1
|
Zhang H, Wu A, Nan X, Yang L, Zhang D, Zhang Z, Liu H. The Application and Pharmaceutical Development of Etomidate: Challenges and Strategies. Mol Pharm 2024. [PMID: 39495089 DOI: 10.1021/acs.molpharmaceut.4c00325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Etomidate is a synthetic imidazole anesthetic that exerts hypnotic effects by potentiating the action of the inhibitory neurotransmitter γ-aminobutyric acid (GABA) or directly activating the anionic GABA (GABAA) receptor. It stands out among many anesthetics because of its multiple advantages, such as good hemodynamic stability and minimal inhibition of spontaneous respiration. However, its low water solubility and side effects, such as adrenal cortex inhibition and myoclonus, have limited the clinical application of this drug. To address these issues, extensive research has been conducted on the drug delivery of etomidate in recent decades, which has led to the emergence of different etomidate preparations. Despite so many etomidate preparations, so far some of the toxic side effects have not yet been effectively addressed. Herein we discuss the pharmaceutical design of etomidate that may resolve the above problem. We also propose targeted strategies for future research on etomidate preparations and discuss the feasibility of different administration routes and dosage forms to expand the application of this drug. Through this review, we hope to draw more attention to the potential of etomidate and its application challenges and provide valuable insights into the development of new etomidate preparations.
Collapse
Affiliation(s)
- Hao Zhang
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
- Department of Pharmacy, Zigong First People's Hospital, Zigong, Sichuan 643000, People's Republic of China
| | - Ailing Wu
- Department of Anesthesiology, Second People's Hospital of Neijiang, Southwest Medical University, Neijiang, Sichuan 641000, People's Republic of China
- Department of Anesthesiology, First People's Hospital of Neijiang, Neijiang, Sichuan 641099, People's Republic of China
| | - Xichen Nan
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| | - Luhan Yang
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| | - Dan Zhang
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| | - Zhuo Zhang
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| | - Hao Liu
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| |
Collapse
|
2
|
Sui Q, Yang H, Hu Z, Jin X, Chen Z, Jiang W, Sun F. The Research Progress of Metformin Regulation of Metabolic Reprogramming in Malignant Tumors. Pharm Res 2024:10.1007/s11095-024-03783-2. [PMID: 39455505 DOI: 10.1007/s11095-024-03783-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024]
Abstract
BACKGROUND Metabolism reprogramming is a crucial hallmark of malignant tumors. Tumor cells demonstrate enhanced metabolic efficiency, converting nutrient inputs into glucose, amino acids, and lipids essential for their malignant proliferation and progression. Metformin, a commonly prescribed medication for type 2 diabetes mellitus, has garnered attention for its potential anticancer effects beyond its established hypoglycemic benefits. METHODS This review adopts a comprehensive approach to delineate the mechanisms underlying metabolite abnormalities within the primary metabolic processes of malignant tumors. RESULTS This review examines the abnormal activation of G protein-coupled receptors (GPCRs) in these metabolic pathways, encompassing aerobic glycolysis with increased lactate production in glucose metabolism, heightened lipid synthesis and cholesterol accumulation in lipid metabolism, and glutamine activation alongside abnormal protein post-translational modifications in amino acid and protein metabolism. Furthermore, the intricate metabolic pathways and molecular mechanisms through which metformin exerts its anticancer effects are synthesized and analyzed, particularly its impacts on AMP-activated protein kinase activation and the mTOR pathway. The analysis reveals a multifaceted understanding of how metformin can modulate tumor metabolism, targeting key nodes in metabolic reprogramming essential for tumor growth and progression. The review compiles evidence that supports metformin's potential as an adjuvant therapy for malignant tumors, highlighting its capacity to interfere with critical metabolic pathways. CONCLUSION In conclusion, this review offers a comprehensive overview of the plausible mechanisms mediating metformin's influence on tumor metabolism, fostering a deeper comprehension of its anticancer mechanisms. By expanding the clinical horizons of metformin and providing insight into metabolism-targeted tumor therapies, this review lays the groundwork for future research endeavors aimed at refining and advancing metabolic intervention strategies for cancer treatment.
Collapse
Affiliation(s)
- Qihai Sui
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Huiqiang Yang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Zhengyang Hu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Xing Jin
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Zhencong Chen
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Wei Jiang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Fenghao Sun
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Xuhui District, Shanghai, 200032, China.
| |
Collapse
|
3
|
Zhang S, Gao Z, Feng L, Li M. Prevention and Treatment Strategies for Alzheimer's Disease: Focusing on Microglia and Astrocytes in Neuroinflammation. J Inflamm Res 2024; 17:7235-7259. [PMID: 39421566 PMCID: PMC11484773 DOI: 10.2147/jir.s483412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 10/02/2024] [Indexed: 10/19/2024] Open
Abstract
Alzheimer's disease (AD) is a fatal neurodegenerative disease characterized by its insidious onset and progressive development, making it the most common form of dementia. Despite its prevalence, the exact causes and mechanisms responsible for AD remain unclear. Recent studies have highlighted that inflammation in the central nervous system (CNS) plays a crucial role in both the initiation and progression of AD. Neuroinflammation, an immune response within the CNS triggered by glial cells in response to various stimuli, such as nerve injury, infection, toxins, or autoimmune reactions, has emerged as a significant factor alongside amyloid deposition and neurofibrillary tangles (NFTs) commonly associated with AD. This article aims to provide an overview of the most recent research regarding the involvement of neuroinflammation in AD, with a particular focus on elucidating the specific mechanisms involving microglia and astrocytes. By exploring these intricate processes, a new theoretical framework can be established to further probe the impact of neuroinflammation on the development and progression of AD. Through a deeper understanding of these underlying mechanisms, potential targets for therapeutic interventions and novel treatment strategies can be identified in the ongoing battle against AD.
Collapse
Affiliation(s)
- Shenghao Zhang
- Department of Neurology, The Third Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin Province, 130021, People’s Republic of China
| | - Zhejianyi Gao
- Department of Orthopaedics, Fushun Hospital of Chinese Medicine, Fushun, Liaoning Province, 113008, People’s Republic of China
| | - Lina Feng
- Department of Neurology, The Third Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin Province, 130021, People’s Republic of China
- Shandong Key Laboratory of TCM Multi-Targets Intervention and Disease Control, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong Province, 271000, People’s Republic of China
| | - Mingquan Li
- Department of Neurology, The Third Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin Province, 130021, People’s Republic of China
| |
Collapse
|
4
|
Kumaş Solak S, Demirgan S, Karali E, Selcan A. Effect of needle types and diameters using in spinal anesthesia on optic nerve sheath diameter: Prospective randomized study. Medicine (Baltimore) 2024; 103:e40003. [PMID: 39465875 PMCID: PMC11479471 DOI: 10.1097/md.0000000000040003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 09/19/2024] [Indexed: 10/29/2024] Open
Abstract
BACKGROUND This prospective randomized study aimed to investigate the impact of needle types and diameters used in spinal anesthesia (SA) on optic nerve sheath diameter (ONSD) in patients undergoing lower extremity orthopedic surgery. METHODS Patients were randomly assigned to 3 groups based on the needle type and size used for SA: Group 25w (25 gauge Whitacre needle), Group 27q (27 gauge Quincke needle), and Group 25q (25 gauge Quincke needle). Initially, 165 patients (55 in each group) were enrolled, with 146 patients ultimately included in the analysis (Group 25w, n = 49; Group 27q, n = 48; Group 25q, n = 49). ONSD measurements were conducted using ultrasound guidance at 5 time points: T0 (pre-SA), T1 (5 minutes post-SA), T2 (5 minutes post-tourniquet inflation), T3 (5 minutes post-tourniquet deflation), and T4 (24 hours post-operation). Additionally, oxygen saturation, systolic arterial pressure, mean arterial pressure, diastolic arterial pressure, and heart rate were recorded at these time points. RESULTS Analysis of ONSD measurements revealed no significant differences among the groups at time points T0,T1,T2, and T4 (P = .7293, P = .4428, P = .3676, and P = .3667, respectively). However, at T3, ONSD values were significantly higher in Group 27q compared to Group 25q (P = .0325). Across all groups, the mean ONSD values measured post-tourniquet release (T3) were higher than those at T0,T2, and T4 (P < .001 for all). The incidence of nausea was similar among the groups, and no cases of headache or visual impairment were reported within the initial 24 hours post-surgery. CONCLUSION In conclusion, our study suggests that while subarachnoid injection and tourniquet inflation do not impact intracranial pressure (ICP), tourniquet deflation leads to an increase in ICP during lower limb surgery under SA. Therefore, caution should be exercised when using a tourniquet in patients at risk of elevated ICP.
Collapse
Affiliation(s)
- Sezen Kumaş Solak
- Department of Anesthesiology and Reanimation, University of Health Sciences, Bagcılar Training Research Hospital, İstanbul, Turkey
| | - Serdar Demirgan
- Department of Anesthesiology and Reanimation, University of Health Sciences, Bagcılar Training Research Hospital, İstanbul, Turkey
- Department of Molecular Biology and Genetics, Institute of Graduate Studies in Sciences, Istanbul University, İstanbul, Turkey
| | - Elif Karali
- Department of Anesthesiology and Reanimation, University of Health Sciences, Bagcılar Training Research Hospital, İstanbul, Turkey
| | - Ayşin Selcan
- Department of Anesthesiology and Reanimation, University of Health Sciences, Bagcılar Training Research Hospital, İstanbul, Turkey
| |
Collapse
|
5
|
Liu Y, Li H, Hao YY, Huang LL, Li X, Zou J, Zhang SY, Yang XY, Chen HF, Guo YX, Guan YY, Zhang ZY. Tumor-Selective Nano-Dispatcher Enforced Cancer Immunotherapeutic Effects via Regulating Lactate Metabolism and Activating Toll-Like Receptors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2406870. [PMID: 39390849 DOI: 10.1002/smll.202406870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/23/2024] [Indexed: 10/12/2024]
Abstract
The development of tumors relies on lactate metabolic reprogramming to facilitate their unchecked growth and evade immune surveillance. This poses a significant challenge to the efficacy of antitumor immunity. To address this, a tumor-selective nano-dispatcher, PIMDQ/Syro-RNP, to enforce the immunotherapeutic effect through regulation of lactate metabolism and activation of toll-like receptors is developed. By using the tumor-targeting properties of c-RGD, the system can effectively deliver monocarboxylate transporters 4 (MCT4) inhibitor (Syro) to inhibit lactate efflux in tumor cells, leading to decreased lactate levels in the tumor microenvironment (TME) and increased accumulation within tumor cells. The reduction of lactate in TME will reduce the nutritional support for regulatory T cells (Tregs) and promote the effector function of T cells. The accumulation of lactate in tumor cells will lead to tumor death due to cellular acidosis. In addition, it will also reduce the uptake of glucose by tumor cells, reduce nutrient plunder, and further weaken the inhibition of T cell function. Furthermore, the pH-responsive release of Toll-like receptors (TLR) 7/8 agonist IMDQ within the TME activates dendritic cells (DCs) and promotes the infiltration of T cells. These findings offer a promising approach for enhancing tumor immune response through targeted metabolic interventions.
Collapse
Affiliation(s)
- Yang Liu
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology (Ministry of Education), Shandong Key Laboratory of Targeted Drug Delivery and Advanced Pharmaceutics, Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Hui Li
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology (Ministry of Education), Shandong Key Laboratory of Targeted Drug Delivery and Advanced Pharmaceutics, Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Yan-Yun Hao
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology (Ministry of Education), Shandong Key Laboratory of Targeted Drug Delivery and Advanced Pharmaceutics, Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Ling-Ling Huang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology (Ministry of Education), Shandong Key Laboratory of Targeted Drug Delivery and Advanced Pharmaceutics, Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Xia Li
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology (Ministry of Education), Shandong Key Laboratory of Targeted Drug Delivery and Advanced Pharmaceutics, Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Jing Zou
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology (Ministry of Education), Shandong Key Laboratory of Targeted Drug Delivery and Advanced Pharmaceutics, Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Shi-Ying Zhang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology (Ministry of Education), Shandong Key Laboratory of Targeted Drug Delivery and Advanced Pharmaceutics, Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Xiao-Yue Yang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology (Ministry of Education), Shandong Key Laboratory of Targeted Drug Delivery and Advanced Pharmaceutics, Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Hong-Fei Chen
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology (Ministry of Education), Shandong Key Laboratory of Targeted Drug Delivery and Advanced Pharmaceutics, Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Yi-Xuan Guo
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology (Ministry of Education), Shandong Key Laboratory of Targeted Drug Delivery and Advanced Pharmaceutics, Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Yun-Yan Guan
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology (Ministry of Education), Shandong Key Laboratory of Targeted Drug Delivery and Advanced Pharmaceutics, Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Zhi-Yue Zhang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology (Ministry of Education), Shandong Key Laboratory of Targeted Drug Delivery and Advanced Pharmaceutics, Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| |
Collapse
|
6
|
Zhang N, Ma X, He X, Zhang Y, Guo X, Shen Z, Guo X, Zhang D, Tian S, Ma X, Xing Y. Inhibition of YIPF2 Improves the Vulnerability of Oligodendrocytes to Human Islet Amyloid Polypeptide. Neurosci Bull 2024; 40:1403-1420. [PMID: 39078594 PMCID: PMC11422328 DOI: 10.1007/s12264-024-01263-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/21/2024] [Indexed: 07/31/2024] Open
Abstract
Excessive secretion of human islet amyloid polypeptide (hIAPP) is an important pathological basis of diabetic encephalopathy (DE). In this study, we aimed to investigate the potential implications of hIAPP in DE pathogenesis. Brain magnetic resonance imaging and cognitive scales were applied to evaluate white matter damage and cognitive function. We found that the concentration of serum hIAPP was positively correlated with white matter damage but negatively correlated with cognitive scores in patients with type 2 diabetes mellitus. In vitro assays revealed that oligodendrocytes, compared with neurons, were more prone to acidosis under exogenous hIAPP stimulation. Moreover, western blotting and co-immunoprecipitation indicated that hIAPP interfered with the binding process of monocarboxylate transporter (MCT)1 to its accessory protein CD147 but had no effect on the binding of MCT2 to its accessory protein gp70. Proteomic differential analysis of proteins co-immunoprecipitated with CD147 in oligodendrocytes revealed Yeast Rab GTPase-Interacting protein 2 (YIPF2, which modulates the transfer of CD147 to the cell membrane) as a significant target. Furthermore, YIPF2 inhibition significantly improved hIAPP-induced acidosis in oligodendrocytes and alleviated cognitive dysfunction in DE model mice. These findings suggest that increased CD147 translocation by inhibition of YIPF2 optimizes MCT1 and CD147 binding, potentially ameliorating hIAPP-induced acidosis and the consequent DE-related demyelination.
Collapse
Affiliation(s)
- Nan Zhang
- Hebei Key Laboratory of Brain Science and Psychiatric-Psychologic Disease, The First Hospital of Hebei Medical University, Shijiazhuang, 050000, China
- Neuromedical Technology Innovation Center of Hebei Province, Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Xiaoying Ma
- Hebei Key Laboratory of Brain Science and Psychiatric-Psychologic Disease, The First Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Xinyu He
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050000, China
| | - Yaxin Zhang
- Neuromedical Technology Innovation Center of Hebei Province, Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, 050000, China
- Department of Neurology, Hebei Hospital, Xuanwu Hospital of Capital Medical University, Shijiazhuang, 050000, China
| | - Xin Guo
- Neuromedical Technology Innovation Center of Hebei Province, Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, 050000, China
- Department of Neurology, Hebei Hospital, Xuanwu Hospital of Capital Medical University, Shijiazhuang, 050000, China
| | - Zhiyuan Shen
- Neuromedical Technology Innovation Center of Hebei Province, Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, 050000, China
- Department of Neurology, Hebei Hospital, Xuanwu Hospital of Capital Medical University, Shijiazhuang, 050000, China
| | - Xiaosu Guo
- Neuromedical Technology Innovation Center of Hebei Province, Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, 050000, China
- Department of Neurology, Hebei Hospital, Xuanwu Hospital of Capital Medical University, Shijiazhuang, 050000, China
| | - Danshen Zhang
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050000, China
| | - Shujuan Tian
- Neuromedical Technology Innovation Center of Hebei Province, Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, 050000, China.
