1
|
Kim MH, Lim H, Kim OH, Oh BC, Jung Y, Ryu KH, Park JW, Park WJ. CD36 deficiency protects lipopolysaccharide-induced sepsis via inhibiting CerS6-mediated endoplasmic reticulum stress. Int Immunopharmacol 2024; 143:113441. [PMID: 39461238 DOI: 10.1016/j.intimp.2024.113441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/29/2024]
Abstract
The type 2 scavenger receptor CD36 functions not only as a long chain fatty acid transporter, but also as a pro-inflammatory mediator. Ceramide is the simple N-acylated form of sphingosine and exerts distinct biological activity depending on its acyl chain length. Six ceramide synthases (CerS) in mammals determine the chain length of ceramide species, and CerS6 mainly produces C16-ceramide. Endotoxin-induced septic shock shows high mortality, but the pathophysiologic role of sphingolipids involved in this process has been hardly investigated. This paper aims to highlight the different role of CerS isoforms in endotoxin-induced inflammatory responses and the regulatory role of CD36 in CerS6 protein degradation with an emphasis as the potential therapeutic candidates in humans. Lipopolysaccharide (LPS), the endotoxin of the Gram-negative bacterial cell wall, was treated to induce endotoxin-induced inflammation both in vitro and in vivo. CerS6-derived C16-ceramide propagated LPS-induced inflammatory responses activating various intracellular signaling pathways, such as mitogen-activated protein kinase and nuclear factor-κB, resulting in the formation of inflammasome complex and pro-inflammatory cytokines. Mechanistically, CerS6-derived C16-ceramide augmented inflammatory responses via endoplasmic reticulum stress, and CerS6 protein stability was regulated by CD36. Finally, CerS6 protein expression and LPS-induced lethality were strikingly reduced in CD36 knockout mice. Collectively, our findings show that CerS6-derived C16-ceramide plays a pivotal role in endotoxin-induced inflammation and suggest CerS6 and its regulator CD36 as possible targets for therapy under life-threatening inflammation such as septic shock.
Collapse
Affiliation(s)
- Min Hee Kim
- Department of Biochemistry, College of Medicine, Ewha Womans University, Seoul 07084, Republic of Korea
| | - Hyomin Lim
- Department of Biochemistry, College of Medicine, Ewha Womans University, Seoul 07084, Republic of Korea
| | - Ok-Hee Kim
- Department of Physiology, College of Medicine, Gachon University, Incheon 21999, Republic of Korea; Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea
| | - Byung-Chul Oh
- Department of Physiology, College of Medicine, Gachon University, Incheon 21999, Republic of Korea; Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea
| | - YunJae Jung
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea; Department of Microbiology, College of Medicine, Gachon University, Incheon 21999, Republic of Korea
| | - Kyung-Ha Ryu
- Department of Pediatrics, College of Medicine, Ewha Womans University, Seoul 07804, Republic of Korea
| | - Joo-Won Park
- Department of Biochemistry, College of Medicine, Ewha Womans University, Seoul 07084, Republic of Korea.
| | - Woo-Jae Park
- Department of Biochemistry, Chung-Ang University College of Medicine, Seoul 06974, Republic of Korea.
| |
Collapse
|
2
|
Wang S, Jin Z, Wu B, Morris AJ, Deng P. Role of dietary and nutritional interventions in ceramide-associated diseases. J Lipid Res 2024:100726. [PMID: 39667580 DOI: 10.1016/j.jlr.2024.100726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/28/2024] [Accepted: 12/02/2024] [Indexed: 12/14/2024] Open
Abstract
Ceramides are important intermediates in sphingolipid metabolism and serve as signaling molecules with independent biological significance. Elevated cellular and circulating ceramide levels are consistently associated with pathological conditions including cardiometabolic diseases, neurological diseases, autoimmune diseases, and cancers. Although pharmacological inhibition of ceramide formation often protects against these diseases in animal models, pharmacological modulation of ceramides in humans remains impractical. Dietary interventions including the Mediterranean diet, lacto-ovo-vegetarian diet, calorie-restricted diet, restriction of dairy product consumption, and dietary supplementation with polyunsaturated fatty acids, dietary fibers, and polyphenols, all have beneficial effects on modulating ceramide levels. This article reviews the relationships between ceramides and disease pathogenesis, with a focus on dietary intervention as a viable strategy for lowering the concentration of circulating ceramides. Mechanistic insights into these interventions are discussed, underscoring their potential for developing ceramide-lowering therapeutic approaches in humans.
Collapse
Affiliation(s)
- Shengnan Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Zihui Jin
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Biyu Wu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Andrew J Morris
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences and Central Arkansas Veterans Affairs Healthcare System, Little Rock, AR, USA
| | - Pan Deng
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
3
|
Wang H, Zhao M, Chen G, Lin Y, Kang D, Yu L. Identifying MSMO1, ELOVL6, AACS, and CERS2 related to lipid metabolism as biomarkers of Parkinson's disease. Sci Rep 2024; 14:17478. [PMID: 39080336 PMCID: PMC11289109 DOI: 10.1038/s41598-024-68585-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 07/25/2024] [Indexed: 08/02/2024] Open
Abstract
The mechanisms underlying lipid metabolic disorders in Parkinson's diseases (PD) remain unclear. Weighted Gene Co-Expression Network Analysis (WGCNA) was conducted to identify PD-related modular genes and differentially expressed genes (DEGs). Lipid metabolism-related genes (LMRGs) were extracted from Molecular Signatures Database. Candidate genes were assessed with overlapping modular genes, DEGs, and LMRGs for the purpose of building protein-protein interaction (PPI) networks. Then, biomarkers were generated by machine learning and Backpropagation Neural Network development according to candidate genes. Biomarker-based enrichment and network modulation analyses were executed to investigate related signaling pathways. Following dimensionality reduction clustering and annotation, scRNA-seq was submitted to cellular interactions and trajectory analysis to analyze regulatory mechanisms of critical cells. Finally, qRT-PCR was conducted to confirm the expression of biomarkers in PD patients. Four biomarkers (MSMO1, ELOVL6, AACS, and CERS2) were obtained and highly predictive after analysis mentioned above. Then, OPC, Oli, and Neu cells were the primary expression sites for biomarkers according to scRNA-seq studies. Finally, we confirmed mRNA of MSMO1, ELOVL6 and AACS were downregulated in PD patients comparing with control, while CERS2 was upregulated. In conclusion, MSMO1, ELOVL6, AACS, and CERS2 related to LMRGs could be new biomarkers for diagnosing and treating PD.
Collapse
Affiliation(s)
- Huiqing Wang
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Provincial Institutes of Brain Disorders and Brain Sciences, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Mingpei Zhao
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Provincial Institutes of Brain Disorders and Brain Sciences, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Guorong Chen
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Provincial Institutes of Brain Disorders and Brain Sciences, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Yuanxiang Lin
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Provincial Institutes of Brain Disorders and Brain Sciences, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Dezhi Kang
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.
- Fujian Provincial Institutes of Brain Disorders and Brain Sciences, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.
- Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China.
| | - Lianghong Yu
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.
- Fujian Provincial Institutes of Brain Disorders and Brain Sciences, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.
- Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
4
|
Ali O, Szabó A. Review of Eukaryote Cellular Membrane Lipid Composition, with Special Attention to the Fatty Acids. Int J Mol Sci 2023; 24:15693. [PMID: 37958678 PMCID: PMC10649022 DOI: 10.3390/ijms242115693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Biological membranes, primarily composed of lipids, envelop each living cell. The intricate composition and organization of membrane lipids, including the variety of fatty acids they encompass, serve a dynamic role in sustaining cellular structural integrity and functionality. Typically, modifications in lipid composition coincide with consequential alterations in universally significant signaling pathways. Exploring the various fatty acids, which serve as the foundational building blocks of membrane lipids, provides crucial insights into the underlying mechanisms governing a myriad of cellular processes, such as membrane fluidity, protein trafficking, signal transduction, intercellular communication, and the etiology of certain metabolic disorders. Furthermore, comprehending how alterations in the lipid composition, especially concerning the fatty acid profile, either contribute to or prevent the onset of pathological conditions stands as a compelling area of research. Hence, this review aims to meticulously introduce the intricacies of membrane lipids and their constituent fatty acids in a healthy organism, thereby illuminating their remarkable diversity and profound influence on cellular function. Furthermore, this review aspires to highlight some potential therapeutic targets for various pathological conditions that may be ameliorated through dietary fatty acid supplements. The initial section of this review expounds on the eukaryotic biomembranes and their complex lipids. Subsequent sections provide insights into the synthesis, membrane incorporation, and distribution of fatty acids across various fractions of membrane lipids. The last section highlights the functional significance of membrane-associated fatty acids and their innate capacity to shape the various cellular physiological responses.
Collapse
Affiliation(s)
- Omeralfaroug Ali
- Agrobiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Physiology and Animal Nutrition, Department of Animal Physiology and Health, Hungarian University of Agriculture and Life Sciences, Guba Sándor Str. 40, 7400 Kaposvár, Hungary;
| | - András Szabó
- Agrobiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Physiology and Animal Nutrition, Department of Animal Physiology and Health, Hungarian University of Agriculture and Life Sciences, Guba Sándor Str. 40, 7400 Kaposvár, Hungary;
- HUN-REN-MATE Mycotoxins in the Food Chain Research Group, Hungarian University of Agriculture and Life Sciences, Guba Sándor Str. 40, 7400 Kaposvár, Hungary
| |
Collapse
|
5
|
Chung HL, Ye Q, Park YJ, Zuo Z, Mok JW, Kanca O, Tattikota SG, Lu S, Perrimon N, Lee HK, Bellen HJ. Very-long-chain fatty acids induce glial-derived sphingosine-1-phosphate synthesis, secretion, and neuroinflammation. Cell Metab 2023; 35:855-874.e5. [PMID: 37084732 PMCID: PMC10160010 DOI: 10.1016/j.cmet.2023.03.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 01/10/2023] [Accepted: 03/29/2023] [Indexed: 04/23/2023]
Abstract
VLCFAs (very-long-chain fatty acids) are the most abundant fatty acids in myelin. Hence, during demyelination or aging, glia are exposed to higher levels of VLCFA than normal. We report that glia convert these VLCFA into sphingosine-1-phosphate (S1P) via a glial-specific S1P pathway. Excess S1P causes neuroinflammation, NF-κB activation, and macrophage infiltration into the CNS. Suppressing the function of S1P in fly glia or neurons, or administration of Fingolimod, an S1P receptor antagonist, strongly attenuates the phenotypes caused by excess VLCFAs. In contrast, elevating the VLCFA levels in glia and immune cells exacerbates these phenotypes. Elevated VLCFA and S1P are also toxic in vertebrates based on a mouse model of multiple sclerosis (MS), experimental autoimmune encephalomyelitis (EAE). Indeed, reducing VLCFA with bezafibrate ameliorates the phenotypes. Moreover, simultaneous use of bezafibrate and fingolimod synergizes to improve EAE, suggesting that lowering VLCFA and S1P is a treatment avenue for MS.
Collapse
Affiliation(s)
- Hyung-Lok Chung
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Qi Ye
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Department of Pediatrics, Section of Neurology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ye-Jin Park
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Zhongyuan Zuo
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jung-Wan Mok
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Oguz Kanca
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | | | - Shenzhao Lu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Nobert Perrimon
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA; Howard Hughes Medical Institute and Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Hyun Kyoung Lee
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Department of Pediatrics, Section of Neurology, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA.
| |
Collapse
|
6
|
Casadomé-Perales Á, Naya S, Fernández-Martínez E, Mille BG, Guerrero-Valero M, Peinado H, Guix FX, Dotti CG, Palomer E. Neuronal Prosurvival Role of Ceramide Synthase 2 by Olidogendrocyte-to-Neuron Extracellular Vesicle Transfer. Int J Mol Sci 2023; 24:ijms24065986. [PMID: 36983060 PMCID: PMC10052063 DOI: 10.3390/ijms24065986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Ageing is associated with notorious alterations in neurons, i.e., in gene expression, mitochondrial function, membrane degradation or intercellular communication. However, neurons live for the entire lifespan of the individual. One of the reasons why neurons remain functional in elderly people is survival mechanisms prevail over death mechanisms. While many signals are either pro-survival or pro-death, others can play both roles. Extracellular vesicles (EVs) can signal both pro-toxicity and survival. We used young and old animals, primary neuronal and oligodendrocyte cultures and neuroblastoma and oligodendrocytic lines. We analysed our samples using a combination of proteomics and artificial neural networks, biochemistry and immunofluorescence approaches. We found an age-dependent increase in ceramide synthase 2 (CerS2) in cortical EVs, expressed by oligodendrocytes. In addition, we show that CerS2 is present in neurons via the uptake of oligodendrocyte-derived EVs. Finally, we show that age-associated inflammation and metabolic stress favour CerS2 expression and that oligodendrocyte-derived EVs loaded with CerS2 lead to the expression of the antiapoptotic factor Bcl2 in inflammatory conditions. Our study shows that intercellular communication is altered in the ageing brain, which favours neuronal survival through the transfer of oligodendrocyte-derived EVs containing CerS2.
