1
|
Gentile R, Feudi D, Sallicandro L, Biagini A. Can the Tumor Microenvironment Alter Ion Channels? Unraveling Their Role in Cancer. Cancers (Basel) 2025; 17:1244. [PMID: 40227837 DOI: 10.3390/cancers17071244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 03/29/2025] [Accepted: 04/03/2025] [Indexed: 04/15/2025] Open
Abstract
Neoplastic cells are characterized by metabolic reprogramming, known as the Warburg effect, in which glucose metabolism is predominantly directed toward aerobic glycolysis, with reduced mitochondrial oxidative phosphorylation and increased lactate production even in the presence of oxygen. This phenomenon provides cancer cells with a proliferative advantage, allowing them to rapidly produce energy (in the form of ATP) and generate metabolic intermediates necessary for the biosynthesis of macromolecules essential for cell growth. It is important to understand the role of ion channels in the tumor context since they participate in various physiological processes and in the regulation of the tumor microenvironment. These changes may contribute to the development and transformation of cancer cells, as well as affect the communication between cells and the surrounding microenvironment, including impaired or altered expression and functionality of ion channels. Therefore, the aim of this review is to elucidate the impact of the tumor microenvironment on the electrical properties of the cellular membranes in several cancers as a possible therapeutic target.
Collapse
Affiliation(s)
- Rosaria Gentile
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via dell'Elce di Sotto 8, 06123 Perugia, Italy
| | - Davide Feudi
- Department of Biostatistics, Epidemiology and Public Health, University of Padua, Via L. Loredan 18, 35131 Padova, Italy
| | - Luana Sallicandro
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via dell'Elce di Sotto 8, 06123 Perugia, Italy
- Department of Medicine and Surgery, Perugia Medical School, University of Perugia, Piazza Lucio Severi 1, 06132 Perugia, Italy
| | - Andrea Biagini
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via dell'Elce di Sotto 8, 06123 Perugia, Italy
- Department of Medicine and Surgery, Perugia Medical School, University of Perugia, Piazza Lucio Severi 1, 06132 Perugia, Italy
| |
Collapse
|
2
|
Orellana AMM, Mazucanti CH, Andreotti DZ, de Sá Lima L, Kawamoto EM, Scavone C. Effects of decrease in Klotho protein expression on insulin signaling and levels of proteins related to brain energy metabolism. Eur J Pharmacol 2025; 997:177587. [PMID: 40187598 DOI: 10.1016/j.ejphar.2025.177587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 03/31/2025] [Accepted: 04/02/2025] [Indexed: 04/07/2025]
Abstract
Mutations in Klotho have been associated with premature ageing and cognitive dysfunction. Although highly expressed in specific regions of the brain, the actions of Klotho in the central nervous system (CNS) remain largely unknown. Here, we show that animals with a mutated hypomorphic Klotho gene have altered glycaemic regulation, suggesting higher insulin sensitivity. In the CNS, pathways related to insulin intracellular signalling were found to be up-regulated in the hippocampus, with higher activation of protein kinase B and mammalian target of rapamycin and inactivation of the transcription factors forkhead box O (FOXO)-1 and FOXO-3a. In addition, the present study showed that in the hippocampi of wild-type aged mice, where Klotho is naturally downregulated, the levels of some proteins related to energy metabolism and metabolic coupling between neurones and astrocytes, such as monocarboxylate transporter 2 and 4, 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase isoform 3 and lactate dehydrogenase enzymes isoforms A and B were altered. These findings suggest that Klotho plays an essential role in regulating proteins and genes related to metabolic coupling in the brain.
Collapse
Affiliation(s)
- Ana Maria Marques Orellana
- Laboratory of Molecular Neuropharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil; Laboratory of Molecular and Functional Neurobiology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Caio Henrique Mazucanti
- Laboratory of Molecular Neuropharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil; Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland, USA
| | - Diana Zukas Andreotti
- Laboratory of Molecular and Functional Neurobiology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Larissa de Sá Lima
- Laboratory of Molecular Neuropharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil; Laboratory of Molecular and Functional Neurobiology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Elisa Mitiko Kawamoto
- Laboratory of Molecular and Functional Neurobiology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Cristoforo Scavone
- Laboratory of Molecular Neuropharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
3
|
Behera MM, Purkait S, Ghosh A, Sable MN, Sahu RN, Chhabra G. The Monocarboxylate Transporters MCT1 and MCT4 Are Highly Expressed in Glioblastoma and Crucially Implicated in the Pathobiology. Neuropathology 2025. [PMID: 40145253 DOI: 10.1111/neup.70006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 03/02/2025] [Accepted: 03/08/2025] [Indexed: 03/28/2025]
Abstract
Monocarboxylate transporters (MCTs) are crucially implicated in cancer cell metabolism by transporting lactate/H+ ions and thus regulating the pH of the microenvironment. We assessed MCT1 and MCT4 expression in 98 cases of adult-type hemispheric Glioblastomas (GBMs) (IDH wild-type), along with 51 cases of IDH-mutant astrocytic and oligodendroglial tumors (grade 2-4) for comparison. U87MG and LN229 cell lines were used for in vitro analysis. Both MCT-1 and MCT-4 showed significantly higher expression in GBMs on immunohistochemistry than in IDH-mutated gliomas, which mostly showed weak or negative immunoreactivity. The mRNA expression was also in a similar line. Interestingly, in all areas of the pathological endothelial proliferation of grade 4 tumors, there was MCT-1 loss of expression, unlike the nonproliferating endothelium. High MCT1/4 expression was associated with shorter overall survival in all gliomas together but not in GBM separately. Syrosingopine, a dual MCT1/4 inhibitor, showed significant antitumor effects in both the glioma cell lines, including dose-dependent cytotoxicity, increased apoptosis, and decreased migration/invasion. The results indicated the role of MCT1/4 in the pathobiology of GBM and the diagnostic utility at the immunohistochemical level. Syrosingopine, an antihypertensive agent with good CNS penetration and previously used in different malignancies, may be an essential therapeutic adjunct in GBM.
Collapse
Affiliation(s)
- Minakshi M Behera
- Department of Pathology & Lab Medicine, All India Institute of Medical Sciences, Bhubaneswar, India
| | - Suvendu Purkait
- Department of Pathology & Lab Medicine, All India Institute of Medical Sciences, Bhubaneswar, India
| | - Amit Ghosh
- Department of Physiology, All India Institute of Medical Sciences, Bhubaneswar, India
| | - Mukund N Sable
- Department of Pathology & Lab Medicine, All India Institute of Medical Sciences, Bhubaneswar, India
| | - Rabi Narayan Sahu
- Department of Neurosurgery, All India Institute of Medical Sciences, Bhubaneswar, India
| | - Gaurav Chhabra
- Department of Pathology & Lab Medicine, All India Institute of Medical Sciences, Bhubaneswar, India
| |
Collapse
|
4
|
Wang X, Wang J, Zhao X, Zhang J, Zhang Y. The adipokines in oral cancer pathogenesis and its potential as a new therapeutic approach. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03939-w. [PMID: 40056203 DOI: 10.1007/s00210-025-03939-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Accepted: 02/16/2025] [Indexed: 03/10/2025]
Abstract
The involvement of adipose tissue in the development of cancer is currently the subject of an increasing number of research due to the growing relevance of lipid metabolism in tumor growth. Obesity influences the tumor immune microenvironment (TME) in oral cancer. Visceral white adipose tissue (WAT) consists of adipocytes, connective tissue, immune cells, and stromovascular cells. The metabolic processes of immune cells within the adipose tissue of individuals with obesity predominantly depend on oxidative phosphorylation (intrinsically) and are characterized by elevated levels of M2 macrophages, Treg cells, Th2 cells, and eosinophils from an extrinsic perspective. The adipokines secreted by adipocytes facilitate communication with adjacent tissues to regulate glucose and lipid metabolism. Obesity influences cancer progression through the dysregulation of adipocytokines, characterized by an augmented synthesis of the oncogenic adipokine leptin, coupled with a reduced secretion of adiponectin. Under standard physiological settings, these adipokines fulfill essential roles in sustaining homeostasis. This review analyzed the influence of adipocytes on oral cancer by detailing the mediators released by adipocytes. Comprehending the molecular foundations of the protumor roles of adipokines in oral cancers might provide novel treatment targets.
Collapse
Affiliation(s)
- Xue Wang
- Department of Stomatology, Jilin Province FAW General Hospital, Jilin, 130000, China
| | - Jiapeng Wang
- Department of Orthopedics, Jilin Province FAW General Hospital, Jilin, 130000, China.
| | - Xuemei Zhao
- Department of Stomatology, Jilin Province FAW General Hospital, Jilin, 130000, China
| | - Jiayin Zhang
- Department of Stomatology, Jilin Province FAW General Hospital, Jilin, 130000, China
| | - Yan Zhang
- Medical Department, Changchun Sci-Tech University, Changchun, 130000, China
| |
Collapse
|
5
|
Cheng B, Liu J, Gao L, Zhu Z, Yang Y, Liu S, Wu X. EMB-driven glioblastoma multiforme progression via the MCT4/GPX3 axis: therapeutic inhibition by Ganxintriol A. J Transl Med 2025; 23:272. [PMID: 40038742 DOI: 10.1186/s12967-025-06290-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 02/23/2025] [Indexed: 03/06/2025] Open
Abstract
BACKGROUND Embigin (EMB) is a transmembrane glycoprotein highly expressed in glioblastoma multiforme (GBM), yet its role in GBM progression remains unclear. In this study, we investigate the function of intracellular EMB in promoting GBM progression and evaluate the effect of Ganxintriol A, a traditional Chinese herbal extract, in GBM treatment. METHODS Bioinformatics datasets were utilized to assess EMB expression and its prognostic value in GBM patients. In vitro experiments such as PCR、western blot,CCK8,transwell,wound healing,clone formation and flow cytometry assays were conducted to examine EMB's biological functions and underlying mechanisms in GBM cell lines. Additionally, we constructed a subcutaneous tumor model in nude mice and evaluated the effect of traditional Chinese medicine extract Ganxintriol A on the progression of GBM through in vivo and in vitro experiments. RESULTS EMB is highly expressed in GBM and is associated with poor prognosis in GBM patients. EMB overexpression accelerated GBM progression, whereas EMB knockdown had the opposite effect. Further analysis revealed that EMB upregulated epithelial-mesenchymal transition (EMT) and glycolysis while maintaining glutathione (GSH) redox balance by inducing monocarboxylate transporter 4 (MCT4) and glutathione peroxidase 3 (GPX3) expression. Treatment with Ganxintriol A significantly downregulated EMB expression, effectively inhibiting GBM progression both in vitro and in vivo. CONCLUSIONS This study highlights EMB as an independent prognostic biomarker for GBM and reveals a novel mechanism by which EMB drives GBM progression. Additionally, Ganxintriol A is identified as a promising therapeutic candidate for GBM treatment.
Collapse
Affiliation(s)
- Bo Cheng
- Department of Psychiatry, The Affiliated Xuzhou Eastern Hospital of Xuzhou Medical University, 379 Tongshan Road, Xuzhou, 221000, China
- Department of Neurology, Tongji Hospital, School of Medicine, Tongji University, 389 Xincun Road, Shanghai, 200292, China
| | - Jing Liu
- Department of Neurology, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou No. 1 People's Hospital, 269 University Road, Xuzhou, 221000, China
| | - Ling Gao
- Department of Pharmacy, The Affiliated Huaihai Hospital of Xuzhou Medical University, The 71st Group Army Hospital of CPLA Army, 226 Tongshan Road, Xuzhou, 221000, China
| | - Ziwen Zhu
- Department of Neurology, Tongji Hospital, School of Medicine, Tongji University, 389 Xincun Road, Shanghai, 200292, China
| | - Yang Yang
- Department of Pharmacy, The Affiliated Huaihai Hospital of Xuzhou Medical University, The 71st Group Army Hospital of CPLA Army, 226 Tongshan Road, Xuzhou, 221000, China
| | - Shangqi Liu
- Department of Neurology, Xuzhou Central Hospital, the Affiliated Xuzhou Clinical College of Xuzhou Medical University, 199 Jiefang South Road, Xuzhou, 221000, China
| | - Xiaojin Wu
- Department of Radiation Oncology, Xuzhou Central Hospital, the Affiliated Xuzhou Clinical College of Xuzhou Medical University, 199 Jiefang South Road, Xuzhou, 221000, China.
| |
Collapse
|
6
|
Cheng B, Liu S, Gao L, Xin N, Shang Z, Zhu Z, Yang Y, Ma R, Xu Z, Liu J, Wang D. Long-Term Minocycline Treatment Exhibits Enhanced Therapeutic Effects on Ischemic Stroke by Suppressing Inflammatory Phenotype of Microglia Through the EMB/MCT4/STING Pathway. CNS Neurosci Ther 2025; 31:e70328. [PMID: 40135489 PMCID: PMC11937927 DOI: 10.1111/cns.70328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 02/07/2025] [Accepted: 02/26/2025] [Indexed: 03/27/2025] Open
Abstract
BACKGROUND Neuroinflammation caused by excessive activation of microglia is a significant cause of poor prognosis in ischemic stroke patients. Minocycline, a microglial cell inhibitor, has neuroprotective effects in stroke, but its optimal treatment duration and specific mechanisms of action remain unclear. This study aimed to compare the efficacy of different minocycline treatment durations on stroke and explore their mechanisms of action. METHODS We investigated the effects of various durations of minocycline treatment on microglial polarization using cellular and animal models. The mechanisms of long-term minocycline therapy for neuroprotective effects were explored through in vitro and in vivo experiments. RESULTS In stroke models, long-term minocycline treatment showed a stronger inhibitory effect on neuroinflammation and improved neuron viability compared with short-term treatment. Further in vitro and in vivo results indicated that long-term minocycline treatment downregulated microglial glycolysis levels through the EMB/MCT4 axis, promoting the transformation of microglia to an anti-inflammatory phenotype by inhibiting the activation of the STING pathway, thereby improving post-stroke neuroinflammation. CONCLUSION Long-term minocycline therapy exerts neuroprotective effects in ischemic stroke by regulating the EMB/MCT4/STING axis and inhibiting the inflammatory phenotype of microglia through downregulating cellular glycolysis levels. Extending the treatment duration of minocycline appropriately may further improve ischemic stroke outcomes.
Collapse
Affiliation(s)
- Bo Cheng
- Department of NeurologyTongji Hospital, School of Medicine, Tongji UniversityShanghaiChina
- Department of PsychiatryThe Affiliated Xuzhou Eastern Hospital of Xuzhou Medical UniversityXuzhouChina
| | - Shangqi Liu
- Department of NeurologyThe Affiliated Hospital of Xuzhou Medical UniversityXuzhouChina
- Department of NeurologyXuzhou Central Hospital, Affiliated Xuzhou Clinical College of Xuzhou Medical UniversityXuzhouChina
| | - Ling Gao
- Department of PharmacyThe Affiliated Huaihai Hospital of Xuzhou Medical University, the 71st Group Army Hospital of CPLA ArmyXuzhouChina
| | - Ning Xin
- Department of NeurologyThe Affiliated Hospital of Xuzhou Medical UniversityXuzhouChina
| | - Zhenying Shang
- Department of NeurologyThe Affiliated Hospital of Xuzhou Medical UniversityXuzhouChina
| | - Ziwen Zhu
- Department of NeurologyTongji Hospital, School of Medicine, Tongji UniversityShanghaiChina
| | - Yang Yang
- Department of PharmacyThe Affiliated Huaihai Hospital of Xuzhou Medical University, the 71st Group Army Hospital of CPLA ArmyXuzhouChina
| | - Rui Ma
- Department of PsychiatryThe Affiliated Xuzhou Eastern Hospital of Xuzhou Medical UniversityXuzhouChina
| | - Zixiang Xu
- Clinical CollegeXuzhou Medical UniverstiyXuzhouChina
| | - Jing Liu
- Department of NeurologyThe Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou No. 1 People's HospitalXuzhouChina
| | - Dunjing Wang
- Department of NeurologyThe Affiliated Hospital of Xuzhou Medical UniversityXuzhouChina
| |
Collapse
|
7
|
Sirajee R, El Khatib S, Dieleman LA, Salla M, Baksh S. ImmunoMet Oncogenesis: A New Concept to Understand the Molecular Drivers of Cancer. J Clin Med 2025; 14:1620. [PMID: 40095546 PMCID: PMC11900543 DOI: 10.3390/jcm14051620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 02/10/2025] [Accepted: 02/25/2025] [Indexed: 03/19/2025] Open
Abstract
The appearance of cancer progresses through a multistep process that includes genetic, epigenetic, mutational, inflammatory and metabolic disturbances to signaling pathways within an organ. The combined influence of these changes will dictate the growth properties of the cells; the direction of further malignancy depends on the severity of these "disturbances". The molecular mechanisms driving abnormal inflammation and metabolism are beginning to be identified and, in some cases, are quite prominent in pre-condition states of cancer and are significant drivers of the malignant phenotype. As such, utilizing signaling pathways linked to inflammation and metabolism as biomarkers of cancer is an emerging method and includes pathways beyond those well characterized to drive metabolism or inflammation. In this review, we will discuss several emerging elements influencing proliferation, inflammation and metabolism that may play a part as drivers of the cancer phenotype. These include AMPK and leptin (linked to metabolism), NOD2/RIPK2, TAK1 (linked to inflammation), lactate and pyruvate transporters (monocarboxylate transporter [MCT], linked to mitochondrial biogenesis and metabolism) and RASSF1A (linked to proliferation, cell death, cell cycle control, inflammation and epigenetics). We speculate that the aforementioned elements are important drivers of carcinogenesis that should be collectively referenced as being involved in "ImmunoMET Oncogenesis", a new tripartite description of the role of elements in driving cancer. This term would suggest that for a better understanding of cancer, we need to understand how proliferation, inflammation and metabolic pathways are impacted and how they influence classical drivers of malignant transformation in order to drive ImmunoMET oncogenesis and the malignant state.
