1
|
Augustyniak K, Lesniak M, Latka H, Golan MP, Kubiak JZ, Zdanowski R, Malek K. Adipose-derived mesenchymal stem cells' adipogenesis chemistry analyzed by FTIR and Raman metrics. J Lipid Res 2024; 65:100573. [PMID: 38844049 PMCID: PMC11260339 DOI: 10.1016/j.jlr.2024.100573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/08/2024] [Accepted: 05/28/2024] [Indexed: 07/01/2024] Open
Abstract
The full understanding of molecular mechanisms of cell differentiation requires a holistic view. Here we combine label-free FTIR and Raman hyperspectral imaging with data mining to detect the molecular cell composition enabling noninvasive monitoring of cell differentiation and identifying biochemical heterogeneity. Mouse adipose-derived mesenchymal stem cells (AD-MSCs) undergoing adipogenesis were followed by Raman and FT-IR imaging, Oil Red, and immunofluorescence. A workflow of the data analysis (IRRSmetrics4stem) was designed to identify spectral predictors of adipogenesis and test machine-learning (ML) methods (hierarchical clustering, PCA, PLSR) for the control of the AD-MSCs differentiation degree. IRRSmetrics4stem provided insights into the chemism of adipogenesis. With single-cell tracking, we established IRRS metrics for lipids, proteins, and DNA variations during AD-MSCs differentiation. The over 90% predictive efficiency of the selected ML methods proved the high sensitivity of the IRRS metrics. Importantly, the IRRS metrics unequivocally recognize a switch from proliferation to differentiation. This study introduced a new bioassay identifying molecular markers indicating molecular transformations and delivering rapid and machine learning-based monitoring of adipogenesis that can be relevant to other differentiation processes. Thus, we introduce a novel, rapid, machine learning-based bioassay to identify molecular markers of adipogenesis. It can be relevant to identification of differentiation-related molecular processes in other cell types, and beyond the cell differentiation including progression of different cellular pathophysiologies reconstituted in vitro.
Collapse
Affiliation(s)
- Karolina Augustyniak
- Department of Chemical Physics, Faculty of Chemistry, Jagiellonian University in Krakow, Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University in Krakow, Krakow, Poland
| | - Monika Lesniak
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine - National Research Institute, Warszawa, Poland
| | - Hubert Latka
- Department of Chemical Physics, Faculty of Chemistry, Jagiellonian University in Krakow, Krakow, Poland
| | - Maciej P Golan
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine - National Research Institute, Warszawa, Poland; Institute of Psychology, The Maria Grzegorzewska University, Warsaw, Poland
| | - Jacek Z Kubiak
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine - National Research Institute, Warszawa, Poland; Dynamics and Mechanics of Epithelia Group, Institute of Genetics and Development of Rennes (IGDR), Faculty of Medicine, University of Rennes, CNRS, UMR 6290, Rennes, France.
| | - Robert Zdanowski
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine - National Research Institute, Warszawa, Poland.
| | - Kamilla Malek
- Department of Chemical Physics, Faculty of Chemistry, Jagiellonian University in Krakow, Krakow, Poland.
| |
Collapse
|
2
|
Nasim F, Kumar MS, Alvala M, Qureshi IA. Unraveling the peculiarities and development of novel inhibitors of leishmanial arginyl-tRNA synthetase. FEBS J 2024; 291:2955-2979. [PMID: 38525644 DOI: 10.1111/febs.17122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/22/2024] [Accepted: 03/11/2024] [Indexed: 03/26/2024]
Abstract
Aminoacylation by tRNA synthetase is a crucial part of protein synthesis and is widely recognized as a therapeutic target for drug development. Unlike the arginyl-tRNA synthetases (ArgRSs) reported previously, here, we report an ArgRS of Leishmania donovani (LdArgRS) that can follow the canonical two-step aminoacylation process. Since a previously uncharacterized insertion region is present within its catalytic domain, we implemented the splicing by overlap extension PCR (SOE-PCR) method to create a deletion mutant (ΔIns-LdArgRS) devoid of this region to investigate its function. Notably, the purified LdArgRS and ΔIns-LdArgRS exhibited different oligomeric states along with variations in their enzymatic activity. The full-length protein showed better catalytic efficiency than ΔIns-LdArgRS, and the insertion region was identified as the tRNA binding domain. In addition, a benzothiazolo-coumarin derivative (Comp-7j) possessing high pharmacokinetic properties was recognized as a competitive and more specific inhibitor of LdArgRS than its human counterpart. Removal of the insertion region altered the mode of inhibition for ΔIns-LdArgRS and caused a reduction in the inhibitor's binding affinity. Both purified proteins depicted variances in the secondary structural content upon ligand binding and thus, thermostability. Apart from the trypanosomatid-specific insertion and Rossmann fold motif, LdArgRS revealed typical structural characteristics of ArgRSs, and Comp-7j was found to bind within the ATP binding pocket. Furthermore, the placement of tRNAArg near the insertion region enhanced the stability and compactness of LdArgRS compared to other ligands. This study thus reports a unique ArgRS with respect to catalytic as well as structural properties, which can be considered a plausible drug target for the derivation of novel anti-leishmanial agents.