Collapse
Affiliation(s)
- Álvaro Casadomé-Perales
- Molecular Neuropathology Unit, Physiological and Pathological Processes Program, Centro de Biología Molecular Severo Ochoa, CSIC/UAM, 28049 Madrid, Spain
| | - Sara Naya
- Molecular Neuropathology Unit, Physiological and Pathological Processes Program, Centro de Biología Molecular Severo Ochoa, CSIC/UAM, 28049 Madrid, Spain
| | - Elisa Fernández-Martínez
- Molecular Neuropathology Unit, Physiological and Pathological Processes Program, Centro de Biología Molecular Severo Ochoa, CSIC/UAM, 28049 Madrid, Spain
| | - Bea G Mille
- Molecular Neuropathology Unit, Physiological and Pathological Processes Program, Centro de Biología Molecular Severo Ochoa, CSIC/UAM, 28049 Madrid, Spain
| | - Marta Guerrero-Valero
- Molecular Neuropathology Unit, Physiological and Pathological Processes Program, Centro de Biología Molecular Severo Ochoa, CSIC/UAM, 28049 Madrid, Spain
| | - Héctor Peinado
- Microenvironment and Metastasis Group, Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
| | - Francesc X Guix
- Molecular Neuropathology Unit, Physiological and Pathological Processes Program, Centro de Biología Molecular Severo Ochoa, CSIC/UAM, 28049 Madrid, Spain
- Department of Bioengineering, Institut Químic de Sarrià (IQS), Universitat Ramón Llull (URL), 08017 Barcelona, Spain
| | - Carlos G Dotti
- Molecular Neuropathology Unit, Physiological and Pathological Processes Program, Centro de Biología Molecular Severo Ochoa, CSIC/UAM, 28049 Madrid, Spain
| | - Ernest Palomer
- Molecular Neuropathology Unit, Physiological and Pathological Processes Program, Centro de Biología Molecular Severo Ochoa, CSIC/UAM, 28049 Madrid, Spain
| |
Collapse
|
7
|
A Brief Review of FT-IR Spectroscopy Studies of Sphingolipids in Human Cells. BIOPHYSICA 2023. [DOI: 10.3390/biophysica3010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
In recent years, sphingolipids have attracted significant attention due to their pivotal role in cellular functions and physiological diseases. A valuable tool for investigating the characteristics of sphingolipids can be represented via FT-IR spectroscopy, generally recognized as a very powerful technique that provides detailed biochemical information on the examined sample with the unique properties of sensitivity and accuracy. In the present paper, some fundamental aspects of sphingolipid components of human cells are summarized, and the most relevant articles devoted to the FT-IR spectroscopic studies of sphingolipids are revised. A short description of different FT-IR experimental approaches adopted for investigating sphingolipids is also given, with details about the most commonly used data analysis procedures. The present overview of FT-IR investigations, although not exhaustive, attests to the relevant role this vibrational technique has played in giving significant insight into many aspects of this fascinating class of lipids.
Collapse
|
8
|
Jain V, Harper SL, Versace AM, Fingerman D, Brown GS, Bhardwaj M, Crissey MAS, Goldman AR, Ruthel G, Liu Q, Zivkovic A, Stark H, Herlyn M, Gimotty PA, Speicher DW, Amaravadi RK. Targeting UGCG Overcomes Resistance to Lysosomal Autophagy Inhibition. Cancer Discov 2023; 13:454-473. [PMID: 36331284 PMCID: PMC9905280 DOI: 10.1158/2159-8290.cd-22-0535] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 08/10/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022]
Abstract
Lysosomal autophagy inhibition (LAI) with hydroxychloroquine or DC661 can enhance cancer therapy, but tumor regrowth is common. To elucidate LAI resistance, proteomics and immunoblotting demonstrated that LAI induced lipid metabolism enzymes in multiple cancer cell lines. Lipidomics showed that LAI increased cholesterol, sphingolipids, and glycosphingolipids. These changes were associated with striking levels of GM1+ membrane microdomains (GMM) in plasma membranes and lysosomes. Inhibition of cholesterol/sphingolipid metabolism proteins enhanced LAI cytotoxicity. Targeting UDP-glucose ceramide glucosyltransferase (UGCG) synergistically augmented LAI cytotoxicity. Although UGCG inhibition decreased LAI-induced GMM and augmented cell death, UGCG overexpression led to LAI resistance. Melanoma patients with high UGCG expression had significantly shorter disease-specific survival. The FDA-approved UGCG inhibitor eliglustat combined with LAI significantly inhibited tumor growth and improved survival in syngeneic tumors and a therapy-resistant patient-derived xenograft. These findings nominate UGCG as a new cancer target, and clinical trials testing UGCG inhibition in combination with LAI are warranted. SIGNIFICANCE We discovered UGCG-dependent lipid remodeling drives resistance to LAI. Targeting UGCG with a drug approved for a lysosomal storage disorder enhanced LAI antitumor activity without toxicity. LAI and UGCG inhibition could be tested clinically in multiple cancers. This article is highlighted in the In This Issue feature, p. 247.
Collapse
Affiliation(s)
- Vaibhav Jain
- Abramson Cancer Center and Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Amanda M. Versace
- Abramson Cancer Center and Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | - Monika Bhardwaj
- Abramson Cancer Center and Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mary Ann S. Crissey
- Abramson Cancer Center and Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Gordon Ruthel
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA
| | - Qin Liu
- The Wistar Institute, Philadelphia, PA 19104, USA
| | - Aleksandra Zivkovic
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitaetsstr. 1, 40225, Düsseldorf, Germany
| | - Holgar Stark
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitaetsstr. 1, 40225, Düsseldorf, Germany
| | | | - Phyllis A. Gimotty
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David W. Speicher
- The Wistar Institute, Philadelphia, PA 19104, USA
- Corresponding authors: Ravi K. Amaravadi, MD, University of Pennsylvania, 852 BRB 2/3, 421 Curie Blvd, Philadelphia, PA 19104, Tel: 215-796-5159, ; David W. Speicher, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, Tel: 215-898-3972,
| | - Ravi K. Amaravadi
- Abramson Cancer Center and Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Corresponding authors: Ravi K. Amaravadi, MD, University of Pennsylvania, 852 BRB 2/3, 421 Curie Blvd, Philadelphia, PA 19104, Tel: 215-796-5159, ; David W. Speicher, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, Tel: 215-898-3972,
| |
Collapse
|
9
|
Paranjpe V, Galor A, Grambergs R, Mandal N. The role of sphingolipids in meibomian gland dysfunction and ocular surface inflammation. Ocul Surf 2022; 26:100-110. [PMID: 35973562 PMCID: PMC10259413 DOI: 10.1016/j.jtos.2022.07.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 07/17/2022] [Accepted: 07/22/2022] [Indexed: 11/26/2022]
Abstract
Inflammation occurs in response to tissue injury and invasion of microorganisms and is carried out by the innate and adaptive immune systems, which are regulated by numerous chemokines, cytokines, and lipid mediators. There are four major families of bioactive lipid mediators that play an integral role in inflammation - eicosanoids, sphingolipids (SPL), specialized pro-resolving mediators (SPM), and endocannabinoids. SPL have been historically recognized as important structural components of cellular membranes; their roles as bioactive lipids and inflammatory mediators are recent additions. Major SPL metabolites, including sphingomyelin, ceramide, ceramide 1-phosphate (C1P), sphingosine, sphingosine 1-phosphate (S1P), and their respective enzymes have been studied extensively, primarily in cell-culture and animal models, for their roles in cellular signaling and regulating inflammation and apoptosis. Less focus has been given to the involvement of SPL in eye diseases. As such, the aim of this review was to examine relationships between the SPL family and ocular surface diseases, focusing on their role in disease pathophysiology and discussing the potential of therapeutics that disrupt SPL pathways.
Collapse
Affiliation(s)
- Vikram Paranjpe
- Department of Ophthalmology, New York University School of Medicine, 550 First Avenue, New York, NY, 10016, USA
| | - Anat Galor
- Miami Veterans Administration Medical Center, 1201 NW 16th St, Miami, FL, 33125, USA; Bascom Palmer Eye Institute, University of Miami, 900 NW 17th Street, Miami, FL, 33136, USA.
| | - Richard Grambergs
- Departments of Ophthalmology, Anatomy and Neurobiology, University of Tennessee Health Sciences Center, Hamilton Eye Institute, 930 Madison Avenue, Memphis, TN, 38163, USA
| | - Nawajes Mandal
- Departments of Ophthalmology, Anatomy and Neurobiology, University of Tennessee Health Sciences Center, Hamilton Eye Institute, 930 Madison Avenue, Memphis, TN, 38163, USA; Memphis VA Medical Center, Memphis, TN, 38104, USA.
| |
Collapse
|
10
|
Song X, Wang Y, Wang J, Su S, Zhu J, Geng Y. Metabolomic analysis reveals the influence of IC 50 vitamin D 3 on RAW264.7 cells based on 1 H NMR and UPLC-MS/MS. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:5288-5300. [PMID: 35306664 DOI: 10.1002/jsfa.11882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 01/23/2022] [Accepted: 03/20/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND As a lipid-soluble vitamin necessary for normal human physiology, vitamin D is mostly used in fortified foods, medicines and adjuvant treatment of diseases. However, taken in high doses, vitamin D can be toxic. METHODS We treated RAW264.7 cells with a semi-inhibitory concentration (IC50 ) of vitamin D3 . The metabolic changes in the treated cells were analyzed by 1 H nuclear magnetic resonance (NMR) and ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). RESULTS After treatment of RAW264.7 cells with an IC50 dose of 55 μm vitamin D3 , tunor necrosis factor-α levels decreased significantly and remarkable metabolic differences were also observed, with 12 types of metabolites were identified by 1 H NMR and 87 identified by UPLC-MS/MS. Moreover, the metabolism of amino acids, sugars, lipids and other metabolic pathways were also affected. CONCLUSION Although vitamin D3 is an indispensable nutrient in the body, excessive exposure has negative effects on cells and their metabolism. The present study will assist further analyses of the mechanism underlying vitamin D3 toxicity. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiao Song
- Key Laboratory of Food Nutrition and Safety of SDNU, Provincial Key Laboratory of Animal Resistant Biology, College of Life Science, Shandong Normal University, Jinan, Shandong, China
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, China
| | - Yali Wang
- Key Laboratory of Food Nutrition and Safety of SDNU, Provincial Key Laboratory of Animal Resistant Biology, College of Life Science, Shandong Normal University, Jinan, Shandong, China
| | - Jun Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, China
- Shandong Institute of Food and Drug Control, Jinan, Shandong, China
| | - Shufang Su
- Shandong Institute of Food and Drug Control, Jinan, Shandong, China
| | - Jianhua Zhu
- Shandong Institute of Food and Drug Control, Jinan, Shandong, China
| | - Yue Geng
- Key Laboratory of Food Nutrition and Safety of SDNU, Provincial Key Laboratory of Animal Resistant Biology, College of Life Science, Shandong Normal University, Jinan, Shandong, China
| |
Collapse
|
11
|
Ho QWC, Zheng X, Ali Y. Ceramide Acyl Chain Length and Its Relevance to Intracellular Lipid Regulation. Int J Mol Sci 2022; 23:9697. [PMID: 36077094 PMCID: PMC9456274 DOI: 10.3390/ijms23179697] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/19/2022] [Accepted: 08/24/2022] [Indexed: 11/17/2022] Open
Abstract
Ceramides are a class of sphingolipids which are implicated in skin disorders, obesity, and other metabolic diseases. As a class with pleiotropic effects, recent efforts have centred on discerning specific ceramide species and their effects on atopic dermatitis, obesity, type 2 diabetes, and cardiovascular diseases. This delineation has allowed the identification of disease biomarkers, with long acyl chain ceramides such as C16- and C18-ceramides linked to metabolic dysfunction and cardiac function decline, while ultra-long acyl chain ceramides (>25 carbon acyl chain) were reported to be essential for maintaining a functional skin barrier. Given the intricate link between free fatty acids with ceramides, especially the de novo synthetic pathway, intracellular lipid droplet formation is increasingly viewed as an important mechanism for preventing accumulation of toxic ceramide species. Here, we review recent reports of various ceramide species involved in skin abnormalities and metabolic diseases, and we propose that promotion of lipid droplet biogenesis can be seen as a potential protective mechanism against deleterious ceramides.
Collapse
Affiliation(s)
- Qing Wei Calvin Ho
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore 308232, Singapore
| | - Xiaofeng Zheng
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yusuf Ali
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore 308232, Singapore
- Singapore Eye Research Institute (SERI), Singapore General Hospital, Singapore 168751, Singapore
| |
Collapse
|
12
|
Human iPSC-derived astrocytes generated from donors with globoid cell leukodystrophy display phenotypes associated with disease. PLoS One 2022; 17:e0271360. [PMID: 35921286 PMCID: PMC9348679 DOI: 10.1371/journal.pone.0271360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 06/28/2022] [Indexed: 11/18/2022] Open
Abstract
Globoid cell leukodystrophy (Krabbe disease) is a fatal neurodegenerative, demyelinating disease caused by dysfunctional activity of galactosylceramidase (GALC), leading to the accumulation of glycosphingolipids including psychosine. While oligodendrocytes have been extensively studied due to their high levels of GALC, the contribution of astrocytes to disease pathogenesis remains to be fully elucidated. In the current study, we generated induced pluripotent stem cells (iPSCs) from two donors with infantile onset Krabbe disease and differentiated them into cultures of astrocytes. Krabbe astrocytes recapitulated many key findings observed in humans and rodent models of the disease, including the accumulation of psychosine and elevated expression of the pro-inflammatory cytokine IL-6. Unexpectedly, Krabbe astrocytes had higher levels of glucosylceramide and ceramide, and displayed compensatory changes in genes encoding glycosphingolipid biosynthetic enzymes, suggesting a shunting away from the galactosylceramide and psychosine pathway. In co-culture, Krabbe astrocytes negatively impacted the survival of iPSC-derived human neurons while enhancing survival of iPSC-derived human microglia. Substrate reduction approaches targeting either glucosylceramide synthase or serine palmitoyltransferase to reduce the sphingolipids elevated in Krabbe astrocytes failed to rescue their detrimental impact on neuron survival. Our results suggest that astrocytes may contribute to the progression of Krabbe disease and warrant further exploration into their role as therapeutic targets.
Collapse
|
13
|
Castell AL, Vivoli A, Tippetts TS, Frayne IR, Angeles ZE, Moullé VS, Campbell SA, Ruiz M, Ghislain J, Des Rosiers C, Holland WL, Summers SA, Poitout V. Very-Long-Chain Unsaturated Sphingolipids Mediate Oleate-Induced Rat β-Cell Proliferation. Diabetes 2022; 71:1218-1232. [PMID: 35287172 PMCID: PMC9163557 DOI: 10.2337/db21-0640] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 03/09/2022] [Indexed: 11/13/2022]
Abstract
Fatty acid (FA) signaling contributes to β-cell mass expansion in response to nutrient excess, but the underlying mechanisms are poorly understood. In the presence of elevated glucose, FA metabolism is shifted toward synthesis of complex lipids, including sphingolipids. Here, we tested the hypothesis that sphingolipids are involved in the β-cell proliferative response to FA. Isolated rat islets were exposed to FA and 16.7 mmol/L glucose for 48-72 h, and the contribution of the de novo sphingolipid synthesis pathway was tested using the serine palmitoyltransferase inhibitor myriocin, the sphingosine kinase (SphK) inhibitor SKI II, or knockdown of SphK, fatty acid elongase 1 (ELOVL1) and acyl-CoA-binding protein (ACBP). Rats were infused with glucose and the lipid emulsion ClinOleic and received SKI II by gavage. β-Cell proliferation was assessed by immunochemistry or flow cytometry. Sphingolipids were analyzed by liquid chromatography-tandem mass spectrometry. Among the FAs tested, only oleate increased β-cell proliferation. Myriocin, SKI II, and SphK knockdown all decreased oleate-induced β-cell proliferation. Oleate exposure did not increase the total amount of sphingolipids but led to a specific rise in 24:1 species. Knockdown of ACBP or ELOVL1 inhibited oleate-induced β-cell proliferation. We conclude that unsaturated very-long-chain sphingolipids produced from the available C24:1 acyl-CoA pool mediate oleate-induced β-cell proliferation in rats.
