1
|
Gao J, Liu J, Lu J, Zhang X, Zhang W, Li Q, Cai J, Li M, Gan Y, Tang Y, Wu S. SKAP1 Expression in Cancer Cells Enhances Colon Tumor Growth and Impairs Cytotoxic Immunity by Promoting Neutrophil Extracellular Trap Formation via the NFATc1/CXCL8 Axis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403430. [PMID: 39269257 PMCID: PMC11538704 DOI: 10.1002/advs.202403430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/15/2024] [Indexed: 09/15/2024]
Abstract
The mechanisms underlying the development and progression of colon cancer are not fully understood. Herein, Src kinase associated phosphoprotein 1 (SKAP1), an immune cell adaptor, is identified as a novel colon cancer-related gene. SKAP1 expression is significantly increased in colon cancer cells. High SKAP1 levels are independently predictive of poor survival in patients with colon cancer. Notably, SKAP1 expression in colon cancer cells exerted a significant tumor-promoting effect in vivo rather than in vitro. Screening of tumor-infiltrating immune cells revealed the involvement of neutrophils in SKAP1-induced colon tumor promotion. Enhanced formation of neutrophil extracellular traps (NETs) is found to be a key downstream event that contributed to the pro-tumor role of SKAP1. In colon cancer cells, SKAP1 increased the expression of C-X-C motif chemokine ligand 8 (CXCL8) via nuclear factor of activated T cells c1 (NFATc1). The blockade of CXCL8 or NFATc1 largely attenuated neutrophil infiltration, NET formation, and tumor promotion induced by SKAP1. Furthermore, inhibiting SKAP1-induced NET significantly enhanced the antitumor efficiency of adoptive natural killer cell therapy in colon tumor models. In conclusion, SKAP1 significantly promotes colon cancer growth via the cancer cell/neutrophil NFATc1/CXCL8/NET axis, suggesting that SKAP1 is a potential target for colon cancer therapy.
Collapse
Affiliation(s)
- Jian Gao
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer InstituteRenji HospitalShanghai Jiao Tong University School of MedicineShanghai200032China
| | - Jun Liu
- Department of General SurgeryHuashan Hospital (Hongqiao Campus)Fudan UniversityShanghai201107China
| | - Jilin Lu
- Department of General SurgeryHuashan Hospital (Hongqiao Campus)Fudan UniversityShanghai201107China
| | - Xiaofei Zhang
- Department of General SurgeryHuashan Hospital (Hongqiao Campus)Fudan UniversityShanghai201107China
| | - Wei Zhang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer InstituteRenji HospitalShanghai Jiao Tong University School of MedicineShanghai200032China
| | - Qian Li
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer InstituteRenji HospitalShanghai Jiao Tong University School of MedicineShanghai200032China
| | - Jiayi Cai
- Clinical Research UnitRenji HospitalShanghai Jiao Tong University School of MedicineShanghai200127China
| | - Mengjun Li
- Department of General SurgeryHuashan Hospital (Hongqiao Campus)Fudan UniversityShanghai201107China
| | - Yu Gan
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer InstituteRenji HospitalShanghai Jiao Tong University School of MedicineShanghai200032China
| | - Yifan Tang
- Department of General SurgeryHuashan Hospital (Hongqiao Campus)Fudan UniversityShanghai201107China
| | - Shuangjie Wu
- Department of General SurgeryHuashan Hospital (Hongqiao Campus)Fudan UniversityShanghai201107China
| |
Collapse
|
2
|
Sintès M, Kovjenic P, Haine (Hablal) L, Serror K, Beladjine M, Parietti (Montcuquet) V, Delagrange M, Ducos B, Bouaziz JD, Boccara D, Mimoun M, Bensussan A, Bagot M, Huang N, Michel L. Coencapsulation of Immunosuppressive Drug with Anti-Inflammatory Molecule in Pickering Emulsions as an Innovative Therapeutic Approach for Inflammatory Dermatoses. JID INNOVATIONS 2024; 4:100273. [PMID: 39045393 PMCID: PMC11264173 DOI: 10.1016/j.xjidi.2024.100273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 01/11/2024] [Accepted: 02/13/2024] [Indexed: 07/25/2024] Open
Abstract
Psoriasis is an inflammatory skin disease characterized by epidermal and immune dysfunctions. Although efficient, current topical treatments display adverse effects, including skin atrophy and burning sensation, leading to poor patient adherence. To overcome these downsides, pickering emulsions were formulated in which the calcitriol-containing dispersed phase was stabilized with either cyclosporin A- or tacrolimus-loaded poly(lactic-co-glycolic) acid nanoparticles. This study aimed to investigate their biological effects on lymphocytes and epidermal cells and their effectiveness in an imiquimod-induced psoriasis-like mouse model. Results showed that both emulsions significantly inhibited nuclear factor of activated T cell translocation in T lymphocytes as well as their IL-2 production, cell activation, and proliferation. In keratinocytes, inhibition of nuclear factor of activated T cell translocation decreased the production of IL-8 and TNF-α. Topical application of emulsions over skin biopsies ex vivo showed accumulation of rhodamin B-coupled poly(lactic-co-glycolic) acid nanoparticles throughout the epidermis by immunofluorescence and significantly decreased the antigen-presenting capacity of Langerhans cells in relation to a reduced expression of activation markers CD40, CD86, and HLA-DR. Using an imiquimod-induced psoriasis model in vivo, pickering emulsions significantly alleviated psoriasiform lesions potentially attributed to the decreased cutaneous expression of T-cell markers, proinflammatory cytokines, chemokines, and specific epidermal cell genes. Altogether, pickering emulsion might be a very efficient formulation for treating inflammatory dermatoses.
Collapse
Affiliation(s)
- Maxime Sintès
- Inserm UMR_U976, University Paris Cité, Skin Research Center, Hôpital Saint-Louis, Paris, France
| | - Petra Kovjenic
- University Paris Saclay, CNRS, Institut Galien Paris-Saclay, Orsay, France
| | - Liasmine Haine (Hablal)
- Inserm UMR_U976, University Paris Cité, Skin Research Center, Hôpital Saint-Louis, Paris, France
| | - Kevin Serror
- Department of Reconstructive and Plastic Surgery, Hôpital Saint-Louis, Paris, France
| | - Mohamed Beladjine
- University Paris Saclay, CNRS, Institut Galien Paris-Saclay, Orsay, France
| | | | - Marine Delagrange
- High Throughput qPCR Core Facility, École Normale Supérieure, Université Paris Sciences & Lettres, Paris, France
| | - Bertrand Ducos
- High Throughput qPCR Core Facility, École Normale Supérieure, Université Paris Sciences & Lettres, Paris, France
| | - Jean-David Bouaziz
- Inserm UMR_U976, University Paris Cité, Skin Research Center, Hôpital Saint-Louis, Paris, France
- Department of Dermatology, Hôpital Saint-Louis, Paris, France
| | - David Boccara
- Department of Reconstructive and Plastic Surgery, Hôpital Saint-Louis, Paris, France
| | - Maurice Mimoun
- Department of Reconstructive and Plastic Surgery, Hôpital Saint-Louis, Paris, France
| | - Armand Bensussan
- Inserm UMR_U976, University Paris Cité, Skin Research Center, Hôpital Saint-Louis, Paris, France
| | - Martine Bagot
- Inserm UMR_U976, University Paris Cité, Skin Research Center, Hôpital Saint-Louis, Paris, France
- Department of Dermatology, Hôpital Saint-Louis, Paris, France
| | - Nicolas Huang
- University Paris Saclay, CNRS, Institut Galien Paris-Saclay, Orsay, France
| | - Laurence Michel
- Inserm UMR_U976, University Paris Cité, Skin Research Center, Hôpital Saint-Louis, Paris, France
- Department of Dermatology, Hôpital Saint-Louis, Paris, France
| |
Collapse
|
3
|
Németh Z, Debreczeni ML, Kajdácsi E, Dobó J, Gál P, Cervenak L. Cooperation of Complement MASP-1 with Other Proinflammatory Factors to Enhance the Activation of Endothelial Cells. Int J Mol Sci 2023; 24:ijms24119181. [PMID: 37298134 DOI: 10.3390/ijms24119181] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 06/12/2023] Open
Abstract
Endothelial cells play an important role in sensing danger signals and regulating inflammation. Several factors are capable of inducing a proinflammatory response (e.g., LPS, histamine, IFNγ, and bradykinin), and these factors act simultaneously during the natural course of the inflammatory reaction. We have previously shown that the complement protein mannan-binding lectin-associated serine protease-1 (MASP-1) also induces a proinflammatory activation of the endothelial cells. Our aim was to investigate the possible cooperation between MASP-1 and other proinflammatory mediators when they are present in low doses. We used HUVECs and measured Ca2+ mobilization, IL-8, E-selectin, VCAM-1 expression, endothelial permeability, and mRNA levels of specific receptors. LPS pretreatment increased the expression of PAR2, a MASP-1 receptor, and furthermore, MASP-1 and LPS enhanced each other's effects in regulating IL-8, E-selectin, Ca2+ mobilization, and changes in permeability in a variety of ways. Cotreatment of MASP-1 and IFNγ increased the IL-8 expression of HUVECs. MASP-1 induced bradykinin and histamine receptor expression, and consequently, increased Ca2+ mobilization was found. Pretreatment with IFNγ enhanced MASP-1-induced Ca2+ mobilization. Our findings highlight that well-known proinflammatory mediators and MASP-1, even at low effective doses, can strongly synergize to enhance the inflammatory response of endothelial cells.
