1
|
Teder-Laving M, Kals M, Reigo A, Ehin R, Objärtel T, Vaht M, Nikopensius T, Metspalu A, Kingo K. Genome-wide meta-analysis identifies novel loci conferring risk of acne vulgaris. Eur J Hum Genet 2024; 32:1136-1143. [PMID: 36922633 PMCID: PMC11368920 DOI: 10.1038/s41431-023-01326-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 02/02/2023] [Accepted: 02/21/2023] [Indexed: 03/18/2023] Open
Abstract
Acne vulgaris is a common chronic skin disorder presenting with comedones, cystic structures forming within the distal hair follicle, and in most cases additionally with inflammatory skin lesions on the face and upper torso. We performed a genome-wide association study and meta-analysis of data from 34,422 individuals with acne and 364,991 controls from three independent European-ancestry cohorts. We replicated 19 previously implicated genome-wide significant risk loci and identified four novel loci [11q12.2 (FADS2), 12q21.1 (LGR5), 17q25.3 (FASN), and 22q12.1 (ZNRF3-KREMEN1)], bringing the total number of reported acne risk loci to 50. Our meta-analysis results explain 9.4% of the phenotypic variance of acne. A polygenic model of acne risk variants showed that individuals in the top 5% of the risk percentiles had a 1.62-fold (95% CI 1.47-1.78) increased acne risk relative to individuals with average risk (20-80% on the polygenic risk score distribution). Our findings highlight the Wnt and MAPK pathways as key factors in the genetic predisposition to acne vulgaris, together with the effects of genetic variation on the structure and maintenance of the hair follicle and pilosebaceous unit. Two novel loci, 11q12.2 and 17q25.3, contain genes encoding key enzymes involved in lipid biosynthesis pathways.
Collapse
Affiliation(s)
- Maris Teder-Laving
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia.
| | - Mart Kals
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Anu Reigo
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Riin Ehin
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
- Institute of Health Technologies, Tallinn University of Technology, Tallinn, Estonia
- BioCC Ltd, Tartu, Estonia
| | - Telver Objärtel
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Mariliis Vaht
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Tiit Nikopensius
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Andres Metspalu
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Külli Kingo
- Faculty of Medicine, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Tartu University Hospital, Tartu, Estonia
| |
Collapse
|
2
|
Sheeter DA, Garza S, Park HG, Benhamou LRE, Badi NR, Espinosa EC, Kothapalli KSD, Brenna JT, Powers JT. Unsaturated Fatty Acid Synthesis Is Associated with Worse Survival and Is Differentially Regulated by MYCN and Tumor Suppressor microRNAs in Neuroblastoma. Cancers (Basel) 2024; 16:1590. [PMID: 38672672 PMCID: PMC11048984 DOI: 10.3390/cancers16081590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/13/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
MYCN amplification (MNA) and disruption of tumor suppressor microRNA (TSmiR) function are key drivers of poor outcomes in neuroblastoma (NB). While MYCN and TSmiRs regulate glucose metabolism, their role in de novo fatty acid synthesis (FAS) and unsaturated FAS (UFAS) remains poorly understood. Here, we show that FAS and UFAS (U/FAS) genes FASN, ELOVL6, SCD, FADS2, and FADS1 are upregulated in high-risk (HR) NB and that their expression is associated with lower overall survival. RNA-Seq analysis of human NB cell lines revealed parallel U/FAS gene expression patterns. Consistent with this, we found that NB-related TSmiRs were predicted to target these genes extensively. We further observed that both MYC and MYCN upregulated U/FAS pathway genes while suppressing TSmiR host gene expression, suggesting a possible U/FAS regulatory network between MYCN and TSmiRs in NB. NB cells are high in de novo synthesized omega 9 (ω9) unsaturated fatty acids and low in both ω6 and ω3, suggesting a means for NB to limit cell-autonomous immune stimulation and reactive oxygen species (ROS)-driven apoptosis from ω6 and ω3 unsaturated fatty acid derivatives, respectively. We propose a model in which MYCN and TSmiRs regulate U/FAS and play an important role in NB pathology, with implications for other MYC family-driven cancers.
Collapse
Affiliation(s)
- Dennis A. Sheeter
- Department of Pediatrics, Dell Pediatric Research Institute, Dell Medical School at The University of Texas at Austin, Austin, TX 78723, USA; (D.A.S.); (H.G.P.); (L.-R.E.B.); (N.R.B.); (E.C.E.)
| | - Secilia Garza
- Department of Chemistry, Dell Pediatric Research Institute, The University of Texas at Austin, Austin, TX 78723, USA;
| | - Hui Gyu Park
- Department of Pediatrics, Dell Pediatric Research Institute, Dell Medical School at The University of Texas at Austin, Austin, TX 78723, USA; (D.A.S.); (H.G.P.); (L.-R.E.B.); (N.R.B.); (E.C.E.)
| | - Lorraine-Rana E. Benhamou
- Department of Pediatrics, Dell Pediatric Research Institute, Dell Medical School at The University of Texas at Austin, Austin, TX 78723, USA; (D.A.S.); (H.G.P.); (L.-R.E.B.); (N.R.B.); (E.C.E.)
| | - Niharika R. Badi
- Department of Pediatrics, Dell Pediatric Research Institute, Dell Medical School at The University of Texas at Austin, Austin, TX 78723, USA; (D.A.S.); (H.G.P.); (L.-R.E.B.); (N.R.B.); (E.C.E.)
| | - Erika C. Espinosa
- Department of Pediatrics, Dell Pediatric Research Institute, Dell Medical School at The University of Texas at Austin, Austin, TX 78723, USA; (D.A.S.); (H.G.P.); (L.-R.E.B.); (N.R.B.); (E.C.E.)
| | - Kumar S. D. Kothapalli
- Department of Nutritional Sciences, College of Natural Sciences, The University of Texas at Austin, Austin, TX 78712, USA;
| | - J. Thomas Brenna
- Department of Pediatrics, Dell Pediatric Research Institute, Dell Medical School at The University of Texas at Austin, Austin, TX 78723, USA; (D.A.S.); (H.G.P.); (L.-R.E.B.); (N.R.B.); (E.C.E.)
- Department of Chemistry, Dell Pediatric Research Institute, The University of Texas at Austin, Austin, TX 78723, USA;
- Department of Nutritional Sciences, College of Natural Sciences, The University of Texas at Austin, Austin, TX 78712, USA;
| | - John T. Powers
- Department of Pediatrics, Dell Pediatric Research Institute, Dell Medical School at The University of Texas at Austin, Austin, TX 78723, USA; (D.A.S.); (H.G.P.); (L.-R.E.B.); (N.R.B.); (E.C.E.)
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
3
|
Seidel U, Eberhardt K, Wiebel M, Luersen K, Ipharraguerre IR, Haegele FA, Winterhalter P, Bosy-Westphal A, Schebb NH, Rimbach G. Stearidonic acid improves eicosapentaenoic acid status: studies in humans and cultured hepatocytes. Front Nutr 2024; 11:1359958. [PMID: 38974810 PMCID: PMC11225816 DOI: 10.3389/fnut.2024.1359958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/15/2024] [Indexed: 07/09/2024] Open
Abstract
Background Ahiflower oil from the seeds of Buglossoides arvensis is rich in α-linolenic acid (ALA) and stearidonic acid (SDA). ALA and SDA are potential precursor fatty acids for the endogenous synthesis of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), which are n3-long chain polyunsaturated fatty acids (n3-LC-PUFAS), in humans. Since taurine, an amino sulfonic acid, is often associated with tissues rich in n3-LC-PUFAS (e.g., in fatty fish, human retina), taurine may play a role in EPA- and DHA-metabolism. Objective To examine the capacity of the plant-derived precursor fatty acids (ALA and SDA) and of the potential fatty acid metabolism modulator taurine to increase n3-LC-PUFAS and their respective oxylipins in human plasma and cultivated hepatocytes (HepG2 cells). Methods In a monocentric, randomized crossover study 29 healthy male volunteers received three sequential interventions, namely ahiflower oil (9 g/day), taurine (1.5 g/day) and ahiflower oil (9 g/day) + taurine (1.5 g/day) for 20 days. In addition, cultivated HepG2 cells were treated with isolated fatty acids ALA, SDA, EPA, DHA as well as taurine alone or together with SDA. Results Oral ahiflower oil intake significantly improved plasma EPA levels (0.2 vs. 0.6% of total fatty acid methyl esters (FAMES)) in humans, whereas DHA levels were unaffected by treatments. EPA-levels in SDA-treated HepG2 cells were 65% higher (5.1 vs. 3.0% of total FAMES) than those in ALA-treated cells. Taurine did not affect fatty acid profiles in human plasma in vivo or in HepG2 cells in vitro. SDA-rich ahiflower oil and isolated SDA led to an increase in EPA-derived oxylipins in humans and in HepG2 cells, respectively. Conclusion The consumption of ahiflower oil improves the circulating levels of EPA and EPA-derived oxylipins in humans. In cultivated hepatocytes, EPA and EPA-derived oxylipins are more effectively increased by SDA than ALA.
Collapse
Affiliation(s)
- Ulrike Seidel
- Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany
| | | | - Michelle Wiebel
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | - Kai Luersen
- Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany
| | | | - Franziska A. Haegele
- Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany
| | | | - Anja Bosy-Westphal
- Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany
| | - Nils Helge Schebb
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | - Gerald Rimbach
- Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany
| |
Collapse
|
4
|
Cavallo A, Camera E, Bottillo G, Maiellaro M, Truglio M, Marini F, Chavagnac-Bonneville M, Fauger A, Perrier E, Pigliacelli F, Picardo M, Cristaudo A, Mariano M. Biosignatures of defective sebaceous gland activity in sebum-rich and sebum-poor skin areas in adult atopic dermatitis. Exp Dermatol 2024; 33:e15066. [PMID: 38532571 DOI: 10.1111/exd.15066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 03/07/2024] [Accepted: 03/14/2024] [Indexed: 03/28/2024]
Abstract
Atopic dermatitis (AD) is a composite disease presenting disruption of the skin permeability barrier (SPB) in the stratum corneum (SC). Recent evidence supports derangement of the sebaceous gland (SG) activity in the AD pathomechanisms. The objective of this study was to delineate profiles of both sebaceous and epidermal lipids and of aminoacids from SG-rich (SGR) and SG-poor (SGP) areas in AD. Both sebum and SC were sampled from SGR areas, while SC was sampled also from SGP areas in 54 adult patients with AD, consisting of 34 and 20 subjects, respectively with and without clinical involvement of face, and in 44 age and sex-matched controls. Skin biophysics were assessed in all sampling sites. Disruption of the SBP was found to be associated with dysregulated lipidome. Abundance of sapienate and lignocerate, representing, respectively, sebum and the SC type lipids, were decreased in sebum and SC from both SGR and SGP areas. Analogously, squalene was significantly diminished in AD, regardless the site. Extent of lipid derangement in SGR areas was correlated with the AD severity. The abundance of aminoacids in the SC from SGR areas was altered more than that determined in SGP areas. Several gender-related differences were found in both controls and AD subgroups. In conclusion, the SG activity was differently compromised in adult females and males with AD, in both SGR and SGP areas. In AD, alterations in the aminoacidome profiles were apparent in the SGR areas. Lipid signatures in association with aminoacidome and skin physical properties may serve the definition of phenotype clusters that associate with AD severity and gender.
Collapse
Affiliation(s)
- Alessia Cavallo
- Laboratory of Cutaneous Physiopathology, San Gallicano Dermatological Institute-IRCCS, Rome, Italy
| | - Emanuela Camera
- Laboratory of Cutaneous Physiopathology, San Gallicano Dermatological Institute-IRCCS, Rome, Italy
| | - Grazia Bottillo
- Laboratory of Cutaneous Physiopathology, San Gallicano Dermatological Institute-IRCCS, Rome, Italy
| | - Miriam Maiellaro
- Laboratory of Cutaneous Physiopathology, San Gallicano Dermatological Institute-IRCCS, Rome, Italy
| | - Mauro Truglio
- Laboratory of Cutaneous Physiopathology, San Gallicano Dermatological Institute-IRCCS, Rome, Italy
| | - Federico Marini
- Department of Chemistry, 'La Sapienza' University, Rome, Italy
| | - Marlène Chavagnac-Bonneville
- Research and Development Department, NAOS Ecobiology Company (Bioderma- Institute Esthederm - Etat Pur), Aix-en-Provence, France
| | - Aurélie Fauger
- Research and Development Department, NAOS Ecobiology Company (Bioderma- Institute Esthederm - Etat Pur), Aix-en-Provence, France
| | - Eric Perrier
- NAOS, Institute of Life Science, Aix-en-Provence, France
- Department of Dermatological Clinic and Research, San Gallicano Dermatological Institute-IRCCS, Rome, Italy
| | - Flavia Pigliacelli
- Department of Dermatological Clinic and Research, San Gallicano Dermatological Institute-IRCCS, Rome, Italy
| | - Mauro Picardo
- Laboratory of Cutaneous Physiopathology, San Gallicano Dermatological Institute-IRCCS, Rome, Italy
| | - Antonio Cristaudo
- Department of Dermatological Clinic and Research, San Gallicano Dermatological Institute-IRCCS, Rome, Italy
| | - Maria Mariano
- Department of Dermatological Clinic and Research, San Gallicano Dermatological Institute-IRCCS, Rome, Italy
| |
Collapse
|
5
|
Wang Z, Yang T, Brenna JT, Wang DH. Fatty acid isomerism: analysis and selected biological functions. Food Funct 2024; 15:1071-1088. [PMID: 38197562 DOI: 10.1039/d3fo03716a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
The biological functions of fatty acids and the lipids in which they are esterified are determined by their chain length, double bond position and geometry and other structural motifs such as the presence of methyl branches. Unusual isomeric features in fatty acids of human foods such as conjugated double bonds or chain branching found in dairy products, some seeds and nuts, and marine foods potentially have important effects on human health. Recent advancements in identifying fatty acids with unusual double bond positions and pinpointing the position of methyl branches have empowered the study of their biological functions. We present recent advances in fatty acid structural elucidation by mass spectrometry in comparison with the more traditional methods. The double bond position can be determined by purely instrumental methods, specifically solvent-mediated covalent adduct chemical ionization (SM-CACI) and ozone induced dissociation (OzID), with charge inversion methods showing promise. Prior derivatization using the Paternò-Büchi (PB) reaction to yield stable structures that, upon collisional activation, yield the double bond position has emerged. The chemical ionization (CI) based three ion monitoring (MRM) method has been developed to simultaneously identify and quantify low-level branched chain fatty acids (BCFAs), unattainable by electron ionization (EI) based methods. Accurate identification and quantification of unusual fatty acid isomers has led to research progress in the discovery of biomarkers for cancer, diabetes, nonalcoholic fatty liver disease (NAFLD) and atherosclerosis. Modulation of eicosanoids, weight loss and the health significance of BCFAs are also presented. This review clearly shows that the improvement of analytical capacity is critical in the study of fatty acid biological functions, and stronger coupling of the methods discussed here with fatty acid mechanistic research is promising in generating more refined outcomes.
Collapse
Affiliation(s)
- Zhen Wang
- School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China.
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Tingxiang Yang
- School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China.
| | - J Thomas Brenna
- Dell Pediatric Research Institute, Depts of Pediatrics, of Chemistry, and of Nutrition, University of Texas at Austin, 1400 Barbara Jordan Blvd, Austin, TX, USA.