Collapse
Affiliation(s)
- Fouzia Nasim
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Muppidi Shravan Kumar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Hyderabad, India
| | - Mallika Alvala
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Hyderabad, India
| | - Insaf Ahmed Qureshi
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, India
| |
Collapse
|
3
|
Blat A, Makowski W, Smenda J, Pięta Ł, Bania M, Zapotoczny S, Malek K. Human erythrocytes under stress. Spectroscopic fingerprints of known oxidative mechanisms and beyond. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 313:124142. [PMID: 38493515 DOI: 10.1016/j.saa.2024.124142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/01/2024] [Accepted: 03/08/2024] [Indexed: 03/19/2024]
Abstract
In this work, we investigated the oxidative stress-related biochemical alterations in red blood cells (RBCs) and their membranes with the use of spectroscopic techniques. We aimed to show their great advantage for the in situ detection of lipid classes and secondary structures of proteins without the need for their extraction in the cellular environment. The exposition of the cells to peroxides, t-butyl hydroperoxide (tBOOH) or hydrogen peroxide (H2O2) led to different degradation processes encompassing the changes in the composition of membranes and structural modifications of hemoglobin (Hb). Our results indicated that tBOOH is generally a stronger oxidizing agent than H2O2 and this observation was congruent with the activity of superoxide and glutathione peroxidase. ATR-FTIR and Raman spectroscopies of membranes revealed that tBOOH caused primarily the partial loss and peroxidation of the lipids resulting in loss of the integrity of membranes. In turn, both peroxides induced several kinds of damage in the protein layer, including the partial decrease of their content and irreversible aggregation of spectrin, ankyrin, and membrane-bound globin. These changes were especially pronounced on the membrane surface where stress conditions induced the formation of β-sheets and intramolecular aggregates, particularly for tBOOH. Interestingly, nano-FTIR spectroscopy revealed the lipid peroxidative damage on the membrane surface in both cases. As far as hemoglobin was concerned, tBOOH and H2O2 caused the increase of the oxyhemoglobin species and conformational alterations of its polypeptide chain into β-sheets. Our findings confirm that applied spectroscopies effectively track the oxidative changes occurring in the structural components of red blood cells and the simplicity of conducting measurements and sample preparation can be readily applied to pharmacological and clinical studies.
Collapse
Affiliation(s)
- Aneta Blat
- Faculty of Chemistry, Jagiellonian University in Krakow, Gronostajowa 2, 30-387 Krakow, Poland
| | - Wojciech Makowski
- Faculty of Biotechnology and Horticulture, University of Agriculture in Kraków, Al. 29 Listopada 54, 31-425 Krakow, Poland
| | - Joanna Smenda
- Faculty of Chemistry, Jagiellonian University in Krakow, Gronostajowa 2, 30-387 Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University in Kraków, Prof. S. Lojasiewicza 11, 30-348 Krakow, Poland
| | - Łukasz Pięta
- Faculty of Chemistry, Jagiellonian University in Krakow, Gronostajowa 2, 30-387 Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University in Kraków, Prof. S. Lojasiewicza 11, 30-348 Krakow, Poland
| | - Monika Bania
- Faculty of Chemistry, Jagiellonian University in Krakow, Gronostajowa 2, 30-387 Krakow, Poland
| | - Szczepan Zapotoczny
- Faculty of Chemistry, Jagiellonian University in Krakow, Gronostajowa 2, 30-387 Krakow, Poland
| | - Kamilla Malek
- Faculty of Chemistry, Jagiellonian University in Krakow, Gronostajowa 2, 30-387 Krakow, Poland.
