] [Accepted: 01/27/2014] [Indexed: 01/06/2023]
Abstract
ApoA-II is the second-major protein of high-density lipoproteins. C-terminal extension in human apoA-II or point substitutions in murine apoA-II cause amyloidosis. The molecular mechanism of apolipoprotein misfolding, from the native predominantly α-helical conformation to cross-β-sheet in amyloid, is unknown. We used 12 sequence-based prediction algorithms to identify two ten-residue segments in apoA-II that probably initiate β-aggregation. Previous studies of apoA-II fragments experimentally verify this prediction. Together, experimental and bioinformatics studies explain why the C-terminal extension in human apoA-II causes amyloidosis and why, unlike murine apoA-II, human apoA-II normally does not cause amyloidosis despite its unusually high sequence propensity for β-aggregation.
Collapse
Affiliation(s)
- Olga Gursky
- Department of Physiology and Biophysics, Boston University School of Medicine, W329, 700 Albany Street, Boston, MA 02118, United States.
| |
Collapse
|
21
|
Alexander ET, Phillips MC. Influence of apolipoprotein A-I and apolipoprotein A-II availability on nascent HDL heterogeneity. J Lipid Res 2013; 54:3464-70. [PMID: 24089247 DOI: 10.1194/jlr.m043109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
It is important to understand HDL heterogeneity because various subspecies possess different functionalities. To understand the origins of HDL heterogeneity arising from the existence of particles containing only apoA-I (LpA-I) and particles containing both apoA-I and apoA-II (LpA-I+A-II), we compared the abilities of both proteins to promote ABCA1-mediated efflux of cholesterol from HepG2 cells and form nascent HDL particles. When added separately, exogenous apoA-I and apoA-II were equally effective in promoting cholesterol efflux, although the resultant LpA-I and LpA-II particles had different sizes. When apoA-I and apoA-II were mixed together at initial molar ratios ranging from 1:1 to 16:1 to generate nascent LpA-I+A-II HDL particles, the particle size distribution altered, and the two proteins were incorporated into the nascent HDL in proportion to their initial ratio. Both proteins formed nascent HDL particles with equal efficiency, and the relative amounts of apoA-I and apoA-II incorporation were driven by mass action. The ratio of lipid-free apoA-I and apoA-II available at the surface of ABCA1-expressing cells is a major factor in determining the contents of these proteins in nascent HDL. Manipulation of this ratio provides a means of altering the relative distribution of LpA-I and LpA-I+A-II HDL particles.
Collapse
Affiliation(s)
- Eric T Alexander
- GI/Nutrition/Hepatology Division, The Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104
| | | |
Collapse
|
22
|
Pownall HJ, Gillard BK, Gotto AM. Setting the course for apoAII: a port in sight? ACTA ACUST UNITED AC 2013; 8:551-560. [PMID: 25067958 DOI: 10.2217/clp.13.59] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
ApoAII, the second most abundant protein of the human plasma HDLs, was discovered nearly 50 years ago. Over the subsequent years, nearly 2000 studies - epidemiological, cell-based, biochemical, mouse and human - have attempted to unravel its role in human lipid metabolism. On the basis of these studies, apoAII has been described as an activator and inhibitor of various plasma activities, and as both pro- and anti-atherogenic. Here, we summarize the studies of apoAII, use the preponderance of evidence to propose that the apoAII compass can be reset towards an antiatherogenic course, and suggest ways to stay the course.