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Dong Hao Wang
- School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China.
| |
Collapse
|
6
|
Kothapalli KSD, Park HG, Kothapalli NSL, Brenna JT. FADS2 function at the major cancer hotspot 11q13 locus alters fatty acid metabolism in cancer. Prog Lipid Res 2023; 92:101242. [PMID: 37597812 DOI: 10.1016/j.plipres.2023.101242] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/31/2023] [Accepted: 08/15/2023] [Indexed: 08/21/2023]
Abstract
Dysregulation of fatty acid metabolism and de novo lipogenesis is a key driver of several cancer types through highly unsaturated fatty acid (HUFA) signaling precursors such as arachidonic acid. The human chromosome 11q13 locus has long been established as the most frequently amplified in a variety of human cancers. The fatty acid desaturase genes (FADS1, FADS2 and FADS3) responsible for HUFA biosynthesis localize to the 11q12-13.1 region. FADS2 activity is promiscuous, catalyzing biosynthesis of several unsaturated fatty acids by Δ6, Δ8, and Δ4 desaturation. Our main aim here is to review known and putative consequences of FADS2 dysregulation due to effects on the 11q13 locus potentially driving various cancer types. FADS2 silencing causes synthesis of sciadonic acid (5Z,11Z,14Z-20:3) in MCF7 cells and breast cancer in vivo. 5Z,11Z,14Z-20:3 is structurally identical to arachidonic acid (5Z,8Z,11Z,14Z-20:4) except it lacks the internal Δ8 double bond required for prostaglandin and leukotriene synthesis, among other eicosanoids. Palmitic acid has substrate specificity for both SCD and FADS2. Melanoma, prostate, liver and lung cancer cells insensitive to SCD inhibition show increased FADS2 activity and sapienic acid biosynthesis. Elevated serum mead acid levels found in hepatocellular carcinoma patients suggest an unsatisfied demand for arachidonic acid. FADS2 circular RNAs are at high levels in colorectal and lung cancer tissues. FADS2 circular RNAs are associated with shorter overall survival in colorectal cancer patients. The evidence thusfar supports an effort for future research on the role of FADS2 as a tumor suppressor in a range of neoplastic disorders.
Collapse
Affiliation(s)
- Kumar S D Kothapalli
- Dell Pediatric Research Institute, Dell Medical School and Department of Nutritional Sciences, The University of Texas at Austin, 1400 Barbara Jordan Blvd, Austin, TX 78723, USA.
| | - Hui Gyu Park
- Dell Pediatric Research Institute, Dell Medical School and Department of Nutritional Sciences, The University of Texas at Austin, 1400 Barbara Jordan Blvd, Austin, TX 78723, USA
| | | | - J Thomas Brenna
- Dell Pediatric Research Institute, Dell Medical School and Department of Nutritional Sciences, The University of Texas at Austin, 1400 Barbara Jordan Blvd, Austin, TX 78723, USA.
| |
Collapse
|
7
|
Flori E, Mastrofrancesco A, Ottaviani M, Maiellaro M, Zouboulis CC, Camera E. Desaturation of sebaceous-type saturated fatty acids through the SCD1 and the FADS2 pathways impacts lipid neosynthesis and inflammatory response in sebocytes in culture. Exp Dermatol 2023. [PMID: 36843338 DOI: 10.1111/exd.14780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/12/2022] [Accepted: 02/23/2023] [Indexed: 02/28/2023]
Abstract
Sebum is a lipid-rich mixture secreted by the sebaceous gland (SG) onto the skin surface. By penetrating through the epidermis, sebum may be involved in the regulation of epidermal and dermal cells in both healthy and diseased skin conditions. Saturated and monounsaturated fatty acids (FAs), found as free FAs (FFAs) and in bound form in neutral lipids, are essential constituents of sebum and key players of the inflammatory processes occurring in the pilosebaceous unit in acne-prone skin. Little is known on the interplay among uptake of saturated FFAs, their biotransformation, and induction of proinflammatory cytokines in sebocytes. In the human SG, palmitate (C16:0) is the precursor of sapienate (C16:1n-10) formed by insertion of a double bond (DB) at the Δ6 position catalysed by the fatty acid desaturase 2 (FADS2) enzyme. Conversely, palmitoleate (C16:1n-7) is formed by insertion of a DB at the Δ9 position catalysed by the stearoyl coenzyme A desaturase 1 (SCD1) enzyme. Other FFAs processed in the SG, also undergo these main desaturation pathways. We investigated lipogenesis and release of IL-6 and IL-8 pro-inflammatory cytokines in SZ95 sebocytes in vitro after treatment with saturated FFAs, that is, C16:0, margarate (C17:0), and stearate (C18:0) with or without specific inhibitors of SCD1 and FADS2 desaturase enzymes, and a drug with mixed inhibitory effects on FADS1 and FADS2 activities. C16:0 underwent extended desaturation through both SCD1 and FADS2 catalysed pathways and displayed the strongest lipoinflammatory effects. Inhibition of desaturation pathways proved to enhance lipoinflammation induced by SFAs in SZ95 sebocytes. Palmitate (C16:0), margarate (C17:0), and stearate (C18:0) are saturated fatty acids that induce different arrays of neutral lipids (triglycerides) and dissimilar grades of inflammation in sebocytes.
Collapse
Affiliation(s)
- Enrica Flori
- Cutaneous Physiopathology and Integrated Centre for Metabolomic Research, San Gallicano Dermatological Institute-IRCCS, Rome, Italy
| | - Arianna Mastrofrancesco
- Cutaneous Physiopathology and Integrated Centre for Metabolomic Research, San Gallicano Dermatological Institute-IRCCS, Rome, Italy
| | - Monica Ottaviani
- Cutaneous Physiopathology and Integrated Centre for Metabolomic Research, San Gallicano Dermatological Institute-IRCCS, Rome, Italy
| | - Miriam Maiellaro
- Cutaneous Physiopathology and Integrated Centre for Metabolomic Research, San Gallicano Dermatological Institute-IRCCS, Rome, Italy
| | - Christos C Zouboulis
- Departments of Dermatology, Venereology, Allergology and Immunology, Dessau Medical Center, Brandenburg Medical School Theodor Fontane and Faculty of Health Sciences Brandenburg, Dessau, Germany
| | - Emanuela Camera
- Cutaneous Physiopathology and Integrated Centre for Metabolomic Research, San Gallicano Dermatological Institute-IRCCS, Rome, Italy
| |
Collapse
|
8
|
Roles of Palmitoleic Acid and Its Positional Isomers, Hypogeic and Sapienic Acids, in Inflammation, Metabolic Diseases and Cancer. Cells 2022; 11:cells11142146. [PMID: 35883589 PMCID: PMC9319324 DOI: 10.3390/cells11142146] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/04/2022] [Accepted: 07/07/2022] [Indexed: 12/19/2022] Open
Abstract
In the last few years, the monounsaturated hexadecenoic fatty acids are being increasingly considered as biomarkers of health with key functions in physiology and pathophysiology. Palmitoleic acid (16:1n-7) and sapienic acid (16:1n-10) are synthesized from palmitic acid by the action of stearoyl-CoA desaturase-1 and fatty acid desaturase 2, respectively. A third positional isomer, hypogeic acid (16:1n-9) is produced from the partial β-oxidation of oleic acid. In this review, we discuss the current knowledge of the effects of palmitoleic acid and, where available, sapienic acid and hypogeic acid, on metabolic diseases such as diabetes, cardiovascular disease, and nonalcoholic fatty liver disease, and cancer. The results have shown diverse effects among studies in cell lines, animal models and humans. Palmitoleic acid was described as a lipokine able to regulate different metabolic processes such as an increase in insulin sensitivity in muscle, β cell proliferation, prevention of endoplasmic reticulum stress and lipogenic activity in white adipocytes. Numerous beneficial effects have been attributed to palmitoleic acid, both in mouse models and in cell lines. However, its role in humans is not fully understood, and is sometimes controversial. Regarding sapienic acid and hypogeic acid, studies on their biological effects are still scarce, but accumulating evidence suggests that they also play important roles in metabolic regulation. The multiplicity of effects reported for palmitoleic acid and the compartmentalized manner in which they often occur, may suggest the overlapping actions of multiple isomers being present at the same or neighboring locations.
Collapse
|
9
|
Dyall SC, Balas L, Bazan NG, Brenna JT, Chiang N, da Costa Souza F, Dalli J, Durand T, Galano JM, Lein PJ, Serhan CN, Taha AY. Polyunsaturated fatty acids and fatty acid-derived lipid mediators: Recent advances in the understanding of their biosynthesis, structures, and functions. Prog Lipid Res 2022; 86:101165. [PMID: 35508275 PMCID: PMC9346631 DOI: 10.1016/j.plipres.2022.101165] [Citation(s) in RCA: 219] [Impact Index Per Article: 109.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/26/2022] [Accepted: 04/27/2022] [Indexed: 12/21/2022]
Abstract
Polyunsaturated fatty acids (PUFAs) are structural components of membrane phospholipids, and influence cellular function via effects on membrane properties, and also by acting as a precursor pool for lipid mediators. These lipid mediators are formed via activation of pathways involving at least one step of dioxygen-dependent oxidation, and are consequently called oxylipins. Their biosynthesis can be either enzymatically-dependent, utilising the promiscuous cyclooxygenase, lipoxygenase, or cytochrome P450 mixed function oxidase pathways, or nonenzymatic via free radical-catalyzed pathways. The oxylipins include the classical eicosanoids, comprising prostaglandins, thromboxanes, and leukotrienes, and also more recently identified lipid mediators. With the advent of new technologies there is growing interest in identifying these different lipid mediators and characterising their roles in health and disease. This review brings together contributions from some of those at the forefront of research into lipid mediators, who provide brief introductions and summaries of current understanding of the structure and functions of the main classes of nonclassical oxylipins. The topics covered include omega-3 and omega-6 PUFA biosynthesis pathways, focusing on the roles of the different fatty acid desaturase enzymes, oxidized linoleic acid metabolites, omega-3 PUFA-derived specialized pro-resolving mediators, elovanoids, nonenzymatically oxidized PUFAs, and fatty acid esters of hydroxy fatty acids.
Collapse
|
10
|
Tan M, Niu J, Peng DZ, Cheng Q, Luan MB, Zhang ZQ. Clone and Function Verification of the OPR gene in Brassica napus Related to Linoleic Acid Synthesis. BMC PLANT BIOLOGY 2022; 22:192. [PMID: 35410118 PMCID: PMC9003975 DOI: 10.1186/s12870-022-03549-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 03/16/2022] [Indexed: 05/30/2023]
Abstract
BACKGROUND Fatty acid composition and content affect rapeseed oil quality. Fatty acid synthesis-related genes in rapeseed have been studied globally by researchers. Nevertheless, rapeseed oil is mainly composed of seven different fatty acids (FA), and each fatty acid was regulated by different genes. Furthermore, different FA affect each other, which needs continuous and in-depth research to obtain more clear results in Brassica napus. RESULTS In this paper, broad-scale miRNA expression profiles were constructed and 21 differentially expressed miRNAs were detected. GO enrichment analysis showed that most up-regulated proteins were involved in transcription factor activity and catalytic activity. KEGG pathway enrichment analysis indicated that 20 pathways involving 36 target genes were enriched, of which the bna00592 pathway may be involved in fatty acid metabolism. The results were verified using a quantitative real-time PCR (RT-qPCR) analysis, we found that the target gene of bna-miR156b > c > g was the OPR (12-oxo-phytodienoic acid reductase). Four copies of OPR gene were found, and the over-expression vectors (pCAMBIA1300-35 s-OPR and pCAMBIA1300-RNAi-OPR) were constructed to verify their functions. In T1 and T2 generation, the content of linoleic acid (LA) increased significantly in OE but deceased in OPRi. CONCLUSIONS This is the first study to provide four copies of the OPR gene that regulates LA metabolism, can be used for the molecular mechanism of LA and optimizing fatty acid profiles in oilseed for breeding programs.
Collapse
Affiliation(s)
- Min Tan
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Juan Niu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, Hunan, China
| | - Duo Zi Peng
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Qian Cheng
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Ming Bao Luan
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, Hunan, China.
| | - Zhen Qian Zhang
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, Hunan, China.
| |
Collapse
|
11
|
Brenna JT, Kothapalli KSD. New understandings of the pathway of long-chain polyunsaturated fatty acid biosynthesis. Curr Opin Clin Nutr Metab Care 2022; 25:60-66. [PMID: 34937850 DOI: 10.1097/mco.0000000000000810] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Molecular studies have clarified the roles of the fatty acid desaturase (FADSx) and elongation of very long chain fatty acid (ELOVLx) genes, as well as acyl-coenzyme A synthase long-chain isoforms (ACSLx) required for entry to long-chain polyunsaturated fatty acid (LCPUFA) biosynthetic pathways. RECENT FINDINGS FADS1 and FADS2 but not FADS3 are active toward PUFA. FADS1 is a Δ5-desaturase operating on five C20 PUFA, and is strongly regulated by human genetic polymorphisms, modulating circulating arachidonic acid (20:4n-6) levels. In contrast, FADS2 operates on at least 16 substrates, including five saturates, and catalyzes Δ6, Δ4, and Δ8 desaturation. FADS2 silencing in cancer cells leads to FADS1 synthesis of unusual fatty acids. ACSL6 and ACSL4 are required to maintain tissue 22:6n-3 and 20:4n-6, respectively. FADS2AT2, is the first transcript to differentially inhibit desaturation, attenuating 18:3n-3 but not 18:2n-6 desaturation. The PUFA elongases ELOVL5, 2, and 4 are implicated in cancer, age-related methylation, and retinal degeneration, respectively. SUMMARY The mixture of fatty acids available to FADS2 in any tissue defines the product mixture available for further synthesis of membrane lipids and signaling molecules and may be relevant in many clinical conditions including cancer. Functional genetic variants define the levels of circulating arachidonic acid via FADS1 regulation; genotypes that drive high arachidonic acid may predispose to disease.
Collapse
Affiliation(s)
- J Thomas Brenna
- Dell Pediatric Research Institute, Departments of Pediatrics, of Chemistry, and of Nutrition, Dell Medical School and College of Natural Sciences, University of Texas at Austin, Austin, Texas
- Cornell University, Ithaca, New York, USA
| | - Kumar S D Kothapalli
- Dell Pediatric Research Institute, Departments of Pediatrics, of Chemistry, and of Nutrition, Dell Medical School and College of Natural Sciences, University of Texas at Austin, Austin, Texas
| |
Collapse
|
12
|
Rodrigues TCGC, Santos SA, Cirne LGA, dos S Pina D, Alba HDR, de Araújo MLGML, Silva WP, Nascimento CO, Rodrigues CS, de Carvalho GGP. Palm kernel cake in high-concentrate diets improves animal performance without affecting the meat quality of goat kids. ANIMAL PRODUCTION SCIENCE 2022. [DOI: 10.1071/an21129] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Context
Goat farming is an important socio-economic activity. The feedlot system allows the finishing of the animals in short periods through use of concentrated diets; however, these diets increase the system’s production costs. Palm kernel cake (PKC) has proved to be a good alternative feed source in diets for cattle and sheep because of its nutritional characteristics and potential to reduce production costs.
Aim
This experiment aimed to evaluate the effect of high-concentrate diets with the inclusion of PKC on carcass traits and meat quality of feedlot goat kids.
Methods
Thirty-two crossbred, castrated Boer goat kids, 4
months old and of average initial body weight 19.65±3.00kg, were used in the study. The animals were assigned to treatments in a completely randomised design, with four experimental diets containing PKC at 0%, 12%, 24%, and 36% on a dry matter basis. Measurements included total weight gain at slaughter, quantitative and sensory meat characteristics, and fatty acid profile.
Key results
A quadratic effect (P<0.05) on total weight gain, and on meat marbling, lightness, and yellowness, was observed. The highest total weight gain and marbling were recorded with the diet containing 12% PKC. Loin eye area was also highest at 12% PKC, then decreased, whereas protein content and shear force increased (P<0.05) at the higher PKC levels. Diet affected (P<0.05) saturated, monounsaturated, and polyunsaturated fatty acids. No effect was observed from the inclusion of PKC on sensory attributes or on nutritional quality of the lipid fraction of the meat.
Conclusion
It is recommended the use up to 12% of this alternative source of nutrients, owing to the higher total weight gain and improved quantitative aspects of the goat kids’ meat such as marbling and loin eye area.
Implications
High-concentrate diets and the use of by-products for animal nutrition have become common in animal production systems. The increasing use of PKC in animal nutrition leads us to determine the best dietary inclusion level, avoiding undesirable production or product quality characteristics.
