1
|
Dusza HM, van Boxel J, van Duursen MBM, Forsberg MM, Legler J, Vähäkangas KH. Experimental human placental models for studying uptake, transport and toxicity of micro- and nanoplastics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 860:160403. [PMID: 36417947 DOI: 10.1016/j.scitotenv.2022.160403] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Micro- and nanoplastics (MNPs) are ubiquitous in the environment and have recently been found in human lungs, blood and placenta. However, data on the possible effects of MNPs on human health is extremely scarce. The potential toxicity of MNPs during pregnancy, a period of increased susceptibility to environmental insults, is of particular concern. The placenta provides a unique interface between maternal and fetal circulation which is essential for in utero survival and healthy pregnancy. Placental toxicokinetics and toxicity of MNPs are still largely unexplored and the limited studies performed up to now focus mainly on polystyrene particles. Practical and ethical considerations limit research options in humans, and extrapolation from animal studies is challenging due to marked differences between species. Nevertheless, diverse in vitro and ex vivo human placental models exist e.g., plasma membrane vesicles, mono-culture and co-culture of placental cells, placenta-on-a-chip, villous tissue explants, and placental perfusion that can be used to advance this research area. The objective of this concise review is to recapitulate different human placental models, summarize the current understanding of placental uptake, transport and toxicity of MNPs and define knowledge gaps. Moreover, we provide perspectives for future research urgently needed to assess the potential hazards and risks of MNP exposure to maternal and fetal health.
Collapse
Affiliation(s)
- Hanna M Dusza
- Division of Toxicology, Institute for Risk Assessment Sciences, Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands.
| | - Jeske van Boxel
- Amsterdam Institute for Life and Environment, Faculty of Science, Vrije Universiteit Amsterdam, the Netherlands
| | - Majorie B M van Duursen
- Amsterdam Institute for Life and Environment, Faculty of Science, Vrije Universiteit Amsterdam, the Netherlands
| | - Markus M Forsberg
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Juliette Legler
- Division of Toxicology, Institute for Risk Assessment Sciences, Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Kirsi H Vähäkangas
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
2
|
Zu Y, Yang J, Zhang C, Liu D. The Pathological Mechanisms of Estrogen-Induced Cholestasis: Current Perspectives. Front Pharmacol 2021; 12:761255. [PMID: 34819862 PMCID: PMC8606790 DOI: 10.3389/fphar.2021.761255] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/26/2021] [Indexed: 12/31/2022] Open
Abstract
Estrogens are steroid hormones with a wide range of biological activities. The excess of estrogens can lead to decreased bile flow, toxic bile acid (BA) accumulation, subsequently causing intrahepatic cholestasis. Estrogen-induced cholestasis (EIC) may have increased incidence during pregnancy, and within women taking oral contraception and postmenopausal hormone replacement therapy, and result in liver injury, preterm birth, meconium-stained amniotic fluid, and intrauterine fetal death in pregnant women. The main pathogenic mechanisms of EIC may include deregulation of BA synthetic or metabolic enzymes, and BA transporters. In addition, impaired cell membrane fluidity, inflammatory responses and change of hepatocyte tight junctions are also involved in the pathogenesis of EIC. In this article, we review the role of estrogens in intrahepatic cholestasis, and outlined the mechanisms of EIC, providing a greater understanding of this disease.
Collapse
Affiliation(s)
- Yue Zu
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinyu Yang
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chengliang Zhang
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dong Liu
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
3
|
Jiménez-Cortegana C, Ortiz-García G, Serrano A, Moreno-Ramírez D, Sánchez-Margalet V. Possible Role of Leptin in Atopic Dermatitis: A Literature Review. Biomolecules 2021; 11:1642. [PMID: 34827640 PMCID: PMC8616015 DOI: 10.3390/biom11111642] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/03/2021] [Accepted: 11/01/2021] [Indexed: 12/30/2022] Open
Abstract
Atopic dermatitis (AD) is the most frequent chronic inflammatory skin disease, and its incidence has been rapidly increasing in developed countries in the last years. AD presents a high degree of heterogeneity due to biases and confounding factors such as age range, sex, or ethnicity. For those reasons, the search for new biomarkers is crucial. At the same time, obesity, which is a global health problem, has also increased over the years. It has been associated with many pathophysiological states, including skin diseases such as AD, mostly in childhood. Obesity promotes a low grade inflammation driven by many different cytokines and adipokines, including leptin, which has a key role in many other diseases due to its pleiotropic effects. Leptin also has a role in both skin and allergic diseases very related to AD. Thus, this adipokine could have an important role in the pathogenesis of AD, especially in its chronicity. Despite the limited literature available, there is some evidence that leads us to consider leptin as an important adipokine in this skin disease. For this reason, here we have reviewed the role of leptin in the pathophysiology of AD.
Collapse
Affiliation(s)
- Carlos Jiménez-Cortegana
- Department of Medical Biochemistry and Molecular Biology and Immunology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain; (C.J.-C.); (G.O.-G.)
| | - Germán Ortiz-García
- Department of Medical Biochemistry and Molecular Biology and Immunology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain; (C.J.-C.); (G.O.-G.)
| | - Amalia Serrano
- Department of Medicine, School of Medicine, Dermatology Service, Virgen Macarena University Hospital, 41009 Seville, Spain; (A.S.); (D.M.-R.)
| | - David Moreno-Ramírez
- Department of Medicine, School of Medicine, Dermatology Service, Virgen Macarena University Hospital, 41009 Seville, Spain; (A.S.); (D.M.-R.)
| | - Víctor Sánchez-Margalet
- Department of Medical Biochemistry and Molecular Biology and Immunology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain; (C.J.-C.); (G.O.-G.)
| |
Collapse
|
4
|
Olmos-Ortiz A, Flores-Espinosa P, Díaz L, Velázquez P, Ramírez-Isarraraz C, Zaga-Clavellina V. Immunoendocrine Dysregulation during Gestational Diabetes Mellitus: The Central Role of the Placenta. Int J Mol Sci 2021; 22:8087. [PMID: 34360849 PMCID: PMC8348825 DOI: 10.3390/ijms22158087] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/15/2021] [Accepted: 07/26/2021] [Indexed: 02/07/2023] Open
Abstract
Gestational Diabetes Mellitus (GDM) is a transitory metabolic condition caused by dysregulation triggered by intolerance to carbohydrates, dysfunction of beta-pancreatic and endothelial cells, and insulin resistance during pregnancy. However, this disease includes not only changes related to metabolic distress but also placental immunoendocrine adaptations, resulting in harmful effects to the mother and fetus. In this review, we focus on the placenta as an immuno-endocrine organ that can recognize and respond to the hyperglycemic environment. It synthesizes diverse chemicals that play a role in inflammation, innate defense, endocrine response, oxidative stress, and angiogenesis, all associated with different perinatal outcomes.