- Department of Neurology, Hebei Hospital, Xuanwu Hospital of Capital Medical University, Shijiazhuang, 050000, China.
| | - Xiaowei Ma
- Neuromedical Technology Innovation Center of Hebei Province, Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, 050000, China.
- Department of Neurology, Hebei Hospital, Xuanwu Hospital of Capital Medical University, Shijiazhuang, 050000, China.
| | - Yuan Xing
- Neuromedical Technology Innovation Center of Hebei Province, Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, 050000, China.
- Department of Neurology, Hebei Hospital, Xuanwu Hospital of Capital Medical University, Shijiazhuang, 050000, China.
| |
Collapse
|
7
|
Lopez-Tello J, Kiu R, Schofield Z, Zhang CXW, van Sinderen D, Le Gall G, Hall LJ, Sferruzzi-Perri AN. Maternal gut Bifidobacterium breve modifies fetal brain metabolism in germ-free mice. Mol Metab 2024; 88:102004. [PMID: 39127167 PMCID: PMC11401360 DOI: 10.1016/j.molmet.2024.102004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/06/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND Recent advances have significantly expanded our understanding of the gut microbiome's influence on host physiology and metabolism. However, the specific role of certain microorganisms in gestational health and fetal development remains underexplored. OBJECTIVE This study investigates the impact of Bifidobacterium breve UCC2003 on fetal brain metabolism when colonized in the maternal gut during pregnancy. METHODS Germ-free pregnant mice were colonized with or without B. breve UCC2003 during pregnancy. The metabolic profiles of fetal brains were analyzed, focusing on the presence of key metabolites and the expression of critical metabolic and cellular pathways. RESULTS Maternal colonization with B. breve resulted in significant metabolic changes in the fetal brain. Specifically, ten metabolites, including citrate, 3-hydroxyisobutyrate, and carnitine, were reduced in the fetal brain. These alterations were accompanied by increased abundance of transporters involved in glucose and branched-chain amino acid uptake. Furthermore, supplementation with this bacterium was associated with elevated expression of critical metabolic pathways such as PI3K-AKT, AMPK, STAT5, and Wnt-β-catenin signaling, including its receptor Frizzled-7. Additionally, there was stabilization of HIF-2 protein and modifications in genes and proteins related to cellular growth, axogenesis, and mitochondrial function. CONCLUSIONS The presence of maternal B. breve during pregnancy plays a crucial role in modulating fetal brain metabolism and growth. These findings suggest that Bifidobacterium could modify fetal brain development, potentially offering new avenues for enhancing gestational health and fetal development through microbiota-targeted interventions.
Collapse
Affiliation(s)
- Jorge Lopez-Tello
- Department of Physiology, Development, and Neuroscience, Centre for Trophoblast Research, University of Cambridge, Cambridge, UK; Department of Physiology, Faculty of Medicine. Autonomous University of Madrid, Spain.
| | - Raymond Kiu
- Food, Microbiome & Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK; Institute of Microbiology & Infection, University of Birmingham, Birmingham, UK; Department of Microbes, Infection & Microbiomes, School of Infection, Inflammation & Immunology, University of Birmingham, Birmingham, UK
| | - Zoe Schofield
- Food, Microbiome & Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Cindy X W Zhang
- Department of Physiology, Development, and Neuroscience, Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | | | - Gwénaëlle Le Gall
- Norwich Medical School, University of East Anglia, Bob Champion Research and Education Building, James Watson Road, Norwich Research Park, Norwich NR4 7UQ, UK
| | - Lindsay J Hall
- Food, Microbiome & Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK; Institute of Microbiology & Infection, University of Birmingham, Birmingham, UK; Department of Microbes, Infection & Microbiomes, School of Infection, Inflammation & Immunology, University of Birmingham, Birmingham, UK
| | - Amanda N Sferruzzi-Perri
- Department of Physiology, Development, and Neuroscience, Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| |
Collapse
|
8
|
Ibacache-Chía AP, Sierralta JA, Schüller A. The Inhibitory Effects of the Natural Stilbene Piceatannol on Lactate Transport In Vitro Mediated by Monocarboxylate Transporters. Mol Nutr Food Res 2024; 68:e2400414. [PMID: 39344244 DOI: 10.1002/mnfr.202400414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/30/2024] [Indexed: 10/01/2024]
Abstract
SCOPE Lactate, a signaling molecule and energy source, crosses membranes through monocarboxylate transporters (MCTs). MCT1 and MCT4 are potential cancer drug targets due to their role in metabolic reprogramming of cancer cells. Stilbenes, plant secondary metabolites found in several food sources, have anticancer effects, though their mechanisms of action are not well understood. This study links the anticancer activity of natural stilbenes to tumor cell lactate metabolism. METHODS AND RESULTS The impact of resveratrol, pinostilbene, pterostilbene, rhapontigenin, and piceatannol on lactate transport is studied using a fluorescence resonance energy transfer (FRET)-based lactate sensor. The viability and migration of cells expressing MCT1 or MCT4 are also evaluated. Piceatannol inhibits MCT1 effectively at low micromolar concentrations, with less effect on MCT4. All stilbenes significantly reduce cell viability and migration. CONCLUSIONS These findings indicate that both MCTs are stilbene targets, with piceatannol highlighted as a cost-effective, low-toxicity compound for studying MCTs in cancer, providing a new mechanism of action of the therapeutic and nutraceutical effects of natural polyphenols. This enriches the understanding of dietary polyphenols in cancer prevention and therapy.
Collapse
Affiliation(s)
- Andrés P Ibacache-Chía
- School of Biological Sciences, Pontificia Universidad Católica de Chile, Av. Libertador General Bernardo O'Higgins 340, Santiago, 8331150, Chile
- Department of Neuroscience, School of Medicine, University of Chile, Av. Independencia 1027, Independencia, 8380000, Chile
- Institute of Biomedical Neurosciences (BNI), School of Medicine, University of Chile, Av. Independencia 1027, Independencia, 8380000, Chile
| | - Jimena A Sierralta
- Department of Neuroscience, School of Medicine, University of Chile, Av. Independencia 1027, Independencia, 8380000, Chile
- Institute of Biomedical Neurosciences (BNI), School of Medicine, University of Chile, Av. Independencia 1027, Independencia, 8380000, Chile
| | - Andreas Schüller
- School of Biological Sciences, Pontificia Universidad Católica de Chile, Av. Libertador General Bernardo O'Higgins 340, Santiago, 8331150, Chile
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Santiago, 7820244, Chile
| |
Collapse
|
9
|
Mishra SK, Tiwari SP. Bioenergetics of Axon Integrity and Its Regulation by Oligodendrocytes and Schwann Cells. Mol Neurobiol 2024; 61:5928-5934. [PMID: 38252382 DOI: 10.1007/s12035-024-03950-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 01/09/2024] [Indexed: 01/23/2024]
Abstract
Axons are long slender portions of neurons that transmit electrical impulses to maintain proper physiological functioning. Axons in the central nervous system (CNS) and peripheral nervous system (PNS) do not exist in isolation but are found to form a complex association with their surrounding glial cells, oligodendrocytes and Schwann cells. These cells not only myelinate them for faster nerve impulse conduction but are also known to provide metabolic support. Due to their incredible length, continuous growth, and distance from the cell body (where major energy synthesis takes place), axons are in high energetic demand. The stability and integrity of axons have long been associated with axonal energy levels. The current mini-review is thus focused on how axons accomplish their high energetic requirement in a cell-autonomous manner and how the surrounding glial cells help them in maintaining their integrity by fulfilling their energy demands (non-cell autonomous trophic support). The concept that adjacent glial cells (oligodendrocytes and Schwann cells) provide trophic support to axons and assist them in maintaining their integrity comes from the conditional knockout research and the studies in which the metabolic pathways controlling metabolism in these glial cells are modulated and its effect on axonal integrity is evaluated. In the later part of the mini-review, the current knowledge of axon-glial metabolic coupling during various neurodegenerative conditions was discussed, along with the potential lacunae in our current understanding of axon-glial metabolic coupling.
Collapse
Affiliation(s)
- Sandeep K Mishra
- Institute for Myelin and Glia Exploration, University at Buffalo, Buffalo, NY, 14203, USA.
- Faculty of Pharmacy, Kalinga University, Raipur, (C.G.), 492101, India.
| | | |
Collapse
|
10
|
Xu W, Borges K. Case for supporting astrocyte energetics in glucose transporter 1 deficiency syndrome. Epilepsia 2024; 65:2213-2226. [PMID: 38767952 DOI: 10.1111/epi.18013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 05/22/2024]
Abstract
In glucose transporter 1 deficiency syndrome (Glut1DS), glucose transport into brain is reduced due to impaired Glut1 function in endothelial cells at the blood-brain barrier. This can lead to shortages of glucose in brain and is thought to contribute to seizures. Ketogenic diets are the first-line treatment and, among many beneficial effects, provide auxiliary fuel in the form of ketone bodies that are largely metabolized by neurons. However, Glut1 is also the main glucose transporter in astrocytes. Here, we review data indicating that glucose shortage may also impact astrocytes in addition to neurons and discuss the expected negative biochemical consequences of compromised astrocytic glucose transport for neurons. Based on these effects, auxiliary fuels are needed for both cell types and adding medium chain triglycerides (MCTs) to ketogenic diets is a biochemically superior treatment for Glut1DS compared to classical ketogenic diets. MCTs provide medium chain fatty acids (MCFAs), which are largely metabolized by astrocytes and not neurons. MCFAs supply energy and contribute carbons for glutamine and γ-aminobutyric acid synthesis, and decanoic acid can also block α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid glutamate receptors. MCTs do not compete with metabolism of ketone bodies mostly occurring in neurons. Triheptanoin, an anaplerotic but also gluconeogenic uneven MCT, may be another potential addition to ketogenic diets, although maintenance of "ketosis" can be difficult. Gene therapy has also targeted both endothelial cells and astrocytes. Other approaches to increase fuel delivery to the brain currently investigated include exchange of Glut1DS erythrocytes with healthy cells, infusion of lactate, and pharmacological improvement of glucose transport. In conclusion, although it remains difficult to assess impaired astrocytic energy metabolism in vivo, astrocytic energy needs are most likely not met by ketogenic diets in Glut1DS. Thus, we propose prospective studies including monitoring of blood MCFA levels to find optimal doses for add-on MCT to ketogenic diets and assessing of short- and long-term outcomes.
Collapse
Affiliation(s)
- Weizhi Xu
- School of Biomedical Sciences, University of Queensland, St Lucia, Queensland, Australia
| | - Karin Borges
- School of Biomedical Sciences, University of Queensland, St Lucia, Queensland, Australia
| |
Collapse
|
11
|
Qiu D, He Y, Feng Y, Lin M, Lin Z, Zhang Z, Xiong Y, Hu Z, Ma S, Jin H, Liu J. Tumor perfusion enhancement by microbubbles ultrasonic cavitation reduces tumor glycolysis metabolism and alleviate tumor acidosis. Front Oncol 2024; 14:1424824. [PMID: 39091919 PMCID: PMC11291205 DOI: 10.3389/fonc.2024.1424824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 06/25/2024] [Indexed: 08/04/2024] Open
Abstract
The tumor microenvironment is increasingly acknowledged as a critical contributor to cancer progression, mediating genetic and epigenetic alterations. Beyond diverse cellular interactions from the microenvironment, physicochemical factors such as tumor acidosis also significantly affect cancer dynamics. Recent research has highlighted that tumor acidosis facilitates invasion, immune escape, metastasis, and resistance to therapies. Thus, noninvasive measurement of tumor acidity and the development of targeted interventions represent promising strategies in oncology. Techniques like contrast-enhanced ultrasound (CEUS) can effectively assess blood perfusion, while ultrasound-stimulated microbubble cavitation (USMC) has proven to enhance tumor blood perfusion. We therefore aimed to determine whether CEUS assesses tumor acidity and whether USMC treatment can modulate tumor acidity. Firstly, we tracked CEUS perfusion parameters in MCF7 tumor models and compared them with in vivo tumor pH recorded by pH microsensors. We found that the peak intensity and area under curve of tumor contrast-enhanced ultrasound correlated well with tumor pH. We further conducted USMC treatment on MCF7 tumor-bearing mice, tracked changes of tumor blood perfusion and tumor pH in different perfusion regions before and after the USMC treatment to assess its impact on tumor acidity and optimize therapeutic ultrasound pressure. We discovered that USMC with 1.0 Mpa significantly improved tumor blood perfusion and tumor pH. Furthermore, tumor vascular pathology and PGI2 assays indicated that improved tumor perfusion was mainly due to vasodilation rather than angiogenesis. More importantly, analysis of glycolysis-related metabolites and enzymes demonstrated USMC treatment can reduce tumor acidity by reducing tumor glycolysis. These findings support that CEUS may serve as a potential biomarker to assess tumor acidity and USMC is a promising therapeutic modality for reducing tumor acidosis.
Collapse
Affiliation(s)
- Danxia Qiu
- Department of Medical Ultrasound, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yangcheng He
- Department of Medical Ultrasound, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yuyi Feng
- Department of Medical Ultrasound, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Minhua Lin
- Department of Medical Ultrasound, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Zekai Lin
- Department of Radiology, The Second Clinical College, Guangzhou Medical University, Guangzhou, China
| | - Zhiyi Zhang
- Department of Medical Ultrasound, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Ying Xiong
- Department of Medical Ultrasound, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Zhiwen Hu
- Department of Medical Ultrasound, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Suihong Ma
- Department of Medical Ultrasound, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Hai Jin
- Department of Medical Ultrasound, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Jianhua Liu
- Department of Medical Ultrasound, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| |
Collapse
|
12
|
Juarez D, Handal-Silva A, Morán-Perales JL, Torres-Cifuentes DM, Flores G, Treviño S, Moreno-Rodriguez A, Guevara J, Diaz A. New insights into sodium phenylbutyrate as a pharmacotherapeutic option for neurological disorders. Synapse 2024; 78:e22301. [PMID: 38819491 DOI: 10.1002/syn.22301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 04/01/2024] [Accepted: 05/14/2024] [Indexed: 06/01/2024]
Abstract
Neurological disorders (NDs) are diseases of the central and peripheral nervous systems that affect more than one billion people worldwide. The risk of developing an ND increases with age due to the vulnerability of the different organs and systems to genetic, environmental, and social changes that consequently cause motor and cognitive deficits that disable the person from their daily activities and individual and social productivity. Intrinsic factors (genetic factors, age, gender) and extrinsic factors (addictions, infections, or lifestyle) favor the persistence of systemic inflammatory processes that contribute to the evolution of NDs. Neuroinflammation is recognized as a common etiopathogenic factor of ND. The study of new pharmacological options for the treatment of ND should focus on improving the characteristic symptoms and attacking specific molecular targets that allow the delay of damage processes such as neuroinflammation, oxidative stress, cellular metabolic dysfunction, and deregulation of transcriptional processes. In this review, we describe the possible role of sodium phenylbutyrate (NaPB) in the pathogenesis of Alzheimer's disease, hepatic encephalopathy, aging, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis; in addition, we describe the mechanism of action of NaPB and its beneficial effects that have been shown in various in vivo and in vitro studies to delay the evolution of any ND.