| |
Collapse
|
4
|
Hinge S, Dhole S, Banpurkar A, Kulkarni G. Probing Effect of 6 MeV Electron Beam Irradiation on Haemoglobin Protein Using Spectroscopic Techniques. Dose Response 2024; 22:15593258241240233. [PMID: 38576528 PMCID: PMC10989046 DOI: 10.1177/15593258241240233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/01/2024] [Indexed: 04/06/2024] Open
Abstract
In this work, we study the effect of 6 MeV electron beam irradiation on the physicochemical properties of lyophilized Human Haemoglobin A (HbA). Electron beams generated from Race Track Microtron accelerator with energy 6 MeV were used to irradiate HbA at fluences of 5 × 1014 e-/cm2 and 10 × 1014 e-/cm2. Pristine and electron beam irradiated HbA were characterized using UV-visible and Fourier transform infrared spectroscopy (FTIR) spectroscopy. The interfacial tension of the aqueous solutions of HbA are also analysed by pendant drop method. Absorbance intensity, % transmittance and interfacial tension decrease with fluence. The peak position of the Soret band (λsoret = 404 nm) remains unaffected by the fluences. FTIR spectroscopy confirms the changes in the secondary structure of the haemoglobin. In the amide band I, the percentage of α-helix reduced from 8% to 1%, and an increase in β-sheet (19% to 29%) and β helix (6.3% to 15%) is observed. Interfacial tension decreases from 46.0 mN/m and 44.0 mN/m with increase in irradiation dose. These finding provides realistic guideline for biological cells exposure to electron beam radiation doses.
Collapse
Affiliation(s)
- Sarika Hinge
- Department of Physics, Savitribai Phule Pune University, Pune, India
| | - Sanjay Dhole
- Department of Physics, Savitribai Phule Pune University, Pune, India
| | - Arun Banpurkar
- Department of Physics, Savitribai Phule Pune University, Pune, India
| | - Gauri Kulkarni
- Department of Physics, Savitribai Phule Pune University, Pune, India
| |
Collapse
|
5
|
Karabaliev M, Tacheva B, Paarvanova B, Georgieva R. Change in Osmotic Pressure Influences the Absorption Spectrum of Hemoglobin inside Red Blood Cells. Cells 2024; 13:589. [PMID: 38607028 PMCID: PMC11011345 DOI: 10.3390/cells13070589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/13/2024] Open
Abstract
Absorption spectra of red blood cell (RBC) suspensions are investigated in an osmolarity range in the medium from 200 mOsm to 900 mOsm. Three spectral parameters are used to characterize the process of swelling or shrinkage of RBC-the absorbance at 700 nm, the Soret peak height relative to the spectrum background, and the Soret peak wavelength. We show that with an increase in the osmolarity, the absorbance at 700 nm increases and the Soret peak relative height decreases. These changes are related to the changes in the RBC volume and the resulting increase in the hemoglobin intracellular concentration and index of refraction. Confocal microscopy and flow cytometry measurements supported these conclusions. The maximum wavelength of the Soret peak increases with increasing osmolarity due to changes in the oxygenation state of hemoglobin. Using these spectrum parameters, the process of osmosis in RBCs can be followed in real time, but it can also be applied to various processes, leading to changes in the volume and shape of RBCs. Therefore, we conclude that UV-Vis absorption spectrophotometry offers a convenient, easily accessible, and cost-effective method to monitor changes in RBC, which can find applications in the field of drug discovery and diagnostics of RBC and hemoglobin disorders.
Collapse
Affiliation(s)
- Miroslav Karabaliev
- Department of Physics and Biophysics, Faculty of Medicine, Trakia University, 11 Armeiska, 6000 Stara Zagora, Bulgaria; (B.T.); (B.P.)
| | - Bilyana Tacheva
- Department of Physics and Biophysics, Faculty of Medicine, Trakia University, 11 Armeiska, 6000 Stara Zagora, Bulgaria; (B.T.); (B.P.)
| | - Boyana Paarvanova
- Department of Physics and Biophysics, Faculty of Medicine, Trakia University, 11 Armeiska, 6000 Stara Zagora, Bulgaria; (B.T.); (B.P.)
| | - Radostina Georgieva
- Department of Physics and Biophysics, Faculty of Medicine, Trakia University, 11 Armeiska, 6000 Stara Zagora, Bulgaria; (B.T.); (B.P.)