Collapse
Affiliation(s)
- Andrea Olmos-Ortiz
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes (INPer), Ciudad de México 11000, Mexico; (A.O.-O.); (P.F.-E.)
| | - Pilar Flores-Espinosa
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes (INPer), Ciudad de México 11000, Mexico; (A.O.-O.); (P.F.-E.)
| | - Lorenza Díaz
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México 14080, Mexico;
| | - Pilar Velázquez
- Departamento de Ginecología y Obstetricia, Hospital Ángeles México, Ciudad de México 11800, Mexico;
| | - Carlos Ramírez-Isarraraz
- Clínica de Urología Ginecológica, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes (INPer), Ciudad de México 11000, Mexico;
| | - Verónica Zaga-Clavellina
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes (INPer), Ciudad de México 11000, Mexico
| |
Collapse
|
5
|
Maia J, Almada M, Midão L, Fonseca BM, Braga J, Gonçalves D, Teixeira N, Correia-da-Silva G. The Cannabinoid Delta-9-tetrahydrocannabinol Disrupts Estrogen Signaling in Human Placenta. Toxicol Sci 2021; 177:420-430. [PMID: 32647869 DOI: 10.1093/toxsci/kfaa110] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cannabis consumption is increasing worldwide either for recreational or medical purposes. Its use during gestation is associated with negative pregnancy outcomes such as, intrauterine growth restriction, preterm birth, low birth weight, and increased risk of miscarriage, though the underlying molecular mechanisms are unknown. Cannabis sativa main psychoactive compound, Δ9-tetrahydrocannabinol (THC) is highly lipophilic, and as such, readily crosses the placenta. Consequently, THC may alter normal placental development and function. Here, we hypothesize alterations of placental steroidogenesis caused by THC exposure. The impact on placental estrogenic signaling was examined by studying THC effects upon the enzyme involved in estrogens production, aromatase and on estrogen receptor α (ERα), using placental explants, and the cytotrophoblast cell model BeWo. Aromatase expression was upregulated by THC, being this effect potentiated by estradiol. THC also increased ERα expression. Actions on aromatase were ERα-mediated, as were abolished by the selective ER downregulator ICI-182780 and dependent on the cannabinoid receptor CB1 activation. Furthermore, the presence of the aromatase inhibitor Exemestane did not affect THC-induced increase in ERα expression. However, THC effects on ERα levels were reversed by the antagonists of CB1 and CB2 receptors AM281 and AM630, respectively. Thus, we demonstrate major alterations in estrogen signaling caused by THC, providing new insight on how cannabis consumption leads to negative pregnancy outcomes, likely through placental endocrine alterations. Data presented in this study, together with our recently reported evidence on THC disruption of placental endocannabinoid homeostasis, represent a step forward into a deeper comprehension of the puzzling actions of THC.
Collapse
Affiliation(s)
- João Maia
- UCIBIO, REQUIMTE, Laboratório de Bioquímica, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| | - Marta Almada
- UCIBIO, REQUIMTE, Laboratório de Bioquímica, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| | - Luís Midão
- UCIBIO, REQUIMTE, Laboratório de Bioquímica, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal.,Departamento de Química, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Bruno M Fonseca
- UCIBIO, REQUIMTE, Laboratório de Bioquímica, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| | - Jorge Braga
- Departamento da Mulher e da Medicina Reprodutiva, Serviço de Obstetrícia, Centro Materno-Infantil do Norte-Centro Hospitalar do Porto, 4050-371 Porto, Portugal
| | - Daniela Gonçalves
- Departamento da Mulher e da Medicina Reprodutiva, Serviço de Obstetrícia, Centro Materno-Infantil do Norte-Centro Hospitalar do Porto, 4050-371 Porto, Portugal
| | - Natércia Teixeira
- UCIBIO, REQUIMTE, Laboratório de Bioquímica, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| | - Georgina Correia-da-Silva
- UCIBIO, REQUIMTE, Laboratório de Bioquímica, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| |
Collapse
|
6
|
Słabuszewska-Jóźwiak A, Malinowska M, Kloska A, Jakóbkiewicz-Banecka J, Gujski M, Bojar I, Raczkiewicz D, Jakiel G. Global Changes of 5-mC/5h-mC Ratio and Methylation of Adiponectin and Leptin Gene in Placenta Depending on Mode of Delivery. Int J Mol Sci 2021; 22:3195. [PMID: 33801130 PMCID: PMC8004251 DOI: 10.3390/ijms22063195] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/08/2021] [Accepted: 03/18/2021] [Indexed: 01/03/2023] Open
Abstract
It was suggested that the epigenetic alterations of the placenta are associated with obesity, as well as the delivery mode. This study aimed to assess the effect of maternal outcome and delivery procedure on global placental DNA methylation status, as well as selected 5'-Cytosine-phosphate-Guanine-3' (CpG) sites in ADIPOQ and LEP genes. Global DNA methylation profile in the placenta was assessed using the 5-methylcytosine (5-mC) and 5-hydroxymethylcytosine (5-hmC) ratio evaluated with the ELISA, followed by target gene methylation patterns at selected gene regions which were determined using methylation-specific qPCR in 70 placentas from healthy, pregnant women with single pregnancy. We found no statistically significant differences in 5-mC/5-hmC ratio between intrapartum cesarean sections (CS) and vaginal deliveries (p = 0.214), as well as between elective cesarean sections and vaginal deliveries (p = 0.221). In intrapartum cesarean sections, the ADIPOQ demethylation index was significantly higher (the average: 1.75) compared to elective cesarean section (the average: 1.23, p = 0.010) and vaginal deliveries (the average: 1.23, p = 0.011). The LEP demethylation index did not significantly differ among elective CS, intrapartum CS, and vaginal delivery groups. The demethylation index of ADIPOQ correlated negatively with LEP in the placenta in the vaginal delivery group (r = -0.456, p = 0.017), but not with the global methylation. The methylation of a singular locus might be different depending on the mode of delivery and uterine contractions. Further studies should be conducted with locus-specific analysis of the whole genome to detect the methylation index of specific genes involved in metabolism.
Collapse
Affiliation(s)
- Aneta Słabuszewska-Jóźwiak
- First Department of Obstetrics and Gynaecology, Centre of Postgraduate Medical Education, Żelazna 90, 01-004 Warsaw, Poland;
| | - Marcelina Malinowska
- Department of Medical Biology and Genetics, Faculty of Biology University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (M.M.); (A.K.); (J.J.-B.)
| | - Anna Kloska
- Department of Medical Biology and Genetics, Faculty of Biology University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (M.M.); (A.K.); (J.J.-B.)
| | - Joanna Jakóbkiewicz-Banecka
- Department of Medical Biology and Genetics, Faculty of Biology University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (M.M.); (A.K.); (J.J.-B.)
| | - Mariusz Gujski
- Department of Public Health, Medical University of Warsaw, Nielubowicza 5, 02-097 Warsaw, Poland;
| | - Iwona Bojar
- Department of Women’s Health, Institute of Rural Health in Lublin, Jaczewskiego 2, 20-950 Lublin, Poland;
| | - Dorota Raczkiewicz
- Department of Medical Statistics, School of Public Health, Center of Postgraduate Medical Education, Kleczewska 61/63, 01-826 Warsaw, Poland;
| | - Grzegorz Jakiel
- First Department of Obstetrics and Gynaecology, Centre of Postgraduate Medical Education, Żelazna 90, 01-004 Warsaw, Poland;
| |
Collapse
|
7
|
Nutritional modulation of leptin expression and leptin action in obesity and obesity-associated complications. J Nutr Biochem 2020; 89:108561. [PMID: 33249183 DOI: 10.1016/j.jnutbio.2020.108561] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 09/11/2020] [Accepted: 11/21/2020] [Indexed: 12/12/2022]
Abstract
In obesity, an elevated accumulation and dysregulation of adipose tissue, due to an imbalance between energy intake and energy expenditure, usually coexists with the loss of responsiveness to leptin in central nervous system, and subsequently with hyperleptinemia. Leptin, a peptide hormone mainly produced by white adipose tissue, regulates energy homeostasis by stimulating energy expenditure and inhibiting food intake. Human obesity is characterized by increased plasma leptin levels, which have been related with different obesity-associated complications, such as chronic inflammatory state (risk factor for diabetes, cardiovascular and autoimmune diseases), as well as infertility and different types of cancer. Besides, leptin is also produced by placenta, and high leptin levels during pregnancy may be related with some pathological conditions such as gestational diabetes. This review focuses on the current insights and emerging concepts on potentially valuable nutrients and food components that may modulate leptin metabolism. Notably, several dietary food components, such as phenols, peptides, and vitamins, are able to decrease inflammation and improve leptin sensitivity by up- or down-regulation of leptin signaling molecules. On the other hand, some food components, such as saturated fatty acids may worsen chronic inflammation increasing the risk for pathological complications. Future research into nutritional mechanisms that restore leptin metabolism and signals of energy homeostasis may inspire new treatment options for obesity-related disorders.