Collapse
Affiliation(s)
- Daniel Juarez
- Faculty of Chemical Sciences, Benemeritus Autonomous University of Puebla, Puebla, Puebla, Mexico
| | - Anabella Handal-Silva
- Department of Reproductive Biology and Toxicology, Institute of Sciences. Benemeritus Autonomous University of Puebla, Puebla, Puebla, Mexico
| | - Jose Luis Morán-Perales
- Department of Reproductive Biology and Toxicology, Institute of Sciences. Benemeritus Autonomous University of Puebla, Puebla, Puebla, Mexico
| | - Diana M Torres-Cifuentes
- Faculty of Chemical Sciences, Benemeritus Autonomous University of Puebla, Puebla, Puebla, Mexico
| | - Gonzalo Flores
- Institute of Physiology, Benemeritus Autonomous University of Puebla, Puebla, Puebla, Mexico
| | - Samuel Treviño
- Institute of Physiology, Benemeritus Autonomous University of Puebla, Puebla, Puebla, Mexico
| | - Albino Moreno-Rodriguez
- Faculty of Chemical Sciences, Benemeritus Autonomous University of Puebla, Puebla, Puebla, Mexico
| | - Jorge Guevara
- Faculty of Medicine, Department of Biochemistry, National Autonomous University of Mexico, Mexico City, Mexico
| | - Alfonso Diaz
- Institute of Physiology, Benemeritus Autonomous University of Puebla, Puebla, Puebla, Mexico
| |
Collapse
|
13
|
Llavero F, Zugaza JL. The importance of muscle glycogen phosphorylase in glial cells function. Biochem Soc Trans 2024; 52:1265-1274. [PMID: 38661212 DOI: 10.1042/bst20231058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/26/2024]
Abstract
The three isoforms of glycogen phosphorylase - PYGM, PYGB, and PYGL - are expressed in glial cells. Unlike PYGB and PYGL, PYGM is the only isoform regulated by Rac1. This specific regulation may confer a differential functional role compared with the other glycogen phosphorylases-PYGB and PYGL. The involvement of muscle glycogen phosphorylase in glial cells and its association with post-translational modifications (PTMs) of proteins through O-glycosylation is indeed a fascinating and emerging area of research. The dual role it plays in metabolic processes and the regulation of PTMs within the brain presents intriguing implications for various neurological conditions. Disruptions in the O-GlcNAcylation cycle and neurodegenerative diseases like Alzheimer's disease (AD) is particularly noteworthy. The alterations in O-GlcNAcylation levels of specific proteins, such as APP, c-Fos, and tau protein, highlight the intricate relationship between PTMs and AD. Understanding these processes and the regulatory function of muscle glycogen phosphorylase sheds light on its impact on protein function, signaling pathways, cellular homeostasis, neurological health, and potential interventions for brain-related conditions.
Collapse
Affiliation(s)
- Francisco Llavero
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, Sede Building, 3rd Floor, Barrio de Sarriena s/n, 48940 Leioa, Spain
| | - José L Zugaza
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, Sede Building, 3rd Floor, Barrio de Sarriena s/n, 48940 Leioa, Spain
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Science and Technology, UPV/EHU, Barrio de Sarriena s/n, 48940 Leioa, Spain
- IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| |
Collapse
|
14
|
Niepmann M. Importance of Michaelis Constants for Cancer Cell Redox Balance and Lactate Secretion-Revisiting the Warburg Effect. Cancers (Basel) 2024; 16:2290. [PMID: 39001354 PMCID: PMC11240417 DOI: 10.3390/cancers16132290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 06/19/2024] [Indexed: 07/16/2024] Open
Abstract
Cancer cells metabolize a large fraction of glucose to lactate, even under a sufficient oxygen supply. This phenomenon-the "Warburg Effect"-is often regarded as not yet understood. Cancer cells change gene expression to increase the uptake and utilization of glucose for biosynthesis pathways and glycolysis, but they do not adequately up-regulate the tricarboxylic acid (TCA) cycle and oxidative phosphorylation (OXPHOS). Thereby, an increased glycolytic flux causes an increased production of cytosolic NADH. However, since the corresponding gene expression changes are not neatly fine-tuned in the cancer cells, cytosolic NAD+ must often be regenerated by loading excess electrons onto pyruvate and secreting the resulting lactate, even under sufficient oxygen supply. Interestingly, the Michaelis constants (KM values) of the enzymes at the pyruvate junction are sufficient to explain the priorities for pyruvate utilization in cancer cells: 1. mitochondrial OXPHOS for efficient ATP production, 2. electrons that exceed OXPHOS capacity need to be disposed of and secreted as lactate, and 3. biosynthesis reactions for cancer cell growth. In other words, a number of cytosolic electrons need to take the "emergency exit" from the cell by lactate secretion to maintain the cytosolic redox balance.
Collapse
Affiliation(s)
- Michael Niepmann
- Institute of Biochemistry, Medical Faculty, Justus-Liebig-University, 35392 Giessen, Germany
| |
Collapse
|
15
|
ZHANG Q, CAO L, XU K. [Role and Mechanism of Lactylation in Cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2024; 27:471-479. [PMID: 39026499 PMCID: PMC11258650 DOI: 10.3779/j.issn.1009-3419.2024.102.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Indexed: 07/20/2024]
Abstract
Post translational modifications (PTMs) can change the properties of a protein by covalent addition of functional groups to one or more amino acids, and influence almost all aspects of normal cell biology and pathogenesis. Lactylation is a novel identified PTM, and has been found in both histone and non-histone proteins. Since associated with the end product of glycolysis-- lactate, lactylation modification could provide a new perspective for understanding the relationship between metabolic reprogramming and epigenetic modifications. Accumulated evidences suggest that lactylation play important roles in tumor progression and links to poor prognosis in clinical studies. Histone lactylation can affect gene expression in tumor cells and immunological cells, further promoting tumor progression and immune suppression. Lactylation on non-histone proteins can also regulate tumor progression and drug resistance. In this review, we aimed to summarize the roles of lactylation in cancer progression, microenvironment interactions and immune suppression, try to identify new molecular targets for cancer therapy and provide a new direction for combined targeted therapy and immunotherapy.
.
Collapse
|
16
|
Malla A, Gupta S, Sur R. Glycolytic enzymes in non-glycolytic web: functional analysis of the key players. Cell Biochem Biophys 2024; 82:351-378. [PMID: 38196050 DOI: 10.1007/s12013-023-01213-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/26/2023] [Indexed: 01/11/2024]
Abstract
To survive in the tumour microenvironment, cancer cells undergo rapid metabolic reprograming and adaptability. One of the key characteristics of cancer is increased glycolytic selectivity and decreased oxidative phosphorylation (OXPHOS). Apart from ATP synthesis, glycolysis is also responsible for NADH regeneration and macromolecular biosynthesis, such as amino acid biosynthesis and nucleotide biosynthesis. This allows cancer cells to survive and proliferate even in low-nutrient and oxygen conditions, making glycolytic enzymes a promising target for various anti-cancer agents. Oncogenic activation is also caused by the uncontrolled production and activity of glycolytic enzymes. Nevertheless, in addition to conventional glycolytic processes, some glycolytic enzymes are involved in non-canonical functions such as transcriptional regulation, autophagy, epigenetic changes, inflammation, various signaling cascades, redox regulation, oxidative stress, obesity and fatty acid metabolism, diabetes and neurodegenerative disorders, and hypoxia. The mechanisms underlying the non-canonical glycolytic enzyme activities are still not comprehensive. This review summarizes the current findings on the mechanisms fundamental to the non-glycolytic actions of glycolytic enzymes and their intermediates in maintaining the tumor microenvironment.
Collapse
Affiliation(s)
- Avirup Malla
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, Kolkata, India
| | - Suvroma Gupta
- Department of Aquaculture Management, Khejuri college, West Bengal, Baratala, India.
| | - Runa Sur
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, Kolkata, India.
| |
Collapse
|
17
|
Fulman-Levy H, Cohen-Harazi R, Levi B, Argaev-Frenkel L, Abramovich I, Gottlieb E, Hofmann S, Koman I, Nesher E. Metabolic alterations and cellular responses to β-Hydroxybutyrate treatment in breast cancer cells. Cancer Metab 2024; 12:16. [PMID: 38812058 PMCID: PMC11134656 DOI: 10.1186/s40170-024-00339-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 03/18/2024] [Indexed: 05/31/2024] Open
Abstract
BACKGROUND The ketogenic diet (KD), based on high fat (over 70% of daily calories), low carbohydrate, and adequate protein intake, has become popular due to its potential therapeutic benefits for several diseases including cancer. Under KD and starvation conditions, the lack of carbohydrates promotes the production of ketone bodies (KB) from fats by the liver as an alternative source of metabolic energy. KD and starvation may affect the metabolism in cancer cells, as well as tumor characteristics. The aim of this study is to evaluate the effect of KD conditions on a wide variety of aspects of breast cancer cells in vitro. METHODS Using two cancer and one non-cancer breast cell line, we evaluate the effect of β-hydroxybutyrate (βHb) treatment on cell growth, survival, proliferation, colony formation, and migration. We also assess the effect of KB on metabolic profile of the cells. Using RNAseq analysis, we elucidate the effect of βHb on the gene expression profile. RESULTS Significant effects were observed following treatment by βHb which include effects on viability, proliferation, and colony formation of MCF7 cells, and different effects on colony formation of MDA-MB-231 cells, with no such effects on non-cancer HB2 cells. We found no changes in glucose intake or lactate output following βHb treatment as measured by LC-MS, but an increase in reactive oxygen species (ROS) level was detected. RNAseq analysis demonstrated significant changes in genes involved in lipid metabolism, cancer, and oxidative phosphorylation. CONCLUSIONS Based on our results, we conclude that differential response of cancer cell lines to βHb treatment, as alternative energy source or signal to alter lipid metabolism and oncogenicity, supports the need for a personalized approach to breast cancer patient treatment.
Collapse
Affiliation(s)
- Hadas Fulman-Levy
- Department of Molecular Biology, Ariel University, Ariel, 4070000, Israel
- Institute for Personalized and Translational Medicine, Ariel University, Ariel, 4070000, Israel
| | - Raichel Cohen-Harazi
- Institute for Personalized and Translational Medicine, Ariel University, Ariel, 4070000, Israel
| | - Bar Levi
- Department of Molecular Biology, Ariel University, Ariel, 4070000, Israel
| | - Lital Argaev-Frenkel
- Institute for Personalized and Translational Medicine, Ariel University, Ariel, 4070000, Israel
| | - Ifat Abramovich
- Rappaport Faculty of Medicine and Research Institute, Technion, Haifa, 3525422, Israel
| | - Eyal Gottlieb
- Rappaport Faculty of Medicine and Research Institute, Technion, Haifa, 3525422, Israel
| | - Sarah Hofmann
- Medical Faculty Mannheim, Heidelberg University, 68167 , Mannheim, Germany
| | - Igor Koman
- Department of Molecular Biology, Ariel University, Ariel, 4070000, Israel.
- Institute for Personalized and Translational Medicine, Ariel University, Ariel, 4070000, Israel.
| | - Elimelech Nesher
- Department of Molecular Biology, Ariel University, Ariel, 4070000, Israel.
- Institute for Personalized and Translational Medicine, Ariel University, Ariel, 4070000, Israel.
| |
Collapse
|
18
|
Ruan X, Yan W, Cao M, Daza RAM, Fong MY, Yang K, Wu J, Liu X, Palomares M, Wu X, Li A, Chen Y, Jandial R, Spitzer NC, Hevner RF, Wang SE. Breast cancer cell-secreted miR-199b-5p hijacks neurometabolic coupling to promote brain metastasis. Nat Commun 2024; 15:4549. [PMID: 38811525 PMCID: PMC11137082 DOI: 10.1038/s41467-024-48740-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 05/09/2024] [Indexed: 05/31/2024] Open
Abstract
Breast cancer metastasis to the brain is a clinical challenge rising in prevalence. However, the underlying mechanisms, especially how cancer cells adapt a distant brain niche to facilitate colonization, remain poorly understood. A unique metabolic feature of the brain is the coupling between neurons and astrocytes through glutamate, glutamine, and lactate. Here we show that extracellular vesicles from breast cancer cells with a high potential to develop brain metastases carry high levels of miR-199b-5p, which shows higher levels in the blood of breast cancer patients with brain metastases comparing to those with metastatic cancer in other organs. miR-199b-5p targets solute carrier transporters (SLC1A2/EAAT2 in astrocytes and SLC38A2/SNAT2 and SLC16A7/MCT2 in neurons) to hijack the neuron-astrocyte metabolic coupling, leading to extracellular retention of these metabolites and promoting cancer cell growth. Our findings reveal a mechanism through which cancer cells of a non-brain origin reprogram neural metabolism to fuel brain metastases.
Collapse
Affiliation(s)
- Xianhui Ruan
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Wei Yan
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Minghui Cao
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Ray Anthony M Daza
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Miranda Y Fong
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
- Department of Cancer Biology, City of Hope Beckman Research Institute, Duarte, CA, USA
| | - Kaifu Yang
- School of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Jun Wu
- Center for Comparative Medicine, City of Hope Beckman Research Institute, Duarte, CA, USA
| | - Xuxiang Liu
- Department of Cancer Biology, City of Hope Beckman Research Institute, Duarte, CA, USA
| | | | - Xiwei Wu
- Department of Computational and Quantitative Medicine, City of Hope Beckman Research Institute, Duarte, CA, USA
| | - Arthur Li
- Division of Biostatistics, City of Hope Beckman Research Institute, Duarte, CA, USA
| | - Yuan Chen
- Department of Surgery, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Rahul Jandial
- Department of Surgery; City of Hope, Duarte, CA, USA
| | - Nicholas C Spitzer
- Neurobiology Department, School of Biological Sciences and Center for Neural Circuits and Behavior, University of California San Diego, La Jolla, CA, USA
- Kavli Institute for Brain and Mind, University of California San Diego, La Jolla, CA, USA
| | - Robert F Hevner
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Shizhen Emily Wang
- Department of Pathology, University of California San Diego, La Jolla, CA, USA.
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
19
|
Chen S, Xu Y, Zhuo W, Zhang L. The emerging role of lactate in tumor microenvironment and its clinical relevance. Cancer Lett 2024; 590:216837. [PMID: 38548215 DOI: 10.1016/j.canlet.2024.216837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/16/2024] [Accepted: 03/25/2024] [Indexed: 04/12/2024]
Abstract
In recent years, the significant impact of lactate in the tumor microenvironment has been greatly documented. Acting not only as an energy substance in tumor metabolism, lactate is also an imperative signaling molecule. It plays key roles in metabolic remodeling, protein lactylation, immunosuppression, drug resistance, epigenetics and tumor metastasis, which has a tight relation with cancer patients' poor prognosis. This review illustrates the roles lactate plays in different aspects of tumor progression and drug resistance. From the comprehensive effects that lactate has on tumor metabolism and tumor immunity, the therapeutic targets related to it are expected to bring new hope for cancer therapy.