Collapse
Affiliation(s)
- Reshma Sirajee
- Faculty of Science, 1-001 CCIS, University of Alberta, Edmonton, AB T6G 2E1, Canada;
| | - Sami El Khatib
- Department of Biological & Chemical Sciences, Bekaa Campus, Lebanese International University, West Bekaa, Khiyara 1106, Lebanon; (S.E.K.); (M.S.)
- Center for Applied Mathematics and Bioinformatics (CAMB), Gulf University for Science and Technology, Kuwait City 32093, Kuwait
| | - Levinus A. Dieleman
- Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, 113 Street 87 Avenue, Edmonton, AB T6G 2E1, Canada;
| | - Mohamed Salla
- Department of Biological & Chemical Sciences, Bekaa Campus, Lebanese International University, West Bekaa, Khiyara 1106, Lebanon; (S.E.K.); (M.S.)
| | - Shairaz Baksh
- Department of Pediatrics, Biochemistry and Division of Experimental Oncology, Faculty of Medicine and Dentistry, University of Alberta, 113 Street 87 Avenue, Edmonton, AB T6G 2E1, Canada
- Women and Children’s Health Research Institute, Edmonton Clinic Health Academy (ECHA), University of Alberta, 4-081 11405 87 Avenue, Edmonton, AB T6G 1C9, Canada
- BioImmuno Designs, 4747 154 Avenue, Edmonton, AB T5Y 0C2, Canada
- Bio-Stream Diagnostics, 2011 94 Street, Edmonton, AB T6H 1N1, Canada
| |
Collapse
|
8
|
Morrey WJ, Ceyzériat K, Amossé Q, Badina AM, Dickie B, Schiessl I, Tsartsalis S, Millet P, Boutin H, Tournier BB. Early metabolic changes in the brain of Alzheimer's disease rats are driven by GLAST+ cells. J Cereb Blood Flow Metab 2025:271678X251318923. [PMID: 39917849 PMCID: PMC11806453 DOI: 10.1177/0271678x251318923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 11/27/2024] [Accepted: 01/19/2025] [Indexed: 02/11/2025]
Abstract
Glucose metabolic dysfunction is a hallmark of Alzheimer's disease (AD) pathology and is used to diagnose the disease or predict imminent cognitive decline. The main method to measure brain metabolism in vivo is positron emission tomography with 2-Deoxy-2-[18F]fluoroglucose ([18F]FDG-PET). The cellular origin of changes in the [18F]FDG-PET signal in AD is controversial. We addressed this by combining [18F]FDG-PET with subsequent cell-sorting and γ-counting of [18F]FDG-accumulation in sorted cell populations. 7-month-old male TgF344-AD rats and wild-type controls (n = 24/group) received sham or ceftriaxone (200 mg/kg) injection prior to [18F]FDG-PET imaging to increase glutamate uptake and glucose utilisation. The same animals were injected again one week later, and radiolabelled brains were dissected, with hippocampi taken for magnetically-activated cell sorting of radioligand-treated tissues (MACS-RTT). Radioactivity in sorted cell populations was measured to quantify cell-specific [18F]FDG uptake. Transcriptional analyses of metabolic enzymes/transporters were also performed. Hypometabolism in the frontal association cortex of TgF344-AD rats was identified using [18F]FDG-PET, whereas hypermetabolism was identified in the hippocampus using MACS-RTT. Hypermetabolism was primarily driven by GLAST+ cells. This was supported by transcriptional analyses which showed alteration to metabolic apparatus, including upregulation of hexokinase 2 and altered expression of glucose/lactate transporters. See Figure 1 for summary.
Collapse
Affiliation(s)
- William J Morrey
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK
| | - Kelly Ceyzériat
- CIBM Center for BioMedical Imaging, Geneva, Switzerland
- Department of Psychiatry, University of Geneva, Geneva, Switzerland
- Department of Psychiatry, University Hospitals of Geneva, Geneva, Switzerland
| | - Quentin Amossé
- Department of Psychiatry, University of Geneva, Geneva, Switzerland
- Department of Psychiatry, University Hospitals of Geneva, Geneva, Switzerland
- Department of Fundamental Neuroscience, University of Lausanne, Lausanne, Switzerland
| | | | - Ben Dickie
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK
| | - Ingo Schiessl
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK
| | - Stergios Tsartsalis
- Department of Psychiatry, University of Geneva, Geneva, Switzerland
- Department of Psychiatry, University Hospitals of Geneva, Geneva, Switzerland
| | - Philippe Millet
- Department of Psychiatry, University of Geneva, Geneva, Switzerland
- Department of Psychiatry, University Hospitals of Geneva, Geneva, Switzerland
| | - Hervé Boutin
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK
- Imaging Brain & Neuropsychiatry iBraiN U1253, Université de Tours, Inserm, Tours, France
| | - Benjamin B Tournier
- Department of Psychiatry, University of Geneva, Geneva, Switzerland
- Department of Psychiatry, University Hospitals of Geneva, Geneva, Switzerland
| |
Collapse
|
9
|
Azcona JA, Wacker AS, Lee CH, Fung EK, Jeitner TM, Manzo OL, Di Lorenzo A, Babich JW, Amor-Coarasa A, Kelly JM. 2-[ 18F]Fluoropropionic Acid PET Imaging of Doxorubicin-Induced Cardiotoxicity. Mol Imaging Biol 2025; 27:109-119. [PMID: 39810069 PMCID: PMC11805620 DOI: 10.1007/s11307-024-01978-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/21/2024] [Accepted: 12/10/2024] [Indexed: 01/16/2025]
Abstract
PURPOSE Treatment of pediatric cancers with doxorubicin is a common and predictable cause of cardiomyopathy. Early diagnosis of treatment-induced cardiotoxicity and intervention are major determinants for the prevention of advanced disease. The onset of cardiomyopathies is often accompanied by profound changes in lipid metabolism, including an enhanced uptake of short-chain fatty acids (SCFA). Therefore, we explored the utility of 2-[18F]fluoropropionic acid ([18F]FPA), an SCFA analog, as an imaging biomarker of cardiac injury in mice exposed to doxorubicin. PROCEDURES Cardiotoxicity and cardiac dysfunction were induced in mice by an 8-dose regimen of doxorubicin (cumulative dose 24 mg/kg) administered over 14 days. The effects of doxorubicin exposure were assessed by measurement of heart weights, left ventricular ejection fractions, and blood cardiac troponin levels. Whole body and cardiac [18F]FPA uptakes were determined by PET and tissue gamma counting in the presence or absence of AZD3965, a pharmacological inhibitor of monocarboxylate transporter 1 (MCT1). Radiation absorbed doses were estimated using tissue time-activity concentrations. RESULTS Significantly higher cardiac [18F]FPA uptake was observed in doxorubicin-treated animals. This uptake remained constant from 30 to 120 min post-injection. Pharmacological inhibition of MCT1-mediated transport by AZD3965 selectively decreased the uptake of [18F]FPA in tissues other than the heart. Co-administration of [18F]FPA and AZD3965 enhanced the imaging contrast of the diseased heart while reducing overall exposure to radioactivity. CONCLUSIONS [18F]FPA, especially when co-administered with AZD3965, is a new tool for imaging changes in fatty acid metabolism occurring in response to doxorubicin-induced cardiomyopathy by PET.
Collapse
Affiliation(s)
- Juan A Azcona
- Department of Radiology, Weill Cornell Medicine, 413 E 69th Street, Room BB-1604, New York, NY, 10021, USA
| | - Anja S Wacker
- Department of Radiology, Weill Cornell Medicine, 413 E 69th Street, Room BB-1604, New York, NY, 10021, USA
| | - Chul-Hee Lee
- Department of Radiology, Weill Cornell Medicine, 413 E 69th Street, Room BB-1604, New York, NY, 10021, USA
| | - Edward K Fung
- Department of Radiology, Weill Cornell Medicine, 413 E 69th Street, Room BB-1604, New York, NY, 10021, USA
- Citigroup Biomedical Imaging Center, Weill Cornell Medicine, New York, NY, USA
| | - Thomas M Jeitner
- Department of Radiology, Weill Cornell Medicine, 413 E 69th Street, Room BB-1604, New York, NY, 10021, USA
| | - Onorina L Manzo
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, NY, USA
- Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Annarita Di Lorenzo
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, NY, USA
- Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - John W Babich
- Department of Radiology, Weill Cornell Medicine, 413 E 69th Street, Room BB-1604, New York, NY, 10021, USA
- Citigroup Biomedical Imaging Center, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Ratio Therapeutics, Boston, MA, USA
| | - Alejandro Amor-Coarasa
- Department of Radiology, Albert Einstein College of Medicine of Yeshiva University, New York, NY, USA
- Ratio Therapeutics, Boston, MA, USA
| | - James M Kelly
- Department of Radiology, Weill Cornell Medicine, 413 E 69th Street, Room BB-1604, New York, NY, 10021, USA.
- Citigroup Biomedical Imaging Center, Weill Cornell Medicine, New York, NY, USA.
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
10
|
Viesi E, Perricone U, Aloy P, Giugno R. APBIO: bioactive profiling of air pollutants through inferred bioactivity signatures and prediction of novel target interactions. J Cheminform 2025; 17:13. [PMID: 39891207 PMCID: PMC11786462 DOI: 10.1186/s13321-025-00961-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 01/20/2025] [Indexed: 02/03/2025] Open
Abstract
More sophisticated representations of compounds attempt to incorporate not only information on the structure and physicochemical properties of molecules, but also knowledge about their biological traits, leading to the so-called bioactivity profile. The bioactive profiling of air pollutants is challenging and crucial, as their biological activity and toxicological effects have not been deeply investigated yet, and further exploration could shed light on the impact of air pollution on complex disorders. Therefore, a biological signature that simultaneously captures the chemistry and the biology of small molecules may be beneficial in predicting the behaviour of such ligands towards a protein target. Moreover, the interactivity between biological entities can be represented through combined feature vectors that can be given as input to a machine learning (ML) model to capture the underlying interaction. To this end, we propose a chemogenomic approach, called Air Pollutant Bioactivity (APBIO), which integrates compound bioactivity signatures and target sequence descriptors to train ML classifiers subsequently used to predict potential compound-target interactions (CTIs). We report the performances of the proposed methodology and, via external validation sets, demonstrate its outperformance compared to existing molecular representations in terms of model generalizability. We have also developed a publicly available Streamlit application for APBIO at ap-bio.streamlit.app, allowing users to predict associations between investigated compounds and protein targets.Scientific contributionWe derived ex novo bioactivity signatures for air pollutant molecules to capture their biological behaviour and associations with protein targets. The proposed chemogenomic methodology enables the prediction of novel CTIs for known or similar compounds and targets through well-established and efficient ML models, deepening our insight into the molecular interactions and mechanisms that may have a deleterious impact on human biological systems.
Collapse
Affiliation(s)
- Eva Viesi
- Department of Computer Science, University of Verona, Verona, Italy.
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Catalonia, Spain.
- NBFC, National Biodiversity Future Center, Palermo, Italy.
| | - Ugo Perricone
- Molecular Informatics Unit, Ri.MED Foundation, Palermo, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
| | - Patrick Aloy
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Catalonia, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain
| | - Rosalba Giugno
- Department of Computer Science, University of Verona, Verona, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
| |
Collapse
|
11
|
Zhou C, Yang Y, Cui H, Li S, Wang Z, Chen L, Feng M, Li D, Chen X, Hao B, Wu X, Gao Y, Li L, Chen J, Cao Y. SEC61G Facilitates Brain Metastases via Antagonizing PGAM1 Ubiquitination and Immune Microenvironment Remodeling in Non-Small Cell Lung Cancer. Int J Biol Sci 2025; 21:1436-1458. [PMID: 39990664 PMCID: PMC11844280 DOI: 10.7150/ijbs.109187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 01/06/2025] [Indexed: 02/25/2025] Open
Abstract
Background: Brain metastases are a leading cause of mortality in non-small cell lung cancer (NSCLC), yet their molecular mechanisms remain unclear. SEC61G, a subunit of the SEC61 translocon, has been implicated in tumor progression but its role in brain metastases is unknown. This study explores how SEC61G contributes to brain metastases by driving metabolic reprogramming and immune microenvironment remodeling. Methods: Brain-metastatic NSCLC cell lines were established through in vivo selection in a mouse model. SEC61G expression was analyzed via transcriptomics, immunohistochemistry, multiplex immunofluorescence, and patient datasets. Functional assays were used to assess SEC61G's role in glycolysis, TLS formation, and immune interactions, with a focus on the SEC61G-PGAM1 axis. Pharmacological inhibitors and co-culture systems were employed to validate findings. Results: SEC61G was identified as a key upregulated gene in brain metastases based on transcriptomic data from patient-derived samples and mouse models. Higher SEC61G expression in brain metastases correlated with advanced tumor stages and poor survival in NSCLC patients. Mechanistically, SEC61G promoted brain metastasis by stabilizing the key glycolytic enzyme PGAM1. This occurred through a novel mechanism of competitive inhibition of PGAM1 ubiquitination: SEC61G directly antagonized the E3 ubiquitin ligase UBE3C, preventing PGAM1 degradation via the proteasome pathway. Stabilized PGAM1 enhanced glycolysis and regulated oxidative phosphorylation, driving metabolic reprogramming that supported brain metastatic colonization. Moreover, SEC61G reshaped the tumor immune microenvironment by promoting microglial M2 polarization and suppressing M1 polarization, accompanied by increased secretion of IL-6 and IL-10. These immune effects were dependent on PGAM1, as its pharmacological inhibition reversed SEC61G-induced M2 polarization and restored CD8+ T cell infiltration. In vivo and clinical studies confirmed that high SEC61G expression in brain metastases correlated with excessive M2 microglia, reduced immune surveillance, and poor patient outcomes. Immunoprofiling revealed a striking gradient of SEC61G expression across tertiary lymphoid structures (TLS) maturation stages: SEC61G levels were highest in TLS-absent samples and CD206+ microglia infiltration, intermediate in samples with immature TLS, and lowest in those with mature TLS. Conclusion: In conclusion, this study identifies a novel mechanism in which SEC61G drives NSCLC brain metastases by competitively inhibiting UBE3C-mediated ubiquitination of PGAM1, stabilizing PGAM1 and enhancing glycolysis. In addition to metabolic reprogramming, SEC61G impairs TLS maturation, suppresses adaptive immune responses, and facilitates immune evasion, contributing to brain metastatic colonization. These findings highlight SEC61G as a key regulator of brain metastasis and a promising therapeutic target for NSCLC patients with brain metastases.