Collapse
|
8
|
Armistead B, Johnson E, VanderKamp R, Kula-Eversole E, Kadam L, Drewlo S, Kohan-Ghadr HR. Placental Regulation of Energy Homeostasis During Human Pregnancy. Endocrinology 2020; 161:5838263. [PMID: 32417921 DOI: 10.1210/endocr/bqaa076] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 05/08/2020] [Indexed: 02/07/2023]
Abstract
Successful pregnancies rely on sufficient energy and nutrient supply, which require the mother to metabolically adapt to support fetal needs. The placenta has a critical role in this process, as this specialized organ produces hormones and peptides that regulate fetal and maternal metabolism. The ability for the mother to metabolically adapt to support the fetus depends on maternal prepregnancy health. Two-thirds of pregnancies in the United States involve obese or overweight women at the time of conception. This poses significant risks for the infant and mother by disrupting metabolic changes that would normally occur during pregnancy. Despite well characterized functions of placental hormones, there is scarce knowledge surrounding placental endocrine regulation of maternal metabolic trends in pathological pregnancies. In this review, we discuss current efforts to close this gap of knowledge and highlight areas where more research is needed. As the intrauterine environment predetermines the health and wellbeing of the offspring in later life, adequate metabolic control is essential for a successful pregnancy outcome. Understanding how placental hormones contribute to aberrant metabolic adaptations in pathological pregnancies may unveil disease mechanisms and provide methods for better identification and treatment. Studies discussed in this review were identified through PubMed searches between the years of 1966 to the present. We investigated studies of normal pregnancy and metabolic disorders in pregnancy that focused on energy requirements during pregnancy, endocrine regulation of glucose metabolism and insulin resistance, cholesterol and lipid metabolism, and placental hormone regulation.
Collapse
Affiliation(s)
- Brooke Armistead
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, Michigan
| | - Eugenia Johnson
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, Michigan
| | - Robert VanderKamp
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, Michigan
| | - Elzbieta Kula-Eversole
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, Michigan
| | - Leena Kadam
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, Michigan
| | - Sascha Drewlo
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, Michigan
| | - Hamid-Reza Kohan-Ghadr
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, Michigan
| |
Collapse
|
9
|
Kochhar P, Manikandan C, Ravikumar G, Dwarkanath P, Sheela CN, George S, Thomas A, Crasta J, Thomas T, Kurpad AV, Mukhopadhyay A. Placental expression of leptin: fetal sex-independent relation with human placental growth. Eur J Clin Nutr 2020; 74:1603-1612. [PMID: 32382074 DOI: 10.1038/s41430-020-0649-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 04/22/2020] [Accepted: 04/23/2020] [Indexed: 11/09/2022]
Abstract
OBJECTIVES Leptin (LEP) is a vital placental hormone that is known to affect different aspects of placental function and fetal development. The present study aimed to determine the association of placental LEP transcript abundance with maternal, placental, and newborn parameters. SUBJECTS/METHODS In this retrospective case-control study, placental samples (n = 105) were collected from small (SGA) and appropriate (AGA) for gestational age full-term singleton pregnancies (n = 44 SGA and n = 61 AGA). Placental transcript abundance of LEP was assessed by real-time quantitative PCR after normalization to a reference gene panel. LEP methylation was measured using a quantitative MethyLight assay in a subset of samples (n = 54). RESULTS Placental LEP transcript abundance was negatively and significantly associated with placental weight (β = -3.883, P = 0.015). This association continued to be significant in the SGA group (β = -10.332, P = 0.001), both in female (β = -15.423, P = 0.021) and male births (β = -10.029, P = 0.007). LEP transcript abundance was not associated with LEP methylation levels (Spearman's ρ = 0.148, P = 0.287). CONCLUSION We conclude that placental upregulation of LEP is an integral and fetal sex-independent component of placental growth restriction, which can be potentially targeted through maternal dietary modifications to improve fetoplacental growth.
Collapse
Affiliation(s)
- P Kochhar
- Division of Nutrition, St. John's Research Institute, St. John's National Academy of Health Sciences, Bangalore, India
| | - C Manikandan
- Division of Nutrition, St. John's Research Institute, St. John's National Academy of Health Sciences, Bangalore, India.,School of Biosciences and Technology; Centre for Biomaterials, Cellular and Molecular Theranostics, Vellore Institute of Technology, Vellore, India
| | - G Ravikumar
- Department of Pathology, St John's Medical College Hospital, Bangalore, India
| | - P Dwarkanath
- Division of Nutrition, St. John's Research Institute, St. John's National Academy of Health Sciences, Bangalore, India
| | - C N Sheela
- Department of Obstetrics and Gynaecology, St John's Medical College Hospital, Bangalore, India
| | - S George
- Department of Obstetrics and Gynaecology, St John's Medical College Hospital, Bangalore, India
| | - A Thomas
- Department of Obstetrics and Gynaecology, St John's Medical College Hospital, Bangalore, India
| | - J Crasta
- Department of Pathology, St John's Medical College Hospital, Bangalore, India
| | - T Thomas
- Department of Biostatistics, St. John's Medical College Hospital, Bangalore, India
| | - A V Kurpad
- Division of Nutrition, St. John's Research Institute, St. John's National Academy of Health Sciences, Bangalore, India
| | - A Mukhopadhyay
- Division of Nutrition, St. John's Research Institute, St. John's National Academy of Health Sciences, Bangalore, India.
| |
Collapse
|
10
|
Hudon Thibeault AA, López de Los Santos Y, Doucet N, Sanderson JT, Vaillancourt C. Serotonin and serotonin reuptake inhibitors alter placental aromatase. J Steroid Biochem Mol Biol 2019; 195:105470. [PMID: 31509772 PMCID: PMC7939054 DOI: 10.1016/j.jsbmb.2019.105470] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 09/06/2019] [Accepted: 09/07/2019] [Indexed: 10/26/2022]
Abstract
Serotonin reuptake inhibitors (SRIs) are currently the main molecules prescribed to pregnant women that suffer from depression. Placental cells are exposed to SRIs via maternal blood, and we have previously shown that SRIs alter feto-placental steroidogenesis in an in vitro co-culture model. More specifically, serotonin (5-HT) regulates the estrogen biosynthetic enzyme aromatase (cytochrome P450 19; CYP19), which is disrupted by fluoxetine and its active metabolite norfluoxetine in BeWo choriocarcinoma cells. Based on molecular simulations, the present study illustrates that the SRIs fluoxetine, norfluoxetine, paroxetine, sertraline, citalopram and venlafaxine exhibit binding affinity for the active-site pocket of CYP19, suggesting potential competitive inhibition. Using BeWo cells and primary villous trophoblast cells isolated from normal term placentas, we compared the effects of the SRIs on CYP19 activity. We observed that paroxetine and sertraline induce aromatase activity in BeWo cells, while venlafaxine, fluoxetine, paroxetine and sertraline decrease aromatase activity in primary villous trophoblast. The effects of paroxetine and sertraline in primary villous trophoblasts were observed at the lower doses tested. We also showed that 5-HT and the 5-HT2A receptor agonist 2,5-dimethoxy-4-iodoamphetamine (DOI) induced CYP19 activity. An increase in phosphorylation of serine and tyrosine and a decrease in threonine phosphorylation of CYP19 was also associated with DOI treatment. Our results contribute to better understanding how 5-HT and SRIs interact with CYP19 and may affect estrogen production. Moreover, this study suggests that alteration of placental 5-HT levels due to depression and/or SRI treatment during pregnancy may be associated with disruption of placental estrogen production.
