1
|
Chen H, Bai D. The rectification of heterotypic Cx46/Cx50 gap junction channels depends on intracellular magnesium. BIOPHYSICS REPORTS 2024; 10:336-348. [PMID: 39539279 PMCID: PMC11554582 DOI: 10.52601/bpr.2024.240015] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 07/10/2024] [Indexed: 11/16/2024] Open
Abstract
Gap junction (GJ) intercellular communication is crucial in many physiological and pathological processes. A GJ channel is formed by head-to-head docking of two hexameric hemichannels from two neighboring cells. Heterotypic GJ channels formed by two different homomeric connexin hemichannels often display rectification properties in the current-voltage relationship while the underlying mechanisms are not fully clear. Here we studied heterotypic Cx46/Cx50 GJs at a single GJ channel level. Our data showed unitary Cx46/Cx50 GJ channel conductance (γj) rectification when 5 mmol/L Mg2+ was included in the patch pipette solution, while no γj rectification was observed when no Mg2+ was added. Including 5 mmol/L Mg2+ in pipette solution significantly decreased the γj of homotypic Cx46 GJ with little change in homotypic Cx50 γj. A missense point variant in Cx46 (E43F) reduced the Mg2+-dependent reduction in γj of Cx46 E43F GJ, indicating that E43 might be partially responsible for Mg2+-dependent decrease in γj of Cx46. A comprehensive understanding of Mg2+ modulation of GJ at the individual channel level is useful in understanding factors in modulating GJ-mediated intercellular communication in health and diseases.
Collapse
Affiliation(s)
- Honghong Chen
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | - Donglin Bai
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
2
|
Peracchia C. Calcium Role in Gap Junction Channel Gating: Direct Electrostatic or Calmodulin-Mediated? Int J Mol Sci 2024; 25:9789. [PMID: 39337278 PMCID: PMC11432632 DOI: 10.3390/ijms25189789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/05/2024] [Accepted: 09/08/2024] [Indexed: 09/30/2024] Open
Abstract
The chemical gating of gap junction channels is mediated by cytosolic calcium (Ca2+i) at concentrations ([Ca2+]i) ranging from high nanomolar (nM) to low micromolar (µM) range. Since the proteins of gap junctions, connexins/innexins, lack high-affinity Ca2+-binding sites, most likely gating is mediated by a Ca2+-binding protein, calmodulin (CaM) being the best candidate. Indeed, the role of Ca2+-CaM in gating is well supported by studies that have tested CaM blockers, CaM expression inhibition, testing of CaM mutants, co-localization of CaM and connexins, existence of CaM-binding sites in connexins/innexins, and expression of connexins (Cx) mutants, among others. Based on these data, since 2000, we have published a Ca2+-CaM-cork gating model. Despite convincing evidence for the Ca2+-CaM role in gating, a recent study has proposed an alternative gating model that would involve a direct electrostatic Ca2+-connexin interaction. However, this study, which tested the effect of unphysiologically high [Ca2+]i on the structure of isolated junctions, reported that neither changes in the channel's pore diameter nor connexin conformational changes are present, in spite of exposure of isolated gap junctions to [Ca2+]i as high at the 20 mM. In conclusion, data generated in the past four decades by multiple experimental approaches have clearly demonstrated the direct role of Ca2+-CaM in gap junction channel gating.
Collapse
Affiliation(s)
- Camillo Peracchia
- Department of Pharmacology and Physiology, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642-8711, USA
| |
Collapse
|
3
|
Brotherton DH, Nijjar S, Savva CG, Dale N, Cameron AD. Structures of wild-type and a constitutively closed mutant of connexin26 shed light on channel regulation by CO 2. eLife 2024; 13:RP93686. [PMID: 38829031 PMCID: PMC11147507 DOI: 10.7554/elife.93686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024] Open
Abstract
Connexins allow intercellular communication by forming gap junction channels (GJCs) between juxtaposed cells. Connexin26 (Cx26) can be regulated directly by CO2. This is proposed to be mediated through carbamylation of K125. We show that mutating K125 to glutamate, mimicking the negative charge of carbamylation, causes Cx26 GJCs to be constitutively closed. Through cryo-EM we observe that the K125E mutation pushes a conformational equilibrium towards the channel having a constricted pore entrance, similar to effects seen on raising the partial pressure of CO2. In previous structures of connexins, the cytoplasmic loop, important in regulation and where K125 is located, is disordered. Through further cryo-EM studies we trap distinct states of Cx26 and observe density for the cytoplasmic loop. The interplay between the position of this loop, the conformations of the transmembrane helices and the position of the N-terminal helix, which controls the aperture to the pore, provides a mechanism for regulation.