Collapse
Affiliation(s)
- Changshuai Zhou
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yuechao Yang
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Huanhuan Cui
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Sen Li
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Zhisu Wang
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Lei Chen
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Mingtao Feng
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Deheng Li
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xin Chen
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Bin Hao
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xiaojun Wu
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yang Gao
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Liangdong Li
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jiayan Chen
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Department of Radiation Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yiqun Cao
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
12
|
Liu Y, Li H, Hao YY, Huang LL, Li X, Zou J, Zhang SY, Yang XY, Chen HF, Guo YX, Guan YY, Zhang ZY. Tumor-Selective Nano-Dispatcher Enforced Cancer Immunotherapeutic Effects via Regulating Lactate Metabolism and Activating Toll-Like Receptors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2406870. [PMID: 39390849 DOI: 10.1002/smll.202406870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/23/2024] [Indexed: 10/12/2024]
Abstract
The development of tumors relies on lactate metabolic reprogramming to facilitate their unchecked growth and evade immune surveillance. This poses a significant challenge to the efficacy of antitumor immunity. To address this, a tumor-selective nano-dispatcher, PIMDQ/Syro-RNP, to enforce the immunotherapeutic effect through regulation of lactate metabolism and activation of toll-like receptors is developed. By using the tumor-targeting properties of c-RGD, the system can effectively deliver monocarboxylate transporters 4 (MCT4) inhibitor (Syro) to inhibit lactate efflux in tumor cells, leading to decreased lactate levels in the tumor microenvironment (TME) and increased accumulation within tumor cells. The reduction of lactate in TME will reduce the nutritional support for regulatory T cells (Tregs) and promote the effector function of T cells. The accumulation of lactate in tumor cells will lead to tumor death due to cellular acidosis. In addition, it will also reduce the uptake of glucose by tumor cells, reduce nutrient plunder, and further weaken the inhibition of T cell function. Furthermore, the pH-responsive release of Toll-like receptors (TLR) 7/8 agonist IMDQ within the TME activates dendritic cells (DCs) and promotes the infiltration of T cells. These findings offer a promising approach for enhancing tumor immune response through targeted metabolic interventions.
Collapse
Affiliation(s)
- Yang Liu
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology (Ministry of Education), Shandong Key Laboratory of Targeted Drug Delivery and Advanced Pharmaceutics, Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Hui Li
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology (Ministry of Education), Shandong Key Laboratory of Targeted Drug Delivery and Advanced Pharmaceutics, Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Yan-Yun Hao
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology (Ministry of Education), Shandong Key Laboratory of Targeted Drug Delivery and Advanced Pharmaceutics, Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Ling-Ling Huang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology (Ministry of Education), Shandong Key Laboratory of Targeted Drug Delivery and Advanced Pharmaceutics, Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Xia Li
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology (Ministry of Education), Shandong Key Laboratory of Targeted Drug Delivery and Advanced Pharmaceutics, Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Jing Zou
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology (Ministry of Education), Shandong Key Laboratory of Targeted Drug Delivery and Advanced Pharmaceutics, Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Shi-Ying Zhang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology (Ministry of Education), Shandong Key Laboratory of Targeted Drug Delivery and Advanced Pharmaceutics, Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Xiao-Yue Yang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology (Ministry of Education), Shandong Key Laboratory of Targeted Drug Delivery and Advanced Pharmaceutics, Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Hong-Fei Chen
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology (Ministry of Education), Shandong Key Laboratory of Targeted Drug Delivery and Advanced Pharmaceutics, Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Yi-Xuan Guo
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology (Ministry of Education), Shandong Key Laboratory of Targeted Drug Delivery and Advanced Pharmaceutics, Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Yun-Yan Guan
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology (Ministry of Education), Shandong Key Laboratory of Targeted Drug Delivery and Advanced Pharmaceutics, Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Zhi-Yue Zhang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology (Ministry of Education), Shandong Key Laboratory of Targeted Drug Delivery and Advanced Pharmaceutics, Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| |
Collapse
|
13
|
Zhang H, Wu A, Nan X, Yang L, Zhang D, Zhang Z, Liu H. The Application and Pharmaceutical Development of Etomidate: Challenges and Strategies. Mol Pharm 2024; 21:5989-6006. [PMID: 39495089 DOI: 10.1021/acs.molpharmaceut.4c00325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Etomidate is a synthetic imidazole anesthetic that exerts hypnotic effects by potentiating the action of the inhibitory neurotransmitter γ-aminobutyric acid (GABA) or directly activating the anionic GABA (GABAA) receptor. It stands out among many anesthetics because of its multiple advantages, such as good hemodynamic stability and minimal inhibition of spontaneous respiration. However, its low water solubility and side effects, such as adrenal cortex inhibition and myoclonus, have limited the clinical application of this drug. To address these issues, extensive research has been conducted on the drug delivery of etomidate in recent decades, which has led to the emergence of different etomidate preparations. Despite so many etomidate preparations, so far some of the toxic side effects have not yet been effectively addressed. Herein we discuss the pharmaceutical design of etomidate that may resolve the above problem. We also propose targeted strategies for future research on etomidate preparations and discuss the feasibility of different administration routes and dosage forms to expand the application of this drug. Through this review, we hope to draw more attention to the potential of etomidate and its application challenges and provide valuable insights into the development of new etomidate preparations.
Collapse
Affiliation(s)
- Hao Zhang
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
- Department of Pharmacy, Zigong First People's Hospital, Zigong, Sichuan 643000, People's Republic of China
| | - Ailing Wu
- Department of Anesthesiology, Second People's Hospital of Neijiang, Southwest Medical University, Neijiang, Sichuan 641000, People's Republic of China
- Department of Anesthesiology, First People's Hospital of Neijiang, Neijiang, Sichuan 641099, People's Republic of China
| | - Xichen Nan
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| | - Luhan Yang
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| | - Dan Zhang
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| | - Zhuo Zhang
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| | - Hao Liu
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| |
Collapse
|
14
|
Wang Y, Li P, Xu Y, Feng L, Fang Y, Song G, Xu L, Zhu Z, Wang W, Mei Q, Xie M. Lactate metabolism and histone lactylation in the central nervous system disorders: impacts and molecular mechanisms. J Neuroinflammation 2024; 21:308. [PMID: 39609834 PMCID: PMC11605911 DOI: 10.1186/s12974-024-03303-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/18/2024] [Indexed: 11/30/2024] Open
Abstract
Brain takes up approximately 20% of the total body oxygen and glucose consumption due to its relatively high energy demand. Glucose is one of the major sources to generate ATP, the process of which can be realized via glycolysis, oxidative phosphorylation, pentose phosphate pathways and others. Lactate serves as a hub molecule amid these metabolic pathways, as it may function as product of glycolysis, substrate of a variety of enzymes and signal molecule. Thus, the roles of lactate in central nervous system (CNS) diseases need to be comprehensively elucidated. Histone lactylation is a novel lactate-dependent epigenetic modification that plays an important role in immune regulation and maintaining homeostasis. However, there's still a lack of studies unveiling the functions of histone lactylation in the CNS. In this review, we first comprehensively reviewed the roles lactate plays in the CNS under both physiological and pathological conditions. Subsequently, we've further discussed the functions of histone lactylation in various neurological diseases. Furthermore, future perspectives regarding histone lactylation and its therapeutic potentials in stroke are also elucidated, which may possess potential clinical applications.
Collapse
Affiliation(s)
- Yao Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Ping Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Yuan Xu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Linyu Feng
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Yongkang Fang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Guini Song
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Li Xu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Zhou Zhu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Wei Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Qi Mei
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, Wuhan, China.
| | - Minjie Xie
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030, China.
| |
Collapse
|
15
|
Tiwari A, Myeong J, Hashemiaghdam A, Stunault MI, Zhang H, Niu X, Laramie MA, Sponagel J, Shriver LP, Patti GJ, Klyachko VA, Ashrafi G. Mitochondrial pyruvate transport regulates presynaptic metabolism and neurotransmission. SCIENCE ADVANCES 2024; 10:eadp7423. [PMID: 39546604 PMCID: PMC11567002 DOI: 10.1126/sciadv.adp7423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 10/16/2024] [Indexed: 11/17/2024]
Abstract
Glucose has long been considered the primary fuel source for the brain. However, glucose levels fluctuate in the brain during sleep or circuit activity, posing major metabolic stress. Here, we demonstrate that the mammalian brain uses pyruvate as a fuel source, and pyruvate can support neuronal viability in the absence of glucose. Nerve terminals are sites of metabolic vulnerability, and we show that mitochondrial pyruvate uptake is a critical step in oxidative ATP production in hippocampal terminals. We find that the mitochondrial pyruvate carrier is post-translationally modified by lysine acetylation, which, in turn, modulates mitochondrial pyruvate uptake. Our data reveal that the mitochondrial pyruvate carrier regulates distinct steps in neurotransmission, namely, the spatiotemporal pattern of synaptic vesicle release and the efficiency of vesicle retrieval-functions that have profound implications for synaptic plasticity. In summary, we identify pyruvate as a potent neuronal fuel and mitochondrial pyruvate uptake as a critical node for the metabolic control of neurotransmission in hippocampal terminals.
Collapse
Affiliation(s)
- Anupama Tiwari
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jongyun Myeong
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Arsalan Hashemiaghdam
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Marion I. Stunault
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Hao Zhang
- Department of Chemistry, Department of Medicine, Center for Mass Spectrometry and Metabolic Tracing, Washington University in St. Louis, St. Louis, MO, USA
| | - Xiangfeng Niu
- Department of Chemistry, Department of Medicine, Center for Mass Spectrometry and Metabolic Tracing, Washington University in St. Louis, St. Louis, MO, USA
| | - Marissa A. Laramie
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jasmin Sponagel
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Leah P. Shriver
- Department of Chemistry, Department of Medicine, Center for Mass Spectrometry and Metabolic Tracing, Washington University in St. Louis, St. Louis, MO, USA
| | - Gary J. Patti
- Department of Chemistry, Department of Medicine, Center for Mass Spectrometry and Metabolic Tracing, Washington University in St. Louis, St. Louis, MO, USA
| | - Vitaly A. Klyachko
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Ghazaleh Ashrafi
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
- Needleman Center for Neurometabolism and Axonal Therapeutics, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
16
|
Vaezi MA, Nekoufar S, Robati AK, Salimi V, Tavakoli-Yaraki M. Therapeutic potential of β-hydroxybutyrate in the management of pancreatic neoplasms: exploring novel diagnostic and treatment strategies. Lipids Health Dis 2024; 23:376. [PMID: 39543582 PMCID: PMC11562866 DOI: 10.1186/s12944-024-02368-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/09/2024] [Indexed: 11/17/2024] Open
Abstract
Pancreatic neoplasm, a highly aggressive and often fatal cancer, poses challenges due to late detection and nonspecific symptoms. Therefore, both early diagnosis and appropriate therapeutic approaches are necessary to augment the condition of these patients. Cancer cells undergo metabolic deregulation, which enables their proliferation, survival, and invasion. As a result, it is crucial to focus on the metabolic pathways in prevalent cancers and explore treatment strategies that target these pathways to control tumor growth effectively. This is particularly relevant in cancers like pancreatic cancer, which undergo numerous metabolic alterations. The ketogenic regimen, characterized by low carbohydrate and protein contents and high-fat sources, does not involve caloric restriction. This allows for the induction of ketogenesis and an increase in ketone bodies, while insulin and glucose levels remain low even after meals. This unique metabolic state may influence the tumor microenvironment. Given the lack of unanimous agreement on the precise role and mechanism of the ketogenic diet, this review aims to clarify the diagnostic value and accuracy of ketone bodies in various types of pancreatic tumors and explore the potential anti-cancer effects of the ketogenic diet when used alone or in conjunction with chemotherapy, also to determine the potential of the ketogenic diet to be used as adjuvant therapy. The outcomes of this study are instrumental in enhancing our understanding of the benefits and drawbacks associated with employing this diet for the management and diagnosis of pancreatic cancer.
Collapse
Affiliation(s)
- Mohammad Amin Vaezi
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, P.O. Box: 1449614535, Tehran, Iran
| | - Samira Nekoufar
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, P.O. Box: 1449614535, Tehran, Iran
| | - Ali Karami Robati
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, P.O. Box: 1449614535, Tehran, Iran
| | - Vahid Salimi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Tavakoli-Yaraki
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, P.O. Box: 1449614535, Tehran, Iran.
- Finetech in Medicine Research Center, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
17
|
Sui Q, Yang H, Hu Z, Jin X, Chen Z, Jiang W, Sun F. The Research Progress of Metformin Regulation of Metabolic Reprogramming in Malignant Tumors. Pharm Res 2024; 41:2143-2159. [PMID: 39455505 DOI: 10.1007/s11095-024-03783-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024]
Abstract
BACKGROUND Metabolism reprogramming is a crucial hallmark of malignant tumors. Tumor cells demonstrate enhanced metabolic efficiency, converting nutrient inputs into glucose, amino acids, and lipids essential for their malignant proliferation and progression. Metformin, a commonly prescribed medication for type 2 diabetes mellitus, has garnered attention for its potential anticancer effects beyond its established hypoglycemic benefits. METHODS This review adopts a comprehensive approach to delineate the mechanisms underlying metabolite abnormalities within the primary metabolic processes of malignant tumors. RESULTS This review examines the abnormal activation of G protein-coupled receptors (GPCRs) in these metabolic pathways, encompassing aerobic glycolysis with increased lactate production in glucose metabolism, heightened lipid synthesis and cholesterol accumulation in lipid metabolism, and glutamine activation alongside abnormal protein post-translational modifications in amino acid and protein metabolism. Furthermore, the intricate metabolic pathways and molecular mechanisms through which metformin exerts its anticancer effects are synthesized and analyzed, particularly its impacts on AMP-activated protein kinase activation and the mTOR pathway. The analysis reveals a multifaceted understanding of how metformin can modulate tumor metabolism, targeting key nodes in metabolic reprogramming essential for tumor growth and progression. The review compiles evidence that supports metformin's potential as an adjuvant therapy for malignant tumors, highlighting its capacity to interfere with critical metabolic pathways. CONCLUSION In conclusion, this review offers a comprehensive overview of the plausible mechanisms mediating metformin's influence on tumor metabolism, fostering a deeper comprehension of its anticancer mechanisms. By expanding the clinical horizons of metformin and providing insight into metabolism-targeted tumor therapies, this review lays the groundwork for future research endeavors aimed at refining and advancing metabolic intervention strategies for cancer treatment.
Collapse
Affiliation(s)
- Qihai Sui
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Huiqiang Yang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Zhengyang Hu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Xing Jin
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Zhencong Chen
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Wei Jiang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Fenghao Sun
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Xuhui District, Shanghai, 200032, China.
| |
Collapse
|
18
|
Seira O, Park H(D, Liu J, Poovathukaran M, Clarke K, Boushel R, Tetzlaff W. Ketone Esters Partially and Selectively Rescue Mitochondrial Bioenergetics After Acute Cervical Spinal Cord Injury in Rats: A Time-Course. Cells 2024; 13:1746. [PMID: 39513853 PMCID: PMC11545339 DOI: 10.3390/cells13211746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/11/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024] Open
Abstract
Spinal cord injury (SCI) pathology and pathophysiology can be attributed to both primary physical injury and secondary injury cascades. Secondary injury cascades involve dysregulated metabolism and energetic deficits directly linked to compromised mitochondrial bioenergetics. Rescuing mitochondrial function and reducing oxidative stress are associated with neuroprotection. In this regard, ketosis after traumatic brain injury (TBI), or after SCI, improves secondary neuropathology by decreasing oxidative stress, increasing antioxidants, reducing inflammation, and improving mitochondrial bioenergetics. Here, we follow up on our previous study and have used an exogenous ketone monoester, (R)-3-hydroxybutyl (R)-3-hydroxybutyrate (KE), as an alternative to a ketogenic diet, focusing on mitochondrial function between 1 and 14 days after injury. Starting 3 h following a cervical level 5 (C5) hemi-contusion injury, animals were fed either a standard control diet (SD) or a ketone ester diet (KED) combined with KE administered orally (OKE). We found that mitochondrial function was reduced after SCI at all times post-SCI, accompanied by reduced expression of most of the components of the electron transport chain (ETC). The KE rescued some of the bioenergetic parameters 1 day after SCI when D-β-Hydroxybutyrate (BHB) concentrations were ~2 mM. Still, most of the beneficial effects were observed 14 days after injury, with BHB concentrations reaching values of 4-6 mM. To our knowledge, this is the first report to show the beneficial effects of KE in rescuing mitochondrial function after SCI and demonstrates the suitability of KE in ameliorating the metabolic dysregulation that occurs after traumatic SCI without requiring a restrictive dietary regime.