Collapse
Affiliation(s)
- Andrée-Anne Hudon Thibeault
- Institut national de la recherche scientifique (INRS) - Centre Armand-Frappier Santé Biotechnologie, 531, boul. des Prairies, Laval, QC, H7V 1B7, Canada; Center for Interdisciplinary Research on Well-Being, Health, Society and Environment (CINBIOSE), Université du Québec à Montréal, C.P. 8888, succ. Centre-Ville, Montréal, QC, H3C 3P8, Canada.
| | - Yossef López de Los Santos
- Institut national de la recherche scientifique (INRS) - Centre Armand-Frappier Santé Biotechnologie, 531, boul. des Prairies, Laval, QC, H7V 1B7, Canada.
| | - Nicolas Doucet
- Institut national de la recherche scientifique (INRS) - Centre Armand-Frappier Santé Biotechnologie, 531, boul. des Prairies, Laval, QC, H7V 1B7, Canada; PROTEO, the Québec Network for Research on Protein Function, Engineering, and Applications, 1045 Avenue de la Médecine, Université Laval, Québec, QC, G1V 0A6, Canada.
| | - J Thomas Sanderson
- Institut national de la recherche scientifique (INRS) - Centre Armand-Frappier Santé Biotechnologie, 531, boul. des Prairies, Laval, QC, H7V 1B7, Canada.
| | - Cathy Vaillancourt
- Institut national de la recherche scientifique (INRS) - Centre Armand-Frappier Santé Biotechnologie, 531, boul. des Prairies, Laval, QC, H7V 1B7, Canada; Center for Interdisciplinary Research on Well-Being, Health, Society and Environment (CINBIOSE), Université du Québec à Montréal, C.P. 8888, succ. Centre-Ville, Montréal, QC, H3C 3P8, Canada.
| |
Collapse
|
11
|
Arroyo-Jousse V, Jaramillo A, Castaño-Moreno E, Lépez M, Carrasco-Negüe K, Casanello P. Adipokines underlie the early origins of obesity and associated metabolic comorbidities in the offspring of women with pregestational obesity. Biochim Biophys Acta Mol Basis Dis 2019; 1866:165558. [PMID: 31654701 DOI: 10.1016/j.bbadis.2019.165558] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 09/10/2019] [Accepted: 09/12/2019] [Indexed: 02/07/2023]
Abstract
Maternal pregestational obesity is a well-known risk factor for offspring obesity, metabolic syndrome, cardiovascular disease and type 2 diabetes. The mechanisms by which maternal obesity can induce alterations in fetal and later neonatal metabolism are not fully elucidated due to its complexity and multifactorial causes. Two adipokines, leptin and adiponectin, are involved in fetal and postnatal growth trajectories, and both are altered in women with pregestational obesity. The placenta synthesizes leptin, which goes mainly to the maternal circulation and in lesser amount to the developing fetus. Maternal pregestational obesity and hyperleptinemia are associated with placental dysfunction and changes in nutrient transporters which directly affect fetal growth and development. By the other side, the embryo can produce its own leptin from early in development, which is associated to fetal weight and adiposity. Adiponectin, an insulin-sensitizing adipokine, is downregulated in maternal obesity. High molecular weight (HMW) adiponectin is the most abundant form and with most biological actions. In maternal obesity lower total and HMW adiponectin levels have been described in the mother, paralleled with high levels in the umbilical cord. Several studies have found that cord blood adiponectin levels are related with postnatal growth trajectories, and it has been suggested that low adiponectin levels in women with pregestational obesity enhance placental insulin sensitivity and activation of placental amino acid transport systems, supporting fetal overgrowth. The possible mechanisms by which maternal pregestational obesity, focusing in the actions of leptin and adiponectin, affects the fetal development and postnatal growth trajectories in their offspring are discussed.
Collapse
Affiliation(s)
| | | | | | - M Lépez
- School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - K Carrasco-Negüe
- Department of Obstetrics, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - P Casanello
- Department of Obstetrics, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile; Department of Neonatology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
12
|
Hudon Thibeault AA, Sanderson JT, Vaillancourt C. Serotonin-estrogen interactions: What can we learn from pregnancy? Biochimie 2019; 161:88-108. [PMID: 30946949 DOI: 10.1016/j.biochi.2019.03.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 03/28/2019] [Indexed: 02/07/2023]
Abstract
We have reviewed the scientific literature related to four diseases in which to serotonin (5-HT) is involved in the etiology, herein named 5-HT-linked diseases, and whose prevalence is influenced by estrogenic status: depression, migraine, irritable bowel syndrome and eating disorders. These diseases all have in common a sex-dimorphic prevalence, with women more frequently affected than men. The co-occurrence between these 5-HT-linked diseases suggests that they have common physiopathological mechanisms. In most 5-HT-linked diseases (except for anorexia nervosa and irritable bowel syndrome), a decrease in the serotonergic tone is observed and estrogens are thought to contribute to the improvement of symptoms by stimulating the serotonergic system. Human pregnancy is characterized by a unique 5-HT and estrogen synthesis by the placenta. Pregnancy-specific disorders, such as hyperemesis gravidarum, gestational diabetes mellitus and pre-eclampsia, are associated with a hyperserotonergic state and decreased estrogen levels. Fetal programming of 5-HT-linked diseases is a complex phenomenon that involves notably fetal-sex differences, which suggest the implication of sex steroids. From a mechanistic point of view, we hypothesize that estrogens regulate the serotonergic system, resulting in a protective effect against 5-HT-linked diseases, but that, in turn, 5-HT affects estrogen synthesis in an attempt to retrieve homeostasis. These two processes (5-HT and estrogen biosynthesis) are crucial for successful pregnancy outcomes, and thus, a disruption of this 5-HT-estrogen relationship may explain pregnancy-specific pathologies or pregnancy complications associated with 5-HT-linked diseases.