- Institute of Transfusion Medicine, Charite-Universitatsrnedizin Berlin, Chariteplatz 1, 10117 Berlin, Germany
| |
Collapse
|
6
|
Stepanenko T, Sofińska K, Wilkosz N, Dybas J, Wiercigroch E, Bulat K, Szczesny-Malysiak E, Skirlińska-Nosek K, Seweryn S, Chwiej J, Lipiec E, Marzec KM. Surface-enhanced Raman scattering (SERS) and tip-enhanced Raman scattering (TERS) in label-free characterization of erythrocyte membranes and extracellular vesicles at the nano-scale and molecular level. Analyst 2024; 149:778-788. [PMID: 38109075 DOI: 10.1039/d3an01658g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
The manuscript presents the potential of surface-enhanced Raman spectroscopy (SERS) and tip-enhanced Raman spectroscopy (TERS) for label-free characterization of extracellular microvesicles (EVs) and their isolated membranes derived from red blood cells (RBCs) at the nanoscale and at the single-molecule level, providing detection of a few individual amino acids, protein and lipid membrane compartments. The study shows future directions for research, such as investigating the use of the mentioned techniques for the detection and diagnosis of diseases. We demonstrate that SERS and TERS are powerful techniques for identifying the biochemical composition of EVs and their membranes, allowing the detection of small molecules, lipids, and proteins. Furthermore, extracellular vesicles released from red blood cells (REVs) can be broadly classified into exosomes, microvesicles, and apoptotic bodies, based on their size and biogenesis pathways. Our study specifically focuses on microvesicles that range from 100 to 1000 nanometres in diameter, as presented in AFM images. Using SERS and TERS spectra obtained for REVs and their membranes, we were able to characterize the chemical and structural properties of microvesicle membranes with high sensitivity and specificity. This information may help better distinguish and categorize different types of EVs, leading to a better understanding of their functions and potential biomedical applications.
Collapse
Affiliation(s)
- Tetiana Stepanenko
- Jagiellonian University, Doctoral School of Exact and Natural Sciences, Lojasiewicza 11, Krakow, Poland
- Jagiellonian University, National Synchrotron Radiation Centre SOLARIS, Czerwone Maki 98 Str., 30-392 Krakow, Poland
- AGH University of Krakow, Faculty of Physics and Applied Computer Science, Al. Mickiewicza 30, 30-059 Krakow, Poland
| | - Kamila Sofińska
- Jagiellonian University, M. Smoluchowski Institute of Physics, Łojasiewicza 11, 30-348 Kraków, Poland.
| | - Natalia Wilkosz
- AGH University of Krakow, Faculty of Physics and Applied Computer Science, Al. Mickiewicza 30, 30-059 Krakow, Poland
| | - Jakub Dybas
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics, Bobrzyńskiego 14 Str., 30-348 Krakow, Poland
| | - Ewelina Wiercigroch
- Jagiellonian Center of Innovation, Bobrzyńskiego 14 Str., 30-348 Krakow, Poland
| | - Katarzyna Bulat
- AGH University of Krakow, Faculty of Physics and Applied Computer Science, Al. Mickiewicza 30, 30-059 Krakow, Poland
| | - Ewa Szczesny-Malysiak
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics, Bobrzyńskiego 14 Str., 30-348 Krakow, Poland
| | - Katarzyna Skirlińska-Nosek
- Jagiellonian University, Doctoral School of Exact and Natural Sciences, Lojasiewicza 11, Krakow, Poland
- Jagiellonian University, M. Smoluchowski Institute of Physics, Łojasiewicza 11, 30-348 Kraków, Poland.
| | - Sara Seweryn
- Jagiellonian University, Doctoral School of Exact and Natural Sciences, Lojasiewicza 11, Krakow, Poland
- Jagiellonian University, M. Smoluchowski Institute of Physics, Łojasiewicza 11, 30-348 Kraków, Poland.
| | - Joanna Chwiej
- AGH University of Krakow, Faculty of Physics and Applied Computer Science, Al. Mickiewicza 30, 30-059 Krakow, Poland
| | - Ewelina Lipiec
- Jagiellonian University, M. Smoluchowski Institute of Physics, Łojasiewicza 11, 30-348 Kraków, Poland.
| | - Katarzyna M Marzec
- AGH University of Krakow, Faculty of Physics and Applied Computer Science, Al. Mickiewicza 30, 30-059 Krakow, Poland
- Łukasiewicz Research Network - Krakow Institute of Technology, 73 Zakopiańska Str., 30-418 Krakow, Poland.