Collapse
Affiliation(s)
- Anne-Laure Castell
- Montreal Diabetes Research Center, CRCHUM, Montreal, Quebec, Canada
- Department of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Alexis Vivoli
- Montreal Diabetes Research Center, CRCHUM, Montreal, Quebec, Canada
- Department of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Trevor S. Tippetts
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT
| | | | - Zuraya Elisa Angeles
- Montreal Diabetes Research Center, CRCHUM, Montreal, Quebec, Canada
- Department of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Valentine S. Moullé
- Montreal Diabetes Research Center, CRCHUM, Montreal, Quebec, Canada
- Department of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Scott A. Campbell
- Montreal Diabetes Research Center, CRCHUM, Montreal, Quebec, Canada
- Department of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Matthieu Ruiz
- Metabolomic Platform, Montreal Heart Institute Research Center, Montreal, Quebec, Canada
| | - Julien Ghislain
- Montreal Diabetes Research Center, CRCHUM, Montreal, Quebec, Canada
| | - Christine Des Rosiers
- Metabolomic Platform, Montreal Heart Institute Research Center, Montreal, Quebec, Canada
- Department of Nutrition, Université de Montréal, Montreal, Quebec, Canada
| | - William L. Holland
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT
| | - Scott A. Summers
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT
| | - Vincent Poitout
- Montreal Diabetes Research Center, CRCHUM, Montreal, Quebec, Canada
- Department of Medicine, Université de Montréal, Montreal, Quebec, Canada
- Corresponding author: Vincent Poitout,
| |
Collapse
|
14
|
Galvagnion C, Marlet FR, Cerri S, Schapira AHV, Blandini F, Di Monte DA. Sphingolipid changes in Parkinson L444P GBA mutation fibroblasts promote α-synuclein aggregation. Brain 2022; 145:1038-1051. [PMID: 35362022 PMCID: PMC9050548 DOI: 10.1093/brain/awab371] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 08/19/2021] [Accepted: 09/06/2021] [Indexed: 12/30/2022] Open
Abstract
Intraneuronal accumulation of aggregated α-synuclein is a pathological hallmark of Parkinson’s disease. Therefore, mechanisms capable of promoting α-synuclein deposition bear important pathogenetic implications. Mutations of the glucocerebrosidase 1 (GBA) gene represent a prevalent Parkinson’s disease risk factor. They are associated with loss of activity of a key enzyme involved in lipid metabolism, glucocerebrosidase, supporting a mechanistic relationship between abnormal α-synuclein–lipid interactions and the development of Parkinson pathology. In this study, the lipid membrane composition of fibroblasts isolated from control subjects, patients with idiopathic Parkinson’s disease and Parkinson's disease patients carrying the L444P GBA mutation (PD-GBA) was assayed using shotgun lipidomics. The lipid profile of PD-GBA fibroblasts differed significantly from that of control and idiopathic Parkinson’s disease cells. It was characterized by an overall increase in sphingolipid levels. It also featured a significant increase in the proportion of ceramide, sphingomyelin and hexosylceramide molecules with shorter chain length and a decrease in the percentage of longer-chain sphingolipids. The extent of this shift was correlated to the degree of reduction of fibroblast glucocerebrosidase activity. Lipid extracts from control and PD-GBA fibroblasts were added to recombinant α-synuclein solutions. The kinetics of α-synuclein aggregation were significantly accelerated after addition of PD-GBA extracts as compared to control samples. Amyloid fibrils collected at the end of these incubations contained lipids, indicating α-synuclein–lipid co-assembly. Lipids extracted from α-synuclein fibrils were also analysed by shotgun lipidomics. Data revealed that the lipid content of these fibrils was significantly enriched by shorter-chain sphingolipids. In a final set of experiments, control and PD-GBA fibroblasts were incubated in the presence of the small molecule chaperone ambroxol. This treatment restored glucocerebrosidase activity and sphingolipid levels and composition of PD-GBA cells. It also reversed the pro-aggregation effect that lipid extracts from PD-GBA fibroblasts had on α-synuclein. Taken together, the findings of this study indicate that the L444P GBA mutation and consequent enzymatic loss are associated with a distinctly altered membrane lipid profile that provides a biological fingerprint of this mutation in Parkinson fibroblasts. This altered lipid profile could also be an indicator of increased risk for α-synuclein aggregate pathology.
Collapse
Affiliation(s)
- Céline Galvagnion
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany.,Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| | - Frederik Ravnkilde Marlet
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| | - Silvia Cerri
- Cellular and Molecular Neurobiology Unit, IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Anthony H V Schapira
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Fabio Blandini
- Cellular and Molecular Neurobiology Unit, IRCCS Mondino Foundation, 27100 Pavia, Italy.,Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy
| | - Donato A Di Monte
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| |
Collapse
|
15
|
Melero-Fernandez de Mera RM, Villaseñor A, Rojo D, Carrión-Navarro J, Gradillas A, Ayuso-Sacido A, Barbas C. Ceramide Composition in Exosomes for Characterization of Glioblastoma Stem-Like Cell Phenotypes. Front Oncol 2022; 11:788100. [PMID: 35127492 PMCID: PMC8814423 DOI: 10.3389/fonc.2021.788100] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/14/2021] [Indexed: 12/14/2022] Open
Abstract
Glioblastoma (GBM) is one of the most malignant central nervous system tumor types. Comparative analysis of GBM tissues has rendered four major molecular subtypes. From them, two molecular subtypes are mainly found in their glioblastoma cancer stem-like cells (GSCs) derived in vitro: proneural (PN) and mesenchymal (MES) with nodular (MES-N) and semi-nodular (MES-SN) disseminations, which exhibit different metabolic, growth, and malignancy properties. Many studies suggest that cancer cells communicate between them, and the surrounding microenvironment, via exosomes. Identifying molecular markers that allow the specific isolation of GSC-derived exosomes is key in the development of new therapies. However, the differential exosome composition produced by main GSCs remains unknown. The aim of this study was to determine ceramide (Cer) composition, one of the critical lipids in both cells and their cell-derived exosomes, from the main three GSC phenotypes using mass spectrometry-based lipidomics. GSCs from human tissue samples and their cell-derived exosomes were measured using ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC/Q-TOF-MS) in an untargeted analysis. Complete characterization of the ceramide profile, in both cells and cell-derived exosomes from GSC phenotypes, showed differential distributions among them. Results indicate that such differences of ceramide are chain-length dependent. Significant changes for the C16 Cer and C24:1 Cer and their ratio were observed among GSC phenotypes, being different for cells and their cell-derived exosomes.
Collapse
Affiliation(s)
- Raquel M Melero-Fernandez de Mera
- Centre for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain.,Unidad de Tumores Sólidos Infantiles, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III (CB06/07/1009; CIBERER-ISCIII), Madrid, Spain
| | - Alma Villaseñor
- Centre for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain.,Institute of Applied Molecular Medicine (IMMA), Department of Basic Medical Sciences, Facultad de Medicina, Universidad San Pablo CEU, CEU Universities, Madrid, Spain
| | - David Rojo
- Centre for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Josefa Carrión-Navarro
- Brain Tumor Laboratory, Faculty of Experimental Sciences and Faculty of Medicine, Universidad Francisco de Vitoria, Madrid, Spain
| | - Ana Gradillas
- Centre for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Angel Ayuso-Sacido
- Brain Tumor Laboratory, Faculty of Experimental Sciences and Faculty of Medicine, Universidad Francisco de Vitoria, Madrid, Spain.,Fundación Vithas, Grupo Vithas Hospitales, Madrid, Spain
| | - Coral Barbas
- Centre for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| |
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW Total ceramide levels in cardiac tissue relate to cardiac dysfunction in animal models. However, emerging evidence suggests that the fatty acyl chain length of ceramides also impacts their relationship to cardiac function. This review explores evidence regarding the relationship between ceramides and left ventricular dysfunction and heart failure. It further explores possible mechanisms underlying these relationships. RECENT FINDINGS In large, community-based cohorts, a higher ratio of specific plasma ceramides, C16 : 0/C24 : 0, related to worse left ventricular dysfunction. Increased left ventricular mass correlated with plasma C16 : 0/C24 : 0, but this relationship became nonsignificant after adjustment for multiple comparisons. Decreased left atrial function and increased left atrial size also related to C16 : 0/C24 : 0. Furthermore, increased incident heart failure, overall cardiovascular disease (CVD) mortality and all-cause mortality were associated with higher C16 : 0/C24 : 0 (or lower C24 : 0/C16 : 0). Finally, a number of possible biological mechanisms are outlined supporting the link between C16 : 0/C24 : 0 ceramides, ceramide signalling and CVD. SUMMARY High cardiac levels of total ceramides are noted in heart failure. In the plasma, C16 : 0/C24 : 0 ceramides may be a valuable biomarker of preclinical left ventricular dysfunction, remodelling, heart failure and mortality. Continued exploration of the mechanisms underlying these profound relationships may help develop specific lipid modulators to combat cardiac dysfunction and heart failure.
Collapse
Affiliation(s)
- Lauren K. Park
- Department of Medicine, Division of Cardiology, Washington University School of Medicine, Saint Louis, Missouri
| | - Valene Garr-Barry
- Department of Medicine, Division of Cardiology, Washington University School of Medicine, Saint Louis, Missouri
| | - Juan Hong
- Department of Medicine, Division of Cardiology, Washington University School of Medicine, Saint Louis, Missouri
| | - John Heebink
- Department of Medicine, Division of Cardiology, Washington University School of Medicine, Saint Louis, Missouri
| | - Rajan Sah
- Department of Medicine, Division of Cardiology, Washington University School of Medicine, Saint Louis, Missouri
| | - Linda R. Peterson
- Department of Medicine, Division of Cardiology, Washington University School of Medicine, Saint Louis, Missouri
| |
Collapse
|
17
|
Phillips GR, Saville JT, Hancock SE, Brown SHJ, Jenner AM, McLean C, Fuller M, Newell KA, Mitchell TW. The long and the short of Huntington’s disease: how the sphingolipid profile is shifted in the caudate of advanced clinical cases. Brain Commun 2021; 4:fcab303. [PMID: 35169703 PMCID: PMC8833324 DOI: 10.1093/braincomms/fcab303] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/27/2021] [Accepted: 12/21/2021] [Indexed: 01/01/2023] Open
Abstract
Huntington’s disease is a devastating neurodegenerative disorder that onsets in late adulthood as progressive and terminal cognitive, psychiatric and motor deficits. The disease is genetic, triggered by a CAG repeat (polyQ) expansion mutation in the Huntingtin gene and resultant huntingtin protein. Although the mutant huntingtin protein is ubiquitously expressed, the striatum degenerates early and consistently in the disease. The polyQ mutation at the N-terminus of the huntingtin protein alters its natural interactions with neural phospholipids in vitro, suggesting that the specific lipid composition of brain regions could influence their vulnerability to interference by mutant huntingtin; however, this has not yet been demonstrated in vivo. Sphingolipids are critical cell signalling molecules, second messengers and membrane components. Despite evidence of sphingolipid disturbance in Huntington’s mouse and cell models, there is limited knowledge of how these lipids are affected in human brain tissue. Using post-mortem brain tissue from five brain regions implicated in Huntington’s disease (control n = 13, Huntington’s n = 13), this study aimed to identify where and how sphingolipid species are affected in the brain of clinically advanced Huntington’s cases. Sphingolipids were extracted from the tissue and analysed using targeted mass spectrometry analysis; proteins were analysed by western blot. The caudate, putamen and cerebellum had distinct sphingolipid changes in Huntington’s brain whilst the white and grey frontal cortex were spared. The caudate of Huntington’s patients had a shifted sphingolipid profile, favouring long (C13–C21) over very-long-chain (C22–C26) ceramides, sphingomyelins and lactosylceramides. Ceramide synthase 1, which synthesizes the long-chain sphingolipids, had a reduced expression in Huntington’s caudate, correlating positively with a younger age at death and a longer CAG repeat length of the Huntington’s patients. The expression of ceramide synthase 2, which synthesizes very-long-chain sphingolipids, was not different in Huntington’s brain. However, there was evidence of possible post-translational modifications in the Huntington’s patients only. Post-translational modifications to ceramide synthase 2 may be driving the distinctive sphingolipid profile shifts of the caudate in advanced Huntington’s disease. This shift in the sphingolipid profile is also found in the most severely affected brain regions of several other neurodegenerative conditions and may be an important feature of region-specific cell dysfunction in neurodegenerative disease.
