1
|
Li Z, Chen Z, Wang Y, Li Z, Huang H, Shen G, Ren Y, Mao X, Wang W, Ou J, Lin L, Zhou J, Guo W, Li G, Lu YJ, Hu Y. Icariside I enhances the effects of immunotherapy in gastrointestinal cancer via targeting TRPV4 and upregulating the cGAS-STING-IFN-I pathway. Biomed Pharmacother 2024; 177:117134. [PMID: 39013225 DOI: 10.1016/j.biopha.2024.117134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/06/2024] [Accepted: 07/10/2024] [Indexed: 07/18/2024] Open
Abstract
Gastrointestinal cancer is among the most common cancers worldwide. Immune checkpoint inhibitor-based cancer immunotherapy has become an innovative approach in cancer treatment; however, its efficacy in gastrointestinal cancer is limited by the absence of infiltration of immune cells within the tumor microenvironment. Therefore, it is therefore urgent to develop a novel therapeutic drug to enhance immunotherapy. In this study, we describe a previously unreported potentiating effect of Icariside I (ICA I, GH01), the main bioactive compound isolated from the Epimedium species, on anti-tumor immune responses. Mechanistically, molecular docking and SPR assay result show that ICA I binding with TRPV4. ICA I induced intracellular Ca2+ increasing and mitochondrial DNA release by targeting TRPV4, which triggered cytosolic ox-mitoDNA release. Importantly, these intracellular ox-mitoDNA fragments were taken up by immune cells in the tumor microenvironment, which amplified the immune response. Moreover, our study shows the remarkable efficacy of sequential administration of ICA I and anti-α-PD-1 mAb in advanced tumors and provides a strong scientific rationale for recommending such a combination therapy for clinical trials. ICA I enhanced the anti-tumor effects with PD-1 inhibitors by regulating the TRPV4/Ca2+/Ox-mitoDNA/cGAS/STING axis. We expect that these findings will be translated into clinical therapies, which will benefit more patients with cancer in the near future.
Collapse
Affiliation(s)
- Zhenhao Li
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zhian Chen
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yutong Wang
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zhenyuan Li
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Huilin Huang
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Guodong Shen
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yingxin Ren
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xinyuan Mao
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Weisheng Wang
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jinzhou Ou
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Liwei Lin
- Golden Health (Guangdong) Biotechnology Co., Ltd., Guangdong 528200, China; Engineering Research Academy of High Value Utilization of Green Plants, Meizhou 514021, China
| | - Jinlin Zhou
- Golden Health (Guangdong) Biotechnology Co., Ltd., Guangdong 528200, China; Engineering Research Academy of High Value Utilization of Green Plants, Meizhou 514021, China
| | - Weihong Guo
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Guoxin Li
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yu-Jing Lu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China; Engineering Research Academy of High Value Utilization of Green Plants, Meizhou 514021, China.
| | - Yanfeng Hu
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
2
|
Weng J, Liu Q, Li C, Feng Y, Chang Q, Xie M, Wang X, Li M, Zhang H, Mao R, Zhang N, Yang X, Chung KF, Adcock IM, Huang Y, Li F. TRPA1-PI3K/Akt-OPA1-ferroptosis axis in ozone-induced bronchial epithelial cell and lung injury. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170668. [PMID: 38320701 DOI: 10.1016/j.scitotenv.2024.170668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/22/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND Transient receptor potential (TRP) ankyrin 1 (TRPA1) could mediate ozone-induced lung injury. Optic Atrophy 1 (OPA1) is one of the significant mitochondrial fusion proteins. Impaired mitochondrial fusion, resulting in mitochondrial dysfunction and ferroptosis, may drive the onset and progression of lung injury. In this study, we examined whether TRPA1 mediated ozone-induced bronchial epithelial cell and lung injury by activating PI3K/Akt with the involvement of OPA1, leading to ferroptosis. METHODS Wild-type, TRPA1-knockout (KO) mice (C57BL/6 J background) and ferrostatin-1 (Fer-1)-pretreated mice were exposed to 2.5 ppm ozone for 3 h. Human bronchial epithelial (BEAS-2B) cells were treated with 1 ppm ozone for 3 h in the presence of TRPA1 inhibitor A967079 or TRPA1-knockdown (KD) as well as pharmacological modulators of PI3K/Akt-OPA1-ferroptosis. Transcriptome was used to screen and decipher the differential gene expressions and pathways. Oxidative stress, inflammation and ferroptosis were measured together with mitochondrial morphology, function and dynamics. RESULTS Acute ozone exposure induced airway inflammation and airway hyperresponsiveness (AHR), reduced mitochondrial fusion, and enhanced ferroptosis in mice. Similarly, acute ozone exposure induced inflammatory responses, altered redox responses, abnormal mitochondrial structure and function, reduced mitochondrial fusion and enhanced ferroptosis in BEAS-2B cells. There were increased mitochondrial fusion, reduced inflammatory responses, decreased redox responses and ferroptosis in ozone-exposed TRPA1-KO mice and Fer-1-pretreated ozone-exposed mice. A967079 and TRPA1-KD enhanced OPA1 and prevented ferroptosis through the PI3K/Akt pathway in BEAS-2B cells. These in vitro results were further confirmed in pharmacological modulator experiments. CONCLUSION Exposure to ozone induces mitochondrial dysfunction in human bronchial epithelial cells and mouse lungs by activating TRPA1, which results in ferroptosis mediated via a PI3K/Akt/OPA1 axis. This supports a potential role of TRPA1 blockade in preventing the deleterious effects of ozone.
Collapse
Affiliation(s)
- Jiali Weng
- Department of Pulmonary and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of medicine, NO. 241, West Huaihai Road, Shanghai 200030, PR China
| | - Qi Liu
- Department of Pulmonary and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of medicine, NO. 241, West Huaihai Road, Shanghai 200030, PR China
| | - Chenfei Li
- Department of Pulmonary and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of medicine, NO. 241, West Huaihai Road, Shanghai 200030, PR China
| | - Yi Feng
- Department of Pulmonary and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of medicine, NO. 241, West Huaihai Road, Shanghai 200030, PR China
| | - Qing Chang
- Department of Pulmonary and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of medicine, NO. 241, West Huaihai Road, Shanghai 200030, PR China
| | - Meiqin Xie
- Department of Pulmonary and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of medicine, NO. 241, West Huaihai Road, Shanghai 200030, PR China
| | - Xiaohui Wang
- Department of Pulmonary and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of medicine, NO. 241, West Huaihai Road, Shanghai 200030, PR China
| | - Mengnan Li
- Department of Pulmonary and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of medicine, NO. 241, West Huaihai Road, Shanghai 200030, PR China
| | - Hai Zhang
- Department of Pulmonary and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of medicine, NO. 241, West Huaihai Road, Shanghai 200030, PR China
| | - Ruolin Mao
- Department of Pulmonary and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of medicine, NO. 241, West Huaihai Road, Shanghai 200030, PR China
| | - Na Zhang
- Department of Central Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of medicine, NO. 241, West Huaihai Road, Shanghai 200030, PR China
| | - Xiaohua Yang
- Department of Central Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of medicine, NO. 241, West Huaihai Road, Shanghai 200030, PR China
| | - Kian Fan Chung
- Airway Disease Section, National Heart and Lung Institute, Imperial College, Dovehouse Street, London SW3 6LY, UK
| | - Ian M Adcock
- Airway Disease Section, National Heart and Lung Institute, Imperial College, Dovehouse Street, London SW3 6LY, UK
| | - Yan Huang
- School of Pharmacy, Anhui Medical University, Hefei 230022, Anhui, China
| | - Feng Li
- Department of Pulmonary and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of medicine, NO. 241, West Huaihai Road, Shanghai 200030, PR China.
| |
Collapse
|
3
|
Dey S, Barkai O, Gokhman I, Suissa S, Haffner-Krausz R, Wigoda N, Feldmesser E, Ben-Dor S, Kovalenko A, Binshtok A, Yaron A. Kinesin family member 2A gates nociception. Cell Rep 2023; 42:113257. [PMID: 37851573 DOI: 10.1016/j.celrep.2023.113257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 08/23/2023] [Accepted: 09/27/2023] [Indexed: 10/20/2023] Open
Abstract
Nociceptive axons undergo remodeling as they innervate their targets during development and in response to environmental insults and pathological conditions. How is nociceptive morphogenesis regulated? Here, we show that the microtubule destabilizer kinesin family member 2A (Kif2a) is a key regulator of nociceptive terminal structures and pain sensitivity. Ablation of Kif2a in sensory neurons causes hyperinnervation and hypersensitivity to noxious stimuli in young adult mice, whereas touch sensitivity and proprioception remain unaffected. Computational modeling predicts that structural remodeling is sufficient to explain the phenotypes. Furthermore, Kif2a deficiency triggers a transcriptional response comprising sustained upregulation of injury-related genes and homeostatic downregulation of highly specific channels and receptors at the late stage. The latter effect can be predicted to relieve the hyperexcitability of nociceptive neurons, despite persisting morphological aberrations, and indeed correlates with the resolution of pain hypersensitivity. Overall, we reveal a critical control node defining nociceptive terminal structure, which is regulating nociception.