Collapse
|
13
|
Agarwala PK, Aneja R, Kapoor S. Lipidomic landscape in cancer: Actionable insights for membrane-based therapy and diagnoses. Med Res Rev 2021; 42:983-1018. [PMID: 34719798 DOI: 10.1002/med.21868] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 08/18/2021] [Accepted: 10/24/2021] [Indexed: 01/17/2023]
Abstract
Cancer cells display altered cellular lipid metabolism, including disruption in endogenous lipid synthesis, storage, and exogenous uptake for membrane biogenesis and functions. Altered lipid metabolism and, consequently, lipid composition impacts cellular function by affecting membrane structure and properties, such as fluidity, rigidity, membrane dynamics, and lateral organization. Herein, we provide an overview of lipid membranes and how their properties affect cellular functions. We also detail how the rewiring of lipid metabolism impacts the lipidomic landscape of cancer cell membranes and influences the characteristics of cancer cells. Furthermore, we discuss how the altered cancer lipidome provides cues for developing lipid-inspired innovative therapeutic and diagnostic strategies while improving our limited understanding of the role of lipids in cancer initiation and progression. We also present the arcade of membrane characterization techniques to cement their relevance in cancer diagnosis and monitoring of treatment response.
Collapse
Affiliation(s)
- Prema K Agarwala
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India
| | - Ritu Aneja
- Department of Biology, Georgia State University, Atlanta, Georgia, USA
| | - Shobhna Kapoor
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India.,Depertment of Biofunctional Science and Technology, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
14
|
Zhao J, Fang M, Xia Y. A liquid chromatography-mass spectrometry workflow for in-depth quantitation of fatty acid double bond location isomers. J Lipid Res 2021; 62:100110. [PMID: 34437891 PMCID: PMC8441088 DOI: 10.1016/j.jlr.2021.100110] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 01/31/2023] Open
Abstract
Tracing compositional changes of fatty acids (FAs) is frequently used as a means of monitoring metabolic alterations in perturbed biological states. Given that more than half of FAs in the mammalian lipidome are unsaturated, quantitation of FAs at a carbon-carbon double bond (C=C) location level is necessary. The use of 2-acetylpiridine (2-acpy) as the charge-tagging PB reagent led to a limit of identification in the subnanomolar range for mono- and polyunsaturated as well as conjugated FAs. Conjugated free FAs of low abundance such as FA 18:2 (n-7, n-9) and FA 18:2 (n-6, n-8) were quantified at concentrations of 0.61 ± 0.05 and 0.05 ± 0.01 mg per 100 g in yak milk powder, respectively. This workflow also enabled deep profiling of eight saturated and 37 unsaturated total FAs across a span of four orders of magnitude in concentration, including ten groups of C=C location isomers in pooled human plasma. A pilot survey on total FAs in plasma from patients with type 2 diabetes revealed that the relative compositions of FA 16:1 (n-10) and FA 18:1 (n-10) were significantly elevated compared with that of normal controls. In this work, we have developed a workflow for global quantitation of FAs, including C=C location isomers, via charge-tagging Paternò-Büchi (PB) derivatization and liquid chromatography-tandem mass spectrometry (LC-MS/MS).
Collapse
Affiliation(s)
- Jing Zhao
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Mengxuan Fang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, China; School of Chemistry, University of Melbourne, Melbourne, Victoria, Australia
| | - Yu Xia
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, China.
| |
Collapse
|
15
|
Garay MI, Comba A, Vara Messler M, Barotto NN, Silva RA, Repossi G, Quiroga PL, Mazzudulli GM, Brunotto MN, Pasqualini ME. Tumorigenic effect mediated by ROS/eicosanoids and their regulation on TP53 expression in a murine mammary gland adenocarcinoma. Prostaglandins Other Lipid Mediat 2021; 155:106564. [PMID: 34004336 DOI: 10.1016/j.prostaglandins.2021.106564] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 03/23/2021] [Accepted: 05/12/2021] [Indexed: 10/21/2022]
Abstract
The aim of this study was to investigate the in vivo and in vitro effects of dietary ω-6 and ω-3 polyunsaturated fatty acids (PUFAs) and their derivatives on the expression of TP53 and their relationship with cellular proliferation and death in a murine mammary adenocarcinoma model. BALB/c mice were divided in three diet groups: chia oil (ChO) rich in ω-3, corn oil (CO) rich in ω-6/ω-3 and safflower oil (SO) rich in ω-6 and subcutaneously inoculated with LMM3 mammary tumor cell line. Results demonstrated that diets with higher concentration of omega-6 PUFAs induced an increment of linoleic and arachidonic acid on tumor cell membranes increasing ROS liberation, 12(S)-HHT generation, TP53, Ki67 expression and cell proliferation. However, diets enriched with high content in omega-3 PUFAs induced higher tumor cell apoptosis and tumor infiltration of CD3+ lymphocytes, lowest cell viability and proliferation. Dietary omega-3 PUFAs nutritional intervention can be used as a potential preventative strategy to inhibit the molecular signaling pathways involved in the mammary tumor growth process as the TP53.
Collapse
Affiliation(s)
- M I Garay
- Instituto de Investigaciones en Ciencias de la Salud (INICSA-CONICET), Ciudad Universitaria, 5000 Córdoba, Argentina; Cátedra de Biología Celular, Histología y Embriología, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina; Instituto de Biología Celular, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina.
| | - A Comba
- Instituto de Investigaciones en Ciencias de la Salud (INICSA-CONICET), Ciudad Universitaria, 5000 Córdoba, Argentina; Cátedra de Biología Celular, Histología y Embriología, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina; Instituto de Biología Celular, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina; Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, 48109, MI, USA.
| | - M Vara Messler
- Dipartimento di Oncologia, Università di Torino, 10124 Torino, Italy.
| | - N N Barotto
- Cátedra de Biología Celular, Histología y Embriología, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina; Instituto de Biología Celular, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina.
| | - R A Silva
- Cátedra de Biología Celular, Histología y Embriología, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina; Instituto de Biología Celular, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina.
| | - G Repossi
- Instituto de Investigaciones en Ciencias de la Salud (INICSA-CONICET), Ciudad Universitaria, 5000 Córdoba, Argentina; Cátedra de Biología Celular, Histología y Embriología, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina; Instituto de Biología Celular, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina.
| | - P L Quiroga
- Cátedra de Biología Celular, Histología y Embriología, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina; Instituto de Biología Celular, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina.
| | - G M Mazzudulli
- Instituto de Investigaciones en Ciencias de la Salud (INICSA-CONICET), Ciudad Universitaria, 5000 Córdoba, Argentina.
| | - M N Brunotto
- Departamento de Biología Bucal, Facultad de Odontología, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina.
| | - M E Pasqualini
- Instituto de Investigaciones en Ciencias de la Salud (INICSA-CONICET), Ciudad Universitaria, 5000 Córdoba, Argentina; Cátedra de Biología Celular, Histología y Embriología, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina; Instituto de Biología Celular, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina.
| |
Collapse
|
16
|
Park HG, Kim JH, Dancer AN, Kothapalli KS, Brenna JT. The aromatase inhibitor letrozole restores FADS2 function in ER+ MCF7 human breast cancer cells. Prostaglandins Leukot Essent Fatty Acids 2021; 171:102312. [PMID: 34303883 DOI: 10.1016/j.plefa.2021.102312] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 12/26/2022]
Abstract
PURPOSE Plasticity in fatty acid metabolism is increasingly recognized as a major feature influencing cancer progression and efficacy of treatments. Estrogen receptor positive MCF7 human breast cancer cells have long been known to have no FADS2-mediated Δ6-desaturase activity. Our objective was to examine the effect of estrogen and the "antiestrogen" aromatase inhibitor letrozole, on Δ5- and Δ6-desaturase synthesized fatty acids in vitro. METHODS Eicosa-11,14-dienoic acid (20:2n-6), a known substrate for both FADS1 and FADS2, was used as a sentinel of relative FADS2 and FADS1 activity. MCF7 cells and four additional estrogen responsive wild type cell lines (HepG2, SK-N-SH, Y79 and Caco2) were studied. FAME were quantified by GC-FID and structures identified by GCCACI-MS/MS. RESULTS In all five cell lines, estrogen caused a dose dependent decrease in sciadonic acid (5,11,14-20:3, ScA) via apparent inhibition of FADS1 activity, and had no effect on FADS2 catalyzed synthesis of dihomo-gamma linolenic acid (8,11,14-20:3; DGLA). In MCF7 cells, letrozole caused a dose dependent increase in FADS2-catalyzed DGLA synthesis, which plateaued in SK-N-SH cells. CONCLUSION Letrozole restores Δ6-desaturase mediated synthesis of the anti-inflammatory PGE1-precursor DGLA in vitro and is the first endocrine-active agent to have opposing effects on FADS1 and FADS2 catalyzed activities.
Collapse
Affiliation(s)
- Hui Gyu Park
- Dell Pediatric Research Institute, Dell Medical School, The University of Texas at Austin, 1400 Barbara Jordan Blvd, Austin, TX, 78723, USA
| | - Jae Hun Kim
- Dell Pediatric Research Institute, Dell Medical School, The University of Texas at Austin, 1400 Barbara Jordan Blvd, Austin, TX, 78723, USA
| | - Andrew N Dancer
- Dell Pediatric Research Institute, Dell Medical School, The University of Texas at Austin, 1400 Barbara Jordan Blvd, Austin, TX, 78723, USA
| | - Kumar S Kothapalli
- Dell Pediatric Research Institute, Dell Medical School, The University of Texas at Austin, 1400 Barbara Jordan Blvd, Austin, TX, 78723, USA
| | - J Thomas Brenna
- Dell Pediatric Research Institute, Dell Medical School, The University of Texas at Austin, 1400 Barbara Jordan Blvd, Austin, TX, 78723, USA.
| |
Collapse
|
17
|
Gonzalez-Soto M, Mutch DM. Diet Regulation of Long-Chain PUFA Synthesis: Role of Macronutrients, Micronutrients, and Polyphenols on Δ-5/Δ-6 Desaturases and Elongases 2/5. Adv Nutr 2021; 12:980-994. [PMID: 33186986 PMCID: PMC8166571 DOI: 10.1093/advances/nmaa142] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/04/2020] [Accepted: 10/01/2020] [Indexed: 01/08/2023] Open
Abstract
Deficiencies in the n-3 (ω-3) long-chain PUFAs (LC-PUFAs) EPA and DHA are associated with increased risk for the development of numerous diseases. Although n-3 LC-PUFAs can be obtained by consuming marine products, they are also synthesized endogenously through a biochemical pathway regulated by the Δ-5/Δ-6 desaturase and elongase 2/5 enzymes. This narrative review collates evidence from the past 40 y demonstrating that mRNA expression and activity of desaturase and elongase enzymes are influenced by numerous dietary components, including macronutrients, micronutrients, and polyphenols. Specifically, we highlight that both the quantity and the composition of dietary fats, carbohydrates, and proteins can differentially regulate desaturase pathway activity. Furthermore, desaturase and elongase mRNA levels and enzyme activities are also influenced by micronutrients (folate, vitamin B-12, vitamin A), trace minerals (iron, zinc), and polyphenols (resveratrol, isoflavones). Understanding how these various dietary components influence LC-PUFA synthesis will help further advance our understanding of how dietary patterns, ranging from caloric excesses to micronutrient deficiencies, influence disease risks.
Collapse
Affiliation(s)
- Melissa Gonzalez-Soto
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Canada
| | - David M Mutch
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Canada
| |
Collapse
|
18
|
Triki M, Rinaldi G, Planque M, Broekaert D, Winkelkotte AM, Maier CR, Janaki Raman S, Vandekeere A, Van Elsen J, Orth MF, Grünewald TGP, Schulze A, Fendt SM. mTOR Signaling and SREBP Activity Increase FADS2 Expression and Can Activate Sapienate Biosynthesis. Cell Rep 2021; 31:107806. [PMID: 32579932 PMCID: PMC7326293 DOI: 10.1016/j.celrep.2020.107806] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 04/03/2020] [Accepted: 06/02/2020] [Indexed: 01/18/2023] Open
Abstract
Cancer cells display an increased plasticity in their lipid metabolism, which includes the conversion of palmitate to sapienate via the enzyme fatty acid desaturase 2 (FADS2). We find that FADS2 expression correlates with mammalian target of rapamycin (mTOR) signaling and sterol regulatory element-binding protein 1 (SREBP-1) activity across multiple cancer types and is prognostic in some cancer types. Accordingly, activating mTOR signaling by deleting tuberous sclerosis complex 2 (Tsc2) or overexpression of SREBP-1/2 is sufficient to increase FADS2 mRNA expression and sapienate metabolism in mouse embryonic fibroblasts (MEFs) and U87 glioblastoma cells, respectively. Conversely, inhibiting mTOR signaling decreases FADS2 expression and sapienate biosynthesis in MEFs with Tsc2 deletion, HUH7 hepatocellular carcinoma cells, and orthotopic HUH7 liver xenografts. In conclusion, we show that mTOR signaling and SREBP activity are sufficient to activate sapienate metabolism by increasing FADS2 expression. Consequently, targeting mTOR signaling can reduce sapienate metabolism in vivo.
Collapse
Affiliation(s)
- Mouna Triki
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Herestraat 49, 3000 Leuven, Belgium; Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Herestraat 49, 3000 Leuven, Belgium
| | - Gianmarco Rinaldi
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Herestraat 49, 3000 Leuven, Belgium; Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Herestraat 49, 3000 Leuven, Belgium
| | - Melanie Planque
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Herestraat 49, 3000 Leuven, Belgium; Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Herestraat 49, 3000 Leuven, Belgium
| | - Dorien Broekaert
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Herestraat 49, 3000 Leuven, Belgium; Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Herestraat 49, 3000 Leuven, Belgium
| | - Alina M Winkelkotte
- Division of Tumor Metabolism and Microenvironment, German Cancer Research Center, Im Neuenheimer Feld 581, 69120 Heidelberg, Germany; Faculty of Biosciences, University of Heidelberg, 69120 Heidelberg, Germany
| | - Carina R Maier
- Biochemistry and Molecular Biology, Theodor-Boveri-Institute, Biocenter, Am Hubland, 97074 Würzburg, Germany
| | - Sudha Janaki Raman
- Biochemistry and Molecular Biology, Theodor-Boveri-Institute, Biocenter, Am Hubland, 97074 Würzburg, Germany
| | - Anke Vandekeere
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Herestraat 49, 3000 Leuven, Belgium; Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Herestraat 49, 3000 Leuven, Belgium
| | - Joke Van Elsen
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Herestraat 49, 3000 Leuven, Belgium; Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Herestraat 49, 3000 Leuven, Belgium
| | - Martin F Orth
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Thalkirchner Strasse 36, 80337 Munich, Germany
| | - Thomas G P Grünewald
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Thalkirchner Strasse 36, 80337 Munich, Germany; German Cancer Consortium (DKTK), partner site Munich, 80337 Munich, Germany; Division of Translational Pediatric Sarcoma Research, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Institute of Pathology, Heidelberg University Hospital, Im Neuenheimer Feld 224, 69120 Heidelberg, Germany
| | - Almut Schulze
- Division of Tumor Metabolism and Microenvironment, German Cancer Research Center, Im Neuenheimer Feld 581, 69120 Heidelberg, Germany; Biochemistry and Molecular Biology, Theodor-Boveri-Institute, Biocenter, Am Hubland, 97074 Würzburg, Germany
| | - Sarah-Maria Fendt
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Herestraat 49, 3000 Leuven, Belgium; Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Herestraat 49, 3000 Leuven, Belgium.
| |
Collapse
|
19
|
Liu W, Zhang R, Xiang C, Zhang R, Wang Q, Wang T, Li X, Lu X, Gao S, Liu Z, Liu M, Gao L, Zhang W. Transcriptomic and Physiological Analysis Reveal That α-Linolenic Acid Biosynthesis Responds to Early Chilling Tolerance in Pumpkin Rootstock Varieties. FRONTIERS IN PLANT SCIENCE 2021; 12:669565. [PMID: 33968120 PMCID: PMC8104029 DOI: 10.3389/fpls.2021.669565] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 03/26/2021] [Indexed: 06/01/2023]
Abstract
Climate changes especially chilling stress affects cucurbit crops during winter seasonal production. Grafting to pumpkin rootstocks is widely used to improve the vigor of cucurbits, especially cucumber (Cucumis sativus L.) plants, in the face of chilling stress. In our study, multi-disciplinary aspect approaches were used to investigate growth changes of pumpkin under chilling stress. Firstly, the morphological and physiological characteristics of 14 pumpkin (Cucurbita moschata) varieties following different periods of chilling stress was analyzed by using physiological means. Mathematical results of principal component analysis (PCA) with chlorophyll-a, chlorophyll-b, carotenoid contents, chilling injury index and relative electrolyte permeability indicated that relative electrolyte permeability as the primary judgment index was best associated with the comparison of chilling tolerance in pumpkin rootstock varieties. Then, transcriptomic and DCMU (Diuron) application and chlorophyll fluorescence examination analysis of pumpkin leaves revealed that 390 Cucurbita moschata differentially expressed genes (CmoDEGs) that affect photosynthesis were upregulated in leaves. 127 CmoDEGs both in leaves and roots were enriched for genes involved in unsaturated fatty acid metabolism, suggesting that plasma membrane lipids are involved in chilling perception. The results of increased composition of unsaturated fatty acid in leaves and qRT-PCR analysis of relative mRNA abundance confirmed that α-linolenic acid biosynthesis was responding to pumpkin chilling tolerance. The integration of physiological, mathematical bioinformatical and biological analysis results contributes to our understanding of the molecular mechanisms underlying chilling tolerance and its improvement in cucumber grafted on pumpkin rootstocks. It provided an important theoretical basis and reference for further understanding on the impact of climate change on plant physiological changes.
