1
|
Ravichandran N, Iyer M, Uvarajan D, Kirola L, Kumra SM, Babu HWS, HariKrishnaReddy D, Vellingiri B, Narayanasamy A. New insights on the regulators and inhibitors of RhoA-ROCK signalling in Parkinson's disease. Metab Brain Dis 2025; 40:90. [PMID: 39775342 DOI: 10.1007/s11011-024-01500-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025]
Abstract
A multifaceted and widely prevalent neurodegenerative disease, Parkinson's disease (PD) is typified by the loss of dopaminergic neurons in the midbrain. The discovery of novel treatment(s) that can reverse or halt the course of the disease progression along with identifying the most reliable biomarker(s) in PD remains the crucial concern. RhoA in its active state has been demonstrated to interact with three distinct domains located in the central coiled-coil region of ROCK. RhoA appears to activate effectors most frequently by breaking the intramolecular autoinhibitory connections, which releases functional domains from the effector protein. Additionally, RhoA is highly expressed in the nervous system and it acts as a central molecule for its several downstream effector proteins in multiple signalling pathways both in neurons and glial cells. Mitochondrial dysfunction, vesicle transport malfunction and aggregation of α-Synuclein, a presynaptic neuronal protein genetically and neuropathologically associated with PD. While the RhoA-ROCK signalling pathway appears to have a significant role in PD symptoms, suggesting it could be a promising target for therapeutic interventions. Thus, this review article addresses the potential involvement of the RhoA-ROCK signalling system in the pathophysiology of neurodegenerative illnesses, with an emphasis on its biology and function. We also provide an overview of the state of research on RhoA regulation and its downstream biological activities, focusing on the role of RhoA signalling in neurodegenerative illnesses and the potential benefits of RhoA inhibition as a treatment for neurodegeneration.
Collapse
Affiliation(s)
- Nandita Ravichandran
- Disease Proteomics Laboratory, Department of Zoology, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India
| | - Mahalaxmi Iyer
- Department of Microbiology, Central University of Punjab, Bathinda, 151401, Punjab, India
| | - Deenathayalan Uvarajan
- Department of Biochemistry, PSG College of Arts & Science, Coimbatore, Tamil Nadu, India
| | - Laxmi Kirola
- Department of Biotechnology, School of Health Sciences & Technology (SoHST), UPES Dehradun, Dehradun, India
| | - Sindduja Muthu Kumra
- Human Cytogenetics and Stem Cell Laboratory, Department of Zoology, Central University of Punjab, Bathinda, 151401, Punjab, India
| | - Harysh Winster Suresh Babu
- Human Cytogenetics and Stem Cell Laboratory, Department of Zoology, Central University of Punjab, Bathinda, 151401, Punjab, India
| | - Dibbanti HariKrishnaReddy
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, 151401, Punjab, India
| | - Balachandar Vellingiri
- Human Cytogenetics and Stem Cell Laboratory, Department of Zoology, Central University of Punjab, Bathinda, 151401, Punjab, India.
| | - Arul Narayanasamy
- Disease Proteomics Laboratory, Department of Zoology, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India.
| |
Collapse
|
2
|
Ferreira AL, Menezes A, Sandim V, Queiroz Monteiro RD, Nogueira FCS, Evaristo JAM, Abreu Pereira DD, Carneiro K. Histone deacetylase inhibition disrupts the molecular signature of the glioblastoma secretome related to extracellular vesicle-associated proteins and targets RAB7a and RAB14 in vitro. Biochem Biophys Res Commun 2024; 736:150847. [PMID: 39454304 DOI: 10.1016/j.bbrc.2024.150847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/11/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024]
Abstract
Glioblastoma (GBM) is the most aggressive brain tumor with a poor prognosis. While Histone Deacetylase inhibitors have shown promising results in inhibiting cancer cell invasion and promoting apoptosis, their effects on GBM secretion, specifically focusing on extracellular vesicles (EVs) secretion, remain largely unexplored. Using label-free NANOLC-MS/MS methodology, we identified significant changes in the abundance of membrane traffic regulatory proteins in the secretome of U87MG cells after the treatment with the HDAC inhibitor Trichostatin A (TSA). In silico analysis showed that TSA treatment disrupted the secretion pattern of EVs-associated proteins and cellular signaling pathways, both qualitatively and quantitatively. Notably, RAB14/RAB7a interaction was only observed in the secretome of cells treated with TSA. In vitro assays revealed that TSA treatment of glioma cells increased EVs secretion and intracellular protein levels of RAB7a and RAB14 without affecting gene expression, suggesting a role of these two EVs-associated proteins in grade IV glioma cells. Additionally, an integrative approach using clinical data highlighted a correlation between DNA mutations affecting vesicle traffic coding-genes and clinical and phenotypic outcomes in glioma patients. These findings provide insights into the interplay between epigenetics and GBM intracellular trafficking, potentially leading to improved strategies for targeting and modifying the complex signaling network established between GBM cells and the tumor cell microenvironment.
Collapse
Affiliation(s)
- Ana Luiza Ferreira
- Instituto de Ciências Biomédicas e Programa de Pós-graduação Em Medicina (Anatomia Patológica), UFRJ/RJ, Brazil.
| | - Aline Menezes
- Instituto de Ciências Biomédicas e Programa de Pós-graduação Em Medicina (Anatomia Patológica), UFRJ/RJ, Brazil.
| | - Vanessa Sandim
- Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal Do Rio de Janeiro, UFRJ/RJ, Brazil.
| | - Robson de Queiroz Monteiro
- Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal Do Rio de Janeiro, UFRJ/RJ, Brazil.
| | - Fábio César Sousa Nogueira
- Proteomics Unit, Department of Biochemistry, Institute of Chemistry, Universidade Federal Do Rio de Janeiro, Laboratory of Proteomics (LabProt), LADETEC, Precision Medicine Research Center, Institute of Biophysics Carlos Chagas Filho, UFRJ/RJ, Brazil.
| | | | - Denise de Abreu Pereira
- Programa de Oncobiologia Celular e Molecular, Coordenação de Pesquisa, Instituto Nacional Do Câncer, INCA/RJ, Brazil.
| | - Katia Carneiro
- Instituto de Ciências Biomédicas e Programa de Pós-graduação Em Medicina (Anatomia Patológica), UFRJ/RJ, Brazil.
| |
Collapse
|
3
|
Xia B, Chen H, Taleb SJ, Xi X, Shaheen N, Baoyinna B, Soni S, Mebratu YA, Yount JS, Zhao J, Zhao Y. FBXL19 in endothelial cells protects the heart from influenza A infection by enhancing antiviral immunity and reducing cellular senescence programs. Am J Physiol Heart Circ Physiol 2024; 327:H937-H946. [PMID: 39150394 PMCID: PMC11482256 DOI: 10.1152/ajpheart.00371.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/25/2024] [Accepted: 08/15/2024] [Indexed: 08/17/2024]
Abstract
Influenza A virus (IAV) infection while primarily affecting the lungs, is often associated with cardiovascular complications. However, the mechanisms underlying this association are not fully understood. Here, we investigated the potential role of FBXL19, a member of the Skp1-Cullin-1-F-box family of E3 ubiquitin ligase, in IAV-induced cardiac inflammation. We demonstrated that FBXL19 overexpression in endothelial cells (ECs) reduced viral titers and IAV matrix protein 1 (M1) levels while increasing antiviral gene expression, including interferon (IFN)-α, -β, and -γ and RANTES (regulated on activation normal T cell expressed and secreted) in the cardiac tissue of IAV-infected mice. Moreover, EC-specific overexpression of FBXL19 attenuated the IAV infection-reduced interferon regulatory factor 3 (IRF3) level without altering its mRNA level and suppressed cardiac inflammation. Furthermore, IAV infection triggered cellular senescence programs in the heart as indicated by the upregulation of p16 and p21 mRNA levels and the downregulation of lamin-B1 levels, which were partially reversed by FBXL19 overexpression in ECs. Our findings indicate that EC-specific overexpression of FBXL19 protects against IAV-induced cardiac damage by enhancing interferon-mediated antiviral signaling, reducing cardiac inflammation, and suppressing cellular senescence programs.NEW & NOTEWORTHY Our study reveals a novel facet of IAV infection, demonstrating that it can trigger cellular senescence within the heart. Intriguingly, upregulation of endothelial FBXL19 promotes host innate immunity, reduces cardiac senescence, and diminishes inflammation. These findings highlight the therapeutic potential of targeting FBXL19 to mitigate IAV-induced cardiovascular complications.
Collapse
Affiliation(s)
- Boyu Xia
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, United States
| | - Huilong Chen
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, United States
| | - Sarah J Taleb
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, United States
| | - Xiaoqing Xi
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, United States
| | - Nargis Shaheen
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, United States
| | - Boina Baoyinna
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, United States
| | - Sourabh Soni
- Department of Internal Medicine, The Ohio State University, Columbus, Ohio, United States
| | - Yohannes A Mebratu
- Department of Internal Medicine, The Ohio State University, Columbus, Ohio, United States
| | - Jacob S Yount
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, United States
| | - Jing Zhao
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, United States
- Department of Internal Medicine, The Ohio State University, Columbus, Ohio, United States
| | - Yutong Zhao
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, United States
- Department of Internal Medicine, The Ohio State University, Columbus, Ohio, United States
| |
Collapse
|
4
|
Bou Malhab LJ, Schmidt S, Fagotto-Kaufmann C, Pion E, Gadea G, Roux P, Fagotto F, Debant A, Xirodimas DP. An Anti-Invasive Role for Mdmx through the RhoA GTPase under the Control of the NEDD8 Pathway. Cells 2024; 13:1625. [PMID: 39404389 PMCID: PMC11475522 DOI: 10.3390/cells13191625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024] Open
Abstract
Mdmx (Mdm4) is established as an oncogene mainly through repression of the p53 tumour suppressor. On the other hand, anti-oncogenic functions for Mdmx have also been proposed, but the underlying regulatory pathways remain unknown. Investigations into the effect of inhibitors for the NEDD8 pathway in p53 activation, human cell morphology, and in cell motility during gastrulation in Xenopus embryos revealed an anti-invasive function of Mdmx. Through stabilisation and activation of the RhoA GTPase, Mdmx is required for the anti-invasive effects of NEDDylation inhibitors. Mechanistically, through its Zn finger domain, Mdmx preferentially interacts with the inactive GDP-form of RhoA. This protects RhoA from degradation and allows for RhoA targeting to the plasma membrane for its subsequent activation. The effect is transient, as prolonged NEDDylation inhibition targets Mdmx for degradation, which subsequently leads to RhoA destabilisation. Surprisingly, Mdmx degradation requires non-NEDDylated (inactive) Culin4A and the Mdm2 E3-ligase. This study reveals that Mdmx can control cell invasion through RhoA stabilisation/activation, which is potentially linked to the reported anti-oncogenic functions of Mdmx. As inhibitors of the NEDD8 pathway are in clinical trials, the status of Mdmx may be a critical determinant for the anti-tumour effects of these inhibitors.
Collapse
Affiliation(s)
- Lara J. Bou Malhab
- CRBM, Cell Biology Research Centre of Montpellier, Université de Montpellier, CNRS, 34293 Montpellier, France; (S.S.); (C.F.-K.); (E.P.); (G.G.); (P.R.); (F.F.)
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Susanne Schmidt
- CRBM, Cell Biology Research Centre of Montpellier, Université de Montpellier, CNRS, 34293 Montpellier, France; (S.S.); (C.F.-K.); (E.P.); (G.G.); (P.R.); (F.F.)
| | - Christine Fagotto-Kaufmann
- CRBM, Cell Biology Research Centre of Montpellier, Université de Montpellier, CNRS, 34293 Montpellier, France; (S.S.); (C.F.-K.); (E.P.); (G.G.); (P.R.); (F.F.)
| | - Emmanuelle Pion
- CRBM, Cell Biology Research Centre of Montpellier, Université de Montpellier, CNRS, 34293 Montpellier, France; (S.S.); (C.F.-K.); (E.P.); (G.G.); (P.R.); (F.F.)
| | - Gilles Gadea
- CRBM, Cell Biology Research Centre of Montpellier, Université de Montpellier, CNRS, 34293 Montpellier, France; (S.S.); (C.F.-K.); (E.P.); (G.G.); (P.R.); (F.F.)
| | - Pierre Roux
- CRBM, Cell Biology Research Centre of Montpellier, Université de Montpellier, CNRS, 34293 Montpellier, France; (S.S.); (C.F.-K.); (E.P.); (G.G.); (P.R.); (F.F.)
| | - Francois Fagotto
- CRBM, Cell Biology Research Centre of Montpellier, Université de Montpellier, CNRS, 34293 Montpellier, France; (S.S.); (C.F.-K.); (E.P.); (G.G.); (P.R.); (F.F.)
| | - Anne Debant
- CRBM, Cell Biology Research Centre of Montpellier, Université de Montpellier, CNRS, 34293 Montpellier, France; (S.S.); (C.F.-K.); (E.P.); (G.G.); (P.R.); (F.F.)
| | - Dimitris P. Xirodimas
- CRBM, Cell Biology Research Centre of Montpellier, Université de Montpellier, CNRS, 34293 Montpellier, France; (S.S.); (C.F.-K.); (E.P.); (G.G.); (P.R.); (F.F.)
| |
Collapse
|
5
|
Xue Y, Xue C, Song W. Emerging roles of deubiquitinating enzymes in actin cytoskeleton and tumor metastasis. Cell Oncol (Dordr) 2024; 47:1071-1089. [PMID: 38324230 DOI: 10.1007/s13402-024-00923-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2024] [Indexed: 02/08/2024] Open
Abstract
BACKGROUND Metastasis accounts for the majority of cancer-related deaths. Actin dynamics and actin-based cell migration and invasion are important factors in cancer metastasis. Metastasis is characterized by actin polymerization and depolymerization, which are precisely regulated by molecular changes involving a plethora of actin regulators, including actin-binding proteins (ABPs) and signalling pathways, that enable cancer cell dissemination from the primary tumour. Research on deubiquitinating enzymes (DUBs) has revealed their vital roles in actin dynamics and actin-based migration and invasion during cancer metastasis. CONCLUSION Here, we review how DUBs drive tumour metastasis by participating in actin rearrangement and actin-based migration and invasion. We summarize the well-characterized and essential actin cytoskeleton signalling molecules related to DUBs, including Rho GTPases, Src kinases, and ABPs such as cofilin and cortactin. Other DUBs that modulate actin-based migration signalling pathways are also discussed. Finally, we discuss and address therapeutic opportunities and ongoing challenges related to DUBs with respect to actin dynamics.