Collapse
Affiliation(s)
- Gabrielle R. Phillips
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
- School of Medicine, University of Wollongong, Wollongong, NSW 2522, Australia
- Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Jennifer T. Saville
- Genetics and Molecular Pathology, SA Pathology at Women’s and Children’s Hospital, North Adelaide, SA 5006, Australia
| | - Sarah E. Hancock
- School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Simon H. J. Brown
- Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
- School of Chemistry and Molecular Biosciences, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Andrew M. Jenner
- Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW 2052, Australia
| | - Catriona McLean
- Department of Anatomical Pathology, Alfred Health and Florey Neuroscience, Parkville, VIC 3052, Australia
| | - Maria Fuller
- Genetics and Molecular Pathology, SA Pathology at Women’s and Children’s Hospital, North Adelaide, SA 5006, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5000, Australia
| | - Kelly A. Newell
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
- School of Medicine, University of Wollongong, Wollongong, NSW 2522, Australia
- Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Todd W. Mitchell
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
- School of Medicine, University of Wollongong, Wollongong, NSW 2522, Australia
- Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
| |
Collapse
|
18
|
Chung LH, Liu D, Liu XT, Qi Y. Ceramide Transfer Protein (CERT): An Overlooked Molecular Player in Cancer. Int J Mol Sci 2021; 22:13184. [PMID: 34947980 PMCID: PMC8705978 DOI: 10.3390/ijms222413184] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/02/2021] [Accepted: 12/05/2021] [Indexed: 12/26/2022] Open
Abstract
Sphingolipids are a class of essential lipids implicated in constructing cellular membranes and regulating nearly all cellular functions. Sphingolipid metabolic network is centered with the ceramide-sphingomyelin axis. Ceramide is well-recognized as a pro-apoptotic signal; while sphingomyelin, as the most abundant type of sphingolipids, is required for cell growth. Therefore, the balance between these two sphingolipids can be critical for cancer cell survival and functioning. Ceramide transfer protein (CERT) dictates the ratio of ceramide to sphingomyelin within the cell. It is the only lipid transfer protein that specifically delivers ceramide from the endoplasmic reticulum to the Golgi apparatus, where ceramide serves as the substrate for sphingomyelin synthesis. In the past two decades, an increasing body of evidence has suggested a critical role of CERT in cancer, but much more intensive efforts are required to draw a definite conclusion. Herein, we review all research findings of CERT, focusing on its molecular structure, cellular functions and implications in cancer. This comprehensive review of CERT will help to better understand the molecular mechanism of cancer and inspire to identify novel druggable targets.
Collapse
Affiliation(s)
- Long Hoa Chung
- Centenary Institute of Cancer Medicine and Cell Biology, University of Sydney, Camperdown, NSW 2050, Australia; (D.L.); (X.T.L.)
| | | | | | - Yanfei Qi
- Centenary Institute of Cancer Medicine and Cell Biology, University of Sydney, Camperdown, NSW 2050, Australia; (D.L.); (X.T.L.)
| |
Collapse
|
19
|
Trapika IGMGSC, Liu XT, Chung LH, Lai F, Xie C, Zhao Y, Cui S, Chen J, Tran C, Wang Q, Zhang S, Don AS, Li GQ, Hanrahan JR, Qi Y. Ceramide Regulates Anti-Tumor Mechanisms of Erianin in Androgen-Sensitive and Castration-Resistant Prostate Cancers. Front Oncol 2021; 11:738078. [PMID: 34604081 PMCID: PMC8484793 DOI: 10.3389/fonc.2021.738078] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/02/2021] [Indexed: 01/09/2023] Open
Abstract
Prostate cancer is the second most prevalent malignancy worldwide. In the early stages, the development of prostate cancer is dependent on androgens. Over time with androgen deprivation therapy, 20% of prostate cancers progress to a castration-resistant form. Novel treatments for prostate cancers are still urgently needed. Erianin is a plant-derived bibenzyl compound. We report herein that erianin exhibits anti-tumor effects in androgen-sensitive and castration-resistant prostate cancer cells through different mechanisms. Erianin induces endoplasmic reticulum stress-associated apoptosis in androgen-sensitive prostate cancer cells. It also triggers pro-survival autophagic responses, as inhibition of autophagy predisposes to apoptosis. In contrast, erianin fails to induce apoptosis in castration-resistant prostate cancer cells. Instead, it results in cell cycle arrest at the M phase. Mechanistically, C16 ceramide dictates differential responses of androgen-sensitive and castration-resistant prostate cancer cells to erianin. Erianin elevates C16 ceramide level in androgen-sensitive but not castration-resistant prostate cancer cells. Overexpression of ceramide synthase 5 that specifically produces C16 ceramide enables erianin to induce apoptosis in castration-resistant prostate cancer cells. Our study provides both experimental evidence and mechanistic data showing that erianin is a potential treatment option for prostate cancers.
Collapse
Affiliation(s)
- I Gusti Md Gde Surya C. Trapika
- Centenary Institute of Cancer Medicine and Cell Biology, University of Sydney, Camperdown, NSW, Australia,School of Pharmacy, Faculty of Health and Medicine, University of Sydney, Camperdown, NSW, Australia
| | - Xin Tracy Liu
- Centenary Institute of Cancer Medicine and Cell Biology, University of Sydney, Camperdown, NSW, Australia
| | - Long Hoa Chung
- Centenary Institute of Cancer Medicine and Cell Biology, University of Sydney, Camperdown, NSW, Australia
| | - Felcia Lai
- Centenary Institute of Cancer Medicine and Cell Biology, University of Sydney, Camperdown, NSW, Australia,School of Pharmacy, Faculty of Health and Medicine, University of Sydney, Camperdown, NSW, Australia
| | - Chanlu Xie
- Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, NSW, Australia,Chinese Medicine Anti-Cancer Evaluation Program, Central Clinical School, University of Sydney, Camperdown, NSW, Australia
| | - Yang Zhao
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shaohui Cui
- Key Laboratory of Biotechnology and Biorescources Utilization of Ministry of Education, Dalian Minzu University, Dalian, China
| | - Jinbiao Chen
- Centenary Institute of Cancer Medicine and Cell Biology, University of Sydney, Camperdown, NSW, Australia
| | - Collin Tran
- Centenary Institute of Cancer Medicine and Cell Biology, University of Sydney, Camperdown, NSW, Australia
| | - Qian Wang
- Translational Cancer Metabolism Laboratory, School of Medical Sciences and Prince of Wales Clinical School, UNSW, Sydney, NSW, Australia
| | - Shubiao Zhang
- Key Laboratory of Biotechnology and Biorescources Utilization of Ministry of Education, Dalian Minzu University, Dalian, China
| | - Anthony S. Don
- Centenary Institute of Cancer Medicine and Cell Biology, University of Sydney, Camperdown, NSW, Australia,School of Medical Sciences, Faculty of Health and Medicine, University of Sydney, Camperdown, NSW, Australia
| | - George Qian Li
- School of Pharmacy, Faculty of Health and Medicine, University of Sydney, Camperdown, NSW, Australia
| | - Jane R. Hanrahan
- School of Pharmacy, Faculty of Health and Medicine, University of Sydney, Camperdown, NSW, Australia,*Correspondence: Yanfei Qi, ; Jane R. Hanrahan,
| | - Yanfei Qi
- Centenary Institute of Cancer Medicine and Cell Biology, University of Sydney, Camperdown, NSW, Australia,*Correspondence: Yanfei Qi, ; Jane R. Hanrahan,
| |
Collapse
|
20
|
Yamamoto M, Sassa T, Kyono Y, Uemura H, Kugo M, Hayashi H, Imai Y, Yamanishi K, Kihara A. Comprehensive stratum corneum ceramide profiling reveals reduced acylceramides in ichthyosis patient with CERS3 mutations. J Dermatol 2021; 48:447-456. [PMID: 33492757 DOI: 10.1111/1346-8138.15725] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/04/2020] [Accepted: 11/23/2020] [Indexed: 11/27/2022]
Abstract
The stratum corneum (SC) of the epidermis acts as a skin permeability barrier, and abnormalities in SC formation lead to several skin disorders. Lipids, especially the epidermis-specific ceramide classes ω-O-acylceramides (acylceramides) and protein-bound ceramides, are essential for skin barrier formation. Ceramide synthase 3 (CERS3) is involved in the synthesis of acylceramides and protein-bound ceramides, and CERS3 mutations cause autosomal recessive congenital ichthyosis. In the present study, we measured ceramide synthase activity and performed comprehensive SC ceramide profiling in an ichthyosis patient with compound heterozygous CERS3 mutations: nonsense mutation p.Arg75* and missense mutation p.Arg229His. The activity of p.Arg75* and p.Arg229His mutant CERS3 proteins was reduced to 4% and 56%, respectively, of the wild-type protein. In the patient's SC, acylceramide levels were greatly reduced, but the levels of protein-bound ceramides remained almost unchanged. Non-acylated ceramide levels were also affected in the patient; in particular, the levels of ceramides composed of sphingosine and non-hydroxy or α-hydroxy fatty acid were substantially higher than in healthy controls. These results suggest that a reduction in acylceramide levels alone leads to ichthyosis. Although protein-bound ceramides are synthesized from acylceramides, levels of acylceramides and protein-bound ceramides are not necessarily correlated.
Collapse
Affiliation(s)
- Moe Yamamoto
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Takayuki Sassa
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Yuki Kyono
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hiroyasu Uemura
- Department of Pediatrics, Japanese Red Cross Society Himeji Hospital, Himeji, Japan
| | - Masaaki Kugo
- Department of Pediatrics, Japanese Red Cross Society Himeji Hospital, Himeji, Japan
| | - Hideki Hayashi
- Department of Dermatology, Hyogo College of Medicine, Nishinomiya, Japan
| | - Yasutomo Imai
- Department of Dermatology, Hyogo College of Medicine, Nishinomiya, Japan
| | - Kiyofumi Yamanishi
- Department of Dermatology, Hyogo College of Medicine, Nishinomiya, Japan
| | - Akio Kihara
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| |
Collapse
|
21
|
Proteomics analysis of human intestinal organoids during hypoxia and reoxygenation as a model to study ischemia-reperfusion injury. Cell Death Dis 2021; 12:95. [PMID: 33462215 PMCID: PMC7813872 DOI: 10.1038/s41419-020-03379-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 12/15/2022]
Abstract
Intestinal ischemia-reperfusion (IR) injury is associated with high mortality rates, which have not improved in the past decades despite advanced insight in its pathophysiology using in vivo animal and human models. The inability to translate previous findings to effective therapies emphasizes the need for a physiologically relevant in vitro model to thoroughly investigate mechanisms of IR-induced epithelial injury and test potential therapies. In this study, we demonstrate the use of human small intestinal organoids to model IR injury by exposing organoids to hypoxia and reoxygenation (HR). A mass-spectrometry-based proteomics approach was applied to characterize organoid differentiation and decipher protein dynamics and molecular mechanisms of IR injury in crypt-like and villus-like human intestinal organoids. We showed successful separation of organoids exhibiting a crypt-like proliferative phenotype, and organoids exhibiting a villus-like phenotype, enriched for enterocytes and goblet cells. Functional enrichment analysis of significantly changing proteins during HR revealed that processes related to mitochondrial metabolism and organization, other metabolic processes, and the immune response were altered in both organoid phenotypes. Changes in protein metabolism, as well as mitophagy pathway and protection against oxidative stress were more pronounced in crypt-like organoids, whereas cellular stress and cell death associated protein changes were more pronounced in villus-like organoids. Profile analysis highlighted several interesting proteins showing a consistent temporal profile during HR in organoids from different origin, such as NDRG1, SDF4 or DMBT1. This study demonstrates that the HR response in human intestinal organoids recapitulates properties of the in vivo IR response. Our findings provide a framework for further investigations to elucidate underlying mechanisms of IR injury in crypt and/or villus separately, and a model to test therapeutics to prevent IR injury.
Collapse
|
22
|
Cholesterol and Sphingolipid Enriched Lipid Rafts as Therapeutic Targets in Cancer. Int J Mol Sci 2021; 22:ijms22020726. [PMID: 33450869 PMCID: PMC7828315 DOI: 10.3390/ijms22020726] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/09/2021] [Accepted: 01/11/2021] [Indexed: 02/07/2023] Open
Abstract
Lipid rafts are critical cell membrane lipid platforms enriched in sphingolipid and cholesterol content involved in diverse cellular processes. They have been proposed to influence membrane properties and to accommodate receptors within themselves by facilitating their interaction with ligands. Over the past decade, technical advances have improved our understanding of lipid rafts as bioactive structures. In this review, we will cover the more recent findings about cholesterol, sphingolipids and lipid rafts located in cellular and nuclear membranes in cancer. Collectively, the data provide insights on the role of lipid rafts as biomolecular targets in cancer with good perspectives for the development of innovative therapeutic strategies.
Collapse
|
23
|
Saorin A, Di Gregorio E, Miolo G, Steffan A, Corona G. Emerging Role of Metabolomics in Ovarian Cancer Diagnosis. Metabolites 2020; 10:E419. [PMID: 33086611 PMCID: PMC7603269 DOI: 10.3390/metabo10100419] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 01/20/2023] Open
Abstract
Ovarian cancer is considered a silent killer due to the lack of clear symptoms and efficient diagnostic tools that often lead to late diagnoses. Over recent years, the impelling need for proficient biomarkers has led researchers to consider metabolomics, an emerging omics science that deals with analyses of the entire set of small-molecules (≤1.5 kDa) present in biological systems. Metabolomics profiles, as a mirror of tumor-host interactions, have been found to be useful for the analysis and identification of specific cancer phenotypes. Cancer may cause significant metabolic alterations to sustain its growth, and metabolomics may highlight this, making it possible to detect cancer in an early phase of development. In the last decade, metabolomics has been widely applied to identify different metabolic signatures to improve ovarian cancer diagnosis. The aim of this review is to update the current status of the metabolomics research for the discovery of new diagnostic metabolomic biomarkers for ovarian cancer. The most promising metabolic alterations are discussed in view of their potential biological implications, underlying the issues that limit their effective clinical translation into ovarian cancer diagnostic tools.
Collapse
Affiliation(s)
- Asia Saorin
- Immunopathology and Cancer Biomarkers Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; (A.S.); (E.D.G.); (A.S.)
| | - Emanuela Di Gregorio
- Immunopathology and Cancer Biomarkers Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; (A.S.); (E.D.G.); (A.S.)
| | - Gianmaria Miolo
- Medical Oncology and Cancer Prevention Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy;
| | - Agostino Steffan
- Immunopathology and Cancer Biomarkers Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; (A.S.); (E.D.G.); (A.S.)
| | - Giuseppe Corona
- Immunopathology and Cancer Biomarkers Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; (A.S.); (E.D.G.); (A.S.)
| |
Collapse
|
24
|
Seo S, Murata M, Shinoda W. Pivotal Role of Interdigitation in Interleaflet Interactions: Implications from Molecular Dynamics Simulations. J Phys Chem Lett 2020; 11:5171-5176. [PMID: 32515980 DOI: 10.1021/acs.jpclett.0c01317] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The asymmetric lipid composition in plasma membranes within the inner leaflet is not typically suitable for domain formation. Thus elucidation of the likelihood of the formation or stability of a raft-like domain in the inner leaflet is necessary. Herein we investigated the phase behavior of asymmetric membranes using coarse-grained molecular dynamics simulations. The lipid leaflet comprising dioleoylphosphatidylcholine (DOPC) and cholesterol (Chol) does not typically show well-developed domains in symmetric bilayer membranes; however, it does separate into liquid ordered (Lo) and liquid disordered (Ld) phases when the opposing leaflet containing sphingomyelin (SM), DOPC, and Chol demonstrates domain formation. We determine that interdigitated acyl chains modulated the partitioning of Chol in the opposing leaflet, resulting in phase separation. Similarly, the acyl chain length of SM within the opposing leaflet affected the phase behavior of the leaflet. Our results reveal the crucial role of interdigitation in determining the phase status in asymmetric membranes.