Collapse
Affiliation(s)
- Oscar Seira
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC V5Z 1M9, Canada; (J.L.)
| | - HyoJoon (David) Park
- Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z1, Canada;
| | - Jie Liu
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC V5Z 1M9, Canada; (J.L.)
| | - Michelle Poovathukaran
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC V5Z 1M9, Canada; (J.L.)
| | - Kieran Clarke
- Department of Physiology, University of Oxford, Oxford OX1 2JD, UK;
| | - Robert Boushel
- School of Kinesiology, University of British Columbia, Vancouver, BC V6T 1Z1, Canada;
| | - Wolfram Tetzlaff
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC V5Z 1M9, Canada; (J.L.)
| |
Collapse
|
19
|
Zhang S, Gao Z, Feng L, Li M. Prevention and Treatment Strategies for Alzheimer's Disease: Focusing on Microglia and Astrocytes in Neuroinflammation. J Inflamm Res 2024; 17:7235-7259. [PMID: 39421566 PMCID: PMC11484773 DOI: 10.2147/jir.s483412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 10/02/2024] [Indexed: 10/19/2024] Open
Abstract
Alzheimer's disease (AD) is a fatal neurodegenerative disease characterized by its insidious onset and progressive development, making it the most common form of dementia. Despite its prevalence, the exact causes and mechanisms responsible for AD remain unclear. Recent studies have highlighted that inflammation in the central nervous system (CNS) plays a crucial role in both the initiation and progression of AD. Neuroinflammation, an immune response within the CNS triggered by glial cells in response to various stimuli, such as nerve injury, infection, toxins, or autoimmune reactions, has emerged as a significant factor alongside amyloid deposition and neurofibrillary tangles (NFTs) commonly associated with AD. This article aims to provide an overview of the most recent research regarding the involvement of neuroinflammation in AD, with a particular focus on elucidating the specific mechanisms involving microglia and astrocytes. By exploring these intricate processes, a new theoretical framework can be established to further probe the impact of neuroinflammation on the development and progression of AD. Through a deeper understanding of these underlying mechanisms, potential targets for therapeutic interventions and novel treatment strategies can be identified in the ongoing battle against AD.
Collapse
Affiliation(s)
- Shenghao Zhang
- Department of Neurology, The Third Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin Province, 130021, People’s Republic of China
| | - Zhejianyi Gao
- Department of Orthopaedics, Fushun Hospital of Chinese Medicine, Fushun, Liaoning Province, 113008, People’s Republic of China
| | - Lina Feng
- Department of Neurology, The Third Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin Province, 130021, People’s Republic of China
- Shandong Key Laboratory of TCM Multi-Targets Intervention and Disease Control, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong Province, 271000, People’s Republic of China
| | - Mingquan Li
- Department of Neurology, The Third Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin Province, 130021, People’s Republic of China
| |
Collapse
|
20
|
Kumaş Solak S, Demirgan S, Karali E, Selcan A. Effect of needle types and diameters using in spinal anesthesia on optic nerve sheath diameter: Prospective randomized study. Medicine (Baltimore) 2024; 103:e40003. [PMID: 39465875 PMCID: PMC11479471 DOI: 10.1097/md.0000000000040003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 09/19/2024] [Indexed: 10/29/2024] Open
Abstract
BACKGROUND This prospective randomized study aimed to investigate the impact of needle types and diameters used in spinal anesthesia (SA) on optic nerve sheath diameter (ONSD) in patients undergoing lower extremity orthopedic surgery. METHODS Patients were randomly assigned to 3 groups based on the needle type and size used for SA: Group 25w (25 gauge Whitacre needle), Group 27q (27 gauge Quincke needle), and Group 25q (25 gauge Quincke needle). Initially, 165 patients (55 in each group) were enrolled, with 146 patients ultimately included in the analysis (Group 25w, n = 49; Group 27q, n = 48; Group 25q, n = 49). ONSD measurements were conducted using ultrasound guidance at 5 time points: T0 (pre-SA), T1 (5 minutes post-SA), T2 (5 minutes post-tourniquet inflation), T3 (5 minutes post-tourniquet deflation), and T4 (24 hours post-operation). Additionally, oxygen saturation, systolic arterial pressure, mean arterial pressure, diastolic arterial pressure, and heart rate were recorded at these time points. RESULTS Analysis of ONSD measurements revealed no significant differences among the groups at time points T0,T1,T2, and T4 (P = .7293, P = .4428, P = .3676, and P = .3667, respectively). However, at T3, ONSD values were significantly higher in Group 27q compared to Group 25q (P = .0325). Across all groups, the mean ONSD values measured post-tourniquet release (T3) were higher than those at T0,T2, and T4 (P < .001 for all). The incidence of nausea was similar among the groups, and no cases of headache or visual impairment were reported within the initial 24 hours post-surgery. CONCLUSION In conclusion, our study suggests that while subarachnoid injection and tourniquet inflation do not impact intracranial pressure (ICP), tourniquet deflation leads to an increase in ICP during lower limb surgery under SA. Therefore, caution should be exercised when using a tourniquet in patients at risk of elevated ICP.
Collapse
Affiliation(s)
- Sezen Kumaş Solak
- Department of Anesthesiology and Reanimation, University of Health Sciences, Bagcılar Training Research Hospital, İstanbul, Turkey
| | - Serdar Demirgan
- Department of Anesthesiology and Reanimation, University of Health Sciences, Bagcılar Training Research Hospital, İstanbul, Turkey
- Department of Molecular Biology and Genetics, Institute of Graduate Studies in Sciences, Istanbul University, İstanbul, Turkey
| | - Elif Karali
- Department of Anesthesiology and Reanimation, University of Health Sciences, Bagcılar Training Research Hospital, İstanbul, Turkey
| | - Ayşin Selcan
- Department of Anesthesiology and Reanimation, University of Health Sciences, Bagcılar Training Research Hospital, İstanbul, Turkey
| |
Collapse
|
21
|
Zhang N, Ma X, He X, Zhang Y, Guo X, Shen Z, Guo X, Zhang D, Tian S, Ma X, Xing Y. Inhibition of YIPF2 Improves the Vulnerability of Oligodendrocytes to Human Islet Amyloid Polypeptide. Neurosci Bull 2024; 40:1403-1420. [PMID: 39078594 PMCID: PMC11422328 DOI: 10.1007/s12264-024-01263-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/21/2024] [Indexed: 07/31/2024] Open
Abstract
Excessive secretion of human islet amyloid polypeptide (hIAPP) is an important pathological basis of diabetic encephalopathy (DE). In this study, we aimed to investigate the potential implications of hIAPP in DE pathogenesis. Brain magnetic resonance imaging and cognitive scales were applied to evaluate white matter damage and cognitive function. We found that the concentration of serum hIAPP was positively correlated with white matter damage but negatively correlated with cognitive scores in patients with type 2 diabetes mellitus. In vitro assays revealed that oligodendrocytes, compared with neurons, were more prone to acidosis under exogenous hIAPP stimulation. Moreover, western blotting and co-immunoprecipitation indicated that hIAPP interfered with the binding process of monocarboxylate transporter (MCT)1 to its accessory protein CD147 but had no effect on the binding of MCT2 to its accessory protein gp70. Proteomic differential analysis of proteins co-immunoprecipitated with CD147 in oligodendrocytes revealed Yeast Rab GTPase-Interacting protein 2 (YIPF2, which modulates the transfer of CD147 to the cell membrane) as a significant target. Furthermore, YIPF2 inhibition significantly improved hIAPP-induced acidosis in oligodendrocytes and alleviated cognitive dysfunction in DE model mice. These findings suggest that increased CD147 translocation by inhibition of YIPF2 optimizes MCT1 and CD147 binding, potentially ameliorating hIAPP-induced acidosis and the consequent DE-related demyelination.
Collapse
Affiliation(s)
- Nan Zhang
- Hebei Key Laboratory of Brain Science and Psychiatric-Psychologic Disease, The First Hospital of Hebei Medical University, Shijiazhuang, 050000, China
- Neuromedical Technology Innovation Center of Hebei Province, Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Xiaoying Ma
- Hebei Key Laboratory of Brain Science and Psychiatric-Psychologic Disease, The First Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Xinyu He
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050000, China
| | - Yaxin Zhang
- Neuromedical Technology Innovation Center of Hebei Province, Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, 050000, China
- Department of Neurology, Hebei Hospital, Xuanwu Hospital of Capital Medical University, Shijiazhuang, 050000, China
| | - Xin Guo
- Neuromedical Technology Innovation Center of Hebei Province, Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, 050000, China
- Department of Neurology, Hebei Hospital, Xuanwu Hospital of Capital Medical University, Shijiazhuang, 050000, China
| | - Zhiyuan Shen
- Neuromedical Technology Innovation Center of Hebei Province, Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, 050000, China
- Department of Neurology, Hebei Hospital, Xuanwu Hospital of Capital Medical University, Shijiazhuang, 050000, China
| | - Xiaosu Guo
- Neuromedical Technology Innovation Center of Hebei Province, Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, 050000, China
- Department of Neurology, Hebei Hospital, Xuanwu Hospital of Capital Medical University, Shijiazhuang, 050000, China
| | - Danshen Zhang
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050000, China
| | - Shujuan Tian
- Neuromedical Technology Innovation Center of Hebei Province, Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, 050000, China.
- Department of Neurology, Hebei Hospital, Xuanwu Hospital of Capital Medical University, Shijiazhuang, 050000, China.
| | - Xiaowei Ma
- Neuromedical Technology Innovation Center of Hebei Province, Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, 050000, China.
- Department of Neurology, Hebei Hospital, Xuanwu Hospital of Capital Medical University, Shijiazhuang, 050000, China.
| | - Yuan Xing
- Neuromedical Technology Innovation Center of Hebei Province, Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, 050000, China.
- Department of Neurology, Hebei Hospital, Xuanwu Hospital of Capital Medical University, Shijiazhuang, 050000, China.
| |
Collapse
|
22
|
Lopez-Tello J, Kiu R, Schofield Z, Zhang CXW, van Sinderen D, Le Gall G, Hall LJ, Sferruzzi-Perri AN. Maternal gut Bifidobacterium breve modifies fetal brain metabolism in germ-free mice. Mol Metab 2024; 88:102004. [PMID: 39127167 PMCID: PMC11401360 DOI: 10.1016/j.molmet.2024.102004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/06/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND Recent advances have significantly expanded our understanding of the gut microbiome's influence on host physiology and metabolism. However, the specific role of certain microorganisms in gestational health and fetal development remains underexplored. OBJECTIVE This study investigates the impact of Bifidobacterium breve UCC2003 on fetal brain metabolism when colonized in the maternal gut during pregnancy. METHODS Germ-free pregnant mice were colonized with or without B. breve UCC2003 during pregnancy. The metabolic profiles of fetal brains were analyzed, focusing on the presence of key metabolites and the expression of critical metabolic and cellular pathways. RESULTS Maternal colonization with B. breve resulted in significant metabolic changes in the fetal brain. Specifically, ten metabolites, including citrate, 3-hydroxyisobutyrate, and carnitine, were reduced in the fetal brain. These alterations were accompanied by increased abundance of transporters involved in glucose and branched-chain amino acid uptake. Furthermore, supplementation with this bacterium was associated with elevated expression of critical metabolic pathways such as PI3K-AKT, AMPK, STAT5, and Wnt-β-catenin signaling, including its receptor Frizzled-7. Additionally, there was stabilization of HIF-2 protein and modifications in genes and proteins related to cellular growth, axogenesis, and mitochondrial function. CONCLUSIONS The presence of maternal B. breve during pregnancy plays a crucial role in modulating fetal brain metabolism and growth. These findings suggest that Bifidobacterium could modify fetal brain development, potentially offering new avenues for enhancing gestational health and fetal development through microbiota-targeted interventions.
Collapse
Affiliation(s)
- Jorge Lopez-Tello
- Department of Physiology, Development, and Neuroscience, Centre for Trophoblast Research, University of Cambridge, Cambridge, UK; Department of Physiology, Faculty of Medicine. Autonomous University of Madrid, Spain.
| | - Raymond Kiu
- Food, Microbiome & Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK; Institute of Microbiology & Infection, University of Birmingham, Birmingham, UK; Department of Microbes, Infection & Microbiomes, School of Infection, Inflammation & Immunology, University of Birmingham, Birmingham, UK
| | - Zoe Schofield
- Food, Microbiome & Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Cindy X W Zhang
- Department of Physiology, Development, and Neuroscience, Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | | | - Gwénaëlle Le Gall
- Norwich Medical School, University of East Anglia, Bob Champion Research and Education Building, James Watson Road, Norwich Research Park, Norwich NR4 7UQ, UK
| | - Lindsay J Hall
- Food, Microbiome & Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK; Institute of Microbiology & Infection, University of Birmingham, Birmingham, UK; Department of Microbes, Infection & Microbiomes, School of Infection, Inflammation & Immunology, University of Birmingham, Birmingham, UK
| | - Amanda N Sferruzzi-Perri
- Department of Physiology, Development, and Neuroscience, Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| |
Collapse
|
23
|
Ibacache-Chía AP, Sierralta JA, Schüller A. The Inhibitory Effects of the Natural Stilbene Piceatannol on Lactate Transport In Vitro Mediated by Monocarboxylate Transporters. Mol Nutr Food Res 2024; 68:e2400414. [PMID: 39344244 DOI: 10.1002/mnfr.202400414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/30/2024] [Indexed: 10/01/2024]
Abstract
SCOPE Lactate, a signaling molecule and energy source, crosses membranes through monocarboxylate transporters (MCTs). MCT1 and MCT4 are potential cancer drug targets due to their role in metabolic reprogramming of cancer cells. Stilbenes, plant secondary metabolites found in several food sources, have anticancer effects, though their mechanisms of action are not well understood. This study links the anticancer activity of natural stilbenes to tumor cell lactate metabolism. METHODS AND RESULTS The impact of resveratrol, pinostilbene, pterostilbene, rhapontigenin, and piceatannol on lactate transport is studied using a fluorescence resonance energy transfer (FRET)-based lactate sensor. The viability and migration of cells expressing MCT1 or MCT4 are also evaluated. Piceatannol inhibits MCT1 effectively at low micromolar concentrations, with less effect on MCT4. All stilbenes significantly reduce cell viability and migration. CONCLUSIONS These findings indicate that both MCTs are stilbene targets, with piceatannol highlighted as a cost-effective, low-toxicity compound for studying MCTs in cancer, providing a new mechanism of action of the therapeutic and nutraceutical effects of natural polyphenols. This enriches the understanding of dietary polyphenols in cancer prevention and therapy.
Collapse
Affiliation(s)
- Andrés P Ibacache-Chía
- School of Biological Sciences, Pontificia Universidad Católica de Chile, Av. Libertador General Bernardo O'Higgins 340, Santiago, 8331150, Chile
- Department of Neuroscience, School of Medicine, University of Chile, Av. Independencia 1027, Independencia, 8380000, Chile
- Institute of Biomedical Neurosciences (BNI), School of Medicine, University of Chile, Av. Independencia 1027, Independencia, 8380000, Chile
| | - Jimena A Sierralta
- Department of Neuroscience, School of Medicine, University of Chile, Av. Independencia 1027, Independencia, 8380000, Chile
- Institute of Biomedical Neurosciences (BNI), School of Medicine, University of Chile, Av. Independencia 1027, Independencia, 8380000, Chile
| | - Andreas Schüller
- School of Biological Sciences, Pontificia Universidad Católica de Chile, Av. Libertador General Bernardo O'Higgins 340, Santiago, 8331150, Chile
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Santiago, 7820244, Chile
| |
Collapse
|
24
|
Xu W, Borges K. Case for supporting astrocyte energetics in glucose transporter 1 deficiency syndrome. Epilepsia 2024; 65:2213-2226. [PMID: 38767952 DOI: 10.1111/epi.18013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 05/22/2024]
Abstract
In glucose transporter 1 deficiency syndrome (Glut1DS), glucose transport into brain is reduced due to impaired Glut1 function in endothelial cells at the blood-brain barrier. This can lead to shortages of glucose in brain and is thought to contribute to seizures. Ketogenic diets are the first-line treatment and, among many beneficial effects, provide auxiliary fuel in the form of ketone bodies that are largely metabolized by neurons. However, Glut1 is also the main glucose transporter in astrocytes. Here, we review data indicating that glucose shortage may also impact astrocytes in addition to neurons and discuss the expected negative biochemical consequences of compromised astrocytic glucose transport for neurons. Based on these effects, auxiliary fuels are needed for both cell types and adding medium chain triglycerides (MCTs) to ketogenic diets is a biochemically superior treatment for Glut1DS compared to classical ketogenic diets. MCTs provide medium chain fatty acids (MCFAs), which are largely metabolized by astrocytes and not neurons. MCFAs supply energy and contribute carbons for glutamine and γ-aminobutyric acid synthesis, and decanoic acid can also block α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid glutamate receptors. MCTs do not compete with metabolism of ketone bodies mostly occurring in neurons. Triheptanoin, an anaplerotic but also gluconeogenic uneven MCT, may be another potential addition to ketogenic diets, although maintenance of "ketosis" can be difficult. Gene therapy has also targeted both endothelial cells and astrocytes. Other approaches to increase fuel delivery to the brain currently investigated include exchange of Glut1DS erythrocytes with healthy cells, infusion of lactate, and pharmacological improvement of glucose transport. In conclusion, although it remains difficult to assess impaired astrocytic energy metabolism in vivo, astrocytic energy needs are most likely not met by ketogenic diets in Glut1DS. Thus, we propose prospective studies including monitoring of blood MCFA levels to find optimal doses for add-on MCT to ketogenic diets and assessing of short- and long-term outcomes.