Collapse
Affiliation(s)
- Ying Xue
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, PR China.
| | - Cong Xue
- School of Stomatology, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, PR China
| | - Wei Song
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, PR China.
| |
Collapse
|
6
|
Assarsson M, Söderman J, Seifert O. Significant Correlation Between Cutaneous Abundance of Streptococcus and Psoriasis Severity in Patients with FBXL19 Gene Variants. Acta Derm Venereol 2024; 104:adv34892. [PMID: 38898675 PMCID: PMC11210493 DOI: 10.2340/actadv.v104.34892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
Psoriasis results from both genetic predisposition and environmental triggers, such as Streptococcal infections. This study aimed to explore the correlation between the abundance of the Streptococcus genus on the skin and psoriasis severity in individuals carrying specific psoriasis-associated genetic variants. Studying 39 chronic plaque psoriasis patients, the elbow skin microbiome and 49 psoriasis-related single nucleotide polymorphisms (SNPs) were analysed using a MiSeq instrument for 16S rDNA sequencing, and CLC Genomic Workbench for processing and analysis. Through multivariate linear regression analysis, a positive correlation was found between Streptococcus genus abundance and psoriasis severity in patients with certain FBXL19 gene-related heterozygous SNPs (rs12924903, rs10782001, rs12445568). Conversely, a negative association was observed in patients with homozygous genotypes. Moreover, we identified an association between Streptococcus abundance and psoriasis severity in patients with genetic variants related to IL-22, ERAP1, NOS2, and ILF3. This is the first study highlighting a positive association between Streptococcus skin colonization and psoriasis severity in patients with heterozygous genotypes within the FBXL19 gene region. FXBL19 targets the IL-33/IL1RL1 axis, crucial in infectious diseases and innate immunity promotion. These novel results suggests an intricate interaction among host genetics, Streptococcus skin colonization, and psoriasis inflammation, offering potential avenues for novel treatment approaches.
Collapse
Affiliation(s)
- Malin Assarsson
- Department of Biomedical and Clinical Sciences, Faculty of Health Sciences, Linköping University, Linköping, Sweden; Division of Dermatology and Venereology, Region Jönköping County, Jönköping, Sweden.
| | - Jan Söderman
- Department of Biomedical and Clinical Sciences, Faculty of Health Sciences, Linköping University, Linköping, Sweden; Laboratory Medicine, Region Jönköping County, Jönköping, Sweden
| | - Oliver Seifert
- Department of Biomedical and Clinical Sciences, Faculty of Health Sciences, Linköping University, Linköping, Sweden; Division of Dermatology and Venereology, Region Jönköping County, Jönköping, Sweden
| |
Collapse
|
7
|
Booms A, Pierce SE, van der Schans EJ, Coetzee GA. Parkinson's disease risk enhancers in microglia. iScience 2024; 27:108921. [PMID: 38323005 PMCID: PMC10845915 DOI: 10.1016/j.isci.2024.108921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/05/2023] [Accepted: 01/12/2024] [Indexed: 02/08/2024] Open
Abstract
Genome-wide association studies have identified thousands of single nucleotide polymorphisms that associate with increased risk for Parkinson's disease (PD), but the functions of most of them are unknown. Using assay for transposase-accessible chromatin (ATAC) and H3K27ac chromatin immunoprecipitation (ChIP) sequencing data, we identified 73 regulatory elements in microglia that overlap PD risk SNPs. To determine the target genes of a "risk enhancer" within intron two of SNCA, we used CRISPR-Cas9 to delete the open chromatin region where two PD risk SNPs reside. The loss of the enhancer led to reduced expression of multiple genes including SNCA and the adjacent gene MMRN1. It also led to expression changes of genes involved in glucose metabolism, a process that is known to be altered in PD patients. Our work expands the role of SNCA in PD and provides a connection between PD-associated genetic variants and underlying biology that points to a risk mechanism in microglia.
Collapse
Affiliation(s)
- Alix Booms
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI 49503, USA
- Van Andel Institute graduate student, Grand Rapids, MI 49503, USA
| | - Steven E. Pierce
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI 49503, USA
| | | | - Gerhard A. Coetzee
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI 49503, USA
| |
Collapse
|
8
|
McCormick LE, Suarez C, Herring LE, Cannon KS, Kovar DR, Brown NG, Gupton SL. Multi-monoubiquitylation controls VASP-mediated actin dynamics. J Cell Sci 2024; 137:jcs261527. [PMID: 38277158 PMCID: PMC10917064 DOI: 10.1242/jcs.261527] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 12/13/2023] [Indexed: 01/13/2024] Open
Abstract
The actin cytoskeleton performs multiple cellular functions, and as such, actin polymerization must be tightly regulated. We previously demonstrated that reversible, non-degradative ubiquitylation regulates the function of the actin polymerase VASP in developing neurons. However, the underlying mechanism of how ubiquitylation impacts VASP activity was unknown. Here, we show that mimicking multi-monoubiquitylation of VASP at K240 and K286 negatively regulates VASP interactions with actin. Using in vitro biochemical assays, we demonstrate the reduced ability of multi-monoubiquitylated VASP to bind, bundle, and elongate actin filaments. However, multi-monoubiquitylated VASP maintained the ability to bind and protect barbed ends from capping protein. Finally, we demonstrate the electroporation of recombinant multi-monoubiquitylated VASP protein altered cell spreading morphology. Collectively, these results suggest a mechanism in which ubiquitylation controls VASP-mediated actin dynamics.
Collapse
Affiliation(s)
- Laura E. McCormick
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Cristian Suarez
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | - Laura E. Herring
- Michael Hooker Proteomics Core, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kevin S. Cannon
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - David R. Kovar
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | - Nicholas G. Brown
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Stephanie L. Gupton
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
9
|
Xun M, Wang J, Xie Q, Peng B, Li Z, Guo Z, Zeng Y, Su H, Yao M, Liao L, Li Y, Yuan G, Chen S, He S. FBXL19 promotes malignant behaviours by activating MAPK signalling and negatively correlates with prognosis in hepatocellular carcinoma. Heliyon 2023; 9:e21771. [PMID: 38027627 PMCID: PMC10651507 DOI: 10.1016/j.heliyon.2023.e21771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/17/2023] Open
Abstract
FBXL19 is a member of the Skp1-Cullin-F-box family of E3 ubiquitin ligases and is linked to a variety of vital biological processes, such as cell proliferation, migration, and differentiation. Previous studies have identified it as an oncogene in breast cancer and glioma. However, its role in hepatocellular carcinoma (HCC) remains unclear. To comprehensively elucidate its role in tumour biology and its underlying mechanisms, a variety of sophisticated methods, including bioinformatics analysis, RNA-sequencing technique, and in vitro cell biology experiments, were used. Here, we found that FBXL19 was upregulated in patients with HCC and correlated with poor prognosis. In in vitro experiments, the specific targeting of short hairpin RNAs via lentiviruses successfully induced the knockdown of FBXL19, resulting in notable inhibition of the proliferation, migration, and invasion of HCC cells. Furthermore, FBXL19 downregulation resulted in significant induction of G0/G1 phase cell cycle arrest. Importantly, FBXL19 knockdown inhibited tumour malignant behaviour primarily by inactivating extracellular signal-regulated protein kinase 1/2 and p38 mitogen-activated protein kinases. In conclusion, this study revealed that FBXL19 was upregulated in patients with HCC, and that its expression was negatively correlated with prognosis. Thus, FBXL19 displays oncogenic properties in HCC by activating mitogen-activated protein kinase signalling.
Collapse
Affiliation(s)
- Min Xun
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Jiming Wang
- Chongqing University FuLing Hospital, Chongqing 408099, China
| | - Qiuli Xie
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Bo Peng
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Zeyuan Li
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi 530021, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, Guangxi 530021, China
| | - Zhengya Guo
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi 530021, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, Guangxi 530021, China
| | - Yonglian Zeng
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi 530021, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, Guangxi 530021, China
| | - Huizhao Su
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi 530021, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, Guangxi 530021, China
| | - Mei Yao
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi 530021, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, Guangxi 530021, China
| | - Lijuan Liao
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi 530021, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, Guangxi 530021, China
| | - Yan Li
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi 530021, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, Guangxi 530021, China
| | - Guandou Yuan
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi 530021, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, Guangxi 530021, China
| | - Shilian Chen
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi 530021, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, Guangxi 530021, China
| | - Songqing He
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi 530021, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, Guangxi 530021, China
| |
Collapse
|
10
|
Zheng X, Zhao X, Wang Y, Chen J, Wang X, Peng X, Ma L, Du J. Inhibition of Cxcr4 Disrupts Mouse Embryonic Palatal Mesenchymal Cell Migration and Induces Cleft Palate Occurrence. Int J Mol Sci 2023; 24:12740. [PMID: 37628919 PMCID: PMC10454820 DOI: 10.3390/ijms241612740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Many processes take place during embryogenesis, and the development of the palate mainly involves proliferation, migration, osteogenesis, and epithelial-mesenchymal transition. Abnormalities in any of these processes can be the cause of cleft palate (CP). There have been few reports on whether C-X-C motif chemokine receptor 4 (CXCR4), which is involved in embryonic development, participates in these processes. In our study, the knockdown of Cxcr4 inhibited the migration of mouse embryonic palatal mesenchymal (MEPM) cells similarly to the use of its inhibitor plerixafor, and the inhibition of cell migration in the Cxcr4 knockdown group was partially reversed by supplementation with C-X-C motif chemokine ligand 12 (CXCL12). In combination with low-dose retinoic acid (RA), plerixafor increased the incidence of cleft palates in mice by decreasing the expression of Cxcr4 and its downstream migration-regulating gene Rac family small GTPase 1 (RAC1) mediating actin cytoskeleton to affect lamellipodia formation and focal complex assembly and ras homolog family member A (RHOA) regulating the actin cytoskeleton to affect stress fiber formation and focal complex maturation into focal adhesions. Our results indicate that the disruption of cell migration and impaired normal palatal development by inhibition of Cxcr4 expression might be mediated through Rac1 with RhoA. The combination of retinoic acid and plerixafor might increase the incidence of cleft palate, which also provided a rationale to guide the use of the drug during conception.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Juan Du
- Laboratory of Orofacial Development, Laboratory of Molecular Signaling and Stem Cells Therapy, Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Tiantan Xili No. 4, Beijing 100050, China; (X.Z.); (X.Z.); (Y.W.); (J.C.); (X.W.); (X.P.); (L.M.)
| |
Collapse
|
11
|
McCormick LE, Suarez C, Herring LE, Cannon KS, Kovar DR, Brown NG, Gupton SL. Multi-monoubiquitination controls VASP-mediated actin dynamics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.16.549237. [PMID: 37503134 PMCID: PMC10370145 DOI: 10.1101/2023.07.16.549237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
The actin cytoskeleton performs multiple cellular functions, and as such, actin polymerization must be tightly regulated. We previously demonstrated that reversible, non-degradative ubiquitination regulates the function of the actin polymerase VASP in developing neurons. However, the underlying mechanism of how ubiquitination impacts VASP activity was unknown. Here we show that mimicking multi-monoubiquitination of VASP at K240 and K286 negatively regulates VASP interactions with actin. Using in vitro biochemical assays, we demonstrate the reduced ability of multi-monoubiquitinated VASP to bind, bundle, and elongate actin filaments. However, multi-monoubiquitinated VASP maintained the ability to bind and protect barbed ends from capping protein. Lastly, we demonstrate the introduction of recombinant multi-monoubiquitinated VASP protein altered cell spreading morphology. Collectively, these results suggest a mechanism in which ubiquitination controls VASP-mediated actin dynamics.