Collapse
Affiliation(s)
- Zsuzsanna Németh
- Department of Internal Medicine and Haematology, Semmelweis University, 1085 Budapest, Hungary
| | - Márta L Debreczeni
- Department of Internal Medicine and Haematology, Semmelweis University, 1085 Budapest, Hungary
| | - Erika Kajdácsi
- Department of Internal Medicine and Haematology, Semmelweis University, 1085 Budapest, Hungary
- Research Group for Immunology and Haematology, Semmelweis University-Eötvös Loránd Research Network (Office for Supported Research Groups), 1052 Budapest, Hungary
| | - József Dobó
- Institute of Enzymology, Research Centre for Natural Sciences, 1117 Budapest, Hungary
| | - Péter Gál
- Institute of Enzymology, Research Centre for Natural Sciences, 1117 Budapest, Hungary
| | - László Cervenak
- Department of Internal Medicine and Haematology, Semmelweis University, 1085 Budapest, Hungary
| |
Collapse
|
4
|
Macchi R, Sotelo AD, Parrado AC, Salaverry LS, Blanco GA, Castro MS, Rey-Roldán EB, Canellada AM. Losartan impairs HTR-8/SVneo trophoblast migration through inhibition of angiotensin II-induced pro-inflammatory profile in human endometrial stromal cells. Toxicol Appl Pharmacol 2023; 461:116383. [PMID: 36682589 DOI: 10.1016/j.taap.2023.116383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/29/2022] [Accepted: 01/16/2023] [Indexed: 01/21/2023]
Abstract
A deep interaction between the endometrium and the invading trophoblast occurs during implantation in humans, with the acquisition of uterine receptivity to the invading embryo promoted by an elevation of pro-inflammatory cytokines in the endometrium, and the invasiveness of decidualizing endometrial stromal cells, augmented by trophoblast-derived signals. Considering that usage of angiotensin II type 1 (AT1) receptor blockers, among other renin-angiotensin system (RAS) antagonists, is associated with adverse pregnancy outcomes, here we aim to analyse the involvement of AT1 receptor in the reciprocal dialogue occurring between endometrial stroma and trophoblast cells. In human endometrial stromal cells (T-HESC) pre-incubated with a decidualization cocktail, angiotensin (Ang) II increased protein expression of prolactin and FOXO1, markers of endometrial decidualization, while promoting nuclear translocation of FOXO1. In addition, Ang II treatment increased CXCL8, and matrix metalloprotease (MMP)-2 levels in T-HESC. Incubation with the AT1 receptor blocker losartan or with an NFAT signalling inhibitor, decreased Ang II-induced secretion of prolactin, CXCL8, and MMP-2 in T-HESC. In a wound healing assay, conditioned medium (CM) obtained from Ang II-treated T-HESC, but not CM from losartan-pre-incubated T-HESC, increased migration of HTR-8/SVneo trophoblasts, effect that was inhibited in the presence of a CXCL8-neutralizing antibody. An increased secretion of CXCL8 and MMP-2 was observed after treatment of T-HESC with CM obtained from HTR-8/SVneo cells, which was not observed in T-HESC pre-incubated with losartan or with the NFAT inhibitor. This study evidenced a reciprocal RAS-coded messaging between trophoblast and ESC which is affected by the AT1 receptor blocker losartan.
Collapse
Affiliation(s)
- Rosario Macchi
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Cátedra de Inmunología, Junín 956, Buenos Aires C1113AAD, Argentina; Universidad de Buenos Aires, CONICET, Instituto de Estudios de la Inmunidad Humoral "Prof. Dr. Ricardo A. Margni", Junín 956, Buenos Aires C1113AAD, Argentina
| | - Agustina D Sotelo
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Cátedra de Inmunología, Junín 956, Buenos Aires C1113AAD, Argentina; Universidad de Buenos Aires, CONICET, Instituto de Estudios de la Inmunidad Humoral "Prof. Dr. Ricardo A. Margni", Junín 956, Buenos Aires C1113AAD, Argentina
| | - Andrea C Parrado
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Cátedra de Inmunología, Junín 956, Buenos Aires C1113AAD, Argentina; Universidad de Buenos Aires, CONICET, Instituto de Estudios de la Inmunidad Humoral "Prof. Dr. Ricardo A. Margni", Junín 956, Buenos Aires C1113AAD, Argentina
| | - Luciana S Salaverry
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Cátedra de Inmunología, Junín 956, Buenos Aires C1113AAD, Argentina; Universidad de Buenos Aires, CONICET, Instituto de Estudios de la Inmunidad Humoral "Prof. Dr. Ricardo A. Margni", Junín 956, Buenos Aires C1113AAD, Argentina
| | - Guillermo A Blanco
- Universidad de Buenos Aires, CONICET, Instituto de Estudios de la Inmunidad Humoral "Prof. Dr. Ricardo A. Margni", Junín 956, Buenos Aires C1113AAD, Argentina
| | - Marisa S Castro
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Cátedra de Inmunología, Junín 956, Buenos Aires C1113AAD, Argentina; Universidad de Buenos Aires, CONICET, Instituto de Estudios de la Inmunidad Humoral "Prof. Dr. Ricardo A. Margni", Junín 956, Buenos Aires C1113AAD, Argentina
| | - Estela B Rey-Roldán
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Cátedra de Inmunología, Junín 956, Buenos Aires C1113AAD, Argentina; Universidad de Buenos Aires, CONICET, Instituto de Estudios de la Inmunidad Humoral "Prof. Dr. Ricardo A. Margni", Junín 956, Buenos Aires C1113AAD, Argentina
| | - Andrea M Canellada
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Cátedra de Inmunología, Junín 956, Buenos Aires C1113AAD, Argentina; Universidad de Buenos Aires, CONICET, Instituto de Estudios de la Inmunidad Humoral "Prof. Dr. Ricardo A. Margni", Junín 956, Buenos Aires C1113AAD, Argentina.
| |
Collapse
|
5
|
Zang Y, Li H, Liu S, Zhao R, Zhang K, Zang Y, Wang Y, Xue F. The roles and clinical applications of interleukins in endometrial carcinoma. Front Oncol 2022; 12:1001693. [PMID: 36531027 PMCID: PMC9748080 DOI: 10.3389/fonc.2022.1001693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/02/2022] [Indexed: 08/05/2023] Open
Abstract
As a common malignant tumor of the female reproductive system, endometrial carcinoma (EC) seriously endangers women's health with an increasing incidence. The oncogenesis and progression of cancer are closely linked with immune microenvironment, of which interleukins are the important components. In order to illustrate the roles and clinical applications of interleukins in EC, literature of interleukins and EC were reviewed. Based on the present studies, interleukins play crucial roles in the oncogenesis and development of EC via regulating the proliferation, migration, invasion, angiogenesis, apoptosis, pyroptosis and autophagy of EC as well as the immune function against EC. And some of the interleukins seems to have prospective clinical applications in EC, such as evaluating the risk of tumorigenesis, discriminating the malignancy from benign disorders or normal condition, indicating cancer aggressiveness, predicting the prognosis of patients and serving as the novel therapy. However, there is still a long way to go before the clinical applications of interleukins in EC come into reality. Nevertheless, it is certain that the exploration of interleukins will definitely be of great benefit to the screening, diagnosis and treatment of EC in the future.
Collapse
Affiliation(s)
- Yuqin Zang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, China
| | - Huanrong Li
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, China
| | - Shiqi Liu
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, China
| | - Ruqian Zhao
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, China
| | - Kaiwen Zhang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, China
| | - Yuqi Zang
- Hangzhou College of Preschool Teacher Education, Zhejiang Normal University, Hangzhou, China
| | - Yingmei Wang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, China
| | - Fengxia Xue
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
6
|
Downregulation of IL-8 and IL-10 by the Activation of Ca2+-Activated K+ Channel KCa3.1 in THP-1-Derived M2 Macrophages. Int J Mol Sci 2022; 23:ijms23158603. [PMID: 35955737 PMCID: PMC9368915 DOI: 10.3390/ijms23158603] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 07/26/2022] [Indexed: 02/04/2023] Open
Abstract
THP-1-differentiated macrophages are useful for investigating the physiological significance of tumor-associated macrophages (TAMs). In the tumor microenvironment (TME), TAMs with the M2-like phenotype play a critical role in promoting cancer progression and metastasis by inhibiting the immune surveillance system. We examined the involvement of Ca2+-activated K+ channel KCa3.1 in TAMs in expressing pro-tumorigenic cytokines and angiogenic growth factors. In THP-1-derived M2 macrophages, the expression levels of IL-8 and IL-10 were significantly decreased by treatment with the selective KCa3.1 activator, SKA-121, without changes in those of VEGF and TGF-β1. Furthermore, under in vitro experimental conditions that mimic extracellular K+ levels in the TME, IL-8 and IL-10 levels were both significantly elevated, and these increases were reversed by combined treatment with SKA-121. Among several signaling pathways potentially involved in the transcriptional regulation of IL-8 and IL-10, respective treatments with ERK and JNK inhibitors significantly repressed their transcriptions, and treatment with SKA-121 significantly reduced the phosphorylated ERK, JNK, c-Jun, and CREB levels. These results strongly suggest that the KCa3.1 activator may suppress IL-10-induced tumor immune surveillance escape and IL-8-induced tumorigenicity and metastasis by inhibiting their production from TAMs through ERK-CREB and JNK-c-Jun cascades.