Collapse
Affiliation(s)
- Sangjae Seo
- Department of Materials Chemistry, Nagoya University, Nagoya 464-8603, Japan
- Korean Institute of Science and Technology Information, Daejeon 34141, Republic of Korea
| | - Michio Murata
- Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Wataru Shinoda
- Department of Materials Chemistry, Nagoya University, Nagoya 464-8603, Japan
| |
Collapse
|
25
|
Chung HL, Wangler MF, Marcogliese PC, Jo J, Ravenscroft TA, Zuo Z, Duraine L, Sadeghzadeh S, Li-Kroeger D, Schmidt RE, Pestronk A, Rosenfeld JA, Burrage L, Herndon MJ, Chen S, Shillington A, Vawter-Lee M, Hopkin R, Rodriguez-Smith J, Henrickson M, Lee B, Moser AB, Jones RO, Watkins P, Yoo T, Mar S, Choi M, Bucelli RC, Yamamoto S, Lee HK, Prada CE, Chae JH, Vogel TP, Bellen HJ. Loss- or Gain-of-Function Mutations in ACOX1 Cause Axonal Loss via Different Mechanisms. Neuron 2020; 106:589-606.e6. [PMID: 32169171 PMCID: PMC7289150 DOI: 10.1016/j.neuron.2020.02.021] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 01/03/2020] [Accepted: 02/13/2020] [Indexed: 12/01/2022]
Abstract
ACOX1 (acyl-CoA oxidase 1) encodes the first and rate-limiting enzyme of the very-long-chain fatty acid (VLCFA) β-oxidation pathway in peroxisomes and leads to H2O2 production. Unexpectedly, Drosophila (d) ACOX1 is mostly expressed and required in glia, and loss of ACOX1 leads to developmental delay, pupal death, reduced lifespan, impaired synaptic transmission, and glial and axonal loss. Patients who carry a previously unidentified, de novo, dominant variant in ACOX1 (p.N237S) also exhibit glial loss. However, this mutation causes increased levels of ACOX1 protein and function resulting in elevated levels of reactive oxygen species in glia in flies and murine Schwann cells. ACOX1 (p.N237S) patients exhibit a severe loss of Schwann cells and neurons. However, treatment of flies and primary Schwann cells with an antioxidant suppressed the p.N237S-induced neurodegeneration. In summary, both loss and gain of ACOX1 lead to glial and neuronal loss, but different mechanisms are at play and require different treatments.
Collapse
Affiliation(s)
- Hyung-Lok Chung
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA
| | - Michael F Wangler
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Paul C Marcogliese
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Juyeon Jo
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Department of Pediatrics, Section of Neurology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Thomas A Ravenscroft
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Zhongyuan Zuo
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Lita Duraine
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sina Sadeghzadeh
- Department of Psychology, Harvard University, Cambridge, MA 02138, USA
| | - David Li-Kroeger
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Robert E Schmidt
- Department of Pathology and Immunology, Division of Neuropathology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Alan Pestronk
- Department of Pathology and Immunology, Division of Neuropathology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lindsay Burrage
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mitchell J Herndon
- Department of Pathology and Immunology, Division of Neuropathology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Shan Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Amelle Shillington
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Marissa Vawter-Lee
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA; Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Robert Hopkin
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Jackeline Rodriguez-Smith
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA; Division of Rheumatology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Michael Henrickson
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA; Division of Rheumatology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Brendan Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ann B Moser
- Division of Neurogenetics, Kennedy Krieger Institute, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Richard O Jones
- Division of Neurogenetics, Kennedy Krieger Institute, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Paul Watkins
- Division of Neurogenetics, Kennedy Krieger Institute, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Taekyeong Yoo
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Soe Mar
- Department of Neurology, St. Louis Children's Hospital, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Murim Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Pediatrics, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Robert C Bucelli
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Shinya Yamamoto
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hyun Kyoung Lee
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pediatrics, Section of Neurology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Carlos E Prada
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Jong-Hee Chae
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Tiphanie P Vogel
- Department of Pediatrics, Section of Rheumatology, Baylor College of Medicine, Center for Human Immunobiology, Texas Children's Hospital, Houston, TX 77030, USA
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA; Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
26
|
Markowski AR, Błachnio-Zabielska AU, Guzińska-Ustymowicz K, Markowska A, Pogodzińska K, Roszczyc K, Zińczuk J, Zabielski P. Ceramides Profile Identifies Patients with More Advanced Stages of Colorectal Cancer. Biomolecules 2020; 10:E632. [PMID: 32325909 PMCID: PMC7225954 DOI: 10.3390/biom10040632] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/09/2020] [Accepted: 04/15/2020] [Indexed: 12/14/2022] Open
Abstract
Much attention is paid to different sphingolipid pathways because of their possible use in diagnostics and treatment. However, the activity status and significance of ceramide pathways in colorectal cancer are still unclear. We analyzed colorectal cancer patients to evaluate sphingolipid profiles in the blood, colorectal cancer (CRC) tissues, and healthy surrounding colorectal tissues of the same patient, simultaneously, using liquid chromatography coupled with triple quadrupole mass spectrometry. Furthermore, we measured protein expression of de novo ceramide synthesis enzymes and mitochondrial markers in tissues using western blot. We confirmed the different sphingolipid contents in colorectal cancer tissue compared to healthy surrounding tissues. Furthermore, we showed changed amounts of several ceramides in more advanced colorectal cancer tissue and found a prominently higher circulating level of several of them. Moreover, we observed a relationship between the amounts of some ceramide species in colorectal cancer tissue and plasma depending on the stage of colorectal cancer according to TNM (tumors, nodes, metastasis) classification. We think that the combined measurement of several ceramide concentrations in plasma can help distinguish early-stage lesions from advanced colorectal cancer and can help produce a screening test to detect early colorectal cancer.
Collapse
Affiliation(s)
- Adam R. Markowski
- Department of Internal Medicine and Gastroenterology, Polish Red Cross Memorial Municipal Hospital, 79 Henryk Sienkiewicz Street, 15-003 Bialystok, Poland
| | - Agnieszka U. Błachnio-Zabielska
- Department of Hygiene, Epidemiology and Metabolic Disorders, Medical University of Bialystok, 2C Adam Mickiewicz Street, 15-222 Bialystok, Poland; (A.U.B.-Z.); (K.P.)
| | - Katarzyna Guzińska-Ustymowicz
- Department of General Pathomorphology, Medical University of Bialystok, 13 Jerzy Waszyngton Street, 15-269 Bialystok, Poland
| | - Agnieszka Markowska
- Department of Organic Chemistry, Medical University of Bialystok, 2A Adam Mickiewicz Street, 15-222 Bialystok, Poland;
| | - Karolina Pogodzińska
- Department of Hygiene, Epidemiology and Metabolic Disorders, Medical University of Bialystok, 2C Adam Mickiewicz Street, 15-222 Bialystok, Poland; (A.U.B.-Z.); (K.P.)
| | - Kamila Roszczyc
- Department of Medical Biology, Medical University of Bialystok, 2C Adam Mickiewicz Street, 15-222 Bialystok, Poland; (K.R.); (P.Z.)
| | - Justyna Zińczuk
- Department of Clinical Laboratory Diagnostics, Medical University of Bialystok, 15A Jerzy Waszyngton Street, 15-269 Bialystok, Poland;
| | - Piotr Zabielski
- Department of Medical Biology, Medical University of Bialystok, 2C Adam Mickiewicz Street, 15-222 Bialystok, Poland; (K.R.); (P.Z.)
| |
Collapse
|
27
|
Caveolin-1 regulates the ASMase/ceramide-mediated radiation response of endothelial cells in the context of tumor-stroma interactions. Cell Death Dis 2020; 11:228. [PMID: 32273493 PMCID: PMC7145831 DOI: 10.1038/s41419-020-2418-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 03/18/2020] [Accepted: 03/20/2020] [Indexed: 12/21/2022]
Abstract
The integral membrane protein caveolin-1 (CAV1) plays a central role in radioresistance-mediating tumor–stroma interactions of advanced prostate cancer (PCa). Among the tumor–stroma, endothelial cells (EC) evolved as critical determinants of the radiation response. CAV1 deficiency in angiogenic EC was already shown to account for increased apoptosis rates of irradiated EC. This study explores the potential impact of differential CAV1 levels in EC on the acid sphingomyelinase (ASMase)/ceramide pathway as a key player in the regulation of EC apoptosis upon irradiation and cancer cell radioresistance. Enhanced apoptosis sensitivity of CAV1-deficient EC was associated with increased ASMase activity, ceramide generation, formation of large lipid platforms, and finally an altered p38 mitogen-activated protein kinase (MAPK)/heat-shock protein 27 (HSP27)/AKT (protein kinase B, PKB) signaling. CAV1-deficient EC increased the growth delay of LNCaP and PC3 PCa cells upon radiation treatment in direct 3D spheroid co-cultures. Exogenous C6 and C16 ceramide treatment in parallel increased the growth delay of PCa spheroids and induced PCa cell apoptosis. Analysis of the respective ceramide species in PCa cells with increased CAV1 levels like those typically found in radio-resistant advanced prostate tumors further revealed an upregulation of unsaturated C24:1 ceramide that might scavenge the effects of EC-derived apoptosis-inducing C16 ceramide. Higher ASMase as well as ceramide levels could be confirmed by immunohistochemistry in human advanced prostate cancer specimen bearing characteristic CAV1 tumor–stroma alterations. Conclusively, CAV1 critically regulates the generation of ceramide-dependent (re-)organization of the plasma membrane that in turn affects the radiation response of EC and adjacent PCa cells. Understanding the CAV1-dependent crosstalk between tumor cells and the host-derived tumor microvasculature and its impact on radiosensitivity may allow to define a rational strategy for overcoming tumor radiation resistance improving clinical outcomes by targeting CAV1.
Collapse
|
28
|
Davis DL, Mahawar U, Pope VS, Allegood J, Sato-Bigbee C, Wattenberg BW. Dynamics of sphingolipids and the serine palmitoyltransferase complex in rat oligodendrocytes during myelination. J Lipid Res 2020; 61:505-522. [PMID: 32041816 DOI: 10.1194/jlr.ra120000627] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/05/2020] [Indexed: 12/30/2022] Open
Abstract
Myelin is a unique lipid-rich membrane structure that accelerates neurotransmission and supports neuronal function. Sphingolipids are critical myelin components. Yet sphingolipid content and synthesis have not been well characterized in oligodendrocytes, the myelin-producing cells of the CNS. Here, using quantitative real-time PCR, LC-MS/MS-based lipid analysis, and biochemical assays, we examined sphingolipid synthesis during the peak period of myelination in the postnatal rat brain. Importantly, we characterized sphingolipid production in isolated oligodendrocytes. We analyzed sphingolipid distribution and levels of critical enzymes and regulators in the sphingolipid biosynthetic pathway, with focus on the serine palmitoyltransferase (SPT) complex, the rate-limiting step in this pathway. During myelination, levels of the major SPT subunits increased and oligodendrocyte maturation was accompanied by extensive alterations in the composition of the SPT complex. These included changes in the relative levels of two alternative catalytic subunits, SPTLC2 and -3, in the relative levels of isoforms of the small subunits, ssSPTa and -b, and in the isoform distribution of the SPT regulators, the ORMDLs. Myelination progression was accompanied by distinct changes in both the nature of the sphingoid backbone and the N-acyl chains incorporated into sphingolipids. We conclude that the distribution of these changes among sphingolipid family members is indicative of a selective channeling of the ceramide backbone toward specific downstream metabolic pathways during myelination. Our findings provide insights into myelin production in oligodendrocytes and suggest how dysregulation of the biosynthesis of this highly specialized membrane could contribute to demyelinating diseases.
Collapse
Affiliation(s)
- Deanna L Davis
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - Usha Mahawar
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - Victoria S Pope
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - Jeremy Allegood
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - Carmen Sato-Bigbee
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - Binks W Wattenberg
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298
| |
Collapse
|
29
|
Cresci S, Zhang R, Yang Q, Duncan MS, Xanthakis V, Jiang X, Vasan RS, Schaffer JE, Peterson LR. Genetic Architecture of Circulating Very-Long-Chain (C24:0 and C22:0) Ceramide Concentrations. J Lipid Atheroscler 2020; 9:172-183. [PMID: 32489964 PMCID: PMC7266332 DOI: 10.12997/jla.2020.9.1.172] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 11/25/2019] [Accepted: 12/10/2019] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVE Total ceramide concentrations are linked with increased insulin resistance and cardiac dysfunction. However, recent studies have demonstrated that plasma concentrations of specific very-long-chain fatty ceramides (C24:0 and C22:0) are associated with a reduced incidence of coronary heart disease and all-cause mortality. We hypothesized that specific genetic loci are associated with plasma C22:0 and C24:0 concentrations. METHODS Heritability and genome-wide association studies of plasma C24:0 and C22:0 ceramide concentrations were performed among 2,217 participants in the Framingham Heart Study Offspring Cohort, adjusting for cardiovascular risk factor covariates and cardiovascular drug treatment. RESULTS The multivariable-adjusted heritability for C22:0 and C24:0 ceramides was 0.42 (standard error [SE], 0.07; p=1.8E-9) and 0.25 (SE, 0.08; p=0.00025), respectively. Nineteen single nucleotide polymorphisms (SNPs), all on chromosome 20, significantly associated with C22:0 concentrations; the closest gene to these variants was SPTLC3. The lead SNP (rs4814175) significantly associated with 3% lower plasma C22:0 concentrations (p=2.83E-11). Nine SNPs, all on chromosome 20 and close to SPTLC3, were significantly associated with C24:0 ceramide concentrations. All 9 were also significantly related to plasma C22:0 levels. The lead SNP (rs168622) was significantly associated with 10% lower plasma C24:0 ceramide concentrations (p=9.94E-09). CONCLUSION SNPs near the SPTLC3 gene, which encodes serine palmitoyltransferase long chain base subunit 3 (SPTLC3; part of the enzyme that catalyzes the rate-limiting step of de novo sphingolipid synthesis) were associated with plasma C22:0 and C24:0 ceramide concentrations. These results are biologically plausible and suggest that SPTLC3 may be a potential therapeutic target for C24:0 and C22:0 ceramide modulation.