Collapse
Affiliation(s)
- Laura E McCormick
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Cristian Suarez
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637
| | - Laura E Herring
- Michael Hooker Proteomics Core, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Kevin S Cannon
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - David R Kovar
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637
| | - Nicholas G Brown
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Stephanie L Gupton
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
12
|
Yin G, Huang J, Petela J, Jiang H, Zhang Y, Gong S, Wu J, Liu B, Shi J, Gao Y. Targeting small GTPases: emerging grasps on previously untamable targets, pioneered by KRAS. Signal Transduct Target Ther 2023; 8:212. [PMID: 37221195 DOI: 10.1038/s41392-023-01441-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/28/2023] [Accepted: 04/14/2023] [Indexed: 05/25/2023] Open
Abstract
Small GTPases including Ras, Rho, Rab, Arf, and Ran are omnipresent molecular switches in regulating key cellular functions. Their dysregulation is a therapeutic target for tumors, neurodegeneration, cardiomyopathies, and infection. However, small GTPases have been historically recognized as "undruggable". Targeting KRAS, one of the most frequently mutated oncogenes, has only come into reality in the last decade due to the development of breakthrough strategies such as fragment-based screening, covalent ligands, macromolecule inhibitors, and PROTACs. Two KRASG12C covalent inhibitors have obtained accelerated approval for treating KRASG12C mutant lung cancer, and allele-specific hotspot mutations on G12D/S/R have been demonstrated as viable targets. New methods of targeting KRAS are quickly evolving, including transcription, immunogenic neoepitopes, and combinatory targeting with immunotherapy. Nevertheless, the vast majority of small GTPases and hotspot mutations remain elusive, and clinical resistance to G12C inhibitors poses new challenges. In this article, we summarize diversified biological functions, shared structural properties, and complex regulatory mechanisms of small GTPases and their relationships with human diseases. Furthermore, we review the status of drug discovery for targeting small GTPases and the most recent strategic progress focused on targeting KRAS. The discovery of new regulatory mechanisms and development of targeting approaches will together promote drug discovery for small GTPases.
Collapse
Affiliation(s)
- Guowei Yin
- The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China.
| | - Jing Huang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Johnny Petela
- Wake Forest University School of Medicine, Winston-Salem, NC, 27101, USA
| | - Hongmei Jiang
- The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Yuetong Zhang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Siqi Gong
- The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
- School of Medicine, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Jiaxin Wu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Bei Liu
- National Biomedical Imaging Center, School of Future Technology, Peking University, Beijing, 100871, China
| | - Jianyou Shi
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology, Chengdu, 610072, China.
| | - Yijun Gao
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
13
|
Yan R, Liu D, Wang J, Liu M, Guo H, Bai J, Yang S, Chang J, Yao Z, Yang Z, Blom T, Zhou K. miR-137-LAPTM4B regulates cytoskeleton organization and cancer metastasis via the RhoA-LIMK-Cofilin pathway in osteosarcoma. Oncogenesis 2023; 12:25. [PMID: 37147294 PMCID: PMC10163001 DOI: 10.1038/s41389-023-00471-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 05/07/2023] Open
Abstract
Osteosarcoma (OS) is a rare malignant bone tumor but is one leading cause of cancer mortality in childhood and adolescence. Cancer metastasis accounts for the primary reason for treatment failure in OS patients. The dynamic organization of the cytoskeleton is fundamental for cell motility, migration, and cancer metastasis. Lysosome Associated Protein Transmembrane 4B (LAPTM4B) is an oncogene participating in various biological progress central to cancer biogenesis. However, the potential roles of LAPTM4B in OS and the related mechanisms remain unknown. Here, we established the elevated LAPTM4B expression in OS, and it is essential in regulating stress fiber organization through RhoA-LIMK-cofilin signaling pathway. In terms of mechanism, our data revealed that LAPTM4B promotes RhoA protein stability by suppressing the ubiquitin-mediated proteasome degradation pathway. Moreover, our data show that miR-137, rather than gene copy number and methylation status, contributes to the upregulation of LAPTM4B in OS. We report that miR-137 is capable of regulating stress fiber arrangement, OS cell migration, and metastasis via targeting LAPTM4B. Combining results from cells, patients' tissue samples, the animal model, and cancer databases, this study further suggests that the miR-137-LAPTM4B axis represents a clinically relevant pathway in OS progression and a viable target for novel therapeutics.
Collapse
Affiliation(s)
- Ruyu Yan
- School of Life Sciences, Anhui Medical University, Hefei, 230032, China
| | - Dan Liu
- School of Life Sciences, Anhui Medical University, Hefei, 230032, China
| | - Junjie Wang
- School of Life Sciences, Anhui Medical University, Hefei, 230032, China
| | - Minxia Liu
- School of Life Sciences, Anhui Medical University, Hefei, 230032, China
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, 00290, Finland
| | - Hongjuan Guo
- School of Life Sciences, Anhui Medical University, Hefei, 230032, China
| | - Jing Bai
- School of Life Sciences, Anhui Medical University, Hefei, 230032, China
| | - Shuo Yang
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Jun Chang
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Zhihong Yao
- Bone and Soft Tissue Tumours Research Centre of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, Yunnan, 650118, China
| | - Zuozhang Yang
- Bone and Soft Tissue Tumours Research Centre of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, Yunnan, 650118, China
| | - Tomas Blom
- Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki, 00014, Finland.
- Minerva Foundation Institute for Medical Research, Helsinki, 00014, Finland.
| | - Kecheng Zhou
- School of Life Sciences, Anhui Medical University, Hefei, 230032, China.
- Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki, 00014, Finland.
- Minerva Foundation Institute for Medical Research, Helsinki, 00014, Finland.
| |
Collapse
|
14
|
González B, Aldea M, Cullen PJ. Chaperone-Dependent Degradation of Cdc42 Promotes Cell Polarity and Shields the Protein from Aggregation. Mol Cell Biol 2023; 43:200-222. [PMID: 37114947 PMCID: PMC10184603 DOI: 10.1080/10985549.2023.2198171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/02/2023] [Accepted: 03/06/2023] [Indexed: 04/29/2023] Open
Abstract
Rho GTPases are global regulators of cell polarity and signaling. By exploring the turnover regulation of the yeast Rho GTPase Cdc42p, we identified new regulatory features surrounding the stability of the protein. We specifically show that Cdc42p is degraded at 37 °C by chaperones through lysine residues located in the C-terminus of the protein. Cdc42p turnover at 37 °C occurred by the 26S proteasome in an ESCRT-dependent manner in the lysosome/vacuole. By analyzing versions of Cdc42p that were defective for turnover, we show that turnover at 37 °C promoted cell polarity but was defective for sensitivity to mating pheromone, presumably mediated through a Cdc42p-dependent MAP kinase pathway. We also identified one residue (K16) in the P-loop of the protein that was critical for Cdc42p stability. Accumulation of Cdc42pK16R in some contexts led to the formation of protein aggregates, which were enriched in aging mother cells and cells undergoing proteostatic stress. Our study uncovers new aspects of protein turnover regulation of a Rho-type GTPase that may extend to other systems. Moreover, residues identified here that mediate Cdc42p turnover correlate with several human diseases, which may suggest that turnover regulation of Cdc42p is important to aspects of human health.
Collapse
Affiliation(s)
- Beatriz González
- Department of Biological Sciences, State University of New York at Buffalo, New York, USA
| | - Martí Aldea
- Molecular Biology Institute of Barcelona (IBMB), CSIC, Barcelona, Spain
| | - Paul J. Cullen
- Department of Biological Sciences, State University of New York at Buffalo, New York, USA
| |
Collapse
|
15
|
Chen Z, Zheng B, Zhang Z, Huang Z. Protective role of FBXL19 in Streptococcus pneumoniae-induced lung injury in pneumonia immature mice. J Cardiothorac Surg 2023; 18:92. [PMID: 36964598 PMCID: PMC10037874 DOI: 10.1186/s13019-023-02186-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 03/12/2023] [Indexed: 03/26/2023] Open
Abstract
OBJECTIVE Streptococcus pneumoniae (Spn) is a common pathogen for pediatric pneumonia and leads to severe lung injury. This study is conducted to analyze the role of F-box and leucine rich repeat protein 19 (FBXL19) in Spn-induced lung injury in immature mice. METHODS Immature mice were infected with Spn to record the survival rates and bacterial loads in bronchoalveolar lavage fluid. Levels of FBXL19 and FOXM1 in lung tissues were determined via real-time quantitative polymerase chain reaction or Western blotting. After the interference of FBXL19, its impacts on lung inflammatory injury were appraised by the lung wet/dry weight ratio, myeloperoxidase activity, hematoxylin and eosin staining, and enzyme-linked immunosorbent assay. The binding of FBXL19 to forkhead box M1 (FOXM1) in mouse lung epithelial cells was determined. After MG132 treatment, the protein and ubiquitination levels of FOXM1 were measured. The functional rescue experiments were performed to analyze the role of FOXM1 in FBXL19-regulated lung injury. RESULTS FBXL19 was downregulated while FOXM1 was upregulated in lung tissues of Spn-infected immature mice. Overexpression of FBXL19 reduced the degree of lung injury and inflammation. FBXL19 can bind to FOXM1 to reduce its protein level via ubiquitination degradation. MG132 reduced the ubiquitination and increased the protein level of FOXM1. Overexpression of FOXM1 reversed the protective role of FBXL19 overexpression in lung injury of Spn immature mice. CONCLUSION FBXL19 was downregulated by Spn and FBXL19 overexpression alleviated lung injury by inducing ubiquitination and degradation of FOXM1 in Spn immature mice.
Collapse
Affiliation(s)
- Zhiqiang Chen
- Department of Neonatology, The Affiliated Hospital of Putian University, Putian, 351100, China.
| | - Bijuan Zheng
- Department of Neonatology, The Affiliated Hospital of Putian University, Putian, 351100, China
| | - Zhiwei Zhang
- Department of Neonatology, The Affiliated Hospital of Putian University, Putian, 351100, China
| | - Zhiyong Huang
- Department of Neonatology, The Affiliated Hospital of Putian University, Putian, 351100, China
| |
Collapse
|
16
|
Podieh F, Wensveen R, Overboom M, Abbas L, Majolée J, Hordijk P. Differential role for rapid proteostasis in Rho GTPase-mediated control of quiescent endothelial integrity. J Biol Chem 2023; 299:104593. [PMID: 36894017 PMCID: PMC10124901 DOI: 10.1016/j.jbc.2023.104593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 02/22/2023] [Accepted: 02/27/2023] [Indexed: 03/09/2023] Open
Abstract
Endothelial monolayer permeability is regulated by actin dynamics and vesicular traffic. Recently, ubiquitination was also implicated in the integrity of quiescent endothelium, as it differentially controls the localization and stability of adhesion- and signaling proteins. However, the more general effect of fast protein turnover on endothelial integrity is not clear. Here, we found that inhibition of E1 ubiquitin ligases induces a rapid, reversible loss of integrity in quiescent, primary human endothelial monolayers, accompanied by increased F-actin stress fibers and the formation of intercellular gaps. Concomitantly, total protein and activity of the actin-regulating GTPase RhoB, but not its close homologue RhoA, increase ∼10-fold in 5-8 h. We determined that, the depletion of RhoB, but not of RhoA, the inhibition of actin contractility and the inhibition of protein synthesis all significantly rescue the loss of cell-cell contact induced by E1 ligase inhibition. Collectively, our data suggest that in quiescent human endothelial cells, the continuous and fast turnover of short-lived proteins that negatively regulate cell-cell contact, is essential to preserve monolayer integrity.
Collapse
Affiliation(s)
- Fabienne Podieh
- Amsterdam UMC, location Vrije Universiteit Amsterdam, Physiology, De Boelelaan 1117, Amsterdam, Netherlands; Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, The Netherlands
| | - Roos Wensveen
- Amsterdam UMC, location Vrije Universiteit Amsterdam, Physiology, De Boelelaan 1117, Amsterdam, Netherlands; Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, The Netherlands
| | - MaxC Overboom
- Amsterdam UMC, location Vrije Universiteit Amsterdam, Physiology, De Boelelaan 1117, Amsterdam, Netherlands; Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, The Netherlands
| | - Lotte Abbas
- Amsterdam UMC, location Vrije Universiteit Amsterdam, Physiology, De Boelelaan 1117, Amsterdam, Netherlands; Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, The Netherlands
| | - Jisca Majolée
- Amsterdam UMC, location Vrije Universiteit Amsterdam, Physiology, De Boelelaan 1117, Amsterdam, Netherlands; Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, The Netherlands; Developmental Biology and Stem Cell Research, Hubrecht Institute, 3584 CT, Utrecht, The Netherlands
| | - PeterL Hordijk
- Amsterdam UMC, location Vrije Universiteit Amsterdam, Physiology, De Boelelaan 1117, Amsterdam, Netherlands; Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, The Netherlands.
| |
Collapse
|
17
|
Sugiyama Y, Nakamura S, Tokuda Y, Nakano M, Hattori Y, Nishiguchi H, Toda Y, Hosogi S, Yamashita M, Tashiro K, Ashihara E. 7,8-Dihydroxy-3-(4'-hydroxyphenyl)coumarin inhibits invasion and migration of osteosarcoma cells. Biochem Biophys Res Commun 2023; 638:200-209. [PMID: 36462494 DOI: 10.1016/j.bbrc.2022.11.056] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022]
Abstract
Advances in pharmacy and medicine have led to the development of many anti-cancer and molecular targeted agents; however, there are few agents capable of suppressing metastasis. To prevent cancer recurrence, it is essential to develop novel agents for inhibiting metastasis. Coumarin-based compounds have multiple pharmacological activities including anti-cancer effects. We screened a compound library constructed at Kyoto Pharmaceutical University and showed that 7,8-dihydroxy-3-(4'-hydroxyphenyl)coumarin (DHC) inhibited invasion and migration of LM8 mouse osteosarcoma cells and 143B human osteosarcoma cells in a concentration-dependent manner. DHC decreased intracellular actin filament formation by downregulating Rho small GTP-binding proteins such as RHOA, RAC1, and CDC42, which regulate actin reorganization. However, DHC did not downregulate the corresponding mRNA transcripts, whereas it downregulated Rho small GTP-binding proteins in the presence of cycloheximide, suggesting that DHC enhances the degradation of these proteins. DHC treatment inhibited metastasis and prolonged overall survival in a spontaneous metastasis mouse model. These results indicate that DHC has the potential to suppress metastasis of osteosarcoma cells by downregulating Rho small GTP-binding proteins.