Collapse
Affiliation(s)
- Weizhi Xu
- School of Biomedical Sciences, University of Queensland, St Lucia, Queensland, Australia
| | - Karin Borges
- School of Biomedical Sciences, University of Queensland, St Lucia, Queensland, Australia
| |
Collapse
|
25
|
Mishra SK, Tiwari SP. Bioenergetics of Axon Integrity and Its Regulation by Oligodendrocytes and Schwann Cells. Mol Neurobiol 2024; 61:5928-5934. [PMID: 38252382 DOI: 10.1007/s12035-024-03950-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 01/09/2024] [Indexed: 01/23/2024]
Abstract
Axons are long slender portions of neurons that transmit electrical impulses to maintain proper physiological functioning. Axons in the central nervous system (CNS) and peripheral nervous system (PNS) do not exist in isolation but are found to form a complex association with their surrounding glial cells, oligodendrocytes and Schwann cells. These cells not only myelinate them for faster nerve impulse conduction but are also known to provide metabolic support. Due to their incredible length, continuous growth, and distance from the cell body (where major energy synthesis takes place), axons are in high energetic demand. The stability and integrity of axons have long been associated with axonal energy levels. The current mini-review is thus focused on how axons accomplish their high energetic requirement in a cell-autonomous manner and how the surrounding glial cells help them in maintaining their integrity by fulfilling their energy demands (non-cell autonomous trophic support). The concept that adjacent glial cells (oligodendrocytes and Schwann cells) provide trophic support to axons and assist them in maintaining their integrity comes from the conditional knockout research and the studies in which the metabolic pathways controlling metabolism in these glial cells are modulated and its effect on axonal integrity is evaluated. In the later part of the mini-review, the current knowledge of axon-glial metabolic coupling during various neurodegenerative conditions was discussed, along with the potential lacunae in our current understanding of axon-glial metabolic coupling.
Collapse
Affiliation(s)
- Sandeep K Mishra
- Institute for Myelin and Glia Exploration, University at Buffalo, Buffalo, NY, 14203, USA.
- Faculty of Pharmacy, Kalinga University, Raipur, (C.G.), 492101, India.
| | | |
Collapse
|
26
|
Qiu D, He Y, Feng Y, Lin M, Lin Z, Zhang Z, Xiong Y, Hu Z, Ma S, Jin H, Liu J. Tumor perfusion enhancement by microbubbles ultrasonic cavitation reduces tumor glycolysis metabolism and alleviate tumor acidosis. Front Oncol 2024; 14:1424824. [PMID: 39091919 PMCID: PMC11291205 DOI: 10.3389/fonc.2024.1424824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 06/25/2024] [Indexed: 08/04/2024] Open
Abstract
The tumor microenvironment is increasingly acknowledged as a critical contributor to cancer progression, mediating genetic and epigenetic alterations. Beyond diverse cellular interactions from the microenvironment, physicochemical factors such as tumor acidosis also significantly affect cancer dynamics. Recent research has highlighted that tumor acidosis facilitates invasion, immune escape, metastasis, and resistance to therapies. Thus, noninvasive measurement of tumor acidity and the development of targeted interventions represent promising strategies in oncology. Techniques like contrast-enhanced ultrasound (CEUS) can effectively assess blood perfusion, while ultrasound-stimulated microbubble cavitation (USMC) has proven to enhance tumor blood perfusion. We therefore aimed to determine whether CEUS assesses tumor acidity and whether USMC treatment can modulate tumor acidity. Firstly, we tracked CEUS perfusion parameters in MCF7 tumor models and compared them with in vivo tumor pH recorded by pH microsensors. We found that the peak intensity and area under curve of tumor contrast-enhanced ultrasound correlated well with tumor pH. We further conducted USMC treatment on MCF7 tumor-bearing mice, tracked changes of tumor blood perfusion and tumor pH in different perfusion regions before and after the USMC treatment to assess its impact on tumor acidity and optimize therapeutic ultrasound pressure. We discovered that USMC with 1.0 Mpa significantly improved tumor blood perfusion and tumor pH. Furthermore, tumor vascular pathology and PGI2 assays indicated that improved tumor perfusion was mainly due to vasodilation rather than angiogenesis. More importantly, analysis of glycolysis-related metabolites and enzymes demonstrated USMC treatment can reduce tumor acidity by reducing tumor glycolysis. These findings support that CEUS may serve as a potential biomarker to assess tumor acidity and USMC is a promising therapeutic modality for reducing tumor acidosis.
Collapse
Affiliation(s)
- Danxia Qiu
- Department of Medical Ultrasound, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yangcheng He
- Department of Medical Ultrasound, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yuyi Feng
- Department of Medical Ultrasound, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Minhua Lin
- Department of Medical Ultrasound, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Zekai Lin
- Department of Radiology, The Second Clinical College, Guangzhou Medical University, Guangzhou, China
| | - Zhiyi Zhang
- Department of Medical Ultrasound, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Ying Xiong
- Department of Medical Ultrasound, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Zhiwen Hu
- Department of Medical Ultrasound, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Suihong Ma
- Department of Medical Ultrasound, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Hai Jin
- Department of Medical Ultrasound, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Jianhua Liu
- Department of Medical Ultrasound, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| |
Collapse
|
27
|
Juarez D, Handal-Silva A, Morán-Perales JL, Torres-Cifuentes DM, Flores G, Treviño S, Moreno-Rodriguez A, Guevara J, Diaz A. New insights into sodium phenylbutyrate as a pharmacotherapeutic option for neurological disorders. Synapse 2024; 78:e22301. [PMID: 38819491 DOI: 10.1002/syn.22301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 04/01/2024] [Accepted: 05/14/2024] [Indexed: 06/01/2024]
Abstract
Neurological disorders (NDs) are diseases of the central and peripheral nervous systems that affect more than one billion people worldwide. The risk of developing an ND increases with age due to the vulnerability of the different organs and systems to genetic, environmental, and social changes that consequently cause motor and cognitive deficits that disable the person from their daily activities and individual and social productivity. Intrinsic factors (genetic factors, age, gender) and extrinsic factors (addictions, infections, or lifestyle) favor the persistence of systemic inflammatory processes that contribute to the evolution of NDs. Neuroinflammation is recognized as a common etiopathogenic factor of ND. The study of new pharmacological options for the treatment of ND should focus on improving the characteristic symptoms and attacking specific molecular targets that allow the delay of damage processes such as neuroinflammation, oxidative stress, cellular metabolic dysfunction, and deregulation of transcriptional processes. In this review, we describe the possible role of sodium phenylbutyrate (NaPB) in the pathogenesis of Alzheimer's disease, hepatic encephalopathy, aging, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis; in addition, we describe the mechanism of action of NaPB and its beneficial effects that have been shown in various in vivo and in vitro studies to delay the evolution of any ND.
Collapse
Affiliation(s)
- Daniel Juarez
- Faculty of Chemical Sciences, Benemeritus Autonomous University of Puebla, Puebla, Puebla, Mexico
| | - Anabella Handal-Silva
- Department of Reproductive Biology and Toxicology, Institute of Sciences. Benemeritus Autonomous University of Puebla, Puebla, Puebla, Mexico
| | - Jose Luis Morán-Perales
- Department of Reproductive Biology and Toxicology, Institute of Sciences. Benemeritus Autonomous University of Puebla, Puebla, Puebla, Mexico
| | - Diana M Torres-Cifuentes
- Faculty of Chemical Sciences, Benemeritus Autonomous University of Puebla, Puebla, Puebla, Mexico
| | - Gonzalo Flores
- Institute of Physiology, Benemeritus Autonomous University of Puebla, Puebla, Puebla, Mexico
| | - Samuel Treviño
- Institute of Physiology, Benemeritus Autonomous University of Puebla, Puebla, Puebla, Mexico
| | - Albino Moreno-Rodriguez
- Faculty of Chemical Sciences, Benemeritus Autonomous University of Puebla, Puebla, Puebla, Mexico
| | - Jorge Guevara
- Faculty of Medicine, Department of Biochemistry, National Autonomous University of Mexico, Mexico City, Mexico
| | - Alfonso Diaz
- Institute of Physiology, Benemeritus Autonomous University of Puebla, Puebla, Puebla, Mexico
| |
Collapse
|
28
|
Llavero F, Zugaza JL. The importance of muscle glycogen phosphorylase in glial cells function. Biochem Soc Trans 2024; 52:1265-1274. [PMID: 38661212 DOI: 10.1042/bst20231058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/26/2024]
Abstract
The three isoforms of glycogen phosphorylase - PYGM, PYGB, and PYGL - are expressed in glial cells. Unlike PYGB and PYGL, PYGM is the only isoform regulated by Rac1. This specific regulation may confer a differential functional role compared with the other glycogen phosphorylases-PYGB and PYGL. The involvement of muscle glycogen phosphorylase in glial cells and its association with post-translational modifications (PTMs) of proteins through O-glycosylation is indeed a fascinating and emerging area of research. The dual role it plays in metabolic processes and the regulation of PTMs within the brain presents intriguing implications for various neurological conditions. Disruptions in the O-GlcNAcylation cycle and neurodegenerative diseases like Alzheimer's disease (AD) is particularly noteworthy. The alterations in O-GlcNAcylation levels of specific proteins, such as APP, c-Fos, and tau protein, highlight the intricate relationship between PTMs and AD. Understanding these processes and the regulatory function of muscle glycogen phosphorylase sheds light on its impact on protein function, signaling pathways, cellular homeostasis, neurological health, and potential interventions for brain-related conditions.
Collapse
Affiliation(s)
- Francisco Llavero
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, Sede Building, 3rd Floor, Barrio de Sarriena s/n, 48940 Leioa, Spain
| | - José L Zugaza
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, Sede Building, 3rd Floor, Barrio de Sarriena s/n, 48940 Leioa, Spain
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Science and Technology, UPV/EHU, Barrio de Sarriena s/n, 48940 Leioa, Spain
- IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| |
Collapse
|
29
|
Niepmann M. Importance of Michaelis Constants for Cancer Cell Redox Balance and Lactate Secretion-Revisiting the Warburg Effect. Cancers (Basel) 2024; 16:2290. [PMID: 39001354 PMCID: PMC11240417 DOI: 10.3390/cancers16132290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 06/19/2024] [Indexed: 07/16/2024] Open
Abstract
Cancer cells metabolize a large fraction of glucose to lactate, even under a sufficient oxygen supply. This phenomenon-the "Warburg Effect"-is often regarded as not yet understood. Cancer cells change gene expression to increase the uptake and utilization of glucose for biosynthesis pathways and glycolysis, but they do not adequately up-regulate the tricarboxylic acid (TCA) cycle and oxidative phosphorylation (OXPHOS). Thereby, an increased glycolytic flux causes an increased production of cytosolic NADH. However, since the corresponding gene expression changes are not neatly fine-tuned in the cancer cells, cytosolic NAD+ must often be regenerated by loading excess electrons onto pyruvate and secreting the resulting lactate, even under sufficient oxygen supply. Interestingly, the Michaelis constants (KM values) of the enzymes at the pyruvate junction are sufficient to explain the priorities for pyruvate utilization in cancer cells: 1. mitochondrial OXPHOS for efficient ATP production, 2. electrons that exceed OXPHOS capacity need to be disposed of and secreted as lactate, and 3. biosynthesis reactions for cancer cell growth. In other words, a number of cytosolic electrons need to take the "emergency exit" from the cell by lactate secretion to maintain the cytosolic redox balance.
Collapse
Affiliation(s)
- Michael Niepmann
- Institute of Biochemistry, Medical Faculty, Justus-Liebig-University, 35392 Giessen, Germany
| |
Collapse
|
30
|
ZHANG Q, CAO L, XU K. [Role and Mechanism of Lactylation in Cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2024; 27:471-479. [PMID: 39026499 PMCID: PMC11258650 DOI: 10.3779/j.issn.1009-3419.2024.102.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Indexed: 07/20/2024]
Abstract
Post translational modifications (PTMs) can change the properties of a protein by covalent addition of functional groups to one or more amino acids, and influence almost all aspects of normal cell biology and pathogenesis. Lactylation is a novel identified PTM, and has been found in both histone and non-histone proteins. Since associated with the end product of glycolysis-- lactate, lactylation modification could provide a new perspective for understanding the relationship between metabolic reprogramming and epigenetic modifications. Accumulated evidences suggest that lactylation play important roles in tumor progression and links to poor prognosis in clinical studies. Histone lactylation can affect gene expression in tumor cells and immunological cells, further promoting tumor progression and immune suppression. Lactylation on non-histone proteins can also regulate tumor progression and drug resistance. In this review, we aimed to summarize the roles of lactylation in cancer progression, microenvironment interactions and immune suppression, try to identify new molecular targets for cancer therapy and provide a new direction for combined targeted therapy and immunotherapy.
.
Collapse
|
31
|
Malla A, Gupta S, Sur R. Glycolytic enzymes in non-glycolytic web: functional analysis of the key players. Cell Biochem Biophys 2024; 82:351-378. [PMID: 38196050 DOI: 10.1007/s12013-023-01213-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/26/2023] [Indexed: 01/11/2024]
Abstract
To survive in the tumour microenvironment, cancer cells undergo rapid metabolic reprograming and adaptability. One of the key characteristics of cancer is increased glycolytic selectivity and decreased oxidative phosphorylation (OXPHOS). Apart from ATP synthesis, glycolysis is also responsible for NADH regeneration and macromolecular biosynthesis, such as amino acid biosynthesis and nucleotide biosynthesis. This allows cancer cells to survive and proliferate even in low-nutrient and oxygen conditions, making glycolytic enzymes a promising target for various anti-cancer agents. Oncogenic activation is also caused by the uncontrolled production and activity of glycolytic enzymes. Nevertheless, in addition to conventional glycolytic processes, some glycolytic enzymes are involved in non-canonical functions such as transcriptional regulation, autophagy, epigenetic changes, inflammation, various signaling cascades, redox regulation, oxidative stress, obesity and fatty acid metabolism, diabetes and neurodegenerative disorders, and hypoxia. The mechanisms underlying the non-canonical glycolytic enzyme activities are still not comprehensive. This review summarizes the current findings on the mechanisms fundamental to the non-glycolytic actions of glycolytic enzymes and their intermediates in maintaining the tumor microenvironment.
Collapse
Affiliation(s)
- Avirup Malla
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, Kolkata, India
| | - Suvroma Gupta
- Department of Aquaculture Management, Khejuri college, West Bengal, Baratala, India.
| | - Runa Sur
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, Kolkata, India.
| |
Collapse
|
32
|
Fulman-Levy H, Cohen-Harazi R, Levi B, Argaev-Frenkel L, Abramovich I, Gottlieb E, Hofmann S, Koman I, Nesher E. Metabolic alterations and cellular responses to β-Hydroxybutyrate treatment in breast cancer cells. Cancer Metab 2024; 12:16. [PMID: 38812058 PMCID: PMC11134656 DOI: 10.1186/s40170-024-00339-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 03/18/2024] [Indexed: 05/31/2024] Open
Abstract
BACKGROUND The ketogenic diet (KD), based on high fat (over 70% of daily calories), low carbohydrate, and adequate protein intake, has become popular due to its potential therapeutic benefits for several diseases including cancer. Under KD and starvation conditions, the lack of carbohydrates promotes the production of ketone bodies (KB) from fats by the liver as an alternative source of metabolic energy. KD and starvation may affect the metabolism in cancer cells, as well as tumor characteristics. The aim of this study is to evaluate the effect of KD conditions on a wide variety of aspects of breast cancer cells in vitro. METHODS Using two cancer and one non-cancer breast cell line, we evaluate the effect of β-hydroxybutyrate (βHb) treatment on cell growth, survival, proliferation, colony formation, and migration. We also assess the effect of KB on metabolic profile of the cells. Using RNAseq analysis, we elucidate the effect of βHb on the gene expression profile. RESULTS Significant effects were observed following treatment by βHb which include effects on viability, proliferation, and colony formation of MCF7 cells, and different effects on colony formation of MDA-MB-231 cells, with no such effects on non-cancer HB2 cells. We found no changes in glucose intake or lactate output following βHb treatment as measured by LC-MS, but an increase in reactive oxygen species (ROS) level was detected. RNAseq analysis demonstrated significant changes in genes involved in lipid metabolism, cancer, and oxidative phosphorylation. CONCLUSIONS Based on our results, we conclude that differential response of cancer cell lines to βHb treatment, as alternative energy source or signal to alter lipid metabolism and oncogenicity, supports the need for a personalized approach to breast cancer patient treatment.