Collapse
Affiliation(s)
- Wenqian Liu
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, China
| | - Ruoyan Zhang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, China
| | - Chenggang Xiang
- College of Life Science and Technology, HongHe University, Yunnan, China
| | - Ruiyun Zhang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, China
| | - Qing Wang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, China
| | - Tao Wang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, China
| | - Xiaojun Li
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, China
| | - Xiaohong Lu
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, China
| | - Shunli Gao
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, China
| | - Zixi Liu
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, China
| | - Mengshuang Liu
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, China
| | - Lihong Gao
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, China
| | - Wenna Zhang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, China
| |
Collapse
|
20
|
Huang C, Chiba L, Bergen W. Bioavailability and metabolism of omega-3 polyunsaturated fatty acids in pigs and omega-3 polyunsaturated fatty acid-enriched pork: A review. Livest Sci 2021. [DOI: 10.1016/j.livsci.2020.104370] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
21
|
Vidal E, Jun B, Gordon WC, Maire MA, Martine L, Grégoire S, Khoury S, Cabaret S, Berdeaux O, Acar N, Bretillon L, Bazan NG. Bioavailability and spatial distribution of fatty acids in the rat retina after dietary omega-3 supplementation. J Lipid Res 2020; 61:1733-1746. [PMID: 33127836 PMCID: PMC7707163 DOI: 10.1194/jlr.ra120001057] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Spatial changes of FAs in the retina in response to different dietary n-3 formulations have never been explored, although a diet rich in EPA and DHA is recommended to protect the retina against the effects of aging. In this study, Wistar rats were fed for 8 weeks with balanced diet including either EPA-containing phospholipids (PLs), EPA-containing TGs, DHA-containing PLs, or DHA-containing TGs. Qualitative changes in FA composition of plasma, erythrocytes, and retina were evaluated by gas chromatography-flame ionization detector. Following the different dietary intakes, changes to the quantity and spatial organization of PC and PE species in retina were determined by LC coupled to MS/MS and MALDI coupled to MS imaging. The omega-3 content in the lipids of plasma and erythrocytes suggests that PLs as well as TGs are good omega-3 carriers for retina. However, a significant increase in DHA content in retina was observed, especially molecular species as di-DHA-containing PC and PE, as well as an increase in very long chain PUFAs (more than 28 carbons) following PL-EPA and TG-DHA diets only. All supplemented diets triggered spatial organization changes of DHA in the photoreceptor layer around the optic nerve. Taken together, these findings suggest that dietary omega-3 supplementation can modify the content of FAs in the rat retina.
Collapse
Affiliation(s)
- Elisa Vidal
- Eye and Nutrition Research Group, Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, INRAE, CNRS, Université Bourgogne Franche-Comté, Dijon, France; Horus Pharma Laboratories, Saint Laurent du Var, France
| | - Bokkyoo Jun
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA, USA
| | - William C Gordon
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA, USA
| | - Marie-Annick Maire
- Eye and Nutrition Research Group, Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, INRAE, CNRS, Université Bourgogne Franche-Comté, Dijon, France
| | - Lucy Martine
- Eye and Nutrition Research Group, Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, INRAE, CNRS, Université Bourgogne Franche-Comté, Dijon, France
| | - Stéphane Grégoire
- Eye and Nutrition Research Group, Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, INRAE, CNRS, Université Bourgogne Franche-Comté, Dijon, France
| | - Spiro Khoury
- Chemosens Group, Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, Dijon, France
| | - Stephanie Cabaret
- Chemosens Group, Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, Dijon, France
| | - Olivier Berdeaux
- Chemosens Group, Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, Dijon, France
| | - Niyazi Acar
- Eye and Nutrition Research Group, Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, INRAE, CNRS, Université Bourgogne Franche-Comté, Dijon, France
| | - Lionel Bretillon
- Eye and Nutrition Research Group, Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, INRAE, CNRS, Université Bourgogne Franche-Comté, Dijon, France.
| | - Nicolas G Bazan
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA, USA
| |
Collapse
|
22
|
Kothapalli KSD, Park HG, Brenna JT. Polyunsaturated fatty acid biosynthesis pathway and genetics. implications for interindividual variability in prothrombotic, inflammatory conditions such as COVID-19 ✰,✰✰,★,★★. Prostaglandins Leukot Essent Fatty Acids 2020; 162:102183. [PMID: 33038834 PMCID: PMC7527828 DOI: 10.1016/j.plefa.2020.102183] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/29/2020] [Accepted: 09/29/2020] [Indexed: 12/15/2022]
Abstract
COVID-19 symptoms vary from silence to rapid death, the latter mediated by both a cytokine storm and a thrombotic storm. SARS-CoV (2003) induces Cox-2, catalyzing the synthesis, from highly unsaturated fatty acids (HUFA), of eicosanoids and docosanoids that mediate both inflammation and thrombosis. HUFA balance between arachidonic acid (AA) and other HUFA is a likely determinant of net signaling to induce a healthy or runaway physiological response. AA levels are determined by a non-protein coding regulatory polymorphisms that mostly affect the expression of FADS1, located in the FADS gene cluster on chromosome 11. Major and minor haplotypes in Europeans, and a specific functional insertion-deletion (Indel), rs66698963, consistently show major differences in circulating AA (>50%) and in the balance between AA and other HUFA (47-84%) in free living humans; the indel is evolutionarily selective, probably based on diet. The pattern of fatty acid responses is fully consistent with specific genetic modulation of desaturation at the FADS1-mediated 20:3→20:4 step. Well established principles of net tissue HUFA levels indicate that the high linoleic acid and low alpha-linoleic acid in populations drive the net balance of HUFA for any individual. We predict that fast desaturators (insertion allele at rs66698963; major haplotype in Europeans) are predisposed to higher risk and pathological responses to SARS-CoV-2 could be reduced with high dose omega-3 HUFA.
Collapse
Affiliation(s)
- Kumar S D Kothapalli
- Dell Pediatric Research Institute, Depts of Pediatrics, of Chemistry, and of Nutrition, University of Texas at Austin, 1400 Barbara Jordan Blvd, Austin, TX, United States.
| | - Hui Gyu Park
- Dell Pediatric Research Institute, Depts of Pediatrics, of Chemistry, and of Nutrition, University of Texas at Austin, 1400 Barbara Jordan Blvd, Austin, TX, United States.
| | - J Thomas Brenna
- Dell Pediatric Research Institute, Depts of Pediatrics, of Chemistry, and of Nutrition, University of Texas at Austin, 1400 Barbara Jordan Blvd, Austin, TX, United States; Division of Nutritional Sciences, Cornell University, Ithaca, NY, United States.
| |
Collapse
|
23
|
Liu KD, Acharjee A, Hinz C, Liggi S, Murgia A, Denes J, Gulston MK, Wang X, Chu Y, West JA, Glen RC, Roberts LD, Murray AJ, Griffin JL. Consequences of Lipid Remodeling of Adipocyte Membranes Being Functionally Distinct from Lipid Storage in Obesity. J Proteome Res 2020; 19:3919-3935. [PMID: 32646215 DOI: 10.1021/acs.jproteome.9b00894] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Obesity is a complex disorder where the genome interacts with diet and environmental factors to ultimately influence body mass, composition, and shape. Numerous studies have investigated how bulk lipid metabolism of adipose tissue changes with obesity and, in particular, how the composition of triglycerides (TGs) changes with increased adipocyte expansion. However, reflecting the analytical challenge posed by examining non-TG lipids in extracts dominated by TGs, the glycerophospholipid composition of cell membranes has been seldom investigated. Phospholipids (PLs) contribute to a variety of cellular processes including maintaining organelle functionality, providing an optimized environment for membrane-associated proteins, and acting as pools for metabolites (e.g. choline for one-carbon metabolism and for methylation of DNA). We have conducted a comprehensive lipidomic study of white adipose tissue in mice which become obese either through genetic modification (ob/ob), diet (high fat diet), or a combination of the two, using both solid phase extraction and ion mobility to increase coverage of the lipidome. Composition changes in seven classes of lipids (free fatty acids, diglycerides, TGs, phosphatidylcholines, lyso-phosphatidylcholines, phosphatidylethanolamines, and phosphatidylserines) correlated with perturbations in one-carbon metabolism and transcriptional changes in adipose tissue. We demonstrate that changes in TGs that dominate the overall lipid composition of white adipose tissue are distinct from diet-induced alterations of PLs, the predominant components of the cell membranes. PLs correlate better with transcriptional and one-carbon metabolism changes within the cell, suggesting that the compositional changes that occur in cell membranes during adipocyte expansion have far-reaching functional consequences. Data are available at MetaboLights under the submission number: MTBLS1775.
Collapse
Affiliation(s)
- Ke-di Liu
- Department of Biochemistry & Cambridge Systems Biology Centre, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, U.K
- MRC, Human Nutrition Research, Elsie Widdowson Laboratory, 120 Fulbourn Road, Cambridge CB1 9NL, U.K
| | - Animesh Acharjee
- MRC, Human Nutrition Research, Elsie Widdowson Laboratory, 120 Fulbourn Road, Cambridge CB1 9NL, U.K
- College of Medical and Dental Sciences, Institute of Cancer and Genomic Sciences, Centre for Computational Biology, University of Birmingham, Birmingham B15 2TT, U.K
- Institute of Translational Medicine, University Hospitals Birmingham NHS, Foundation Trust, Birmingham B15 2TT, U.K
- NIHR Surgical Reconstruction and Microbiology Research Centre, University Hospital Birmingham, Birmingham B15 2WB, U.K
| | - Christine Hinz
- Department of Biochemistry & Cambridge Systems Biology Centre, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, U.K
| | - Sonia Liggi
- Department of Biochemistry & Cambridge Systems Biology Centre, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, U.K
| | - Antonio Murgia
- Department of Biochemistry & Cambridge Systems Biology Centre, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, U.K
| | - Julia Denes
- Department of Biochemistry & Cambridge Systems Biology Centre, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, U.K
| | - Melanie K Gulston
- Department of Biochemistry & Cambridge Systems Biology Centre, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, U.K
| | - Xinzhu Wang
- Department of Biochemistry & Cambridge Systems Biology Centre, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, U.K
- MRC, Human Nutrition Research, Elsie Widdowson Laboratory, 120 Fulbourn Road, Cambridge CB1 9NL, U.K
| | - Yajing Chu
- Department of Biochemistry & Cambridge Systems Biology Centre, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, U.K
- MRC, Human Nutrition Research, Elsie Widdowson Laboratory, 120 Fulbourn Road, Cambridge CB1 9NL, U.K
| | - James A West
- MRC, Human Nutrition Research, Elsie Widdowson Laboratory, 120 Fulbourn Road, Cambridge CB1 9NL, U.K
| | - Robert C Glen
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
- Section of Biomolecular Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, Exhibition Road, South Kensington, London SW7 2AZ, U.K
| | - Lee D Roberts
- Department of Biochemistry & Cambridge Systems Biology Centre, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, U.K
- MRC, Human Nutrition Research, Elsie Widdowson Laboratory, 120 Fulbourn Road, Cambridge CB1 9NL, U.K
| | - Andrew J Murray
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EL, U.K
| | - Julian L Griffin
- Department of Biochemistry & Cambridge Systems Biology Centre, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, U.K
- MRC, Human Nutrition Research, Elsie Widdowson Laboratory, 120 Fulbourn Road, Cambridge CB1 9NL, U.K
- Section of Biomolecular Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, Exhibition Road, South Kensington, London SW7 2AZ, U.K
| |
Collapse
|
24
|
Ferreri C, Sansone A, Ferreri R, Amézaga J, Tueros I. Fatty Acids and Membrane Lipidomics in Oncology: A Cross-Road of Nutritional, Signaling and Metabolic Pathways. Metabolites 2020; 10:metabo10090345. [PMID: 32854444 PMCID: PMC7570129 DOI: 10.3390/metabo10090345] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 08/20/2020] [Accepted: 08/23/2020] [Indexed: 12/11/2022] Open
Abstract
Fatty acids are closely involved in lipid synthesis and metabolism in cancer. Their amount and composition are dependent on dietary supply and tumor microenviroment. Research in this subject highlighted the crucial event of membrane formation, which is regulated by the fatty acids' molecular properties. The growing understanding of the pathways that create the fatty acid pool needed for cell replication is the result of lipidomics studies, also envisaging novel fatty acid biosynthesis and fatty acid-mediated signaling. Fatty acid-driven mechanisms and biological effects in cancer onset, growth and metastasis have been elucidated, recognizing the importance of polyunsaturated molecules and the balance between omega-6 and omega-3 families. Saturated and monounsaturated fatty acids are biomarkers in several types of cancer, and their characterization in cell membranes and exosomes is under development for diagnostic purposes. Desaturase enzymatic activity with unprecedented de novo polyunsaturated fatty acid (PUFA) synthesis is considered the recent breakthrough in this scenario. Together with the link between obesity and cancer, fatty acids open interesting perspectives for biomarker discovery and nutritional strategies to control cancer, also in combination with therapies. All these subjects are described using an integrated approach taking into account biochemical, biological and analytical aspects, delineating innovations in cancer prevention, diagnostics and treatments.