Collapse
Affiliation(s)
- Yuki Sugiyama
- Department of Clinical and Translational Physiology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Seikou Nakamura
- Department of Pharmacognosy, Kyoto Pharmaceutical University, Kyoto, Japan.
| | - Yuichi Tokuda
- Department of Genomic Medical Sciences, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Masakazu Nakano
- Department of Genomic Medical Sciences, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yasunao Hattori
- Center for Instrumental Analysis, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Hiroki Nishiguchi
- Department of Clinical and Translational Physiology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Yuki Toda
- Department of Clinical and Translational Physiology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Shigekuni Hosogi
- Department of Clinical and Translational Physiology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Masayuki Yamashita
- Department of Pharmaceutical Manufacturing Chemistry, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Kei Tashiro
- Department of Genomic Medical Sciences, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Eishi Ashihara
- Department of Clinical and Translational Physiology, Kyoto Pharmaceutical University, Kyoto, Japan.
| |
Collapse
|
18
|
Niu H, Bi F, Zhao W, Xu Y, Han Q, Guo W, Chen Y. Smurf1 regulates ameloblast polarization by ubiquitination-mediated degradation of RhoA. Cell Prolif 2022; 56:e13387. [PMID: 36579844 PMCID: PMC10068949 DOI: 10.1111/cpr.13387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/06/2022] [Accepted: 12/12/2022] [Indexed: 12/30/2022] Open
Abstract
Cell polarity is essential for ameloblast differentiation and enamel formation. Smurf1 can mediate cell polarization through ubiquitination degradation of specific substrates. But it remains unclear whether Smurf1 could regulate ameloblast polarity and the underlying mechanism. Here, immuno-fluorescence staining and RT-qPCR were applied to detect the expression of Smurf1 and F-actin. A mouse lower incisor defect model was constructed. Scanning electron microscope, rat lower incisor culture, western blot, wound healing assay and trans-well migration assay were performed to detect the influence of Smurf1 knockdown on ameloblast. IF double staining, western blot and co-immunoprecipitation were conducted to detect the interaction between Smurf1 and RhoA. The in vivo experiment was also performed. We found that Smurf1 was mainly expressed in the membrane and cell cortex of ameloblast, similar to F-actin. Smurf1 expression increased along ameloblast polarization and differentiation. After knocking down Smurf1, the cytoskeleton and cell morphology changed and the cell polarity was damaged. Smurf1 regulated ameloblast polarity through ubiquitination degradation of activated RhoA in vitro. Local knockdown of Smurf1 in rat lower incisor ameloblast resulted in ameloblast polarity loss, enamel matrix secretion disorder and chalky enamel, but RhoA inhibitor Y-27632 could reverse this effect. Collectively, Smurf1 could regulate the polarization of ameloblast through ubiquitination degradation of activated RhoA, which contributed to the knowledge of tooth development and provided new research ideas for cell polarity.
Collapse
Affiliation(s)
- Haoman Niu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.,Department of Oral Pathology, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Fei Bi
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.,Department of Pediatric Dentistry, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Wenjun Zhao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.,Department of Oral Pathology, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yuchan Xu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.,Department of Pediatric Dentistry, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Qi Han
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.,Department of Oral Pathology, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Weihua Guo
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.,Department of Pediatric Dentistry, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yu Chen
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.,Department of Oral Pathology, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
19
|
González B, Cullen PJ. Regulation of Cdc42 protein turnover modulates the filamentous growth MAPK pathway. J Cell Biol 2022; 221:213675. [PMID: 36350310 PMCID: PMC9811999 DOI: 10.1083/jcb.202112100] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 05/25/2022] [Accepted: 09/19/2022] [Indexed: 11/11/2022] Open
Abstract
Rho GTPases are central regulators of cell polarity and signaling. How Rho GTPases are directed to function in certain settings remains unclear. Here, we show the protein levels of the yeast Rho GTPase Cdc42p are regulated, which impacts a subset of its biological functions. Specifically, the active conformation of Cdc42p was ubiquitinated by the NEDD4 ubiquitin ligase Rsp5p and HSP40/HSP70 chaperones and turned over in the proteasome. A GTP-locked (Q61L) turnover-defective (TD) version, Cdc42pQ61L+TD, hyperactivated the MAPK pathway that regulates filamentous growth (fMAPK). Cdc42pQ61L+TD did not influence the activity of the mating pathway, which shares components with the fMAPK pathway. The fMAPK pathway adaptor, Bem4p, stabilized Cdc42p levels, which resulted in elevated fMAPK pathway signaling. Our results identify Cdc42p turnover regulation as being critical for the regulation of a MAPK pathway. The control of Rho GTPase levels by stabilization and turnover may be a general feature of signaling pathway regulation, which can result in the execution of a specific developmental program.
Collapse
Affiliation(s)
- Beatriz González
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY
| | - Paul J. Cullen
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY,Correspondence to Paul J. Cullen:
| |
Collapse
|
20
|
Yoshimoto T, Kittaka M, Doan AAP, Urata R, Prideaux M, Rojas RE, Harding CV, Henry Boom W, Bonewald LF, Greenfield EM, Ueki Y. Osteocytes directly regulate osteolysis via MYD88 signaling in bacterial bone infection. Nat Commun 2022; 13:6648. [PMID: 36333322 PMCID: PMC9636212 DOI: 10.1038/s41467-022-34352-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022] Open
Abstract
The impact of bone cell activation on bacterially-induced osteolysis remains elusive. Here, we show that matrix-embedded osteocytes stimulated with bacterial pathogen-associated molecular patterns (PAMPs) directly drive bone resorption through an MYD88-regulated signaling pathway. Mice lacking MYD88, primarily in osteocytes, protect against osteolysis caused by calvarial injections of bacterial PAMPs and resist alveolar bone resorption induced by oral Porphyromonas gingivalis (Pg) infection. In contrast, mice with targeted MYD88 restoration in osteocytes exhibit osteolysis with inflammatory cell infiltration. In vitro, bacterial PAMPs induce significantly higher expression of the cytokine RANKL in osteocytes than osteoblasts. Mechanistically, activation of the osteocyte MYD88 pathway up-regulates RANKL by increasing binding of the transcription factors CREB and STAT3 to Rankl enhancers and by suppressing K48-ubiquitination of CREB/CREB binding protein and STAT3. Systemic administration of an MYD88 inhibitor prevents jawbone loss in Pg-driven periodontitis. These findings reveal that osteocytes directly regulate inflammatory osteolysis in bone infection, suggesting that MYD88 and downstream RANKL regulators in osteocytes are therapeutic targets for osteolysis in periodontitis and osteomyelitis.
Collapse
Affiliation(s)
- Tetsuya Yoshimoto
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, IN, 46202-5126, USA
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, 46202-5126, USA
| | - Mizuho Kittaka
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, IN, 46202-5126, USA
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, 46202-5126, USA
| | - Andrew Anh Phuong Doan
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, IN, 46202-5126, USA
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, 46202-5126, USA
| | - Rina Urata
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, IN, 46202-5126, USA
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, 46202-5126, USA
| | - Matthew Prideaux
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, 46202-5126, USA
- Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, IN, 46202-5126, USA
| | | | - Clifford V Harding
- Department of Pathology, Case Western Reserve University & University Hospitals Cleveland Medical Center, Cleveland, OH, 44106-4960, USA
| | - W Henry Boom
- Department of Pathology, Case Western Reserve University & University Hospitals Cleveland Medical Center, Cleveland, OH, 44106-4960, USA
- Department of Medicine, Case Western Reserve University & University Hospitals Cleveland Medical Center, Cleveland, OH, 44106-4960, USA
- Department of Molecular Biology and Microbiology, Case Western Reserve University & University Hospitals Cleveland Medical Center, Cleveland, OH, 44106-4960, USA
| | - Lynda F Bonewald
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, 46202-5126, USA
- Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, IN, 46202-5126, USA
| | - Edward M Greenfield
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, 46202-5126, USA
- Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, IN, 46202-5126, USA
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202-5126, USA
| | - Yasuyoshi Ueki
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, IN, 46202-5126, USA.
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, 46202-5126, USA.
| |
Collapse
|
21
|
Cannabinoid CB 1 receptor gene inactivation in oligodendrocyte precursors disrupts oligodendrogenesis and myelination in mice. Cell Death Dis 2022; 13:585. [PMID: 35798697 PMCID: PMC9263142 DOI: 10.1038/s41419-022-05032-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 06/14/2022] [Accepted: 06/17/2022] [Indexed: 01/21/2023]
Abstract
Cannabinoids are known to modulate oligodendrogenesis and developmental CNS myelination. However, the cell-autonomous action of these compounds on oligodendroglial cells in vivo, and the molecular mechanisms underlying these effects have not yet been studied. Here, by using oligodendroglial precursor cell (OPC)-targeted genetic mouse models, we show that cannabinoid CB1 receptors exert an essential role in modulating OPC differentiation at the critical periods of postnatal myelination. We found that selective genetic inactivation of CB1 receptors in OPCs in vivo perturbs oligodendrogenesis and postnatal myelination by altering the RhoA/ROCK signaling pathway, leading to hypomyelination, and motor and cognitive alterations in young adult mice. Conversely, pharmacological CB1 receptor activation, by inducing E3 ubiquitin ligase-dependent RhoA proteasomal degradation, promotes oligodendrocyte development and CNS myelination in OPCs, an effect that was not evident in OPC-specific CB1 receptor-deficient mice. Moreover, pharmacological inactivation of ROCK in vivo overcomes the defects in oligodendrogenesis and CNS myelination, and behavioral alterations found in OPC-specific CB1 receptor-deficient mice. Overall, this study supports a cell-autonomous role for CB1 receptors in modulating oligodendrogenesis in vivo, which may have a profound impact on the scientific knowledge and therapeutic manipulation of CNS myelination by cannabinoids.
Collapse
|
22
|
RhoA Signaling in Neurodegenerative Diseases. Cells 2022; 11:cells11091520. [PMID: 35563826 PMCID: PMC9103838 DOI: 10.3390/cells11091520] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/25/2022] [Accepted: 04/29/2022] [Indexed: 02/04/2023] Open
Abstract
Ras homolog gene family member A (RhoA) is a small GTPase of the Rho family involved in regulating multiple signal transduction pathways that influence a diverse range of cellular functions. RhoA and many of its downstream effector proteins are highly expressed in the nervous system, implying an important role for RhoA signaling in neurons and glial cells. Indeed, emerging evidence points toward a role of aberrant RhoA signaling in neurodegenerative diseases such as Parkinson’s disease, Alzheimer’s disease, Huntington’s disease, and amyotrophic lateral sclerosis. In this review, we summarize the current knowledge of RhoA regulation and downstream cellular functions with an emphasis on the role of RhoA signaling in neurodegenerative diseases and the therapeutic potential of RhoA inhibition in neurodegeneration.
Collapse
|
23
|
Hutter K, Lindner SE, Kurschat C, Rülicke T, Villunger A, Herzog S. The miR-26 family regulates early B cell development and transformation. Life Sci Alliance 2022; 5:5/8/e202101303. [PMID: 35459737 PMCID: PMC9034462 DOI: 10.26508/lsa.202101303] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 12/16/2022] Open
Abstract
MiRNAs are small noncoding RNAs that promote the sequence-specific repression of their respective target genes, thereby regulating diverse physiological as well as pathological processes. Here, we identify a novel role of the miR-26 family in early B cell development. We show that enhanced expression of miR-26 family members potently blocks the pre-B to immature B cell transition, promotes pre-B cell expansion and eventually enables growth factor independency. Mechanistically, this is at least partially mediated by direct repression of the tumor-suppressor Pten, which consequently enhances PI3K-AKT signaling. Conversely, limiting miR-26 activity in a more physiological loss-of-function approach counteracts proliferation and enhances pre-B cell differentiation in vitro as well as in vivo. We therefore postulate a rheostat-like role for the miR-26 family in progenitor B cells, with an increase in mature miR-26 levels signaling cell expansion, and facilitating pre-B to the immature B cell progression when reduced.