Collapse
Affiliation(s)
- Swagata Dey
- Department of Biomolecular Sciences and Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Omer Barkai
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah School of Medicine, Jerusalem 91120, Israel; The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel; F.M. Kirby Neurobiology Center, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Irena Gokhman
- Department of Biomolecular Sciences and Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Sapir Suissa
- Department of Biomolecular Sciences and Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Rebecca Haffner-Krausz
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Noa Wigoda
- Bioinformatics Unit, Life Science Core Facilities, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ester Feldmesser
- Bioinformatics Unit, Life Science Core Facilities, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Shifra Ben-Dor
- Bioinformatics Unit, Life Science Core Facilities, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Andrew Kovalenko
- Department of Biomolecular Sciences and Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Alexander Binshtok
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah School of Medicine, Jerusalem 91120, Israel; The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Avraham Yaron
- Department of Biomolecular Sciences and Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
4
|
Nunn AVW, Guy GW, Bell JD. Informing the Cannabis Conjecture: From Life's Beginnings to Mitochondria, Membranes and the Electrome-A Review. Int J Mol Sci 2023; 24:13070. [PMID: 37685877 PMCID: PMC10488084 DOI: 10.3390/ijms241713070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/15/2023] [Accepted: 08/17/2023] [Indexed: 09/10/2023] Open
Abstract
Before the late 1980s, ideas around how the lipophilic phytocannabinoids might be working involved membranes and bioenergetics as these disciplines were "in vogue". However, as interest in genetics and pharmacology grew, interest in mitochondria (and membranes) waned. The discovery of the cognate receptor for tetrahydrocannabinol (THC) led to the classification of the endocannabinoid system (ECS) and the conjecture that phytocannabinoids might be "working" through this system. However, the how and the "why" they might be beneficial, especially for compounds like CBD, remains unclear. Given the centrality of membranes and mitochondria in complex organisms, and their evolutionary heritage from the beginnings of life, revisiting phytocannabinoid action in this light could be enlightening. For example, life can be described as a self-organising and replicating far from equilibrium dissipating system, which is defined by the movement of charge across a membrane. Hence the building evidence, at least in animals, that THC and CBD modulate mitochondrial function could be highly informative. In this paper, we offer a unique perspective to the question, why and how do compounds like CBD potentially work as medicines in so many different conditions? The answer, we suggest, is that they can modulate membrane fluidity in a number of ways and thus dissipation and engender homeostasis, particularly under stress. To understand this, we need to embrace origins of life theories, the role of mitochondria in plants and explanations of disease and ageing from an adaptive thermodynamic perspective, as well as quantum mechanics.
Collapse
Affiliation(s)
- Alistair V. W. Nunn
- Research Centre for Optimal Health, Department of Life Sciences, University of Westminster, London W1W 6UW, UK; (G.W.G.); (J.D.B.)
- The Guy Foundation, Beaminster DT8 3HY, UK
| | - Geoffrey W. Guy
- Research Centre for Optimal Health, Department of Life Sciences, University of Westminster, London W1W 6UW, UK; (G.W.G.); (J.D.B.)
- The Guy Foundation, Beaminster DT8 3HY, UK
| | - Jimmy D. Bell
- Research Centre for Optimal Health, Department of Life Sciences, University of Westminster, London W1W 6UW, UK; (G.W.G.); (J.D.B.)
| |
Collapse
|
5
|
Tatsumi M, Kishi T, Ishida S, Kawana H, Uwamizu A, Ono Y, Kawakami K, Aoki J, Inoue A. Ectodomain shedding of EGFR ligands serves as an activation readout for TRP channels. PLoS One 2023; 18:e0280448. [PMID: 36668668 PMCID: PMC9858409 DOI: 10.1371/journal.pone.0280448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/29/2022] [Indexed: 01/21/2023] Open
Abstract
Transient receptor potential (TRP) channels are activated by various extracellular and intracellular stimuli and are involved in many physiological events. Because compounds that act on TRP channels are potential candidates for therapeutic agents, a simple method for evaluating TRP channel activation is needed. In this study, we demonstrated that a transforming growth factor alpha (TGFα) shedding assay, previously developed for detecting G-protein-coupled receptor (GPCR) activation, can also detect TRP channel activation. This assay is a low-cost, easily accessible method that requires only an absorbance microplate reader. Mechanistically, TRP-channel-triggered TGFα shedding is achieved by both of a disintegrin and metalloproteinase domain-containing protein 10 (ADAM10) and 17 (ADAM17), whereas the GPCR-induced TGFα shedding response depends solely on ADAM17. This difference may be the result of qualitative or quantitative differences in intracellular Ca2+ kinetics between TRP channels and GPCRs. Use of epidermal growth factor (EGF) and betacellulin (BTC), substrates of ADAM10, improved the specificity of the shedding assay by reducing background responses mediated by endogenously expressed GPCRs. This assay for TRP channel measurement will not only facilitate the high-throughput screening of TRP channel ligands but also contribute to understanding the roles played by TRP channels as regulators of membrane protein ectodomain shedding.
Collapse
Affiliation(s)
- Manae Tatsumi
- Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Takayuki Kishi
- Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Satoru Ishida
- Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Hiroki Kawana
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Akiharu Uwamizu
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Yuki Ono
- Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Kouki Kawakami
- Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Junken Aoki
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Asuka Inoue
- Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
- * E-mail:
| |
Collapse
|
6
|
Silva Santos Ribeiro P, Willemen HLDM, Eijkelkamp N. Mitochondria and sensory processing in inflammatory and neuropathic pain. FRONTIERS IN PAIN RESEARCH 2022; 3:1013577. [PMID: 36324872 PMCID: PMC9619239 DOI: 10.3389/fpain.2022.1013577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 09/26/2022] [Indexed: 01/24/2023] Open
Abstract
Rheumatic diseases, such as osteoarthritis and rheumatoid arthritis, affect over 750 million people worldwide and contribute to approximately 40% of chronic pain cases. Inflammation and tissue damage contribute to pain in rheumatic diseases, but pain often persists even when inflammation/damage is resolved. Mechanisms that cause this persistent pain are still unclear. Mitochondria are essential for a myriad of cellular processes and regulate neuronal functions. Mitochondrial dysfunction has been implicated in multiple neurological disorders, but its role in sensory processing and pain in rheumatic diseases is relatively unexplored. This review provides a comprehensive understanding of how mitochondrial dysfunction connects inflammation and damage-associated pathways to neuronal sensitization and persistent pain. To provide an overall framework on how mitochondria control pain, we explored recent evidence in inflammatory and neuropathic pain conditions. Mitochondria have intrinsic quality control mechanisms to prevent functional deficits and cellular damage. We will discuss the link between neuronal activity, mitochondrial dysfunction and chronic pain. Lastly, pharmacological strategies aimed at reestablishing mitochondrial functions or boosting mitochondrial dynamics as therapeutic interventions for chronic pain are discussed. The evidence presented in this review shows that mitochondria dysfunction may play a role in rheumatic pain. The dysfunction is not restricted to neuronal cells in the peripheral and central nervous system, but also includes blood cells and cells at the joint level that may affect pain pathways indirectly. Pre-clinical and clinical data suggest that modulation of mitochondrial functions can be used to attenuate or eliminate pain, which could be beneficial for multiple rheumatic diseases.
Collapse
Affiliation(s)
| | | | - Niels Eijkelkamp
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
7
|
Wong C, Barkai O, Wang F, Thörn Pérez C, Lev S, Cai W, Tansley S, Yousefpour N, Hooshmandi M, Lister KC, Latif M, Cuello AC, Prager-Khoutorsky M, Mogil JS, Séguéla P, De Koninck Y, Ribeiro-da-Silva A, Binshtok AM, Khoutorsky A. mTORC2 mediates structural plasticity in distal nociceptive endings that contributes to pain hypersensitivity following inflammation. J Clin Invest 2022; 132:152635. [PMID: 35579957 PMCID: PMC9337825 DOI: 10.1172/jci152635] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 05/13/2022] [Indexed: 11/29/2022] Open
Abstract
The encoding of noxious stimuli into action potential firing is largely mediated by nociceptive free nerve endings. Tissue inflammation, by changing the intrinsic properties of the nociceptive endings, leads to nociceptive hyperexcitability and thus to the development of inflammatory pain. Here, we showed that tissue inflammation–induced activation of the mammalian target of rapamycin complex 2 (mTORC2) triggers changes in the architecture of nociceptive terminals and leads to inflammatory pain. Pharmacological activation of mTORC2 induced elongation and branching of nociceptor peripheral endings and caused long-lasting pain hypersensitivity. Conversely, nociceptor-specific deletion of the mTORC2 regulatory protein rapamycin-insensitive companion of mTOR (Rictor) prevented inflammation-induced elongation and branching of cutaneous nociceptive fibers and attenuated inflammatory pain hypersensitivity. Computational modeling demonstrated that mTORC2-mediated structural changes in the nociceptive terminal tree are sufficient to increase the excitability of nociceptors. Targeting mTORC2 using a single injection of antisense oligonucleotide against Rictor provided long-lasting alleviation of inflammatory pain hypersensitivity. Collectively, we showed that tissue inflammation–induced activation of mTORC2 causes structural plasticity of nociceptive free nerve endings in the epidermis and inflammatory hyperalgesia, representing a therapeutic target for inflammatory pain.