Collapse
Affiliation(s)
- Henry J Pownall
- Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX 77030, USA
| | - Baiba K Gillard
- Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX 77030, USA
| | - Antonio M Gotto
- Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX 77030, USA
| |
Collapse
|
23
|
Apolipoprotein A-II is a key regulatory factor of HDL metabolism as appears from studies with transgenic animals and clinical outcomes. Biochimie 2013; 96:56-66. [PMID: 24012775 DOI: 10.1016/j.biochi.2013.08.027] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 08/28/2013] [Indexed: 01/26/2023]
Abstract
The structure and metabolism of HDL are linked to their major apolipoproteins (apo) A-I and A-II. HDL metabolism is very dynamic and depends on the constant remodeling by lipases, lipid transfer proteins and receptors. HDL exert several cardioprotective effects, through their antioxidant and antiinflammatory capacities and through the stimulation of reverse cholesterol transport from extrahepatic tissues to the liver for excretion into bile. HDL also serve as plasma reservoir for C and E apolipoproteins, as transport vehicles for a great variety of proteins, and may have more physiological functions than previously recognized. In this review we will develop several aspects of HDL metabolism with emphasis on the structure/function of apo A-I and apo A-II. An important contribution to our understanding of the respective roles of apo A-I and apo A-II comes from studies using transgenic animal models that highlighted the stabilizatory role of apo A-II on HDL through inhibition of their remodeling by lipases. Clinical studies coupled with proteomic analyses revealed the presence of dysfunctional HDL in patients with cardiovascular disease. Beyond HDL cholesterol, a new notion is the functionality of HDL particles. In spite of abundant literature on HDL metabolic properties, a major question remains unanswered: which HDL particle(s) confer(s) protection against cardiovascular risk?
Collapse
|
24
|
Auton M, Bassett GR, Gillard BK, Pownall HJ. Free cholesterol determines reassembled high-density lipoprotein phospholipid phase structure and stability. Biochemistry 2013; 52:4324-30. [PMID: 23721456 DOI: 10.1021/bi4006732] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Reassembled high-density lipoproteins (rHDL) of various sizes and compositions containing apo A-I or apo A-II as their sole protein, dimyristoylphosphatidylcholine (DMPC), and various amounts of free cholesterol (FC) have been isolated and analyzed by differential scanning calorimetry (DSC) and by circular dichroism to determine their stability and the temperature dependence of their helical content. Our data show that the multiple rHDL species obtained at each FC mole percent usually do not have the same FC mole percent as the starting mixture and that the size of the multiple species increases in a quantized way with their respective FC mole percent. DSC studies reveal multiple phases or domains that can be classified as virtual DMPC, which contains a small amount of DMPC that slightly reduces the melting temperature (Tm), a boundary phase that is adjacent to the apo A-I or apo A-II that circumscribes the discoidal rHDL, and a mixed FC/DMPC phase that has a Tm that increases with FC mole percent. Only the large rHDL contain virtual DMPC, whereas all contain boundary phase and various amounts of the mixed FC/DMPC phase according to increasing size and FC mole percent. As reported by others, FC stabilizes the rHDL. For rHDL (apo A-II) compared to rHDL (apo A-I), this occurs in spite of the reduced number of helical regions that mediate binding to the DMPC surface. This effect is attributed to the very high lipophilicity of apo A-II and the reduction in the polarity of the interface between DMPC and the aqueous phase with an increasing FC mole percent, an effect that is expected to increase the strength of the hydrophobic associations with the nonpolar face of the amphipathic helices of apo A-II. These data are relevant to the differential effects of FC and apolipoprotein species on intracellular and plasma membrane nascent HDL assembly and subsequent remodeling by plasma proteins.