Collapse
Affiliation(s)
- Katharina Hutter
- Institute of Developmental Immunology, Biocenter, Medical University Innsbruck, Innsbruck, Austria
| | - Silke E Lindner
- Institute of Developmental Immunology, Biocenter, Medical University Innsbruck, Innsbruck, Austria
| | - Constanze Kurschat
- Institute of Developmental Immunology, Biocenter, Medical University Innsbruck, Innsbruck, Austria
| | - Thomas Rülicke
- Department of Biomedical Sciences and Ludwig Boltzmann Institute for Hematology and Oncology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Andreas Villunger
- Institute of Developmental Immunology, Biocenter, Medical University Innsbruck, Innsbruck, Austria,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria,Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
| | - Sebastian Herzog
- Institute of Developmental Immunology, Biocenter, Medical University Innsbruck, Innsbruck, Austria,Correspondence:
| |
Collapse
|
24
|
Weiß L, Gaelings L, Reiner T, Mergner J, Kuster B, Fehér A, Hensel G, Gahrtz M, Kumlehn J, Engelhardt S, Hückelhoven R. Posttranslational modification of the RHO of plants protein RACB by phosphorylation and cross-kingdom conserved ubiquitination. PLoS One 2022; 17:e0258924. [PMID: 35333858 PMCID: PMC8956194 DOI: 10.1371/journal.pone.0258924] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/10/2021] [Indexed: 11/19/2022] Open
Abstract
Small RHO-type G-proteins act as signaling hubs and master regulators of polarity in eukaryotic cells. Their activity is tightly controlled, as defective RHO signaling leads to aberrant growth and developmental defects. Two major processes regulate G-protein activity: canonical shuttling between different nucleotide bound states and posttranslational modification (PTM), of which the latter can support or suppress RHO signaling, depending on the individual PTM. In plants, regulation of Rho of plants (ROPs) signaling activity has been shown to act through nucleotide exchange and GTP hydrolysis, as well as through lipid modification, but there is little data available on phosphorylation or ubiquitination of ROPs. Hence, we applied proteomic analyses to identify PTMs of the barley ROP RACB. We observed in vitro phosphorylation by barley ROP binding kinase 1 and in vivo ubiquitination of RACB. Comparative analyses of the newly identified RACB phosphosites and human RHO protein phosphosites revealed conservation of modified amino acid residues, but no overlap of actual phosphorylation patterns. However, the identified RACB ubiquitination site is conserved in all ROPs from Hordeum vulgare, Arabidopsis thaliana and Oryza sativa and in mammalian Rac1 and Rac3. Point mutation of this ubiquitination site leads to stabilization of RACB. Hence, this highly conserved lysine residue may regulate protein stability across different kingdoms.
Collapse
Affiliation(s)
- Lukas Weiß
- Chair of Phytopathology, Technical University of Munich (TUM), Freising, Germany
| | - Lana Gaelings
- Chair of Phytopathology, Technical University of Munich (TUM), Freising, Germany
| | - Tina Reiner
- Chair of Phytopathology, Technical University of Munich (TUM), Freising, Germany
| | - Julia Mergner
- Chair of Proteomics and Bioanalytics, Technical University of Munich (TUM), Freising, Germany
| | - Bernhard Kuster
- Chair of Proteomics and Bioanalytics, Technical University of Munich (TUM), Freising, Germany
- Bavarian Biomolecular Mass Spectrometry Center (BayBioMS), TUM, Freising, Germany
| | - Attila Fehér
- Chair of Plant Biology, University of Szeged, and Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
| | - Götz Hensel
- Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Manfred Gahrtz
- Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Jochen Kumlehn
- Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Stefan Engelhardt
- Chair of Phytopathology, Technical University of Munich (TUM), Freising, Germany
| | - Ralph Hückelhoven
- Chair of Phytopathology, Technical University of Munich (TUM), Freising, Germany
| |
Collapse
|
25
|
Zhao J, Stephens T, Zhao Y. Molecular Regulation of Lysophosphatidic Acid Receptor 1 Maturation and Desensitization. Cell Biochem Biophys 2021; 79:477-483. [PMID: 34032994 PMCID: PMC8887818 DOI: 10.1007/s12013-021-00999-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2021] [Indexed: 10/21/2022]
Abstract
Lysophosphatidic acid receptor 1 (LPA1) belongs to the G protein-coupled receptor family. The ligand for LPA1 is LPA, the simplest lysophospholipid. LPA is considered a growth factor and induces cell proliferation, anti-apoptosis, and cell migration. The pro-inflammatory and pro-fibrotic roles of LPA have also been well-demonstrated. Most of the biological functions of LPA are mostly executed through LPA1. The mature form of LPA1 is glycosylated and localized on the plasma membrane. LPA1 is bound to heterotrimetric G proteins and transduces intracellular signaling in response to ligation to LPA. Desensitization of LPA1 negatively regulates LPA1-mediated signaling and the resulting biological functions. Phosphorylation and ubiquitination are well-demonstrated posttranslational modifications of GPCR. In this review, we will discuss our knowledge of LPA1 glycosylation, maturation, and trafficking from the endoplasmic reticulum (ER)/Golgi to the plasma membrane. Moreover, in light of recent findings, we will also discuss molecular regulation of LPA1 internalization and stability.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Physiology and Cell Biology, the Ohio State University, Columbus, OH, USA
| | - Thomas Stephens
- Department of Physiology and Cell Biology, the Ohio State University, Columbus, OH, USA
| | - Yutong Zhao
- Department of Physiology and Cell Biology, the Ohio State University, Columbus, OH, USA.
| |
Collapse
|
26
|
Lei Z, Wang J, Zhang L, Liu CH. Ubiquitination-Dependent Regulation of Small GTPases in Membrane Trafficking: From Cell Biology to Human Diseases. Front Cell Dev Biol 2021; 9:688352. [PMID: 34277632 PMCID: PMC8281112 DOI: 10.3389/fcell.2021.688352] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/09/2021] [Indexed: 01/04/2023] Open
Abstract
Membrane trafficking is critical for cellular homeostasis, which is mainly carried out by small GTPases, a class of proteins functioning in vesicle budding, transport, tethering and fusion processes. The accurate and organized membrane trafficking relies on the proper regulation of small GTPases, which involves the conversion between GTP- and GDP-bound small GTPases mediated by guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs). Emerging evidence indicates that post-translational modifications (PTMs) of small GTPases, especially ubiquitination, play an important role in the spatio-temporal regulation of small GTPases, and the dysregulation of small GTPase ubiquitination can result in multiple human diseases. In this review, we introduce small GTPases-mediated membrane trafficking pathways and the biological processes of ubiquitination-dependent regulation of small GTPases, including the regulation of small GTPase stability, activity and localization. We then discuss the dysregulation of small GTPase ubiquitination and the associated human membrane trafficking-related diseases, focusing on the neurological diseases and infections. An in-depth understanding of the molecular mechanisms by which ubiquitination regulates small GTPases can provide novel insights into the membrane trafficking process, which knowledge is valuable for the development of more effective and specific therapeutics for membrane trafficking-related human diseases.
Collapse
Affiliation(s)
- Zehui Lei
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Jing Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Beijing, China
| | - Lingqiang Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Cui Hua Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
27
|
Dong S, Wei J, Bowser RK, Chen BB, Mallampalli RK, Miao J, Ye Q, Tran KC, Zhao Y, Zhao J. SCF FBXW17 E3 ubiquitin ligase regulates FBXL19 stability and cell migration. J Cell Biochem 2021; 122:326-334. [PMID: 33053230 PMCID: PMC7887023 DOI: 10.1002/jcb.29860] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 01/16/2023]
Abstract
The Skp1-Cul1-F-box protein (SCF) E3 ligase complex is one of the largest ubiquitin E3 ligase families. FBXL19, a F-box protein in SCFFBXL19 E3 ligase complex, regulates a variety of cellular responses including cell migration. We have shown that FBXL19 is not stable and its degradation is mediated by the ubiquitin-proteasome system, while the ubiquitin E3 ligase for FBXL19 ubiquitination and degradation has not been identified. In the study, we discovered that a new ubiquitin E3 ligase, SCFFBXW17 , ubiquitinates and induces FBXL19 degradation. Exogenous FBXW17 targets FBXL19 for its ubiquitination and degradation. Lysine 114 in FBXL19 is a potential ubiquitin acceptor site. Acetylation of FBXL19 attenuated SCFFBXW17 -mediated FBXL19 degradation. SCFFBXL19 E3 ligase reduced Rac1 levels and cell migration, while the effects were attenuated by exogenous FBXW17. Downregulation of FBXW17 attenuated lysophosphatidic acid-induced lamellipodia formation and Rac1 accumulation at migration leading edge. Taken together with our previous studies, FBXL19 is degraded by the ubiquitin-proteasome system and its site-specific ubiquitination is mediated by SCFFBXW17 E3 ligase, which promotes cell migration.
Collapse
Affiliation(s)
- Su Dong
- Department of Physiology and Cell Biology, Dorothy M. Davis
Heart and Lung Research Institute, The Ohio State University, Columbus, OH
| | - Jianxin Wei
- Department of Medicine, The University of Pittsburgh,
Pittsburgh, PA
| | - Rachel K. Bowser
- Department of Medicine, The University of Pittsburgh,
Pittsburgh, PA
| | - Bill B. Chen
- Department of Medicine, The University of Pittsburgh,
Pittsburgh, PA
| | - Rama K. Mallampalli
- Pulmonary, Critical Care & Sleep Medicine Division, The
Ohio State University, Columbus, OH
| | - Jiaxing Miao
- Department of Physiology and Cell Biology, Dorothy M. Davis
Heart and Lung Research Institute, The Ohio State University, Columbus, OH
| | - Qinmao Ye
- Department of Physiology and Cell Biology, Dorothy M. Davis
Heart and Lung Research Institute, The Ohio State University, Columbus, OH
| | - Kevin C. Tran
- Department of Physiology and Cell Biology, Dorothy M. Davis
Heart and Lung Research Institute, The Ohio State University, Columbus, OH
| | - Yutong Zhao
- Department of Physiology and Cell Biology, Dorothy M. Davis
Heart and Lung Research Institute, The Ohio State University, Columbus, OH,Pulmonary, Critical Care & Sleep Medicine Division, The
Ohio State University, Columbus, OH
| | - Jing Zhao
- Department of Physiology and Cell Biology, Dorothy M. Davis
Heart and Lung Research Institute, The Ohio State University, Columbus, OH,Pulmonary, Critical Care & Sleep Medicine Division, The
Ohio State University, Columbus, OH,Address correspondence to: Jing Zhao, MD, PhD,
Department of Physiology and Cell Biology, The Ohio State University, 333 10th
Avenue, Graves Hall 2166D, Columbus, OH, United States, 43065. Tel:
614-685-0024;
| |
Collapse
|
28
|
Pereira De Carvalho B, Chern YJ, He J, Chan CH. The ubiquitin ligase RNF8 regulates Rho GTPases and promotes cytoskeletal changes and motility in triple-negative breast cancer cells. FEBS Lett 2020; 595:241-252. [PMID: 33205415 PMCID: PMC7898409 DOI: 10.1002/1873-3468.13999] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 10/28/2020] [Accepted: 11/08/2020] [Indexed: 12/11/2022]
Abstract
The ubiquitin ligase RNF8 is known to induce epithelial-to-mesenchymal (EMT) transition and metastasis in triple-negative breast cancer (TNBC). Besides EMT, Rho GTPases have been shown as key regulators in metastasis. In this study, we investigated the role of RNF8 in regulating Rho GTPases and cell motility. We find that RNF8 knockdown in TNBC cells attenuates the protein and mRNA levels of Ras homolog family member A (RHOA) and cell division cycle 42 (CDC42). We show that the formation of filopodia, focal adhesions, and the association of focal adhesions to stress fibers is impaired upon RNF8 knockdown. Cell migration is significantly inhibited by RNF8 knockdown. Our study suggests a potential novel role for RNF8 in mediating cell migration in TNBC through regulation of the Rho GTPases RHOA and CDC42.
Collapse
Affiliation(s)
| | - Yi-Jye Chern
- Department of Pharmacological Sciences, Stony Brook University, NY, USA
| | - Jiabei He
- Department of Pharmacological Sciences, Stony Brook University, NY, USA
| | - Chia-Hsin Chan
- Department of Pharmacological Sciences, Stony Brook University, NY, USA.,Stony Brook Cancer Center, Stony Brook University, NY, USA
| |
Collapse
|
29
|
Esteban-Villarrubia J, Soto-Castillo JJ, Pozas J, San Román-Gil M, Orejana-Martín I, Torres-Jiménez J, Carrato A, Alonso-Gordoa T, Molina-Cerrillo J. Tyrosine Kinase Receptors in Oncology. Int J Mol Sci 2020; 21:E8529. [PMID: 33198314 PMCID: PMC7696731 DOI: 10.3390/ijms21228529] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/07/2020] [Accepted: 11/09/2020] [Indexed: 02/07/2023] Open
Abstract
Tyrosine kinase receptors (TKR) comprise more than 60 molecules that play an essential role in the molecular pathways, leading to cell survival and differentiation. Consequently, genetic alterations of TKRs may lead to tumorigenesis and, therefore, cancer development. The discovery and improvement of tyrosine kinase inhibitors (TKI) against TKRs have entailed an important step in the knowledge-expansion of tumor physiopathology as well as an improvement in the cancer treatment based on molecular alterations over many tumor types. The purpose of this review is to provide a comprehensive review of the different families of TKRs and their role in the expansion of tumor cells and how TKIs can stop these pathways to tumorigenesis, in combination or not with other therapies. The increasing growth of this landscape is driving us to strengthen the development of precision oncology with clinical trials based on molecular-based therapy over a histology-based one, with promising preliminary results.