Collapse
Affiliation(s)
| | - Sarbjit Nijjar
- School of Life Sciences, University of WarwickCoventryUnited Kingdom
| | - Christos G Savva
- Leicester Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of LeicesterLeicesterUnited Kingdom
| | - Nicholas Dale
- School of Life Sciences, University of WarwickCoventryUnited Kingdom
| | | |
Collapse
|
4
|
Yasarbas SS, Inal E, Yildirim MA, Dubrac S, Lamartine J, Mese G. Connexins in epidermal health and diseases: insights into their mutations, implications, and therapeutic solutions. Front Physiol 2024; 15:1346971. [PMID: 38827992 PMCID: PMC11140265 DOI: 10.3389/fphys.2024.1346971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/15/2024] [Indexed: 06/05/2024] Open
Abstract
The epidermis, the outermost layer of the skin, serves as a protective barrier against external factors. Epidermal differentiation, a tightly regulated process essential for epidermal homeostasis, epidermal barrier formation and skin integrity maintenance, is orchestrated by several players, including signaling molecules, calcium gradient and junctional complexes such as gap junctions (GJs). GJ proteins, known as connexins facilitate cell-to-cell communication between adjacent keratinocytes. Connexins can function as either hemichannels or GJs, depending on their interaction with other connexons from neighboring keratinocytes. These channels enable the transport of metabolites, cAMP, microRNAs, and ions, including Ca2+, across cell membranes. At least ten distinct connexins are expressed within the epidermis and mutations in at least five of them has been linked to various skin disorders. Connexin mutations may cause aberrant channel activity by altering their synthesis, their gating properties, their intracellular trafficking, and the assembly of hemichannels and GJ channels. In addition to mutations, connexin expression is dysregulated in other skin conditions including psoriasis, chronic wound and skin cancers, indicating the crucial role of connexins in skin homeostasis. Current treatment options for conditions with mutant or altered connexins are limited and primarily focus on symptom management. Several therapeutics, including non-peptide chemicals, antibodies, mimetic peptides and allele-specific small interfering RNAs are promising in treating connexin-related skin disorders. Since connexins play crucial roles in maintaining epidermal homeostasis as shown with linkage to a range of skin disorders and cancer, further investigations are warranted to decipher the molecular and cellular alterations within cells due to mutations or altered expression, leading to abnormal proliferation and differentiation. This would also help characterize the roles of each isoform in skin homeostasis, in addition to the development of innovative therapeutic interventions. This review highlights the critical functions of connexins in the epidermis and the association between connexins and skin disorders, and discusses potential therapeutic options.
Collapse
Affiliation(s)
- S. Suheda Yasarbas
- Izmir Institute of Technology, Faculty of Science, Department of Molecular Biology and Genetics, Izmir, Turkiye
| | - Ece Inal
- Izmir Institute of Technology, Faculty of Science, Department of Molecular Biology and Genetics, Izmir, Turkiye
| | - M. Azra Yildirim
- Izmir Institute of Technology, Faculty of Science, Department of Molecular Biology and Genetics, Izmir, Turkiye
| | - Sandrine Dubrac
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Jérôme Lamartine
- Skin Functional Integrity Group, Laboratory for Tissue Biology and Therapeutics Engineering (LBTI) CNRS UMR5305, University of Lyon, Lyon, France
| | - Gulistan Mese
- Izmir Institute of Technology, Faculty of Science, Department of Molecular Biology and Genetics, Izmir, Turkiye
| |
Collapse
|
5
|
Boedtkjer E, Ara T. Strengthening the basics: acids and bases influence vascular structure and function, tissue perfusion, blood pressure, and human cardiovascular disease. Pflugers Arch 2024; 476:623-637. [PMID: 38383822 DOI: 10.1007/s00424-024-02926-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/23/2024]
Abstract
Acids and their conjugate bases accumulate in or dissipate from the interstitial space when tissue perfusion does not match the metabolic demand. Extracellular acidosis dilates most arterial beds, but associated acid-base disturbances-e.g., intracellular acidification and decreases in HCO3- concentration-can also elicit pro-contractile influences that diminish vasodilation and even dominate in some vascular beds to cause vasoconstriction. The ensemble activities of the acid-base-sensitive reactions in vascular smooth muscle and endothelial cells optimize vascular resistance for blood pressure control and direct the perfusion towards active tissue. In this review, we describe the mechanisms of intracellular pH regulation in the vascular wall and discuss how vascular smooth muscle and endothelial cells sense acid-base disturbances. We further deliberate on the functional effects of local acid-base disturbances and their integrated cardiovascular consequences under physiological and pathophysiological conditions. Finally, we address how mutations and polymorphisms in the molecular machinery that regulates pH locally and senses acid-base disturbances in the vascular wall can result in cardiovascular disease. Based on the emerging molecular insight, we propose that targeting local pH-dependent effectors-rather than systemic acid-base disturbances-has therapeutic potential to interfere with the progression and reduce the severity of cardiovascular disease.