Collapse
Affiliation(s)
- Calvin Wong
- Department of Anesthesia, McGill University, Montreal, Canada
| | - Omer Barkai
- Department of Medical Neurobiology, The Hebrew University, Jerusalem, Israel
| | - Feng Wang
- Department of Psychiatry and Neuroscience, Université Laval, Quebec City, Canada
| | | | - Shaya Lev
- Department of Medical Neurobiology, The Hebrew University, Jerusalem, Israel
| | - Weihua Cai
- Department of Anesthesia, McGill University, Montreal, Canada
| | - Shannon Tansley
- Department of Psychology, McGill University, Montreal, Canada
| | - Noosha Yousefpour
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | | | - Kevin C Lister
- Department of Anesthesia, McGill University, Montreal, Canada
| | - Mariam Latif
- Department of Anesthesia, McGill University, Montreal, Canada
| | - A Claudio Cuello
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | | | - Jeffrey S Mogil
- Department of Psychology, McGill University, Montreal, Canada
| | - Philippe Séguéla
- Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
| | - Yves De Koninck
- Department of Psychiatry and Neuroscience, Université Laval, Quebec City, Canada
| | | | | | | |
Collapse
|
8
|
Garbincius JF, Elrod JW. Mitochondrial calcium exchange in physiology and disease. Physiol Rev 2022; 102:893-992. [PMID: 34698550 PMCID: PMC8816638 DOI: 10.1152/physrev.00041.2020] [Citation(s) in RCA: 152] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 08/16/2021] [Accepted: 10/19/2021] [Indexed: 12/13/2022] Open
Abstract
The uptake of calcium into and extrusion of calcium from the mitochondrial matrix is a fundamental biological process that has critical effects on cellular metabolism, signaling, and survival. Disruption of mitochondrial calcium (mCa2+) cycling is implicated in numerous acquired diseases such as heart failure, stroke, neurodegeneration, diabetes, and cancer and is genetically linked to several inherited neuromuscular disorders. Understanding the mechanisms responsible for mCa2+ exchange therefore holds great promise for the treatment of these diseases. The past decade has seen the genetic identification of many of the key proteins that mediate mitochondrial calcium uptake and efflux. Here, we present an overview of the phenomenon of mCa2+ transport and a comprehensive examination of the molecular machinery that mediates calcium flux across the inner mitochondrial membrane: the mitochondrial uniporter complex (consisting of MCU, EMRE, MICU1, MICU2, MICU3, MCUB, and MCUR1), NCLX, LETM1, the mitochondrial ryanodine receptor, and the mitochondrial permeability transition pore. We then consider the physiological implications of mCa2+ flux and evaluate how alterations in mCa2+ homeostasis contribute to human disease. This review concludes by highlighting opportunities and challenges for therapeutic intervention in pathologies characterized by aberrant mCa2+ handling and by summarizing critical unanswered questions regarding the biology of mCa2+ flux.
Collapse
Affiliation(s)
- Joanne F Garbincius
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - John W Elrod
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
9
|
Takeda Y, Matsuoka S. Impact of mitochondria on local calcium release in murine sinoatrial nodal cells. J Mol Cell Cardiol 2021; 164:42-50. [PMID: 34826768 DOI: 10.1016/j.yjmcc.2021.11.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 11/04/2021] [Accepted: 11/14/2021] [Indexed: 02/07/2023]
Abstract
Roles of mitochondria in sinoatrial nodal cells (SANCs) have not been fully clarified. We have previously demonstrated that mitochondrial Ca2+ efflux through the Na+-Ca2+ exchanger, NCXm, modulates sarcoplasmic reticulum (SR) Ca2+ content and automaticity of HL-1 cardiomyocytes. In this study, we extended this line of investigation to clarify the spatial and functional association between mitochondria and local calcium release (LCR) from the SR in murine SANCs. High-speed two dimensional (2D) and confocal line-scan imaging of SANCs revealed that LCRs in the early phase of the Ca2+ transient cycle length (CL) appeared with a higher probability near mitochondria. Although LCR increased toward the late phase of CL, no significant difference was noted in the occurrence of late LCRs near and distant from mitochondria. LCRs, especially in the late phase of CL, induced temporal and spatial heterogeneity of the Ca2+ transient amplitude. Attenuating mitochondrial Ca2+ efflux using an NCXm inhibitor, CGP-37157 (1 μM), reduced the amplitude, duration and size of LCR. It also attenuated early LCR occurrence, and simultaneously prolonged LCR period and CL. Additionally, CGP-37157 reduced caffeine-induced Ca2+ transient. Therefore, the inhibitory effect on LCR was attributable to the reduction of the SR Ca2+ content through NCXm inhibition. No obvious off-target effects of 1 μM CGP-37157 were found on T- and L-type voltage-gated Ca2+ currents and hyperpolarization-activated inward current. Taken together, these results suggest that mitochondria are involved in LCR generation by modulating the SR Ca2+ content through NCXm-mediated Ca2+ efflux in murine SANCs.
Collapse
Affiliation(s)
- Yukari Takeda
- Department of Integrative and Systems Physiology, Faculty of Medical Sciences, Life Science Innovation Center, University of Fukui, Fukui 910-1193, Japan.
| | - Satoshi Matsuoka
- Department of Integrative and Systems Physiology, Faculty of Medical Sciences, Life Science Innovation Center, University of Fukui, Fukui 910-1193, Japan.
| |
Collapse
|
10
|
Mitostasis, Calcium and Free Radicals in Health, Aging and Neurodegeneration. Biomolecules 2021; 11:biom11071012. [PMID: 34356637 PMCID: PMC8301949 DOI: 10.3390/biom11071012] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 12/18/2022] Open
Abstract
Mitochondria play key roles in ATP supply, calcium homeostasis, redox balance control and apoptosis, which in neurons are fundamental for neurotransmission and to allow synaptic plasticity. Their functional integrity is maintained by mitostasis, a process that involves mitochondrial transport, anchoring, fusion and fission processes regulated by different signaling pathways but mainly by the peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α). PGC-1α also favors Ca2+ homeostasis, reduces oxidative stress, modulates inflammatory processes and mobilizes mitochondria to where they are needed. To achieve their functions, mitochondria are tightly connected to the endoplasmic reticulum (ER) through specialized structures of the ER termed mitochondria-associated membranes (MAMs), which facilitate the communication between these two organelles mainly to aim Ca2+ buffering. Alterations in mitochondrial activity enhance reactive oxygen species (ROS) production, disturbing the physiological metabolism and causing cell damage. Furthermore, cytosolic Ca2+ overload results in an increase in mitochondrial Ca2+, resulting in mitochondrial dysfunction and the induction of mitochondrial permeability transition pore (mPTP) opening, leading to mitochondrial swelling and cell death through apoptosis as demonstrated in several neuropathologies. In summary, mitochondrial homeostasis is critical to maintain neuronal function; in fact, their regulation aims to improve neuronal viability and to protect against aging and neurodegenerative diseases.
Collapse
|
11
|
Mould RR, Botchway SW, Parkinson JRC, Thomas EL, Guy GW, Bell JD, Nunn AVW. Cannabidiol Modulates Mitochondrial Redox and Dynamics in MCF7 Cancer Cells: A Study Using Fluorescence Lifetime Imaging Microscopy of NAD(P)H. Front Mol Biosci 2021; 8:630107. [PMID: 34046425 PMCID: PMC8144465 DOI: 10.3389/fmolb.2021.630107] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 02/16/2021] [Indexed: 12/23/2022] Open
Abstract
The cannabinoid, cannabidiol (CBD), is part of the plant's natural defense system that when given to animals has many useful medicinal properties, including activity against cancer cells, modulation of the immune system, and efficacy in epilepsy. Although there is no consensus on its precise mode of action as it affects many cellular targets, CBD does appear to influence mitochondrial function. This would suggest that there is a cross-kingdom ability to modulate stress resistance systems that enhance homeostasis. As NAD(P)H autofluorescence can be used as both a metabolic sensor and mitochondrial imaging modality, we assessed the potential of this technique to study the in vitro effects of CBD using 2-photon excitation and fluorescence lifetime imaging microscopy (2P-FLIM) of NAD(P)H against more traditional markers of mitochondrial morphology and cellular stress in MCF7 breast cancer cells. 2P-FLIM analysis revealed that the addition of CBD induced a dose-dependent decrease in bound NAD(P)H, with 20 µM treatments significantly decreased the contribution of bound NAD(P)H by 14.6% relative to the control (p < 0.001). CBD also increased mitochondrial concentrations of reactive oxygen species (ROS) (160 ± 53 vs. 97.6 ± 4.8%, 20 µM CBD vs. control, respectively, p < 0.001) and Ca2+ (187 ± 78 vs. 105 ± 10%, 20 µM CBD vs. the control, respectively, p < 0.001); this was associated with a significantly decreased mitochondrial branch length and increased fission. These are all suggestive of mitochondrial stress. Our results support the use of NAD(P)H autofluorescence as an investigative tool and provide further evidence that CBD can modulate mitochondrial function and morphology in a dose-dependent manner, with clear evidence of it inducing oxidative stress at higher concentrations. This continues to support emerging data in the literature and may provide further insight into its overall mode of action, not only in cancer, but potentially its function in the plant and why it can act as a medicine.