Collapse
Affiliation(s)
- Sihan Chen
- Department of Cell Biology and Department of Colorectal Surgery and Oncology, Center for Medical Research and Innovation in Digestive System Tumors, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, China; Institute of Gastroenterology, Zhejiang University, Hangzhou, China
| | - Yining Xu
- Department of Cell Biology and Department of Colorectal Surgery and Oncology, Center for Medical Research and Innovation in Digestive System Tumors, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, China; Institute of Gastroenterology, Zhejiang University, Hangzhou, China
| | - Wei Zhuo
- Department of Cell Biology and Department of Colorectal Surgery and Oncology, Center for Medical Research and Innovation in Digestive System Tumors, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, China; Institute of Gastroenterology, Zhejiang University, Hangzhou, China.
| | - Lu Zhang
- Department of Cell Biology and Department of Colorectal Surgery and Oncology, Center for Medical Research and Innovation in Digestive System Tumors, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Research Center for Life Science and Human Health, Binjiang Institute of Zhejiang University Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, China; Institute of Gastroenterology, Zhejiang University, Hangzhou, China.
| |
Collapse
|
20
|
Tamas C, Tamas F, Kovecsi A, Cehan A, Balasa A. Metabolic Contrasts: Fatty Acid Oxidation and Ketone Bodies in Healthy Brains vs. Glioblastoma Multiforme. Int J Mol Sci 2024; 25:5482. [PMID: 38791520 PMCID: PMC11122426 DOI: 10.3390/ijms25105482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/09/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
The metabolism of glucose and lipids plays a crucial role in the normal homeostasis of the body. Although glucose is the main energy substrate, in its absence, lipid metabolism becomes the primary source of energy. The main means of fatty acid oxidation (FAO) takes place in the mitochondrial matrix through β-oxidation. Glioblastoma (GBM) is the most common form of primary malignant brain tumor (45.6%), with an incidence of 3.1 per 100,000. The metabolic changes found in GBM cells and in the surrounding microenvironment are associated with proliferation, migration, and resistance to treatment. Tumor cells show a remodeling of metabolism with the use of glycolysis at the expense of oxidative phosphorylation (OXPHOS), known as the Warburg effect. Specialized fatty acids (FAs) transporters such as FAT, FABP, or FATP from the tumor microenvironment are overexpressed in GBM and contribute to the absorption and storage of an increased amount of lipids that will provide sufficient energy used for tumor growth and invasion. This review provides an overview of the key enzymes, transporters, and main regulatory pathways of FAs and ketone bodies (KBs) in normal versus GBM cells, highlighting the need to develop new therapeutic strategies to improve treatment efficacy in patients with GBM.
Collapse
Affiliation(s)
- Corina Tamas
- Doctoral School of Medicine and Pharmacy, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology, 540142 Targu Mures, Romania;
- Department of Neurosurgery, Emergency Clinical County Hospital, 540136 Targu Mures, Romania;
- Department of Neurosurgery, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology, 540142 Targu Mures, Romania
| | - Flaviu Tamas
- Doctoral School of Medicine and Pharmacy, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology, 540142 Targu Mures, Romania;
- Department of Neurosurgery, Emergency Clinical County Hospital, 540136 Targu Mures, Romania;
- Department of Neurosurgery, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology, 540142 Targu Mures, Romania
| | - Attila Kovecsi
- Department of Morphopathology, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology, 540142 Targu Mures, Romania;
- Department of Morphopathology, Emergency Clinical County Hospital, 540136 Targu Mures, Romania
| | - Alina Cehan
- Department of Plastic, Esthetics and Reconstructive Surgery, Emergency Clinical County Hospital, 540136 Targu Mures, Romania;
| | - Adrian Balasa
- Department of Neurosurgery, Emergency Clinical County Hospital, 540136 Targu Mures, Romania;
- Department of Neurosurgery, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology, 540142 Targu Mures, Romania
| |
Collapse
|
21
|
Nakanishi M, Ibe A, Morishita K, Shinagawa K, Yamamoto Y, Takahashi H, Ikemori K, Muragaki Y, Ehata S. Acid-sensing receptor GPR4 plays a crucial role in lymphatic cancer metastasis. Cancer Sci 2024; 115:1551-1563. [PMID: 38410865 PMCID: PMC11093208 DOI: 10.1111/cas.16098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/08/2024] [Accepted: 01/17/2024] [Indexed: 02/28/2024] Open
Abstract
Cancer tissues exhibit an acidic microenvironment owing to the accumulation of protons and lactic acid produced by cancer and inflammatory cells. To examine the role of an acidic microenvironment in lymphatic cancer metastasis, gene expression profiling was conducted using human dermal lymphatic endothelial cells (HDLECs) treated with a low pH medium. Microarray and gene set enrichment analysis revealed that acid treatment induced the expression of inflammation-related genes in HDLECs, including genes encoding chemokines and adhesion molecules. Acid treatment-induced chemokines C-X3-C motif chemokine ligand 1 (CX3CL1) and C-X-C motif chemokine ligand 6 (CXCL6) autocrinally promoted the growth and tube formation of HDLECs. The expression of vascular cell adhesion molecule 1 (VCAM-1) increased in HDLECs after acid treatment in a time-dependent manner, which, in turn, enhanced their adhesion to melanoma cells. Among various acid-sensing receptors, HDLECs basally expressed G protein-coupled receptor 4 (GPR4), which was augmented under the acidic microenvironment. The induction of chemokines or VCAM-1 under acidic conditions was attenuated by GPR4 knockdown in HDLECs. In addition, lymph node metastases in a mouse melanoma model were suppressed by administering an anti-VCAM-1 antibody or a GPR4 antagonist. These results suggest that an acidic microenvironment modifies the function of lymphatic endothelial cells via GPR4, thereby promoting lymphatic cancer metastasis. Acid-sensing receptors and their downstream molecules might serve as preventive or therapeutic targets in cancer.
Collapse
Affiliation(s)
- Masako Nakanishi
- Department of Pathology, School of MedicineWakayama Medical UniversityWakayamaJapan
| | - Akiya Ibe
- Department of Pathology, School of MedicineWakayama Medical UniversityWakayamaJapan
| | - Kiyoto Morishita
- Department of Pathology, School of MedicineWakayama Medical UniversityWakayamaJapan
| | - Kazutaka Shinagawa
- Department of Pathology, School of MedicineWakayama Medical UniversityWakayamaJapan
| | - Yushi Yamamoto
- Department of Pathology, School of MedicineWakayama Medical UniversityWakayamaJapan
| | - Hibiki Takahashi
- Department of Pathology, School of MedicineWakayama Medical UniversityWakayamaJapan
| | - Kyoka Ikemori
- Department of Pathology, School of MedicineWakayama Medical UniversityWakayamaJapan
| | - Yasuteru Muragaki
- Department of Pathology, School of MedicineWakayama Medical UniversityWakayamaJapan
| | - Shogo Ehata
- Department of Pathology, School of MedicineWakayama Medical UniversityWakayamaJapan
| |
Collapse
|
22
|
Carneiro L, Bernasconi R, Bernini A, Repond C, Pellerin L. Elevation of hypothalamic ketone bodies induces a decrease in energy expenditures and an increase risk of metabolic disorder. Mol Metab 2024; 83:101926. [PMID: 38553002 PMCID: PMC10999683 DOI: 10.1016/j.molmet.2024.101926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 03/18/2024] [Accepted: 03/22/2024] [Indexed: 04/04/2024] Open
Abstract
OBJECTIVE Ketone bodies (such as β-hydroxybutyrate or BHB) have been recently proposed as signals involved in brain regulation of energy homeostasis and obesity development. However, the precise role of ketone bodies sensing by the brain, and its impact on metabolic disorder development remains unclear. Nevertheless, partial deletion of the ubiquitous ketone bodies transporter MCT1 in mice (HE mice) results in diet-induced obesity resistance, while there is no alteration under normal chow diet. These results suggest that ketone bodies produced during the high fat diet would be important signals involved in obesity onset. METHODS In the present study we used a specific BHB infusion of the hypothalamus and analyzed the energy homeostasis of WT or HE mice fed a normal chow diet. RESULTS Our results indicate that high BHB levels sensed by the hypothalamus disrupt the brain regulation of energy homeostasis. This brain control dysregulation leads to peripheral alterations of energy expenditure mechanisms. CONCLUSIONS Altogether, the changes induced by high ketone bodies levels sensed by the brain increase the risk of obesity onset in mice.
Collapse
Affiliation(s)
- Lionel Carneiro
- Department of Physiology, University of Lausanne, 1005 Lausanne, Switzerland.
| | - Rocco Bernasconi
- Department of Physiology, University of Lausanne, 1005 Lausanne, Switzerland
| | - Adriano Bernini
- Department of Physiology, University of Lausanne, 1005 Lausanne, Switzerland
| | - Cendrine Repond
- Department of Physiology, University of Lausanne, 1005 Lausanne, Switzerland
| | - Luc Pellerin
- Department of Physiology, University of Lausanne, 1005 Lausanne, Switzerland; University and CHU of Poitiers, INSERM U1313, Poitiers, France.
| |
Collapse
|
23
|
Mishra SK, Santana JG, Mihailovic J, Hyder F, Coman D. Transmembrane pH gradient imaging in rodent glioma models. NMR IN BIOMEDICINE 2024; 37:e5102. [PMID: 38263680 PMCID: PMC10987279 DOI: 10.1002/nbm.5102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/28/2023] [Accepted: 12/16/2023] [Indexed: 01/25/2024]
Abstract
A unique feature of the tumor microenvironment is extracellular acidosis in relation to intracellular milieu. Metabolic reprogramming in tumors results in overproduction of H+ ions (and lactate), which are extruded from the cells to support tumor survival and progression. As a result, the transmembrane pH gradient (ΔpH), representing the difference between intracellular pH (pHi) and extracellular pH (pHe), is posited to be larger in tumors compared with normal tissue. Controlling the transmembrane pH difference has promise as a potential therapeutic target in cancer as it plays an important role in regulating drug delivery into cells. The current study shows successful development of an MRI/MRSI-based technique that provides ΔpH imaging at submillimeter resolution. We applied this technique to image ΔpH in rat brains with RG2 and U87 gliomas, as well as in mouse brains with GL261 gliomas. pHi was measured with Amine and Amide Concentration-Independent Detection (AACID), while pHe was measured with Biosensor Imaging of Redundant Deviation in Shifts (BIRDS). The results indicate that pHi was slightly higher in tumors (7.40-7.43 in rats, 7.39-7.47 in mice) compared with normal brain (7.30-7.38 in rats, 7.32-7.36 in mice), while pHe was significantly lower in tumors (6.62-6.76 in rats, 6.74-6.84 in mice) compared with normal tissue (7.17-7.22 in rats, 7.20-7.21 in mice). As a result, ΔpH was higher in tumors (0.64-0.81 in rats, 0.62-0.65 in mice) compared with normal brain (0.13-0.16 in rats, 0.13-0.16 in mice). This work establishes an MRI/MRSI-based platform for ΔpH imaging at submillimeter resolution in gliomas.
Collapse
Affiliation(s)
- Sandeep Kumar Mishra
- Yale University, Department of Radiology & Biomedical Imaging, New Haven, CT 06510, USA
| | | | - Jelena Mihailovic
- Yale University, Department of Radiology & Biomedical Imaging, New Haven, CT 06510, USA
| | - Fahmeed Hyder
- Yale University, Department of Radiology & Biomedical Imaging, New Haven, CT 06510, USA
- Yale University, Department of Biomedical Engineering, New Haven, CT 06510, USA
| | - Daniel Coman
- Yale University, Department of Radiology & Biomedical Imaging, New Haven, CT 06510, USA
- Yale University, Department of Biomedical Engineering, New Haven, CT 06510, USA
| |
Collapse
|
24
|
D’Aria S, Maquet C, Li S, Dhup S, Lepez A, Kohler A, Van Hée VF, Dadhich RK, Frenière M, Andris F, Nemazanyy I, Sonveaux P, Machiels B, Gillet L, Braun MY. Expression of the monocarboxylate transporter MCT1 is required for virus-specific mouse CD8 + T cell memory development. Proc Natl Acad Sci U S A 2024; 121:e2306763121. [PMID: 38498711 PMCID: PMC10990098 DOI: 10.1073/pnas.2306763121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 01/29/2024] [Indexed: 03/20/2024] Open
Abstract
Lactate-proton symporter monocarboxylate transporter 1 (MCT1) facilitates lactic acid export from T cells. Here, we report that MCT1 is mandatory for the development of virus-specific CD8+ T cell memory. MCT1-deficient T cells were exposed to acute pneumovirus (pneumonia virus of mice, PVM) or persistent γ-herpesvirus (Murid herpesvirus 4, MuHV-4) infection. MCT1 was required for the expansion of virus-specific CD8+ T cells and the control of virus replication in the acute phase of infection. This situation prevented the subsequent development of virus-specific T cell memory, a necessary step in containing virus reactivation during γ-herpesvirus latency. Instead, persistent active infection drove virus-specific CD8+ T cells toward functional exhaustion, a phenotype typically seen in chronic viral infections. Mechanistically, MCT1 deficiency sequentially impaired lactic acid efflux from activated CD8+ T cells, caused an intracellular acidification inhibiting glycolysis, disrupted nucleotide synthesis in the upstream pentose phosphate pathway, and halted cell proliferation which, ultimately, promoted functional CD8+ T cell exhaustion instead of memory development. Taken together, our data demonstrate that MCT1 expression is mandatory for inducing T cell memory and controlling viral infection by CD8+ T cells.
Collapse
Affiliation(s)
- Stefania D’Aria
- Institute for Medical Immunology, Faculty of Medicine, Université libre de Bruxelles, Gosselies6041, Belgium
| | - Céline Maquet
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine - Fundamental and Applied Research for Animals & Health Research Unit, University of Liège, Liège4000, Belgium
| | - Shuang Li
- Institute for Medical Immunology, Faculty of Medicine, Université libre de Bruxelles, Gosselies6041, Belgium
| | - Suveera Dhup
- Pole of Pharmacology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels1200, Belgium
| | - Anouk Lepez
- Immunobiology Laboratory, Faculty of Sciences, Université libre de Bruxelles, Gosselies6041, Belgium
| | - Arnaud Kohler
- Institute for Medical Immunology, Faculty of Medicine, Université libre de Bruxelles, Gosselies6041, Belgium
| | - Vincent F. Van Hée
- Pole of Pharmacology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels1200, Belgium
| | - Rajesh K. Dadhich
- Pole of Pharmacology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels1200, Belgium
| | - Marine Frenière
- Institute for Medical Immunology, Faculty of Medicine, Université libre de Bruxelles, Gosselies6041, Belgium
| | - Fabienne Andris
- Immunobiology Laboratory, Faculty of Sciences, Université libre de Bruxelles, Gosselies6041, Belgium
| | - Ivan Nemazanyy
- Plateforme d’étude du métabolisme, Institut Necker, Inserm US 24 - CNRS UMS 3633, Faculté de Médecine Paris Descartes, Paris75015, France
| | - Pierre Sonveaux
- WEL Research Institute, Welbio Department, Wavre1300, Belgium
| | - Bénédicte Machiels
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine - Fundamental and Applied Research for Animals & Health Research Unit, University of Liège, Liège4000, Belgium
| | - Laurent Gillet
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine - Fundamental and Applied Research for Animals & Health Research Unit, University of Liège, Liège4000, Belgium
| | - Michel Y. Braun
- Institute for Medical Immunology, Faculty of Medicine, Université libre de Bruxelles, Gosselies6041, Belgium
| |
Collapse
|
25
|
Tiwari A, Myeong J, Hashemiaghdam A, Zhang H, Niu X, Laramie MA, Stunault MI, Sponagel J, Patti G, Shriver L, Klyachko V, Ashrafi G. Mitochondrial pyruvate transport regulates presynaptic metabolism and neurotransmission. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.20.586011. [PMID: 38562794 PMCID: PMC10983914 DOI: 10.1101/2024.03.20.586011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Glucose has long been considered the primary fuel source for the brain. However, glucose levels fluctuate in the brain during sleep, intense circuit activity, or dietary restrictions, posing significant metabolic stress. Here, we demonstrate that the mammalian brain utilizes pyruvate as a fuel source, and pyruvate can support neuronal viability in the absence of glucose. Nerve terminals are sites of metabolic vulnerability within a neuron and we show that mitochondrial pyruvate uptake is a critical step in oxidative ATP production in hippocampal terminals. We find that the mitochondrial pyruvate carrier is post-translationally modified by lysine acetylation which in turn modulates mitochondrial pyruvate uptake. Importantly, our data reveal that the mitochondrial pyruvate carrier regulates distinct steps in synaptic transmission, namely, the spatiotemporal pattern of synaptic vesicle release and the efficiency of vesicle retrieval, functions that have profound implications for synaptic plasticity. In summary, we identify pyruvate as a potent neuronal fuel and mitochondrial pyruvate uptake as a critical node for the metabolic control of synaptic transmission in hippocampal terminals.