Collapse
Affiliation(s)
- Carla Ferreri
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Via Piero Gobetti 101, 40129 Bologna, Italy;
- Correspondence:
| | - Anna Sansone
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Via Piero Gobetti 101, 40129 Bologna, Italy;
| | - Rosaria Ferreri
- Department of Integrated Medicine, Tuscany Reference Centre for Integrated Medicine in the hospital pathway, Pitigliano Hospital, Via Nicola Ciacci, 340, 58017 Pitigliano, Italy;
| | - Javier Amézaga
- AZTI, Food and Health, Parque Tecnológico de Bizkaia, Astondo Bidea, Edificio 609, 48160 Derio, Spain; (J.A.); (I.T.)
| | - Itziar Tueros
- AZTI, Food and Health, Parque Tecnológico de Bizkaia, Astondo Bidea, Edificio 609, 48160 Derio, Spain; (J.A.); (I.T.)
| |
Collapse
|
25
|
Li P, Shan B, Jia K, Hu F, Xiao Y, Zheng J, Gao YT, Wang H, Gao Y. Plasma omega-3 polyunsaturated fatty acids and recurrence of endometrial cancer. BMC Cancer 2020; 20:576. [PMID: 32563240 PMCID: PMC7305622 DOI: 10.1186/s12885-020-07035-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 06/03/2020] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Omega-3 polyunsaturated fatty acids (PUFAs) were proposed to have potential effects against inflammation and cancer. However, results from epidemiology studies remain inconsistent. We aimed to explore the associations of plasma PUFAs with EC recurrence and all-cause mortality. METHOD Women diagnosed with endometrial cancer (EC) between 2008 and 2013 and underwent surgery at Fudan University Shanghai Cancer Center of China were recruited. Survival status was followed up through September 2017. EC recurrence and total cause deaths were identified through medical record and telephone interview. In total, 202 patients with enough plasma samples at time of surgery were included. There were 195 patients who provided baseline plasma and survival information included in the current study. Plasma omega-3 PUFAs were measured by GC-FID. Cox Proportional Hazard model adjusted for potential cofounders was used to estimate HRs and 95% CIs. RESULTS Median follow-up time for patients was 58 months after surgery. A total of 13 recurrences and 11 all-cause deaths, of which, 2 deaths from EC, were identified. Level of plasma EPA was higher in recurrent patients than total patients (0.78% vs 0.51%, P = 0.015). Higher plasma eicosapentaenoic acid (EPA) level trended to have positive association with EC recurrence (P-trend = 0.04), although comparing to the lowest tertile, the highest tertile of EPA level was not significantly associated with increased risk of EC recurrence (HRT3vsT1 = 6.02; 95%CI = 0.7-52.06). The association between total omega-3 PUFA and EC recurrence tended to be stronger among patients with deeper myometrial invasion (OR = 3.41; 95%CI = 1.06-10.95; P-interaction = 0.04). CONCLUSIONS Higher plasma EPA level was significantly associated with EC recurrence. Further studies are warranted to confirm these findings. TRIAL REGISTRATION ChiCTR1900025418; Retrospectively registered (26 August 2019); Chinses Clinical Trial Registry.
Collapse
Affiliation(s)
- Peiqin Li
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Boer Shan
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Keyu Jia
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Fan Hu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Ying Xiao
- Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China
| | - Jusheng Zheng
- School of Life Sciences, Westlake University, Hangzhou, China
| | - Yu-Tang Gao
- Department of Epidemiology, Shanghai Cancer Institute, Shanghai, China
| | - Huaying Wang
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Ying Gao
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China.
| |
Collapse
|
26
|
Bewicz-Binkowska D, Zgorzynska E, Dziedzic B, Walczewska A. Docosahexaenoic Acid (DHA) Inhibits FADS2 Expression in Astrocytes but Increases Survival of Neurons Co-cultured with DHA-enriched Astrocytes. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2020; 8:232-240. [PMID: 32489952 PMCID: PMC7241842 DOI: 10.22088/ijmcm.bums.8.3.232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Docosahexaenoic acid (DHA), the most abundant n-3 polyunsaturated fatty acid (n-3PUFA) in the brain, has attracted great importance for a variety of neuronal functions such as signal transduction through plasma membranes, neuronal plasticity, and neuroprotection. Astrocytes that provide structural, functional, and metabolic support for neurons, express ∆6- desaturase encoded by FADS2 gene that can be, next to the plasma DHA pool, additional source of DHA in the brain. Furthermore, the genetic variations of FADS gene cluster has been found in children with developmental disorders, and are associated with cognitive functions. Since, the regulation of DHA biosynthesis in astrocytes remains poorly studied the aim of this study was to determine the effect of palmitic acid (PA), α-linolenic acid (ALA) or docosahexaenoic acid (DHA), on the transcription of FADS2 gene in astrocytes and survival of neurons challenged with oxidative compounds after co-culture with astrocytes exposed to DHA. The lipid profile in cell membranes after incubation with fatty acids was determined by gas chromatography, and FADS2 expression was analyzed using real-time PCR. The viability of neurons cocultured with PUFA-enriched astrocytes was investigated by flow cytometry after staining cells with annexin V-FITC and PI. The results showed that DHA suppressed (P <0.01), PA stimulated (P <0.01), while ALA did not change the FADS2 gene expression after 24 h incubation of astrocytes with fatty acids. Although FADS2 mRNA was down-regulated by DHA, its level in astrocytic membranes significantly increased (P <0.01). Astrocytes with DHA-enriched membrane phospholipids markedly enhanced neuronal resistance to cytotoxic compounds and neuronal survival. These results suggest that beneficial effects of supplementation with n-3 PUFA in Alzheimer disease and in psychiatric disorders is caused, in part, by increased efficacy of DHA-enriched astrocytes to protect neurons under adverse conditions in the brain.
Collapse
Affiliation(s)
| | - Emilia Zgorzynska
- Department of Cell-to-Cell Communication, Medical University of Lodz, Poland
| | - Barbara Dziedzic
- Department of Cell-to-Cell Communication, Medical University of Lodz, Poland
| | - Anna Walczewska
- Department of Cell-to-Cell Communication, Medical University of Lodz, Poland
| |
Collapse
|
27
|
Moore EM, Wagner C, Komarnytsky S. The Enigma of Bioactivity and Toxicity of Botanical Oils for Skin Care. Front Pharmacol 2020; 11:785. [PMID: 32547393 PMCID: PMC7272663 DOI: 10.3389/fphar.2020.00785] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 05/12/2020] [Indexed: 12/26/2022] Open
Abstract
Botanical oils have a long history of traditional use and are routinely applied to skin care. The focus of this review is to contrast the functionality of skin oils versus the differential biological and toxicological effects of major plant oils, and to correlate them to their compositional changes. In total, over 70 vegetable oils were clustered according to their lipid composition to promote awareness of health practitioners and botanical product manufacturers for the safety and efficacy of oil-based interventions based on their fatty acid profiles. Since multiple skin disorders result in depletion or disturbance of skin lipids, a tailored mixture of multiple botanical oils to simultaneously maintain natural skin-barrier function, promote repair and regeneration of wounded tissues, and achieve corrective modulation of immune disorders may be required. As bioactive constituents of botanical oils enter the human body by oral or topical application and often accumulate in measurable blood concentrations, there is also a critical need for monitoring their hazardous effects to reduce the possible over-added toxicity and promote maximal normal tissue sparing. The review also provides a useful tool to improve efficacy and functionality of fatty acid profiles in cosmetic applications.
Collapse
Affiliation(s)
- Erin M Moore
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, United States.,Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, Raleigh, NC, United States.,Department of Biology, Catawba College, Salisbury, NC, United States
| | - Charles Wagner
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, United States.,Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, United States
| | - Slavko Komarnytsky
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, United States.,Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, Raleigh, NC, United States.,Department of Biology, Catawba College, Salisbury, NC, United States.,Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
28
|
Ferreri C, Sansone A, Buratta S, Urbanelli L, Costanzi E, Emiliani C, Chatgilialoglu C. The n-10 Fatty Acids Family in the Lipidome of Human Prostatic Adenocarcinoma Cell Membranes and Extracellular Vesicles. Cancers (Basel) 2020; 12:E900. [PMID: 32272739 PMCID: PMC7226157 DOI: 10.3390/cancers12040900] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/07/2020] [Accepted: 03/31/2020] [Indexed: 02/06/2023] Open
Abstract
A new pathway leading to the n-10 fatty acid series has been recently evidenced, starting from sapienic acid, a monounsaturated fatty acid (MUFA) resulting from the transformation of palmitic acid by delta-6 desaturase. Sapienic acid has attracted attention as a novel marker of cancer cell plasticity. Here, we analyzed fatty acids, including the n-10 fatty acid contents, and for the first time, compared cell membranes and the corresponding extracellular vesicles (EV) of two human prostatic adenocarcinoma cell lines of different aggressiveness (PC3 and LNCaP). The n-10 components were 9-13% of the total fatty acids in both cancer cell lines and EVs, with total MUFA levels significantly higher in EVs of the most aggressive cell type (PC3). High sapienic/palmitoleic ratios indicated the preference for delta-6 versus delta-9 desaturase enzymatic activity in these cell lines. The expressions analysis of enzymes involved in desaturation and elongation by qRT-PCR showed a higher desaturase activity in PC3 and a higher elongase activity toward polyunsaturated fatty acids than toward saturated fatty acids, compared to LNCaP cells. Our results improve the present knowledge in cancer fatty acid metabolism and lipid phenotypes, highlighting EV lipidomics to monitor positional fatty acid isomer profiles and MUFA levels in cancer.
Collapse
Affiliation(s)
- Carla Ferreri
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Via P. Gobetti 101, 40129 Bologna, Italy; (A.S.); (C.C.)
| | - Anna Sansone
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Via P. Gobetti 101, 40129 Bologna, Italy; (A.S.); (C.C.)
| | - Sandra Buratta
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06122 Perugia, Italy; (S.B.); (L.U.); (E.C.); (C.E.)
| | - Lorena Urbanelli
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06122 Perugia, Italy; (S.B.); (L.U.); (E.C.); (C.E.)
| | - Eva Costanzi
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06122 Perugia, Italy; (S.B.); (L.U.); (E.C.); (C.E.)
| | - Carla Emiliani
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06122 Perugia, Italy; (S.B.); (L.U.); (E.C.); (C.E.)
| | - Chryssostomos Chatgilialoglu
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Via P. Gobetti 101, 40129 Bologna, Italy; (A.S.); (C.C.)
| |
Collapse
|
29
|
Snaebjornsson MT, Janaki-Raman S, Schulze A. Greasing the Wheels of the Cancer Machine: The Role of Lipid Metabolism in Cancer. Cell Metab 2020; 31:62-76. [PMID: 31813823 DOI: 10.1016/j.cmet.2019.11.010] [Citation(s) in RCA: 521] [Impact Index Per Article: 130.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 10/27/2019] [Accepted: 11/12/2019] [Indexed: 12/12/2022]
Abstract
Altered lipid metabolism is among the most prominent metabolic alterations in cancer. Enhanced synthesis or uptake of lipids contributes to rapid cancer cell growth and tumor formation. Lipids are a highly complex group of biomolecules that not only constitute the structural basis of biological membranes but also function as signaling molecules and an energy source. Here, we summarize recent evidence implicating altered lipid metabolism in different aspects of the cancer phenotype and discuss potential strategies by which targeting lipid metabolism could provide a therapeutic window for cancer treatment.
Collapse
Affiliation(s)
- Marteinn Thor Snaebjornsson
- Biochemistry and Molecular Biology, Theodor-Boveri-Institute, Biocenter, Am Hubland, 97074 Würzburg, Germany; Division of Tumor Metabolism and Microenvironment, German Cancer Research Center, Im Neuenheimer Feld 581, 69120 Heidelberg, Germany.
| | - Sudha Janaki-Raman
- Biochemistry and Molecular Biology, Theodor-Boveri-Institute, Biocenter, Am Hubland, 97074 Würzburg, Germany.
| | - Almut Schulze
- Biochemistry and Molecular Biology, Theodor-Boveri-Institute, Biocenter, Am Hubland, 97074 Würzburg, Germany; Division of Tumor Metabolism and Microenvironment, German Cancer Research Center, Im Neuenheimer Feld 581, 69120 Heidelberg, Germany.
| |
Collapse
|
30
|
Wang Z, Park HG, Wang DH, Kitano R, Kothapalli KSD, Brenna JT. Fatty acid desaturase 2 (FADS2) but not FADS1 desaturates branched chain and odd chain saturated fatty acids. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1865:158572. [PMID: 31751799 DOI: 10.1016/j.bbalip.2019.158572] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/04/2019] [Accepted: 11/12/2019] [Indexed: 12/11/2022]
Abstract
Branched chain fatty acids (BCFA) and linear chain/normal odd chain fatty acids (n-OCFA) are major fatty acids in human skin lipids, especially sebaceous gland (SG) wax esters. Skin lipids contain variable amounts of monounsaturated BCFA and n-OCFA, in some reports exceeding over 20% of total fatty acids. Fatty acid desaturase 2 (FADS2) codes for a multifunctional enzyme that catalyzes Δ4-, Δ6- and Δ8-desaturation towards ten unsaturated fatty acids but only one saturate, palmitic acid, converting it to 16:1n-10; FADS2 is not active towards 14:0 or 18:0. Here we test the hypothesis that FADS2 also operates on BCFA and n-OCFA. MCF-7 cancer cells stably expressing FADS1 or FADS2 along with empty vector control cells were incubated with anteiso-15:0, iso-16:0, iso-17:0, anteiso-17:0, iso-18:0, or n-17:0. BCFA were Δ6-desaturated by FADS2 as follows: iso-16:0 → iso-6Z-16:1, iso-17:0 → iso-6Z-17:1, anteiso-17:0 → anteiso-6Z-17:1 and iso-18:0 → iso-6Z-18:1. anteiso-15:0 was not desaturated in either FADS1 or FADS2 cells. n-17:0 was converted to both n-6Z-17:1 by FADS2 Δ6-desaturation and n-9Z-17:1 by SCD Δ9-desaturation. We thus establish novel FADS2-coded enzymatic activity towards BCFA and n-OCFA, expanding the number of known FADS2 saturated fatty acid substrates from one to six. Because of the importance of FADS2 in human skin, our results imply that dysfunction in activity of sebaceous FADS2 may play a role in skin abnormalities associated with skin lipids.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA; Dell Pediatric Research Institute, Dept. of Pediatrics, Dell Medical School, The University of Texas at Austin, 1400 Barbara Jordan Blvd, Austin, TX 78723, USA.
| | - Hui Gyu Park
- Dell Pediatric Research Institute, Dept. of Pediatrics, Dell Medical School, The University of Texas at Austin, 1400 Barbara Jordan Blvd, Austin, TX 78723, USA.
| | - Dong Hao Wang
- Dell Pediatric Research Institute, Dept. of Pediatrics, Dell Medical School, The University of Texas at Austin, 1400 Barbara Jordan Blvd, Austin, TX 78723, USA.
| | - Riki Kitano
- Shimadzu Scientific Instruments, Inc., 7102 Riverwood Dr, Columbia, MD 21046, USA.
| | - Kumar S D Kothapalli
- Dell Pediatric Research Institute, Dept. of Pediatrics, Dell Medical School, The University of Texas at Austin, 1400 Barbara Jordan Blvd, Austin, TX 78723, USA.
| | - J Thomas Brenna
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA; Dell Pediatric Research Institute, Dept. of Pediatrics, Dell Medical School, The University of Texas at Austin, 1400 Barbara Jordan Blvd, Austin, TX 78723, USA.