Collapse
|
7
|
Lao M, Zhang X, Yang H, Bai X, Liang T. RCAN1-mediated calcineurin inhibition as a target for cancer therapy. Mol Med 2022; 28:69. [PMID: 35717152 PMCID: PMC9206313 DOI: 10.1186/s10020-022-00492-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/26/2022] [Indexed: 11/10/2022] Open
Abstract
Cancer is the leading cause of mortality worldwide. Regulator of calcineurin 1 (RCAN1), as a patent endogenous inhibitor of calcineurin, plays crucial roles in the pathogenesis of cancers. Except for hypopharyngeal and laryngopharynx cancer, high expression of RCAN1 inhibits tumor progression. Molecular antitumor functions of RCAN1 are largely dependent on calcineurin. In this review, we highlight current research on RCAN1 characteristics, and the interaction between RCAN1 and calcineurin. Moreover, the dysregulation of RCAN1 in various cancers is reviewed, and the potential of targeting RCAN1 as a new therapeutic approach is discussed.
Collapse
Affiliation(s)
- Mengyi Lao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310009, Zhejiang, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, China.,Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Hangzhou, 310009, Zhejiang, China.,Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary and Pancreatic Diseases, Hangzhou, 310009, Zhejiang, China
| | - Xiaozhen Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310009, Zhejiang, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, China.,Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Hangzhou, 310009, Zhejiang, China.,Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary and Pancreatic Diseases, Hangzhou, 310009, Zhejiang, China
| | - Hanshen Yang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310009, Zhejiang, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, China.,Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Hangzhou, 310009, Zhejiang, China.,Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary and Pancreatic Diseases, Hangzhou, 310009, Zhejiang, China
| | - Xueli Bai
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310009, Zhejiang, China. .,Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, China. .,Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Hangzhou, 310009, Zhejiang, China. .,Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary and Pancreatic Diseases, Hangzhou, 310009, Zhejiang, China.
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310009, Zhejiang, China. .,Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, China. .,Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Hangzhou, 310009, Zhejiang, China. .,Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary and Pancreatic Diseases, Hangzhou, 310009, Zhejiang, China. .,Cancer Center, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
| |
Collapse
|
8
|
Hirata N, Yamada S, Yanagida S, Ono A, Yasuhiko Y, Nishida M, Kanda Y. Lysophosphatidic Acid Promotes the Expansion of Cancer Stem Cells via TRPC3 Channels in Triple-Negative Breast Cancer. Int J Mol Sci 2022; 23:ijms23041967. [PMID: 35216080 PMCID: PMC8877950 DOI: 10.3390/ijms23041967] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 01/27/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive cancer for which targeted therapeutic agents are limited. Growing evidence suggests that TNBC originates from breast cancer stem cells (BCSCs), and elucidation of the molecular mechanisms controlling BCSC proliferation will be crucial for new drug development. We have previously reported that the lysosphingolipid sphingosine-1-phosphate mediates the CSC phenotype, which can be identified as the ALDH-positive cell population in several types of human cancer cell lines. In this study, we have investigated additional lipid receptors upregulated in BCSCs. We found that lysophosphatidic acid (LPA) receptor 3 was highly expressed in ALDH-positive TNBC cells. The LPAR3 antagonist inhibited the increase in ALDH-positive cells after LPA treatment. Mechanistically, the LPA-induced increase in ALDH-positive cells was dependent on intracellular calcium ion (Ca2+), and the increase in Ca2+ was suppressed by a selective inhibitor of transient receptor potential cation channel subfamily C member 3 (TRPC3). Moreover, IL-8 production was involved in the LPA response via the activation of the Ca2+-dependent transcriptional factor nuclear factor of activated T cells. Taken together, our findings provide new insights into the lipid-mediated regulation of BCSCs via the LPA-TRPC3 signaling axis and suggest several potential therapeutic targets for TNBC.
Collapse
Affiliation(s)
- Naoya Hirata
- Division of Pharmacology, National Institute of Health Sciences, Kanagawa 210-9501, Japan; (N.H.); (S.Y.); (S.Y.); (Y.Y.)
- Pharmacological Evaluation Institute of Japan (PEIJ), Ibaraki 305-0031, Japan
| | - Shigeru Yamada
- Division of Pharmacology, National Institute of Health Sciences, Kanagawa 210-9501, Japan; (N.H.); (S.Y.); (S.Y.); (Y.Y.)
- Pharmacological Evaluation Institute of Japan (PEIJ), Ibaraki 305-0031, Japan
| | - Shota Yanagida
- Division of Pharmacology, National Institute of Health Sciences, Kanagawa 210-9501, Japan; (N.H.); (S.Y.); (S.Y.); (Y.Y.)
- Division of Pharmaceutical Sciences, Graduated School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan;
| | - Atsushi Ono
- Division of Pharmaceutical Sciences, Graduated School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan;
| | - Yukuto Yasuhiko
- Division of Pharmacology, National Institute of Health Sciences, Kanagawa 210-9501, Japan; (N.H.); (S.Y.); (S.Y.); (Y.Y.)
| | - Motohiro Nishida
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan;
- Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Aichi 444-8787, Japan
- National Institute for Physiological Sciences, National Institutes of Natural Sciences, Aichi 444-8787, Japan
| | - Yasunari Kanda
- Division of Pharmacology, National Institute of Health Sciences, Kanagawa 210-9501, Japan; (N.H.); (S.Y.); (S.Y.); (Y.Y.)
- Correspondence:
| |
Collapse
|
9
|
Lin CC, Law BF, Hettick JM. MicroRNA-mediated calcineurin signaling activation induces CCL2, CCL3, CCL5, IL8, and chemotactic activities in 4,4'-methylene diphenyl diisocyanate exposed macrophages. Xenobiotica 2021; 51:1436-1452. [PMID: 34775880 DOI: 10.1080/00498254.2021.2005851] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Occupational exposure to 4,4'-methylene diphenyl diisocyanate (MDI), the most widely used monomeric diisocyanate, is one of the leading causes of occupational asthma (OA). Previously, we identified microRNA (miR)-206-3p/miR-381-3p-mediated PPP3CA/calcineurin signalling regulated iNOS transcription in macrophages and bronchoalveolar lavage cells (BALCs) after acute MDI exposure; however, whether PPP3CA/calcineurin signalling participates in regulation of other asthma-associated mediators secreted by macrophages/BALCs after MDI exposure is unknown.Several asthma-associated, macrophage-secreted mediator mRNAs from MDI exposed murine BALCs and MDI-glutathione (GSH) conjugate treated differentiated THP-1 macrophages were analysed using RT-qPCR.Endogenous IL1B, TNF, CCL2, CCL3, CCL5, and TGFB1 were upregulated in MDI or MDI-GSH conjugate exposed BALCs and macrophages, respectively. Calcineurin inhibitor tacrolimus (FK506) attenuated the MDI-GSH conjugate-mediated induction of CCL2, CCL3, CCL5, and CXCL8/IL8 but not others. Transfection of either miR-inhibitor-206-3p or miR-inhibitor-381-3p in macrophages induced chemokine CCL2, CCL3, CCL5, and CXCL8 transcription, whereas FK506 attenuated the miR-inhibitor-206-3p or miR-inhibitor-381-3p-mediated effects. Finally, MDI-GSH conjugate treated macrophages showed increased chemotactic ability to various immune cells, which may be attenuated by FK506.In conclusion, these results indicate that MDI exposure to macrophages/BALCs may recruit immune cells into the airway via induction of chemokines by miR-206-3p and miR-381-3p-mediated calcineurin signalling activation.
Collapse
Affiliation(s)
- Chen-Chung Lin
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Brandon F Law
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Justin M Hettick
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| |
Collapse
|
10
|
Hashim SNM, Yusof MFH, Zahari W, Noordin KBAA, Akamatsu T, Azlina A. Amniotic membrane matrix effects on calcineurin-NFAT-related gene expressions of SHED treated with VEGF for endothelial differentiation. In Vitro Cell Dev Biol Anim 2021; 57:560-570. [PMID: 34021476 DOI: 10.1007/s11626-021-00588-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 05/02/2021] [Indexed: 11/26/2022]
Abstract
The nuclear factor of activated T-cell (NFAT) signaling pathway is involved in angiogenesis following initiation by vascular endothelial growth factor (VEGF). A number of angiogenic genes have been associated with calcineurin in the NFAT pathway, forming a calcineurin-NFAT pathway. This study aims to investigate the involvement of four angiogenic genes within the calcineurin-NFAT pathway in the endothelial-like differentiation of stem cells from human exfoliated deciduous teeth (SHED) cultured on a human amniotic membrane (HAM) induced by VEGF. SHED were induced with VEGF for 24 h, then cultured on the stromal side of HAM. The cells were then further induced with VEGF until days 1 and 14. To understand the role of calcineurin, its potent inhibitor, cyclosporin A (CsA), was added into the culture. Results from SEM and H&E analyses showed SHED grew on HAM surface. Gene expression study of Cox-2 showed a drastically reduced expression with CsA treatment indicating Cox-2 involvement in the calcineurin-NFAT pathway. Meanwhile, IL-8 was probably controlled by another pathway as it showed no CsA inhibition. In contrast, high expression of ICAM-1 and RCAN1.4 by VEGF and CsA implied that these genes were not controlled by the calcineurin-NFAT-dependent pathway. In conclusion, the results of this study suggest the involvement of Cox-2 in the calcineurin-NFAT-dependent pathway while RCAN1.4 was controlled by NFAT molecule in endothelial-like differentiation of SHED cultured on HAM with VEGF induction.