Collapse
Affiliation(s)
- Matthew Auton
- Cardiovascular and Thrombosis Research Section, Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, United States
| | | | | | | |
Collapse
|
25
|
Chen J, Wu W, Zhen C, Zhou H, Yang R, Chen L, Hu L. Expression and clinical significance of complement C3, complement C4b1 and apolipoprotein E in pancreatic cancer. Oncol Lett 2013; 6:43-48. [PMID: 23946775 PMCID: PMC3742809 DOI: 10.3892/ol.2013.1326] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Accepted: 04/05/2013] [Indexed: 12/05/2022] Open
Abstract
Pancreatic cancer (PC) remains a devastating disease with a five-year survival rate of <5%. The difficulty in making an early diagnosis and the frequent occurrence of metastasis are important reasons for this poor prognosis. In China, the incidence of PC has been increasing steadily. Therefore, the present study aimed to identify effective markers in the early and advanced stages of PC. The expression levels of complement C3, complement C4b1 and apolipoprotein E (ApoE) in the various stages of PC were assessed by immunohistochemistry, RT-PCR and western blotting. Additionally, the statistical significance of the results was analyzed. The expression levels of complement C3, complement C4b1 and apoE were higher in PC compared with normal pancreatic tissues. No correlations were observed between complement C3 and tumor TNM staging or lymph node metastasis. However, complement C4b1 and apoE were markedly correlated with tumor TNM staging and lymph node metastasis. Complement C3 may be used as a marker for the diagnosis of early-stage PC, while complement C4b1 and apoE are closely correlated with tumor development, reflecting the biological behavior of PC, and thus may be used as diagnostic markers of advanced PC.
Collapse
Affiliation(s)
- Jiong Chen
- Department of General Surgery, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, Anhui 230001, P.R. China
| | | | | | | | | | | | | |
Collapse
|
26
|
Bassett GR, Gillard BK, Pownall HJ. Cholesterol determines and limits rHDL formation from human plasma apolipoprotein A-II and phospholipid membranes. Biochemistry 2012; 51:8627-35. [PMID: 23025327 PMCID: PMC3483724 DOI: 10.1021/bi3011994] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
![]()
Apolipoprotein (apo) A-II, the second most abundant protein
after
apo A-I of human plasma high-density lipoproteins (HDL), is the most
lipophilic of the exchangeable apolipoproteins. The rate of microsolubilization
of dimyristoylphosphatidylcholine (DMPC) membranes by apo A-I to give
rHDL increases as the level of membrane free cholesterol (FC) increases
up to 20 mol % when the level of reaction decreases to nil. Given
its greater lipophilicity, we tested the hypothesis that apo A-II
and its reduced and carboxymethylated monomer (rcm apo A-II) would
form rHDL at a membrane FC content of >20 mol %. According to turbidimetric
titrations, the DMPC/apo A-II stoichiometry is 65/1 (moles to moles).
At this stoichiometry, apo A-II forms rHDL from DMPC and FC. Contrary
to our hypothesis, apo A-II, like apo A-I, reacts poorly with DMPC
containing ≥20 mol % FC. The rate of formation of rHDL from
rcm apo A-II and DMPC at all FC mole percentages is faster than that
of apo A-II but nil at 20 mol % FC. In parallel reactions, monomeric
and dimeric apo A-II form large FC-rich rHDL coexisting with smaller
FC-poor rHDL; increasing the FC mole percentage increases the number
and size of FC-rich rHDL. On the basis of the compositions of coexisting
large and small rHDL, the free energy of transfer of FC from the smallest
to the largest particle is approximately −1.2 kJ. On the basis
of our data, we propose a model in which apo A-I and apo A-II bind
to DMPC via surface defects that disappear at 20 mol % FC. These data
suggest apo A-II-containing HDL formed intrahepatically are likely
cholesterol-rich compared to the smaller intracellular lipid-poor
apo A-I HDL.