Collapse
Affiliation(s)
- Ebbe Boedtkjer
- Department of Biomedicine, Aarhus University, Hoegh-Guldbergs Gade 10, DK-8000, Aarhus, Denmark.
| | - Tarannum Ara
- Department of Biomedicine, Aarhus University, Hoegh-Guldbergs Gade 10, DK-8000, Aarhus, Denmark
| |
Collapse
|
6
|
Feng Y, Ma X, Yang Y, Tao S, Ahmed A, Gong Z, Cheng X, Zhang W. The roles of DNA methylation on pH dependent i-motif (iM) formation in rice. Nucleic Acids Res 2024; 52:1243-1257. [PMID: 38180820 PMCID: PMC10853798 DOI: 10.1093/nar/gkad1245] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 12/14/2023] [Accepted: 12/19/2023] [Indexed: 01/07/2024] Open
Abstract
I-motifs (iMs) are four-stranded non-B DNA structures containing C-rich DNA sequences. The formation of iMs is sensitive to pH conditions and DNA methylation, although the extent of which is still unknown in both humans and plants. To investigate this, we here conducted iMab antibody-based immunoprecipitation and sequencing (iM-IP-seq) along with bisulfite sequencing using CK (original genomic DNA without methylation-related treatments) and hypermethylated or demethylated DNA at both pH 5.5 and 7.0 in rice, establishing a link between pH, DNA methylation and iM formation on a genome-wide scale. We found that iMs folded at pH 7.0 displayed higher methylation levels than those formed at pH 5.5. DNA demethylation and hypermethylation differently influenced iM formation at pH 7.0 and 5.5. Importantly, CG hypo-DMRs (differentially methylated regions) and CHH (H = A, C and T) hyper-DMRs alone or coordinated with CG/CHG hyper-DMRs may play determinant roles in the regulation of pH dependent iM formation. Thus, our study shows that the nature of DNA sequences alone or combined with their methylation status plays critical roles in determining pH-dependent formation of iMs. It therefore deepens the understanding of the pH and methylation dependent modulation of iM formation, which has important biological implications and practical applications.
Collapse
Affiliation(s)
- Yilong Feng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, CIC-MCP, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu 210095, China
| | - Xing Ma
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, CIC-MCP, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu 210095, China
| | - Ying Yang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, CIC-MCP, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu 210095, China
| | - Shentong Tao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, CIC-MCP, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu 210095, China
| | - Asgar Ahmed
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, CIC-MCP, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu 210095, China
- Bangladesh Wheat and Maize Research Institute (BWMRI), Nashipur, Dinajpur 5200, Bangladesh
| | - Zhiyun Gong
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou 225009, China
| | - Xuejiao Cheng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, CIC-MCP, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu 210095, China
| | - Wenli Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, CIC-MCP, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu 210095, China
| |
Collapse
|
7
|
Stürmer S, Bolz S, Zrenner E, Ueffing M, Haq W. Sustained Extracellular Electrical Stimulation Modulates the Permeability of Gap Junctions in rd1 Mouse Retina with Photoreceptor Degeneration. Int J Mol Sci 2024; 25:1616. [PMID: 38338908 PMCID: PMC10855676 DOI: 10.3390/ijms25031616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Neurons build vast gap junction-coupled networks (GJ-nets) that are permeable to ions or small molecules, enabling lateral signaling. Herein, we investigate (1) the effect of blinding diseases on GJ-nets in mouse retinas and (2) the impact of electrical stimulation on GJ permeability. GJ permeability was traced in the acute retinal explants of blind retinal degeneration 1 (rd1) mice using the GJ tracer neurobiotin. The tracer was introduced via the edge cut method into the GJ-net, and its spread was visualized in histological preparations (fluorescent tagged) using microscopy. Sustained stimulation was applied to modulate GJ permeability using a single large electrode. Our findings are: (1) The blind rd1 retinas displayed extensive intercellular coupling via open GJs. Three GJ-nets were identified: horizontal, amacrine, and ganglion cell networks. (2) Sustained stimulation significantly diminished the tracer spread through the GJs in all the cell layers, as occurs with pharmaceutical inhibition with carbenoxolone. We concluded that the GJ-nets of rd1 retinas remain coupled and functional after blinding disease and that their permeability is regulatable by sustained stimulation. These findings are essential for understanding molecular signaling in diseases over coupled networks and therapeutic approaches using electrical implants, such as eliciting visual sensations or suppressing cortical seizures.