Collapse
Affiliation(s)
- Andrée-Anne Hudon Thibeault
- INRS-Institut Armand-Frappier, 531, boulevard des Prairies, Laval, QC, H7V 1B7, Canada; Center for Interdisciplinary Research on Well-Being, Health, Society and Environment (Cinbiose), Université du Québec à Montréal, C.P.8888, succ. Centre-Ville, Montréal, QC, H3C 3P8, Canada.
| | - J Thomas Sanderson
- INRS-Institut Armand-Frappier, 531, boulevard des Prairies, Laval, QC, H7V 1B7, Canada.
| | - Cathy Vaillancourt
- INRS-Institut Armand-Frappier, 531, boulevard des Prairies, Laval, QC, H7V 1B7, Canada; Center for Interdisciplinary Research on Well-Being, Health, Society and Environment (Cinbiose), Université du Québec à Montréal, C.P.8888, succ. Centre-Ville, Montréal, QC, H3C 3P8, Canada.
| |
Collapse
|
13
|
Hong SH, Kim SC, Park MN, Jeong JS, Yang SY, Lee YJ, Bae ON, Yang HS, Seo S, Lee KS, An BS. Expression of steroidogenic enzymes in human placenta according to the gestational age. Mol Med Rep 2019; 19:3903-3911. [PMID: 30896833 DOI: 10.3892/mmr.2019.10048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 02/11/2019] [Indexed: 11/06/2022] Open
Abstract
Female sex steroid hormones, including estradiol (E2) and progesterone (P4), serve significant physiological roles in pregnancy. In particular, E2 and P4 influence placenta formation, maintain pregnancy and stimulate milk production. These hormones are produced by ovaries, adrenal glands and the placenta, of which the latter is a major endocrine organ during pregnancy. However, the mechanism of hormone production during pregnancy remains unclear. In the present study, the regulation of steroid hormones and steroidogenic enzymes was examined in human placenta according to gestational age. In human placental tissues, expression levels of steroidogenic enzymes were determined with reverse transcription‑quantitative polymerase chain reaction and western blotting. The mRNA and protein expression of CYP17A1, HSD17B3 and CYP19A1, which are associated with the synthesis of dehydroepiandrosterone (DHEA) and E2, was elevated at different gestational ages in human placenta. In addition, to evaluate the correlation between serum and placental‑produced hormones, steroid hormone levels, including pregnenolone (PG), DHEA, P4, testosterone (T) and E2, were examined in serum and placenta. Serum and placenta expression of DHEA and E2 increased with gestational age, whereas T and P4 were differently regulated in placenta and serum. To confirm the mechanism of steroidogenesis in vitro, placental BeWo cells were treated with E2 and P4, which are the most important hormones during pregnancy. The mRNA and protein expression of steroidogenic enzymes was significantly altered by E2 in vitro. These results demonstrated that concentration of steroid hormones was differently regulated by steroidogenic enzymes in the placenta depending on the type of the hormones, which may be critical to maintain pregnancy.
Collapse
Affiliation(s)
- So-Hye Hong
- Department of Biomaterials Science, College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Busan, Gyeongsangnam 50463, Republic of Korea
| | - Seung Chul Kim
- Department of Obstetrics and Gynecology, Biomedical Research Institute, School of Medicine, Pusan National University, Busan, Gyeongsangnam 49241, Republic of Korea
| | - Mee-Na Park
- Department of Biomaterials Science, College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Busan, Gyeongsangnam 50463, Republic of Korea
| | - Jea Sic Jeong
- Department of Biomaterials Science, College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Busan, Gyeongsangnam 50463, Republic of Korea
| | - Seung Yun Yang
- Department of Biomaterials Science, College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Busan, Gyeongsangnam 50463, Republic of Korea
| | - Young Joo Lee
- Department of Obstetrics and Gynecology, Biomedical Research Institute, School of Medicine, Pusan National University, Busan, Gyeongsangnam 49241, Republic of Korea
| | - Ok-Nam Bae
- College of Pharmacy, Hanyang University, Ansan, Gyeonggi 15588, Republic of Korea
| | - Hoe-Saeng Yang
- Department of Obstetrics and Gynecology, Medical College, Dongguk University, Seoul 04620, Republic of Korea
| | - Sungbaek Seo
- Department of Biomaterials Science, College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Busan, Gyeongsangnam 50463, Republic of Korea
| | - Kyu-Sup Lee
- Department of Obstetrics and Gynecology, Biomedical Research Institute, School of Medicine, Pusan National University, Busan, Gyeongsangnam 49241, Republic of Korea
| | - Beum-Soo An
- Department of Biomaterials Science, College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Busan, Gyeongsangnam 50463, Republic of Korea
| |
Collapse
|
14
|
Liu X, Xue R, Yang C, Gu J, Chen S, Zhang S. Cholestasis-induced bile acid elevates estrogen level via farnesoid X receptor-mediated suppression of the estrogen sulfotransferase SULT1E1. J Biol Chem 2018; 293:12759-12769. [PMID: 29929982 DOI: 10.1074/jbc.ra118.001789] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 06/15/2018] [Indexed: 12/12/2022] Open
Abstract
The liver is the main site of estrogen metabolism, and liver disease is usually associated with an abnormal estrogen status. However, little is known about the mechanism underlying this connection. Here, we investigated the effects of bile acid (BA)-activated farnesoid X receptor (FXR) on the metabolism of 17β-estradiol (E2) during blockage of bile flow (cholestasis). Correlations between BA levels and E2 concentrations were established in patients with cholestasis, and hepatic expression profiles of key genes involved in estrogen metabolism were investigated in both WT and FXR-/- mice. We found that the elevated E2 level positively correlated with BA concentrations in the patients with cholestasis. We further observed that bile duct ligation (BDL) increases E2 levels in mouse serum, and this elevation effect was alleviated by deleting the FXR gene. Of note, FXR down-regulated the expression of hepatic sulfotransferase SULT1E1, the primary enzyme responsible for metabolic estrogen inactivation. At the molecular level, we found that FXR competes with the protein acetylase CREB-binding protein (CBP) for binding to the transcription factor hepatocyte nuclear factor 4α (HNF4α). This competition decreased HNF4α acetylation and nuclear retention, which, in turn, repressed HNF4α-dependent SULT1E1 gene transcription. These findings suggest that cholestasis induces BA-activated FXR activity, leading to downstream inhibition of SULT1E1 and hence impeding hepatic degradation of estrogen.
Collapse
Affiliation(s)
- Xijun Liu
- Key Laboratory of Glycoconjugate Research Ministry of Public Health, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanghai 200032, China
| | - Ruyi Xue
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Disease, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Caiting Yang
- Key Laboratory of Glycoconjugate Research Ministry of Public Health, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanghai 200032, China
| | - Jianxin Gu
- Key Laboratory of Glycoconjugate Research Ministry of Public Health, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanghai 200032, China
| | - She Chen
- Key Laboratory of Glycoconjugate Research Ministry of Public Health, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanghai 200032, China.
| | - Si Zhang
- Key Laboratory of Glycoconjugate Research Ministry of Public Health, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanghai 200032, China.
| |
Collapse
|
15
|
Schanton M, Maymó JL, Pérez-Pérez A, Sánchez-Margalet V, Varone CL. Involvement of leptin in the molecular physiology of the placenta. Reproduction 2017; 155:R1-R12. [PMID: 29018059 DOI: 10.1530/rep-17-0512] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 09/28/2017] [Accepted: 10/09/2017] [Indexed: 12/26/2022]
Abstract
Leptin is a homeostatic regulator in the placenta where it promotes proliferation, protein synthesis and the expression of tolerogenic maternal response molecules such as HLA-G. Leptin also exerts an anti-apoptotic action in placenta controlling the expression of p53 master cell cycle regulator under different stress conditions. On the other hand, leptin is an integrative target of different placental stimuli. The expression of leptin in placenta is regulated by hCG, insulin, steroids, hypoxia and many other growth hormones, suggesting that it might have an important endocrine function in the trophoblastic cells. The leptin expression is induced involving the cAMP/PKA or cAMP/Epac pathways which have profound actions upon human trophoblast function. The activation of PI3K and MAPK pathways also participates in the leptin expression. Estrogens play a central role during pregnancy, particularly 17β-estradiol upregulates the leptin expression in placental cells through genomic and non-genomic actions. The leptin promoter analysis reveals specific elements that are active in placental cells. The transcription factors CREB, AP1, Sp1, NFκB and the coactivator CBP are involved in the placental leptin expression. Moreover, placental leptin promoter is a target of epigenetic marks such as DNA methylation and histone acetylation that regulates not only the leptin expression in placenta during pregnancy but also determines the predisposition of acquiring adult metabolism diseases. Taken together, all these results allow a better understanding of leptin function and regulatory mechanisms of leptin expression in human placental trophoblasts, and support the importance of leptin during pregnancy and in programming adult health.