Collapse
Affiliation(s)
- G Randall Bassett
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | |
Collapse
|
27
|
Gao X, Yuan S, Jayaraman S, Gursky O. Role of apolipoprotein A-II in the structure and remodeling of human high-density lipoprotein (HDL): protein conformational ensemble on HDL. Biochemistry 2012; 51:4633-41. [PMID: 22631438 DOI: 10.1021/bi300555d] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
High-density lipoproteins (HDL, or "good cholesterol") are heterogeneous nanoparticles that remove excess cell cholesterol and protect against atherosclerosis. The cardioprotective action of HDL and its major protein, apolipoprotein A-I (apoA-I), is well-established, yet the function of the second major protein, apolipoprotein A-II (apoA-II), is less clear. In this review, we postulate an ensemble of apolipoprotein conformations on various HDL. This ensemble is based on the crystal structure of Δ(185-243)apoA-I determined by Mei and Atkinson combined with the "double-hairpin" conformation of apoA-II(dimer) proposed in the cross-linking studies by Silva's team, and is supported by the wide array of low-resolution structural, biophysical, and biochemical data obtained by many teams over decades. The proposed conformational ensemble helps integrate and improve several existing HDL models, including the "buckle-belt" conformation of apoA-I on the midsize disks and the "trefoil/tetrafoil" arrangement on spherical HDL. This ensemble prompts us to hypothesize that endogenous apoA-II (i) helps confer lipid surface curvature during conversion of nascent discoidal HDL(A-I) and HDL(A-II) containing either apoA-I or apoA-II to mature spherical HDL(A-I/A-II) containing both proteins, and (ii) hinders remodeling of HDL(A-I/A-II) by hindering the expansion of the apoA-I conformation. Also, we report that, although endogenous apoA-II circulates mainly on the midsize spherical HDL(A-I/A-II), exogenous apoA-II can bind to HDL of any size, thereby slightly increasing this size and stabilizing the HDL assembly. This suggests distinctly different effects of the endogenous and exogenous apoA-II on HDL. Taken together, the existing results and models prompt us to postulate a new structural and functional role of apoA-II on human HDL.
Collapse
Affiliation(s)
- Xuan Gao
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA 02118, USA
| | | | | | | |
Collapse
|
28
|
Smith LE, Yang J, Goodman L, Huang X, Huang R, Dressman J, Morris J, Silva RAGD, Davidson WS, Cavigiolio G. High yield expression and purification of recombinant human apolipoprotein A-II in Escherichia coli. J Lipid Res 2012; 53:1708-15. [PMID: 22636422 DOI: 10.1194/jlr.d028043] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recombinant expression systems have become powerful tools for understanding the structure and function of proteins, including the apolipoproteins that comprise human HDL. However, human apolipoprotein (apo)A-II has proven difficult to produce by recombinant techniques, likely contributing to our lack of knowledge about its structure, specific biological function, and role in cardiovascular disease. Here we present a novel Escherichia coli-based recombinant expression system that produces highly pure mature human apoA-II at substantial yields. A Mxe GyrA intein containing a chitin binding domain was fused at the C terminus of apoA-II. A 6× histidine-tag was also added at the fusion protein's C terminus. After rapid purification on a chitin column, intein auto-cleavage was induced under reducing conditions, releasing a peptide with only one extra N-terminal Met compared with the sequence of human mature apoA-II. A pass through a nickel chelating column removed any histidine-tagged residual fusion protein, leaving highly pure apoA-II. A variety of electrophoretic, mass spectrometric, and spectrophotometric analyses demonstrated that the recombinant form is comparable in structure to human plasma apoA-II. Similarly, recombinant apoA-II is comparable to the plasma form in its ability to bind and reorganize lipid and promote cholesterol efflux from macrophages via the ATP binding cassette transporter A1. This system is ideal for producing large quantities of recombinant wild-type or mutant apoA-II for structural or functional studies.