Collapse
Affiliation(s)
- Rhys Richard Mould
- Research Centre for Optimal Health, School of Life Sciences, University of Westminster, London, United Kingdom
| | - Stanley W. Botchway
- Central Laser Facility, Science and Technology Facilities Council, UKRI, Rutherford Appleton Laboratory, Harwell Campus, Oxford, United Kingdom
| | - James R. C. Parkinson
- Research Centre for Optimal Health, School of Life Sciences, University of Westminster, London, United Kingdom
| | - Elizabeth Louise Thomas
- Research Centre for Optimal Health, School of Life Sciences, University of Westminster, London, United Kingdom
| | | | - Jimmy D. Bell
- Research Centre for Optimal Health, School of Life Sciences, University of Westminster, London, United Kingdom
| | - Alistair V. W. Nunn
- Research Centre for Optimal Health, School of Life Sciences, University of Westminster, London, United Kingdom
| |
Collapse
|
12
|
Zhao R, Liu X, Qi Z, Yao X, Tsang SY. TRPV1 channels regulate the automaticity of embryonic stem cell-derived cardiomyocytes through stimulating the Na + /Ca 2+ exchanger current. J Cell Physiol 2021; 236:6806-6823. [PMID: 33782967 DOI: 10.1002/jcp.30369] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 02/25/2021] [Accepted: 03/09/2021] [Indexed: 12/16/2022]
Abstract
Calcium controls the excitation-contraction coupling in cardiomyocytes. Embryonic stem cell-derived cardiomyocytes (ESC-CMs) are an important cardiomyocyte source for regenerative medicine and drug screening. Transient receptor potential vanilloid 1 (TRPV1) channels are nonselective cation channels that permeate sodium and calcium. This study aimed to investigate whether TRPV1 channels regulate the electrophysiological characteristics of ESC-CMs. If yes, what is the mechanism behind? By immunostaining and subcellular fractionation, followed by western blotting, TRPV1 was found to locate intracellularly. The staining pattern of TRPV1 was found to largely overlap with that of the sarco/endoplasmic reticulum Ca2+ -ATPase, the sarcoplasmic reticulum (SR) marker. By electrophysiology and calcium imaging, pharmacological blocker of TRPV1 and the molecular tool TRPV1β (which could functionally knockdown TRPV1) were found to decrease the rate and diastolic depolarization slope of spontaneous action potentials, and the amplitude and frequency of global calcium transients. By calcium imaging, in the absence of external calcium, TRPV1-specific opener increased intracellular calcium; this increase was abolished by preincubation with caffeine, which could deplete SR calcium store. The results suggest that TRPV1 controls calcium release from the SR. By electrophysiology, TRPV1 blockade and functional knockdown of TRPV1 decreased the Na+ /Ca2+ exchanger (NCX) currents from both the forward and reverse modes, suggesting that sodium and calcium through TRPV1 stimulate the NCX activity. Our novel findings suggest that TRPV1 activity is important for regulating the spontaneous activity of ESC-CMs and reveal a novel interplay between TRPV1 and NCX in regulating the physiological functions of ESC-CMs.
Collapse
Affiliation(s)
- Rui Zhao
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Xianji Liu
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Zenghua Qi
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiaoqiang Yao
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Suk Ying Tsang
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China.,State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China.,Key Laboratory for Regenerative Medicine, Ministry of Education, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
13
|
Takeuchi A, Matsuoka S. Minor contribution of NCX to Na +-Ca 2+ exchange activity in brain mitochondria. Cell Calcium 2021; 96:102386. [PMID: 33706218 DOI: 10.1016/j.ceca.2021.102386] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 02/19/2021] [Accepted: 02/25/2021] [Indexed: 11/19/2022]
Abstract
NCLX was identified as a mitochondrial Na+-Ca2+ exchanger. However, contribution of NCLX to overall mitochondrial Na+-Ca2+ exchange activity remains unclear, especially in brain mitochondria where plasma membrane Na+-Ca2+ exchanger NCX also exists. We studied the issue using isolated mouse brain mitochondria. The Na+- as well as Li+-dependent Ca2+ efflux from mitochondria was significantly inhibited by a NCLX blocker, but was insensitive to NCX blockers, suggesting that NCLX comprises a major part in forward mode of mitochondrial Na+-Ca2+ exchange activity. On the other hand, the Na+-dependent Ca2+ influx into mitochondria, the reverse mode, was insensitive to all the blockers tested, suggesting unidentified Ca2+ transport systems.
Collapse
Affiliation(s)
- Ayako Takeuchi
- Department of Integrative and Systems Physiology, Faculty of Medical Sciences, and Life Science Innovation Center, University of Fukui, Fukui 910-1193, Japan.
| | - Satoshi Matsuoka
- Department of Integrative and Systems Physiology, Faculty of Medical Sciences, and Life Science Innovation Center, University of Fukui, Fukui 910-1193, Japan
| |
Collapse
|
14
|
Rysted JE, Lin Z, Walters GC, Rauckhorst AJ, Noterman M, Liu G, Taylor EB, Strack S, Usachev YM. Distinct properties of Ca 2+ efflux from brain, heart and liver mitochondria: The effects of Na +, Li + and the mitochondrial Na +/Ca 2+ exchange inhibitor CGP37157. Cell Calcium 2021; 96:102382. [PMID: 33684833 DOI: 10.1016/j.ceca.2021.102382] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/15/2021] [Accepted: 02/18/2021] [Indexed: 10/22/2022]
Abstract
Mitochondrial Ca2+ transport is essential for regulating cell bioenergetics, Ca2+ signaling and cell death. Mitochondria accumulate Ca2+ via the mitochondrial Ca2+ uniporter (MCU), whereas Ca2+ is extruded by the mitochondrial Na+/Ca2+ (mtNCX) and H+/Ca2+ exchangers. The balance between these processes is essential for preventing toxic mitochondrial Ca2+ overload. Recent work demonstrated that MCU activity varies significantly among tissues, likely reflecting tissue-specific Ca2+ signaling and energy needs. It is less clear whether this diversity in MCU activity is matched by tissue-specific diversity in mitochondrial Ca2+ extrusion. Here we compared properties of mitochondrial Ca2+ extrusion in three tissues with prominent mitochondria function: brain, heart and liver. At the transcript level, expression of the Na+/Ca2+/Li+ exchanger (NCLX), which has been proposed to mediate mtNCX transport, was significantly greater in liver than in brain or heart. At the functional level, Na+ robustly activated Ca2+ efflux from brain and heart mitochondria, but not from liver mitochondria. The mtNCX inhibitor CGP37157 blocked Ca2+ efflux from brain and heart mitochondria but had no effect in liver mitochondria. Replacement of Na+ with Li+ to test the involvement of NCLX, resulted in a slowing of mitochondrial Ca2+ efflux by ∼70 %. Collectively, our findings suggest that mtNCX is responsible for Ca2+ extrusion from the mitochondria of the brain and heart, but plays only a small, if any, role in mitochondria of the liver. They also reveal that Li+ is significantly less effective than Na+ in driving mitochondrial Ca2+ efflux.
Collapse
Affiliation(s)
- Jacob E Rysted
- Department of Neuroscience and Pharmacology and Iowa Neuroscience Institute, University of Iowa College of Medicine, Iowa City, IA, 52242, USA
| | - Zhihong Lin
- Department of Neuroscience and Pharmacology and Iowa Neuroscience Institute, University of Iowa College of Medicine, Iowa City, IA, 52242, USA
| | - Grant C Walters
- Department of Neuroscience and Pharmacology and Iowa Neuroscience Institute, University of Iowa College of Medicine, Iowa City, IA, 52242, USA
| | - Adam J Rauckhorst
- Department of Molecular Physiology and Biophysics, University of Iowa College of Medicine, Iowa City, IA, 52242, USA
| | - Maria Noterman
- Department of Molecular Physiology and Biophysics, University of Iowa College of Medicine, Iowa City, IA, 52242, USA
| | - Guanghao Liu
- Department of Internal Medicine, University of Iowa College of Medicine, Iowa City, IA, 52242, USA
| | - Eric B Taylor
- Department of Molecular Physiology and Biophysics, University of Iowa College of Medicine, Iowa City, IA, 52242, USA
| | - Stefan Strack
- Department of Neuroscience and Pharmacology and Iowa Neuroscience Institute, University of Iowa College of Medicine, Iowa City, IA, 52242, USA
| | - Yuriy M Usachev
- Department of Neuroscience and Pharmacology and Iowa Neuroscience Institute, University of Iowa College of Medicine, Iowa City, IA, 52242, USA.
| |
Collapse
|
15
|
Regulation of Mitochondrial Function by Epac2 Contributes to Acute Inflammatory Hyperalgesia. J Neurosci 2021; 41:2883-2898. [PMID: 33593853 DOI: 10.1523/jneurosci.2368-20.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 01/14/2021] [Accepted: 02/09/2021] [Indexed: 12/12/2022] Open
Abstract
Gαs-coupled receptors signaling through cAMP provide a key mechanism for the sensitization of nociceptive sensory neurons, and the cAMP effector Epac has been implicated in the transition from acute to chronic pain. Epac exerts its effects through Rap1 and protein kinase C (PKC). To identify targets of Epac-PKC signaling in sensory neurons of the mouse dorsal root ganglion (DRG), we profiled PKC substrate proteins phosphorylated in response to the activation of Epac with the proinflammatory prostaglandin E2 (PGE2). A prominent Epac-dependent phospho-protein band induced by PGE2 was identified by mass spectrometry as the mitochondrial enzyme pyruvate dehydrogenase (Pdha1). In dissociated DRG from both males and females, the recruitment of Pdha1 to phospho-protein fractions was rapidly induced by PGE2 and prevented by selective inhibition of Epac2. Epac activation increased mitochondrial respiration, consistent with an increase in Pdha1 function mediated by Epac2. Hindpaw injection of PGE2 induced heat hyperalgesia in males and females, but Pdha1 phosphorylation occurred only in males. Hyperalgesia was attenuated in males but not in females by systemic inhibition of Epac2, and also by a mitochondrial membrane potential uncoupler, dinitrophenol, supporting a role for mitochondrial regulation in acute hyperalgesia. These findings identify a mechanism for the regulation of mitochondrial function by Epac2 that contributes to acute inflammatory hyperalgesia in male mice. Systemic administration of the cyclooxygenase 2 inhibitor celecoxib suppressed both PGE2-induced heat hyperalgesia and Pdha1 phosphorylation in DRG of males but not females, suggesting that prostaglandin synthesis within the DRG mediates the phosphorylation of Pdha1 in response to hindpaw insult.SIGNIFICANCE STATEMENT There has been extensive investigation of mitochondrial dysfunction as a causative factor in neuropathic pain disorders. In contrast, results reported here implicate enhanced mitochondrial function as a contributing factor in the development of acute inflammatory hyperalgesia. We describe a mechanism in which Epac2 activation by prostaglandin receptors leads to phosphorylation of pyruvate dehydrogenase and an increase in mitochondrial respiration in peripheral sensory neurons. Although Epac2 activation leads to Pdha1 (pyruvate dehydrogenase) phosphorylation in dissociated neurons from mice of both sexes, induction of this pathway in vivo by hindpaw insult is restricted to males and appears to require intraganglionic prostaglandin synthesis. These findings support a model in which Gs-coupled receptor modulation of mitochondrial function promotes acute nociceptive signaling and inflammatory hyperalgesia.