Collapse
Affiliation(s)
- Malena Schanton
- Departamento de Química BiológicaUniversidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina.,Universidad de Buenos AiresCONICET, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| | - Julieta L Maymó
- Departamento de Química BiológicaUniversidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina.,Universidad de Buenos AiresCONICET, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| | - Antonio Pérez-Pérez
- Departamento de Bioquímica Médica y Biología MolecularHospital Universitario Virgen Macarena, Facultad de Medicina, Universidad de Sevilla, Sevilla, España
| | - Víctor Sánchez-Margalet
- Departamento de Bioquímica Médica y Biología MolecularHospital Universitario Virgen Macarena, Facultad de Medicina, Universidad de Sevilla, Sevilla, España
| | - Cecilia L Varone
- Departamento de Química BiológicaUniversidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina .,Universidad de Buenos AiresCONICET, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| |
Collapse
|
16
|
Schanton M, Maymó J, Pérez-Pérez A, Gambino Y, Maskin B, Dueñas JL, Sánchez-Margalet V, Varone C. Sp1 transcription factor is a modulator of estradiol leptin induction in placental cells. Placenta 2017; 57:152-162. [DOI: 10.1016/j.placenta.2017.07.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 07/03/2017] [Accepted: 07/06/2017] [Indexed: 11/29/2022]
|
17
|
Yan AF, Chen T, Chen S, Tang DS, Liu F, Jiang X, Huang W, Ren CH, Hu CQ. Signal transduction mechanism for glucagon-induced leptin gene expression in goldfish liver. Int J Biol Sci 2016; 12:1544-1554. [PMID: 27994518 PMCID: PMC5166495 DOI: 10.7150/ijbs.16612] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 10/12/2016] [Indexed: 12/24/2022] Open
Abstract
Leptin is a peripheral satiety hormone that also plays important roles in energy homeostasis in vertebrates ranging from fish to mammals. In teleost fish, however, the regulatory mechanism for leptin gene expression still remains unclear. In this study, we found that glucagon, a key hormone in glucose homeostasis, was effective at elevating the leptin-AI and leptin-AII transcript levels in goldfish liver via both in vivo intraperitoneal injection and in vitro cells incubation approaches. The responses of leptin-AI and leptin-AII mRNA to glucagon treatment were highly comparable. In contrast, blockade of local glucagon action could reduce the basal and induced leptin-AI and leptin-AII mRNA expression. The stimulation of leptin levels by glucagon was caused by the activation of adenylate cyclase (AC)/cyclic-AMP (cAMP)/ protein kinase A (PKA), and probably cAMP response element-binding protein (CREB) cascades. Our study described the effect and signal transduction mechanism of glucagon on leptin gene expression in goldfish liver, and may also provide new insight into leptin as a mediator in the regulatory network of energy metabolism in the fish model.
Collapse
Affiliation(s)
- Ai-Fen Yan
- School of stomatology and medicine, Foshan University, Foshan 528000, China
| | - Ting Chen
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB); South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510275, China
| | - Shuang Chen
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China
| | - Dong-Sheng Tang
- School of stomatology and medicine, Foshan University, Foshan 528000, China
| | - Fang Liu
- School of stomatology and medicine, Foshan University, Foshan 528000, China
| | - Xiao Jiang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB)
| | - Wen Huang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB)
| | - Chun-Hua Ren
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB); South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510275, China
| | - Chao-Qun Hu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB); South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510275, China
| |
Collapse
|
18
|
Lakisic G, Lebreton A, Pourpre R, Wendling O, Libertini E, Radford EJ, Le Guillou M, Champy MF, Wattenhofer-Donzé M, Soubigou G, Ait-Si-Ali S, Feunteun J, Sorg T, Coppée JY, Ferguson-Smith AC, Cossart P, Bierne H. Role of the BAHD1 Chromatin-Repressive Complex in Placental Development and Regulation of Steroid Metabolism. PLoS Genet 2016; 12:e1005898. [PMID: 26938916 PMCID: PMC4777444 DOI: 10.1371/journal.pgen.1005898] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 02/04/2016] [Indexed: 11/18/2022] Open
Abstract
BAHD1 is a vertebrate protein that promotes heterochromatin formation and gene repression in association with several epigenetic regulators. However, its physiological roles remain unknown. Here, we demonstrate that ablation of the Bahd1 gene results in hypocholesterolemia, hypoglycemia and decreased body fat in mice. It also causes placental growth restriction with a drop of trophoblast glycogen cells, a reduction of fetal weight and a high neonatal mortality rate. By intersecting transcriptome data from murine Bahd1 knockout (KO) placentas at stages E16.5 and E18.5 of gestation, Bahd1-KO embryonic fibroblasts, and human cells stably expressing BAHD1, we also show that changes in BAHD1 levels alter expression of steroid/lipid metabolism genes. Biochemical analysis of the BAHD1-associated multiprotein complex identifies MIER proteins as novel partners of BAHD1 and suggests that BAHD1-MIER interaction forms a hub for histone deacetylases and methyltransferases, chromatin readers and transcription factors. We further show that overexpression of BAHD1 leads to an increase of MIER1 enrichment on the inactive X chromosome (Xi). In addition, BAHD1 and MIER1/3 repress expression of the steroid hormone receptor genes ESR1 and PGR, both playing important roles in placental development and energy metabolism. Moreover, modulation of BAHD1 expression in HEK293 cells triggers epigenetic changes at the ESR1 locus. Together, these results identify BAHD1 as a core component of a chromatin-repressive complex regulating placental morphogenesis and body fat storage and suggest that its dysfunction may contribute to several human diseases.