Collapse
Affiliation(s)
- Anupama Tiwari
- Department of Cell Biology and Physiology, Washington University in St. Louis
| | - Jongyun Myeong
- Department of Cell Biology and Physiology, Washington University in St. Louis
| | - Arsalan Hashemiaghdam
- Department of Cell Biology and Physiology, Washington University in St. Louis
- Present address: Tufts Medical Center, Boston, MA
| | - Hao Zhang
- Department of Chemistry, Department of Medicine, Center for Metabolomics and Isotope Tracing, Washington University in St. Louis
| | - Xianfeng Niu
- Department of Chemistry, Department of Medicine, Center for Metabolomics and Isotope Tracing, Washington University in St. Louis
| | - Marissa A Laramie
- Department of Cell Biology and Physiology, Washington University in St. Louis
| | - Marion I Stunault
- Department of Cell Biology and Physiology, Washington University in St. Louis
| | - Jasmin Sponagel
- Department of Cell Biology and Physiology, Washington University in St. Louis
| | - Gary Patti
- Department of Chemistry, Department of Medicine, Center for Metabolomics and Isotope Tracing, Washington University in St. Louis
| | - Leah Shriver
- Department of Chemistry, Department of Medicine, Center for Metabolomics and Isotope Tracing, Washington University in St. Louis
| | - Vitaly Klyachko
- Department of Cell Biology and Physiology, Washington University in St. Louis
| | - Ghazaleh Ashrafi
- Department of Cell Biology and Physiology, Washington University in St. Louis
- Needleman Center for Neurometabolism and Axonal Therapeutics, Washington University in St. Louis
- Lead Contact
| |
Collapse
|
26
|
Yadav AK, Maharjan Shrestha R, Yadav PN. Anticancer mechanism of coumarin-based derivatives. Eur J Med Chem 2024; 267:116179. [PMID: 38340509 DOI: 10.1016/j.ejmech.2024.116179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/13/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024]
Abstract
The structural motif of coumarins is related with various biological activities and pharmacological properties. Both natural coumarin extracted from various plants or a new coumarin derivative synthesized by modification of the basic structure of coumarin, in vitro experiments showed that coumarins are a promising class of anti-tumor agents with high selectivity. Cancer is a complex and multifaceted group of diseases characterized by the uncontrolled and abnormal growth of cells in the body. This review focuses on the anticancer mechanism of various coumarins synthesized and isolated in more than a decade. Isopentenyloxycoumarins inhibit angiogenesis by reducing CCl2 chemokine levels. Ferulin C is a potent colchicine-binding agent that destabilizes microtubules, exhibiting antiproliferative and anti-metastatic effects in breast cancer cells through PAK1 and PAK2-mediated signaling. Trimers of triphenylethylene-coumarin hybrids demonstrated significant proliferation inhibition in HeLa, A549, K562, and MCF-7 cell lines. Platinum(IV) complexes with 4-hydroxycoumarin have the potential for high genotoxicity against tumor cells, inducing apoptosis in SKOV-3 cells by up-regulating caspase 3 and caspase 9 expression. Derivatives of 3-benzyl coumarin seco-B-ring induce apoptosis, mediated through the PI3K/Akt/mTOR signaling pathway. Sesquiterpene coumarins inhibit the efflux pump of multidrug resistance-associated protein. Coumarin imidazolyl derivatives inhibit the aromatase enzyme, a major contributor to estrogen overproduction in estrogen-dependent breast cancer.
Collapse
Affiliation(s)
- Anand Kumar Yadav
- Central Department of Chemistry, Tribhuvan University, Kathmandu, Nepal
| | | | - Paras Nath Yadav
- Central Department of Chemistry, Tribhuvan University, Kathmandu, Nepal.
| |
Collapse
|
27
|
Liao S, Wu G, Xie Z, Lei X, Yang X, Huang S, Deng X, Wang Z, Tang G. pH regulators and their inhibitors in tumor microenvironment. Eur J Med Chem 2024; 267:116170. [PMID: 38308950 DOI: 10.1016/j.ejmech.2024.116170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/14/2024] [Accepted: 01/22/2024] [Indexed: 02/05/2024]
Abstract
As an important characteristic of tumor, acidic tumor microenvironment (TME) is closely related to immune escape, invasion, migration and drug resistance of tumor. The acidity of the TME mainly comes from the acidic products produced by the high level of tumor metabolism, such as lactic acid and carbon dioxide. pH regulators such as monocarboxylate transporters (MCTs), carbonic anhydrase IX (CA IX), and Na+/H+ exchange 1 (NHE1) expel protons directly or indirectly from the tumor to maintain the pH balance of tumor cells and create an acidic TME. We review the functions of several pH regulators involved in the construction of acidic TME, the structure and structure-activity relationship of pH regulator inhibitors, and provide strategies for the development of small-molecule antitumor inhibitors based on these targets.
Collapse
Affiliation(s)
- Senyi Liao
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Guang Wu
- The Second Affiliated Hospital, Department of Pharmacy, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Zhizhong Xie
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Xiaoyong Lei
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Xiaoyan Yang
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Sheng Huang
- Jiuzhitang Co., Ltd, Changsha, Hunan, 410007, China
| | - Xiangping Deng
- The First Affiliated Hospital, Department of Pharmacy, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| | - Zhe Wang
- The Second Affiliated Hospital, Department of Pharmacy, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| | - Guotao Tang
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
28
|
Yang H, Iwanaga N, Katz AR, Ridley AR, Miller HD, Allen MJ, Pociask D, Kolls JK. Embigin Is Highly Expressed on CD4+ and CD8+ T Cells but Is Dispensable for Several T Cell Effector Responses. Immunohorizons 2024; 8:242-253. [PMID: 38446446 PMCID: PMC10985056 DOI: 10.4049/immunohorizons.2300083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 02/09/2024] [Indexed: 03/07/2024] Open
Abstract
T cell immunity, including CD4+ and CD8+ T cell immunity, is critical to host immune responses to infection. Transcriptomic analyses of both CD4+ and CD8+ T cells of C57BL/6 mice show high expression the gene encoding embigin, Emb, which encodes a transmembrane glycoprotein. Moreover, we found that lung CD4+ Th17 tissue-resident memory T cells of C57BL/6 mice also express high levels of Emb. However, deletion of Emb in αβ T cells of C57BL/6 mice revealed that Emb is dispensable for thymic T cell development, generation of lung Th17 tissue-resident memory T cells, tissue-resident memory T cell homing to the lung, experimental autoimmune encephalitis, as well as clearance of pulmonary viral or fungal infection. Thus, based on this study, embigin appears to play a minor role if any in αβ T cell development or αβ T cell effector functions in C57BL/6 mice.
Collapse
Affiliation(s)
- Haoran Yang
- Department of Medicine, Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, LA
- Department of Pediatrics, Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, LA
| | - Naoki Iwanaga
- Department of Medicine, Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, LA
- Department of Pediatrics, Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, LA
- Department of Respiratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
| | - Alexis R. Katz
- Department of Medicine, Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, LA
- Department of Pediatrics, Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, LA
| | - Andy R. Ridley
- Department of Medicine, Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, LA
- Department of Pediatrics, Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, LA
| | - Haiyan D. Miller
- Department of Medicine, Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, LA
- Department of Pediatrics, Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, LA
| | - Michaela J. Allen
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA
| | - Dereck Pociask
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA
| | - Jay K. Kolls
- Department of Medicine, Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, LA
- Department of Pediatrics, Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, LA
| |
Collapse
|
29
|
Cai M, Li S, Cai K, Du X, Han J, Hu J. Empowering mitochondrial metabolism: Exploring L-lactate supplementation as a promising therapeutic approach for metabolic syndrome. Metabolism 2024; 152:155787. [PMID: 38215964 DOI: 10.1016/j.metabol.2024.155787] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/08/2023] [Accepted: 01/05/2024] [Indexed: 01/14/2024]
Abstract
Mitochondrial dysfunction plays a critical role in the pathogenesis of metabolic syndrome (MetS), affecting various cell types and organs. In MetS animal models, mitochondria exhibit decreased quality control, characterized by abnormal morphological structure, impaired metabolic activity, reduced energy production, disrupted signaling cascades, and oxidative stress. The aberrant changes in mitochondrial function exacerbate the progression of metabolic syndrome, setting in motion a pernicious cycle. From this perspective, reversing mitochondrial dysfunction is likely to become a novel and powerful approach for treating MetS. Unfortunately, there are currently no effective drugs available in clinical practice to improve mitochondrial function. Recently, L-lactate has garnered significant attention as a valuable metabolite due to its ability to regulate mitochondrial metabolic processes and function. It is highly likely that treating MetS and its related complications can be achieved by correcting mitochondrial homeostasis disorders. In this review, we comprehensively discuss the complex relationship between mitochondrial function and MetS and the involvement of L-lactate in regulating mitochondrial metabolism and associated signaling pathways. Furthermore, it highlights recent findings on the involvement of L-lactate in common pathologies of MetS and explores its potential clinical application and further prospects, thus providing new insights into treatment possibilities for MetS.
Collapse
Affiliation(s)
- Ming Cai
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai 201318, PR China; Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shuyao Li
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai 201318, PR China
| | - Keren Cai
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai 201318, PR China
| | - Xinlin Du
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai 201318, PR China
| | - Jia Han
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai 201318, PR China.
| | - Jingyun Hu
- Central Lab, Shanghai Key Laboratory of Pathogenic Fungi Medical Testing, Shanghai Pudong New Area People's Hospital, Shanghai 201299, PR China.
| |
Collapse
|
30
|
Qiu C, Xiang YK, Da XB, Zhang HL, Kong XY, Hou NZ, Zhang C, Tian FZ, Yang YL. Phospholipase A2 enzymes PLA2G2A and PLA2G12B as potential diagnostic and prognostic biomarkers in cholangiocarcinoma. World J Gastrointest Surg 2024; 16:289-306. [PMID: 38463362 PMCID: PMC10921223 DOI: 10.4240/wjgs.v16.i2.289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/19/2023] [Accepted: 01/15/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Phospholipase A2 (PLA2) enzymes are pivotal in various biological processes, such as lipid mediator production, membrane remodeling, bioenergetics, and maintaining the body surface barrier. Notably, these enzymes play a significant role in the development of diverse tumors. AIM To systematically and comprehensively explore the expression of the PLA2 family genes and their potential implications in cholangiocarcinoma (CCA). METHODS We conducted an analysis of five CCA datasets from The Cancer Genome Atlas and the Gene Expression Omnibus. The study identified differentially expressed genes between tumor tissues and adjacent normal tissues, with a focus on PLA2G2A and PLA2G12B. Gene Set Enrichment Analysis was utilized to pinpoint associated pathways. Moreover, relevant hub genes and microRNAs for PLA2G2A and PLA2G12B were predicted, and their correlation with the prognosis of CCA was evaluated. RESULTS PLA2G2A and PLA2G12B were discerned as differentially expressed in CCA, manifesting significant variations in expression levels in urine and serum between CCA patients and healthy individuals. Elevated expression of PLA2G2A was correlated with poorer overall survival in CCA patients. Additionally, the study delineated pathways and miRNAs associated with these genes. CONCLUSION Our findings suggest that PLA2G2A and PLA2G12B may serve as novel potential diagnostic and prognostic markers for CCA. The increased levels of these genes in biological fluids could be employed as non-invasive markers for CCA, and their expression levels are indicative of prognosis, underscoring their potential utility in clinical settings.
Collapse
Affiliation(s)
- Chen Qiu
- Center of Gallbladder Disease, Shanghai East Hospital, Institute of Gallstone Disease, School of Medicine, Tongji University, Shanghai 200092, China
| | - Yu-Kai Xiang
- Center of Gallbladder Disease, Shanghai East Hospital, Institute of Gallstone Disease, School of Medicine, Tongji University, Shanghai 200092, China
| | - Xuan-Bo Da
- Center of Gallbladder Disease, Shanghai East Hospital, Institute of Gallstone Disease, School of Medicine, Tongji University, Shanghai 200092, China
| | - Hong-Lei Zhang
- Center of Gallbladder Disease, Shanghai East Hospital, Institute of Gallstone Disease, School of Medicine, Tongji University, Shanghai 200092, China
| | - Xiang-Yu Kong
- Center of Gallbladder Disease, Shanghai East Hospital, Institute of Gallstone Disease, School of Medicine, Tongji University, Shanghai 200092, China
| | - Nian-Zong Hou
- Center of Gallbladder Disease, Shanghai East Hospital, Institute of Gallstone Disease, School of Medicine, Tongji University, Shanghai 200092, China
| | - Cheng Zhang
- Center of Gallbladder Disease, Shanghai East Hospital, Institute of Gallstone Disease, School of Medicine, Tongji University, Shanghai 200092, China
| | - Fu-Zhou Tian
- General Surgery Center, Chengdu Military General Hospital, Chengdu 610083, Sichuan Province, China
| | - Yu-Long Yang
- Center of Gallbladder Disease, Shanghai East Hospital, Institute of Gallstone Disease, School of Medicine, Tongji University, Shanghai 200092, China
| |
Collapse
|
31
|
Koltai T, Fliegel L. Exploring monocarboxylate transporter inhibition for cancer treatment. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:135-169. [PMID: 38464385 PMCID: PMC10918235 DOI: 10.37349/etat.2024.00210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/01/2023] [Indexed: 03/12/2024] Open
Abstract
Cells are separated from the environment by a lipid bilayer membrane that is relatively impermeable to solutes. The transport of ions and small molecules across this membrane is an essential process in cell biology and metabolism. Monocarboxylate transporters (MCTs) belong to a vast family of solute carriers (SLCs) that facilitate the transport of certain hydrophylic small compounds through the bilipid cell membrane. The existence of 446 genes that code for SLCs is the best evidence of their importance. In-depth research on MCTs is quite recent and probably promoted by their role in cancer development and progression. Importantly, it has recently been realized that these transporters represent an interesting target for cancer treatment. The search for clinically useful monocarboxylate inhibitors is an even more recent field. There is limited pre-clinical and clinical experience with new inhibitors and their precise mechanism of action is still under investigation. What is common to all of them is the inhibition of lactate transport. This review discusses the structure and function of MCTs, their participation in cancer, and old and newly developed inhibitors. Some suggestions on how to improve their anticancer effects are also discussed.
Collapse
Affiliation(s)
- Tomas Koltai
- Hospital del Centro Gallego de Buenos Aires, Buenos Aires 2199, Argentina
| | - Larry Fliegel
- Department of Biochemistry, Faculty of Medicine, University of Alberta, Edmonton T6G 2R3, Alberta, Canada
| |
Collapse
|
32
|
Habeichi NJ, Amin G, Lakkis B, Kataya R, Mericskay M, Booz GW, Zouein FA. Potential Alternative Receptors for SARS-CoV-2-Induced Kidney Damage: TLR-4, KIM-1/TIM-1, and CD147. FRONT BIOSCI-LANDMRK 2024; 29:8. [PMID: 38287815 PMCID: PMC10924798 DOI: 10.31083/j.fbl2901008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/07/2023] [Accepted: 11/14/2023] [Indexed: 01/31/2024]
Abstract
Kidney damage in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can occur even in patients with no underlying kidney disease. Signs of kidney problems can progress to a state that demands dialysis and hampering recovery. Although not without controversy, emerging evidence implicates direct infectivity of SARS-CoV-2 in the kidney. At the early stage of the pandemic, consideration was mainly on the well-recognized angiotensin-converting enzyme 2 (ACE2) receptor as being the site for viral interaction and subsequent cellular internalization. Despite the abundance of ACE2 receptors in the kidneys, researchers have expanded beyond ACE2 and identified novel viral entry pathways that could be advantageously explored as therapeutic targets. This review presents the potential involvement of toll-like receptor 4 (TLR-4), kidney injury molecule-1/T cell immunoglobulin mucin domain 1 (KIM-1/TIM-1), and cluster of differentiation 147 (CD147) in SARS-CoV-2-associated renal damage. In this context, we address the unresolved issues surrounding SARS-CoV-2 renal infectivity.