Collapse
Affiliation(s)
- Sharon Cresci
- Diabetic Cardiovascular Disease Center, Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Ruibo Zhang
- Department of Biostatistics and Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Qiong Yang
- Department of Biostatistics and Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Meredith S. Duncan
- Division of Cardiovascular Medicine and Epidemiology, Vanderbilt University Medical Center, Nashville, TN, USA
- Framingham Heart Study, Framingham, MA, USA
- Section of Preventive Medicine and Epidemiology, Department of Medicine, Boston University, Boston, MA, USA
| | - Vanessa Xanthakis
- Department of Biostatistics and Epidemiology, Boston University School of Public Health, Boston, MA, USA
- Division of Cardiovascular Medicine and Epidemiology, Vanderbilt University Medical Center, Nashville, TN, USA
- Framingham Heart Study, Framingham, MA, USA
| | - Xuntian Jiang
- Diabetic Cardiovascular Disease Center, Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Ramachandran S Vasan
- Department of Biostatistics and Epidemiology, Boston University School of Public Health, Boston, MA, USA
- Section of Preventive Medicine and Epidemiology, Department of Medicine, Boston University, Boston, MA, USA
- Section of Cardiology, Department of Medicine, Boston University, Boston, MA, USA
| | - Jean E. Schaffer
- Diabetic Cardiovascular Disease Center, Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Linda R. Peterson
- Diabetic Cardiovascular Disease Center, Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
30
|
Machala M, Procházková J, Hofmanová J, Králiková L, Slavík J, Tylichová Z, Ovesná P, Kozubík A, Vondráček J. Colon Cancer and Perturbations of the Sphingolipid Metabolism. Int J Mol Sci 2019; 20:E6051. [PMID: 31801289 PMCID: PMC6929044 DOI: 10.3390/ijms20236051] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/25/2019] [Accepted: 11/28/2019] [Indexed: 12/20/2022] Open
Abstract
The development and progression of colorectal cancer (CRC), a major cause of cancer-related death in the western world, is accompanied with alterations of sphingolipid (SL) composition in colon tumors. A number of enzymes involved in the SL metabolism have been found to be deregulated in human colon tumors, in experimental rodent studies, and in human colon cancer cells in vitro. Therefore, the enzymatic pathways that modulate SL levels have received a significant attention, due to their possible contribution to CRC development, or as potential therapeutic targets. Many of these enzymes are associated with an increased sphingosine-1-phosphate/ceramide ratio, which is in turn linked with increased colon cancer cell survival, proliferation and cancer progression. Nevertheless, more attention should also be paid to the more complex SLs, including specific glycosphingolipids, such as lactosylceramides, which can be also deregulated during CRC development. In this review, we focus on the potential roles of individual SLs/SL metabolism enzymes in colon cancer, as well as on the pros and cons of employing the current in vitro models of colon cancer cells for lipidomic studies investigating the SL metabolism in CRC.
Collapse
Affiliation(s)
- Miroslav Machala
- Department of Chemistry and Toxicology, Veterinary Research Institute, Hudcova 296/70, 62100 Brno, Czech Republic; (J.P.); (L.K.); (J.S.)
| | - Jiřina Procházková
- Department of Chemistry and Toxicology, Veterinary Research Institute, Hudcova 296/70, 62100 Brno, Czech Republic; (J.P.); (L.K.); (J.S.)
| | - Jiřina Hofmanová
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 61265 Brno, Czech Republic; (J.H.); (Z.T.); (P.O.); (A.K.); (J.V.)
| | - Lucie Králiková
- Department of Chemistry and Toxicology, Veterinary Research Institute, Hudcova 296/70, 62100 Brno, Czech Republic; (J.P.); (L.K.); (J.S.)
| | - Josef Slavík
- Department of Chemistry and Toxicology, Veterinary Research Institute, Hudcova 296/70, 62100 Brno, Czech Republic; (J.P.); (L.K.); (J.S.)
| | - Zuzana Tylichová
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 61265 Brno, Czech Republic; (J.H.); (Z.T.); (P.O.); (A.K.); (J.V.)
| | - Petra Ovesná
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 61265 Brno, Czech Republic; (J.H.); (Z.T.); (P.O.); (A.K.); (J.V.)
- Institute of Biostatistics and Analyses, Faculty of Medicine, Masaryk University, Poštovská 68/3, 60200 Brno, Czech Republic
| | - Alois Kozubík
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 61265 Brno, Czech Republic; (J.H.); (Z.T.); (P.O.); (A.K.); (J.V.)
| | - Jan Vondráček
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 61265 Brno, Czech Republic; (J.H.); (Z.T.); (P.O.); (A.K.); (J.V.)
| |
Collapse
|
31
|
Kim YR, Lee EJ, Shin KO, Kim MH, Pewzner-Jung Y, Lee YM, Park JW, Futerman AH, Park WJ. Hepatic triglyceride accumulation via endoplasmic reticulum stress-induced SREBP-1 activation is regulated by ceramide synthases. Exp Mol Med 2019; 51:1-16. [PMID: 31676768 PMCID: PMC6825147 DOI: 10.1038/s12276-019-0340-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 08/27/2019] [Accepted: 09/25/2019] [Indexed: 12/25/2022] Open
Abstract
The endoplasmic reticulum (ER) is not only important for protein synthesis and folding but is also crucial for lipid synthesis and metabolism. In the current study, we demonstrate an important role of ceramide synthases (CerS) in ER stress and NAFLD progression. Ceramide is important in sphingolipid metabolism, and its acyl chain length is determined by a family of six CerS in mammals. CerS2 generates C22-C24 ceramides, and CerS5 or CerS6 produces C16 ceramide. To gain insight into the role of CerS in NAFLD, we used a high-fat diet (HFD)-induced NAFLD mouse model. Decreased levels of CerS2 and increased levels of CerS6 were observed in the steatotic livers of mice fed a HFD. In vitro experiments with Hep3B cells indicated the protective role of CerS2 and the detrimental role of CerS6 in the ER stress response induced by palmitate treatment. In particular, CerS6 overexpression increased sterol regulatory element-binding protein-1 (SREBP-1) cleavage with decreased levels of INSIG-1, leading to increased lipogenesis. Blocking ER stress abrogated the detrimental effects of CerS6 on palmitate-induced SREBP-1 cleavage. In accordance with the protective role of CerS2 in the palmitate-induced ER stress response, CerS2 knockdown enhanced ER stress and SREBP-1 cleavage, and CerS2 heterozygote livers exhibited a stronger ER stress response and higher triglyceride levels following HFD. Finally, treatment with a low dose of bortezomib increased hepatic CerS2 expression and protected the development of NAFLD following HFD. These results indicate that CerS and its derivatives impact hepatic ER stress and lipogenesis differently and might be therapeutic targets for NAFLD. Promoting the activity of a protective membrane protein may help limit the development of non-alcoholic fatty liver disease (NAFLD) in obesity. Stress on a key cellular organelle, the endoplasmic reticulum (ER), contributes to NAFLD progression. Woo-Jae Park at Gachon University in Incheon, Joo-Won Park at Ewha Womans University, Seoul, and co-workers across South Korea have uncovered the role of a family of ER membrane proteins called ceramide synthases (CerS) in the regulation of ER stress during disease development. The team found increased levels of CerS6 in the livers of mouse fed a high-fat diet, while CerS2 decreased. The increased C16-ceramide by CerS6 overexpression triggered excess fat formation by increasing ER stress and SREBP-1 cleavage. However, when the team enhanced the expression of CerS2 using an existing chemotherapy drug, mice were protected from developing NAFLD.
Collapse
Affiliation(s)
- Ye-Ryung Kim
- Department of Biochemistry, College of Medicine, Ewha Womans University, Seoul, 07084, Republic of Korea
| | - Eun-Ji Lee
- Department of Biochemistry, College of Medicine, Ewha Womans University, Seoul, 07084, Republic of Korea.,Department of Biochemistry, College of Medicine, Gachon University, Incheon, 21999, Republic of Korea
| | - Kyong-Oh Shin
- College of Pharmacy, Chungbuk National University, Chongju, 28644, Republic of Korea
| | - Min Hee Kim
- Department of Biochemistry, College of Medicine, Gachon University, Incheon, 21999, Republic of Korea
| | - Yael Pewzner-Jung
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Yong-Moon Lee
- College of Pharmacy, Chungbuk National University, Chongju, 28644, Republic of Korea
| | - Joo-Won Park
- Department of Biochemistry, College of Medicine, Ewha Womans University, Seoul, 07084, Republic of Korea.
| | - Anthony H Futerman
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Woo-Jae Park
- Department of Biochemistry, College of Medicine, Gachon University, Incheon, 21999, Republic of Korea. .,Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, 21999, Republic of Korea.
| |
Collapse
|
32
|
Khiste SK, Liu Z, Roy KR, Uddin MB, Hosain SB, Gu X, Nazzal S, Hill RA, Liu YY. Ceramide-Rubusoside Nanomicelles, a Potential Therapeutic Approach to Target Cancers Carrying p53 Missense Mutations. Mol Cancer Ther 2019; 19:564-574. [PMID: 31645443 DOI: 10.1158/1535-7163.mct-19-0366] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 07/24/2019] [Accepted: 10/14/2019] [Indexed: 12/15/2022]
Abstract
Ceramide (Cer) is an active cellular sphingolipid that can induce apoptosis or proliferation-arrest of cancer cells. Nanoparticle-based delivery offers an effective approach for overcoming bioavailability and biopharmaceutics issues attributable to the pronounced hydrophobicity of Cer. Missense mutations of the protein p53, which have been detected in approximately 42% of cancer cases, not only lose the tumor suppression activity of wild-type p53, but also gain oncogenic functions promoting tumor progression and drug resistance. Our previous works showed that cellular Cer can eradicate cancer cells that carry a p53 deletion-mutation by modulating alternative pre-mRNA splicing, restoring wild-type p53 protein expression. Here, we report that new ceramide-rubusoside (Cer-RUB) nanomicelles considerably enhance Cer in vivo bioavailability and restore p53-dependent tumor suppression in cancer cells carrying a p53 missense mutation. Natural RUB encapsulated short-chain C6-Cer so as to form Cer-RUB nanomicelles (∼32 nm in diameter) that substantially enhanced Cer solubility and its levels in tissues and tumors of mice dosed intraperitoneally. Intriguingly, Cer-RUB nanomicelle treatments restored p53-dependent tumor suppression and sensitivity to cisplatin in OVCAR-3 ovarian cancer cells and xenograft tumors carrying p53 R248Q mutation. Moreover, Cer-RUB nanomicelles showed no signs of significant nonspecific toxicity to noncancerous cells or normal tissues, including bone marrow. Furthermore, Cer-RUB nanomicelles restored p53 phosphorylated protein and downstream function to wild-type levels in p53 R172H/+ transgenic mice. Altogether, this study, for the first time, indicates that natural Cer-RUB nanomicelles offer a feasible approach for efficaciously and safely targeting cancers carrying p53 missense mutations.
Collapse
Affiliation(s)
- Sachin K Khiste
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, Louisiana
| | - Zhijun Liu
- School of Renewable Natural Resources, Louisiana State University Agricultural Center, Baton Rouge, Louisiana
| | - Kartik R Roy
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, Louisiana
| | - Mohammad B Uddin
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, Louisiana
| | - Salman B Hosain
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, Louisiana
| | - Xin Gu
- Department of Pathology, Louisiana State University Health Sciences Center, Shreveport, Louisiana
| | - Sami Nazzal
- Department of Pharmaceutical Sciences, Texas Tech University Health Science Center, Dallas, Texas
| | - Ronald A Hill
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, Louisiana
| | - Yong-Yu Liu
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, Louisiana.
| |
Collapse
|
33
|
Yu FPS, Molino S, Sikora J, Rasmussen S, Rybova J, Tate E, Geurts AM, Turner PV, Mckillop WM, Medin JA. Hepatic pathology and altered gene transcription in a murine model of acid ceramidase deficiency. J Transl Med 2019; 99:1572-1592. [PMID: 31186526 DOI: 10.1038/s41374-019-0271-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 04/04/2019] [Accepted: 05/06/2019] [Indexed: 12/30/2022] Open
Abstract
Farber disease (FD) is a rare lysosomal storage disorder (LSD) characterized by systemic ceramide accumulation caused by a deficiency in acid ceramidase (ACDase). In its classic form, FD manifests with painful lipogranulomatous nodules in extremities and joints, respiratory complications, and neurological involvement. Hepatosplenomegaly is commonly reported, and severe cases of FD cite liver failure as a cause of early death. Mice homozygous for an orthologous patient mutation in the ACDase gene (Asah1P361R/P361R) recapitulate the classical form of human FD. In this study, we demonstrate impaired liver function and elevation of various liver injury markers in Asah1P361R/P361R mice as early as 5 weeks of age. Histopathology analyses demonstrated significant formation and recruitment of foamy macrophages, invasion of neutrophils, progressive tissue fibrosis, increased cell proliferation and death, and significant storage pathology within various liver cell types. Lipidomic analyses revealed alterations to various lipid concentrations in both serum and liver tissue. A significant accumulation of ceramide and other sphingolipids in both liver and hepatocytes was noted. Sphingolipid acyl chains were also altered, with an increase in long acyl chain sphingolipids coinciding with a decrease in ultra-long acyl chains. Hepatocyte transcriptome analyses revealed significantly altered gene transcription. Molecular pathways related to inflammation were found activated, and molecular pathways involved in lipid metabolism were found deactivated. Altered gene transcription within the sphingolipid pathway itself was also observed. The data presented herein demonstrates that deficiency in ACDase results in liver pathology as well as sphingolipid and gene transcription profile changes that lead to impaired liver function.