Collapse
Affiliation(s)
- Hadas Fulman-Levy
- Department of Molecular Biology, Ariel University, Ariel, 4070000, Israel
- Institute for Personalized and Translational Medicine, Ariel University, Ariel, 4070000, Israel
| | - Raichel Cohen-Harazi
- Institute for Personalized and Translational Medicine, Ariel University, Ariel, 4070000, Israel
| | - Bar Levi
- Department of Molecular Biology, Ariel University, Ariel, 4070000, Israel
| | - Lital Argaev-Frenkel
- Institute for Personalized and Translational Medicine, Ariel University, Ariel, 4070000, Israel
| | - Ifat Abramovich
- Rappaport Faculty of Medicine and Research Institute, Technion, Haifa, 3525422, Israel
| | - Eyal Gottlieb
- Rappaport Faculty of Medicine and Research Institute, Technion, Haifa, 3525422, Israel
| | - Sarah Hofmann
- Medical Faculty Mannheim, Heidelberg University, 68167 , Mannheim, Germany
| | - Igor Koman
- Department of Molecular Biology, Ariel University, Ariel, 4070000, Israel.
- Institute for Personalized and Translational Medicine, Ariel University, Ariel, 4070000, Israel.
| | - Elimelech Nesher
- Department of Molecular Biology, Ariel University, Ariel, 4070000, Israel.
- Institute for Personalized and Translational Medicine, Ariel University, Ariel, 4070000, Israel.
| |
Collapse
|
33
|
Ruan X, Yan W, Cao M, Daza RAM, Fong MY, Yang K, Wu J, Liu X, Palomares M, Wu X, Li A, Chen Y, Jandial R, Spitzer NC, Hevner RF, Wang SE. Breast cancer cell-secreted miR-199b-5p hijacks neurometabolic coupling to promote brain metastasis. Nat Commun 2024; 15:4549. [PMID: 38811525 PMCID: PMC11137082 DOI: 10.1038/s41467-024-48740-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 05/09/2024] [Indexed: 05/31/2024] Open
Abstract
Breast cancer metastasis to the brain is a clinical challenge rising in prevalence. However, the underlying mechanisms, especially how cancer cells adapt a distant brain niche to facilitate colonization, remain poorly understood. A unique metabolic feature of the brain is the coupling between neurons and astrocytes through glutamate, glutamine, and lactate. Here we show that extracellular vesicles from breast cancer cells with a high potential to develop brain metastases carry high levels of miR-199b-5p, which shows higher levels in the blood of breast cancer patients with brain metastases comparing to those with metastatic cancer in other organs. miR-199b-5p targets solute carrier transporters (SLC1A2/EAAT2 in astrocytes and SLC38A2/SNAT2 and SLC16A7/MCT2 in neurons) to hijack the neuron-astrocyte metabolic coupling, leading to extracellular retention of these metabolites and promoting cancer cell growth. Our findings reveal a mechanism through which cancer cells of a non-brain origin reprogram neural metabolism to fuel brain metastases.
Collapse
Affiliation(s)
- Xianhui Ruan
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Wei Yan
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Minghui Cao
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Ray Anthony M Daza
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Miranda Y Fong
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
- Department of Cancer Biology, City of Hope Beckman Research Institute, Duarte, CA, USA
| | - Kaifu Yang
- School of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Jun Wu
- Center for Comparative Medicine, City of Hope Beckman Research Institute, Duarte, CA, USA
| | - Xuxiang Liu
- Department of Cancer Biology, City of Hope Beckman Research Institute, Duarte, CA, USA
| | | | - Xiwei Wu
- Department of Computational and Quantitative Medicine, City of Hope Beckman Research Institute, Duarte, CA, USA
| | - Arthur Li
- Division of Biostatistics, City of Hope Beckman Research Institute, Duarte, CA, USA
| | - Yuan Chen
- Department of Surgery, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Rahul Jandial
- Department of Surgery; City of Hope, Duarte, CA, USA
| | - Nicholas C Spitzer
- Neurobiology Department, School of Biological Sciences and Center for Neural Circuits and Behavior, University of California San Diego, La Jolla, CA, USA
- Kavli Institute for Brain and Mind, University of California San Diego, La Jolla, CA, USA
| | - Robert F Hevner
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Shizhen Emily Wang
- Department of Pathology, University of California San Diego, La Jolla, CA, USA.
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
34
|
Chen S, Xu Y, Zhuo W, Zhang L. The emerging role of lactate in tumor microenvironment and its clinical relevance. Cancer Lett 2024; 590:216837. [PMID: 38548215 DOI: 10.1016/j.canlet.2024.216837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/16/2024] [Accepted: 03/25/2024] [Indexed: 04/12/2024]
Abstract
In recent years, the significant impact of lactate in the tumor microenvironment has been greatly documented. Acting not only as an energy substance in tumor metabolism, lactate is also an imperative signaling molecule. It plays key roles in metabolic remodeling, protein lactylation, immunosuppression, drug resistance, epigenetics and tumor metastasis, which has a tight relation with cancer patients' poor prognosis. This review illustrates the roles lactate plays in different aspects of tumor progression and drug resistance. From the comprehensive effects that lactate has on tumor metabolism and tumor immunity, the therapeutic targets related to it are expected to bring new hope for cancer therapy.
Collapse
Affiliation(s)
- Sihan Chen
- Department of Cell Biology and Department of Colorectal Surgery and Oncology, Center for Medical Research and Innovation in Digestive System Tumors, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, China; Institute of Gastroenterology, Zhejiang University, Hangzhou, China
| | - Yining Xu
- Department of Cell Biology and Department of Colorectal Surgery and Oncology, Center for Medical Research and Innovation in Digestive System Tumors, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, China; Institute of Gastroenterology, Zhejiang University, Hangzhou, China
| | - Wei Zhuo
- Department of Cell Biology and Department of Colorectal Surgery and Oncology, Center for Medical Research and Innovation in Digestive System Tumors, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, China; Institute of Gastroenterology, Zhejiang University, Hangzhou, China.
| | - Lu Zhang
- Department of Cell Biology and Department of Colorectal Surgery and Oncology, Center for Medical Research and Innovation in Digestive System Tumors, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Research Center for Life Science and Human Health, Binjiang Institute of Zhejiang University Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, China; Institute of Gastroenterology, Zhejiang University, Hangzhou, China.
| |
Collapse
|
35
|
Tamas C, Tamas F, Kovecsi A, Cehan A, Balasa A. Metabolic Contrasts: Fatty Acid Oxidation and Ketone Bodies in Healthy Brains vs. Glioblastoma Multiforme. Int J Mol Sci 2024; 25:5482. [PMID: 38791520 PMCID: PMC11122426 DOI: 10.3390/ijms25105482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/09/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
The metabolism of glucose and lipids plays a crucial role in the normal homeostasis of the body. Although glucose is the main energy substrate, in its absence, lipid metabolism becomes the primary source of energy. The main means of fatty acid oxidation (FAO) takes place in the mitochondrial matrix through β-oxidation. Glioblastoma (GBM) is the most common form of primary malignant brain tumor (45.6%), with an incidence of 3.1 per 100,000. The metabolic changes found in GBM cells and in the surrounding microenvironment are associated with proliferation, migration, and resistance to treatment. Tumor cells show a remodeling of metabolism with the use of glycolysis at the expense of oxidative phosphorylation (OXPHOS), known as the Warburg effect. Specialized fatty acids (FAs) transporters such as FAT, FABP, or FATP from the tumor microenvironment are overexpressed in GBM and contribute to the absorption and storage of an increased amount of lipids that will provide sufficient energy used for tumor growth and invasion. This review provides an overview of the key enzymes, transporters, and main regulatory pathways of FAs and ketone bodies (KBs) in normal versus GBM cells, highlighting the need to develop new therapeutic strategies to improve treatment efficacy in patients with GBM.
Collapse
Affiliation(s)
- Corina Tamas
- Doctoral School of Medicine and Pharmacy, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology, 540142 Targu Mures, Romania;
- Department of Neurosurgery, Emergency Clinical County Hospital, 540136 Targu Mures, Romania;
- Department of Neurosurgery, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology, 540142 Targu Mures, Romania
| | - Flaviu Tamas
- Doctoral School of Medicine and Pharmacy, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology, 540142 Targu Mures, Romania;
- Department of Neurosurgery, Emergency Clinical County Hospital, 540136 Targu Mures, Romania;
- Department of Neurosurgery, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology, 540142 Targu Mures, Romania
| | - Attila Kovecsi
- Department of Morphopathology, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology, 540142 Targu Mures, Romania;
- Department of Morphopathology, Emergency Clinical County Hospital, 540136 Targu Mures, Romania
| | - Alina Cehan
- Department of Plastic, Esthetics and Reconstructive Surgery, Emergency Clinical County Hospital, 540136 Targu Mures, Romania;
| | - Adrian Balasa
- Department of Neurosurgery, Emergency Clinical County Hospital, 540136 Targu Mures, Romania;
- Department of Neurosurgery, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology, 540142 Targu Mures, Romania
| |
Collapse
|
36
|
Nakanishi M, Ibe A, Morishita K, Shinagawa K, Yamamoto Y, Takahashi H, Ikemori K, Muragaki Y, Ehata S. Acid-sensing receptor GPR4 plays a crucial role in lymphatic cancer metastasis. Cancer Sci 2024; 115:1551-1563. [PMID: 38410865 PMCID: PMC11093208 DOI: 10.1111/cas.16098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/08/2024] [Accepted: 01/17/2024] [Indexed: 02/28/2024] Open
Abstract
Cancer tissues exhibit an acidic microenvironment owing to the accumulation of protons and lactic acid produced by cancer and inflammatory cells. To examine the role of an acidic microenvironment in lymphatic cancer metastasis, gene expression profiling was conducted using human dermal lymphatic endothelial cells (HDLECs) treated with a low pH medium. Microarray and gene set enrichment analysis revealed that acid treatment induced the expression of inflammation-related genes in HDLECs, including genes encoding chemokines and adhesion molecules. Acid treatment-induced chemokines C-X3-C motif chemokine ligand 1 (CX3CL1) and C-X-C motif chemokine ligand 6 (CXCL6) autocrinally promoted the growth and tube formation of HDLECs. The expression of vascular cell adhesion molecule 1 (VCAM-1) increased in HDLECs after acid treatment in a time-dependent manner, which, in turn, enhanced their adhesion to melanoma cells. Among various acid-sensing receptors, HDLECs basally expressed G protein-coupled receptor 4 (GPR4), which was augmented under the acidic microenvironment. The induction of chemokines or VCAM-1 under acidic conditions was attenuated by GPR4 knockdown in HDLECs. In addition, lymph node metastases in a mouse melanoma model were suppressed by administering an anti-VCAM-1 antibody or a GPR4 antagonist. These results suggest that an acidic microenvironment modifies the function of lymphatic endothelial cells via GPR4, thereby promoting lymphatic cancer metastasis. Acid-sensing receptors and their downstream molecules might serve as preventive or therapeutic targets in cancer.
Collapse
Affiliation(s)
- Masako Nakanishi
- Department of Pathology, School of MedicineWakayama Medical UniversityWakayamaJapan
| | - Akiya Ibe
- Department of Pathology, School of MedicineWakayama Medical UniversityWakayamaJapan
| | - Kiyoto Morishita
- Department of Pathology, School of MedicineWakayama Medical UniversityWakayamaJapan
| | - Kazutaka Shinagawa
- Department of Pathology, School of MedicineWakayama Medical UniversityWakayamaJapan
| | - Yushi Yamamoto
- Department of Pathology, School of MedicineWakayama Medical UniversityWakayamaJapan
| | - Hibiki Takahashi
- Department of Pathology, School of MedicineWakayama Medical UniversityWakayamaJapan
| | - Kyoka Ikemori
- Department of Pathology, School of MedicineWakayama Medical UniversityWakayamaJapan
| | - Yasuteru Muragaki
- Department of Pathology, School of MedicineWakayama Medical UniversityWakayamaJapan
| | - Shogo Ehata
- Department of Pathology, School of MedicineWakayama Medical UniversityWakayamaJapan
| |
Collapse
|
37
|
Carneiro L, Bernasconi R, Bernini A, Repond C, Pellerin L. Elevation of hypothalamic ketone bodies induces a decrease in energy expenditures and an increase risk of metabolic disorder. Mol Metab 2024; 83:101926. [PMID: 38553002 PMCID: PMC10999683 DOI: 10.1016/j.molmet.2024.101926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 03/18/2024] [Accepted: 03/22/2024] [Indexed: 04/04/2024] Open
Abstract
OBJECTIVE Ketone bodies (such as β-hydroxybutyrate or BHB) have been recently proposed as signals involved in brain regulation of energy homeostasis and obesity development. However, the precise role of ketone bodies sensing by the brain, and its impact on metabolic disorder development remains unclear. Nevertheless, partial deletion of the ubiquitous ketone bodies transporter MCT1 in mice (HE mice) results in diet-induced obesity resistance, while there is no alteration under normal chow diet. These results suggest that ketone bodies produced during the high fat diet would be important signals involved in obesity onset. METHODS In the present study we used a specific BHB infusion of the hypothalamus and analyzed the energy homeostasis of WT or HE mice fed a normal chow diet. RESULTS Our results indicate that high BHB levels sensed by the hypothalamus disrupt the brain regulation of energy homeostasis. This brain control dysregulation leads to peripheral alterations of energy expenditure mechanisms. CONCLUSIONS Altogether, the changes induced by high ketone bodies levels sensed by the brain increase the risk of obesity onset in mice.
Collapse
Affiliation(s)
- Lionel Carneiro
- Department of Physiology, University of Lausanne, 1005 Lausanne, Switzerland.
| | - Rocco Bernasconi
- Department of Physiology, University of Lausanne, 1005 Lausanne, Switzerland
| | - Adriano Bernini
- Department of Physiology, University of Lausanne, 1005 Lausanne, Switzerland
| | - Cendrine Repond
- Department of Physiology, University of Lausanne, 1005 Lausanne, Switzerland
| | - Luc Pellerin
- Department of Physiology, University of Lausanne, 1005 Lausanne, Switzerland; University and CHU of Poitiers, INSERM U1313, Poitiers, France.
| |
Collapse
|
38
|
Mishra SK, Santana JG, Mihailovic J, Hyder F, Coman D. Transmembrane pH gradient imaging in rodent glioma models. NMR IN BIOMEDICINE 2024; 37:e5102. [PMID: 38263680 PMCID: PMC10987279 DOI: 10.1002/nbm.5102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/28/2023] [Accepted: 12/16/2023] [Indexed: 01/25/2024]
Abstract
A unique feature of the tumor microenvironment is extracellular acidosis in relation to intracellular milieu. Metabolic reprogramming in tumors results in overproduction of H+ ions (and lactate), which are extruded from the cells to support tumor survival and progression. As a result, the transmembrane pH gradient (ΔpH), representing the difference between intracellular pH (pHi) and extracellular pH (pHe), is posited to be larger in tumors compared with normal tissue. Controlling the transmembrane pH difference has promise as a potential therapeutic target in cancer as it plays an important role in regulating drug delivery into cells. The current study shows successful development of an MRI/MRSI-based technique that provides ΔpH imaging at submillimeter resolution. We applied this technique to image ΔpH in rat brains with RG2 and U87 gliomas, as well as in mouse brains with GL261 gliomas. pHi was measured with Amine and Amide Concentration-Independent Detection (AACID), while pHe was measured with Biosensor Imaging of Redundant Deviation in Shifts (BIRDS). The results indicate that pHi was slightly higher in tumors (7.40-7.43 in rats, 7.39-7.47 in mice) compared with normal brain (7.30-7.38 in rats, 7.32-7.36 in mice), while pHe was significantly lower in tumors (6.62-6.76 in rats, 6.74-6.84 in mice) compared with normal tissue (7.17-7.22 in rats, 7.20-7.21 in mice). As a result, ΔpH was higher in tumors (0.64-0.81 in rats, 0.62-0.65 in mice) compared with normal brain (0.13-0.16 in rats, 0.13-0.16 in mice). This work establishes an MRI/MRSI-based platform for ΔpH imaging at submillimeter resolution in gliomas.