Collapse
Affiliation(s)
- Nada J. Habeichi
- Department of Pharmacology and Toxicology, American University of Beirut Faculty of Medicine, 1107-2020 Beirut, Lebanon
- The Cardiovascular, Renal, and Metabolic Diseases Research Center of Excellence, American University of Beirut Medical Center, Riad El-Solh, 1107-2020 Beirut, Lebanon
- Department of Signaling and Cardiovascular Pathophysiology, University Paris Saclay, INSERM UMR_1180, 91400 Orsay, France
- MatriceLab Innove Laboratory, Immeuble Les Gemeaux, 94000 Creteil, France
| | - Ghadir Amin
- Department of Pharmacology and Toxicology, American University of Beirut Faculty of Medicine, 1107-2020 Beirut, Lebanon
- The Cardiovascular, Renal, and Metabolic Diseases Research Center of Excellence, American University of Beirut Medical Center, Riad El-Solh, 1107-2020 Beirut, Lebanon
- Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Bachir Lakkis
- Division of Cardiology, Department of Internal Medicine, American University of Beirut Medical Center, 1107-2020 Beirut, Lebanon
| | - Rayane Kataya
- Department of Pharmacology and Toxicology, American University of Beirut Faculty of Medicine, 1107-2020 Beirut, Lebanon
- The Cardiovascular, Renal, and Metabolic Diseases Research Center of Excellence, American University of Beirut Medical Center, Riad El-Solh, 1107-2020 Beirut, Lebanon
| | - Mathias Mericskay
- Department of Signaling and Cardiovascular Pathophysiology, University Paris Saclay, INSERM UMR_1180, 91400 Orsay, France
| | - George W. Booz
- Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Fouad A. Zouein
- Department of Pharmacology and Toxicology, American University of Beirut Faculty of Medicine, 1107-2020 Beirut, Lebanon
- The Cardiovascular, Renal, and Metabolic Diseases Research Center of Excellence, American University of Beirut Medical Center, Riad El-Solh, 1107-2020 Beirut, Lebanon
- Department of Signaling and Cardiovascular Pathophysiology, University Paris Saclay, INSERM UMR_1180, 91400 Orsay, France
- Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| |
Collapse
|
33
|
Guillevin R, Naudin M, Fayolle P, Giraud C, Le Guillou X, Thomas C, Herpe G, Miranville A, Fernandez-Maloigne C, Pellerin L, Guillevin C. Diagnostic and Therapeutic Issues in Glioma Using Imaging Data: The Challenge of Numerical Twinning. J Clin Med 2023; 12:7706. [PMID: 38137775 PMCID: PMC10744312 DOI: 10.3390/jcm12247706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/28/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Glial tumors represent the leading etiology of primary brain tumors. Their particularities lie in (i) their location in a highly functional organ that is difficult to access surgically, including for biopsy, and (ii) their rapid, anisotropic mode of extension, notably via the fiber bundles of the white matter, which further limits the possibilities of resection. The use of mathematical tools enables the development of numerical models representative of the oncotype, genotype, evolution, and therapeutic response of lesions. The significant development of digital technologies linked to high-resolution NMR exploration, coupled with the possibilities offered by AI, means that we can envisage the creation of digital twins of tumors and their host organs, thus reducing the use of physical sampling.
Collapse
Affiliation(s)
- Rémy Guillevin
- Department of Imaging, University Hospital Center of Poitiers, 86000 Poitiers, France
- Labcom I3M, University of Poitiers, 86000 Poitiers, France
- DACTIM-MIS Team, Laboratoire de Mathématiques Appliquées LMA, CNRS UMR 7348, 86021 Poitiers, France
| | - Mathieu Naudin
- Department of Imaging, University Hospital Center of Poitiers, 86000 Poitiers, France
- Labcom I3M, University of Poitiers, 86000 Poitiers, France
- DACTIM-MIS Team, Laboratoire de Mathématiques Appliquées LMA, CNRS UMR 7348, 86021 Poitiers, France
| | - Pierre Fayolle
- Department of Imaging, University Hospital Center of Poitiers, 86000 Poitiers, France
- Labcom I3M, University of Poitiers, 86000 Poitiers, France
- DACTIM-MIS Team, Laboratoire de Mathématiques Appliquées LMA, CNRS UMR 7348, 86021 Poitiers, France
| | - Clément Giraud
- Department of Imaging, University Hospital Center of Poitiers, 86000 Poitiers, France
- Labcom I3M, University of Poitiers, 86000 Poitiers, France
- DACTIM-MIS Team, Laboratoire de Mathématiques Appliquées LMA, CNRS UMR 7348, 86021 Poitiers, France
| | - Xavier Le Guillou
- Labcom I3M, University of Poitiers, 86000 Poitiers, France
- DACTIM-MIS Team, Laboratoire de Mathématiques Appliquées LMA, CNRS UMR 7348, 86021 Poitiers, France
- Department of Genetic, University Hospital Center of Poitiers, 86000 Poitiers, France
| | - Clément Thomas
- Department of Imaging, University Hospital Center of Poitiers, 86000 Poitiers, France
- Labcom I3M, University of Poitiers, 86000 Poitiers, France
- DACTIM-MIS Team, Laboratoire de Mathématiques Appliquées LMA, CNRS UMR 7348, 86021 Poitiers, France
| | - Guillaume Herpe
- Department of Imaging, University Hospital Center of Poitiers, 86000 Poitiers, France
- Labcom I3M, University of Poitiers, 86000 Poitiers, France
- DACTIM-MIS Team, Laboratoire de Mathématiques Appliquées LMA, CNRS UMR 7348, 86021 Poitiers, France
| | - Alain Miranville
- Labcom I3M, University of Poitiers, 86000 Poitiers, France
- DACTIM-MIS Team, Laboratoire de Mathématiques Appliquées LMA, CNRS UMR 7348, 86021 Poitiers, France
| | | | - Luc Pellerin
- IRMETIST Laboratory, INSERM U1313, University of Poitiers and University Hospital Center of Poitiers, 86000 Poitiers, France
| | - Carole Guillevin
- Department of Imaging, University Hospital Center of Poitiers, 86000 Poitiers, France
- Labcom I3M, University of Poitiers, 86000 Poitiers, France
- DACTIM-MIS Team, Laboratoire de Mathématiques Appliquées LMA, CNRS UMR 7348, 86021 Poitiers, France
| |
Collapse
|
34
|
Yan J, Xie J, Xu S, Guo Y, Ji K, Li C, Gao H, Zhao L. Fibroblast growth factor 21 protects the liver from apoptosis in a type 1 diabetes mouse model via regulating L-lactate homeostasis. Biomed Pharmacother 2023; 168:115737. [PMID: 37862975 DOI: 10.1016/j.biopha.2023.115737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/07/2023] [Accepted: 10/14/2023] [Indexed: 10/22/2023] Open
Abstract
AIMS/HYPOTHESIS Fibroblast growth factor 21 (FGF21) is a hepatokine with pleiotropic effects on glucose and lipid metabolic homeostasis. Here, we aimed to elucidate the mechanisms underlying the protective effects of FGF21 on L-lactate homeostasis and liver lesions in a type 1 diabetes mellitus (T1DM) mice model. METHODS Six-week-old male C57BL/6 mice were divided into control, T1DM, and FGF21 groups. We also examined hepatic apoptotic signaling and functional indices in wild-type and hydroxycarboxylic acid receptor 1 (HCA1) knockout mice with T1DM or long-term L-lactate exposure. After preincubation of high glucose- or L-lactate treated hepatic AML12 cells, L-lactate uptake, apoptosis, and monocarboxylic acid transporter 2 (MCT2) expression were investigated. RESULTS In a mouse model of T1DM, hepatic FGF21 expression was downregulated by approximately 1.5-fold at 13 weeks after the hyperglycemic insult. In vivo administration of exogenous FGF21 (2 mg/kg) to diabetic or L-lactate-infused mice significantly prevented hepatic oxidative stress and apoptosis by activating extracellular signal-regulated kinase (ERK)1/2, p38 mitogen-activated protein kinase (MAPK) and AMP-activated protein kinase (AMPK) pathways. HCA1-KO mice were less susceptible to diabetes- and L-lactate-induced hepatic apoptosis and dysfunction. In addition, inhibition of PI3K-mTOR activity revealed that FGF21 prevented L-lactate-induced Cori cycle alterations and hepatic apoptosis by upregulating MCT2 protein translation. CONCLUSIONS/INTERPRETATION These results demonstrate that L-lactate homeostasis may be a therapeutic target for T1DM-related hepatic dysfunction. The protective effects of FGF21 on hepatic damage were associated with its ability to ameliorate MCT2-dependent Cori cycle alterations and prevent HCA1-mediated inhibition of ERK1/2, p38 MAPK, and AMPK signaling.
Collapse
Affiliation(s)
- Jiapin Yan
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Jiaojiao Xie
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Sibei Xu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Yuejun Guo
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Keru Ji
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Chen Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Hongchang Gao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou 325035, Zhejiang, China.
| | - Liangcai Zhao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China.
| |
Collapse
|
35
|
Manisha DS, Ratheesh AK, Benny S, Presanna AT. Heterocyclic and non-heterocyclic arena of monocarboxylate transporter inhibitors to battle tumorigenesis. Chem Biol Drug Des 2023; 102:1604-1617. [PMID: 37688395 DOI: 10.1111/cbdd.14342] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 07/28/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023]
Abstract
Monocarboxylate transporters (MCTs) have gained significant attention in cancer research due to their critical role in tumour metabolism. MCTs are legends for transporting lactate molecules in cancer cells, an oncometabolite and waste product of glycolysis, acting as an indispensable factor of tumour proliferation. Targeting MCTs with inhibitors has emerged as a promising strategy to combat tumorigenesis. This article summarizes the most recent research on MCT inhibitors in preventing carcinogenesis, covering both heterocyclic and non-heterocyclic compounds. Heterocyclic and non-heterocyclic compounds such as pteridine, pyrazole, indole, flavonoids, coumarin derivatives and cyanoacetic acid derivatives have been reported as potent MCT inhibitors. We examine the molecular underpinnings of MCTs in cancer metabolism, the design and synthesis of heterocyclic and non-heterocyclic MCT inhibitors, their impact on tumour cells and the microenvironment and their potential as therapeutic agents. Moreover, we explore the challenges associated with MCT inhibitor development and propose future directions for advancing this field. This write-up aims to provide researchers, scientists and clinicians with a comprehensive understanding of the heterocyclic and non-heterocyclic MCT inhibitors and their potential in combating tumorigenesis.
Collapse
Affiliation(s)
- Deepthi S Manisha
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala, India
| | - Anandu Kizhakkedath Ratheesh
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala, India
| | - Sonu Benny
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala, India
| | - Aneesh Thankappan Presanna
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala, India
| |
Collapse
|
36
|
Chatterjee P, Bhowmik D, Roy SS. A systemic analysis of monocarboxylate transporters in ovarian cancer and possible therapeutic interventions. Channels (Austin) 2023; 17:2273008. [PMID: 37934721 PMCID: PMC10631444 DOI: 10.1080/19336950.2023.2273008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 10/06/2023] [Indexed: 11/09/2023] Open
Abstract
Monocarboxylate transporters (MCTs) play an immense role in metabolically active solid tumors by regulating concentration-dependent transport of different important monocarboxylates including pyruvate and lactate and are encoded by the SLC16A family of genes. Given the vast array of functions, these transporters play in oncogenesis, our objective was to look into the association of MCT1 (SLC16A1), MCT2 (SLC16A7), MCT3 (SLC16A8), and MCT4 (SLC16A3) with Epithelial ovarian cancer (EOC) pathophysiology by exploiting various publicly available databases and web resources. Few of the in silico findings were confirmed via in vitro experiments in EOC cell lines, SKOV3 and OAW-42. MCT1 and MCT4 were found to be upregulated at the mRNA level in OC tissues compared to normal. However, only higher level of MCT4 mRNA was found to be associated with poor patient survival. MCT4 was positively correlated with gene families responsible for invasion, migration, and immune modification, proving it to be one of the most important MCTs for therapeutic intervention. We compared the effects of MCT1/2 blocker SR13800 and a broad-spectrum MCT blocker α-Cyano Hydroxy Cinnamic Acid (α-CHCA) and discovered that α-CHCA has a greater effect on diminishing the invasive behavior of the cancer cells than MCT1/2 blocker SR13800. From our study, MCT4 has emerged as a prospective marker for predicting poor patient outcomes and a potential therapeutic target.
Collapse
Affiliation(s)
- Priti Chatterjee
- Cell Biology and Physiology Division, CSIR‐Indian Institute of Chemical Biology, Kolkata, India
| | - Debaleena Bhowmik
- Cell Biology and Physiology Division, CSIR‐Indian Institute of Chemical Biology, Kolkata, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad - 201002, India
| | - Sib Sankar Roy
- Cell Biology and Physiology Division, CSIR‐Indian Institute of Chemical Biology, Kolkata, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad - 201002, India
| |
Collapse
|
37
|
Ouyang J, Wang H, Huang J. The role of lactate in cardiovascular diseases. Cell Commun Signal 2023; 21:317. [PMID: 37924124 PMCID: PMC10623854 DOI: 10.1186/s12964-023-01350-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 10/06/2023] [Indexed: 11/06/2023] Open
Abstract
Cardiovascular diseases pose a major threat worldwide. Common cardiovascular diseases include acute myocardial infarction (AMI), heart failure, atrial fibrillation (AF) and atherosclerosis. Glycolysis process often has changed during these cardiovascular diseases. Lactate, the end-product of glycolysis, has been overlooked in the past but has gradually been identified to play major biological functions in recent years. Similarly, the role of lactate in cardiovascular disease is gradually being recognized. Targeting lactate production, regulating lactate transport, and modulating circulating lactate levels may serve as potential strategies for the treatment of cardiovascular diseases in the future. The purpose of this review is to integrate relevant clinical and basic research on the role of lactate in the pathophysiological process of cardiovascular disease in recent years to clarify the important role of lactate in cardiovascular disease and to guide further studies exploring the role of lactate in cardiovascular and other diseases. Video Abstract.
Collapse
Affiliation(s)
- Jun Ouyang
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Hui Wang
- School of Pharmacy, Guangxi Medical University, Nanning, China.
| | - Jiangnan Huang
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.
| |
Collapse
|
38
|
Raimundo JRS, da Costa Aguiar Alves B, Encinas JFA, Siqueira AM, de Gois KC, Perez MM, Petri G, Dos Santos JFR, Fonseca FLA, da Veiga GL. Expression of TNFR1, VEGFA, CD147 and MCT1 as early biomarkers of diabetes complications and the impact of aging on this profile. Sci Rep 2023; 13:17927. [PMID: 37863950 PMCID: PMC10589356 DOI: 10.1038/s41598-023-41061-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 08/21/2023] [Indexed: 10/22/2023] Open
Abstract
Hyperglycemia leads to microvascular lesions in various tissues. In diabetic nephropathy-DN, alterations in usual markers reflect an already installed disease. The study of new biomarkers for the early detection of diabetic complications can bring new prevention perspectives. Rats were divided into diabetic adult-DMA-or elderly-DME and control sham adult-CSA-or control sham elderly-CSE. Blood and urine samples were collected for biochemical analysis. Bulbar region, cardiac, hepatic and renal tissues were collected for target gene expression studies. As result, DMA showed decreased TNFR1, MCT1 and CD147 expression in the bulbar region, TNFR1 in the heart, VEGFA and CD147 in the kidney and TNFR1 in blood. Positive correlations were found between TNFR1 and MCT1 in the bulbar region and HbA1c and plasma creatinine, respectively. DME showed positive correlation in the bulbar region between TNFR1 and glycemia, in addition to negative correlations between CD147 in the heart versus glycemia and urea. We concluded that the initial hyperglycemic stimulus already promotes changes in the expression of genes involved in the inflammatory and metabolic pathways, and aging alters this profile. These changes prior to the onset of diseases such as DN, show that they have potential for early biomarkers studies.