Collapse
Affiliation(s)
- Fabian P S Yu
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Salvatore Molino
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jakub Sikora
- Rare Diseases Research Unit, Department of Pediatrics and Adolescent Medicine, Charles University, 1st Faculty of Medicine and General University Hospital, Prague, Czech Republic.,Institute of Pathology, Charles University, 1st Faculty of Medicine and General University Hospital, Prague, Czech Republic
| | - Shauna Rasmussen
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jitka Rybova
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Everett Tate
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Aron M Geurts
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Patricia V Turner
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada
| | - William M Mckillop
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA.
| | - Jeffrey A Medin
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA.,University Health Network, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
34
|
Nwabuo CC, Duncan M, Xanthakis V, Peterson LR, Mitchell GF, McManus D, Cheng S, Vasan RS. Association of Circulating Ceramides With Cardiac Structure and Function in the Community: The Framingham Heart Study. J Am Heart Assoc 2019; 8:e013050. [PMID: 31549564 PMCID: PMC6806035 DOI: 10.1161/jaha.119.013050] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Background A higher circulating plasma ceramide ratio (C16:0/C24:0) is associated with an increased risk of heart failure, even after accounting for standard risk factors including lipid markers. However, the pathobiological mechanisms that underlie this association are incompletely understood. We tested the hypothesis that plasma ceramide ratio (C16:0/C24:0) is associated with adverse cardiac remodeling in the community. Methods and Results We evaluated 2652 Framingham Offspring Study participants (mean age, 66±9 years; 55% women) who attended their eighth examination cycle and underwent routine echocardiography and liquid chromatography–tandem mass spectrometry–based assays for circulating ceramide concentrations. We used multivariable linear regression models to relate C16:0/C24:0 (independent variable) to the following echocardiographic measures (dependent variables; separate models for each): left ventricular mass, left ventricular ejection fraction, left atrial emptying fraction, left atrial end‐systolic volume, E/e′ (a measure of left ventricular diastolic function), and left ventricular global circumferential and longitudinal strain by speckle‐tracking echocardiography. In multivariable‐adjusted analyses, higher C16:0/C24:0 per standard deviation increment was associated with lower left ventricular ejection fraction (0.991‐fold change in left ventricular ejection fraction; P=0.0004), worse global circumferential strain (β=0.34, P=0.004), higher left atrial end‐systolic volume (β=2.48, p<0.0001), and lower left atrial emptying fraction (0.99‐fold change; P<0.0001). The C16:0/C24:0 ratio was not associated with either E/e′ or global longitudinal strain, and the association with higher left ventricular mass was rendered statistically nonsignificant upon correction for multiple comparisons. Conclusions Our cross‐sectional observations in a large community‐based sample are consistent with a potential detrimental impact of higher ceramide ratio (C16:0/24:0) on cardiac remodeling traits, which may partly explain the associations of these molecular species with clinical heart failure.
Collapse
Affiliation(s)
| | - Meredith Duncan
- Division of Cardiovascular Medicine Vanderbilt University Medical Center Nashville TN.,Division of Epidemiology Vanderbilt University Medical Center Nashville TN
| | - Vanessa Xanthakis
- Framingham Heart Study Framingham MA.,Departments of Epidemiology and Biostatistics Boston University School of Public Health Boston MA.,Sections of Preventive Medicine and Epidemiology, and Cardiovascular Medicine Department of Medicine; Boston University Schools of Medicine Boston MA
| | - Linda R Peterson
- Diabetic Cardiovascular Disease Center Department of Medicine Washington University St Louis MO
| | | | - David McManus
- Departments of Medicine and Quantitative Health Sciences University of Massachusetts Worcester MA.,Division of Cardiovascular Medicine Brigham and Women's Hospital Harvard Medical School Boston MA
| | | | - Ramachandran S Vasan
- Framingham Heart Study Framingham MA.,Departments of Epidemiology and Biostatistics Boston University School of Public Health Boston MA.,Sections of Preventive Medicine and Epidemiology, and Cardiovascular Medicine Department of Medicine; Boston University Schools of Medicine Boston MA
| |
Collapse
|
35
|
Ceramide Domains in Health and Disease: A Biophysical Perspective. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1159:79-108. [DOI: 10.1007/978-3-030-21162-2_6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
36
|
Suhrland C, Truman J, Obeid LM, Sitharaman B. Delivery of long chain C16and C24ceramide in HeLa cells using oxidized graphene nanoribbons. J Biomed Mater Res B Appl Biomater 2019; 108:1141-1156. [DOI: 10.1002/jbm.b.34465] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 06/24/2019] [Accepted: 07/13/2019] [Indexed: 01/15/2023]
Affiliation(s)
- Cassandra Suhrland
- Department of Biomedical EngineeringStony Brook University Stony Brook New York
| | - Jean‐Philip Truman
- Department of Medicine and the Stony Brook Cancer Center, Health Science CenterStony Brook University Stony Brook New York
| | - Lina M. Obeid
- Department of Medicine and the Stony Brook Cancer Center, Health Science CenterStony Brook University Stony Brook New York
| | - Balaji Sitharaman
- Department of Biomedical EngineeringStony Brook University Stony Brook New York
| |
Collapse
|
37
|
Garić D, De Sanctis JB, Shah J, Dumut DC, Radzioch D. Biochemistry of very-long-chain and long-chain ceramides in cystic fibrosis and other diseases: The importance of side chain. Prog Lipid Res 2019:100998. [PMID: 31445070 DOI: 10.1016/j.plipres.2019.100998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/01/2019] [Accepted: 03/10/2019] [Indexed: 12/18/2022]
Abstract
Ceramides, the principal building blocks of all sphingolipids, have attracted the attention of many scientists around the world interested in developing treatments for cystic fibrosis, the most common genetic disease of Caucasians. Many years of fruitful research in this field have produced some fundamentally important, yet controversial results. Here, we aimed to summarize the current knowledge on the role of long- and very-long- chain ceramides, the most abundant species of ceramides in animal cells, in cystic fibrosis and other diseases. We also aim to explain the importance of the length of their side chain in the context of stability of transmembrane proteins through a concise synthesis of their biophysical chemistry, cell biology, and physiology. This review also addresses several remaining riddles in this field. Finally, we discuss the technical challenges associated with the analysis and quantification of ceramides. We provide the evaluation of the antibodies used for ceramide quantification and we demonstrate their lack of specificity. Results and discussion presented here will be of interest to anyone studying these enigmatic lipids.
Collapse
Affiliation(s)
- Dušan Garić
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Juan B De Sanctis
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Juhi Shah
- Department of Pharmacology and Experimental Therapeutics, McGill University, Montreal, QC, Canada
| | - Daciana Catalina Dumut
- Department of Medicine, Division of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Danuta Radzioch
- Department of Human Genetics, McGill University, Montreal, QC, Canada; Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic; Department of Medicine, Division of Experimental Medicine, McGill University, Montreal, QC, Canada.
| |
Collapse
|
38
|
Brachtendorf S, El-Hindi K, Grösch S. WITHDRAWN: Ceramide synthases in cancer therapy and chemoresistance. Prog Lipid Res 2019:100992. [PMID: 31442523 DOI: 10.1016/j.plipres.2019.100992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/02/2019] [Accepted: 04/02/2019] [Indexed: 10/26/2022]
Affiliation(s)
- Sebastian Brachtendorf
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe University Frankfurt, Theodor-Stern Kai 7, Frankfurt 60590, Germany
| | - Khadija El-Hindi
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe University Frankfurt, Theodor-Stern Kai 7, Frankfurt 60590, Germany
| | - Sabine Grösch
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe University Frankfurt, Theodor-Stern Kai 7, Frankfurt 60590, Germany
| |
Collapse
|
39
|
Pujol-Lereis LM. Alteration of Sphingolipids in Biofluids: Implications for Neurodegenerative Diseases. Int J Mol Sci 2019; 20:ijms20143564. [PMID: 31330872 PMCID: PMC6678458 DOI: 10.3390/ijms20143564] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 07/12/2019] [Accepted: 07/13/2019] [Indexed: 12/14/2022] Open
Abstract
Sphingolipids (SL) modulate several cellular processes including cell death, proliferation and autophagy. The conversion of sphingomyelin (SM) to ceramide and the balance between ceramide and sphingosine-1-phosphate (S1P), also known as the SL rheostat, have been associated with oxidative stress and neurodegeneration. Research in the last decade has focused on the possibility of targeting the SL metabolism as a therapeutic option; and SL levels in biofluids, including serum, plasma, and cerebrospinal fluid (CSF), have been measured in several neurodegenerative diseases with the aim of finding a diagnostic or prognostic marker. Previous reviews focused on results from diseases such as Alzheimer's Disease (AD), evaluated total SL or species levels in human biofluids, post-mortem tissues and/or animal models. However, a comprehensive review of SL alterations comparing results from several neurodegenerative diseases is lacking. The present work compiles data from circulating sphingolipidomic studies and attempts to elucidate a possible connection between certain SL species and neurodegeneration processes. Furthermore, the effects of ceramide species according to their acyl-chain length in cellular pathways such as apoptosis and proliferation are discussed in order to understand the impact of the level alteration in specific species. Finally, enzymatic regulations and the possible influence of insulin resistance in the level alteration of SL are evaluated.
Collapse
Affiliation(s)
- Luciana M Pujol-Lereis
- Centro de Investigación y Desarrollo en Inmunología y Enfermedades Infecciosas (CIDIE-CONICET), X5016DHK Córdoba, Argentina.
| |
Collapse
|
40
|
Moro K, Nagahashi M, Gabriel E, Takabe K, Wakai T. Clinical application of ceramide in cancer treatment. Breast Cancer 2019; 26:407-415. [PMID: 30963461 DOI: 10.1007/s12282-019-00953-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 02/04/2019] [Indexed: 12/15/2022]
Abstract
Development of innovative strategies for cancer treatment is a pressing public health issue. Despite recent advances, the mechanisms of cancer progression and the resistance to cancer treatment have not been fully elucidated. Sphingolipids, including ceramide and sphingoshin-1-phosphate, are bioactive mediators that regulate cancer cell death and survival through the dynamic balance of what has been termed the 'sphingolipid rheostat'. Specifically, ceramide, which acts as the central hub of sphingolipid metabolism, is generated via three major pathways by many stressors, including anti-cancer treatments, environmental stresses, and cytokines. We have previously shown in breast cancer patients that elevated ceramide correlated with less aggressive cancer phenotypes, leading to a prognostic impact. Recent studies showed that ceramide have the possibility of becoming the reinforcing agent of cancer treatment as well as other roles such as nanoparticles and diagnostic biomarker. We review ceramide as one of the key molecules to investigate in overcoming resistance to current drug therapies and in becoming one of the newest cancer treatments.
Collapse
Affiliation(s)
- Kazuki Moro
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata City, Niigata, 951-8510, Japan
| | - Masayuki Nagahashi
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata City, Niigata, 951-8510, Japan.
| | | | - Kazuaki Takabe
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata City, Niigata, 951-8510, Japan.,Division of Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.,Department of Surgery, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, the State University of New York, Buffalo, NY, USA
| | - Toshifumi Wakai
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata City, Niigata, 951-8510, Japan
| |
Collapse
|
41
|
Brachtendorf S, El-Hindi K, Grösch S. Ceramide synthases in cancer therapy and chemoresistance. Prog Lipid Res 2019; 74:160-185. [DOI: 10.1016/j.plipres.2019.04.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/02/2019] [Accepted: 04/02/2019] [Indexed: 12/24/2022]
|
42
|
Garić D, De Sanctis JB, Shah J, Dumut DC, Radzioch D. Biochemistry of very-long-chain and long-chain ceramides in cystic fibrosis and other diseases: The importance of side chain. Prog Lipid Res 2019; 74:130-144. [PMID: 30876862 DOI: 10.1016/j.plipres.2019.03.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/01/2019] [Accepted: 03/10/2019] [Indexed: 12/19/2022]
Abstract
Ceramides, the principal building blocks of all sphingolipids, have attracted the attention of many scientists around the world interested in developing treatments for cystic fibrosis, the most common genetic disease of Caucasians. Many years of fruitful research in this field have produced some fundamentally important, yet controversial results. Here, we aimed to summarize the current knowledge on the role of long- and very-long- chain ceramides, the most abundant species of ceramides in animal cells, in cystic fibrosis and other diseases. We also aim to explain the importance of the length of their side chain in the context of stability of transmembrane proteins through a concise synthesis of their biophysical chemistry, cell biology, and physiology. This review also addresses several remaining riddles in this field. Finally, we discuss the technical challenges associated with the analysis and quantification of ceramides. We provide the evaluation of the antibodies used for ceramide quantification and we demonstrate their lack of specificity. Results and discussion presented here will be of interest to anyone studying these enigmatic lipids.
Collapse
Affiliation(s)
- Dušan Garić
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Juan B De Sanctis
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Juhi Shah
- Department of Pharmacology and Experimental Therapeutics, McGill University, Montreal, QC, Canada
| | - Daciana Catalina Dumut
- Department of Medicine, Division of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Danuta Radzioch
- Department of Human Genetics, McGill University, Montreal, QC, Canada; Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic; Department of Medicine, Division of Experimental Medicine, McGill University, Montreal, QC, Canada.
| |
Collapse
|
43
|
de Wit NM, den Hoedt S, Martinez-Martinez P, Rozemuller AJ, Mulder MT, de Vries HE. Astrocytic ceramide as possible indicator of neuroinflammation. J Neuroinflammation 2019; 16:48. [PMID: 30803453 PMCID: PMC6388480 DOI: 10.1186/s12974-019-1436-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 02/13/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease dementia (PDD), and frontotemporal lobar dementia (FTLD) are characterized by progressive neuronal loss but differ in their underlying pathological mechanisms. However, neuroinflammation is commonly observed within these different forms of dementia. Recently, it has been suggested that an altered sphingolipid metabolism may contribute to the pathogenesis of a variety of neurodegenerative conditions. Especially ceramide, the precursor of all complex sphingolipids, is thought to be associated with pro-apoptotic cellular processes, thereby propagating neurodegeneration and neuroinflammation, although it remains unclear to what extent. The current pathological study therefore investigates whether increased levels of ceramide are associated with the degree of neuroinflammation in various neurodegenerative disorders. METHODS Immunohistochemistry was performed on human post-mortem tissue of PDD and FTLD Pick's disease cases, which are well-characterized cases of dementia subtypes differing in their neuroinflammatory status, to assess the expression and localization of ceramide, acid sphingomyelinase, and ceramide synthase 2 and 5. In addition, we determined the concentration of sphingosine, sphingosine-1-phosphate (S1P), and ceramide species differing in their chain-length in brain homogenates of the post-mortem tissue using HPLC-MS/MS. RESULTS Our immunohistochemical analysis reveals that neuroinflammation is associated with increased ceramide levels in astrocytes in FTLD Pick's disease. Moreover, the observed increase in ceramide in astrocytes correlates with the expression of ceramide synthase 5. In addition, HPLC-MS/MS analysis shows a shift in ceramide species under neuroinflammatory conditions, favoring pro-apoptotic ceramide. CONCLUSIONS Together, these findings suggest that detected increased levels of pro-apoptotic ceramide might be a common denominator of neuroinflammation in different neurodegenerative diseases.