Collapse
|
16
|
Otto M, Bucher C, Liu W, Müller M, Schmidt T, Kardell M, Driessen MN, Rossaint J, Gross ER, Wagner NM. 12(S)-HETE mediates diabetes-induced endothelial dysfunction by activating intracellular endothelial cell TRPV1. J Clin Invest 2021; 130:4999-5010. [PMID: 32584793 DOI: 10.1172/jci136621] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 06/17/2020] [Indexed: 02/06/2023] Open
Abstract
Patients with diabetes develop endothelial dysfunction shortly after diabetes onset that progresses to vascular disease underlying the majority of diabetes-associated comorbidities. Increased lipid peroxidation, mitochondrial calcium overload, and mitochondrial dysfunction are characteristics of dysfunctional endothelial cells in diabetic patients. We here identified that targeting the lipid peroxidation product 12(S)-hydroxyeicosatetraenoic acid-induced [12(S)-HETE-induced] activation of the intracellularly located cation channel transient receptor potential vanilloid 1 (TRPV1) in endothelial cells is a means to causally control early-stage vascular disease in type I diabetic mice. Mice with an inducible, endothelium-specific 12/15-lipoxygenase (12/15Lo) knockout were protected similarly to TRPV1-knockout mice from type 1 diabetes-induced endothelial dysfunction and impaired vascular regeneration following arterial injury. Both 12(S)-HETE in concentrations found in diabetic patients and TRPV1 agonists triggered mitochondrial calcium influx and mitochondrial dysfunction in endothelial cells, and 12(S)-HETE effects were absent in endothelial cells from TRPV1-knockout mice. As a therapeutic consequence, we found that a peptide targeting 12(S)-HETE-induced TRPV1 interaction at the TRPV1 TRP box ameliorated diabetes-induced endothelial dysfunction and augmented vascular regeneration in diabetic mice. Our findings suggest that pharmacological targeting of increased endothelial lipid peroxidation can attenuate diabetes-induced comorbidities related to vascular disease.
Collapse
Affiliation(s)
- Mandy Otto
- Department of Anesthesiology, Intensive Care and Pain Medicine, and
| | - Clarissa Bucher
- Department of Anesthesiology, Intensive Care and Pain Medicine, and
| | - Wantao Liu
- Department of Anesthesiology, Intensive Care and Pain Medicine, and
| | - Melanie Müller
- Department of Anesthesiology, Intensive Care and Pain Medicine, and
| | - Tobias Schmidt
- Department of Anesthesiology, Intensive Care and Pain Medicine, and.,Institute of Physiology I, University Hospital Münster, Münster, Germany
| | - Marina Kardell
- Department of Anesthesiology, Intensive Care and Pain Medicine, and
| | | | - Jan Rossaint
- Department of Anesthesiology, Intensive Care and Pain Medicine, and
| | - Eric R Gross
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, California, USA
| | | |
Collapse
|
17
|
Pérez-Hernández M, Leo-Macias A, Keegan S, Jouni M, Kim JC, Agullo-Pascual E, Vermij S, Zhang M, Liang FX, Burridge P, Fenyö D, Rothenberg E, Delmar M. Structural and Functional Characterization of a Na v1.5-Mitochondrial Couplon. Circ Res 2021; 128:419-432. [PMID: 33342222 PMCID: PMC7864872 DOI: 10.1161/circresaha.120.318239] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
RATIONALE The cardiac sodium channel NaV1.5 has a fundamental role in excitability and conduction. Previous studies have shown that sodium channels cluster together in specific cellular subdomains. Their association with intracellular organelles in defined regions of the myocytes, and the functional consequences of that association, remain to be defined. OBJECTIVE To characterize a subcellular domain formed by sodium channel clusters in the crest region of the myocytes and the subjacent subsarcolemmal mitochondria. METHODS AND RESULTS Through a combination of imaging approaches including super-resolution microscopy and electron microscopy we identified, in adult cardiac myocytes, a NaV1.5 subpopulation in close proximity to subjacent subsarcolemmal mitochondria; we further found that subjacent subsarcolemmal mitochondria preferentially host the mitochondrial NCLX (Na+/Ca2+ exchanger). This anatomic proximity led us to investigate functional changes in mitochondria resulting from sodium channel activity. Upon TTX (tetrodotoxin) exposure, mitochondria near NaV1.5 channels accumulated more Ca2+ and showed increased reactive oxygen species production when compared with interfibrillar mitochondria. Finally, crosstalk between NaV1.5 channels and mitochondria was analyzed at a transcriptional level. We found that SCN5A (encoding NaV1.5) and SLC8B1 (which encode NaV1.5 and NCLX, respectively) are negatively correlated both in a human transcriptome data set (Genotype-Tissue Expression) and in human-induced pluripotent stem cell-derived cardiac myocytes deficient in SCN5A. CONCLUSIONS We describe an anatomic hub (a couplon) formed by sodium channel clusters and subjacent subsarcolemmal mitochondria. Preferential localization of NCLX to this domain allows for functional coupling where the extrusion of Ca2+ from the mitochondria is powered, at least in part, by the entry of sodium through NaV1.5 channels. These results provide a novel entry-point into a mechanistic understanding of the intersection between electrical and structural functions of the heart.
Collapse
Affiliation(s)
| | - Alejandra Leo-Macias
- Leon H Charney Division of Cardiology NYU Grossman School of Medicine. New York, NY
| | - Sarah Keegan
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology. NYU Grossman School of Medicine. New York, NY
| | - Mariam Jouni
- Department of Pharmacology, Northwestern University Feinberg School of Medicine. Chicago, IL
| | - Joon-Chul Kim
- Leon H Charney Division of Cardiology NYU Grossman School of Medicine. New York, NY
| | | | - Sarah Vermij
- Leon H Charney Division of Cardiology NYU Grossman School of Medicine. New York, NY
| | - Mingliang Zhang
- Leon H Charney Division of Cardiology NYU Grossman School of Medicine. New York, NY
| | - Feng-Xia Liang
- Microscopy laboratory, Division of Advanced Research Technologies. NYU Grossman School of Medicine. New York, NY
| | - Paul Burridge
- Department of Pharmacology, Northwestern University Feinberg School of Medicine. Chicago, IL
| | - David Fenyö
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology. NYU Grossman School of Medicine. New York, NY
| | - Eli Rothenberg
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology. NYU Grossman School of Medicine. New York, NY
| | - Mario Delmar
- Leon H Charney Division of Cardiology NYU Grossman School of Medicine. New York, NY
| |
Collapse
|
18
|
Britti E, Delaspre F, Sanz-Alcázar A, Medina-Carbonero M, Llovera M, Purroy R, Mincheva-Tasheva S, Tamarit J, Ros J. Calcitriol increases frataxin levels and restores mitochondrial function in cell models of Friedreich Ataxia. Biochem J 2021; 478:1-20. [PMID: 33305808 DOI: 10.1042/bcj20200331] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 11/30/2020] [Accepted: 12/07/2020] [Indexed: 12/17/2023]
Abstract
Friedreich ataxia (FA) is a neurodegenerative disease caused by the deficiency of frataxin, a mitochondrial protein. In primary cultures of dorsal root ganglia neurons, we showed that frataxin depletion resulted in decreased levels of the mitochondrial calcium exchanger NCLX, neurite degeneration and apoptotic cell death. Here, we describe that frataxin-deficient dorsal root ganglia neurons display low levels of ferredoxin 1 (FDX1), a mitochondrial Fe/S cluster-containing protein that interacts with frataxin and, interestingly, is essential for the synthesis of calcitriol, the active form of vitamin D. We provide data that calcitriol supplementation, used at nanomolar concentrations, is able to reverse the molecular and cellular markers altered in DRG neurons. Calcitriol is able to recover both FDX1 and NCLX levels and restores mitochondrial membrane potential indicating an overall mitochondrial function improvement. Accordingly, reduction in apoptotic markers and neurite degeneration was observed and, as a result, cell survival was also recovered. All these beneficial effects would be explained by the finding that calcitriol is able to increase the mature frataxin levels in both, frataxin-deficient DRG neurons and cardiomyocytes; remarkably, this increase also occurs in lymphoblastoid cell lines derived from FA patients. In conclusion, these results provide molecular bases to consider calcitriol for an easy and affordable therapeutic approach for FA patients.