| |
Collapse
|
31
|
Wang Z, Wang DH, Park HG, Tobias HJ, Kothapalli KSD, Brenna JT. Structural Identification of Monounsaturated Branched Chain Fatty Acid Methyl Esters by Combination of Electron Ionization and Covalent Adduct Chemical Ionization Tandem Mass Spectrometry. Anal Chem 2019; 91:15147-15154. [DOI: 10.1021/acs.analchem.9b03912] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Zhen Wang
- Department of Food Science, Cornell University, Ithaca, New York 14853, United States
- Dell Pediatric Research Institute, Departments of Pediatrics, of Chemistry, and of Nutrition,, The University of Texas at Austin, 1400 Barbara Jordan Blvd., Austin, Texas 78723, United States
| | - Dong Hao Wang
- Department of Food Science, Cornell University, Ithaca, New York 14853, United States
- Dell Pediatric Research Institute, Departments of Pediatrics, of Chemistry, and of Nutrition,, The University of Texas at Austin, 1400 Barbara Jordan Blvd., Austin, Texas 78723, United States
| | - Hui Gyu Park
- Dell Pediatric Research Institute, Departments of Pediatrics, of Chemistry, and of Nutrition,, The University of Texas at Austin, 1400 Barbara Jordan Blvd., Austin, Texas 78723, United States
| | - Herbert J. Tobias
- Dell Pediatric Research Institute, Departments of Pediatrics, of Chemistry, and of Nutrition,, The University of Texas at Austin, 1400 Barbara Jordan Blvd., Austin, Texas 78723, United States
| | - Kumar S. D. Kothapalli
- Dell Pediatric Research Institute, Departments of Pediatrics, of Chemistry, and of Nutrition,, The University of Texas at Austin, 1400 Barbara Jordan Blvd., Austin, Texas 78723, United States
| | - J. Thomas Brenna
- Department of Food Science, Cornell University, Ithaca, New York 14853, United States
- Dell Pediatric Research Institute, Departments of Pediatrics, of Chemistry, and of Nutrition,, The University of Texas at Austin, 1400 Barbara Jordan Blvd., Austin, Texas 78723, United States
| |
Collapse
|
32
|
Shiraishi K, Nakajima T, Shichino S, Deshimaru S, Matsushima K, Ueha S. In vitro expansion of endogenous human alveolar epithelial type II cells in fibroblast-free spheroid culture. Biochem Biophys Res Commun 2019; 515:579-585. [DOI: 10.1016/j.bbrc.2019.05.187] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 05/30/2019] [Indexed: 02/06/2023]
|
33
|
Wang Z, Wang DH, Park HG, Yan Y, Goykhman Y, Lawrence P, Kothapalli KSD, Brenna JT. Identification of genes mediating branched chain fatty acid elongation. FEBS Lett 2019; 593:1807-1817. [DOI: 10.1002/1873-3468.13451] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 05/03/2019] [Accepted: 05/18/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Zhen Wang
- Department of Food Science Cornell University Ithaca NY USA
- Division of Nutritional Sciences Cornell University Ithaca NY USA
- Dell Pediatric Research Institute and Department of Pediatrics Dell Medical School The University of Texas at Austin TX USA
| | - Dong Hao Wang
- Department of Food Science Cornell University Ithaca NY USA
- Division of Nutritional Sciences Cornell University Ithaca NY USA
- Dell Pediatric Research Institute and Department of Pediatrics Dell Medical School The University of Texas at Austin TX USA
| | - Hui Gyu Park
- Division of Nutritional Sciences Cornell University Ithaca NY USA
- Dell Pediatric Research Institute and Department of Pediatrics Dell Medical School The University of Texas at Austin TX USA
| | - Yuanyuan Yan
- Division of Nutritional Sciences Cornell University Ithaca NY USA
- School of Public Health Shanghai Jiao Tong University School of Medicine China
| | - Yuliya Goykhman
- Division of Nutritional Sciences Cornell University Ithaca NY USA
| | - Peter Lawrence
- Department of Food Science Cornell University Ithaca NY USA
- Division of Nutritional Sciences Cornell University Ithaca NY USA
| | - Kumar S. D. Kothapalli
- Division of Nutritional Sciences Cornell University Ithaca NY USA
- Dell Pediatric Research Institute and Department of Pediatrics Dell Medical School The University of Texas at Austin TX USA
| | - J. Thomas Brenna
- Department of Food Science Cornell University Ithaca NY USA
- Division of Nutritional Sciences Cornell University Ithaca NY USA
- Dell Pediatric Research Institute and Department of Pediatrics Dell Medical School The University of Texas at Austin TX USA
| |
Collapse
|
34
|
|
35
|
Garcia-Jaramillo M, Spooner MH, Löhr CV, Wong CP, Zhang W, Jump DB. Lipidomic and transcriptomic analysis of western diet-induced nonalcoholic steatohepatitis (NASH) in female Ldlr -/- mice. PLoS One 2019; 14:e0214387. [PMID: 30943218 PMCID: PMC6447358 DOI: 10.1371/journal.pone.0214387] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 03/12/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease worldwide, particularly in obese and type 2 diabetic individuals. NAFLD ranges in severity from benign steatosis to nonalcoholic steatohepatitis (NASH); and NASH can progress to cirrhosis, primary hepatocellular carcinoma (HCC) and liver failure. As such, NAFLD has emerged as a major public health concern. Herein, we used a lipidomic and transcriptomic approach to identify lipid markers associated with western diet (WD) induced NASH in female mice. METHODS Female mice (low-density lipoprotein receptor null (Ldlr -/-) were fed a reference or WD diet for 38 and 46 weeks. Transcriptomic and lipidomic approaches, coupled with statistical analyses, were used to identify associations between major NASH markers and transcriptomic & lipidomic markers. RESULTS The WD induced all major hallmarks of NASH in female Ldlr -/- mice, including steatosis (SFA, MUFA, MUFA-containing di- and triacylglycerols), inflammation (TNFα), oxidative stress (Ncf2), and fibrosis (Col1A). The WD also increased transcripts associated with membrane remodeling (LpCat), apoptosis & autophagy (Casp1, CtsS), hedgehog (Taz) & notch signaling (Hey1), epithelial-mesenchymal transition (S1004A) and cancer (Gpc3). WD feeding, however, suppressed the expression of the hedgehog inhibitory protein (Hhip), and enzymes involved in triglyceride catabolism (Tgh/Ces3, Ces1g), as well as the hepatic abundance of C18-22 PUFA-containing phosphoglycerolipids (GpCho, GpEtn, GpSer, GpIns). WD feeding also increased hepatic cyclooxygenase (Cox1 & 2) expression and pro-inflammatory ω6 PUFA-derived oxylipins (PGE2), as well as lipid markers of oxidative stress (8-iso-PGF2α). The WD suppressed the hepatic abundance of reparative oxylipins (19, 20-DiHDPA) as well as the expression of enzymes involved in fatty epoxide metabolism (Cyp2C, Ephx). CONCLUSION WD-induced NASH in female Ldlr -/- mice was characterized by a massive increase in hepatic neutral and membrane lipids containing SFA and MUFA and a loss of C18-22 PUFA-containing membrane lipids. Moreover, the WD increased hepatic pro-inflammatory oxylipins and suppressed the hepatic abundance of reparative oxylipins. Such global changes in the type and abundance of hepatic lipids likely contributes to tissue remodeling and NASH severity.
Collapse
MESH Headings
- Animals
- Carcinoma, Hepatocellular/complications
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/metabolism
- Diet, Western/adverse effects
- Disease Models, Animal
- Fatty Acids, Monounsaturated/metabolism
- Fatty Acids, Omega-3/genetics
- Female
- Fibrosis/complications
- Fibrosis/genetics
- Fibrosis/metabolism
- Humans
- Lipid Metabolism/genetics
- Lipidomics
- Liver Neoplasms/complications
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Mice
- Mice, Knockout
- Non-alcoholic Fatty Liver Disease/complications
- Non-alcoholic Fatty Liver Disease/genetics
- Non-alcoholic Fatty Liver Disease/metabolism
- Non-alcoholic Fatty Liver Disease/pathology
- Obesity/complications
- Obesity/genetics
- Obesity/metabolism
- Oxidative Stress/genetics
- Receptors, LDL/genetics
- Transcriptome/genetics
- Triglycerides/metabolism
Collapse
Affiliation(s)
- Manuel Garcia-Jaramillo
- The Nutrition Program, School of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon, United States of America
- The Linus Pauling Institute, Oregon State University, Corvallis, Oregon, United States of America
- Department of Chemistry Oregon State University, Corvallis, Oregon, United States of America
| | - Melinda H. Spooner
- The Nutrition Program, School of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon, United States of America
- The Linus Pauling Institute, Oregon State University, Corvallis, Oregon, United States of America
| | - Christiane V. Löhr
- Anatomic Pathology, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, Oregon, United States of America
| | - Carmen P. Wong
- The Nutrition Program, School of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon, United States of America
- The Linus Pauling Institute, Oregon State University, Corvallis, Oregon, United States of America
| | - Weijian Zhang
- The Linus Pauling Institute, Oregon State University, Corvallis, Oregon, United States of America
| | - Donald B. Jump
- The Nutrition Program, School of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon, United States of America
- The Linus Pauling Institute, Oregon State University, Corvallis, Oregon, United States of America
| |
Collapse
|
36
|
Scanferlato R, Bortolotti M, Sansone A, Chatgilialoglu C, Polito L, De Spirito M, Maulucci G, Bolognesi A, Ferreri C. Hexadecenoic Fatty Acid Positional Isomers and De Novo PUFA Synthesis in Colon Cancer Cells. Int J Mol Sci 2019; 20:ijms20040832. [PMID: 30769921 PMCID: PMC6412212 DOI: 10.3390/ijms20040832] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/07/2019] [Accepted: 02/11/2019] [Indexed: 12/21/2022] Open
Abstract
Palmitic acid metabolism involves delta-9 and delta-6 desaturase enzymes forming palmitoleic acid (9cis-16:1; n-7 series) and sapienic acid (6cis-16:1; n-10 series), respectively. The corresponding biological consequences and lipidomic research on these positional monounsaturated fatty acid (MUFA) isomers are under development. Furthermore, sapienic acid can bring to the de novo synthesis of the n-10 polyunsaturated fatty acid (PUFA) sebaleic acid (5cis,8cis-18:2), but such transformations in cancer cells are not known. The model of Caco-2 cell line was used to monitor sapienic acid supplementation (150 and 300 μM) and provide evidence of the formation of n-10 fatty acids as well as their incorporation at levels of membrane phospholipids and triglycerides. Comparison with palmitoleic and palmitic acids evidenced that lipid remodelling was influenced by the type of fatty acid and positional isomer, with an increase of 8cis-18:1, n-10 PUFA and a decrease of saturated fats in case of sapienic acid. Cholesteryl esters were formed only in cases with sapienic acid. Sapienic acid was the less toxic among the tested fatty acids, showing the highest EC50s and inducing death only in 75% of cells at the highest concentration tested. Two-photon fluorescent microscopy with Laurdan as a fluorescent dye provided information on membrane fluidity, highlighting that sapienic acid increases the distribution of fluid regions, probably connected with the formation of 8cis-18:1 and the n-10 PUFA in cell lipidome. Our results bring evidence for MUFA positional isomers and de novo PUFA synthesis for developing lipidomic analysis and cancer research.
Collapse
Affiliation(s)
- Roberta Scanferlato
- Consiglio Nazionale delle Ricerche, ISOF, Area della Ricerca, 40129 Bologna, Italy.
| | - Massimo Bortolotti
- Department of Experimental, Diagnostic and Specialty Medicine-DIMES, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy.
| | - Anna Sansone
- Consiglio Nazionale delle Ricerche, ISOF, Area della Ricerca, 40129 Bologna, Italy.
| | | | - Letizia Polito
- Department of Experimental, Diagnostic and Specialty Medicine-DIMES, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy.
| | - Marco De Spirito
- Istituto di Fisica, Fondazione Policlinico Universitario A.Gemelli IRCSS, 00168 Roma, Italy.
- Istituto di Fisica, Università Cattolica del Sacro Cuore, 00168 Roma, Italy.
| | - Giuseppe Maulucci
- Istituto di Fisica, Fondazione Policlinico Universitario A.Gemelli IRCSS, 00168 Roma, Italy.
- Istituto di Fisica, Università Cattolica del Sacro Cuore, 00168 Roma, Italy.
| | - Andrea Bolognesi
- Department of Experimental, Diagnostic and Specialty Medicine-DIMES, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy.
| | - Carla Ferreri
- Consiglio Nazionale delle Ricerche, ISOF, Area della Ricerca, 40129 Bologna, Italy.
| |
Collapse
|
37
|
The elongation of very long-chain fatty acid 6 gene product catalyses elongation of n-13 : 0 and n-15 : 0 odd-chain SFA in human cells. Br J Nutr 2019; 121:241-248. [PMID: 30602402 DOI: 10.1017/s0007114518003185] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Normal odd-chain SFA (OCSFA), particularly tridecanoic acid (n-13 : 0), pentadecanoic acid (n-15 : 0) and heptadecanoic acid (n-17 : 0), are normal components of dairy products, beef and seafood. The ratio of n-15 : 0:n-17 : 0 in ruminant foods (dairy products and beef) is 2:1, while in seafood and human tissues it is 1:2, and their appearance in plasma is often used as a marker for ruminant fat intake. Human elongases encoded by elongation of very long-chain fatty acid (ELOVL)1, ELOVL3, ELOVL6 and ELOVL7 catalyse biosynthesis of the dominant even-chain SFA; however, there are no reports of elongase function on OCSFA. ELOVL transfected MCF7 cells were treated with n-13 : 0, n-15 : 0 or n-17 : 0 (80 µm) and products analysed. ELOVL6 catalysed elongation of n-13 : 0→n-15 : 0 and n-15 : 0→n-17 : 0; and ELOVL7 had modest activity toward n-15 : 0 (n-15 : 0→n-17 : 0). No elongation activity was detected for n-17 : 0→n-19 : 0. Our data expand ELOVL specificity to OCSFA, providing the first molecular evidence demonstrating ELOVL6 as the major elongase acting on OCSFA n-13 : 0 and n-15 : 0 fatty acids. Studies of food intake relying on OCSFA as a biomarker should consider endogenous human metabolism when relying on OCSFA ratios to indicate specific food intake.
Collapse
|
38
|
Zhang H, Dong J, Zhao X, Zhang Y, Ren J, Xing L, Jiang C, Wang X, Wang J, Zhao S, Yu H. Research Progress in Membrane Lipid Metabolism and Molecular Mechanism in Peanut Cold Tolerance. FRONTIERS IN PLANT SCIENCE 2019; 10:838. [PMID: 31316538 PMCID: PMC6610330 DOI: 10.3389/fpls.2019.00838] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 06/12/2019] [Indexed: 05/18/2023]
Abstract
Early sowing has been extensively used in high-latitude areas to avoid drought stress during sowing; however, cold damage has become the key limiting factor of early sowing. To relieve cold stress, plants develop a series of physiological and biochemical changes and sophisticated molecular regulatory mechanisms. The biomembrane is the barrier that protects cells from injury as well as the primary place for sensing cold signals. Chilling tolerance is closely related to the composition, structure, and metabolic process of membrane lipids. This review focuses on membrane lipid metabolism and its molecular mechanism, as well as lipid signal transduction in peanut (Arachis hypogaea L.) under cold stress to build a foundation for explicating lipid metabolism regulation patterns and physiological and molecular response mechanisms during cold stress and to promote the genetic improvement of peanut cold tolerance.
Collapse
Affiliation(s)
- He Zhang
- Peanut Research Institute, College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Jiale Dong
- Peanut Research Institute, College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Xinhua Zhao
- Peanut Research Institute, College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Yumei Zhang
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Jingyao Ren
- Peanut Research Institute, College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Liting Xing
- Peanut Research Institute, College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Chunji Jiang
- Peanut Research Institute, College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Xiaoguang Wang
- Peanut Research Institute, College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Jing Wang
- Peanut Research Institute, College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Shuli Zhao
- Peanut Research Institute, College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Haiqiu Yu
- Peanut Research Institute, College of Agronomy, Shenyang Agricultural University, Shenyang, China
- *Correspondence: Haiqiu Yu,
| |
Collapse
|
39
|
A novel FADS2 isoform identified in human milk fat globule suppresses FADS2 mediated Δ6-desaturation of omega-3 fatty acids. Prostaglandins Leukot Essent Fatty Acids 2018; 138:52-59. [PMID: 30041907 DOI: 10.1016/j.plefa.2018.06.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 06/19/2018] [Accepted: 06/19/2018] [Indexed: 12/30/2022]
Abstract
INTRODUCTION The only known non-pharmacological means to alter long chain polyunsaturated fatty acid (LCPUFA) abundance in mammalian tissue is by altering substrate fatty acid ratios. Alternative mRNA splicing is increasingly recognized as a modulator of protein structure and function. Here we report identification of a novel alternative transcript (AT) of fatty acid desaturase 2 (FADS2) that inhibits production of omega-3 but not omega-6 LCPUFA, discovered during study of ATs in human milk fat globules (MFG). METHODS Human breastmilk collected from a single donor was used to isolate MFG. An mRNA-sequencing library was constructed from the total RNA isolated from the MFG. The constructed library was sequenced using an Illumina HiSeq instrument operating in high output mode. Expression levels of evolutionary conserved FADSAT were measured using cDNA from MFG by semi-quantitative RT-PCR assay. RESULTS RNA sequencing revealed >15,000 transcripts, including moderate expression of the FADS2 classical transcript (CS). A novel FADS2 alternative transcript (FADS2AT2) with 386 amino acids was discovered. When FADS2AT2 was transiently transfected into MCF7 cells stably expressing FADS2, delta-6 desaturation (D6D) of alpha-linolenic acid 18:3n-3 → 18:4n-3 was suppressed as were downstream products 20:4n-3 and 20:5n-3. In contrast, no significant effect on D6D of linoleic acid 18:2n-6 → 18:3n-6 or downstream products was observed. FADS2, FADS2AT1 and 5 out of 8 known FADS3AT were expressed in MFG. FADS1, FADS3AT3, and FADS3AT5 are undetectable. CONCLUSION The novel, noncatalytic FADS2AT2 regulates FADS2CS-mediated Δ6-desaturation of omega-3 but not omega-6 PUFA biosynthesis. This spliced isoform mediated interaction is the first molecular mechanism by which desaturation of one PUFA family but not the other is modulated.