Collapse
Affiliation(s)
- Nienke M. de Wit
- Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, VU University Medical Center, PO Box 7057, 1007 MB Amsterdam, the Netherlands
| | - Sandra den Hoedt
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Pilar Martinez-Martinez
- Department of Neuroscience, School of Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Annemieke J. Rozemuller
- Department of Pathology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Monique T. Mulder
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Helga E. de Vries
- Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, VU University Medical Center, PO Box 7057, 1007 MB Amsterdam, the Netherlands
| |
Collapse
|
44
|
Abstract
The sphingolipid ceramide is not only a precursor of more complex sphingolipids, but also a potent signaling molecule. Specific ceramide species have distinct cellular functions, and each ceramide synthase therefore has particular roles in cells and organisms. Tidhar and colleagues, utilizing two ceramide synthases differing widely in fatty acid specificity, have identified a short amino acid sequence that is critical for this specificity. This work represents a crucial first step in the understanding of both the enzymology and the biology driving the diverse functions of ceramide.
Collapse
Affiliation(s)
- Binks W Wattenberg
- From the Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Virginia 23298
| |
Collapse
|
45
|
Martinho N, Santos TCB, Florindo HF, Silva LC. Cisplatin-Membrane Interactions and Their Influence on Platinum Complexes Activity and Toxicity. Front Physiol 2019; 9:1898. [PMID: 30687116 PMCID: PMC6336831 DOI: 10.3389/fphys.2018.01898] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 12/18/2018] [Indexed: 01/22/2023] Open
Abstract
Cisplatin and other platinum(II) analogs are widely used in clinical practice as anti-cancer drugs for a wide range of tumors. The primary mechanism by which they exert their action is through the formation of adducts with genomic DNA. However, multiple cellular targets by platinum(II) complexes have been described. In particular, the early events occurring at the plasma membrane (PM), i.e., platinum-membrane interactions seem to be involved in the uptake, cytotoxicity and cell-resistance to cisplatin. In fact, PM influences signaling events, and cisplatin-induced changes on membrane organization and fluidity were shown to activate apoptotic pathways. This review critically discusses the sequence of events caused by lipid membrane-platinum interactions, with emphasis on the mechanisms that lead to changes in the biophysical properties of the membranes (e.g., fluidity and permeability), and how these correlate with sensitivity and resistance phenotypes of cells to platinum(II) complexes.
Collapse
Affiliation(s)
- Nuno Martinho
- iMed.ULisboa - Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal
| | - Tânia C B Santos
- iMed.ULisboa - Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal.,Centro de Química-Física Molecular, Institute of Nanoscience and Nanotechnology and IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Helena F Florindo
- iMed.ULisboa - Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal
| | - Liana C Silva
- iMed.ULisboa - Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal.,Centro de Química-Física Molecular, Institute of Nanoscience and Nanotechnology and IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
46
|
Paranjpe V, Tan J, Nguyen J, Lee J, Allegood J, Galor A, Mandal N. Clinical signs of meibomian gland dysfunction (MGD) are associated with changes in meibum sphingolipid composition. Ocul Surf 2018; 17:318-326. [PMID: 30553001 DOI: 10.1016/j.jtos.2018.12.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 10/26/2018] [Accepted: 12/11/2018] [Indexed: 12/16/2022]
Abstract
PURPOSE Sphingolipids (SPL) play roles in cell signaling, inflammation, and apoptosis. Changes in SPL composition have been reported in individuals with MGD, but associations between clinical signs of MGD and compositional changes in meibum SPLs have not been examined. METHODS Forty-three individuals underwent a tear film assessment. Groups were split into those with good or poor quality meibum. Meibum was collected then analyzed with liquid chromatography-mass spectroscopy to quantify SPL classes. Relative composition of SPL and major classes, Ceramide (Cer), Hexosyl-Ceramide (Hex-Cer), Sphingomyelin (SM), Sphingosine (Sph) and Sphingosine 1-phosphate (S1P) was calculated via mole percent. RESULTS 22 and 21 individuals were characterized with good and poor quality meibum, respectively. Individuals with poor quality were older (60 ± 8 vs 51 ± 16 years) and more likely to be male (90% vs 64%). Relative composition analysis revealed that individuals with poor meibum quality had SPL composed of less Cer (33.36% vs 49.49%, p < 0.01), Hex-Cer (4.88% vs 9.15%, p < 0.01), and S1P (0.16% vs 0.31%, p = 0.05), and more SM (58.67% vs 38.18%, p < 0.01) and Sph (2.92% vs 2.87%, p = 0.97) compared to individuals with good quality meibum. Assessment of the ratio of Cer (pro-apoptotic) to S1P (pro-survival) showed that individuals with poor meibum quality had a relative increase in Cer (495.23 vs 282.69, p = 0.07). CONCLUSION Meibum quality, a clinically graded marker of MGD, is associated with compositional changes in meibum sphingolipids. Further investigation of the structural and bioactive roles of sphingolipids in MGD may provide future targets for therapy.
Collapse
Affiliation(s)
- Vikram Paranjpe
- Miami Veterans Administration Medical Center, 1201 NW 16th St, Miami, FL, 33125, USA; Bascom Palmer Eye Institute, University of Miami, 900 NW 17th Street, Miami, FL, 33136, USA
| | - Jeremy Tan
- Ophthalmic Surgeons and Consultants of Ohio, Ohio State University, Columbus, OH, 43203, USA
| | - Jason Nguyen
- West Virginia University Eye, Morgantown, WV, 26506, USA
| | - John Lee
- Miami Veterans Administration Medical Center, 1201 NW 16th St, Miami, FL, 33125, USA; Bascom Palmer Eye Institute, University of Miami, 900 NW 17th Street, Miami, FL, 33136, USA
| | - Jeremy Allegood
- Lipidomics Core, Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA, 23249, USA
| | - Anat Galor
- Miami Veterans Administration Medical Center, 1201 NW 16th St, Miami, FL, 33125, USA; Bascom Palmer Eye Institute, University of Miami, 900 NW 17th Street, Miami, FL, 33136, USA.
| | - Nawajes Mandal
- Department of Ophthalmology, Anatomy and Neurobiology, University of Tennessee Health Sciences Center, Hamilton Eye Institute, 930 Madison Avenue, Memphis, TN, 38163, USA.
| |
Collapse
|
47
|
Régnier M, Polizzi A, Guillou H, Loiseau N. Sphingolipid metabolism in non-alcoholic fatty liver diseases. Biochimie 2018; 159:9-22. [PMID: 30071259 DOI: 10.1016/j.biochi.2018.07.021] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 07/26/2018] [Indexed: 12/12/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) involves a panel of pathologies starting with hepatic steatosis and continuing to irreversible and serious conditions like steatohepatitis (NASH) and hepatocarcinoma. NAFLD is multifactorial in origin and corresponds to abnormal fat deposition in liver. Even if triglycerides are mostly associated with these pathologies, other lipid moieties seem to be involved in the development and severity of NAFLD. That is the case with sphingolipids and more particularly ceramides. In this review, we explore the relationship between NAFLD and sphingolipid metabolism. After providing an analysis of complex sphingolipid metabolism, we focus on the potential involvement of sphingolipids in the different pathologies associated with NAFLD. An unbalanced ratio between ceramides and terminal metabolic products in the liver and plasma promotes weight gain, inflammation, and insulin resistance. In the etiology of NAFLD, some sphingolipid species such as ceramides may be potential biomarkers for NAFLD. We review the clinical relevance of sphingolipids in liver diseases.
Collapse
Affiliation(s)
- Marion Régnier
- INRA UMR1331, ToxAlim, Chemin de Tournefeuille, 31027 Toulouse, France
| | - Arnaud Polizzi
- INRA UMR1331, ToxAlim, Chemin de Tournefeuille, 31027 Toulouse, France
| | - Hervé Guillou
- INRA UMR1331, ToxAlim, Chemin de Tournefeuille, 31027 Toulouse, France
| | - Nicolas Loiseau
- INRA UMR1331, ToxAlim, Chemin de Tournefeuille, 31027 Toulouse, France.
| |
Collapse
|
48
|
Metabolomic profiling suggests long chain ceramides and sphingomyelins as a possible diagnostic biomarker of epithelial ovarian cancer. Clin Chim Acta 2018; 481:108-114. [DOI: 10.1016/j.cca.2018.02.029] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 02/22/2018] [Accepted: 02/22/2018] [Indexed: 12/30/2022]
|
49
|
Disrupted sphingolipid metabolism following acute clozapine and olanzapine administration. J Biomed Sci 2018; 25:40. [PMID: 29720183 PMCID: PMC5932814 DOI: 10.1186/s12929-018-0437-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Accepted: 04/12/2018] [Indexed: 12/21/2022] Open
Abstract
Background Second generation antipsychotics (SGAs) induce glucometabolic side-effects, such as hyperglycemia and insulin resistance, which pose a therapeutic challenge for mental illness. Sphingolipids play a role in glycaemic balance and insulin resistance. Endoplasmic reticulum (ER) stress contributes to impaired insulin signalling and whole-body glucose intolerance. Diabetogenic SGA effects on ER stress and sphingolipids, such as ceramide and sphingomyelin, in peripheral metabolic tissues are unknown. This study aimed to investigate the acute effects of clozapine and olanzapine on ceramide and sphingomyelin levels, and protein expression of key enzymes involved in lipid and glucose metabolism, in the liver and skeletal muscle. Methods Female rats were administered olanzapine (1 mg/kg), clozapine (12 mg/kg), or vehicle (control) and euthanized 1-h later. Ceramide and sphingomyelin levels were examined using electrospray ionization (ESI) mass spectrometry. Expression of lipid enzymes (ceramide synthase 2 (CerS2), elongation of very long-chain fatty acid 1 (ELOVL1), fatty acid synthase (FAS) and acetyl CoA carboxylase 1 (ACC1)), ER stress markers (inositol-requiring enzyme 1 (IRE1) and eukaryotic initiation factor (eIF2α) were also examined. Results Clozapine caused robust reductions in hepatic ceramide and sphingolipid levels (p < 0.0001), upregulated CerS2 (p < 0.05) and ELOVL1 (+ 37%) and induced significant hyperglycemia (vs controls). In contrast, olanzapine increased hepatic sphingomyelin levels (p < 0.05 vs controls). SGAs did not alter sphingolipid levels in the muscle. Clozapine increased (+ 52.5%) hepatic eIF2α phosphorylation, demonstrating evidence of activation of the PERK/eIF2α ER stress axis. Hepatic IRE1, FAS and ACC1 were unaltered. Conclusions This study provides the first evidence that diabetogenic SGAs disrupt hepatic sphingolipid homeostasis within 1-h of administration. Sphingolipids may be key candidates in the mechanisms underlying the diabetes side-effects of SGAs; however, further research is required.
Collapse
|
50
|
Tylichová Z, Slavík J, Ciganek M, Ovesná P, Krčmář P, Straková N, Machala M, Kozubík A, Hofmanová J, Vondráček J. Butyrate and docosahexaenoic acid interact in alterations of specific lipid classes in differentiating colon cancer cells. J Cell Biochem 2018; 119:4664-4679. [PMID: 29274292 DOI: 10.1002/jcb.26641] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 12/20/2017] [Indexed: 12/19/2022]
Abstract
Docosahexaenoic acid (DHA) and sodium butyrate (NaBt) exhibit a number of interactive effects on colon cancer cell growth, differentiation, or apoptosis; however, the molecular mechanisms responsible for these interactions and their impact on cellular lipidome are still not fully clear. Here, we show that both dietary agents together induce dynamic alterations of lipid metabolism, specific cellular lipid classes, and fatty acid composition. In HT-29 cell line, a model of differentiating colon carcinoma cells, NaBt supported incorporation of free DHA into non-polar lipids and their accumulation in cytoplasmic lipid droplets. DHA itself was not incorporated into sphingolipids; however, it significantly altered representation of individual ceramide (Cer) classes, in particular in combination with NaBt (DHA/NaBt). We observed altered expression of enzymes involved in Cer metabolism in cells treated with NaBt or DHA/NaBt, and exogenous Cer 16:0 was found to promote induction of apoptosis in differentiating HT-29 cells. NaBt, together with DHA, increased n-3 fatty acid synthesis and attenuated metabolism of monounsaturated fatty acids. Finally, DHA and/or NaBt altered expression of proteins involved in synthesis of fatty acids, including elongase 5, stearoyl CoA desaturase 1, or fatty acid synthase, with NaBt increasing expression of caveolin-1 and CD36 transporter, which may further promote DHA incorporation and its impact on cellular lipidome. In conclusion, our results indicate that interactions of DHA and NaBt exert complex changes in cellular lipidome, which may contribute to the alterations of colon cancer cell differentiation/apoptotic responses. The present data extend our knowledge about the nature of interactive effects of dietary fatty acids.
Collapse
Affiliation(s)
- Zuzana Tylichová
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic.,Faculty of Sciences, Department of Experimental Biology, Masaryk University, Brno, Czech Republic
| | - Josef Slavík
- Veterinary Research Institute, Brno, Czech Republic
| | | | - Petra Ovesná
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic.,Institute of Biostatistics and Analyses, Masaryk University, Brno, Czech Republic
| | - Pavel Krčmář
- Veterinary Research Institute, Brno, Czech Republic
| | - Nicol Straková
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | | | - Alois Kozubík
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic.,Faculty of Sciences, Department of Experimental Biology, Masaryk University, Brno, Czech Republic
| | - Jiřina Hofmanová
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic.,Faculty of Sciences, Department of Experimental Biology, Masaryk University, Brno, Czech Republic
| | - Jan Vondráček
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| |
Collapse
|