Collapse
Affiliation(s)
- Jorge Esteban-Villarrubia
- Medical Oncology Department, University Hospital Ramon y Cajal, 28034 Madrid, Spain; (J.E.-V.); (J.J.S.-C.); (J.P.); (M.S.R.-G.); (I.O.-M.); (J.T.-J.)
| | - Juan José Soto-Castillo
- Medical Oncology Department, University Hospital Ramon y Cajal, 28034 Madrid, Spain; (J.E.-V.); (J.J.S.-C.); (J.P.); (M.S.R.-G.); (I.O.-M.); (J.T.-J.)
| | - Javier Pozas
- Medical Oncology Department, University Hospital Ramon y Cajal, 28034 Madrid, Spain; (J.E.-V.); (J.J.S.-C.); (J.P.); (M.S.R.-G.); (I.O.-M.); (J.T.-J.)
| | - María San Román-Gil
- Medical Oncology Department, University Hospital Ramon y Cajal, 28034 Madrid, Spain; (J.E.-V.); (J.J.S.-C.); (J.P.); (M.S.R.-G.); (I.O.-M.); (J.T.-J.)
| | - Inmaculada Orejana-Martín
- Medical Oncology Department, University Hospital Ramon y Cajal, 28034 Madrid, Spain; (J.E.-V.); (J.J.S.-C.); (J.P.); (M.S.R.-G.); (I.O.-M.); (J.T.-J.)
| | - Javier Torres-Jiménez
- Medical Oncology Department, University Hospital Ramon y Cajal, 28034 Madrid, Spain; (J.E.-V.); (J.J.S.-C.); (J.P.); (M.S.R.-G.); (I.O.-M.); (J.T.-J.)
| | - Alfredo Carrato
- Medical Oncology Department, Ramón y Cajal Health Research Institute (IRYCIS), CIBERONC, Alcalá University, University Hospital Ramon y Cajal, 28034 Madrid, Spain; (A.C.); (J.M.-C.)
| | - Teresa Alonso-Gordoa
- Medical Oncology Department, Ramón y Cajal Health Research Institute (IRYCIS), CIBERONC, Alcalá University, University Hospital Ramon y Cajal, 28034 Madrid, Spain; (A.C.); (J.M.-C.)
| | - Javier Molina-Cerrillo
- Medical Oncology Department, Ramón y Cajal Health Research Institute (IRYCIS), CIBERONC, Alcalá University, University Hospital Ramon y Cajal, 28034 Madrid, Spain; (A.C.); (J.M.-C.)
| |
Collapse
|
30
|
Dysregulation of Rho GTPases in Human Cancers. Cancers (Basel) 2020; 12:cancers12051179. [PMID: 32392742 PMCID: PMC7281333 DOI: 10.3390/cancers12051179] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/24/2020] [Accepted: 04/30/2020] [Indexed: 01/28/2023] Open
Abstract
Rho GTPases play central roles in numerous cellular processes, including cell motility, cell polarity, and cell cycle progression, by regulating actin cytoskeletal dynamics and cell adhesion. Dysregulation of Rho GTPase signaling is observed in a broad range of human cancers, and is associated with cancer development and malignant phenotypes, including metastasis and chemoresistance. Rho GTPase activity is precisely controlled by guanine nucleotide exchange factors, GTPase-activating proteins, and guanine nucleotide dissociation inhibitors. Recent evidence demonstrates that it is also regulated by post-translational modifications, such as phosphorylation, ubiquitination, and sumoylation. Here, we review the current knowledge on the role of Rho GTPases, and the precise mechanisms controlling their activity in the regulation of cancer progression. In addition, we discuss targeting strategies for the development of new drugs to improve cancer therapy.
Collapse
|
31
|
Bhushan R, Rani A, Ali A, Singh VK, Dubey PK. Bioinformatics enrichment analysis of genes and pathways related to maternal type 1 diabetes associated with adverse fetal outcomes. J Diabetes Complications 2020; 34:107556. [PMID: 32046932 DOI: 10.1016/j.jdiacomp.2020.107556] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 01/31/2020] [Accepted: 01/31/2020] [Indexed: 01/14/2023]
Abstract
Maternal type 1 diabetes mellitus (T1DM) may affect fetal development by altering the gene expression profile of the umbilical cord. The present study aimed to explore the T1DM-induced gene expression changes in the fetal umbilical cord. The raw gene expression profiles (ID: GSE51546) of umbilical cord tissue obtained from six normal mothers (non-diabetic) and six type 1 diabetic mothers were used to identify the differentially expressed genes. Genes that correspond to official gene symbols were selected for protein-protein interaction (PPI) and sub-network construction (combined score > 0.4). Functional annotation for Gene Ontology (GO) and pathway enrichment analysis were performed for genes involved in networking. A total of 110 differentially expressed genes were identified of which 38 were up-regulated while 72 were down-regulated. Only 37 genes were identified to significantly interact with each other. Hub genes including HSPA4, KCTD6, UBE2G1, FBXL19, and EHMT1 were up-regulated while KBTBD7, TRIM32, and NUP were down-regulated. T1DM had a major effect on the expression of genes involved in cellular death and differentiation, cell signaling and communication, protein modification and regulation of GTPase activity. Total 27 pathways were enriched and genes related to Wnt signaling, VEGF signaling, inflammation mediated by chemokine and cytokine signaling pathways, FGF signaling pathways and GnRH receptor pathways were found significantly affected by T1DM. Our results suggest that the T1DM environment seems to alter umbilical cord gene expression involved in the regulation of pathophysiology of the diabetic mother which in turn may lead to long-term consequences in various tissues in infants. This study provides insight into the molecular mechanism underlying the adverse pregnancy outcomes of maternal T1DM.
Collapse
Affiliation(s)
- Ravi Bhushan
- Centre for Genetic Disorders, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Anjali Rani
- Department of Obstetrics and Gynecology, Institute of Medical Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Akhtar Ali
- Centre for Genetic Disorders, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Vinay Kumar Singh
- Centre for Bioinformatics, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Pawan K Dubey
- Centre for Genetic Disorders, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India.
| |
Collapse
|
32
|
Li S, Tian A, Li S, Han Y, Wang B, Jiang J. Gilgamesh (Gish)/CK1γ regulates tissue homeostasis and aging in adult Drosophila midgut. J Cell Biol 2020; 219:133831. [PMID: 32328627 PMCID: PMC7147094 DOI: 10.1083/jcb.201909103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 01/03/2020] [Accepted: 01/16/2020] [Indexed: 12/26/2022] Open
Abstract
Adult tissues and organs rely on resident stem cells to generate new cells that replenish damaged cells. To maintain homeostasis, stem cell activity needs to be tightly controlled throughout the adult life. Here, we show that the membrane-associated kinase Gilgamesh (Gish)/CK1γ maintains Drosophila adult midgut homeostasis by restricting JNK pathway activity and that Gish is essential for intestinal stem cell (ISC) maintenance under stress conditions. Inactivation of Gish resulted in aberrant JNK pathway activation and excessive production of multiple cytokines and growth factors that drive ISC overproliferation. Mechanistically, Gish restricts JNK activation by phosphorylating and destabilizing a small GTPase, Rho1. Interestingly, we find that Gish expression is down-regulated in aging guts and that increasing Gish activity in aging guts can restore tissue homeostasis. Hence, our study identifies Gish/CK1γ as a novel regulator of Rho1 and gatekeeper of tissue homeostasis whose activity is compromised in aging guts.
Collapse
Affiliation(s)
- Shuangxi Li
- Department of Developmental Biology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Aiguo Tian
- Department of Developmental Biology, University of Texas Southwestern Medical Center, Dallas, TX.,Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Shuang Li
- Department of Developmental Biology, University of Texas Southwestern Medical Center, Dallas, TX.,Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Yuhong Han
- Department of Developmental Biology, University of Texas Southwestern Medical Center, Dallas, TX.,Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Bing Wang
- Department of Developmental Biology, University of Texas Southwestern Medical Center, Dallas, TX.,Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Jin Jiang
- Department of Developmental Biology, University of Texas Southwestern Medical Center, Dallas, TX.,Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX.,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
33
|
Tekcham DS, Chen D, Liu Y, Ling T, Zhang Y, Chen H, Wang W, Otkur W, Qi H, Xia T, Liu X, Piao HL, Liu H. F-box proteins and cancer: an update from functional and regulatory mechanism to therapeutic clinical prospects. Am J Cancer Res 2020; 10:4150-4167. [PMID: 32226545 PMCID: PMC7086354 DOI: 10.7150/thno.42735] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 02/04/2020] [Indexed: 12/16/2022] Open
Abstract
E3 ubiquitin ligases play a critical role in cellular mechanisms and cancer progression. F-box protein is the core component of the SKP1-cullin 1-F-box (SCF)-type E3 ubiquitin ligase and directly binds to substrates by various specific domains. According to the specific domains, F-box proteins are further classified into three sub-families: 1) F-box with leucine rich amino acid repeats (FBXL); 2) F-box with WD 40 amino acid repeats (FBXW); 3) F-box only with uncharacterized domains (FBXO). Here, we summarize the substrates of F-box proteins, discuss the important molecular mechanism and emerging role of F-box proteins especially from the perspective of cancer development and progression. These findings will shed new light on malignant tumor progression mechanisms, and suggest the potential role of F-box proteins as cancer biomarkers and therapeutic targets for future cancer treatment.
Collapse
|
34
|
Khong ZJ, Lai SK, Koh CG, Geifman-Shochat S, Li HY. A novel function of AAA-ATPase p97/VCP in the regulation of cell motility. Oncotarget 2020; 11:74-85. [PMID: 32002125 PMCID: PMC6967774 DOI: 10.18632/oncotarget.27419] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 12/21/2019] [Indexed: 11/25/2022] Open
Abstract
High level of the multifunctional AAA-ATPase p97/VCP is often correlated to the development of cancer; however, the underlying mechanism is not understood completely. Here, we report a novel function of p97/VCP in actin regulation and cell motility. We found that loss of p97/VCP promotes stabilization of F-actin, which cannot be reversed by actin-destabilizing agent, Cytochalasin D. Live-cell imaging demonstrated reduced actin dynamics in p97/VCP-knockdown cells, leading to compromised cell motility. We further examined the underlying mechanism and found elevated RhoA protein levels along with increased phosphorylation of its downstream effectors, ROCK, LIMK, and MLC upon the knockdown of p97/VCP. Since p97/VCP is indispensable in the ubiquitination-dependent protein degradation pathway, we investigated if the loss of p97/VCP hinders the protein degradation of RhoA. Knockdown of p97/VCP resulted in a higher amount of ubiquitinated RhoA, suggesting p97/VCP involvement in the proteasome-dependent protein degradation pathway. Finally, we found that p97/VCP interacts with FBXL19, a molecular chaperone known to guide ubiquitinated RhoA for proteasomal degradation. Reduction of p97/VCP may result in the accumulation of RhoA which, in turn, enhances cytoplasmic F-actin formation. In summary, our study uncovered a novel function of p97/VCP in actin regulation and cell motility via the Rho-ROCK dependent pathway which provides fundamental insights into how p97/VCP is involved in cancer development.
Collapse
Affiliation(s)
- Zi-Jia Khong
- School of Biological Sciences, College of Science, Nanyang Technological University, Singapore 637551, Singapore
| | - Soak-Kuan Lai
- School of Biological Sciences, College of Science, Nanyang Technological University, Singapore 637551, Singapore
| | - Cheng-Gee Koh
- School of Biological Sciences, College of Science, Nanyang Technological University, Singapore 637551, Singapore
| | - Susana Geifman-Shochat
- School of Biological Sciences, College of Science, Nanyang Technological University, Singapore 637551, Singapore
| | - Hoi-Yeung Li
- School of Biological Sciences, College of Science, Nanyang Technological University, Singapore 637551, Singapore
| |
Collapse
|
35
|
Arp2/3-Branched Actin Maintains an Active Pool of GTP-RhoA and Controls RhoA Abundance. Cells 2019; 8:cells8101264. [PMID: 31623230 PMCID: PMC6830327 DOI: 10.3390/cells8101264] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/03/2019] [Accepted: 10/15/2019] [Indexed: 01/23/2023] Open
Abstract
Small GTPases regulate cytoskeletal dynamics, cell motility, and division under precise spatiotemporal control. Different small GTPases exhibit cross talks to exert feedback response or to act in concert during signal transduction. However, whether and how specific cytoskeletal components' feedback to upstream signaling factors remains largely elusive. Here, we report an intriguing finding that disruption of the Arp2/3-branched actin specifically reduces RhoA activity but upregulates its total protein abundance. We further dissect the mechanisms underlying these circumstances and identify the altered cortactin/p190RhoGAP interaction and weakened CCM2/Smurf1 binding to be involved in GTP-RhoA reduction and total RhoA increase, respectively. Moreover, we find that cytokinesis defects induced by Arp2/3 inhibition can be rescued by activating RhoA. Our study reveals an intricate feedback from the actin cytoskeleton to the small GTPase. Our work highlights the role of Arp2/3-branched actin in signal transduction aside from its function in serving as critical cytoskeletal components to maintain cell morphology and motility.