Collapse
Affiliation(s)
- Siti Nurnasihah Md Hashim
- School of Dental Sciences, Health Campus, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Muhammad Fuad Hilmi Yusof
- School of Dental Sciences, Health Campus, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Wafa' Zahari
- School of Dental Sciences, Health Campus, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia
| | | | - Tetsuya Akamatsu
- Department of Bioengineering, Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial & Social Sciences, Tokushima University, Tokushima-shi, Tokushima, 770-8513, Japan
| | - Ahmad Azlina
- School of Dental Sciences, Health Campus, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia.
- Human Genome Centre, School of Medical Sciences, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia.
| |
Collapse
|
11
|
Yu J, Ghassabian A, Chen Z, Goldstein RB, Hornig M, Buka SL, Goldstein JM, Gilman SE. Maternal Immune activity during pregnancy and socioeconomic disparities in children's self-regulation. Brain Behav Immun 2020; 90:346-352. [PMID: 32919039 PMCID: PMC7544646 DOI: 10.1016/j.bbi.2020.09.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/10/2020] [Accepted: 09/04/2020] [Indexed: 12/31/2022] Open
Abstract
Maternal immune activity during pregnancy has been associated with risk for psychiatric disorders in offspring, but less is known about its implications for children's emotional and behavioral development. This study examined whether concentrations of five cytokines assayed from prenatal serum were associated with socioeconomic status (SES) and racial disparities in their offspring's self-regulation abilities. Participants included 1628 women in the Collaborative Perinatal Project (CPP). Seven behavioral items conceptually related to self-regulation were rated by CPP psychologists when children were 4 years old. Concentrations of interleukin (IL)-1β, IL-6, IL-8, tumor necrosis factor (TNF)-α, and IL-10 were assessed. Covariates included child sex and mother's age, psychiatric disorders, and medical conditions during pregnancy. There were significant SES differences in child self-regulation, with higher SES children scoring higher on self-regulation (β = 0.18, 95% CI [0.11, 0.25]), but no racial differences. The concentration of IL-8 in maternal serum was associated with higher child self-regulation, β = 0.09, 95% CI [0.02, 0.16]. In mediation analyses, variation in maternal IL-8 contributed to the association between family SES and child self-regulation (β = 0.02, 95% CI [0.003, 0.030]), explaining about one-tenth of the SES disparities. This study suggests pregnancy as an early sensitive period and maternal immune activity as an important context for child development.
Collapse
Affiliation(s)
- Jing Yu
- Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, 6710B Rockledge Drive, Bethesda, MD 20817, United States.
| | - Akhgar Ghassabian
- Departments of Pediatrics, Environmental Medicine, and Population Health, New York University, 403 East 34th St., New York, NY 10016, United States
| | - Zhen Chen
- Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, 6710B Rockledge Drive, Bethesda, MD 20817, United States
| | - Risë B Goldstein
- Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, 6710B Rockledge Drive, Bethesda, MD 20817, United States
| | - Mady Hornig
- Department of Epidemiology, Columbia University Mailman School of Public Health, 722 West 168th St. NY, NY 10032, United States
| | - Stephen L Buka
- Department of Epidemiology, School of Public Health, Brown University, 21 South Main Street, Providence, RI 02912, United States
| | - Jill M Goldstein
- Departments of Psychiatry and Medicine, Harvard Medical School, and Department of Psychiatry and Obstetrics and Gynecology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, United States
| | - Stephen E Gilman
- Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, 6710B Rockledge Drive, Bethesda, MD 20817, United States; Department of Mental Health, Bloomberg School of Public Health, John Hopkins University, 615 N. Wolfe Street, Baltimore, MD 21205, United States
| |
Collapse
|
12
|
Goryszewska E, Kaczynski P, Baryla M, Waclawik A. Pleiotropic role of prokineticin 1 in the porcine endometrium during pregnancy establishment and embryo implantation †. Biol Reprod 2020; 104:181-196. [PMID: 32997136 DOI: 10.1093/biolre/ioaa181] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/14/2020] [Accepted: 09/29/2020] [Indexed: 12/26/2022] Open
Abstract
Acquisition of endometrial receptivity for embryo implantation is one of the crucial processes during pregnancy and is induced mainly by progesterone and enhanced by conceptus signals. Prokineticin 1 (PROK1) is characterized as a secretory protein with diverse functions in various tissues, including the reproductive tract. PROK1, with its receptor PROKR1, are up-regulated in the porcine endometrium during implantation and in women's receptive endometrium and decidua. However, the function of PROK1 in embryo-maternal communication has still not been fully elucidated. Hence, we hypothesize that PROK1 is involved in endometrial receptivity development and implantation in pigs. In this study, using the porcine in vivo model of intrauterine infusions of estradiol-17β (E2) and prostaglandin E2 (PGE2), we revealed that these hormones elevated endometrial expression of PROK1 and PROKR1 mRNA, respectively. Moreover, E2, acting synergistically with PGE2, increased PROKR1 protein expression. We also evidenced that PROK1-PROKR1 signaling induced expression of following genes and/or proteins CCN2, CDH13, FGF2, NFATC2, ANGPT1, ANGPT2, CDH1, MUC4, SPP1, IFNG, IL6, LIF, LIFR, TNF, TGFB3, and FGF9, as well as phosphorylation of PTK2 and secretion of IL6 and IL11 by endometrial explants in vitro. Ingenuity pathway analysis revealed that functions associated with the PROK1-regulated genes/proteins include cell-to-cell contact, cell attachment, migration and viability, differentiation of epithelial tissue, leukocyte migration, inflammatory response, angiogenesis, and vasculogenesis. Summarizing, our study suggests that PROK1 acts pleiotropically as an embryonic signal mediator that regulates endometrial receptivity by increasing the expression of the genes and proteins involved in implantation and pregnancy establishment in pigs.
Collapse
Affiliation(s)
- Ewelina Goryszewska
- Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Department of Hormonal Action Mechanisms, 10-748 Olsztyn, Poland
| | - Piotr Kaczynski
- Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Department of Hormonal Action Mechanisms, 10-748 Olsztyn, Poland
| | - Monika Baryla
- Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Department of Hormonal Action Mechanisms, 10-748 Olsztyn, Poland
| | - Agnieszka Waclawik
- Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Department of Hormonal Action Mechanisms, 10-748 Olsztyn, Poland
| |
Collapse
|
13
|
Xiao B, Tan L, Li D, Wang L, Xiao X, Meng G, Wu Z, Zhang J. Clinical and prognostic significance of prokineticin 1 in human gliomas. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2017; 10:7661-7669. [PMID: 31966611 PMCID: PMC6965293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 05/27/2017] [Indexed: 06/10/2023]
Abstract
The objective of this study was to explore the expression and the clinical and prognostic significance of prokineticin 1 (PROK1) in human gliomas. The expression of PROK1 in 60 patients with glioma and in eight control cases (patients with traumatic brain injury) by immunohistochemistry (IHC). The associations between the differences in expression and pathology grades were analyzed statistically. The positive rates of PROK1 expression in normal brain and glioma tissue were 25.0% (2/8) and 93.3% (56/60), respectively. PROK1 expression in glioma tissue was higher than that in normal tissue (P<0.05). The positive rates of PROK1 expression in low-grade gliomas (LGGs, grades I and II) and high-grade gliomas (HGGs, grades III and IV) were 66.7% (8/12) and 100% (48/48), respectively, the positive rates in HGG were higher than those in LGG (P<0.01). PROK1 is an angiogenic growth factor that is related with metastatic ability of tumor, we also correlated PROK1 expression with NFAT expression. Expression of PROK1correlated significantly with expression of NFAT (r=0.524, P<0.01), but not with patient sex and age. Glioma patients with higher expressing PROK1 had a significantly shorter progression-free survival time, increasing levels of PROK1 expression significantly correlated with reduced survival times when all patients with glioma were considered (P<0.01). These results suggested that PROK1 positivity and protein expression levels are of significant clinical and prognostic value in human gliomas, which significantly correlates with the survival in gliomas, PROK1 may regulate the progression of glioma via the NFAT pathway.
Collapse
Affiliation(s)
- Bingxiang Xiao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical UniversityBeijing, China
| | - Li Tan
- Department of Hematology, The First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou, China
- Guangdong Key Laboratory of Urology, Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou, China
| | - Da Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical UniversityBeijing, China
| | - Liang Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical UniversityBeijing, China
| | - Xinru Xiao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical UniversityBeijing, China
| | - Guolu Meng
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical UniversityBeijing, China
| | - Zhen Wu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical UniversityBeijing, China
| | - Junting Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical UniversityBeijing, China
| |
Collapse
|
14
|
Socioeconomic disadvantage, gestational immune activity, and neurodevelopment in early childhood. Proc Natl Acad Sci U S A 2017; 114:6728-6733. [PMID: 28607066 DOI: 10.1073/pnas.1617698114] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Children raised in economically disadvantaged households face increased risks of poor health in adulthood, suggesting that inequalities in health have early origins. From the child's perspective, exposure to economic hardship may begin as early as conception, potentially via maternal neuroendocrine-immune responses to prenatal stressors, which adversely impact neurodevelopment. Here we investigate whether socioeconomic disadvantage is associated with gestational immune activity and whether such activity is associated with abnormalities among offspring during infancy. We analyzed concentrations of five immune markers (IL-1β, IL-6, IL-8, IL-10, and TNF-α) in maternal serum from 1,494 participants in the New England Family Study in relation to the level of maternal socioeconomic disadvantage and their involvement in offspring neurologic abnormalities at 4 mo and 1 y of age. Median concentrations of IL-8 were lower in the most disadvantaged pregnancies [-1.53 log(pg/mL); 95% CI: -1.81, -1.25]. Offspring of these pregnancies had significantly higher risk of neurologic abnormalities at 4 mo [odds ratio (OR) = 4.61; CI = 2.84, 7.48] and 1 y (OR = 2.05; CI = 1.08, 3.90). This higher risk was accounted for in part by fetal exposure to lower maternal IL-8, which also predicted higher risks of neurologic abnormalities at 4 mo (OR = 7.67; CI = 4.05, 14.49) and 1 y (OR = 2.92; CI = 1.46, 5.87). Findings support the role of maternal immune activity in fetal neurodevelopment, exacerbated in part by socioeconomic disadvantage. This finding reveals a potential pathophysiologic pathway involved in the intergenerational transmission of socioeconomic inequalities in health.