Collapse
Affiliation(s)
- Elena Britti
- Dept. Ciències Mèdiques Bàsiques, Universitat de Lleida, IRBLleida, AV. Rovira Roure 80, 25198 Lleida, Spain
| | - Fabien Delaspre
- Dept. Ciències Mèdiques Bàsiques, Universitat de Lleida, IRBLleida, AV. Rovira Roure 80, 25198 Lleida, Spain
| | - A Sanz-Alcázar
- Dept. Ciències Mèdiques Bàsiques, Universitat de Lleida, IRBLleida, AV. Rovira Roure 80, 25198 Lleida, Spain
| | - Marta Medina-Carbonero
- Dept. Ciències Mèdiques Bàsiques, Universitat de Lleida, IRBLleida, AV. Rovira Roure 80, 25198 Lleida, Spain
| | - Marta Llovera
- Dept. Ciències Mèdiques Bàsiques, Universitat de Lleida, IRBLleida, AV. Rovira Roure 80, 25198 Lleida, Spain
| | - Rosa Purroy
- Dept. Ciències Mèdiques Bàsiques, Universitat de Lleida, IRBLleida, AV. Rovira Roure 80, 25198 Lleida, Spain
| | - Stefka Mincheva-Tasheva
- Dept. Ciències Mèdiques Bàsiques, Universitat de Lleida, IRBLleida, AV. Rovira Roure 80, 25198 Lleida, Spain
| | - Jordi Tamarit
- Dept. Ciències Mèdiques Bàsiques, Universitat de Lleida, IRBLleida, AV. Rovira Roure 80, 25198 Lleida, Spain
| | - Joaquim Ros
- Dept. Ciències Mèdiques Bàsiques, Universitat de Lleida, IRBLleida, AV. Rovira Roure 80, 25198 Lleida, Spain
| |
Collapse
|
19
|
Juárez-Contreras R, Méndez-Reséndiz KA, Rosenbaum T, González-Ramírez R, Morales-Lázaro SL. TRPV1 Channel: A Noxious Signal Transducer That Affects Mitochondrial Function. Int J Mol Sci 2020; 21:ijms21238882. [PMID: 33255148 PMCID: PMC7734572 DOI: 10.3390/ijms21238882] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/24/2020] [Accepted: 10/31/2020] [Indexed: 12/19/2022] Open
Abstract
The Transient Receptor Vanilloid 1 (TRPV1) or capsaicin receptor is a nonselective cation channel, which is abundantly expressed in nociceptors. This channel is an important transducer of several noxious stimuli, having a pivotal role in pain development. Several TRPV1 studies have focused on understanding its structure and function, as well as on the identification of compounds that regulate its activity. The intracellular roles of these channels have also been explored, highlighting TRPV1′s actions in the homeostasis of Ca2+ in organelles such as the mitochondria. These studies have evidenced how the activation of TRPV1 affects mitochondrial functions and how this organelle can regulate TRPV1-mediated nociception. The close relationship between this channel and mitochondria has been determined in neuronal and non-neuronal cells, demonstrating that TRPV1 activation strongly impacts on cell physiology. This review focuses on describing experimental evidence showing that TRPV1 influences mitochondrial function.
Collapse
Affiliation(s)
- Rebeca Juárez-Contreras
- Department of Cognitive Neuroscience, Neurosciences Division, Institute of Cellular Physiology, National Autonomous University of Mexico, UNAM, Mexico City 04510, Mexico; (R.J.-C.); (K.A.M.-R.); (T.R.)
| | - Karina Angélica Méndez-Reséndiz
- Department of Cognitive Neuroscience, Neurosciences Division, Institute of Cellular Physiology, National Autonomous University of Mexico, UNAM, Mexico City 04510, Mexico; (R.J.-C.); (K.A.M.-R.); (T.R.)
| | - Tamara Rosenbaum
- Department of Cognitive Neuroscience, Neurosciences Division, Institute of Cellular Physiology, National Autonomous University of Mexico, UNAM, Mexico City 04510, Mexico; (R.J.-C.); (K.A.M.-R.); (T.R.)
| | - Ricardo González-Ramírez
- Department of Molecular Biology and Histocompatibility, “Dr. Manuel Gea González” General Hospital, Mexico City 14080, Mexico;
| | - Sara Luz Morales-Lázaro
- Department of Cognitive Neuroscience, Neurosciences Division, Institute of Cellular Physiology, National Autonomous University of Mexico, UNAM, Mexico City 04510, Mexico; (R.J.-C.); (K.A.M.-R.); (T.R.)
- Correspondence:
| |
Collapse
|
20
|
The Input-Output Relation of Primary Nociceptive Neurons is Determined by the Morphology of the Peripheral Nociceptive Terminals. J Neurosci 2020; 40:9346-9363. [PMID: 33115929 DOI: 10.1523/jneurosci.1546-20.2020] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 10/19/2020] [Accepted: 10/21/2020] [Indexed: 12/22/2022] Open
Abstract
The output from the peripheral terminals of primary nociceptive neurons, which detect and encode the information regarding noxious stimuli, is crucial in determining pain sensation. The nociceptive terminal endings are morphologically complex structures assembled from multiple branches of different geometry, which converge in a variety of forms to create the terminal tree. The output of a single terminal is defined by the properties of the transducer channels producing the generation potentials and voltage-gated channels, translating the generation potentials into action potential (AP) firing. However, in the majority of cases, noxious stimuli activate multiple terminals; thus, the output of the nociceptive neuron is defined by the integration and computation of the inputs of the individual terminals. Here, we used a computational model of nociceptive terminal tree to study how the architecture of the terminal tree affects the input-output relation of the primary nociceptive neurons. We show that the input-output properties of the nociceptive neurons depend on the length, the axial resistance (Ra), and location of individual terminals. Moreover, we show that activation of multiple terminals by a capsaicin-like current allows summation of the responses from individual terminals, thus leading to increased nociceptive output. Stimulation of the terminals in simulated models of inflammatory or neuropathic hyperexcitability led to a change in the temporal pattern of AP firing, emphasizing the role of temporal code in conveying key information about changes in nociceptive output in pathologic conditions, leading to pain hypersensitivity.SIGNIFICANCE STATEMENT Noxious stimuli are detected by terminal endings of primary nociceptive neurons, which are organized into morphologically complex terminal trees. The information from multiple terminals is integrated along the terminal tree, computing the neuronal output, which propagates toward the CNS, thus shaping the pain sensation. Here, we revealed that the structure of the nociceptive terminal tree determines the output of nociceptive neurons. We show that the integration of noxious information depends on the morphology of the terminal trees and how this integration and, consequently, the neuronal output change under pathologic conditions. Our findings help to predict how nociceptive neurons encode noxious stimuli and how this encoding changes in pathologic conditions, leading to pain.
Collapse
|
21
|
Zhai K, Liskova A, Kubatka P, Büsselberg D. Calcium Entry through TRPV1: A Potential Target for the Regulation of Proliferation and Apoptosis in Cancerous and Healthy Cells. Int J Mol Sci 2020; 21:E4177. [PMID: 32545311 PMCID: PMC7312732 DOI: 10.3390/ijms21114177] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/05/2020] [Accepted: 06/08/2020] [Indexed: 02/06/2023] Open
Abstract
Intracellular calcium (Ca2+) concentration ([Ca2+]i) is a key determinant of cell fate and is implicated in carcinogenesis. Membrane ion channels are structures through which ions enter or exit the cell, depending on the driving forces. The opening of transient receptor potential vanilloid 1 (TRPV1) ligand-gated ion channels facilitates transmembrane Ca2+ and Na+ entry, which modifies the delicate balance between apoptotic and proliferative signaling pathways. Proliferation is upregulated through two mechanisms: (1) ATP binding to the G-protein-coupled receptor P2Y2, commencing a kinase signaling cascade that activates the serine-threonine kinase Akt, and (2) the transactivation of the epidermal growth factor receptor (EGFR), leading to a series of protein signals that activate the extracellular signal-regulated kinases (ERK) 1/2. The TRPV1-apoptosis pathway involves Ca2+ influx and efflux between the cytosol, mitochondria, and endoplasmic reticulum (ER), the release of apoptosis-inducing factor (AIF) and cytochrome c from the mitochondria, caspase activation, and DNA fragmentation and condensation. While proliferative mechanisms are typically upregulated in cancerous tissues, shifting the balance to favor apoptosis could support anti-cancer therapies. TRPV1, through [Ca2+]i signaling, influences cancer cell fate; therefore, the modulation of the TRPV1-enforced proliferation-apoptosis balance is a promising avenue in developing anti-cancer therapies and overcoming cancer drug resistance. As such, this review characterizes and evaluates the role of TRPV1 in cell death and survival, in the interest of identifying mechanistic targets for drug discovery.
Collapse
Affiliation(s)
- Kevin Zhai
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, PO Box 24144, Qatar;
| | - Alena Liskova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia;
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia;
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, PO Box 24144, Qatar;
| |
Collapse
|
22
|
Islam MM, Takeuchi A, Matsuoka S. Membrane current evoked by mitochondrial Na +-Ca 2+ exchange in mouse heart. J Physiol Sci 2020; 70:24. [PMID: 32354321 PMCID: PMC10717124 DOI: 10.1186/s12576-020-00752-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 04/24/2020] [Indexed: 01/19/2023]
Abstract
The electrogenicity of mitochondrial Na+-Ca2+ exchange (NCXm) had been controversial and no membrane current through it had been reported. We succeeded for the first time in recording NCXm-mediated currents using mitoplasts derived from mouse ventricle. Under conditions that K+, Cl-, and Ca2+ uniporter currents were inhibited, extra-mitochondrial Na+ induced inward currents with 1 μM Ca2+ in the pipette. The half-maximum concentration of Na+ was 35.6 mM. The inward current was diminished without Ca2+ in the pipette, and was augmented with 10 μM Ca2+. The Na+-induced inward currents were largely inhibited by CGP-37157, an NCXm blocker. However, the reverse mode of NCXm, which should be detected as an outward current, was hardly induced by extra-mitochondrial application of Ca2+ with Na+ in the pipette. It was concluded that NCXm is electrogenic. This property may be advantageous for facilitating Ca2+ extrusion from mitochondria, which has large negative membrane potential.
Collapse
Affiliation(s)
- Mohammed M Islam
- Department of Integrative and Systems Physiology, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuokashimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui, 910-1193, Japan
| | - Ayako Takeuchi
- Department of Integrative and Systems Physiology, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuokashimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui, 910-1193, Japan
- Life Science Innovation Center, University of Fukui, Fukui, 910-1193, Japan
| | - Satoshi Matsuoka
- Department of Integrative and Systems Physiology, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuokashimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui, 910-1193, Japan.