Collapse
|
36
|
Liu J, Li S, Chen S, Chen S, Geng Q, Xu D. c‐Met‐dependent phosphorylation of RhoA plays a key role in gastric cancer tumorigenesis. J Pathol 2019; 249:126-136. [DOI: 10.1002/path.5287] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 03/24/2019] [Accepted: 04/29/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Jianjun Liu
- State Key Laboratory of Oncology in South PR China Collaborative Innovation Center for Cancer Medicine Guangzhou PR China
- Department of Gastric Surgery Sun Yat‐Sen University Cancer Center Guangzhou PR China
| | - Shun Li
- State Key Laboratory of Oncology in South PR China Collaborative Innovation Center for Cancer Medicine Guangzhou PR China
- Department of Gastric Surgery Sun Yat‐Sen University Cancer Center Guangzhou PR China
| | - Shangxiang Chen
- State Key Laboratory of Oncology in South PR China Collaborative Innovation Center for Cancer Medicine Guangzhou PR China
- Department of Gastric Surgery Sun Yat‐Sen University Cancer Center Guangzhou PR China
| | - Shuai Chen
- State Key Laboratory of Oncology in South PR China Collaborative Innovation Center for Cancer Medicine Guangzhou PR China
| | - Qirong Geng
- Department of Medical Oncology Fudan University Shanghai Cancer Center Shanghai PR China
| | - Dazhi Xu
- State Key Laboratory of Oncology in South PR China Collaborative Innovation Center for Cancer Medicine Guangzhou PR China
- Department of Gastric Surgery Sun Yat‐Sen University Cancer Center Guangzhou PR China
| |
Collapse
|
37
|
Liu J, Dong S, Wang H, Li L, Ye Q, Li Y, Miao J, Jhiang S, Zhao J, Zhao Y. Two distinct E3 ligases, SCF FBXL19 and HECW1, degrade thyroid transcription factor 1 in normal thyroid epithelial and follicular thyroid carcinoma cells, respectively. FASEB J 2019; 33:10538-10550. [PMID: 31238008 DOI: 10.1096/fj.201900415r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Thyroid transcription factor 1 (TTF1) regulates the tissue-specific expression of genes. However, the molecular regulation of TTF1 in thyroid normal and carcinoma cells has not been revealed. Here we identify 2 distinct ubiquitin E3 ligases that are responsible for TTF1 degradation in normal thyroid cells and carcinoma cells, respectively. Phorbol myristate acetate induced TTF1 protein degradation in the ubiquitin-proteasome system in both HTori3 thyroid follicular epithelial cells and follicular thyroid carcinoma 133 (FTC133) cells. Lysine 151 residue was identified as a ubiquitin acceptor site within TTF1 in both cell types. Overexpression of E3 ubiquitin protein ligase 1 containing HECT, C2, and WW domain (HECW1) induced TTF1 degradation and ubiquitination in Htori3 cells but not in FTC133 cells. Overexpression of ubiquitin E3 ligase subunit FBXL19 increased TTF1 ubiquitination and degradation in FTC133 cells, but it had no effect on TTF1 levels in Htori3 cells. Overexpression of TTF1 increased thyroglobulin and sodium/iodide symporter mRNA levels, cell migration, and proliferation in HTori3 cells, whereas the effects were reversed by the overexpression of HECW1. This study reveals an undiscovered molecular mechanism by which TTF1 ubiquitination and degradation is regulated by different E3 ligases in thyroid normal and tumor cells.-Liu, J., Dong, S., Wang, H., Li, L., Ye, Q., Li, Y., Miao, J., Jhiang, S., Zhao, J., Zhao, Y. Two distinct E3 ligases, SCFFBXL19 and HECW1, degrade thyroid transcription factor 1 in normal thyroid epithelial and follicular thyroid carcinoma cells, respectively.
Collapse
Affiliation(s)
- Jia Liu
- Department of Thyroid Surgery, The First Hospital of Jilin University, Changchun, China.,Department of Physiology and Cell Biology, The Ohio State University, Columbus, Ohio, USA
| | - Su Dong
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, Ohio, USA.,Department of Anesthesia, The First Hospital of Jilin University, Changchun, China
| | - Heather Wang
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, Ohio, USA
| | - Lian Li
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, Ohio, USA
| | - Qinmao Ye
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, Ohio, USA
| | - Yanhui Li
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, Ohio, USA.,Department of Anesthesia, The First Hospital of Jilin University, Changchun, China
| | - Jiaxing Miao
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, Ohio, USA
| | - Sissy Jhiang
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, Ohio, USA
| | - Jing Zhao
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, Ohio, USA
| | - Yutong Zhao
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
38
|
Ubiquitination and Long Non-coding RNAs Regulate Actin Cytoskeleton Regulators in Cancer Progression. Int J Mol Sci 2019; 20:ijms20122997. [PMID: 31248165 PMCID: PMC6627692 DOI: 10.3390/ijms20122997] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/16/2019] [Accepted: 06/17/2019] [Indexed: 12/15/2022] Open
Abstract
Actin filaments are a major component of the cytoskeleton in eukaryotic cells and play an important role in cancer metastasis. Dynamics and reorganization of actin filaments are regulated by numerous regulators, including Rho GTPases, PAKs (p21-activated kinases), ROCKs (Rho-associated coiled-coil containing kinases), LIMKs (LIM domain kinases), and SSH1 (slingshot family protein phosphate 1). Ubiquitination, as a ubiquitous post-transcriptional modification, deceases protein levels of actin cytoskeleton regulatory factors and thereby modulates the actin cytoskeleton. There is increasing evidence showing cytoskeleton regulation by long noncoding RNAs (lncRNAs) in cancer metastasis. However, which E3 ligases are activated for the ubiquitination of actin-cytoskeleton regulators involved in tumor metastasis remains to be fully elucidated. Moreover, it is not clear how lncRNAs influence the expression of actin cytoskeleton regulators. Here, we summarize physiological and pathological mechanisms of lncRNAs and ubiquitination control mediators of actin cytoskeleton regulators which that are involved in tumorigenesis and tumor progression. Finally, we briefly discuss crosstalk between ubiquitination and lncRNA control mediators of actin-cytoskeleton regulators in cancer.
Collapse
|
39
|
Ran promotes membrane targeting and stabilization of RhoA to orchestrate ovarian cancer cell invasion. Nat Commun 2019; 10:2666. [PMID: 31209254 PMCID: PMC6573066 DOI: 10.1038/s41467-019-10570-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 05/15/2019] [Indexed: 12/22/2022] Open
Abstract
Ran is a nucleocytoplasmic shuttle protein that is involved in cell cycle regulation, nuclear-cytoplasmic transport, and cell transformation. Ran plays an important role in cancer cell survival and cancer progression. Here, we show that, in addition to the nucleocytoplasmic localization of Ran, this GTPase is specifically associated with the plasma membrane/ruffles of ovarian cancer cells. Ran depletion has a drastic effect on RhoA stability and inhibits RhoA localization to the plasma membrane/ruffles and RhoA activity. We further demonstrate that the DEDDDL domain of Ran is required for the interaction with serine 188 of RhoA, which prevents RhoA degradation by the proteasome pathway. Moreover, the knockdown of Ran leads to a reduction of ovarian cancer cell invasion by impairing RhoA signalling. Our findings provide advanced insights into the mode of action of the Ran-RhoA signalling axis and may represent a potential therapeutic avenue for drug development to prevent ovarian tumour metastasis. Ran, a nucleus-cytoplasm shuttle protein, is implicated in cancer development and survival. Here, the authors show that Ran binds RhoA to impair its degradation and allow its localisation to the plasma membrane of ovarian cancer cells for tumour invasion.
Collapse
|
40
|
Pronk MCA, Majolée J, Loregger A, van Bezu JSM, Zelcer N, Hordijk PL, Kovačević I. FBXW7 regulates endothelial barrier function by suppression of the cholesterol synthesis pathway and prenylation of RhoB. Mol Biol Cell 2019; 30:607-621. [PMID: 30601691 PMCID: PMC6589702 DOI: 10.1091/mbc.e18-04-0259] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Rho GTPases control both the actin cytoskeleton and adherens junction stability and are recognized as essential regulators of endothelial barrier function. They act as molecular switches and are primarily regulated by the exchange of GDP and GTP. However, posttranslational modifications such as phosphorylation, prenylation, and ubiquitination can additionally alter their localization, stability, and activity. F-box proteins are involved in the recognition of substrate proteins predestined for ubiquitination and subsequent degradation. Given the importance of ubiquitination, we studied the effect of the loss of 62 members of the F-box protein family on endothelial barrier function in human umbilical vein endothelial cells. Endothelial barrier function was quantified by electrical cell impedance sensing and macromolecule passage assay. Our RNA interference–based screen identified FBXW7 as a key regulator of endothelial barrier function. Mechanistically, loss of FBXW7 induced the accumulation of the RhoB GTPase in endothelial cells, resulting in their increased contractility and permeability. FBXW7 knockdown induced activation of the cholesterol biosynthesis pathway and changed the prenylation of RhoB. This effect was reversed by farnesyl transferase inhibitors and by the addition of geranylgeranyl pyrophosphate. In summary, this study identifies FBXW7 as a novel regulator of endothelial barrier function in vitro. Loss of FBXW7 indirectly modulates RhoB activity via alteration of the cholesterol biosynthesis pathway and, consequently, of the prenylation status and activity of RhoB, resulting in increased contractility and disruption of the endothelial barrier.
Collapse
Affiliation(s)
- Manon C A Pronk
- Department of Physiology, Amsterdam Cardiovascular Sciences, and
| | - Jisca Majolée
- Department of Physiology, Amsterdam Cardiovascular Sciences, and
| | - Anke Loregger
- Department of Medical Biochemistry, Amsterdam University Medical Centers, 1081 HV Amsterdam, The Netherlands
| | - Jan S M van Bezu
- Department of Physiology, Amsterdam Cardiovascular Sciences, and
| | - Noam Zelcer
- Department of Medical Biochemistry, Amsterdam University Medical Centers, 1081 HV Amsterdam, The Netherlands
| | - Peter L Hordijk
- Department of Physiology, Amsterdam Cardiovascular Sciences, and
| | - Igor Kovačević
- Department of Physiology, Amsterdam Cardiovascular Sciences, and
| |
Collapse
|
41
|
Liu H, Wang J, Liu Y, Hu L, Zhang C, Xing B, Du X. Human U3 protein14a is a novel type ubiquitin ligase that binds RB and promotes RB degradation depending on a leucine-rich region. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1611-1620. [DOI: 10.1016/j.bbamcr.2018.08.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 08/22/2018] [Accepted: 08/23/2018] [Indexed: 11/16/2022]
|
42
|
Zhou HN, Ren YX, Li L, Wang KS, Jiao ZY. Function of Rho GTPase Activating Protein 11A in Tumors. Chin Med J (Engl) 2018; 131:1365-1366. [PMID: 29786052 PMCID: PMC5987510 DOI: 10.4103/0366-6999.232795] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Hui-Nian Zhou
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, Gansu 730030, China
| | - Yan-Xian Ren
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, Gansu 730030, China
| | - Long Li
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, Gansu 730030, China
| | - Ke-Shen Wang
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, Gansu 730030, China
| | - Zuo-Yi Jiao
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, Gansu 730030, China
| |
Collapse
|
43
|
Dimitrova E, Kondo T, Feldmann A, Nakayama M, Koseki Y, Konietzny R, Kessler BM, Koseki H, Klose RJ. FBXL19 recruits CDK-Mediator to CpG islands of developmental genes priming them for activation during lineage commitment. eLife 2018; 7:e37084. [PMID: 29809150 PMCID: PMC5997449 DOI: 10.7554/elife.37084] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 05/26/2018] [Indexed: 01/05/2023] Open
Abstract
CpG islands are gene regulatory elements associated with the majority of mammalian promoters, yet how they regulate gene expression remains poorly understood. Here, we identify FBXL19 as a CpG island-binding protein in mouse embryonic stem (ES) cells and show that it associates with the CDK-Mediator complex. We discover that FBXL19 recruits CDK-Mediator to CpG island-associated promoters of non-transcribed developmental genes to prime these genes for activation during cell lineage commitment. We further show that recognition of CpG islands by FBXL19 is essential for mouse development. Together this reveals a new CpG island-centric mechanism for CDK-Mediator recruitment to developmental gene promoters in ES cells and a requirement for CDK-Mediator in priming these developmental genes for activation during cell lineage commitment.
Collapse
Affiliation(s)
- Emilia Dimitrova
- Department of BiochemistryUniversity of OxfordOxfordUnited Kingdom
| | - Takashi Kondo
- Laboratory for Developmental GeneticsRIKEN Center for Integrative Medical SciencesYokohamaJapan
| | | | - Manabu Nakayama
- Department of Technology DevelopmentKazusa DNA Research InstituteKisarazuJapan
| | - Yoko Koseki
- Laboratory for Developmental GeneticsRIKEN Center for Integrative Medical SciencesYokohamaJapan
| | - Rebecca Konietzny
- Nuffield Department of MedicineTDI Mass Spectrometry Laboratory, Target Discovery Institute, University of OxfordOxfordUnited Kingdom
| | - Benedikt M Kessler
- Nuffield Department of MedicineTDI Mass Spectrometry Laboratory, Target Discovery Institute, University of OxfordOxfordUnited Kingdom
| | - Haruhiko Koseki
- Laboratory for Developmental GeneticsRIKEN Center for Integrative Medical SciencesYokohamaJapan
- CRESTJapan Science and Technology AgencyKawaguchiJapan
| | - Robert J Klose
- Department of BiochemistryUniversity of OxfordOxfordUnited Kingdom
| |
Collapse
|
44
|
Olson MF. Rho GTPases, their post-translational modifications, disease-associated mutations and pharmacological inhibitors. Small GTPases 2018; 9:203-215. [PMID: 27548350 PMCID: PMC5927519 DOI: 10.1080/21541248.2016.1218407] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 07/20/2016] [Accepted: 07/20/2016] [Indexed: 10/24/2022] Open
Abstract
The 20 members of the Rho GTPase family are key regulators of a wide-variety of biological activities. In response to activation, they signal via downstream effector proteins to induce dynamic alterations in the organization of the actomyosin cytoskeleton. In this review, post-translational modifications, mechanisms of dysregulation identified in human pathological conditions, and the ways that Rho GTPases might be targeted for chemotherapy will be discussed.