| |
Collapse
|
7
|
Papagiannopoulos A, Sklapani A, Spiliopoulos N. Thermally stabilized chondroitin sulfate-hemoglobin nanoparticles and their interaction with bioactive compounds. Biophys Chem 2024; 304:107127. [PMID: 37952498 DOI: 10.1016/j.bpc.2023.107127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/04/2023] [Accepted: 10/26/2023] [Indexed: 11/14/2023]
Abstract
The preparation of nanoparticles (NPs) based on hemoglobin (Hb) with a fully biocompatible methodology is presented. The spontaneous formation of electrostatic complexes of Hb with chondroitin sulfate (CS) at pH 4 in the polysaccharide/protein mass ratio regime where charge neutrality is met leads to spherical nanostructures with monomodal hydrodynamic radii distribution in the range of 50-100 nm. The integrity of the electrostatic complexes is disturbed at pH 7 as the net electric charge of Hb is very low. Treating the NPs at mildly elevated temperature stabilizes them against the pH increase taking advantage of Hb's ability of unfolding and self-associating upon thermal treatment. The NPs surface charge is pH-tunable and changes from positive to strongly negative upon pH increase to 7 proving the presence of negative surface patches of Hb and CS segments in their exterior. The α-helix content of Hb does not change significantly by thermal treatment. The NPs are found to bind the bioactive compounds curcumin and β-carotene and are stable in solutions with high salt content. This investigation introduces a straightforward method to formulate Hb in NPs with possibilities in the nanodelivery of nutrients and drugs.
Collapse
Affiliation(s)
- Aristeidis Papagiannopoulos
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece.
| | - Aggeliki Sklapani
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| | | |
Collapse
|
8
|
Alcicek FC, Blat A, Rutkowska W, Bulat K, Szczesny-Malysiak E, Franczyk-Zarow M, Kostogrys R, Dybas J, Marzec KM. Secondary structure alterations of RBC assessed by FTIR-ATR in correlation to 2,3-DPG levels in ApoE/LDLR -/- Mice. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 284:121819. [PMID: 36084582 DOI: 10.1016/j.saa.2022.121819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/12/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
In the present study, we characterized the secondary structure alterations of intact red blood cells (RBCs) cytosol with special attention to the sex-related alterations in 8- and 24-week-old female and male ApoE/LDLR-/- mice, compared to age-matched female and male C57BL/6J control animals. Results were obtained with previously established methodology based on Fourier transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR). Additionally, we evaluated 2,3-DPG levels in the RBCs and showed its potential link to the hemoglobin (Hb) secondary structure alterations. Considering Hb structure alterations probed by FTIR-ATR, the ratio of turns to α-helices in 8-week-old ApoE/LDLR-/- mice suggested more pronounced secondary structure alterations within the RBCs than in the age-matched control. Sex-related differences were observed solely in 24-week-old male ApoE/LDLR-/- mice, which showed statistically significant increase in the secondary structure alterations compared to 24-week-old female ApoE/LDLR-/- mice. Similar to the secondary structure alterations, no sex-related differences were observed in the levels of 2,3-DPG in RBCs, except for 24-week-old male ApoE/LDLR-/- mice, which showed significantly higher levels compared to the age-matched female ApoE/LDLR-/- mice. Considering the age-related alterations, we observed significant increases in the intracellular 2,3-DPG of RBCs with animals' age in all studied groups, except for female ApoE/LDLR-/- mice, where a significant difference was not reported. This suggests the clear correlation between secondary structure of Hb alterations and 2,3-DPG levels for male and female murine RBC and proves a higher resistance of older female RBCs to the secondary structure changes with progression of atherosclerosis. Moreover, it may be concluded that higher 2,3-DPG levels in RBCs occurred in response to the secondary structure alterations of Hb in ApoE/LDLR-/- mice.
Collapse
Affiliation(s)
- Fatih Celal Alcicek
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, 14 Bobrzynskiego St., 30-348 Krakow, Poland
| | - Aneta Blat
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, 14 Bobrzynskiego St., 30-348 Krakow, Poland; Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa St., 30-387 Krakow, Poland
| | - Wiktoria Rutkowska
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, 14 Bobrzynskiego St., 30-348 Krakow, Poland; Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa St., 30-387 Krakow, Poland
| | - Katarzyna Bulat
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, 14 Bobrzynskiego St., 30-348 Krakow, Poland; Łukasiewicz Research Network, Krakow Institute of Technology, 73 Zakopianska St., 30-418 Krakow, Poland
| | - Ewa Szczesny-Malysiak
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, 14 Bobrzynskiego St., 30-348 Krakow, Poland
| | - Magdalena Franczyk-Zarow
- Department of Human Nutrition and Dietetics, Faculty of Food Technology, University of Agriculture, 122 Balicka St., 30-149 Krakow, Poland
| | - Renata Kostogrys
- Department of Human Nutrition and Dietetics, Faculty of Food Technology, University of Agriculture, 122 Balicka St., 30-149 Krakow, Poland
| | - Jakub Dybas
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, 14 Bobrzynskiego St., 30-348 Krakow, Poland.