Collapse
Affiliation(s)
- Goran Lakisic
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Équipe Microbiologie Cellulaire et Epigénétique, Jouy-en-Josas, France
| | - Alice Lebreton
- Unité des Interactions Bactéries-Cellules, Institut Pasteur, Paris, France
- INSERM U604, Paris, France
- INRA USC2020, Paris, France
| | - Renaud Pourpre
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Équipe Microbiologie Cellulaire et Epigénétique, Jouy-en-Josas, France
| | - Olivia Wendling
- Institut Clinique de la Souris-ICS-MCI, PHENOMIN, CNRS UMR7104, INSERM U964, Université de Strasbourg, Illkirch, France
| | - Emanuele Libertini
- Plateforme Transcriptome et Epigénome, Département Génomes et Génétique, Institut Pasteur, Paris, France
| | - Elizabeth J. Radford
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
- Cambridge University Hospitals, NHS Foundation Trust, Cambridge, United Kingdom
| | - Morwenna Le Guillou
- CNRS UMR8200 Stabilité génétique et oncogenèse, Université Paris-Saclay, Villejuif, France
| | - Marie-France Champy
- Institut Clinique de la Souris-ICS-MCI, PHENOMIN, CNRS UMR7104, INSERM U964, Université de Strasbourg, Illkirch, France
| | - Marie Wattenhofer-Donzé
- Institut Clinique de la Souris-ICS-MCI, PHENOMIN, CNRS UMR7104, INSERM U964, Université de Strasbourg, Illkirch, France
| | - Guillaume Soubigou
- Plateforme Transcriptome et Epigénome, Département Génomes et Génétique, Institut Pasteur, Paris, France
| | | | - Jean Feunteun
- CNRS UMR8200 Stabilité génétique et oncogenèse, Université Paris-Saclay, Villejuif, France
| | - Tania Sorg
- Institut Clinique de la Souris-ICS-MCI, PHENOMIN, CNRS UMR7104, INSERM U964, Université de Strasbourg, Illkirch, France
| | - Jean-Yves Coppée
- Plateforme Transcriptome et Epigénome, Département Génomes et Génétique, Institut Pasteur, Paris, France
| | | | - Pascale Cossart
- Unité des Interactions Bactéries-Cellules, Institut Pasteur, Paris, France
- INSERM U604, Paris, France
- INRA USC2020, Paris, France
| | - Hélène Bierne
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Équipe Microbiologie Cellulaire et Epigénétique, Jouy-en-Josas, France
| |
Collapse
|
19
|
Bircsak KM, Gupta V, Yuen PYS, Gorczyca L, Weinberger BI, Vetrano AM, Aleksunes LM. Genetic and Dietary Regulation of Glyburide Efflux by the Human Placental Breast Cancer Resistance Protein Transporter. J Pharmacol Exp Ther 2016; 357:103-13. [PMID: 26850786 DOI: 10.1124/jpet.115.230185] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 02/02/2016] [Indexed: 12/16/2022] Open
Abstract
Glyburide is frequently used to treat gestational diabetes owing to its low fetal accumulation resulting from placental efflux by the breast cancer resistance protein (BCRP)/ABCG2 transporter. Here we sought to determine how exposure to the dietary phytoestrogen genistein and expression of a loss-of-function polymorphism in the ABCG2 gene (C421A) impacted the transport of glyburide by BCRP using stably transfected human embryonic kidney 293 (HEK) cells, human placental choriocarcinoma BeWo cells, and human placental explants. Genistein competitively inhibited the BCRP-mediated transport of (3)H-glyburide in both wild-type (WT) and C421A-BCRP HEK-expressing cells, with greater accumulation of (3)H-glyburide in cells expressing the C421A variant. In BeWo cells, exposure to genistein for 60 minutes increased the accumulation of (3)H-glyburide 30%-70% at concentrations relevant to dietary exposure (IC50 ∼180 nM). Continuous exposure of BeWo cells to genistein for 48 hours reduced the expression of BCRP mRNA and protein by up to 40%, which impaired BCRP transport activity. Pharmacologic antagonism of the estrogen receptor attenuated the genistein-mediated downregulation of BCRP expression, suggesting that phytoestrogens may reduce BCRP levels through this hormone receptor pathway in BeWo cells. Interestingly, genistein treatment for 48 hours did not alter BCRP protein expression in explants dissected from healthy term placentas. These data suggest that whereas genistein can act as a competitive inhibitor of BCRP-mediated transport, its ability to downregulate placental BCRP expression may only occur in choriocarcinoma cells. Overall, this research provides important mechanistic data regarding how the environment (dietary genistein) and a frequent genetic variant (ABCG2, C421A) may alter the maternal-fetal disposition of glyburide.
Collapse
Affiliation(s)
- Kristin M Bircsak
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy (K.M.B., L.M.A., L.G.), and Environmental and Occupational Health Sciences Institute, Rutgers, The State University of New Jersey (L.M.A.), Piscataway, New Jersey; Departments of Obstetrics and Gynecology (V.G.) and Pediatrics (P.Y.S.Y., A.M.V.), Rutgers University Robert Wood Johnson Medical School, New Brunswick, New Jersey; Hofstra North Shore-LIJ School of Medicine, Cohen Children's Medical Center of New York, New Hyde Park, New York (B.I.W.)
| | - Vivek Gupta
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy (K.M.B., L.M.A., L.G.), and Environmental and Occupational Health Sciences Institute, Rutgers, The State University of New Jersey (L.M.A.), Piscataway, New Jersey; Departments of Obstetrics and Gynecology (V.G.) and Pediatrics (P.Y.S.Y., A.M.V.), Rutgers University Robert Wood Johnson Medical School, New Brunswick, New Jersey; Hofstra North Shore-LIJ School of Medicine, Cohen Children's Medical Center of New York, New Hyde Park, New York (B.I.W.)
| | - Poi Yu Sofia Yuen
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy (K.M.B., L.M.A., L.G.), and Environmental and Occupational Health Sciences Institute, Rutgers, The State University of New Jersey (L.M.A.), Piscataway, New Jersey; Departments of Obstetrics and Gynecology (V.G.) and Pediatrics (P.Y.S.Y., A.M.V.), Rutgers University Robert Wood Johnson Medical School, New Brunswick, New Jersey; Hofstra North Shore-LIJ School of Medicine, Cohen Children's Medical Center of New York, New Hyde Park, New York (B.I.W.)
| | - Ludwik Gorczyca
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy (K.M.B., L.M.A., L.G.), and Environmental and Occupational Health Sciences Institute, Rutgers, The State University of New Jersey (L.M.A.), Piscataway, New Jersey; Departments of Obstetrics and Gynecology (V.G.) and Pediatrics (P.Y.S.Y., A.M.V.), Rutgers University Robert Wood Johnson Medical School, New Brunswick, New Jersey; Hofstra North Shore-LIJ School of Medicine, Cohen Children's Medical Center of New York, New Hyde Park, New York (B.I.W.)
| | - Barry I Weinberger
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy (K.M.B., L.M.A., L.G.), and Environmental and Occupational Health Sciences Institute, Rutgers, The State University of New Jersey (L.M.A.), Piscataway, New Jersey; Departments of Obstetrics and Gynecology (V.G.) and Pediatrics (P.Y.S.Y., A.M.V.), Rutgers University Robert Wood Johnson Medical School, New Brunswick, New Jersey; Hofstra North Shore-LIJ School of Medicine, Cohen Children's Medical Center of New York, New Hyde Park, New York (B.I.W.)
| | - Anna M Vetrano
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy (K.M.B., L.M.A., L.G.), and Environmental and Occupational Health Sciences Institute, Rutgers, The State University of New Jersey (L.M.A.), Piscataway, New Jersey; Departments of Obstetrics and Gynecology (V.G.) and Pediatrics (P.Y.S.Y., A.M.V.), Rutgers University Robert Wood Johnson Medical School, New Brunswick, New Jersey; Hofstra North Shore-LIJ School of Medicine, Cohen Children's Medical Center of New York, New Hyde Park, New York (B.I.W.)
| | - Lauren M Aleksunes
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy (K.M.B., L.M.A., L.G.), and Environmental and Occupational Health Sciences Institute, Rutgers, The State University of New Jersey (L.M.A.), Piscataway, New Jersey; Departments of Obstetrics and Gynecology (V.G.) and Pediatrics (P.Y.S.Y., A.M.V.), Rutgers University Robert Wood Johnson Medical School, New Brunswick, New Jersey; Hofstra North Shore-LIJ School of Medicine, Cohen Children's Medical Center of New York, New Hyde Park, New York (B.I.W.)