Collapse
Affiliation(s)
- Joyce Regina Santos Raimundo
- Laboratório de Análises Clínicas do Centro Universitário-Faculdade de Medicina do ABC (FMABC), Avenida Lauro Gomes, 2000, Santo André, SP, 09060-650, Brazil.
| | - Beatriz da Costa Aguiar Alves
- Laboratório de Análises Clínicas do Centro Universitário-Faculdade de Medicina do ABC (FMABC), Avenida Lauro Gomes, 2000, Santo André, SP, 09060-650, Brazil
| | - Jéssica Freitas Araujo Encinas
- Laboratório de Análises Clínicas do Centro Universitário-Faculdade de Medicina do ABC (FMABC), Avenida Lauro Gomes, 2000, Santo André, SP, 09060-650, Brazil
| | - Andressa Moreira Siqueira
- Laboratório de Análises Clínicas do Centro Universitário-Faculdade de Medicina do ABC (FMABC), Avenida Lauro Gomes, 2000, Santo André, SP, 09060-650, Brazil
| | - Katharyna Cardoso de Gois
- Laboratório de Análises Clínicas do Centro Universitário-Faculdade de Medicina do ABC (FMABC), Avenida Lauro Gomes, 2000, Santo André, SP, 09060-650, Brazil
| | - Matheus Moreira Perez
- Laboratório de Análises Clínicas do Centro Universitário-Faculdade de Medicina do ABC (FMABC), Avenida Lauro Gomes, 2000, Santo André, SP, 09060-650, Brazil
| | - Giuliana Petri
- Vivarium and Animal Experimentation Laboratory-Faculdade de Medicina Do ABC (FMABC), Avenida Lauro Gomes, 2000, Santo André, SP, 09060-650, Brazil
| | - José Francisco Ramos Dos Santos
- Vivarium and Animal Experimentation Laboratory-Faculdade de Medicina Do ABC (FMABC), Avenida Lauro Gomes, 2000, Santo André, SP, 09060-650, Brazil
| | - Fernando Luiz Affonso Fonseca
- Laboratório de Análises Clínicas do Centro Universitário-Faculdade de Medicina do ABC (FMABC), Avenida Lauro Gomes, 2000, Santo André, SP, 09060-650, Brazil
- Departamento de Ciências Farmacêuticas da Universidade Federal de São Paulo/UNIFESP, Campus Diadema, Rua Prof. Artur Riedel, 275, Diadema, SP, 09972-270, Brazil
| | - Glaucia Luciano da Veiga
- Laboratório de Análises Clínicas do Centro Universitário-Faculdade de Medicina do ABC (FMABC), Avenida Lauro Gomes, 2000, Santo André, SP, 09060-650, Brazil
| |
Collapse
|
39
|
Barayan D, Khalaf F, Knuth CM, Abdullahi A, Rehou S, Screaton RA, Jeschke MG. Reply to Lund et al. Am J Physiol Endocrinol Metab 2023; 325:E423-E424. [PMID: 37812085 PMCID: PMC10642985 DOI: 10.1152/ajpendo.00283.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 10/10/2023]
Affiliation(s)
- Dalia Barayan
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Sunnybrook Research Institute, Toronto, Ontario, Canada
- Hamilton Health Sciences, Hamilton, Ontario, Canada
| | - Fadi Khalaf
- Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Carly M Knuth
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Sunnybrook Research Institute, Toronto, Ontario, Canada
- Hamilton Health Sciences, Hamilton, Ontario, Canada
| | - Abdikarim Abdullahi
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Sarah Rehou
- Ross Tilley Burn Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
- Sunnybrook Research Institute, Toronto, Ontario, Canada
- Hamilton Health Sciences, Hamilton, Ontario, Canada
| | - Robert A Screaton
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Canada
| | - Marc G Jeschke
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Ross Tilley Burn Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
- Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Surgery, McMaster University, Hamilton, Ontario, Canada
- Hamilton Health Sciences, Hamilton, Ontario, Canada
| |
Collapse
|
40
|
Monsorno K, Ginggen K, Ivanov A, Buckinx A, Lalive AL, Tchenio A, Benson S, Vendrell M, D'Alessandro A, Beule D, Pellerin L, Mameli M, Paolicelli RC. Loss of microglial MCT4 leads to defective synaptic pruning and anxiety-like behavior in mice. Nat Commun 2023; 14:5749. [PMID: 37717033 PMCID: PMC10505217 DOI: 10.1038/s41467-023-41502-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 09/07/2023] [Indexed: 09/18/2023] Open
Abstract
Microglia, the innate immune cells of the central nervous system, actively participate in brain development by supporting neuronal maturation and refining synaptic connections. These cells are emerging as highly metabolically flexible, able to oxidize different energetic substrates to meet their energy demand. Lactate is particularly abundant in the brain, but whether microglia use it as a metabolic fuel has been poorly explored. Here we show that microglia can import lactate, and this is coupled with increased lysosomal acidification. In vitro, loss of the monocarboxylate transporter MCT4 in microglia prevents lactate-induced lysosomal modulation and leads to defective cargo degradation. Microglial depletion of MCT4 in vivo leads to impaired synaptic pruning, associated with increased excitation in hippocampal neurons, enhanced AMPA/GABA ratio, vulnerability to seizures and anxiety-like phenotype. Overall, these findings show that selective disruption of the MCT4 transporter in microglia is sufficient to alter synapse refinement and to induce defects in mouse brain development and adult behavior.
Collapse
Affiliation(s)
- Katia Monsorno
- University of Lausanne, Department of Biomedical Sciences, Lausanne, Switzerland
| | - Kyllian Ginggen
- University of Lausanne, Department of Biomedical Sciences, Lausanne, Switzerland
| | - Andranik Ivanov
- Core Unit Bioinformatics, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - An Buckinx
- University of Lausanne, Department of Biomedical Sciences, Lausanne, Switzerland
| | - Arnaud L Lalive
- University of Lausanne, Department of Fundamental Neurosciences, Lausanne, Switzerland
| | - Anna Tchenio
- University of Lausanne, Department of Fundamental Neurosciences, Lausanne, Switzerland
| | - Sam Benson
- University of Edinburgh, Centre for Inflammation Research, Edinburgh, United Kingdom
| | - Marc Vendrell
- University of Edinburgh, Centre for Inflammation Research, Edinburgh, United Kingdom
| | - Angelo D'Alessandro
- University of Colorado, Anschutz Medical Campus, Department of Biochemistry and Molecular Genetics, Denver, CO, USA
| | - Dieter Beule
- Core Unit Bioinformatics, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Luc Pellerin
- Inserm U1313, University of Poitiers and CHU of Poitiers, Poitiers Cedex, France
| | - Manuel Mameli
- University of Lausanne, Department of Fundamental Neurosciences, Lausanne, Switzerland
| | | |
Collapse
|
41
|
You S, Zhang J, Yu L, Li Z, Zhang J, Zhao N, Xie Z, Li Y, Akram Z, Sun S. Construction of SLC16A1/3 Targeted Gallic Acid-Iron-Embelin Nanoparticles for Regulating Glycolysis and Redox Pathways in Cervical Cancer. Mol Pharm 2023; 20:4574-4586. [PMID: 37307591 DOI: 10.1021/acs.molpharmaceut.3c00294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
SLC16A1 and SLC16A3 (SLC16A1/3) are highly expressed in cervical cancers and associated with the malignant biological behavior of cancer. SLC16A1/3 is the critical hub for regulating the internal and external environment, glycolysis, and redox homeostasis in cervical cancer cells. Inhibiting SLC16A1/3 provides a new thought to eliminate cervical cancer effectively. There are few reports on effective treatment strategies to eliminate cervical cancer by simultaneously targeting SLC16A1/3. GEO database analysis and quantitative reverse transcription polymerase chain reaction experiment were used to confirm the high expression of SLC16A1/3. The potential inhibitor of SLC16A1/3 was screened from Siwu Decoction by using network pharmacology and molecular docking technology. The mRNA levels and protein levels of SLC16A1/3 in SiHa and HeLa cells treated by Embelin (EMB) were clarified, respectively. Furthermore, the Gallic acid-iron (GA-Fe) drug delivery system was used to improve its anti-cancer performance. Compared with normal cervical cells, SLC16A1/3 mRNA was over-expressed in SiHa and HeLa cells. Through the analysis of Siwu Decoction, a simultaneously targeted SLC16A1/3 inhibitor EMB was discovered. It was found for the first time that EMB promoted lactic acid accumulation and further induced redox dyshomeostasis and glycolysis disorder by simultaneously inhibiting SLC16A1/3. The gallic acid-iron-Embelin (GA-Fe@EMB) drug delivery system delivered EMB, which had a synergistic anti-cervical cancer effect. Under the irradiation of a near-infrared laser, the GA-Fe@EMB could elevate the temperature of the tumor area effectively. Subsequently, EMB was released and mediated the lactic acid accumulation and the GA-Fe nanoparticle synergistic Fenton reaction to promote ROS accumulation, thereby increasing the lethality of the nanoparticles on cervical cancer cells. GA-Fe@EMB can target cervical cancer marker SLC16A1/3 to regulate glycolysis and redox pathways, synergistically with photothermal therapy, which provides a new avenue for the synergistic treatment of malignant cervical cancer.
Collapse
Affiliation(s)
- Shiwan You
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Shihezi University College of Pharmacy, Shihezi 832003, Xinjiang, China
| | - Jing Zhang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Shihezi University College of Pharmacy, Shihezi 832003, Xinjiang, China
- School of Medicine, Xinjiang University of Science & Technology, Korla, 841000, China
| | - Lan Yu
- Shanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest Agriculture and Forestry University, Yangling, Shaanxi 712100, China
| | - Zuoping Li
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Shihezi University College of Pharmacy, Shihezi 832003, Xinjiang, China
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Shihezi University College of Chemistry and Chemical Engineering, Shihezi 832002, Xinjiang, China
| | - Jiaru Zhang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Shihezi University College of Pharmacy, Shihezi 832003, Xinjiang, China
| | - Na Zhao
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Shihezi University College of Pharmacy, Shihezi 832003, Xinjiang, China
| | - Zhenzhen Xie
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Shihezi University College of Pharmacy, Shihezi 832003, Xinjiang, China
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Shihezi University College of Chemistry and Chemical Engineering, Shihezi 832002, Xinjiang, China
| | - Youping Li
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Shihezi University College of Pharmacy, Shihezi 832003, Xinjiang, China
| | - Zubair Akram
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Shihezi University College of Chemistry and Chemical Engineering, Shihezi 832002, Xinjiang, China
| | - Shiguo Sun
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Shihezi University College of Pharmacy, Shihezi 832003, Xinjiang, China
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| |
Collapse
|
42
|
Nogales JMS, Parras J, Zazo S. DDQN-based optimal targeted therapy with reversible inhibitors to combat the Warburg effect. Math Biosci 2023; 363:109044. [PMID: 37414271 DOI: 10.1016/j.mbs.2023.109044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 05/09/2023] [Accepted: 06/23/2023] [Indexed: 07/08/2023]
Abstract
We cover the Warburg effect with a three-component evolutionary model, where each component represents a different metabolic strategy. In this context, a scenario involving cells expressing three different phenotypes is presented. One tumour phenotype exhibits glycolytic metabolism through glucose uptake and lactate secretion. Lactate is used by a second malignant phenotype to proliferate. The third phenotype represents healthy cells, which performs oxidative phosphorylation. The purpose of this model is to gain a better understanding of the metabolic alterations associated with the Warburg effect. It is suitable to reproduce some of the clinical trials obtained in colorectal cancer and other even more aggressive tumours. It shows that lactate is an indicator of poor prognosis, since it favours the setting of polymorphic tumour equilibria that complicates its treatment. This model is also used to train a reinforcement learning algorithm, known as Double Deep Q-networks, in order to provide the first optimal targeted therapy based on experimental tumour growth inhibitors as genistein and AR-C155858. Our in silico solution includes the optimal therapy for all the tumour state space and also ensures the best possible quality of life for the patients, by considering the duration of treatment, the use of low-dose medications and the existence of possible contraindications. Optimal therapies obtained with Double Deep Q-networks are validated with the solutions of the Hamilton-Jacobi-Bellman equation.
Collapse
Affiliation(s)
- Jose M Sanz Nogales
- Information Processing and Telecommunications Center, Universidad Politécnica de Madrid, ETSI Telecomunicación, Av. Complutense 30, 28040 Madrid, Spain.
| | - Juan Parras
- Information Processing and Telecommunications Center, Universidad Politécnica de Madrid, ETSI Telecomunicación, Av. Complutense 30, 28040 Madrid, Spain
| | - Santiago Zazo
- Information Processing and Telecommunications Center, Universidad Politécnica de Madrid, ETSI Telecomunicación, Av. Complutense 30, 28040 Madrid, Spain
| |
Collapse
|
43
|
Gayatri MB, Kancha RK, Patchva D, Velugonda N, Gundeti S, Reddy ABM. Metformin exerts antileukemic effects by modulating lactate metabolism and overcomes imatinib resistance in chronic myelogenous leukemia. FEBS J 2023; 290:4480-4495. [PMID: 37171230 DOI: 10.1111/febs.16818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 03/30/2023] [Accepted: 05/11/2023] [Indexed: 05/13/2023]
Abstract
Imatinib is the frontline treatment option in treating chronic myelogenous leukemia (CML). Hitherto, some patients relapse following treatment. Biochemical analysis of a panel of clonally derived imatinib-resistant cells revealed enhanced glucose uptake and ATP production, suggesting increased rates of glycolysis. Interestingly, increased lactate export was also observed in imatinib-resistant cell lines. Here, we show that metformin inhibits the growth of imatinib-resistant cell lines as well as peripheral blood mononuclear cells isolated from patients who relapsed following imatinib treatment. Metformin exerted these antiproliferative effects by inhibiting MCT1 and MCT4, leading to the inhibition of lactate export. Furthermore, glucose uptake and ATP production were also inhibited following metformin treatment due to the inhibition of GLUT1 and HK-II in an AMPK-dependent manner. Our results also confirmed that metformin-mediated inhibition of lactate export and glucose uptake occurs through the regulation of mTORC1 and HIF-1α. These results delineate the molecular mechanisms underlying metabolic reprogramming leading to secondary imatinib resistance and the potential of metformin as a therapeutic option in CML.
Collapse
MESH Headings
- Humans
- Imatinib Mesylate/pharmacology
- Metformin/pharmacology
- Metformin/therapeutic use
- Leukocytes, Mononuclear/metabolism
- Cell Line, Tumor
- Drug Resistance, Neoplasm
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Lactic Acid/metabolism
- Glucose/metabolism
- Adenosine Triphosphate
- Apoptosis
Collapse
Affiliation(s)
| | - Rama Krishna Kancha
- Molecular Medicine and Therapeutics Laboratory, CPMB, Osmania University, Hyderabad, India
| | - Dorababu Patchva
- Department of Pharmacology, Apollo Institute of Medical Sciences and Research, Hyderabad, India
| | - Nagaraj Velugonda
- Department of Medical Oncology, Nizam's Institute of Medical Sciences, Hyderabad, India
| | - Sadashivudu Gundeti
- Department of Medical Oncology, Nizam's Institute of Medical Sciences, Hyderabad, India
| | - Aramati B M Reddy
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, India
| |
Collapse
|
44
|
Andersen OE, Poulsen JV, Farup J, de Morree A. Regulation of adult stem cell function by ketone bodies. Front Cell Dev Biol 2023; 11:1246998. [PMID: 37745291 PMCID: PMC10513036 DOI: 10.3389/fcell.2023.1246998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/14/2023] [Indexed: 09/26/2023] Open
Abstract
Adult stem cells play key roles in tissue homeostasis and regeneration. Recent evidence suggests that dietary interventions can significantly impact adult stem cell function. Some of these effects depend on ketone bodies. Adult stem cells could therefore potentially be manipulated through dietary regimens or exogenous ketone body supplementation, a possibility with significant implications for regenerative medicine. In this review we discuss recent findings of the mechanisms by which ketone bodies could influence adult stem cells, including ketogenesis in adult stem cells, uptake and transport of circulating ketone bodies, receptor-mediated signaling, and changes to cellular metabolism. We also discuss the potential effects of ketone bodies on intracellular processes such as protein acetylation and post-transcriptional control of gene expression. The exploration of mechanisms underlying the effects of ketone bodies on stem cell function reveals potential therapeutic targets for tissue regeneration and age-related diseases and suggests future research directions in the field of ketone bodies and stem cells.