| | - Katarzyna M Marzec
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, 14 Bobrzynskiego St., 30-348 Krakow, Poland; Łukasiewicz Research Network, Krakow Institute of Technology, 73 Zakopianska St., 30-418 Krakow, Poland.
| |
Collapse
|
9
|
Dybas J, Wajda A, Alcicek FC, Kaczmarska M, Bulat K, Szczesny-Malysiak E, Martyna A, Perez-Guaita D, Sacha T, Marzec KM. Label-free testing strategy to evaluate packed red blood cell quality before transfusion to leukemia patients. Sci Rep 2022; 12:21849. [PMID: 36528645 PMCID: PMC9759565 DOI: 10.1038/s41598-022-26309-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Patients worldwide require therapeutic transfusions of packed red blood cells (pRBCs), which is applied to the high-risk patients who need periodic transfusions due to leukemia, lymphoma, myeloma and other blood diseases or disorders. Contrary to the general hospital population where the transfusions are carried out mainly for healthy trauma patients, in case of high-risk patients the proper quality of pRBCs is crucial. This leads to an increased demand for efficient technology providing information on the pRBCs alterations deteriorating their quality. Here we present the design of an innovative, label-free, noninvasive, rapid Raman spectroscopy-based method for pRBCs quality evaluation, starting with the description of sample measurement and data analysis, through correlation of spectroscopic results with reference techniques' outcomes, and finishing with methodology verification and its application in clinical conditions. We have shown that Raman spectra collected from the pRBCs supernatant mixture with a proper chemometric analysis conducted for a minimum one ratio of integral intensities of the chosen Raman marker bands within the spectrum allow evaluation of the pRBC quality in a rapid, noninvasive, and free-label manner, without unsealing the pRBCs bag. Subsequently, spectroscopic data were compared with predefined reference values, either from pRBCs expiration or those defining the pRBCs quality, allowing to assess their utility for transfusion to patients with acute myeloid leukemia (AML) and lymphoblastic leukemia (ALL).
Collapse
Affiliation(s)
- Jakub Dybas
- Jagiellonian Center for Experimental Therapeutics, Jagiellonian University, 14 Bobrzyskiego St., 30-348, Krakow, Poland
| | - Aleksandra Wajda
- Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa St., 30-387, Krakow, Poland
| | - Fatih Celal Alcicek
- Jagiellonian Center for Experimental Therapeutics, Jagiellonian University, 14 Bobrzyskiego St., 30-348, Krakow, Poland
| | - Magdalena Kaczmarska
- Jagiellonian Center for Experimental Therapeutics, Jagiellonian University, 14 Bobrzyskiego St., 30-348, Krakow, Poland
| | - Katarzyna Bulat
- Jagiellonian Center for Experimental Therapeutics, Jagiellonian University, 14 Bobrzyskiego St., 30-348, Krakow, Poland
- Lukasiewicz Research Network, Krakow Institute of Technology, 73 Zakopiaska St., 30-418, Krakow, Poland
| | - Ewa Szczesny-Malysiak
- Jagiellonian Center for Experimental Therapeutics, Jagiellonian University, 14 Bobrzyskiego St., 30-348, Krakow, Poland
| | - Agnieszka Martyna
- Forensic Chemistry Research Group, University of Silesia in Katowice, 9 Szkolna St., 40-006, Katowice, Poland
| | - David Perez-Guaita
- Department of Analytical Chemistry, University of Valancia, Dr. Moliner 50, Burjassot, Spain
| | - Tomasz Sacha
- Chair of Haematology, Faculty of Medicine, Jagiellonian University Medical College, 12 Sw. Anny St., 30-008, Krakow, Poland
- Department of Haematology, Jagiellonian University Hospital, 2 Jakubowskiego St., 30-688, Krakow, Poland
| | - Katarzyna M Marzec
- Jagiellonian Center for Experimental Therapeutics, Jagiellonian University, 14 Bobrzyskiego St., 30-348, Krakow, Poland.