- Life Science Innovation Center, University of Fukui, Fukui, 910-1193, Japan.
| |
Collapse
|
23
|
Yousuf MS, Maguire AD, Simmen T, Kerr BJ. Endoplasmic reticulum-mitochondria interplay in chronic pain: The calcium connection. Mol Pain 2020; 16:1744806920946889. [PMID: 32787562 PMCID: PMC7427143 DOI: 10.1177/1744806920946889] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 06/26/2020] [Indexed: 12/14/2022] Open
Abstract
Chronic pain is a debilitating condition that affects roughly a third to a half of the world's population. Despite its substantial effect on society, treatment for chronic pain is modest, at best, notwithstanding its side effects. Hence, novel therapeutics are direly needed. Emerging evidence suggests that calcium plays an integral role in mediating neuronal plasticity that underlies sensitization observed in chronic pain states. The endoplasmic reticulum and the mitochondria are the largest calcium repositories in a cell. Here, we review how stressors, like accumulation of misfolded proteins and oxidative stress, influence endoplasmic reticulum and mitochondria function and contribute to chronic pain. We further examine the shuttling of calcium across the mitochondrial-associated membrane as a mechanism of cross-talk between the endoplasmic reticulum and the mitochondria. In addition, we discuss how endoplasmic reticulum stress, mitochondrial impairment, and calcium dyshomeostasis are implicated in various models of neuropathic pain. We propose a novel framework of endoplasmic reticulum-mitochondria signaling in mediating pain hypersensitivity. These observations require further investigation in order to develop novel therapies for chronic pain.
Collapse
Affiliation(s)
- Muhammad Saad Yousuf
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| | - Aislinn D Maguire
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| | - Thomas Simmen
- Department of Cell Biology, University of Alberta, Edmonton, Canada
| | - Bradley J Kerr
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
- Department of Pharmacology, University of Alberta, Edmonton, Canada
- Department of Anesthesiology and Pain Medicine, University of Alberta, Edmonton, Canada
| |
Collapse
|
24
|
Li M, Zhang CS, Zong Y, Feng JW, Ma T, Hu M, Lin Z, Li X, Xie C, Wu Y, Jiang D, Li Y, Zhang C, Tian X, Wang W, Yang Y, Chen J, Cui J, Wu YQ, Chen X, Liu QF, Wu J, Lin SY, Ye Z, Liu Y, Piao HL, Yu L, Zhou Z, Xie XS, Hardie DG, Lin SC. Transient Receptor Potential V Channels Are Essential for Glucose Sensing by Aldolase and AMPK. Cell Metab 2019; 30:508-524.e12. [PMID: 31204282 PMCID: PMC6720459 DOI: 10.1016/j.cmet.2019.05.018] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 02/03/2019] [Accepted: 05/21/2019] [Indexed: 02/06/2023]
Abstract
Fructose-1,6-bisphosphate (FBP) aldolase links sensing of declining glucose availability to AMPK activation via the lysosomal pathway. However, how aldolase transmits lack of occupancy by FBP to AMPK activation remains unclear. Here, we show that FBP-unoccupied aldolase interacts with and inhibits endoplasmic reticulum (ER)-localized transient receptor potential channel subfamily V, inhibiting calcium release in low glucose. The decrease of calcium at contact sites between ER and lysosome renders the inhibited TRPV accessible to bind the lysosomal v-ATPase that then recruits AXIN:LKB1 to activate AMPK independently of AMP. Genetic depletion of TRPVs blocks glucose starvation-induced AMPK activation in cells and liver of mice, and in nematodes, indicative of physical requirement of TRPVs. Pharmacological inhibition of TRPVs activates AMPK and elevates NAD+ levels in aged muscles, rejuvenating the animals' running capacity. Our study elucidates that TRPVs relay the FBP-free status of aldolase to the reconfiguration of v-ATPase, leading to AMPK activation in low glucose.
Collapse
Affiliation(s)
- Mengqi Li
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, 361102 Fujian, China
| | - Chen-Song Zhang
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, 361102 Fujian, China
| | - Yue Zong
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, 361102 Fujian, China
| | - Jin-Wei Feng
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, 361102 Fujian, China
| | - Teng Ma
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, 361102 Fujian, China
| | - Meiqin Hu
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, PKU-IDG/McGovern Institute for Brain Research, Peking University, 100871 Beijing, China
| | - Zhizhong Lin
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, 361102 Fujian, China
| | - Xiaotong Li
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, 361102 Fujian, China
| | - Changchuan Xie
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, 361102 Fujian, China
| | - Yaying Wu
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, 361102 Fujian, China
| | - Dong Jiang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, 100084 Beijing, China
| | - Ying Li
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, 100084 Beijing, China
| | - Cixiong Zhang
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, 361102 Fujian, China
| | - Xiao Tian
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, 361102 Fujian, China
| | - Wen Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Scientific Research Center for Translational Medicine, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023 Dalian, China
| | - Yanyan Yang
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, 100871 Beijing, China
| | - Jie Chen
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, 100871 Beijing, China
| | - Jiwen Cui
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, 361102 Fujian, China
| | - Yu-Qing Wu
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, 361102 Fujian, China
| | - Xin Chen
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, 361102 Fujian, China
| | - Qing-Feng Liu
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, 361102 Fujian, China
| | - Jianfeng Wu
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, 361102 Fujian, China
| | - Shu-Yong Lin
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, 361102 Fujian, China
| | - Zhiyun Ye
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, 361102 Fujian, China
| | - Ying Liu
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, 100871 Beijing, China
| | - Hai-Long Piao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Scientific Research Center for Translational Medicine, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023 Dalian, China
| | - Li Yu
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, 100084 Beijing, China
| | - Zhuan Zhou
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, PKU-IDG/McGovern Institute for Brain Research, Peking University, 100871 Beijing, China
| | - Xiao-Song Xie
- McDermott Center of Human Growth and Development MC8591, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - D Grahame Hardie
- Division of Cell Signalling and Immunology, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland
| | - Sheng-Cai Lin
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, 361102 Fujian, China.
| |
Collapse
|
25
|
Functional properties and mode of regulation of the mitochondrial Na +/Ca 2+ exchanger, NCLX. Semin Cell Dev Biol 2019; 94:59-65. [PMID: 30658153 DOI: 10.1016/j.semcdb.2019.01.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 01/14/2019] [Accepted: 01/14/2019] [Indexed: 12/23/2022]
Abstract
Mitochondrial Ca2+ transient is the earliest discovered organellar Ca2+ signaling pathway. It consist of a Ca2+ influx, mediated by mitochondrial Ca2+ uniporter (MCU), and mitochondrial Ca2+ efflux mediated by a Na+/Ca2+ exchanger (NCLX). Mitochondrial Ca2+ signaling machinery plays a fundamental role in linking metabolic activity to cellular Ca2+ signaling, and in controlling local Ca2+ concertation in distinct cellular compartments. Impaired balance between mitochondrial Ca2+ influx and efflux leads to mitochondrial Ca2+ overload, an early and key event in ischemic or neurodegenerative syndromes. Molecular identification of NCLX and MCU happened only recently. Surprisingly, MCU knockout yielded a relatively mild phenotype while conditional knockout of NCLX led to a rapid fatal heart failure. Here we will focus on recent functional and molecular studies on NCLX structure and its mode of regulation. We will describe the unique crosstalk of this exchanger with Na+ and Ca2+ signaling pathways in the cell membrane and the endoplasmic reticulum, and with protein kinases that posttranslationally modulate NCLX activity. We will critically compare selectivity of pharmacological blockers versus molecular control of NCLX expression and activity. Finally we will discuss why this exchanger is essential for survival and can serve as an attractive therapeutic target.