Collapse
|
40
|
Fragopoulou AF, Polyzos A, Papadopoulou M, Sansone A, Manta AK, Balafas E, Kostomitsopoulos N, Skouroliakou A, Chatgilialoglu C, Georgakilas A, Stravopodis DJ, Ferreri C, Thanos D, Margaritis LH. Hippocampal lipidome and transcriptome profile alterations triggered by acute exposure of mice to GSM 1800 MHz mobile phone radiation: An exploratory study. Brain Behav 2018; 8:e01001. [PMID: 29786969 PMCID: PMC5991598 DOI: 10.1002/brb3.1001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 03/29/2018] [Accepted: 04/02/2018] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND The widespread use of wireless devices during the last decades is raising concerns about adverse health effects of the radiofrequency electromagnetic radiation (RF-EMR) emitted from these devices. Recent research is focusing on unraveling the underlying mechanisms of RF-EMR and potential cellular targets. The "omics" high-throughput approaches are powerful tools to investigate the global effects of RF-EMR on cellular physiology. METHODS In this work, C57BL/6 adult male mice were whole-body exposed (nExp = 8) for 2 hr to GSM 1800 MHz mobile phone radiation at an average electric field intensity range of 4.3-17.5 V/m or sham-exposed (nSE = 8), and the RF-EMR effects on the hippocampal lipidome and transcriptome profiles were assessed 6 hr later. RESULTS The data analysis of the phospholipid fatty acid residues revealed that the levels of four fatty acids [16:0, 16:1 (6c + 7c), 18:1 9c, eicosapentaenoic acid omega-3 (EPA, 20:5 ω3)] and the two fatty acid sums of saturated and monounsaturated fatty acids (SFA and MUFA) were significantly altered (p < 0.05) in the exposed group. The observed changes indicate a membrane remodeling response of the tissue phospholipids after nonionizing radiation exposure, reducing SFA and EPA, while increasing MUFA residues. The microarray data analysis demonstrated that the expression of 178 genes changed significantly (p < 0.05) between the two groups, revealing an impact on genes involved in critical biological processes, such as cell cycle, DNA replication and repair, cell death, cell signaling, nervous system development and function, immune system response, lipid metabolism, and carcinogenesis. CONCLUSIONS This study provides preliminary evidence that mobile phone radiation induces hippocampal lipidome and transcriptome changes that may explain the brain proteome changes and memory deficits previously shown by our group.
Collapse
Affiliation(s)
- Adamantia F. Fragopoulou
- Department of Cell Biology and BiophysicsFaculty of BiologyUniversity of AthensZografouAthensGreece
- Department of Women’s and Children’s HealthKarolinska InstitutetStockholmSweden
| | - Alexandros Polyzos
- Institute of Molecular Biology, Genetics and BiotechnologyBiomedical Research FoundationAcademy of AthensAthensGreece
- Present address:
Joan and Sanford I. Weill Department of MedicineWeill Cornell Medical CollegeNew York10065New York
| | - Maria‐Despoina Papadopoulou
- Institute of Molecular Biology, Genetics and BiotechnologyBiomedical Research FoundationAcademy of AthensAthensGreece
| | - Anna Sansone
- Consiglio Nazionale delle RicercheISOFBolognaItaly
| | - Areti K. Manta
- Department of Cell Biology and BiophysicsFaculty of BiologyUniversity of AthensZografouAthensGreece
| | - Evangelos Balafas
- Laboratory Animal FacilitiesCenter of Clinical, Experimental Surgery and Translational ResearchBiomedical Research FoundationAcademy of AthensAthensGreece
| | - Nikolaos Kostomitsopoulos
- Laboratory Animal FacilitiesCenter of Clinical, Experimental Surgery and Translational ResearchBiomedical Research FoundationAcademy of AthensAthensGreece
| | | | - Chryssostomos Chatgilialoglu
- Consiglio Nazionale delle RicercheISOFBolognaItaly
- Institute of Nanoscience and Nanotechnology (INN)NCSR DemokritosAthensGreece
| | - Alexandros Georgakilas
- DNA Damage LaboratoryDepartment of PhysicsSchool of Applied Mathematical and Physical SciencesNational Technical University of Athens (NTUA)AthensGreece
| | - Dimitrios J. Stravopodis
- Department of Cell Biology and BiophysicsFaculty of BiologyUniversity of AthensZografouAthensGreece
| | | | - Dimitris Thanos
- Institute of Molecular Biology, Genetics and BiotechnologyBiomedical Research FoundationAcademy of AthensAthensGreece
| | - Lukas H. Margaritis
- Department of Cell Biology and BiophysicsFaculty of BiologyUniversity of AthensZografouAthensGreece
| |
Collapse
|
41
|
Sibbons CM, Irvine NA, Pérez-Mojica JE, Calder PC, Lillycrop KA, Fielding BA, Burdge GC. Polyunsaturated Fatty Acid Biosynthesis Involving Δ8 Desaturation and Differential DNA Methylation of FADS2 Regulates Proliferation of Human Peripheral Blood Mononuclear Cells. Front Immunol 2018; 9:432. [PMID: 29556240 PMCID: PMC5844933 DOI: 10.3389/fimmu.2018.00432] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 02/19/2018] [Indexed: 12/12/2022] Open
Abstract
Polyunsaturated fatty acids (PUFAs) are important for immune function. Limited evidence indicates that immune cell activation involves endogenous PUFA synthesis, but this has not been characterised. To address this, we measured metabolism of 18:3n-3 in quiescent and activated peripheral blood mononuclear cells (PBMCs), and in Jurkat T cell leukaemia. PBMCs from men and women (n = 34) were incubated with [1-13C]18:3n-3 with or without Concanavalin A (Con. A). 18:3n-3 conversion was undetectable in unstimulated PBMCs, but up-regulated when stimulated. The main products were 20:3n-3 and 20:4n-3, while 18:4n-3 was undetectable, suggesting initial elongation and Δ8 desaturation. PUFA synthesis was 17.4-fold greater in Jurkat cells than PBMCs. The major products of 18:3n-3 conversion in Jurkat cells were 20:4n-3, 20:5n-3, and 22:5n-3. 13C Enrichment of 18:4n-3 and 20:3n-3 suggests parallel initial elongation and Δ6 desaturation. The FADS2 inhibitor SC26196 reduced PBMC, but not Jurkat cell, proliferation suggesting PUFA synthesis is involved in regulating mitosis in PBMCs. Con. A stimulation increased FADS2, FADS1, ELOVL5 and ELOVL4 mRNA expression in PBMCs. A single transcript corresponding to the major isoform of FADS2, FADS20001, was detected in PBMCs and Jurkat cells. PBMC activation induced hypermethylation of a 470bp region in the FADS2 5'-regulatory sequence. This region was hypomethylated in Jurkat cells compared to quiescent PBMCs. These findings show that PUFA synthesis involving initial elongation and Δ8 desaturation is involved in regulating PBMC proliferation and is regulated via transcription possibly by altered DNA methylation. These processes were dysregulated in Jurkat cells. This has implications for understanding the regulation of mitosis in normal and transformed lymphocytes.
Collapse
Affiliation(s)
- Charlene M Sibbons
- Academic Unit of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, Hampshire, United Kingdom.,Department of Nutritional Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, United Kingdom
| | - Nicola A Irvine
- Academic Unit of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, Hampshire, United Kingdom
| | - J Eduardo Pérez-Mojica
- Academic Unit of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, Hampshire, United Kingdom
| | - Philip C Calder
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, University of Southampton, Southampton, Hampshire, United Kingdom
| | - Karen A Lillycrop
- Centre for Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton, Hampshire, United Kingdom
| | - Barbara A Fielding
- Department of Nutritional Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, United Kingdom
| | - Graham C Burdge
- Academic Unit of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, Hampshire, United Kingdom
| |
Collapse
|
42
|
Zouboulis CC, Elewa R, Ottaviani M, Fluhr J, Picardo M, Bernois A, Heusèle C, Camera E. Age influences the skin reaction pattern to mechanical stress and its repair level through skin care products. Mech Ageing Dev 2018; 170:98-105. [DOI: 10.1016/j.mad.2017.11.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 11/11/2017] [Accepted: 11/14/2017] [Indexed: 01/27/2023]
|
43
|
Li Q, Dong K, Xu L, Jia X, Wu J, Sun W, Zhang X, Fu S. The distribution of three candidate cold-resistant SNPs in six minorities in North China. BMC Genomics 2018; 19:134. [PMID: 29433421 PMCID: PMC5809914 DOI: 10.1186/s12864-018-4524-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 02/01/2018] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Heilongjiang Province located in northeast China is a multi-ethnic region with people who have lived in cold conditions for several generations. Fatty acids are important to people with cold resistance. CPT1A encodes a protein that imports long-chain fatty acids into the mitochondria for fatty-acid oxidation. FADS is an essential enzyme for the synthesis of long-chain polyunsaturated fatty acids. RESULTS In the present study, we investigated the distributions of three cold resistance-related SNPs (rs80356779 G > A in CPT1A, rs7115739 T > G in FADS3 and rs174570 C > T in FADS2) from six populations that included 1093 individuals who have lived in Heilongjiang Province for at least three generations. The frequencies of rs174570 and rs7115739 were different in our six north minorities compared to the Chinese Dai in Xishuangbanna (CDX) in southern China. All the SNPs in Hezhen were significantly different from other five studied populations. In addition, the genetic distribution of rs174570 in Daur was significantly different from Manchu and Korea, and the frequency of rs7115739 in Ewenki was significantly different from the other populations. The results also showed that the frequencies of the three SNPs in the six minorities were different from those of Greenlandic Inuit and Siberian population. CONCLUSIONS Our results showed the distributions of the three cold resistance-related SNPs from six populations that included 1093 individuals in northern China. Distributions of the allele frequencies for the cold resistance-related SNPs in northern China were statistically different from those in southern China. These data help to establish the DNA genome database for the six populations and fully preserve existing minority genetic information.
Collapse
Affiliation(s)
- Qiuyan Li
- Laboratory of Medical Genetics, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, 150081, China.,Editorial Department of International Journal of Genetics, Harbin Medical University, Harbin, China
| | - Kexian Dong
- Laboratory of Medical Genetics, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, 150081, China
| | - Lidan Xu
- Laboratory of Medical Genetics, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, 150081, China
| | - Xueyuan Jia
- Laboratory of Medical Genetics, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, 150081, China
| | - Jie Wu
- Laboratory of Medical Genetics, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, 150081, China
| | - Wenjing Sun
- Laboratory of Medical Genetics, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, 150081, China
| | - Xuelong Zhang
- Laboratory of Medical Genetics, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, 150081, China.
| | - Songbin Fu
- Laboratory of Medical Genetics, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, 150081, China. .,Key Laboratory of Medical Genetics, (Harbin Medical University), Heilongjiang Higher Education Institutions, 157 Baojian Road, Nangang District, Harbin, 150081, China.
| |
Collapse
|
44
|
Park HG, Engel MG, Vogt-Lowell K, Lawrence P, Kothapalli KS, Brenna JT. The role of fatty acid desaturase (FADS) genes in oleic acid metabolism: FADS1 Δ7 desaturates 11-20:1 to 7,11-20:2. Prostaglandins Leukot Essent Fatty Acids 2018; 128:21-25. [PMID: 29413358 PMCID: PMC5806126 DOI: 10.1016/j.plefa.2017.11.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 11/16/2017] [Indexed: 12/27/2022]
Abstract
INTRODUCTION In mammals, FADS2 catalyzes "front-end" Δ4-, Δ6-, and Δ8-desaturation of fatty acyl chains, whereas FADS1 has Δ5-desaturase activity. Eighteen and 20-carbon precursors to highly unsaturated n-3 and n-6 fatty acids are the usual substrates for FADS1 and FADS2. Our main objective was to characterize the metabolic fate of oleic acid (OA) due to action of FADS gene products. METHODS MCF-7 cells were stably transformed with either FADS1 or FADS2 or empty vector. A series of dose-response experiments were conducted with albumin-bound fatty acid substrates (18:1n-9 and 20:1n-9) provided in concentrations up to 100µM. Cells were harvested after 24h, after which FAME were prepared and analyzed by GC-FID and covalent adduct chemical ionization tandem mass spectrometry (CACI-MS/MS). RESULTS When stably transformed cells were incubated with 18:1n-9, FADS1 and control cells elongated 18:1n-9 → 20:1n-9 (11-20:1), while FADS2 cells Δ6 desaturated, elongated, and then Δ5 desaturated via FADS1 coded activity leading to Mead acid, 9-18:1 → 6,9-18:2 → 8,11-20:2 (20:2n-9) → 6,8,11-20:3 (20:3n-9). Surprisingly, FADS1 cells Δ7 desaturated 11-20:1 → 7,11-20:2, the latter detected at low levels in control and FADS2 cells. Our results imply three pathways operate on 18:1n-9: 1) 18:1n-9 → 18:2n-9 → 20:2n-9 → 20:3n-9; 2) 18:1n-9 → 20:1n-9 → 20:2n-9 → 20:3n-9 and 3) 18:1n-9 → 20:1n-9 → 7,11-20:2. CONCLUSION Alternative pathways for oleic acid metabolism exist depending on FADS2 or FADS1 activities, we present the first evidence of Δ7 desaturation via the FADS1 gene product.
Collapse
Affiliation(s)
- Hui Gyu Park
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA; Dell Pediatric Research Institute, Dell Medical School, The University of Texas at Austin, 1400 Barbara Jordan Blvd, Austin, TX 78723, USA.
| | - Matthew G Engel
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA.
| | - Kyle Vogt-Lowell
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA.
| | - Peter Lawrence
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA.
| | - Kumar S Kothapalli
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA; Dell Pediatric Research Institute, Dell Medical School, The University of Texas at Austin, 1400 Barbara Jordan Blvd, Austin, TX 78723, USA.
| | - J Thomas Brenna
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA; Dell Pediatric Research Institute, Dell Medical School, The University of Texas at Austin, 1400 Barbara Jordan Blvd, Austin, TX 78723, USA.
| |
Collapse
|
45
|
Laguzzi F, Risérus U, Marklund M, Vikström M, Sjögren P, Gigante B, Alsharari ZD, Hellénius ML, Cederholm T, Frumento P, de Faire U, Leander K. Circulating fatty acids in relation to alcohol consumption: Cross-sectional results from a cohort of 60-year-old men and women. Clin Nutr 2017; 37:2001-2010. [PMID: 29032841 DOI: 10.1016/j.clnu.2017.09.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 09/01/2017] [Accepted: 09/09/2017] [Indexed: 01/08/2023]
Abstract
BACKGROUND & AIMS Alcohol consumption is considered to affect circulating fatty acids (FAs) but knowledge about specific associations is limited. We aimed to assess the relation between alcohol consumption and serum FAs in 60-year-old Swedish men and women. METHODS In a random sample of 1917 men and 2058 women residing in Stockholm county, cross-sectional associations between different categories of alcohol consumption and FAs were assessed using linear regression; β1 coefficients with 95% confidence interval (CI) were calculated. Self-reported alcohol consumption was categorized as none, low (≤9.9 g/day) (reference), moderate (10-29.9 g/day) and high (≥30 g/day). Moderate alcohol consumption was further subdivided into consumption of beer, wine, liquor and their combinations. Thirteen serum cholesterol ester FAs were measured by gas chromatography and individual FAs were expressed as percentage of total FAs. RESULTS Increasing alcohol consumption was associated to linear increase of saturated myristic acid, monounsaturated FAs and n-6 polyunsaturated (PUFA) arachidonic acid, whereas linear decrease was noted for saturated pentadecanoic acid and for n-6 PUFA linoleic acid. With non-linear associations, increasing alcohol consumption also associated to decreased saturated stearic acid, n-6 PUFA dihomo-gamma-linolenic acid, and n-3 PUFA docosahexaenoic acid and increased saturated palmitic acid, n-6 PUFA gamma-linolenic acid and n-3 PUFA eicosapentaenoic acid. Among types of beverages, wine consumption was associated with n-6 PUFA arachidonic acid (β1 0.59; 95% CI: 0.30;0.88) and the n-3 PUFAs eicosapentaenoic acid (β1 0.54; 95% CI: 0.30;0.78), and docosahexaenoic acid (β1 0.06; 95% CI: 0.00;0.12). CONCLUSIONS These findings may give important basis for further investigations to better understand biological mechanisms behind the dose-dependent associations between alcohol consumption and health outcomes observed in many previous studies.