- Lukasiewicz Research Network, Krakow Institute of Technology, 73 Zakopiaska St., 30-418, Krakow, Poland.
| |
Collapse
|
10
|
Kraka E, Quintano M, La Force HW, Antonio JJ, Freindorf M. The Local Vibrational Mode Theory and Its Place in the Vibrational Spectroscopy Arena. J Phys Chem A 2022; 126:8781-8798. [DOI: 10.1021/acs.jpca.2c05962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Elfi Kraka
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University, 3215 Daniel Ave, Dallas, Texas75275-0314, United States
| | - Mateus Quintano
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University, 3215 Daniel Ave, Dallas, Texas75275-0314, United States
| | - Hunter W. La Force
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University, 3215 Daniel Ave, Dallas, Texas75275-0314, United States
| | - Juliana J. Antonio
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University, 3215 Daniel Ave, Dallas, Texas75275-0314, United States
| | - Marek Freindorf
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University, 3215 Daniel Ave, Dallas, Texas75275-0314, United States
| |
Collapse
|
11
|
Trends in biomedical analysis of red blood cells – Raman spectroscopy against other spectroscopic, microscopic and classical techniques. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2021.116481] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
12
|
Selim NS, El-Marakby SM. In-vitro study of the radioprotective effect of palladium α-lipoic acid nano-complex on hemoglobin molecule. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 258:119842. [PMID: 33940572 DOI: 10.1016/j.saa.2021.119842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/23/2021] [Accepted: 04/12/2021] [Indexed: 06/12/2023]
Abstract
This work is intended to study the radioprotective effect of palladium α-lipoic acid nano-complex (PLAC) on hemoglobin molecule in vitro. Blood samples were obtained from adult male rats weighing 120-150 g after dissection, using heparinized needles. Each blood sample was divided into four groups; the first group was kept untreated as control, palladium α-lipoic acid (PLAC) was added to the second group at concentration 2% v/v, the third group was exposed to 100 Gy gamma radiation and the forth group was irradiated with the addition of PLAC. Hemoglobin was extracted and prepared for measurement. The effects on the hemoglobin molecule were evaluated by FTIR and UV-visible spectroscopy. The results showed that PLAC increases the optical energy gap of the transition of the amino acid side chains and affects the spatial distribution of the globin part. Gamma radiation affects mainly the globin part, results in unfolding of the protein structure and perturbation in the relative orientation of the transition dipole moments. Addition of PLAC to the blood samples prior to irradiation was shown to provide protective effects which can be attributed to its ability to neutralize the free radicals.
Collapse
Affiliation(s)
- Nabila S Selim
- Molecular Biophysics Lab, Radiation Physics Depart, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, POB 29 Madinat Nasr, Cairo, Egypt.
| | - Seham M El-Marakby
- Molecular Biophysics Lab, Radiation Physics Depart, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, POB 29 Madinat Nasr, Cairo, Egypt.
| |
Collapse
|
13
|
Szczesny-Malysiak E, Mohaissen T, Bulat K, Kaczmarska M, Wajda A, Marzec KM. Sex-dependent membranopathy in stored human red blood cells. Haematologica 2021; 106:2779-2782. [PMID: 34233452 PMCID: PMC8485678 DOI: 10.3324/haematol.2021.278895] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Indexed: 11/09/2022] Open
Abstract
Not available.
Collapse
Affiliation(s)
- Ewa Szczesny-Malysiak
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, 14 Bobrzynskiego St., 30-348 Krakow
| | - Tasnim Mohaissen
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, 14 Bobrzynskiego St., 30-348 Krakow, Poland; Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna St., 30-688, Krakow
| | - Katarzyna Bulat
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, 14 Bobrzynskiego St., 30-348 Krakow
| | - Magdalena Kaczmarska
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, 14 Bobrzynskiego St., 30-348 Krakow
| | - Aleksandra Wajda
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, 14 Bobrzynskiego St., 30-348 Krakow, Poland; Faculty of Materials Science and Ceramics, AGH University of Science and Technology, 30 Mickiewicza St., 30-059 Krakow
| | - Katarzyna M Marzec
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, 14 Bobrzynskiego St., 30-348 Krakow.
| |
Collapse
|
14
|
Blat A, Stepanenko T, Bulat K, Wajda A, Dybas J, Mohaissen T, Alcicek FC, Szczesny-Malysiak E, Malek K, Fedorowicz A, Marzec KM. Spectroscopic Signature of Red Blood Cells in a D-Galactose-Induced Accelerated Aging Model. Int J Mol Sci 2021; 22:2660. [PMID: 33800818 PMCID: PMC7961785 DOI: 10.3390/ijms22052660] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/23/2021] [Accepted: 03/02/2021] [Indexed: 11/30/2022] Open
Abstract
This work presents a semi-quantitative spectroscopic approach, including FTIR-ATR and Raman spectroscopies, for the biochemical analysis of red blood cells (RBCs) supported by the biochemical, morphological and rheological reference techniques. This multi-modal approach provided the description of the RBC alterations at the molecular level in a model of accelerated aging induced by administration of D-galactose (D-gal), in comparison to natural aging. Such an approach allowed to conclude that most age-related biochemical RBC membrane changes (a decrease in lipid unsaturation and the level of phospholipids, or an increase in acyl chain shortening) as well as alterations in the morphological parameters and RBC deformability are well reflected in the D-gal model of accelerated aging. Similarly, as in natural aging, a decrease in LDL level in blood plasma and no changes in the fraction of glucose, creatinine, total cholesterol, HDL, iron, or triglycerides were observed during the course of accelerated aging. Contrary to natural aging, the D-gal model led to an increase in cholesterol esters and the fraction of total esterified lipids in RBC membranes, and evoked significant changes in the secondary structure of the membrane proteins. Moreover, a significant decrease in the phosphorous level of blood plasma was specific for the D-gal model. On the other hand, natural aging induced stronger changes in the secondary structures of the proteins of the RBCs' interior. This work proves that research on the aging mechanism, especially in circulation-related diseases, should employ the D-gal model with caution. Nonetheless, the D-gal model enables to imitate age-related rheological alterations in RBCs, although they are partially derived from different changes observed in the RBC membrane at the molecular level.