Collapse
Affiliation(s)
- Sandeep Kumar Mishra
- Yale University, Department of Radiology & Biomedical Imaging, New Haven, CT 06510, USA
| | | | - Jelena Mihailovic
- Yale University, Department of Radiology & Biomedical Imaging, New Haven, CT 06510, USA
| | - Fahmeed Hyder
- Yale University, Department of Radiology & Biomedical Imaging, New Haven, CT 06510, USA
- Yale University, Department of Biomedical Engineering, New Haven, CT 06510, USA
| | - Daniel Coman
- Yale University, Department of Radiology & Biomedical Imaging, New Haven, CT 06510, USA
- Yale University, Department of Biomedical Engineering, New Haven, CT 06510, USA
| |
Collapse
|
39
|
D’Aria S, Maquet C, Li S, Dhup S, Lepez A, Kohler A, Van Hée VF, Dadhich RK, Frenière M, Andris F, Nemazanyy I, Sonveaux P, Machiels B, Gillet L, Braun MY. Expression of the monocarboxylate transporter MCT1 is required for virus-specific mouse CD8 + T cell memory development. Proc Natl Acad Sci U S A 2024; 121:e2306763121. [PMID: 38498711 PMCID: PMC10990098 DOI: 10.1073/pnas.2306763121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 01/29/2024] [Indexed: 03/20/2024] Open
Abstract
Lactate-proton symporter monocarboxylate transporter 1 (MCT1) facilitates lactic acid export from T cells. Here, we report that MCT1 is mandatory for the development of virus-specific CD8+ T cell memory. MCT1-deficient T cells were exposed to acute pneumovirus (pneumonia virus of mice, PVM) or persistent γ-herpesvirus (Murid herpesvirus 4, MuHV-4) infection. MCT1 was required for the expansion of virus-specific CD8+ T cells and the control of virus replication in the acute phase of infection. This situation prevented the subsequent development of virus-specific T cell memory, a necessary step in containing virus reactivation during γ-herpesvirus latency. Instead, persistent active infection drove virus-specific CD8+ T cells toward functional exhaustion, a phenotype typically seen in chronic viral infections. Mechanistically, MCT1 deficiency sequentially impaired lactic acid efflux from activated CD8+ T cells, caused an intracellular acidification inhibiting glycolysis, disrupted nucleotide synthesis in the upstream pentose phosphate pathway, and halted cell proliferation which, ultimately, promoted functional CD8+ T cell exhaustion instead of memory development. Taken together, our data demonstrate that MCT1 expression is mandatory for inducing T cell memory and controlling viral infection by CD8+ T cells.
Collapse
Affiliation(s)
- Stefania D’Aria
- Institute for Medical Immunology, Faculty of Medicine, Université libre de Bruxelles, Gosselies6041, Belgium
| | - Céline Maquet
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine - Fundamental and Applied Research for Animals & Health Research Unit, University of Liège, Liège4000, Belgium
| | - Shuang Li
- Institute for Medical Immunology, Faculty of Medicine, Université libre de Bruxelles, Gosselies6041, Belgium
| | - Suveera Dhup
- Pole of Pharmacology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels1200, Belgium
| | - Anouk Lepez
- Immunobiology Laboratory, Faculty of Sciences, Université libre de Bruxelles, Gosselies6041, Belgium
| | - Arnaud Kohler
- Institute for Medical Immunology, Faculty of Medicine, Université libre de Bruxelles, Gosselies6041, Belgium
| | - Vincent F. Van Hée
- Pole of Pharmacology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels1200, Belgium
| | - Rajesh K. Dadhich
- Pole of Pharmacology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels1200, Belgium
| | - Marine Frenière
- Institute for Medical Immunology, Faculty of Medicine, Université libre de Bruxelles, Gosselies6041, Belgium
| | - Fabienne Andris
- Immunobiology Laboratory, Faculty of Sciences, Université libre de Bruxelles, Gosselies6041, Belgium
| | - Ivan Nemazanyy
- Plateforme d’étude du métabolisme, Institut Necker, Inserm US 24 - CNRS UMS 3633, Faculté de Médecine Paris Descartes, Paris75015, France
| | - Pierre Sonveaux
- WEL Research Institute, Welbio Department, Wavre1300, Belgium
| | - Bénédicte Machiels
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine - Fundamental and Applied Research for Animals & Health Research Unit, University of Liège, Liège4000, Belgium
| | - Laurent Gillet
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine - Fundamental and Applied Research for Animals & Health Research Unit, University of Liège, Liège4000, Belgium
| | - Michel Y. Braun
- Institute for Medical Immunology, Faculty of Medicine, Université libre de Bruxelles, Gosselies6041, Belgium
| |
Collapse
|
40
|
Tiwari A, Myeong J, Hashemiaghdam A, Zhang H, Niu X, Laramie MA, Stunault MI, Sponagel J, Patti G, Shriver L, Klyachko V, Ashrafi G. Mitochondrial pyruvate transport regulates presynaptic metabolism and neurotransmission. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.20.586011. [PMID: 38562794 PMCID: PMC10983914 DOI: 10.1101/2024.03.20.586011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Glucose has long been considered the primary fuel source for the brain. However, glucose levels fluctuate in the brain during sleep, intense circuit activity, or dietary restrictions, posing significant metabolic stress. Here, we demonstrate that the mammalian brain utilizes pyruvate as a fuel source, and pyruvate can support neuronal viability in the absence of glucose. Nerve terminals are sites of metabolic vulnerability within a neuron and we show that mitochondrial pyruvate uptake is a critical step in oxidative ATP production in hippocampal terminals. We find that the mitochondrial pyruvate carrier is post-translationally modified by lysine acetylation which in turn modulates mitochondrial pyruvate uptake. Importantly, our data reveal that the mitochondrial pyruvate carrier regulates distinct steps in synaptic transmission, namely, the spatiotemporal pattern of synaptic vesicle release and the efficiency of vesicle retrieval, functions that have profound implications for synaptic plasticity. In summary, we identify pyruvate as a potent neuronal fuel and mitochondrial pyruvate uptake as a critical node for the metabolic control of synaptic transmission in hippocampal terminals.
Collapse
Affiliation(s)
- Anupama Tiwari
- Department of Cell Biology and Physiology, Washington University in St. Louis
| | - Jongyun Myeong
- Department of Cell Biology and Physiology, Washington University in St. Louis
| | - Arsalan Hashemiaghdam
- Department of Cell Biology and Physiology, Washington University in St. Louis
- Present address: Tufts Medical Center, Boston, MA
| | - Hao Zhang
- Department of Chemistry, Department of Medicine, Center for Metabolomics and Isotope Tracing, Washington University in St. Louis
| | - Xianfeng Niu
- Department of Chemistry, Department of Medicine, Center for Metabolomics and Isotope Tracing, Washington University in St. Louis
| | - Marissa A Laramie
- Department of Cell Biology and Physiology, Washington University in St. Louis
| | - Marion I Stunault
- Department of Cell Biology and Physiology, Washington University in St. Louis
| | - Jasmin Sponagel
- Department of Cell Biology and Physiology, Washington University in St. Louis
| | - Gary Patti
- Department of Chemistry, Department of Medicine, Center for Metabolomics and Isotope Tracing, Washington University in St. Louis
| | - Leah Shriver
- Department of Chemistry, Department of Medicine, Center for Metabolomics and Isotope Tracing, Washington University in St. Louis
| | - Vitaly Klyachko
- Department of Cell Biology and Physiology, Washington University in St. Louis
| | - Ghazaleh Ashrafi
- Department of Cell Biology and Physiology, Washington University in St. Louis
- Needleman Center for Neurometabolism and Axonal Therapeutics, Washington University in St. Louis
- Lead Contact
| |
Collapse
|
41
|
Yadav AK, Maharjan Shrestha R, Yadav PN. Anticancer mechanism of coumarin-based derivatives. Eur J Med Chem 2024; 267:116179. [PMID: 38340509 DOI: 10.1016/j.ejmech.2024.116179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/13/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024]
Abstract
The structural motif of coumarins is related with various biological activities and pharmacological properties. Both natural coumarin extracted from various plants or a new coumarin derivative synthesized by modification of the basic structure of coumarin, in vitro experiments showed that coumarins are a promising class of anti-tumor agents with high selectivity. Cancer is a complex and multifaceted group of diseases characterized by the uncontrolled and abnormal growth of cells in the body. This review focuses on the anticancer mechanism of various coumarins synthesized and isolated in more than a decade. Isopentenyloxycoumarins inhibit angiogenesis by reducing CCl2 chemokine levels. Ferulin C is a potent colchicine-binding agent that destabilizes microtubules, exhibiting antiproliferative and anti-metastatic effects in breast cancer cells through PAK1 and PAK2-mediated signaling. Trimers of triphenylethylene-coumarin hybrids demonstrated significant proliferation inhibition in HeLa, A549, K562, and MCF-7 cell lines. Platinum(IV) complexes with 4-hydroxycoumarin have the potential for high genotoxicity against tumor cells, inducing apoptosis in SKOV-3 cells by up-regulating caspase 3 and caspase 9 expression. Derivatives of 3-benzyl coumarin seco-B-ring induce apoptosis, mediated through the PI3K/Akt/mTOR signaling pathway. Sesquiterpene coumarins inhibit the efflux pump of multidrug resistance-associated protein. Coumarin imidazolyl derivatives inhibit the aromatase enzyme, a major contributor to estrogen overproduction in estrogen-dependent breast cancer.
Collapse
Affiliation(s)
- Anand Kumar Yadav
- Central Department of Chemistry, Tribhuvan University, Kathmandu, Nepal
| | | | - Paras Nath Yadav
- Central Department of Chemistry, Tribhuvan University, Kathmandu, Nepal.
| |
Collapse
|
42
|
Liao S, Wu G, Xie Z, Lei X, Yang X, Huang S, Deng X, Wang Z, Tang G. pH regulators and their inhibitors in tumor microenvironment. Eur J Med Chem 2024; 267:116170. [PMID: 38308950 DOI: 10.1016/j.ejmech.2024.116170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/14/2024] [Accepted: 01/22/2024] [Indexed: 02/05/2024]
Abstract
As an important characteristic of tumor, acidic tumor microenvironment (TME) is closely related to immune escape, invasion, migration and drug resistance of tumor. The acidity of the TME mainly comes from the acidic products produced by the high level of tumor metabolism, such as lactic acid and carbon dioxide. pH regulators such as monocarboxylate transporters (MCTs), carbonic anhydrase IX (CA IX), and Na+/H+ exchange 1 (NHE1) expel protons directly or indirectly from the tumor to maintain the pH balance of tumor cells and create an acidic TME. We review the functions of several pH regulators involved in the construction of acidic TME, the structure and structure-activity relationship of pH regulator inhibitors, and provide strategies for the development of small-molecule antitumor inhibitors based on these targets.
Collapse
Affiliation(s)
- Senyi Liao
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Guang Wu
- The Second Affiliated Hospital, Department of Pharmacy, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Zhizhong Xie
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Xiaoyong Lei
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Xiaoyan Yang
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Sheng Huang
- Jiuzhitang Co., Ltd, Changsha, Hunan, 410007, China
| | - Xiangping Deng
- The First Affiliated Hospital, Department of Pharmacy, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| | - Zhe Wang
- The Second Affiliated Hospital, Department of Pharmacy, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| | - Guotao Tang
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
43
|
Yu X, Yang J, Xu J, Pan H, Wang W, Yu X, Shi S. Histone lactylation: from tumor lactate metabolism to epigenetic regulation. Int J Biol Sci 2024; 20:1833-1854. [PMID: 38481814 PMCID: PMC10929197 DOI: 10.7150/ijbs.91492] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/19/2024] [Indexed: 01/25/2025] Open
Abstract
The Warburg Effect is one of the most well-known cancer hallmarks. This metabolic pattern centered on lactate has extremely complex effects on various aspects of tumor microenvironment, including metabolic remodeling, immune suppression, cancer cell migration, and drug resistance development. Based on accumulating evidence, metabolites are likely to participate in the regulation of biological processes in the microenvironment and to form a feedback loop. Therefore, further revealing the key mechanism of lactate-mediated oncological effects is a reasonable scientific idea. The discovery and refinement of histone lactylation in recent years has laid a firm foundation for the above idea. Histone lactylation is a post-translational modification that occurs at lysine sites on histones. Specific enzymes, known as "writers" and "erasers", catalyze the addition or removal, respectively, of lactacyl group at target lysine sites. An increasing number of investigations have reported this modification as key to multiple cellular procedures. In this review, we discuss the close connection between histone lactylation and a series of biological processes in the tumor microenvironment, including tumorigenesis, immune infiltration, and energy metabolism. Finally, this review provides insightful perspectives, identifying promising avenues for further exploration and potential clinical application in this field of research.
Collapse
Affiliation(s)
- Xiaoning Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Shanghai Pancreatic Cancer Institute, Shanghai, People's Republic of China
- Pancreatic Cancer Institute, Fudan University, Shanghai, People's Republic of China
| | - Jing Yang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Shanghai Pancreatic Cancer Institute, Shanghai, People's Republic of China
- Pancreatic Cancer Institute, Fudan University, Shanghai, People's Republic of China
| | - Jin Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Shanghai Pancreatic Cancer Institute, Shanghai, People's Republic of China
- Pancreatic Cancer Institute, Fudan University, Shanghai, People's Republic of China
| | - Haoqi Pan
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Shanghai Pancreatic Cancer Institute, Shanghai, People's Republic of China
- Pancreatic Cancer Institute, Fudan University, Shanghai, People's Republic of China
| | - Wei Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Shanghai Pancreatic Cancer Institute, Shanghai, People's Republic of China
- Pancreatic Cancer Institute, Fudan University, Shanghai, People's Republic of China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No.270 Dong' An Road, Shanghai, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Shanghai Pancreatic Cancer Institute, No.270 Dong' An Road, 200032, Shanghai, People's Republic of China
- Pancreatic Cancer Institute, Fudan University, Shanghai, People's Republic of China
| | - Si Shi
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No.270 Dong' An Road, Shanghai, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Shanghai Pancreatic Cancer Institute, No.270 Dong' An Road, 200032, Shanghai, People's Republic of China
- Pancreatic Cancer Institute, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
44
|
Cai M, Li S, Cai K, Du X, Han J, Hu J. Empowering mitochondrial metabolism: Exploring L-lactate supplementation as a promising therapeutic approach for metabolic syndrome. Metabolism 2024; 152:155787. [PMID: 38215964 DOI: 10.1016/j.metabol.2024.155787] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/08/2023] [Accepted: 01/05/2024] [Indexed: 01/14/2024]
Abstract
Mitochondrial dysfunction plays a critical role in the pathogenesis of metabolic syndrome (MetS), affecting various cell types and organs. In MetS animal models, mitochondria exhibit decreased quality control, characterized by abnormal morphological structure, impaired metabolic activity, reduced energy production, disrupted signaling cascades, and oxidative stress. The aberrant changes in mitochondrial function exacerbate the progression of metabolic syndrome, setting in motion a pernicious cycle. From this perspective, reversing mitochondrial dysfunction is likely to become a novel and powerful approach for treating MetS. Unfortunately, there are currently no effective drugs available in clinical practice to improve mitochondrial function. Recently, L-lactate has garnered significant attention as a valuable metabolite due to its ability to regulate mitochondrial metabolic processes and function. It is highly likely that treating MetS and its related complications can be achieved by correcting mitochondrial homeostasis disorders. In this review, we comprehensively discuss the complex relationship between mitochondrial function and MetS and the involvement of L-lactate in regulating mitochondrial metabolism and associated signaling pathways. Furthermore, it highlights recent findings on the involvement of L-lactate in common pathologies of MetS and explores its potential clinical application and further prospects, thus providing new insights into treatment possibilities for MetS.