Collapse
|
15
|
Tian CJ, Pang X. Ca2+-calcineurin signaling is involved in norepinephrine-induced cardiac fibroblasts activation. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:5210-5216. [PMID: 26191219 PMCID: PMC4503091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Accepted: 04/26/2015] [Indexed: 06/04/2023]
Abstract
Cardiac fibroblasts (CFs) activation plays a vital role in cardiac fibrosis. There are some studies demonstrate that norepinephrine (NE, an α1-adrenoceptor agonist) induced CFs proliferation. But whether Ca2+-calcineurin, a signaling concerned with growth and differentiation in various cell types, is participated in NE-induced CFs activation is unclear. In present study, we determined NE-induced CFs proliferation and differentiation, synthesis of collagen, and calcineurin (CaN) activity, and the effects of phentolamine (Phen, an α1-adrenoceptor antagonist), verapamil (Ver, a calcium channel blocker) and cyclosporine A (CsA, an inhibitor of CaN) on NE-induced CFs activation. The results showed that NE induced CFs proliferation and differentiation, increased α-SMA protein expression, increased collagen I, collagen III and fibronectin production, promoted ECM expression, activated CaN and increased CaN protein expression, which were inhibited by Phen, Ver and CsA. In vivo, more collagen deposition could be observed and total collagen volume fraction (CVF) was significantly increased in NE group. Phen, Ver and CsA decreased NE-induced collagen deposition, reduced cardiac fibrosis. Thus, our results demonstrate that Ca2+/CaN is involved in NE-induced CFs proliferation and collagen synthesis.
Collapse
Affiliation(s)
- Chun-Jing Tian
- Department of Cardiology, First Affiliated Hospital of The Medical College of Shihezi University Shihezi, Xinjiang 832002, China
| | - Xiao Pang
- Department of Cardiology, First Affiliated Hospital of The Medical College of Shihezi University Shihezi, Xinjiang 832002, China
| |
Collapse
|
16
|
Zhang J, He S, Wang Y, Brulois K, Lan K, Jung JU, Feng P. Herpesviral G protein-coupled receptors activate NFAT to induce tumor formation via inhibiting the SERCA calcium ATPase. PLoS Pathog 2015; 11:e1004768. [PMID: 25811856 PMCID: PMC4374719 DOI: 10.1371/journal.ppat.1004768] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 02/27/2015] [Indexed: 11/24/2022] Open
Abstract
G protein-coupled receptors (GPCRs) constitute the largest family of proteins that transmit signal to regulate an array of fundamental biological processes. Viruses deploy diverse tactics to hijack and harness intracellular signaling events induced by GPCR. Herpesviruses encode multiple GPCR homologues that are implicated in viral pathogenesis. Cellular GPCRs are primarily regulated by their cognate ligands, while herpesviral GPCRs constitutively activate downstream signaling cascades, including the nuclear factor of activated T cells (NFAT) pathway. However, the roles of NFAT activation and mechanism thereof in viral GPCR tumorigenesis remain unknown. Here we report that GPCRs of human Kaposi’s sarcoma-associated herpesvirus (kGPCR) and cytomegalovirus (US28) shortcut NFAT activation by inhibiting the sarcoplasmic reticulum calcium ATPase (SERCA), which is necessary for viral GPCR tumorigenesis. Biochemical approaches, entailing pharmacological inhibitors and protein purification, demonstrate that viral GPCRs target SERCA2 to increase cytosolic calcium concentration. As such, NFAT activation induced by vGPCRs was exceedingly sensitive to cyclosporine A that targets calcineurin, but resistant to inhibition upstream of ER calcium release. Gene expression profiling identified a signature of NFAT activation in endothelial cells expressing viral GPCRs. The expression of NFAT-dependent genes was up-regulated in tumors derived from tva-kGPCR mouse and human KS. Employing recombinant kGPCR-deficient KSHV, we showed that kGPCR was critical for NFAT-dependent gene expression in KSHV lytic replication. Finally, cyclosporine A treatment diminished NFAT-dependent gene expression and tumor formation induced by viral GPCRs. These findings reveal essential roles of NFAT activation in viral GPCR tumorigenesis and a mechanism of “constitutive” NFAT activation by viral GPCRs. G protein-coupled receptors (GPCRs) constitute the largest family of proteins that transmit signal across plasma membrane. Herpesviral GPCRs (vGPCRs) activate diverse signaling cascades and are implicated in viral pathogenesis (e.g., tumor development). In contrast to cellular GPCRs that are chiefly regulated via cognate ligand-association, vGPCRs are constitutively active independent of ligand-binding. vGPCRs provide useful tools to dissect signal transduction from plasma membrane receptors to nuclear transcription factors. To probe the activation of nuclear factor of T cells (NFAT), we demonstrate that vGPCRs target the ER calcium ATPase to increase cytosolic calcium concentration and activate NFAT. Inhibition of NFAT activation impairs tumor formation induced by vGPCRs, implying the antitumor therapeutic potential via disabling NFAT activation.
Collapse
Affiliation(s)
- Junjie Zhang
- Department of Molecular Microbiology and Immunology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Shanping He
- Department of Molecular Microbiology and Immunology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Yi Wang
- Department of Molecular Microbiology and Immunology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Kevin Brulois
- Department of Molecular Microbiology and Immunology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Ke Lan
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, P.R. China
| | - Jae U. Jung
- Department of Molecular Microbiology and Immunology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Pinghui Feng
- Department of Molecular Microbiology and Immunology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
17
|
Lannagan TRM, Wilson MR, Denison F, Norman JE, Catalano RD, Jabbour HN. Prokineticin 1 induces a pro-inflammatory response in murine fetal membranes but does not induce preterm delivery. Reproduction 2013; 146:581-91. [PMID: 24051059 PMCID: PMC3805954 DOI: 10.1530/rep-13-0295] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The mechanisms that regulate the induction of term or preterm delivery (PTD) are not fully understood. Infection is known to play a role in the induction of pro-inflammatory cascades in uteroplacental tissues associated with preterm pathological parturition. Similar but not identical cascades are evident in term labour. In the current study, we used a mouse model to evaluate the role of prokineticins in term and preterm parturition. Prokineticins are multi-functioning secreted proteins that signal through G-protein-coupled receptors to induce gene expression, including genes important in inflammatory responses. Expression of prokineticins (Prok1 and Prok2) was quantified in murine uteroplacental tissues by QPCR in the days preceding labour (days 16-19). Prok1 mRNA expression increased significantly on D18 in fetal membranes (compared with D16) but not in uterus or placenta. Intrauterine injection of PROK1 on D17 induced fetal membrane mRNA expression of the pro-inflammatory mediators Il6, Il1b, Tnf, Cxcl2 and Cxcl5, which are not normally up-regulated until D19 of pregnancy. However, intrauterine injection of PROK1 did not result in PTD. As expected, injection of lipopolysaccharide (LPS) induced PTD, but this was not associated with changes in expression of Prok1 or its receptor (Prokr1) in fetal membranes. These results suggest that although Prok1 exhibits dynamic mRNA regulation in fetal membranes preceding labour and induces a pro-inflammatory response when injected into the uterus on D17, it is insufficient to induce PTD. Additionally, prokineticin up-regulation appears not to be part of the LPS-induced inflammatory response in mouse fetal membranes.
Collapse
|
18
|
Börner C, Kraus J. Inhibition of NF-κB by opioids in T cells. THE JOURNAL OF IMMUNOLOGY 2013; 191:4640-7. [PMID: 24068670 DOI: 10.4049/jimmunol.1300320] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Opioids potently inhibit a number of physiological and pathophysiological effects such as pain and inflammation in the brain and the periphery. One of the targets of opioids mediating such effects is the proinflammatory transcription factor NF-κB. In neuronal cells, opioids inhibit this factor by inducing I-κB independently on calcium, involving the opioid-mediated activation of the transcription factor AP-1. However, when and how precisely NF-κB is modulated by opioids in T cells are unknown. By using the TNF-triggered, NF-κB-mediated induction of IL-8 mRNA in primary human T cells and Jurkat T cells, in this study we show that opioids inhibit NF-κB in T cells as well, but that the underlying mechanisms are different from those observed in neuronal cells. We found that stimulation of the T cells with opioids resulted in a significant inhibition of the TNF-triggered ubiquitination and degradation of I-κB. Additionally, an opioid-mediated induction of the deubiquitinating enzyme ubiquitin-specific protease 15 was observed, which is known to inhibit the NF-κB pathway by stabilizing I-κB. The induction of ubiquitin-specific protease 15 was dependent on calcium and the transcription factor NFAT. Activation of AP-1 and induction of I-κB in response to the opioids were not observed in the T cells. These results indicate that μ opioid receptors, which mediate the effects in both cell types, might be coupled to different effector cascades in the different cell types, which may then result in cell type-specific effects of the drugs.