Collapse
|
26
|
Function, regulation and physiological role of the mitochondrial Na + /Ca 2+ exchanger, NCLX. CURRENT OPINION IN PHYSIOLOGY 2018. [DOI: 10.1016/j.cophys.2018.02.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
27
|
Verkhratsky A, Trebak M, Perocchi F, Khananshvili D, Sekler I. Crosslink between calcium and sodium signalling. Exp Physiol 2018; 103:157-169. [PMID: 29210126 PMCID: PMC6813793 DOI: 10.1113/ep086534] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 11/24/2017] [Indexed: 12/12/2022]
Abstract
NEW FINDINGS What is the topic of this review? This paper overviews the links between Ca2+ and Na+ signalling in various types of cells. What advances does it highlight? This paper highlights the general importance of ionic signalling and overviews the molecular mechanisms linking Na+ and Ca2+ dynamics. In particular, the narrative focuses on the molecular physiology of plasmalemmal and mitochondrial Na+ -Ca2+ exchangers and plasmalemmal transient receptor potential channels. Functional consequences of Ca2+ and Na+ signalling for co-ordination of neuronal activity with astroglial homeostatic pathways fundamental for synaptic transmission are discussed. ABSTRACT Transmembrane ionic gradients, which are an indispensable feature of life, are used for generation of cytosolic ionic signals that regulate a host of cellular functions. Intracellular signalling mediated by Ca2+ and Na+ is tightly linked through several molecular pathways that generate Ca2+ and Na+ fluxes and are in turn regulated by both ions. Transient receptor potential (TRP) channels bridge endoplasmic reticulum Ca2+ release with generation of Na+ and Ca2+ currents. The plasmalemmal Na+ -Ca2+ exchanger (NCX) flickers between forward and reverse mode to co-ordinate the influx and efflux of both ions with membrane polarization and cytosolic ion concentrations. The mitochondrial calcium uniporter channel (MCU) and mitochondrial Na+ -Ca2+ exchanger (NCLX) mediate Ca2+ entry into and release from this organelle and couple cytosolic Ca2+ and Na+ fluctuations with cellular energetics. Cellular Ca2+ and Na+ signalling controls numerous functional responses and, in the CNS, provides for fast regulation of astroglial homeostatic cascades that are crucial for maintenance of synaptic transmission.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Mohamed Trebak
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Fabiana Perocchi
- Gene Center/Department of Biochemistry, Ludwig-Maximilians Universität München, Munich, Germany
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg, Germany
| | - Daniel Khananshvili
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Ramat-Aviv, Israel
| | - Israel Sekler
- Department of Physiology and Cell Biology, Faculty of Health Science, Ben-Gurion University, Beer-Sheva, Israel
| |
Collapse
|
28
|
Stueber T, Eberhardt MJ, Caspi Y, Lev S, Binshtok A, Leffler A. Differential cytotoxicity and intracellular calcium-signalling following activation of the calcium-permeable ion channels TRPV1 and TRPA1. Cell Calcium 2017; 68:34-44. [PMID: 29129206 DOI: 10.1016/j.ceca.2017.10.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 10/05/2017] [Accepted: 10/17/2017] [Indexed: 11/18/2022]
Abstract
Several members of the transient receptor channel (TRP) family can mediate a calcium-dependent cytotoxicity. In sensory neurons, vanilloids like capsaicin induce neurotoxicity by activating TRPV1. The closely related ion channel TRPA1 is also activated by irritants, but it is unclear if and how TRPA1 mediates cell death. In the present study we explored cytotoxicity and intracellular calcium signalling resulting from activation of TRPV1 and TRPA1, either heterologously expressed in HEK 293 cells or in native mouse dorsal root ganglion (DRG) neurons. While activation of TRPV1 by the vanilloids capsaicin, resiniferatoxin and anandamide results in calcium-dependent cell death, activation by protons and the oxidant chloramine-T failed to reduce cell viability. The TRPA1-agonists acrolein, carvacrol and capsazepine all induced cytotoxicity, but this effect is independent of TRPA1. Activation of both TRPA1 and TRPV1 triggers a strong influx of external calcium, but also a strong calcium-release from intracellular stores most likely including the endoplasmic reticulum (ER). Activation of TRPV1, but not TRPA1 also results in a strong increase of mitochondrial calcium both in HEK 293 cells and mouse DRG neurons. Our data demonstrate that activation of TRPV1, but not TRPA1 mediates a calcium-dependent cell death. While both receptors mediate a release of calcium from intracellular stores, only activation of TRPV1 seems to mediate a robust and probably lethal increase in mitochondrial calcium.
Collapse
Affiliation(s)
- Thomas Stueber
- Department of Anaesthesiology and Intensive Care Medicine, Hannover Medical School, Hannover, Germany
| | - Mirjam J Eberhardt
- Department of Anaesthesiology and Intensive Care Medicine, Hannover Medical School, Hannover, Germany
| | - Yaki Caspi
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University Faculty of Medicine, Israel; The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University, Jerusalem, Israel
| | - Shaya Lev
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University Faculty of Medicine, Israel; The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University, Jerusalem, Israel
| | - Alexander Binshtok
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University Faculty of Medicine, Israel; The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University, Jerusalem, Israel
| | - Andreas Leffler
- Department of Anaesthesiology and Intensive Care Medicine, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
29
|
Barkai O, Goldstein RH, Caspi Y, Katz B, Lev S, Binshtok AM. The Role of Kv7/M Potassium Channels in Controlling Ectopic Firing in Nociceptors. Front Mol Neurosci 2017; 10:181. [PMID: 28659757 PMCID: PMC5468463 DOI: 10.3389/fnmol.2017.00181] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 05/24/2017] [Indexed: 11/13/2022] Open
Abstract
Peripheral nociceptive neurons encode and convey injury-inducing stimuli toward the central nervous system. In normal conditions, tight control of nociceptive resting potential prevents their spontaneous activation. However, in many pathological conditions the control of membrane potential is disrupted, leading to ectopic, stimulus-unrelated firing of nociceptive neurons, which is correlated to spontaneous pain. We have investigated the role of KV7/M channels in stabilizing membrane potential and impeding spontaneous firing of nociceptive neurons. These channels generate low voltage-activating, noninactivating M-type K+ currents (M-current, IM ), which control neuronal excitability. Using perforated-patch recordings from cultured, rat nociceptor-like dorsal root ganglion neurons, we show that inhibition of M-current leads to depolarization of nociceptive neurons and generation of repetitive firing. To assess to what extent the M-current, acting at the nociceptive terminals, is able to stabilize terminals' membrane potential, thus preventing their ectopic activation, in normal and pathological conditions, we built a multi-compartment computational model of a pseudo-unipolar unmyelinated nociceptive neuron with a realistic terminal tree. The modeled terminal tree was based on the in vivo structure of nociceptive peripheral terminal, which we assessed by in vivo multiphoton imaging of GFP-expressing nociceptive neuronal terminals innervating mice hind paw. By modifying the conductance of the KV7/M channels at the modeled terminal tree (terminal gKV7/M) we have found that 40% of the terminal gKV7/M conductance is sufficient to prevent spontaneous firing, while ~75% of terminal gKV7/M is sufficient to inhibit stimulus induced activation of nociceptive neurons. Moreover, we showed that terminal M-current reduces susceptibility of nociceptive neurons to a small fluctuations of membrane potentials. Furthermore, we simulated how the interaction between terminal persistent sodium current and M-current affects the excitability of the neurons. We demonstrated that terminal M-current in nociceptive neurons impeded spontaneous firing even when terminal Na(V)1.9 channels conductance was substantially increased. On the other hand, when terminal gKV7/M was decreased, nociceptive neurons fire spontaneously after slight increase in terminal Na(V)1.9 conductance. Our results emphasize the pivotal role of M-current in stabilizing membrane potential and hereby in controlling nociceptive spontaneous firing, in normal and pathological conditions.
Collapse
Affiliation(s)
- Omer Barkai
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, Hadassah School of Medicine, The Hebrew University-Hadassah School of MedicineJerusalem, Israel.,The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of JerusalemJerusalem, Israel
| | - Robert H Goldstein
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, Hadassah School of Medicine, The Hebrew University-Hadassah School of MedicineJerusalem, Israel.,The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of JerusalemJerusalem, Israel
| | - Yaki Caspi
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, Hadassah School of Medicine, The Hebrew University-Hadassah School of MedicineJerusalem, Israel.,The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of JerusalemJerusalem, Israel
| | - Ben Katz
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, Hadassah School of Medicine, The Hebrew University-Hadassah School of MedicineJerusalem, Israel.,The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of JerusalemJerusalem, Israel
| | - Shaya Lev
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, Hadassah School of Medicine, The Hebrew University-Hadassah School of MedicineJerusalem, Israel.,The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of JerusalemJerusalem, Israel
| | - Alexander M Binshtok
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, Hadassah School of Medicine, The Hebrew University-Hadassah School of MedicineJerusalem, Israel.,The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of JerusalemJerusalem, Israel
| |
Collapse
|
30
|
Kim HK, Noh YH, Nilius B, Ko KS, Rhee BD, Kim N, Han J. Current and upcoming mitochondrial targets for cancer therapy. Semin Cancer Biol 2017. [PMID: 28627410 DOI: 10.1016/j.semcancer.2017.06.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mitochondria are essential intracellular organelles that regulate energy metabolism, cell death, and signaling pathways that are important for cell proliferation and differentiation. Therefore, mitochondria are fundamentally implicated in cancer biology, including initiation, growth, metastasis, relapse, and acquired drug resistance. Based on these implications, mitochondria have been proposed as a major therapeutic target for cancer treatment. In addition to classical view of mitochondria in cancer biology, recent studies found novel pathophysiological roles of mitochondria in cancer. In this review, we introduce recent concepts of mitochondrial roles in cancer biology including mitochondrial DNA mutation and epigenetic modulation, energy metabolism reprogramming, mitochondrial channels, involvement in metastasis and drug resistance, and cancer stem cells. We also discuss the role of mitochondria in emerging cancer therapeutic strategies, especially cancer immunotherapy and CRISPR-Cas9 system gene therapy.
Collapse
Affiliation(s)
- Hyoung Kyu Kim
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Plus Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Republic of Korea; Department of Integrated Biomedical Science, College of Medicine, Inje University, Busan, Republic of Korea
| | - Yeon Hee Noh
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Plus Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Republic of Korea
| | - Bernd Nilius
- KU Leuven, Department Cell Mol Medicine, Leuven, 3000, Belgium
| | - Kyung Soo Ko
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Plus Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Republic of Korea
| | - Byoung Doo Rhee
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Plus Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Republic of Korea
| | - Nari Kim
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Plus Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Republic of Korea
| | - Jin Han
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Plus Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Republic of Korea.
| |
Collapse
|
31
|
The Roles of Mitochondrial Cation Channels Under Physiological Conditions and in Cancer. Handb Exp Pharmacol 2016; 240:47-69. [PMID: 27995386 DOI: 10.1007/164_2016_92] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Bioenergetics has become central to our understanding of pathological mechanisms as well as the development of new therapeutic strategies and as a tool for gauging disease progression in neurodegeneration, diabetes, cancer, and cardiovascular disease. The view is emerging that inner mitochondrial membrane (IMM) cation channels have a profound effect on mitochondrial function and, consequently, on the metabolic state and survival of the whole cell. Since disruption of the sustained integrity of mitochondria is strongly linked to human disease, pharmacological intervention offers a new perspective concerning neurodegenerative and cardiovascular diseases as well as cancer. This review summarizes our current knowledge regarding IMM cation channels and their roles under physiological conditions as well as in cancer, with special emphasis on potassium channels and the mammalian mitochondrial calcium uniporter.
Collapse
|