Collapse
Affiliation(s)
- F Laguzzi
- Unit of Cardiovascular Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Nobels väg 13, Box 210, 171 77 Stockholm, Sweden.
| | - U Risérus
- Department of Public Health and Caring Sciences, Clinical Nutrition and Metabolism, Uppsala University, Box 609, 751 25 Uppsala, Sweden
| | - M Marklund
- Department of Public Health and Caring Sciences, Clinical Nutrition and Metabolism, Uppsala University, Box 609, 751 25 Uppsala, Sweden
| | - M Vikström
- Unit of Cardiovascular Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Nobels väg 13, Box 210, 171 77 Stockholm, Sweden
| | - P Sjögren
- Department of Public Health and Caring Sciences, Clinical Nutrition and Metabolism, Uppsala University, Box 609, 751 25 Uppsala, Sweden
| | - B Gigante
- Unit of Cardiovascular Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Nobels väg 13, Box 210, 171 77 Stockholm, Sweden; Division of Cardiovascular Medicine, Department of Clinical Sciences, Karolinska Institutet, Danderyd Hospital University, 182 88 Stockholm, Sweden
| | - Z D Alsharari
- Department of Public Health and Caring Sciences, Clinical Nutrition and Metabolism, Uppsala University, Box 609, 751 25 Uppsala, Sweden
| | - M-L Hellénius
- Cardiology Unit, Department of Medicine, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - T Cederholm
- Department of Public Health and Caring Sciences, Clinical Nutrition and Metabolism, Uppsala University, Box 609, 751 25 Uppsala, Sweden
| | - P Frumento
- Unit of Biostatistics, Institute of Environmental Medicine, Karolinska Institutet, Nobels väg 13, Box 210, 171 77 Stockholm, Sweden
| | - U de Faire
- Unit of Cardiovascular Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Nobels väg 13, Box 210, 171 77 Stockholm, Sweden; Cardiology Unit, Department of Medicine, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - K Leander
- Unit of Cardiovascular Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Nobels väg 13, Box 210, 171 77 Stockholm, Sweden
| |
Collapse
|
46
|
NAFLD as a Sexual Dimorphic Disease: Role of Gender and Reproductive Status in the Development and Progression of Nonalcoholic Fatty Liver Disease and Inherent Cardiovascular Risk. Adv Ther 2017; 34:1291-1326. [PMID: 28526997 PMCID: PMC5487879 DOI: 10.1007/s12325-017-0556-1] [Citation(s) in RCA: 362] [Impact Index Per Article: 51.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Indexed: 02/06/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) spans steatosis through nonalcoholic steatohepatis, cirrhosis, and hepatocellular carcinoma (HCC) associated with striking systemic features and excess cardiovascular and liver-related mortality. The pathogenesis of NAFLD is complex and multifactorial. Endocrine derangements are closely linked with dysmetabolic traits. For example, in animal and human studies, female sex is protected from dysmetabolism thanks to young individuals’ ability to partition fatty acids towards ketone body production rather than very low density lipoprotein (VLDL)-triacylglycerol, and to sex-specific browning of white adipose tissue. Ovarian senescence facilitates both the development of massive hepatic steatosis and the fibrotic progression of liver disease in an experimental overfed zebrafish model. Consistently, estrogen deficiency, by potentiating hepatic inflammatory changes, hastens the progression of disease in a dietary model of nonalcoholic steatohepatitis (NASH) developing in ovariectomized mice fed a high-fat diet. In humans, NAFLD more often affects men; and premenopausal women are equally protected from developing NAFLD as they are from cardiovascular disease. It would be expected that early menarche, definitely associated with estrogen activation, would produce protection against the risk of NAFLD. Nevertheless, it has been suggested that early menarche may confer an increased risk of NAFLD in adulthood, excess adiposity being the primary culprit of this association. Fertile age may be associated with more severe hepatocyte injury and inflammation, but also with a decreased risk of liver fibrosis compared to men and postmenopausal status. Later in life, ovarian senescence is strongly associated with severe steatosis and fibrosing NASH, which may occur in postmenopausal women. Estrogen deficiency is deemed to be responsible for these findings via the development of postmenopausal metabolic syndrome. Estrogen supplementation may at least theoretically protect from NAFLD development and progression, as suggested by some studies exploring the effect of hormonal replacement therapy on postmenopausal women, but the variable impact of different sex hormones in NAFLD (i.e., the pro-inflammatory effect of progesterone) should be carefully considered.
Collapse
|
47
|
Li X, He C, Chen Z, Zhou C, Gan Y, Jia Y. A review of the role of sebum in the mechanism of acne pathogenesis. J Cosmet Dermatol 2017; 16:168-173. [DOI: 10.1111/jocd.12345] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2017] [Indexed: 12/27/2022]
Affiliation(s)
- Xinchao Li
- Beijing Key Laboratory of Plant Resources Research and Development; School of Science; Beijing Technology and Business University; Beijing China
| | - Congfen He
- Beijing Key Laboratory of Plant Resources Research and Development; School of Science; Beijing Technology and Business University; Beijing China
| | - Zhou Chen
- Department of Dermatology; Peking University People's Hospital; Beijing China
| | - Cheng Zhou
- Department of Dermatology; Peking University People's Hospital; Beijing China
| | - Yao Gan
- Beijing Key Laboratory of Plant Resources Research and Development; School of Science; Beijing Technology and Business University; Beijing China
| | - Yan Jia
- Beijing Key Laboratory of Plant Resources Research and Development; School of Science; Beijing Technology and Business University; Beijing China
| |
Collapse
|
48
|
Hu Y, Tanaka T, Zhu J, Guan W, Wu JHY, Psaty BM, McKnight B, King IB, Sun Q, Richard M, Manichaikul A, Frazier-Wood AC, Kabagambe EK, Hopkins PN, Ordovas JM, Ferrucci L, Bandinelli S, Arnett DK, Chen YDI, Liang S, Siscovick DS, Tsai MY, Rich SS, Fornage M, Hu FB, Rimm EB, Jensen MK, Lemaitre RN, Mozaffarian D, Steffen LM, Morris AP, Li H, Lin X. Discovery and fine-mapping of loci associated with MUFAs through trans-ethnic meta-analysis in Chinese and European populations. J Lipid Res 2017; 58:974-981. [PMID: 28298293 PMCID: PMC5408616 DOI: 10.1194/jlr.p071860] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 02/17/2017] [Indexed: 11/20/2022] Open
Abstract
MUFAs are unsaturated FAs with one double bond and are derived from endogenous synthesis and dietary intake. Accumulating evidence has suggested that plasma and erythrocyte MUFA levels are associated with cardiometabolic disorders, including CVD, T2D, and metabolic syndrome (MS). Previous genome-wide association studies (GWASs) have identified seven loci for plasma and erythrocyte palmitoleic and oleic acid levels in populations of European origin. To identify additional MUFA-associated loci and the potential functional variant at each locus, we performed ethnic-specific GWAS meta-analyses and trans-ethnic meta-analyses in more than 15,000 participants of Chinese and European ancestry. We identified novel genome-wide significant associations for vaccenic acid at FADS1/2 and PKD2L1 [log10(Bayes factor) ≥ 8.07] and for gondoic acid at FADS1/2 and GCKR [log10(Bayes factor) ≥ 6.22], and also observed improved fine-mapping resolutions at FADS1/2 and GCKR loci. The greatest improvement was observed at GCKR, where the number of variants in the 99% credible set was reduced from 16 (covering 94.8 kb) to 5 (covering 19.6 kb, including a missense variant rs1260326) after trans-ethnic meta-analysis. We also confirmed the previously reported associations of PKD2L1, FADS1/2, GCKR, and HIF1AN with palmitoleic acid and of FADS1/2 and LPCAT3 with oleic acid in the Chinese-specific GWAS and the trans-ethnic meta-analyses. Pathway-based analyses suggested that the identified loci were in unsaturated FA metabolism and signaling pathways. Our findings provide novel insight into the genetic basis relevant to MUFA metabolism and biology.
Collapse
Affiliation(s)
- Yao Hu
- The Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Toshiko Tanaka
- Translational Gerontology Branch, National Institute on Aging, Baltimore, MD
| | - Jingwen Zhu
- The Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Weihua Guan
- Division of Biostatistics University of Minnesota, Minneapolis, MN
| | - Jason H Y Wu
- George Institute for Global Health, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA
- Group Health Research Institute, Group Health Cooperative, Seattle, WA
| | - Barbara McKnight
- Department of Biostatistics, University of Washington, Seattle, WA
| | - Irena B King
- Department of Internal Medicine, University of New Mexico, Albuquerque, NM
| | - Qi Sun
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
- Department of Nutrition, Harvard T. H. Chan School of Public Health, Harvard University, Cambridge, MA
| | - Melissa Richard
- Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX
| | - Ani Manichaikul
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA
- Biostatistics Section, Department of Public Health Sciences, University of Virginia, Charlottesville, VA
| | - Alexis C Frazier-Wood
- USDA Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Edmond K Kabagambe
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Paul N Hopkins
- Department of Internal Medicine, University of Utah, Salt Lake City, UT
| | - Jose M Ordovas
- Nutrition and Genomics Laboratory, Jean Mayer-USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA
- Department of Epidemiology and Population Genetics, National Center for Cardiovascular Investigation, Madrid, Spain
| | - Luigi Ferrucci
- Translational Gerontology Branch, National Institute on Aging, Baltimore, MD
| | | | - Donna K Arnett
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL
| | - Yii-Der I Chen
- Institute for Translational Genomics and Population Sciences, Los Angeles BioMedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA
| | - Shuang Liang
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN
| | - David S Siscovick
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA
- New York Academy of Medicine, New York, NY
| | - Michael Y Tsai
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA
| | - Myriam Fornage
- Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX
| | - Frank B Hu
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
- Department of Nutrition, Harvard T. H. Chan School of Public Health, Harvard University, Cambridge, MA
| | - Eric B Rimm
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
- Department of Nutrition, Harvard T. H. Chan School of Public Health, Harvard University, Cambridge, MA
| | - Majken K Jensen
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
- Department of Nutrition, Harvard T. H. Chan School of Public Health, Harvard University, Cambridge, MA
| | - Rozenn N Lemaitre
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA
| | - Dariush Mozaffarian
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA
| | - Lyn M Steffen
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN
| | - Andrew P Morris
- Genetic and Genomic Epidemiology Unit, Wellcome Trust Centre for Human Genetics, Oxford, United Kingdom
| | - Huaixing Li
- The Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Xu Lin
- The Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai, People's Republic of China
| |
Collapse
|
49
|
Liu L, Wang Z, Park HG, Xu C, Lawrence P, Su X, Wijendran V, Walker WA, Kothapalli KSD, Brenna JT. Human fetal intestinal epithelial cells metabolize and incorporate branched chain fatty acids in a structure specific manner. Prostaglandins Leukot Essent Fatty Acids 2017; 116:32-39. [PMID: 28088292 PMCID: PMC5260611 DOI: 10.1016/j.plefa.2016.12.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 11/30/2016] [Accepted: 12/01/2016] [Indexed: 10/20/2022]
Abstract
BACKGROUND Branched chain fatty acids (BCFA) are constituents of gastrointestinal (GI) tract in healthy newborn human infants, reduce the incidence of necrotizing enterocolitis (NEC) in a neonatal rat model, and are incorporated into small intestine cellular lipids in vivo. We hypothesize that BCFA are taken up, metabolized and incorporated into human fetal cells in vitro. METHODS Human H4 cells, a fetal non-transformed primary small intestine cell line, were incubated with albumin-bound non-esterified anteiso-17:0, iso-16:0, iso-18:0 and/or iso-20:0, and FA profiles in lipid fractions were analyzed. RESULTS All BCFA were readily incorporated as major constituents of cellular lipids. Anteiso-17:0 was preferentially taken up, and was most effective among BCFA tested in displacing normal (n-) FA. The iso BCFA were preferred in reverse order of chain length, with iso-20:0 appearing at lowest level. BCFA incorporation in phospholipids (PL) followed the same order of preference, accumulating 42% of FA as BCFA with no overt morphological signs of cell death. Though cholesterol esters (CE) are at low cellular concentration among lipid classes examined, CE had the greatest affinity for BCFA, accumulating 65% of FA as BCFA. BCFA most effectively displaced lower saturated FA. Iso-16:0, iso-18:0 and anteiso-17:0 were both elongated and chain shortened by ±C2. Iso-20:0 was chain shortened to iso-18:0 and iso-16:0 but not elongated. CONCLUSIONS Nontransformed human fetal intestinal epithelial cells incorporate high levels of BCFA when they are available and metabolize them in a structure specific manner. These findings imply that specific pathways for handling BCFA are present in the lumen-facing cells of the human fetal GI tract that is exposed to vernix-derived BCFA in late gestation.
Collapse
Affiliation(s)
- Lei Liu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, China; Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Zhen Wang
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Hui Gyu Park
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Chuang Xu
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA; College of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China
| | - Peter Lawrence
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Xueli Su
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA; Jingchu University of Technology, Jingmen, Hubei 448000, China
| | - Vasuki Wijendran
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, Charlestow, MA, USA
| | - W Allan Walker
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, Charlestow, MA, USA
| | | | - J Thomas Brenna
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
50
|
Fatty Acids in Membranes as Homeostatic, Metabolic and Nutritional Biomarkers: Recent Advancements in Analytics and Diagnostics. Diagnostics (Basel) 2016; 7:diagnostics7010001. [PMID: 28025506 PMCID: PMC5373010 DOI: 10.3390/diagnostics7010001] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 11/18/2016] [Accepted: 12/14/2016] [Indexed: 02/07/2023] Open
Abstract
Fatty acids, as structural components of membranes and inflammation/anti-inflammatory mediators, have well-known protective and regulatory effects. They are studied as biomarkers of pathological conditions, as well as saturated and unsaturated hydrophobic moieties in membrane phospholipids that contribute to homeostasis and physiological functions. Lifestyle, nutrition, metabolism and stress—with an excess of radical and oxidative processes—cause fatty acid changes that are examined in the human body using blood lipids. Fatty acid-based membrane lipidomics represents a powerful diagnostic tool for assessing the quantity and quality of fatty acid constituents and also for the follow-up of the membrane fatty acid remodeling that is associated with different physiological and pathological conditions. This review focuses on fatty acid biomarkers with two examples of recent lipidomic research and health applications: (i) monounsaturated fatty acids and the analytical challenge offered by hexadecenoic fatty acids (C16:1); and (ii) the cohort of 10 fatty acids in phospholipids of red blood cell membranes and its connections to metabolic and nutritional status in healthy and diseased subjects.
Collapse
|