Collapse
Affiliation(s)
- Christine Börner
- Department of Pharmacology and Toxicology, University of Magdeburg, 39120 Magdeburg, Germany
| | | |
Collapse
|
19
|
Hur D, Jeon JK, Hong S. Analysis of immune gene expression modulated by benzo[a]pyrene in head kidney of olive flounder (Paralichthys olivaceus). Comp Biochem Physiol B Biochem Mol Biol 2013; 165:49-57. [DOI: 10.1016/j.cbpb.2013.03.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 02/26/2013] [Accepted: 03/03/2013] [Indexed: 11/16/2022]
|
20
|
Expression and Function of PPARs in Placenta. PPAR Res 2013; 2013:256508. [PMID: 23476631 PMCID: PMC3583145 DOI: 10.1155/2013/256508] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 01/16/2013] [Accepted: 01/16/2013] [Indexed: 12/12/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPAR) are members of the superfamily of nuclear hormone receptors involved in embryonic development and differentiation of several tissues including placenta, which respond to specific ligands such as polyunsaturated fatty acids by altering gene expression. Three subtypes of this receptor have been discovered, each evolving to achieve different biological functions. The PPARs also control a variety of target genes involved in lipid homeostasis. Similar to other nuclear receptors, the transcriptional activity of PPARs is affected not only by ligand-stimulation but also by crosstalk with other molecules. For example, both PPARs and the RXRs are ligand-activated transcription factors that coordinately regulate gene expression. In addition, several mechanisms underlying negative regulation of gene expression by PPARs have been shown. It is suggested that PPARs are key messengers responsible for the translation of nutritional stimuli into changes in gene expression pathways for placental development.
Collapse
|
21
|
Kaur KK, Allahbadia G, Singh M. An update on the role of prokineticins in human reproduction-potential therapeutic implications. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/ojgen.2013.33023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
22
|
WEN CW, NING DG, LIU RJ, ZHANG YW. A Novel Target for Starving Tumor Therapy: Endocrine-gland-derived Vascular Endothelial Growth Factor*. PROG BIOCHEM BIOPHYS 2012. [DOI: 10.3724/sp.j.1206.2011.00351] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
23
|
Abraham F, Sacerdoti F, De León R, Gentile T, Canellada A. Angiotensin II activates the calcineurin/NFAT signaling pathway and induces cyclooxygenase-2 expression in rat endometrial stromal cells. PLoS One 2012; 7:e37750. [PMID: 22662209 PMCID: PMC3360626 DOI: 10.1371/journal.pone.0037750] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Accepted: 04/24/2012] [Indexed: 11/19/2022] Open
Abstract
Cyclooxygenase (COX)-2, the inducible isoform of cyclooxygenase, plays a role in the process of uterine decidualization and blastocyst attachment. On the other hand, overexpression of COX-2 is involved in the proliferation of the endometrial tissue during endometriosis. Deregulation of the renin-angiotensin-system plays a role in the pathophysiology of endometriosis and pre-eclampsia. Angiotensin II increases intracellular Ca(2+) concentration by targeting phospholypase C-gamma in endometrial stromal cells (ESC). A key element of the cellular response to Ca(2+) signals is the activity of the Ca(2+)- and calmodulin-dependent phosphatase calcineurin. Our first aim was to study whether angiotensin II stimulated Cox-2 gene expression in rat ESC and to analyze whether calcineurin activity was involved. In cells isolated from non-pregnant uteri, COX-2 expression--both mRNA and protein--was induced by co-stimulation with phorbol ester and calcium ionophore (PIo), as well as by angiotensin II. Pretreatment with the calcineurin inhibitor cyclosporin A inhibited this induction. We further analyzed the role of the calcineurin/NFAT signaling pathway in the induction of Cox-2 gene expression in non-pregnant rat ESC. Cyclosporin A abolished NFATc1 dephosphorylation and translocation to the nucleus. Cyclosporin A also inhibited the transcriptional activity driven by the Cox-2 promoter. Exogenous expression of the peptide VIVIT -specific inhibitor of calcineurin/NFAT binding- blocked the activation of Cox-2 promoter and the up-regulation of COX-2 protein in these cells. Finally we analyzed Cox-2 gene expression in ESC of early-pregnant rats. COX-2 expression--both mRNA and protein--was induced by stimulation with PIo as well as by angiotensin II. This induction appears to be calcineurin independent, since it was not abrogated by cyclosporin A. In conclusion, angiotensin II induced Cox-2 gene expression by activating the calcineurin/NFAT signaling pathway in endometrial stromal cells of non-pregnant but not of early-pregnant rats. These results might be related to differential roles that COX-2 plays in the endometrium.
Collapse
Affiliation(s)
- Florencia Abraham
- Instituto de Estudios de la Inmunidad Humoral “Profesor Ricardo A. Margni” (CONICET-UBA), Cátedra de Inmunología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Flavia Sacerdoti
- Instituto de Estudios de la Inmunidad Humoral “Profesor Ricardo A. Margni” (CONICET-UBA), Cátedra de Inmunología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Romina De León
- Instituto de Estudios de la Inmunidad Humoral “Profesor Ricardo A. Margni” (CONICET-UBA), Cátedra de Inmunología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Teresa Gentile
- Instituto de Estudios de la Inmunidad Humoral “Profesor Ricardo A. Margni” (CONICET-UBA), Cátedra de Inmunología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Andrea Canellada
- Instituto de Estudios de la Inmunidad Humoral “Profesor Ricardo A. Margni” (CONICET-UBA), Cátedra de Inmunología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
24
|
Changes in the gene expression profile of A375 human melanoma cells induced by overexpression of multifunctional pigment epithelium-derived factor. Melanoma Res 2011; 21:285-97. [PMID: 21673604 DOI: 10.1097/cmr.0b013e32834495c3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Pigment epithelium-derived factor (PEDF) is a broad-spectrum angiogenesis inhibitor that displays potent antimetastatic activity in multiple tumor types. We have previously shown that PEDF prevents primary tumor growth and metastatic spread of human melanoma in mouse experimental models. Consistent with these observations, PEDF expression is lost at the late stages of melanoma progression, allowing melanoma cells to become angiogenic, migratory, and invasive. PEDF's ability to modify the interplay between the host and tumor tissues strongly supports its use as a therapeutic agent for the treatment of metastatic melanoma. However, transition to the clinic requires a more detailed knowledge of the molecular mechanisms underpinning PEDF's activity. In this study, we describe changes in the gene expression profile of A375 human melanoma cells induced by PEDF overexpression. PEDF modulated diverse categories of genes known to be involved in angiogenesis and migration. It downregulated cytokines such as interleukin-8 and extracellular matrix proteins such as collagen IV, while it upregulated fibronectin. Multiple transcripts previously described as contributing to the acquisition of malignant phenotype by melanoma were also diminished by PEDF overexpression, among which we validated galectin 3 and jagged 1. In addition, PEDF downregulated S100β and melanoma inhibitory activity, which are widely used in the pathological diagnosis of melanoma. Interestingly, PEDF increased the expression of melanophilin and decreased rab27A, which are relevant targets for melanosome transport; suggesting that PEDF could directly impinge on melanocytic lineage-specific processes. Our study identifies new molecular targets and signaling pathways that may potentially contribute to determine PEDF's ability to restrict the aggressiveness of A375 human melanoma cells.
Collapse
|
25
|
Boulberdaa M, Urayama K, Nebigil CG. Prokineticin receptor 1 (PKR1) signalling in cardiovascular and kidney functions. Cardiovasc Res 2011; 92:191-8. [DOI: 10.1093/cvr/cvr228] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
26
|
ROS-induced ZNF580 expression: a key role for H2O2/NF-κB signaling pathway in vascular endothelial inflammation. Mol Cell Biochem 2011; 359:183-91. [PMID: 21830064 DOI: 10.1007/s11010-011-1013-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Accepted: 07/27/2011] [Indexed: 01/14/2023]
Abstract
ZNF580, a newly found C2H2 zinc finger transcription factor, was first described by Zhang (GenBank ID: AF184939). Emerging evidence has suggested that reactive oxygen species (ROS) play an important role in redox-sensitive signal transduction, and the vascular endothelium plays a critical role in the vascular inflammatory response. In this communication, we present evidence for the potential role of ZNF580 in hydrogen peroxide (H2O2)-regulated inflammation-related signaling pathways. In a human endothelial cell hybridoma line (EA.hy926), ZNF580 levels were markedly upregulated with H2O2 stimulation in different concentrations (0-400 μM) and at different time-points (0-6 h). H2O2 promoted the rapid translocation of p65 from the cytoplasm into the nucleus according to immunocytochemistry staining. In subsequent research, inhibition of NF-κB by pyrrolidine dithiocarbamate (PDTC, a selective chemical inhibitor of NF-κB) was shown to block the upregulated expression of ZNF580 that was induced by H2O2. Furthermore, transient transfection of ZNF580 resulted in an increase of the pro-inflammatory cytokine interleukin-8 (IL-8) 3.01±0.05 folds according to real-time RT-PCR and ELISA assays, which also showed significantly enhanced motility of human acute monocytic leukemia cells (THP-1). These results suggest that H2O2 upregulates the expression of ZNF580 via the NF-κB signaling pathway, and overexpression of ZNF580 plays a critical role in augmenting the release of pro-inflammatory cytokine IL-8.