| |
Collapse
|
20
|
Chen T, Chen S, Ren C, Hu C, Tang D, Yan A. Two isoforms of leptin in the White-clouds Mountain minnow (Tanichthys albonubes): Differential regulation by estrogen despite similar response to fasting. Gen Comp Endocrinol 2016; 225:174-184. [PMID: 26386182 DOI: 10.1016/j.ygcen.2015.08.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 07/28/2015] [Accepted: 08/01/2015] [Indexed: 01/03/2023]
Abstract
Leptin has been well-established as a canonical anorexic peptide hormone in mammals, though much of its function in fish remains obscure. In this study, the cDNAs of two leptin isoforms (leptin-A and leptin-B) were cloned from the liver of a small cyprinid fish, Tanichthys albonubes. The two T. albonubes leptins, sharing low primary amino acid sequence homology with their mammalian counterparts, and between themselves, are highly conserved in three-dimensional protein structures and gene structures. Liver is a major source of leptin mRNA in T. albonubes with leptin-A being the dominant form. The expression of hepatic leptin-A but not leptin-B mRNA in female fish is significantly higher than in male fish. Transcriptional hepatic levels of leptin-A and leptin-B in both male and female fish were demonstrated to increase after long-term fasting (10-25days) but decline upon re-feeding (3days). Strikingly, estrogen (E2) administration induced only leptin-A but not leptin-B hepatic mRNA expression in both male and female fish. Our study here provides the first evidence for differential regulation of two leptins in fish, and sheds new light on the possible origin of leptin in lower vertebrates.
Collapse
Affiliation(s)
- Ting Chen
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou, China.
| | - Shuang Chen
- Department of Anatomy, University of Hong Kong, Hong Kong, China.
| | - Chunhua Ren
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou, China.
| | - Chaoqun Hu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou, China.
| | | | - Aifen Yan
- College of Medicine, Foshan University, Foshan, China.
| |
Collapse
|
21
|
Maliqueo M, Sundstrom Poromaa I, Vanky E, Fornes R, Benrick A, Akerud H, Stridsklev S, Labrie F, Jansson T, Stener-Victorin E. Placental STAT3 signaling is activated in women with polycystic ovary syndrome. Hum Reprod 2015; 30:692-700. [DOI: 10.1093/humrep/deu351] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
22
|
Leon-Cabrera S, Solís-Lozano L, Suárez-Álvarez K, González-Chávez A, Béjar YL, Robles-Díaz G, Escobedo G. Hyperleptinemia is associated with parameters of low-grade systemic inflammation and metabolic dysfunction in obese human beings. Front Integr Neurosci 2013; 7:62. [PMID: 23986664 PMCID: PMC3750204 DOI: 10.3389/fnint.2013.00062] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 08/01/2013] [Indexed: 12/14/2022] Open
Abstract
Leptin is an adipose tissue-derived hormone that has been involved in hypothalamic and systemic inflammation, altered food-intake patterns, and metabolic dysfunction in obese mice. However, it remains unclear whether leptin has a relationship with parameters of systemic inflammation and metabolic dysfunction in humans. We thus evaluated in a cross-sectional study the circulating levels of leptin in 40 non-obese and 41 obese Mexican individuals, examining their relationship with tumor necrosis factor alpha (TNF-α), interleukin (IL) 12, IL-10, central obesity, serum glucose and insulin levels, and serum triglyceride and cholesterol concentrations. Circulating levels of leptin, TNF-α, IL-12, IL-10, and insulin were measured by ELISA, while concentrations of glucose, triglyceride, and cholesterol were determined by enzymatic assays. As expected, serum levels of leptin exhibited a significant elevation in obese individuals as compared to non-obese subjects, showing a clear association with increased body mass index (r = 0.4173), central obesity (r = 0.4678), and body fat percentage (r = 0.3583). Furthermore, leptin also showed a strong relationship with serum TNF-α (r = 0.6989), IL-12 (r = 0.3093), and IL-10 (r = −0.5691). Interestingly, leptin was also significantly related with high concentrations of fasting glucose (r = 0.5227) and insulin (r = 0.2229), as well as elevated levels of insulin resistance (r = 0.3611) and circulating triglyceride (r = 0.4135). These results suggest that hyperleptinemia is strongly associated with the occurrence of low-grade systemic inflammation and metabolic alteration in obese subjects. Further clinical research is still needed to determine whether hyperleptinemia may be a potential marker for recognizing the advent of obesity-related metabolic disorders in human beings.
Collapse
Affiliation(s)
- Sonia Leon-Cabrera
- Departamento de Biología de la Reproducción y Clínica de Desórdenes de Sueño, Universidad Autónoma Metropolitana-Iztapalapa D.F., México
| | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
A close association between the obesity hormone leptin and breast cancer progression has been suggested. The present study investigated the molecular mechanism for enhanced leptin expression in breast cancer cells and its functional significance in breast cancer aggressiveness. We examined whether leptin expression level is affected by the oncoprotein human epidermal growth factor receptor2 (HER2), which is overexpressed in ∼30% of breast tumors. Here, we report, for the first time, that HER2 induces transcriptional activation of leptin in MCF10A human breast epithelial cells. We also showed that p38 mitogen-activated protein kinase signaling was involved in leptin expression induced by HER2. We showed a crucial role of leptin in the invasiveness of HER2-MCF10A cells using an siRNA molecule targeting leptin. Taken together, the results indicate a molecular link between HER2 and leptin, providing supporting evidence that leptin represents a target for breast cancer therapy. [BMB Reports 2012; 45(12): 719-723].
Collapse
Affiliation(s)
- Yujin Cha
- College of Pharmacy, Duksung Women's University, Seoul 132-714, Korea
| | | | | |
Collapse
|
24
|
Santollo J, Marshall A, Daniels D. Activation of membrane-associated estrogen receptors decreases food and water intake in ovariectomized rats. Endocrinology 2013; 154:320-9. [PMID: 23183173 PMCID: PMC3529383 DOI: 10.1210/en.2012-1858] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 11/07/2012] [Indexed: 02/06/2023]
Abstract
Estradiol (E2) decreases food and water intake in a variety of species, including rats. Available evidence suggests that this is mediated by genomic mechanisms that are most often attributed to nuclear estrogen receptors. More recent studies indicate that membrane-associated estrogen receptors (mERs) also can influence gene expression through the activation of transcription factors, yet it is unclear whether mERs are involved in mediating the hypophagic and antidipsetic effects of E2. In the present experiments, we injected E2 or a membrane-impermeable form of E2 (E2-BSA) into the lateral cerebral ventricle of ovariectomized female rats and evaluated the effect on 23 h food and water intake. First, we found that higher doses of E2 were necessary to reduce water intake than were sufficient to reduce food intake. Analysis of drinking microstructure revealed that the decrease in water intake after E2 treatment was mediated by both a decrease in burst number and burst size. Next, the activation of mERs with E2-BSA decreased both overnight food and water intake and analysis of drinking microstructure indicated that the decreased water intake resulted from a decrease in burst number. Finally, E2-BSA did not condition a taste aversion, suggesting that the inhibitory effects on food and water intake were not secondary to malaise. Together these findings suggest that activation of mERs is sufficient to decrease food and water intake in female rats.
Collapse
Affiliation(s)
- Jessica Santollo
- Department of Psychology, University at Buffalo, State Unioversity of New York, Buffalo, NY 14260, USA
| | | | | |
Collapse
|