Collapse
Affiliation(s)
- Aneta Blat
- Jagiellonian Center for Experimental Therapeutics, Jagiellonian University, 14 Bobrzynskiego Str., 30-348 Krakow, Poland; (A.B.); (T.S.); (K.B.); (A.W.); (J.D.); (T.M.); (F.C.A.); (E.S.-M.)
- Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa Str., 30-387 Krakow, Poland;
| | - Tetiana Stepanenko
- Jagiellonian Center for Experimental Therapeutics, Jagiellonian University, 14 Bobrzynskiego Str., 30-348 Krakow, Poland; (A.B.); (T.S.); (K.B.); (A.W.); (J.D.); (T.M.); (F.C.A.); (E.S.-M.)
- Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa Str., 30-387 Krakow, Poland;
| | - Katarzyna Bulat
- Jagiellonian Center for Experimental Therapeutics, Jagiellonian University, 14 Bobrzynskiego Str., 30-348 Krakow, Poland; (A.B.); (T.S.); (K.B.); (A.W.); (J.D.); (T.M.); (F.C.A.); (E.S.-M.)
| | - Aleksandra Wajda
- Jagiellonian Center for Experimental Therapeutics, Jagiellonian University, 14 Bobrzynskiego Str., 30-348 Krakow, Poland; (A.B.); (T.S.); (K.B.); (A.W.); (J.D.); (T.M.); (F.C.A.); (E.S.-M.)
- Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Krakow, Poland
| | - Jakub Dybas
- Jagiellonian Center for Experimental Therapeutics, Jagiellonian University, 14 Bobrzynskiego Str., 30-348 Krakow, Poland; (A.B.); (T.S.); (K.B.); (A.W.); (J.D.); (T.M.); (F.C.A.); (E.S.-M.)
| | - Tasnim Mohaissen
- Jagiellonian Center for Experimental Therapeutics, Jagiellonian University, 14 Bobrzynskiego Str., 30-348 Krakow, Poland; (A.B.); (T.S.); (K.B.); (A.W.); (J.D.); (T.M.); (F.C.A.); (E.S.-M.)
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna St., 30-688 Krakow, Poland
| | - Fatih Celal Alcicek
- Jagiellonian Center for Experimental Therapeutics, Jagiellonian University, 14 Bobrzynskiego Str., 30-348 Krakow, Poland; (A.B.); (T.S.); (K.B.); (A.W.); (J.D.); (T.M.); (F.C.A.); (E.S.-M.)
| | - Ewa Szczesny-Malysiak
- Jagiellonian Center for Experimental Therapeutics, Jagiellonian University, 14 Bobrzynskiego Str., 30-348 Krakow, Poland; (A.B.); (T.S.); (K.B.); (A.W.); (J.D.); (T.M.); (F.C.A.); (E.S.-M.)
| | - Kamilla Malek
- Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa Str., 30-387 Krakow, Poland;
| | - Andrzej Fedorowicz
- Chair of Pharmacology, Jagiellonian University Medical College, 16 Grzegorzecka Str., 31-531 Krakow, Poland;
| | - Katarzyna M. Marzec
- Jagiellonian Center for Experimental Therapeutics, Jagiellonian University, 14 Bobrzynskiego Str., 30-348 Krakow, Poland; (A.B.); (T.S.); (K.B.); (A.W.); (J.D.); (T.M.); (F.C.A.); (E.S.-M.)
| |
Collapse
|
15
|
Siddiqui GA, Naeem A. The contrasting effect of macromolecular crowding and confinement on fibril formation of globular protein: Underlying cause of proteopathies. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|