Collapse
|
27
|
Macdonald LJ, Sales KJ, Grant V, Brown P, Jabbour HN, Catalano RD. Prokineticin 1 induces Dickkopf 1 expression and regulates cell proliferation and decidualization in the human endometrium. Mol Hum Reprod 2011; 17:626-36. [PMID: 21546446 PMCID: PMC3172036 DOI: 10.1093/molehr/gar031] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Prokineticin 1 (PROK1) signalling via prokineticin receptor 1 (PROKR1) regulates the expression of several genes with important roles in endometrial receptivity and implantation. This study investigated PROK1 regulation of Dickkopf 1 (DKK1) expression, a negative regulator of canonical Wnt signalling, and its function in the non-pregnant endometrium and first trimester decidua. DKK1 mRNA expression is elevated during the mid-secretory phase of the menstrual cycle and expression increases further in first trimester decidua. DKK1 protein expression is localized to glandular epithelial and stromal cells during the proliferative, early- and mid-secretory phases, whereas expression is confined to the stroma in the late-secretory phase and first trimester decidua. PROK1 induces the expression of DKK1 in endometrial epithelial cells stably expressing PROKR1 and in first trimester decidua explants, via a Gq-calcium-calcineurin-nuclear factor of activated T-cells-mediated pathway. Endometrial epithelial cell proliferation is negatively regulated by PROK1-PROKR1 signalling. We demonstrate that this effect on cell proliferation occurs via DKK1 expression, as siRNA targeted against DKK1 reduces the PROK1-induced decrease in proliferation. Furthermore, decidualization of primary human endometrial stromal cells with progesterone and cyclic adenosine monophosphate is inhibited by miRNA knock down of PROK1 or DKK1. These data demonstrate important roles for PROK1 and DKK1 during endometrial receptivity and early pregnancy, which include regulation of endometrial cell proliferation and decidualization.
Collapse
Affiliation(s)
- Linsay J Macdonald
- MRC Human Reproductive Sciences Unit, The Queen's Medical Research Institute, Edinburgh, UK
| | | | | | | | | | | |
Collapse
|
28
|
Shaw JLV, Wills GS, Lee KF, Horner PJ, McClure MO, Abrahams VM, Wheelhouse N, Jabbour HN, Critchley HOD, Entrican G, Horne AW. Chlamydia trachomatis infection increases fallopian tube PROKR2 via TLR2 and NFκB activation resulting in a microenvironment predisposed to ectopic pregnancy. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 178:253-60. [PMID: 21224062 PMCID: PMC3016599 DOI: 10.1016/j.ajpath.2010.11.019] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Revised: 09/21/2010] [Accepted: 09/28/2010] [Indexed: 12/01/2022]
Abstract
Chlamydia trachomatis and smoking are major risk factors for tubal ectopic pregnancy (EP), but the underlying mechanisms of these associations are not completely understood. Fallopian tube (FT) from women with EP exhibit altered expression of prokineticin receptors 1 and 2 (PROKR1 and PROKR2); smoking increases FT PROKR1, resulting in a microenvironment predisposed to EP. We hypothesize that C. trachomatis also predisposes to EP by altering FT PROKR expression and have investigated this by examining NFκB activation via ligation of the Toll-like receptor (TLR) family of cell-surface pattern recognition receptors. PROKR2 mRNA was higher in FT from women with evidence of past C. trachomatis infection than in those without (P < 0.05), and was also increased in FT explants and in oviductal epithelial cell line OE-E6/E7 infected with C. trachomatis (P < 0.01) or exposed to UV-killed organisms (P < 0.05). The ability of both live and dead organisms to induce this effect suggests ligation of a cell-surface-expressed receptor. FT epithelium and OE-E6/E7 were both found to express TLR2 and TLR4 by immunohistochemistry. Transfection of OE-E6/E7 cells with dominant-negative TLR2 or IκBα abrogated the C. trachomatis–induced PROKR2 expression. We propose that ligation of tubal TLR2 and activation of NFκB by C. trachomatis leads to increased tubal PROKR2, thereby predisposing the tubal microenvironment to ectopic implantation.
Collapse
Affiliation(s)
- Julie L V Shaw
- Centre for Reproductive Biology, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Waddell JM, Evans J, Jabbour HN, Denison FC. CTGF expression is up-regulated by PROK1 in early pregnancy and influences HTR-8/Svneo cell adhesion and network formation. Hum Reprod 2010; 26:67-75. [PMID: 21098624 PMCID: PMC3005999 DOI: 10.1093/humrep/deq294] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Prokineticin-1 (PROK1) and connective tissue growth factor (CTGF) are expressed in human endometrium and first-trimester decidua and have individually been proposed to have roles in implantation and placentation. We have recently demonstrated that CTGF may be a target gene for PROK1 in gene array analysis of a prokineticin receptor-1 stably transfected Ishikawa endometrial epithelial cell line (PROKR1-Ishikawa). The first aim of the study was to determine the effect of PROK1 on CTGF expression in PROKR1-Ishikawa cells and first-trimester decidua samples. Secondly, the effect of CTGF on trophoblast-derived HTR-8/SVneo cell adhesion and network formation was investigated. METHODS AND RESULTS Real-time qPCR showed that CTGF expression is elevated in first-trimester decidua compared with non-pregnant endometrium. In decidua, CTGF co-localized with PROKR1 to the glandular epithelium and a subset of stromal cells. PROK1 increased CTGF mRNA and protein expression in PROKR1-Ishikawa cells and first-trimester human decidua (8–12 weeks gestation). Knock down of endogenous PROK1 using micro RNA constructs targeted at PROK1, resulted in decreased expression of CTGF mRNA and protein in decidua. Inhibitors of specific cell signalling molecules demonstrated that PROK1 regulates CTGF expression via the Gq, phospholipase C (PLC), cSrc, epidermal growth factor receptor (EGFR), mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) kinase pathway activation. Treatment of trophoblast-derived HTR-8/Svneo cells with 1 µg/ml CTGF significantly increased adhesion to collagen IV, and differentiation of the cells into tube-like structures in matrigel. CONCLUSIONS CTGF expression in early pregnancy decidua is regulated by PROK1, via activation of the Gq, PLC, cSrc, EGFR, MAPK/ERK kinase pathway. CTGF in turn may contribute to the regulation of trophoblast conversion of maternal spiral arteries.
Collapse
Affiliation(s)
- Jennifer M Waddell
- Medical Research Council, Human Reproductive Sciences Unit, The Queen's Medical Research Institute, Edinburgh, UK
| | | | | | | |
Collapse
|
30
|
Shaw JLV, Oliver E, Lee KF, Entrican G, Jabbour HN, Critchley HOD, Horne AW. Cotinine exposure increases Fallopian tube PROKR1 expression via nicotinic AChRalpha-7: a potential mechanism explaining the link between smoking and tubal ectopic pregnancy. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:2509-15. [PMID: 20864676 DOI: 10.2353/ajpath.2010.100243] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Tubal ectopic pregnancy (EP) is the most common cause of maternal mortality in the first trimester of pregnancy; however, its etiology is uncertain. In EP, embryo retention within the Fallopian tube (FT) is thought to be due to impaired smooth muscle contractility (SMC) and alterations in the tubal microenvironment. Smoking is a major risk factor for EP. FTs from women with EP exhibit altered prokineticin receptor-1 (PROKR1) expression, the receptor for prokineticins (PROK). PROK1 is angiogenic, regulates SMC, and is involved in intrauterine implantation. We hypothesized that smoking predisposes women to EP by altering tubal PROKR1 expression. Sera/FT were collected at hysterectomy (n=21). Serum levels of the smoking metabolite, cotinine, were measured by enzyme-linked immunosorbent assay. FTs were analyzed by q-RT-PCR, immunohistochemistry, and Western blotting for expression of PROKR1 and the predicted cotinine receptor, nicotinic acetylcholine receptor α-7 (AChRα-7). FT explants (n=4) and oviductal epithelial cells (cell line OE-E6/E7) were treated with cotinine and an nAChRα-7 antagonist. PROKR1 transcription was higher in FTs from smokers (P<0.01). nAChRα-7 expression was demonstrated in FT epithelium. Cotinine treatment of FT explants and OE-E6/E7 cells increased PROKR1 expression (P<0.05), which was negated by cotreatment with nAChRα-7 antagonist. Smoking targets human FTs via nAChRα-7 to increase tubal PROKR1, leading to alterations in the tubal microenvironment that could predispose to EP.