Collapse
Affiliation(s)
- Ole Emil Andersen
- Department of Public Health, Aarhus University, Aarhus, Denmark
- Steno Diabetes Center Aarhus, Aarhus University, Aarhus, Denmark
| | | | - Jean Farup
- Steno Diabetes Center Aarhus, Aarhus University, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | |
Collapse
|
45
|
Ueno M, Chiba Y, Murakami R, Miyai Y, Matsumoto K, Wakamatsu K, Takebayashi G, Uemura N, Yanase K. Distribution of Monocarboxylate Transporters in Brain and Choroid Plexus Epithelium. Pharmaceutics 2023; 15:2062. [PMID: 37631275 PMCID: PMC10458808 DOI: 10.3390/pharmaceutics15082062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
The choroid plexus (CP) plays central roles in regulating the microenvironment of the central nervous system by secreting the majority of cerebrospinal fluid (CSF) and controlling its composition. A monolayer of epithelial cells of CP plays a significant role in forming the blood-CSF barrier to restrict the movement of substances between the blood and ventricles. CP epithelial cells are equipped with transporters for glucose and lactate that are used as energy sources. There are many review papers on glucose transporters in CP epithelial cells. On the other hand, distribution of monocarboxylate transporters (MCTs) in CP epithelial cells has received less attention compared with glucose transporters. Some MCTs are known to transport lactate, pyruvate, and ketone bodies, whereas others transport thyroid hormones. Since CP epithelial cells have significant carrier functions as well as the barrier function, a decline in the expression and function of these transporters leads to a poor supply of thyroid hormones as well as lactate and can contribute to the process of age-associated brain impairment and pathophysiology of neurodegenerative diseases. In this review paper, recent findings regarding the distribution and significance of MCTs in the brain, especially in CP epithelial cells, are summarized.
Collapse
Affiliation(s)
- Masaki Ueno
- Department of Pathology and Host Defense, Faculty of Medicine, Kagawa University, Takamatsu 761-0793, Kagawa, Japan; (Y.C.); (R.M.); (Y.M.); (K.M.); (K.W.)
| | - Yoichi Chiba
- Department of Pathology and Host Defense, Faculty of Medicine, Kagawa University, Takamatsu 761-0793, Kagawa, Japan; (Y.C.); (R.M.); (Y.M.); (K.M.); (K.W.)
| | - Ryuta Murakami
- Department of Pathology and Host Defense, Faculty of Medicine, Kagawa University, Takamatsu 761-0793, Kagawa, Japan; (Y.C.); (R.M.); (Y.M.); (K.M.); (K.W.)
| | - Yumi Miyai
- Department of Pathology and Host Defense, Faculty of Medicine, Kagawa University, Takamatsu 761-0793, Kagawa, Japan; (Y.C.); (R.M.); (Y.M.); (K.M.); (K.W.)
| | - Koichi Matsumoto
- Department of Pathology and Host Defense, Faculty of Medicine, Kagawa University, Takamatsu 761-0793, Kagawa, Japan; (Y.C.); (R.M.); (Y.M.); (K.M.); (K.W.)
| | - Keiji Wakamatsu
- Department of Pathology and Host Defense, Faculty of Medicine, Kagawa University, Takamatsu 761-0793, Kagawa, Japan; (Y.C.); (R.M.); (Y.M.); (K.M.); (K.W.)
| | - Genta Takebayashi
- Department of Anesthesiology, Faculty of Medicine, Kagawa University, Takamatsu 761-0793, Kagawa, Japan; (G.T.); (N.U.); (K.Y.)
| | - Naoya Uemura
- Department of Anesthesiology, Faculty of Medicine, Kagawa University, Takamatsu 761-0793, Kagawa, Japan; (G.T.); (N.U.); (K.Y.)
| | - Ken Yanase
- Department of Anesthesiology, Faculty of Medicine, Kagawa University, Takamatsu 761-0793, Kagawa, Japan; (G.T.); (N.U.); (K.Y.)
| |
Collapse
|
46
|
Guglielmetti C, Cordano C, Najac C, Green AJ, Chaumeil MM. Imaging immunomodulatory treatment responses in a multiple sclerosis mouse model using hyperpolarized 13C metabolic MRI. COMMUNICATIONS MEDICINE 2023; 3:71. [PMID: 37217574 DOI: 10.1038/s43856-023-00300-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 05/03/2023] [Indexed: 05/24/2023] Open
Abstract
BACKGROUND In recent years, the ability of conventional magnetic resonance imaging (MRI), including T1 contrast-enhanced (CE) MRI, to monitor high-efficacy therapies and predict long-term disability in multiple sclerosis (MS) has been challenged. Therefore, non-invasive methods to improve MS lesions detection and monitor therapy response are needed. METHODS We studied the combined cuprizone and experimental autoimmune encephalomyelitis (CPZ-EAE) mouse model of MS, which presents inflammatory-mediated demyelinated lesions in the central nervous system as commonly seen in MS patients. Using hyperpolarized 13C MR spectroscopy (MRS) metabolic imaging, we measured cerebral metabolic fluxes in control, CPZ-EAE and CPZ-EAE mice treated with two clinically-relevant therapies, namely fingolimod and dimethyl fumarate. We also acquired conventional T1 CE MRI to detect active lesions, and performed ex vivo measurements of enzyme activities and immunofluorescence analyses of brain tissue. Last, we evaluated associations between imaging and ex vivo parameters. RESULTS We show that hyperpolarized [1-13C]pyruvate conversion to lactate is increased in the brain of untreated CPZ-EAE mice when compared to the control, reflecting immune cell activation. We further demonstrate that this metabolic conversion is significantly decreased in response to the two treatments. This reduction can be explained by increased pyruvate dehydrogenase activity and a decrease in immune cells. Importantly, we show that hyperpolarized 13C MRS detects dimethyl fumarate therapy, whereas conventional T1 CE MRI cannot. CONCLUSIONS In conclusion, hyperpolarized MRS metabolic imaging of [1-13C]pyruvate detects immunological responses to disease-modifying therapies in MS. This technique is complementary to conventional MRI and provides unique information on neuroinflammation and its modulation.
Collapse
Affiliation(s)
- Caroline Guglielmetti
- Department of Physical Therapy and Rehabilitation Science, University of California San Francisco, San Francisco, CA, USA.
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA.
| | - Christian Cordano
- Department of Neurology, Weill Institute for Neurosciences, University of California at San Francisco, San Francisco, CA, USA
| | - Chloé Najac
- Department of Radiology, C.J. Gorter MRI Center, Leiden University Medical Center, Leiden, The Netherlands
| | - Ari J Green
- Department of Neurology, Weill Institute for Neurosciences, University of California at San Francisco, San Francisco, CA, USA
- Department of Ophthalmology, University of California at San Francisco, CA, San Francisco, USA
| | - Myriam M Chaumeil
- Department of Physical Therapy and Rehabilitation Science, University of California San Francisco, San Francisco, CA, USA.
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
47
|
Li W, Liu S, Zhang Y, Zhou J, Li R, Gai S, Zhong L, Yang P. Dual-inhibition of lactate metabolism and Prussian blue-mediated radical generation for enhanced chemodynamic therapy and antimetastatic effect. NANOSCALE 2023; 15:9214-9228. [PMID: 37158103 DOI: 10.1039/d3nr01052j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Numerous research studies have proved that lactate is pivotal in tumor proliferation, metastasis, and recurrence, so disrupting the lactate metabolism in the tumor microenvironment (TME) has become one of the effective methods of tumor treatment. Herein, we have developed a versatile nanoparticle (HCLP NP) based on hollow Prussian blue (HPB) as the functional carrier for loading α-cyano-4-hydroxycinnamate (CHC), and lactate oxidase (LOD), followed by coating with polyethylene glycol to enhance chemodynamic therapy (CDT) and the antimetastatic effect of cancer. The obtained HCLP NPs would be degraded under endogenous mild acidity within the TME to simultaneously release CHC and LOD. CHC inhibits the expression of monocarboxylate transporter 1 in tumors, thereby interrupting the uptake of lactate from the outside and alleviating tumor hypoxia by reducing lactate aerobic respiration. Meanwhile, the released LOD can catalyze the decomposition of lactate into hydrogen peroxide, further enhancing the efficacy of CDT by generating plenty of toxic reactive oxygen species through the Fenton reaction. The strong absorbance at about 800 nm endows HCLP NPs with excellent photoacoustic imaging properties. Both in vitro and in vivo studies have demonstrated that HCLP NPs can inhibit tumor growth and metastasis, providing a new possibility for tumor therapy.
Collapse
Affiliation(s)
- Wenting Li
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China.
| | - Shikai Liu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China.
| | - Yangyang Zhang
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, P. R. China
| | - Jialing Zhou
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China.
| | - Rumin Li
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China.
| | - Shili Gai
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China.
| | - Lei Zhong
- Department of Breast Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin 150086, PR China.
| | - Piaoping Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China.
| |
Collapse
|
48
|
Cheng G, Hardy M, Kalyanaraman B. Antiproliferative effects of mitochondria-targeted N-acetylcysteine and analogs in cancer cells. Sci Rep 2023; 13:7254. [PMID: 37142668 PMCID: PMC10160116 DOI: 10.1038/s41598-023-34266-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 03/23/2023] [Indexed: 05/06/2023] Open
Abstract
N-acetylcysteine (NAC) has been used as an antioxidant drug in tumor cells and preclinical mice tumor xenografts, and it improves adaptive immunotherapy in melanoma. NAC is not readily bioavailable and is used in high concentrations. The effects of NAC have been attributed to its antioxidant and redox signaling role in mitochondria. New thiol-containing molecules targeted to mitochondria are needed. Here, mitochondria-targeted NAC with a 10-carbon alkyl side chain attached to a triphenylphosphonium group (Mito10-NAC) that is functionally similar to NAC was synthesized and studied. Mito10-NAC has a free sulfhydryl group and is more hydrophobic than NAC. Mito10-NAC is nearly 2000-fold more effective than NAC in inhibiting several cancer cells, including pancreatic cancer cells. Methylation of NAC and Mito10-NAC also inhibited cancer cell proliferation. Mito10-NAC inhibits mitochondrial complex I-induced respiration and, in combination with monocarboxylate transporter 1 inhibitor, synergistically decreased pancreatic cancer cell proliferation. Results suggest that the antiproliferative effects of NAC and Mito10-NAC are unlikely to be related to their antioxidant mechanism (i.e., scavenging of reactive oxygen species) or to the sulfhydryl group-dependent redox modulatory effects.
Collapse
Affiliation(s)
- Gang Cheng
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Micael Hardy
- CNRS, ICR, UMR 7273, Aix Marseille Univ, 13013, Marseille, France
| | - Balaraman Kalyanaraman
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
| |
Collapse
|
49
|
Liang Y, Iqbal Z, Lu J, Wang J, Zhang H, Chen X, Duan L, Xia J. Cell-derived nanovesicle-mediated drug delivery to the brain: Principles and strategies for vesicle engineering. Mol Ther 2023; 31:1207-1224. [PMID: 36245129 PMCID: PMC10188644 DOI: 10.1016/j.ymthe.2022.10.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 09/27/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022] Open
Abstract
Developing strategies toward safe and effective drug delivery into the central nervous system (CNS) with improved targeting abilities and reduced off-target effects is crucial. CNS-targeted drug carriers made of synthetic molecules raise concerns about their biodegradation, clearance, immune responses, and neurotoxicity. Cell-derived nanovesicles (CDNs) have recently been applied in CNS-targeted drug delivery, because of their intrinsic stability, biocompatibility, inherent homing capability, and the ability to penetrate through biological barriers, including the blood-brain barrier. Among these CDNs, extracellular vesicles and exosomes are the most studied because their surface can be engineered and modified to cater to brain targeting. In this review, we focus on the application of CDNs in brain-targeted drug delivery to treat neurological diseases. We cover recently developed methods of exosome derivation and engineering, including exosome-like particles, hybrid exosomes, exosome-associated adeno-associated viruses, and envelope protein nanocages. Finally, we discuss the limitations and project the future development of the CDN-based brain-targeted delivery systems, and conclude that engineered CDNs hold great potential in the treatment of neurological diseases.
Collapse
Affiliation(s)
- Yujie Liang
- Department of Child and Adolescent Psychiatry, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen, Guangdong 518020, China; Department of Orthopedics, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong 518035, China
| | - Zoya Iqbal
- Department of Orthopedics, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong 518035, China
| | - Jianping Lu
- Department of Child and Adolescent Psychiatry, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen, Guangdong 518020, China
| | - Jianhong Wang
- Department of Child and Adolescent Psychiatry, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen, Guangdong 518020, China
| | - Hao Zhang
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing, Jiangsu 210096, China; EVLiXiR Biotech Inc., Nanjing, Jiangsu 210032, China
| | - Xi Chen
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Li Duan
- Department of Orthopedics, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong 518035, China.
| | - Jiang Xia
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| |
Collapse
|
50
|
Zorec R, Vardjan N. Adrenergic regulation of astroglial aerobic glycolysis and lipid metabolism: Towards a noradrenergic hypothesis of neurodegeneration. Neurobiol Dis 2023; 182:106132. [PMID: 37094775 DOI: 10.1016/j.nbd.2023.106132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 04/26/2023] Open
Abstract
Ageing is a key factor in the development of cognitive decline and dementia, an increasing and challenging problem of the modern world. The most commonly diagnosed cognitive decline is related to Alzheimer's disease (AD), the pathophysiology of which is poorly understood. Several hypotheses have been proposed. The cholinergic hypothesis is the oldest, however, recently the noradrenergic system has been considered to have a role as well. The aim of this review is to provide evidence that supports the view that an impaired noradrenergic system is causally linked to AD. Although dementia is associated with neurodegeneration and loss of neurons, this likely develops due to a primary failure of homeostatic cells, astrocytes, abundant and heterogeneous neuroglial cells in the central nervous system (CNS). The many functions that astrocytes provide to maintain the viability of neural networks include the control of ionic balance, neurotransmitter turnover, synaptic connectivity and energy balance. This latter function is regulated by noradrenaline, released from the axon varicosities of neurons arising from the locus coeruleus (LC), the primary site of noradrenaline release in the CNS. The demise of the LC is linked to AD, whereby a hypometabolic CNS state is observed clinically. This is likely due to impaired release of noradrenaline in the AD brain during states of arousal, attention and awareness. These functions controlled by the LC are needed for learning and memory formation and require activation of the energy metabolism. In this review, we address first the process of neurodegeneration and cognitive decline, highlighting the function of astrocytes. Cholinergic and/or noradrenergic deficits lead to impaired astroglial function. Then, we focus on adrenergic control of astroglial aerobic glycolysis and lipid droplet metabolism, which play a protective role but also promote neurodegeneration under some circumstances, supporting the noradrenergic hypothesis of cognitive decline. We conclude that targeting astroglial metabolism, glycolysis and/or mitochondrial processes may lead to important new developments in the future when searching for medicines to prevent or even halt cognitive decline.
Collapse
Affiliation(s)
- Robert Zorec
- Laboratory of Neuroendocrinology - Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia; Laboratory of Cell Engineering, Celica Biomedical, Ljubljana, Slovenia.
| | - Nina Vardjan
- Laboratory of Neuroendocrinology - Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia; Laboratory of Cell Engineering, Celica Biomedical, Ljubljana, Slovenia.
| |
Collapse
|