Collapse
Affiliation(s)
- Ming Cai
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai 201318, PR China; Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shuyao Li
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai 201318, PR China
| | - Keren Cai
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai 201318, PR China
| | - Xinlin Du
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai 201318, PR China
| | - Jia Han
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai 201318, PR China.
| | - Jingyun Hu
- Central Lab, Shanghai Key Laboratory of Pathogenic Fungi Medical Testing, Shanghai Pudong New Area People's Hospital, Shanghai 201299, PR China.
| |
Collapse
|
45
|
Yang H, Iwanaga N, Katz AR, Ridley AR, Miller HD, Allen MJ, Pociask D, Kolls JK. Embigin Is Highly Expressed on CD4+ and CD8+ T Cells but Is Dispensable for Several T Cell Effector Responses. Immunohorizons 2024; 8:242-253. [PMID: 38446446 PMCID: PMC10985056 DOI: 10.4049/immunohorizons.2300083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 02/09/2024] [Indexed: 03/07/2024] Open
Abstract
T cell immunity, including CD4+ and CD8+ T cell immunity, is critical to host immune responses to infection. Transcriptomic analyses of both CD4+ and CD8+ T cells of C57BL/6 mice show high expression the gene encoding embigin, Emb, which encodes a transmembrane glycoprotein. Moreover, we found that lung CD4+ Th17 tissue-resident memory T cells of C57BL/6 mice also express high levels of Emb. However, deletion of Emb in αβ T cells of C57BL/6 mice revealed that Emb is dispensable for thymic T cell development, generation of lung Th17 tissue-resident memory T cells, tissue-resident memory T cell homing to the lung, experimental autoimmune encephalitis, as well as clearance of pulmonary viral or fungal infection. Thus, based on this study, embigin appears to play a minor role if any in αβ T cell development or αβ T cell effector functions in C57BL/6 mice.
Collapse
Affiliation(s)
- Haoran Yang
- Department of Medicine, Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, LA
- Department of Pediatrics, Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, LA
| | - Naoki Iwanaga
- Department of Medicine, Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, LA
- Department of Pediatrics, Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, LA
- Department of Respiratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
| | - Alexis R. Katz
- Department of Medicine, Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, LA
- Department of Pediatrics, Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, LA
| | - Andy R. Ridley
- Department of Medicine, Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, LA
- Department of Pediatrics, Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, LA
| | - Haiyan D. Miller
- Department of Medicine, Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, LA
- Department of Pediatrics, Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, LA
| | - Michaela J. Allen
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA
| | - Dereck Pociask
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA
| | - Jay K. Kolls
- Department of Medicine, Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, LA
- Department of Pediatrics, Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, LA
| |
Collapse
|
46
|
Qiu C, Xiang YK, Da XB, Zhang HL, Kong XY, Hou NZ, Zhang C, Tian FZ, Yang YL. Phospholipase A2 enzymes PLA2G2A and PLA2G12B as potential diagnostic and prognostic biomarkers in cholangiocarcinoma. World J Gastrointest Surg 2024; 16:289-306. [PMID: 38463362 PMCID: PMC10921223 DOI: 10.4240/wjgs.v16.i2.289] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/19/2023] [Accepted: 01/15/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Phospholipase A2 (PLA2) enzymes are pivotal in various biological processes, such as lipid mediator production, membrane remodeling, bioenergetics, and maintaining the body surface barrier. Notably, these enzymes play a significant role in the development of diverse tumors. AIM To systematically and comprehensively explore the expression of the PLA2 family genes and their potential implications in cholangiocarcinoma (CCA). METHODS We conducted an analysis of five CCA datasets from The Cancer Genome Atlas and the Gene Expression Omnibus. The study identified differentially expressed genes between tumor tissues and adjacent normal tissues, with a focus on PLA2G2A and PLA2G12B. Gene Set Enrichment Analysis was utilized to pinpoint associated pathways. Moreover, relevant hub genes and microRNAs for PLA2G2A and PLA2G12B were predicted, and their correlation with the prognosis of CCA was evaluated. RESULTS PLA2G2A and PLA2G12B were discerned as differentially expressed in CCA, manifesting significant variations in expression levels in urine and serum between CCA patients and healthy individuals. Elevated expression of PLA2G2A was correlated with poorer overall survival in CCA patients. Additionally, the study delineated pathways and miRNAs associated with these genes. CONCLUSION Our findings suggest that PLA2G2A and PLA2G12B may serve as novel potential diagnostic and prognostic markers for CCA. The increased levels of these genes in biological fluids could be employed as non-invasive markers for CCA, and their expression levels are indicative of prognosis, underscoring their potential utility in clinical settings.
Collapse
Affiliation(s)
- Chen Qiu
- Center of Gallbladder Disease, Shanghai East Hospital, Institute of Gallstone Disease, School of Medicine, Tongji University, Shanghai 200092, China
| | - Yu-Kai Xiang
- Center of Gallbladder Disease, Shanghai East Hospital, Institute of Gallstone Disease, School of Medicine, Tongji University, Shanghai 200092, China
| | - Xuan-Bo Da
- Center of Gallbladder Disease, Shanghai East Hospital, Institute of Gallstone Disease, School of Medicine, Tongji University, Shanghai 200092, China
| | - Hong-Lei Zhang
- Center of Gallbladder Disease, Shanghai East Hospital, Institute of Gallstone Disease, School of Medicine, Tongji University, Shanghai 200092, China
| | - Xiang-Yu Kong
- Center of Gallbladder Disease, Shanghai East Hospital, Institute of Gallstone Disease, School of Medicine, Tongji University, Shanghai 200092, China
| | - Nian-Zong Hou
- Center of Gallbladder Disease, Shanghai East Hospital, Institute of Gallstone Disease, School of Medicine, Tongji University, Shanghai 200092, China
| | - Cheng Zhang
- Center of Gallbladder Disease, Shanghai East Hospital, Institute of Gallstone Disease, School of Medicine, Tongji University, Shanghai 200092, China
| | - Fu-Zhou Tian
- General Surgery Center, Chengdu Military General Hospital, Chengdu 610083, Sichuan Province, China
| | - Yu-Long Yang
- Center of Gallbladder Disease, Shanghai East Hospital, Institute of Gallstone Disease, School of Medicine, Tongji University, Shanghai 200092, China
| |
Collapse
|
47
|
Gervasi F, Pojero F. Use of Oleuropein and Hydroxytyrosol for Cancer Prevention and Treatment: Considerations about How Bioavailability and Metabolism Impact Their Adoption in Clinical Routine. Biomedicines 2024; 12:502. [PMID: 38540115 PMCID: PMC10968586 DOI: 10.3390/biomedicines12030502] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/12/2024] [Accepted: 02/18/2024] [Indexed: 11/11/2024] Open
Abstract
The fact that the Mediterranean diet could represent a source of natural compounds with cancer-preventive and therapeutic activity has been the object of great interest, especially with regard to the mechanisms of action of polyphenols found in olive oil and olive leaves. Secoiridoid oleuropein (OLE) and its derivative hydroxytyrosol (3,4-dihydroxyphenylethanol, HT) have demonstrated anti-proliferative properties against a variety of tumors and hematological malignancies both in vivo and in vitro, with measurable effects on cellular redox status, metabolism, and transcriptional activity. With this review, we aim to summarize the most up-to-date information on the potential use of OLE and HT for cancer treatment, making important considerations about OLE and HT bioavailability, OLE- and HT-mediated effects on drug metabolism, and OLE and HT dual activity as both pro- and antioxidants, likely hampering their use in clinical routine. Also, we focus on the details available on the effects of nutritionally relevant concentrations of OLE and HT on cell viability, redox homeostasis, and inflammation in order to evaluate if both compounds could be considered cancer-preventive agents or new potential chemotherapy drugs whenever their only source is represented by diet.
Collapse
Affiliation(s)
- Francesco Gervasi
- Specialistic Oncology Laboratory Unit, ARNAS Hospitals Civico Di Cristina e Benfratelli, 90127 Palermo, Italy;
| | - Fanny Pojero
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123 Palermo, Italy
| |
Collapse
|
48
|
Koltai T, Fliegel L. Exploring monocarboxylate transporter inhibition for cancer treatment. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:135-169. [PMID: 38464385 PMCID: PMC10918235 DOI: 10.37349/etat.2024.00210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/01/2023] [Indexed: 03/12/2024] Open
Abstract
Cells are separated from the environment by a lipid bilayer membrane that is relatively impermeable to solutes. The transport of ions and small molecules across this membrane is an essential process in cell biology and metabolism. Monocarboxylate transporters (MCTs) belong to a vast family of solute carriers (SLCs) that facilitate the transport of certain hydrophylic small compounds through the bilipid cell membrane. The existence of 446 genes that code for SLCs is the best evidence of their importance. In-depth research on MCTs is quite recent and probably promoted by their role in cancer development and progression. Importantly, it has recently been realized that these transporters represent an interesting target for cancer treatment. The search for clinically useful monocarboxylate inhibitors is an even more recent field. There is limited pre-clinical and clinical experience with new inhibitors and their precise mechanism of action is still under investigation. What is common to all of them is the inhibition of lactate transport. This review discusses the structure and function of MCTs, their participation in cancer, and old and newly developed inhibitors. Some suggestions on how to improve their anticancer effects are also discussed.
Collapse
Affiliation(s)
- Tomas Koltai
- Hospital del Centro Gallego de Buenos Aires, Buenos Aires 2199, Argentina
| | - Larry Fliegel
- Department of Biochemistry, Faculty of Medicine, University of Alberta, Edmonton T6G 2R3, Alberta, Canada
| |
Collapse
|
49
|
Habeichi NJ, Amin G, Lakkis B, Kataya R, Mericskay M, Booz GW, Zouein FA. Potential Alternative Receptors for SARS-CoV-2-Induced Kidney Damage: TLR-4, KIM-1/TIM-1, and CD147. FRONT BIOSCI-LANDMRK 2024; 29:8. [PMID: 38287815 PMCID: PMC10924798 DOI: 10.31083/j.fbl2901008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/07/2023] [Accepted: 11/14/2023] [Indexed: 01/31/2024]
Abstract
Kidney damage in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can occur even in patients with no underlying kidney disease. Signs of kidney problems can progress to a state that demands dialysis and hampering recovery. Although not without controversy, emerging evidence implicates direct infectivity of SARS-CoV-2 in the kidney. At the early stage of the pandemic, consideration was mainly on the well-recognized angiotensin-converting enzyme 2 (ACE2) receptor as being the site for viral interaction and subsequent cellular internalization. Despite the abundance of ACE2 receptors in the kidneys, researchers have expanded beyond ACE2 and identified novel viral entry pathways that could be advantageously explored as therapeutic targets. This review presents the potential involvement of toll-like receptor 4 (TLR-4), kidney injury molecule-1/T cell immunoglobulin mucin domain 1 (KIM-1/TIM-1), and cluster of differentiation 147 (CD147) in SARS-CoV-2-associated renal damage. In this context, we address the unresolved issues surrounding SARS-CoV-2 renal infectivity.
Collapse
Affiliation(s)
- Nada J. Habeichi
- Department of Pharmacology and Toxicology, American University of Beirut Faculty of Medicine, 1107-2020 Beirut, Lebanon
- The Cardiovascular, Renal, and Metabolic Diseases Research Center of Excellence, American University of Beirut Medical Center, Riad El-Solh, 1107-2020 Beirut, Lebanon
- Department of Signaling and Cardiovascular Pathophysiology, University Paris Saclay, INSERM UMR_1180, 91400 Orsay, France
- MatriceLab Innove Laboratory, Immeuble Les Gemeaux, 94000 Creteil, France
| | - Ghadir Amin
- Department of Pharmacology and Toxicology, American University of Beirut Faculty of Medicine, 1107-2020 Beirut, Lebanon
- The Cardiovascular, Renal, and Metabolic Diseases Research Center of Excellence, American University of Beirut Medical Center, Riad El-Solh, 1107-2020 Beirut, Lebanon
- Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Bachir Lakkis
- Division of Cardiology, Department of Internal Medicine, American University of Beirut Medical Center, 1107-2020 Beirut, Lebanon
| | - Rayane Kataya
- Department of Pharmacology and Toxicology, American University of Beirut Faculty of Medicine, 1107-2020 Beirut, Lebanon
- The Cardiovascular, Renal, and Metabolic Diseases Research Center of Excellence, American University of Beirut Medical Center, Riad El-Solh, 1107-2020 Beirut, Lebanon
| | - Mathias Mericskay
- Department of Signaling and Cardiovascular Pathophysiology, University Paris Saclay, INSERM UMR_1180, 91400 Orsay, France
| | - George W. Booz
- Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Fouad A. Zouein
- Department of Pharmacology and Toxicology, American University of Beirut Faculty of Medicine, 1107-2020 Beirut, Lebanon
- The Cardiovascular, Renal, and Metabolic Diseases Research Center of Excellence, American University of Beirut Medical Center, Riad El-Solh, 1107-2020 Beirut, Lebanon
- Department of Signaling and Cardiovascular Pathophysiology, University Paris Saclay, INSERM UMR_1180, 91400 Orsay, France
- Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| |
Collapse
|
50
|
Guillevin R, Naudin M, Fayolle P, Giraud C, Le Guillou X, Thomas C, Herpe G, Miranville A, Fernandez-Maloigne C, Pellerin L, Guillevin C. Diagnostic and Therapeutic Issues in Glioma Using Imaging Data: The Challenge of Numerical Twinning. J Clin Med 2023; 12:7706. [PMID: 38137775 PMCID: PMC10744312 DOI: 10.3390/jcm12247706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/28/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Glial tumors represent the leading etiology of primary brain tumors. Their particularities lie in (i) their location in a highly functional organ that is difficult to access surgically, including for biopsy, and (ii) their rapid, anisotropic mode of extension, notably via the fiber bundles of the white matter, which further limits the possibilities of resection. The use of mathematical tools enables the development of numerical models representative of the oncotype, genotype, evolution, and therapeutic response of lesions. The significant development of digital technologies linked to high-resolution NMR exploration, coupled with the possibilities offered by AI, means that we can envisage the creation of digital twins of tumors and their host organs, thus reducing the use of physical sampling.
Collapse
Affiliation(s)
- Rémy Guillevin
- Department of Imaging, University Hospital Center of Poitiers, 86000 Poitiers, France
- Labcom I3M, University of Poitiers, 86000 Poitiers, France
- DACTIM-MIS Team, Laboratoire de Mathématiques Appliquées LMA, CNRS UMR 7348, 86021 Poitiers, France
| | - Mathieu Naudin
- Department of Imaging, University Hospital Center of Poitiers, 86000 Poitiers, France
- Labcom I3M, University of Poitiers, 86000 Poitiers, France
- DACTIM-MIS Team, Laboratoire de Mathématiques Appliquées LMA, CNRS UMR 7348, 86021 Poitiers, France
| | - Pierre Fayolle
- Department of Imaging, University Hospital Center of Poitiers, 86000 Poitiers, France
- Labcom I3M, University of Poitiers, 86000 Poitiers, France
- DACTIM-MIS Team, Laboratoire de Mathématiques Appliquées LMA, CNRS UMR 7348, 86021 Poitiers, France
| | - Clément Giraud
- Department of Imaging, University Hospital Center of Poitiers, 86000 Poitiers, France
- Labcom I3M, University of Poitiers, 86000 Poitiers, France
- DACTIM-MIS Team, Laboratoire de Mathématiques Appliquées LMA, CNRS UMR 7348, 86021 Poitiers, France
| | - Xavier Le Guillou
- Labcom I3M, University of Poitiers, 86000 Poitiers, France
- DACTIM-MIS Team, Laboratoire de Mathématiques Appliquées LMA, CNRS UMR 7348, 86021 Poitiers, France
- Department of Genetic, University Hospital Center of Poitiers, 86000 Poitiers, France
| | - Clément Thomas
- Department of Imaging, University Hospital Center of Poitiers, 86000 Poitiers, France
- Labcom I3M, University of Poitiers, 86000 Poitiers, France
- DACTIM-MIS Team, Laboratoire de Mathématiques Appliquées LMA, CNRS UMR 7348, 86021 Poitiers, France
| | - Guillaume Herpe
- Department of Imaging, University Hospital Center of Poitiers, 86000 Poitiers, France
- Labcom I3M, University of Poitiers, 86000 Poitiers, France
- DACTIM-MIS Team, Laboratoire de Mathématiques Appliquées LMA, CNRS UMR 7348, 86021 Poitiers, France
| | - Alain Miranville
- Labcom I3M, University of Poitiers, 86000 Poitiers, France
- DACTIM-MIS Team, Laboratoire de Mathématiques Appliquées LMA, CNRS UMR 7348, 86021 Poitiers, France
| | | | - Luc Pellerin
- IRMETIST Laboratory, INSERM U1313, University of Poitiers and University Hospital Center of Poitiers, 86000 Poitiers, France
| | - Carole Guillevin
- Department of Imaging, University Hospital Center of Poitiers, 86000 Poitiers, France
- Labcom I3M, University of Poitiers, 86000 Poitiers, France
- DACTIM-MIS Team, Laboratoire de Mathématiques Appliquées LMA, CNRS UMR 7348, 86021 Poitiers, France
| |
Collapse
|