Collapse
Affiliation(s)
- Michael F. Olson
- Cancer Research UK Beatson Institute, Garscube Estate, Glasgow, UK
| |
Collapse
|
45
|
Wei J, Dong S, Yao K, Martinez MFYM, Fleisher PR, Zhao Y, Ma H, Zhao J. Histone acetyltransferase CBP promotes function of SCF FBXL19 ubiquitin E3 ligase by acetylation and stabilization of its F-box protein subunit. FASEB J 2018. [PMID: 29522376 DOI: 10.1096/fj.201701069r] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Ubiquitin E3 ligases mediate ubiquitination and degradation of intracellular proteins. We have shown that a relatively new Skp, Cullin, F-box (SCF) protein E3 ligase, SCF FBXL19, has an anti-inflammatory effect and controls actin cytoskeleton dynamics via targeting cell membrane receptor and small GTPases for their ubiquitination and degradation, but the molecular regulation of its subunit FBXL19 stability remains unclear. Here we show that FBXL19 degradation is controlled by the balance between its ubiquitination and acetylation. FBXL19 is an unstable protein with a half-life of ∼3 h. FBXL19 can be polyubiquitinated, and the proteasome inhibitor MG-132 prolongs FBXL19 half-life, suggesting that FBXL19 degradation is mediated in the ubiquitin-proteasome system. FBXL19 can also be acetylated, and enhancing acetylation of FBXL19 by a deacetylase inhibitor reduces FBXL19 ubiquitination levels. Acetylation-mimic FBXL19 mutant exhibits a longer half-life than wild type. An acetyltransferase CBP catalyzes acetylation of FBXL19. Inhibition or down-regulation of CBP reduces FBXL19 stability, whereas it is increased in CBP-overexpressing cells. Taken together, the data indicate that CBP-mediated acetylation reduces ubiquitination and stabilizes FBXL19. Further, we demonstrate that FBXL19 targets small GTPase Cdc42 for its ubiquitination and degradation, whereas this effect is reversed by inhibition of CBP, suggesting that CBP increases the effect of SCF FBXL19 E3 ligase through acetylation and stabilization of FBXL19. Our study reveals a new molecular model for regulation of SCF E3 ligase function by acetylation and stabilization of its subunit F-box protein.-Wei, J., Dong, S., Yao, K., Martinez, M. F. Y. M., Fleisher, P. R., Zhao, Y., Ma, H., Zhao, J. Histone acetyltransferase CBP promotes function of SCF FBXL19 ubiquitin E3 ligase by acetylation and stabilization of its F-box protein subunit.
Collapse
Affiliation(s)
- Jianxin Wei
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Su Dong
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Department of Anesthesia, First Hospital of Jilin University, Changchun, China
| | - Kangning Yao
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | | | - Paine R Fleisher
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Yutong Zhao
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Haichun Ma
- Department of Anesthesia, First Hospital of Jilin University, Changchun, China
| | - Jing Zhao
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
46
|
Long non-coding RNA MT1DP shunts the cellular defense to cytotoxicity through crosstalk with MT1H and RhoC in cadmium stress. Cell Discov 2018; 4:5. [PMID: 29507753 PMCID: PMC5824791 DOI: 10.1038/s41421-017-0005-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 12/12/2017] [Accepted: 12/12/2017] [Indexed: 12/18/2022] Open
Abstract
Metallothioneins (MTs) are known to protect cells against oxidative stress, especially providing protection against cadmium (Cd) toxicity in hepatocytes. There are various gene variants and pseudogenes for MTs; however, there is little understanding on the functions of those non-coding MT members that are known to be expressed as long non-coding RNAs (lncRNAs) nowadays. Different from most protein-coding MT members, MT1DP was here found that remarkably induced to provoke cytotoxicity in hepatocytes in response to Cd treatment. MT1DP exerted such a pro-apoptotic function in Cd-treated hepatocytes through interacting with two partners: RhoC and MT1H. On one hand, MT1DP interacted with RhoC protein to increase the latter’s stability by preventing lysosome-dependent protein degradation. Therefore, upon Cd stress, MT1DP/RhoC complex was quickly reinforced to activate RhoC-CCN1/2-AKT signaling and potentiate Ca2+ influx, leading to enhanced Cd uptake and elevated Cd toxicity. On the other hand, MT1H, a protein-coding member of the MT family with little known function, was found to quickly respond to Cd exposure along with MT1DP. Mechanistically, MT1H and MT1DP were uncovered to mutually protect each other through a reciprocal ceRNA mechanism, building up a positive feedback loop to enforce MT1DP-conducted signaling upon Cd exposure. Moreover, MT1DP was found to contribute much more to the activation of RhoC-CCN1/2-AKT signaling than MT1H. Considered together, we here unveiled a mystery whether a pseudogene within the MT family, MT1DP, has actual biological functions in regulating Cd-induced cellular defense. Our findings unearthed an important role of pseudogene MT1DP in calibrating the cellular machinery to switch the cellular defense to cytotoxicity through crosslinking an interplay between its two partners, namely MT1H and RhoC, under cadmium stress.
Collapse
|
47
|
Cai J, Culley MK, Zhao Y, Zhao J. The role of ubiquitination and deubiquitination in the regulation of cell junctions. Protein Cell 2017; 9:754-769. [PMID: 29080116 PMCID: PMC6107491 DOI: 10.1007/s13238-017-0486-3] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Accepted: 10/09/2017] [Indexed: 12/11/2022] Open
Abstract
Maintenance of cell junctions plays a crucial role in the regulation of cellular functions including cell proliferation, permeability, and cell death. Disruption of cell junctions is implicated in a variety of human disorders, such as inflammatory diseases and cancers. Understanding molecular regulation of cell junctions is important for development of therapeutic strategies for intervention of human diseases. Ubiquitination is an important type of post-translational modification that primarily regulates endogenous protein stability, receptor internalization, enzyme activity, and protein-protein interactions. Ubiquitination is tightly regulated by ubiquitin E3 ligases and can be reversed by deubiquitinating enzymes. Recent studies have been focusing on investigating the effect of protein stability in the regulation of cell-cell junctions. Ubiquitination and degradation of cadherins, claudins, and their interacting proteins are implicated in epithelial and endothelial barrier disruption. Recent studies have revealed that ubiquitination is involved in regulation of Rho GTPases’ biological activities. Taken together these studies, ubiquitination plays a critical role in modulating cell junctions and motility. In this review, we will discuss the effects of ubiquitination and deubiquitination on protein stability and expression of key proteins in the cell-cell junctions, including junction proteins, their interacting proteins, and small Rho GTPases. We provide an overview of protein stability in modulation of epithelial and endothelial barrier integrity and introduce potential future search directions to better understand the effects of ubiquitination on human disorders caused by dysfunction of cell junctions.
Collapse
Affiliation(s)
- Junting Cai
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Asthma, and Critical Care Medicine, Department of Medicine, The University of Pittsburgh, Pittsburgh, PA, 15213, USA.,Xiangya Hospital of Central South University, Changsha, 410008, China
| | - Miranda K Culley
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Asthma, and Critical Care Medicine, Department of Medicine, The University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Yutong Zhao
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Asthma, and Critical Care Medicine, Department of Medicine, The University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Jing Zhao
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Asthma, and Critical Care Medicine, Department of Medicine, The University of Pittsburgh, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
48
|
Tanimura S, Takeda K. ERK signalling as a regulator of cell motility. J Biochem 2017; 162:145-154. [PMID: 28903547 DOI: 10.1093/jb/mvx048] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 05/17/2017] [Indexed: 01/21/2023] Open
Abstract
Cell motility is regulated by multiple processes, including cell protrusion, cell retraction, cell-matrix adhesion, polarized exocytosis and polarized vesicle trafficking, each of which is spatiotemporally controlled by various intracellular signalling pathways. Dysregulation of cell motility leads to pathological conditions, such as tumour invasion and metastasis. Accumulating evidence has revealed that extracellular signal-regulated kinase (ERK) signalling is one of the critical regulators of cell motility, although it is classically known as an important regulator of cell proliferation, differentiation and survival through regulation of gene expression. ERK and its downstream kinase, p90 ribosomal S6 kinase (RSK), dynamically regulate cell motility mainly through direct phosphorylation of various molecules that are not necessarily involved in the regulation of gene transcription and translation. In this review, we summarize how ERK signalling regulates cell motility by focusing on the components of the cell motility machinery that are directly regulated by ERK or RSK.
Collapse
Affiliation(s)
- Susumu Tanimura
- Department of Cell Regulation, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Kohsuke Takeda
- Department of Cell Regulation, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| |
Collapse
|
49
|
Murali A, Shin J, Yurugi H, Krishnan A, Akutsu M, Carpy A, Macek B, Rajalingam K. Ubiquitin-dependent regulation of Cdc42 by XIAP. Cell Death Dis 2017; 8:e2900. [PMID: 28661476 PMCID: PMC5520948 DOI: 10.1038/cddis.2017.305] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 05/23/2017] [Indexed: 02/06/2023]
Abstract
Rho GTPases control fundamental cellular processes and Cdc42 is a well-studied member of the family that controls filopodia formation and cell migration. Although the regulation of Cdc42 activity by nucleotide binding is well documented, the mechanisms driving its proteostasis are not clear. Here, we demonstrate that the highly conserved, RING domain containing E3 ubiquitin ligase XIAP controls the protein stability of Cdc42. XIAP binds to Cdc42 and directly conjugates poly ubiquitin chains to the Lysine 166 of Cdc42 targeting it for proteasomal degradation. Depletion of XIAP led to an increased protein stability and activity of Cdc42 in normal and tumor cells. Consistently, loss of XIAP enhances filopodia formation in a Cdc42-dependent manner and this phenomenon phenocopies EGF stimulation. Further, XIAP depletion promotes lung colonization of tumor cells in mice in a Cdc42-dependent manner. These observations shed molecular insights into ubiquitin-dependent regulation of Cdc42 and that of actin cytoskeleton.
Collapse
Affiliation(s)
- Arun Murali
- Molecular Signaling Unit-FZI, Institute of immunology, University Medical Center Mainz, JGU-Mainz, Germany
| | - Jaeyoung Shin
- Molecular Signaling Unit-FZI, Institute of immunology, University Medical Center Mainz, JGU-Mainz, Germany
| | - Hajime Yurugi
- Molecular Signaling Unit-FZI, Institute of immunology, University Medical Center Mainz, JGU-Mainz, Germany
| | - Aswini Krishnan
- Molecular Signaling Unit-FZI, Institute of immunology, University Medical Center Mainz, JGU-Mainz, Germany
| | | | - Alejandro Carpy
- Proteome Center Tuebingen, Interfaculty Institute for Cell Biology, University of Tuebingen, Tuebingen, Germany
| | - Boris Macek
- Proteome Center Tuebingen, Interfaculty Institute for Cell Biology, University of Tuebingen, Tuebingen, Germany
| | - Krishnaraj Rajalingam
- Molecular Signaling Unit-FZI, Institute of immunology, University Medical Center Mainz, JGU-Mainz, Germany
| |
Collapse
|
50
|
Wei J, Dong S, Bowser RK, Khoo A, Zhang L, Jacko AM, Zhao Y, Zhao J. Regulation of the ubiquitylation and deubiquitylation of CREB-binding protein modulates histone acetylation and lung inflammation. Sci Signal 2017; 10:10/483/eaak9660. [PMID: 28611184 DOI: 10.1126/scisignal.aak9660] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Cyclic adenosine monophosphate (cAMP) response element-binding protein (CREB)-binding protein (CBP) is a histone acetyltransferase that plays a pivotal role in the control of histone modification and the expression of cytokine-encoding genes in inflammatory diseases, including sepsis and lung injury. We found that the E3 ubiquitin ligase subunit FBXL19 targeted CBP for site-specific ubiquitylation and proteasomal degradation. The ubiquitylation-dependent degradation of CBP reduced the extent of lipopolysaccharide (LPS)-dependent histone acetylation and cytokine release in mouse lung epithelial cells and in a mouse model of sepsis. Furthermore, we demonstrated that the deubiquitylating enzyme USP14 (ubiquitin-specific peptidase 14) stabilized CBP by reducing its ubiquitylation. LPS increased the stability of CBP by reducing the association between CBP and FBXL19 and by activating USP14. Inhibition of USP14 reduced CBP protein abundance and attenuated LPS-stimulated histone acetylation and cytokine release. Together, our findings delineate the molecular mechanisms through which CBP stability is regulated by FBXL19 and USP14, which results in the modulation of chromatin remodeling and the expression of cytokine-encoding genes.
Collapse
Affiliation(s)
- Jianxin Wei
- Department of Medicine, Acute Lung Injury Center of Excellence, Vascular Medical Institute, and Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Su Dong
- Department of Medicine, Acute Lung Injury Center of Excellence, Vascular Medical Institute, and Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.,Department of Anesthesia, First Hospital of Jilin University, Changchun, China
| | - Rachel K Bowser
- Department of Medicine, Acute Lung Injury Center of Excellence, Vascular Medical Institute, and Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Andrew Khoo
- Department of Medicine, Acute Lung Injury Center of Excellence, Vascular Medical Institute, and Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Lina Zhang
- Department of Medicine, Acute Lung Injury Center of Excellence, Vascular Medical Institute, and Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.,Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Anastasia M Jacko
- Department of Medicine, Acute Lung Injury Center of Excellence, Vascular Medical Institute, and Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Yutong Zhao
- Department of Medicine, Acute Lung Injury Center of Excellence, Vascular Medical Institute, and Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
| | - Jing Zhao
- Department of Medicine, Acute Lung Injury Center of Excellence, Vascular Medical Institute, and Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
| |
Collapse
|