Collapse
Affiliation(s)
- Loren E Smith
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH 45273, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Calandra S, Tarugi P, Speedy HE, Dean AF, Bertolini S, Shoulders CC. Mechanisms and genetic determinants regulating sterol absorption, circulating LDL levels, and sterol elimination: implications for classification and disease risk. J Lipid Res 2011; 52:1885-926. [PMID: 21862702 DOI: 10.1194/jlr.r017855] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
This review integrates historical biochemical and modern genetic findings that underpin our understanding of the low-density lipoprotein (LDL) dyslipidemias that bear on human disease. These range from life-threatening conditions of infancy through severe coronary heart disease of young adulthood, to indolent disorders of middle- and old-age. We particularly focus on the biological aspects of those gene mutations and variants that impact on sterol absorption and hepatobiliary excretion via specific membrane transporter systems (NPC1L1, ABCG5/8); the incorporation of dietary sterols (MTP) and of de novo synthesized lipids (HMGCR, TRIB1) into apoB-containing lipoproteins (APOB) and their release into the circulation (ANGPTL3, SARA2, SORT1); and receptor-mediated uptake of LDL and of intestinal and hepatic-derived lipoprotein remnants (LDLR, APOB, APOE, LDLRAP1, PCSK9, IDOL). The insights gained from integrating the wealth of genetic data with biological processes have important implications for the classification of clinical and presymptomatic diagnoses of traditional LDL dyslipidemias, sitosterolemia, and newly emerging phenotypes, as well as their management through both nutritional and pharmaceutical means.
Collapse
Affiliation(s)
- Sebastiano Calandra
- Department of Biomedical Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| | | | | | | | | | | |
Collapse
|
30
|
Rosales C, Tang D, Gillard BK, Courtney HS, Pownall HJ. Apolipoprotein E mediates enhanced plasma high-density lipoprotein cholesterol clearance by low-dose streptococcal serum opacity factor via hepatic low-density lipoprotein receptors in vivo. Arterioscler Thromb Vasc Biol 2011; 31:1834-41. [PMID: 21597008 DOI: 10.1161/atvbaha.111.224360] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Recombinant streptococcal serum opacity factor (rSOF) mediates the in vitro disassembly of human plasma high-density lipoprotein (HDL) into lipid-free apolipoprotein (apo) A-I, a neo-HDL that is cholesterol poor, and a cholesteryl ester-rich microemulsion (CERM) containing apoE. Given the occurrence of apoE on the CERM, we tested the hypothesis that rSOF injection into mice would reduce total plasma cholesterol clearance via apoE-dependent hepatic low-density lipoprotein receptors (LDLR). METHODS AND RESULTS rSOF (4 μg) injection into wild-type C57BL/6J mice formed neo-HDL, CERM, and lipid-free apoA-I, as observed in vitro, and reduced plasma total cholesterol (-43%, t(1/2)=44±18 minutes) whereas control saline injections had a negligible effect. Similar experiments with apoE(-/-) and LDLR(-/-) mice reduced plasma total cholesterol ≈0% and 20%, respectively. rSOF was potent; injection of 0.18 μg of rSOF produced 50% of maximum reduction of plasma cholesterol 3 hours postinjection, corresponding to a ≈0.5-mg human dose. Most cholesterol was cleared hepatically (>99%), with rSOF treatment increasing clearance by 65%. CONCLUSIONS rSOF injection into mice formed a CERM that was cleared via hepatic LDLR that recognize apoE. This reaction could provide an alternative mechanism for reverse cholesterol transport.
Collapse
Affiliation(s)
- Corina Rosales
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | | | | | | | | |
Collapse
|
31
|
Gauthamadasa K, Rosales C, Pownall HJ, Macha S, Jerome WG, Huang R, Silva RAGD. Speciated human high-density lipoprotein protein proximity profiles. Biochemistry 2010; 49:10656-65. [PMID: 21073165 DOI: 10.1021/bi1015452] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
It is expected that the attendant structural heterogeneity of human high-density lipoprotein (HDL) complexes is a determinant of its varied metabolic functions. To determine the structural heterogeneity of HDL, we determined major apolipoprotein stoichiometry profiles in human HDL. First, HDL was separated into two main populations, with and without apolipoprotein (apo) A-II, LpA-I and LpA-I/A-II, respectively. Each main population was further separated into six individual subfractions using size exclusion chromatography (SEC). Protein proximity profiles (PPPs) of major apolipoproteins in each individual subfraction was determined by optimally cross-linking apolipoproteins within individual particles with bis(sulfosuccinimidyl) suberate (BS(3)), a bifunctional cross-linker, followed by molecular mass determination by MALDI-MS. The PPPs of LpA-I subfractions indicated that the number of apoA-I molecules increased from two to three to four with an increase in the LpA-I particle size. On the other hand, the entire population of LpA-I/A-II demonstrated the presence of only two proximal apoA-I molecules per particle, while the number of apoA-II molecules varied from one dimeric apoA-II to two and then to three. For most of the PPPs described above, an additional population that contained a single molecule of apoC-III in addition to apoA-I and/or apoA-II was detected. Upon composition analyses of individual subpopulations, LpA-I/A-II exhibited comparable proportions for total protein (∼58%), phospholipids (∼21%), total cholesterol (∼16%), triglycerides (∼5%), and free cholesterol (∼4%) across subfractions. LpA-I components, on the other hand, showed significant variability. This novel information about HDL subfractions will form a basis for an improved understanding of particle-specific functions of HDL.