Collapse
Affiliation(s)
- Julie L V Shaw
- Centre for Reproductive Biology, University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, UK
| | | | | | | | | | | | | |
Collapse
|
31
|
Sales KJ, Grant V, Catalano RD, Jabbour HN. Chorionic gonadotrophin regulates CXCR4 expression in human endometrium via E-series prostanoid receptor 2 signalling to PI3K-ERK1/2: implications for fetal-maternal crosstalk for embryo implantation. Mol Hum Reprod 2010; 17:22-32. [PMID: 20705717 PMCID: PMC3002842 DOI: 10.1093/molehr/gaq069] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Murine knock-out models and blastocyst co-culture studies have identified prostaglandin-endoperoxide synthase (PTGS) 2, prostaglandin (PG) E receptor 2 (PTGER2) and the chemokine receptor CXCR4 as important regulators of early pregnancy events. In vitro studies and studies in non-human primates have shown that these proteins are regulated in the endometrium by the early embryonic signal, chorionic gonadotrophin (CG). Here we show that expressions of PTGER2 and CXCR4 are elevated during the mid-secretory phase of the menstrual cycle and decidua of early pregnancy in humans. Using first trimester decidua explants, we show that CG induces expression of PTGS2 and biosynthesis of PGE2, and expression of PTGER2. Subsequently, PGE2via PTGER2 induces expression of CXCR4. Using an in vitro model system of Ishikawa endometrial epithelial cells stably expressing PTGER2 and human first trimester decidua explants, we demonstrate that CXCR4 expression is regulated by PTGER2 via the epidermal growth factor receptor (EGFR)-phosphatidylinositol-3-kinase (PI3K)-extracellular signal-regulated kinase (ERK1/2) pathway.Taken together, our data suggest that early embryonic signals may regulate fetal–maternal crosstalk in the human endometrium by inducing CXCR4 expression via the PGE2–PTGER2-mediated induction of the EGFR, PI3K and ERK1/2 pathways.
Collapse
Affiliation(s)
- Kurt J Sales
- Medical Research Council Human Reproductive Sciences Unit, The Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | | | | | | |
Collapse
|
32
|
Morales RAV, Daly NL, Vetter I, Mobli M, Napier IA, Craik DJ, Lewis RJ, Christie MJ, King GF, Alewood PF, Durek T. Chemical Synthesis and Structure of the Prokineticin Bv8. Chembiochem 2010; 11:1882-8. [DOI: 10.1002/cbic.201000330] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
33
|
Sales KJ, Grant V, Cook IH, Maldonado-Pérez D, Anderson RA, Williams AR, Jabbour HN. Interleukin-11 in endometrial adenocarcinoma is regulated by prostaglandin F2alpha-F-prostanoid receptor interaction via the calcium-calcineurin-nuclear factor of activated T cells pathway and negatively regulated by the regulator of calcineurin-1. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 176:435-45. [PMID: 20008143 PMCID: PMC2797902 DOI: 10.2353/ajpath.2010.090403] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/17/2009] [Indexed: 11/20/2022]
Abstract
Interleukin-11 (IL-11) up-regulates the proliferative and invasive capacity of many cancers. Coexpression of glycoprotein 130 (GP130) and IL-11 receptor alpha (IL-11Ralpha) is necessary for high-affinity binding of IL-11 to IL-11Ralpha. This study investigated the expression of IL-11 and role of prostaglandin F(2alpha)-F-prostanoid receptor (FP receptor) signaling in the modulation of IL-11 expression in endometrial adenocarcinoma cells. Localization of IL-11, IL-11Ralpha, and GP130 expression was performed by immunohistochemistry. IL-11 and regulator of calcineurin 1 isoform 4 (RCAN1-4) mRNA and protein expression were determined by real-time RT-PCR and/or enzyme-linked immunosorbent assay/Western blot analysis using Ishikawa endometrial adenocarcinoma cells stably expressing the FP receptor (FPS cells) and endometrial adenocarcinoma explants. IL-11 mRNA expression was significantly elevated in endometrial adenocarcinoma samples compared with normal endometrium and increased with tumor grade. IL-11 protein expression localized with FP receptor, IL-11Ralpha, and GP130 in the neoplastic glandular epithelium of endometrial adenocarcinomas. Prostaglandin F(2alpha)-FP receptor signaling significantly elevated the expression of IL-11 mRNA and protein in a Gq-protein kinase C-calcium-calcineurin-nuclear factor of activated T cells-dependent manner in FPS cells. The calcineurin signaling pathway is known to be controlled by the RCAN (RCAN1-4). Indeed, RCAN1-4 expression was significantly elevated in well-differentiated endometrial adenocarcinoma compared with normal endometrium and was found to decrease with tumor grade and negatively regulate IL-11 expression in vitro. This study has highlighted a new mechanism regulating IL-11 expression in endometrial adenocarcinoma cells by the FP receptor via the calcium-calcineurin-nuclear factor of activated T cells pathway.
Collapse
Affiliation(s)
- Kurt J. Sales
- Medical Research Council Human Reproductive Sciences Unit, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Vivien Grant
- Medical Research Council Human Reproductive Sciences Unit, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Ian H. Cook
- Medical Research Council Human Reproductive Sciences Unit, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - David Maldonado-Pérez
- Medical Research Council Human Reproductive Sciences Unit, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
- Departments of Reproductive and Developmental Sciences, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Richard A. Anderson
- Departments of Reproductive and Developmental Sciences, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Alistair R.W. Williams
- Department of Pathology, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Henry N. Jabbour
- Medical Research Council Human Reproductive Sciences Unit, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
34
|
Affiliation(s)
- K A Pussegoda
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Vancouver, BC, Canada.
| |
Collapse
|
35
|
Sales KJ, Maldonado-Pérez D, Grant V, Catalano RD, Wilson MR, Brown P, Williams ARW, Anderson RA, Thompson EA, Jabbour HN. Prostaglandin F(2alpha)-F-prostanoid receptor regulates CXCL8 expression in endometrial adenocarcinoma cells via the calcium-calcineurin-NFAT pathway. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2009; 1793:1917-28. [PMID: 19819266 PMCID: PMC2806519 DOI: 10.1016/j.bbamcr.2009.09.018] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2009] [Accepted: 09/30/2009] [Indexed: 11/25/2022]
Abstract
Pro-inflammatory mediators, like prostaglandin (PG) and chemokines, promote tumourigenesis by enhancing cell proliferation, migration of immune cells and recruitment of blood vessels. Recently we showed elevated expression of the chemokine (C-X-C motif) receptor 2 (CXCR2) in endometrial adenocarcinomas localized to neutrophils and neoplastic epithelial and vascular cells. Furthermore we found that PGF2α-F-prostanoid (FP) receptor regulates the expression of the CXCR2 ligand CXCL1, to promote neutrophil chemotaxis in endometrial adenocarcinomas. In the present study we identified another CXCR2 ligand, CXCL8 as a target for PGF2α-FP receptor signalling which enhances epithelial cell proliferation in endometrial adenocarcinoma cells in vitro and in nude mice in vivo. We found that PGF2α-FP receptor interaction induces CXCL8 expression in endometrial adenocarcinoma cells via the protein kinase C–calcium–calcineurin–NFAT signaling pathway. Promoter analysis revealed that CXCL8 transcriptional activation by PGF2α signaling is mediated by cooperative interactions between the AP1 and NFAT binding sites. Furthermore, PGF2α via the FP receptor induced the expression of the regulator of calcineurin 1 isoform 4 (RCAN1-4) via the calcineurin/NFAT pathway in a reciprocal manner to CXCL8. Using an adenovirus to overexpress RCAN1-4, we found that RCAN1-4 is a negative regulator of CXCL8 expression in endometrial adenocarcinoma cells. Taken together our data have elucidated the molecular and cellular mechanism whereby PGF2α regulates CXCL8 expression via the FP receptor in endometrial adenocarcinomas and have highlighted RCAN1-4 as a negative regulator of CXCL8 expression which may be exploited therapeutically to inhibit CXCL8-mediated tumour development.
Collapse
Affiliation(s)
- Kurt J Sales
- MRC Human Reproductive Sciences Unit, The Queen's Medical Research Institute, 47 Little France Crescent, The University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Cook IH, Evans J, Maldonado-Pérez D, Critchley HO, Sales KJ, Jabbour HN. Prokineticin-1 (PROK1) modulates interleukin (IL)-11 expression via prokineticin receptor 1 (PROKR1) and the calcineurin/NFAT signalling pathway. Mol Hum Reprod 2009; 16:158-69. [PMID: 19801577 PMCID: PMC2816169 DOI: 10.1093/molehr/gap084] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Prokineticin-1 (PROK1) is a multifunctional secreted protein which signals via the G-protein coupled receptor, PROKR1. Previous data from our laboratory using a human genome survey microarray showed that PROK1-prokineticin receptor 1 (PROKR1) signalling regulates numerous genes important for establishment of early pregnancy, including the cytokine interleukin (IL)-11. Here, we have shown that PROK1-PROKR1 induces the expression of IL-11 in PROKR1 Ishikawa cells and first trimester decidua via the calcium-calcineurin signalling pathway in a guanine nucleotide-binding protein (G(q/11)), extracellular signal-regulated kinases, Ca(2+) and calcineurin-nuclear factor of activated T cells dependent manner. Conversely, treatment of human decidua with a lentiviral miRNA to abolish endogenous PROK1 expression results in a significant reduction in IL-11 expression and secretion. Importantly, we have also shown a regulatory role for the regulator of calcineurin 1 isoform 4 (RCAN1-4). Overexpression of RCAN1-4 in PROKR1 Ishikawa cells using an adenovirus leads to a reduction in PROK1 induced IL-11 indicating that RCAN1-4 is a negative regulator in the calcineurin-mediated signalling to IL-11. Finally, we have shown the potential for both autocrine and paracrine signalling in the human endometrium by co-localizing IL-11, IL-11Ralpha and PROKR1 within the stromal and glandular epithelial cells of non-pregnant endometrium and first trimester decidua. Overall we have identified and characterized the signalling components of a novel PROK1-PROKR1 signalling pathway regulating IL-11.
Collapse
Affiliation(s)
- Ian H Cook
- Medical Research Council, Human Reproductive Sciences Unit, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | | | | | | | | | | |
Collapse
|