Collapse
Affiliation(s)
- Kekulawalage Gauthamadasa
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, Ohio 45237, United States
| | | | | | | | | | | | | |
Collapse
|
32
|
Gillard BK, Rosales C, Pillai BK, Lin HY, Courtney HS, Pownall HJ. Streptococcal serum opacity factor increases the rate of hepatocyte uptake of human plasma high-density lipoprotein cholesterol. Biochemistry 2010; 49:9866-73. [PMID: 20879789 PMCID: PMC2982792 DOI: 10.1021/bi101412m] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Serum opacity factor (SOF), a virulence determinant of Streptococcus pyogenes, converts plasma high-density lipoproteins (HDL) to three distinct species: lipid-free apolipoprotein (apo) A-I, neo HDL, a small discoidal HDL-like particle, and a large cholesteryl ester-rich microemulsion (CERM) that contains the cholesterol esters (CE) of up to ∼400000 HDL particles and apo E as its major protein. Similar SOF reaction products are obtained with HDL, total plasma lipoproteins, and whole plasma. We hypothesized that hepatic uptake of CERM-CE via multiple apo E-dependent receptors would be faster than that of HDL-CE. We tested our hypothesis using human hepatoma cells and lipoprotein receptor-specific Chinese hamster ovary (CHO) cells. The uptake of [(3)H]CE by HepG2 and Huh7 cells from HDL after SOF treatment, which transfers >90% of HDL-CE to CERM, was 2.4 and 4.5 times faster, respectively, than from control HDL. CERM-[(3)H]CE uptake was inhibited by LDL and HDL, suggestive of uptake by both the LDL receptor (LDL-R) and scavenger receptor class B type I (SR-BI). Studies in CHO cells specifically expressing LDL-R and SR-BI confirmed CERM-[(3)H]CE uptake by both receptors. RAP and heparin inhibit CERM-[(3)H]CE but not HDL-[(3)H]CE uptake, thereby implicating LRP-1 and cell surface proteoglycans in this process. These data demonstrate that SOF treatment of HDL increases the rate of CE uptake via multiple hepatic apo E receptors. In so doing, SOF might increase the level of hepatic disposal of plasma cholesterol in a way that is therapeutically useful.
Collapse
Affiliation(s)
- Baiba K. Gillard
- Section of Cardiovascular Research, Department of Medicine, Baylor College of Medicine, Houston, Texas 77030
| | - Corina Rosales
- Section of Cardiovascular Research, Department of Medicine, Baylor College of Medicine, Houston, Texas 77030
| | - Biju K. Pillai
- Section of Cardiovascular Research, Department of Medicine, Baylor College of Medicine, Houston, Texas 77030
| | - Hu Yu Lin
- Section of Cardiovascular Research, Department of Medicine, Baylor College of Medicine, Houston, Texas 77030
| | - Harry S. Courtney
- Veterans Affairs Medical Center and Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee 38104
| | - Henry J. Pownall
- Section of Cardiovascular Research, Department of Medicine, Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|