Collapse
Affiliation(s)
| | | | | | | | - Wadood Haq
- Institute for Ophthalmic Research, University of Tuebingen, 72076 Tuebingen, Germany
| |
Collapse
|
8
|
Peracchia C. Gap Junction Channel Regulation: A Tale of Two Gates-Voltage Sensitivity of the Chemical Gate and Chemical Sensitivity of the Fast Voltage Gate. Int J Mol Sci 2024; 25:982. [PMID: 38256055 PMCID: PMC10815820 DOI: 10.3390/ijms25020982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Gap junction channels are regulated by gates sensitive to cytosolic acidification and trans-junctional voltage (Vj). We propose that the chemical gate is a calmodulin (CaM) lobe. The fast-Vj gate is made primarily by the connexin's NH2-terminus domain (NT). The chemical gate closes the channel slowly and completely, while the fast-Vj gate closes the channel rapidly but incompletely. The chemical gate closes with increased cytosolic calcium concentration [Ca2+]i and with Vj gradients at Vj's negative side. In contrast, the fast-Vj gate closes at the positive or negative side of Vj depending on the connexin (Cx) type. Cxs with positively charged NT close at Vj's negative side, while those with negatively charged NT close at Vj's positive side. Cytosolic acidification alters in opposite ways the sensitivity of the fast-Vj gate: it increases the Vj sensitivity of negative gaters and decreases that of positive gaters. While the fast-Vj gate closes and opens instantaneously, the chemical gate often shows fluctuations, likely to reflect the shifting of the gate (CaM's N-lobe) in and out of the channel's pore.
Collapse
Affiliation(s)
- Camillo Peracchia
- Department of Pharmacology and Physiology, School of Medicine and Dentistry, University Rochester, Rochester, NY 14642-8711, USA
| |
Collapse
|
9
|
Levin M. Bioelectric networks: the cognitive glue enabling evolutionary scaling from physiology to mind. Anim Cogn 2023; 26:1865-1891. [PMID: 37204591 PMCID: PMC10770221 DOI: 10.1007/s10071-023-01780-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 04/12/2023] [Accepted: 04/24/2023] [Indexed: 05/20/2023]
Abstract
Each of us made the remarkable journey from mere matter to mind: starting life as a quiescent oocyte ("just chemistry and physics"), and slowly, gradually, becoming an adult human with complex metacognitive processes, hopes, and dreams. In addition, even though we feel ourselves to be a unified, single Self, distinct from the emergent dynamics of termite mounds and other swarms, the reality is that all intelligence is collective intelligence: each of us consists of a huge number of cells working together to generate a coherent cognitive being with goals, preferences, and memories that belong to the whole and not to its parts. Basal cognition is the quest to understand how Mind scales-how large numbers of competent subunits can work together to become intelligences that expand the scale of their possible goals. Crucially, the remarkable trick of turning homeostatic, cell-level physiological competencies into large-scale behavioral intelligences is not limited to the electrical dynamics of the brain. Evolution was using bioelectric signaling long before neurons and muscles appeared, to solve the problem of creating and repairing complex bodies. In this Perspective, I review the deep symmetry between the intelligence of developmental morphogenesis and that of classical behavior. I describe the highly conserved mechanisms that enable the collective intelligence of cells to implement regulative embryogenesis, regeneration, and cancer suppression. I sketch the story of an evolutionary pivot that repurposed the algorithms and cellular machinery that enable navigation of morphospace into the behavioral navigation of the 3D world which we so readily recognize as intelligence. Understanding the bioelectric dynamics that underlie construction of complex bodies and brains provides an essential path to understanding the natural evolution, and bioengineered design, of diverse intelligences within and beyond the phylogenetic history of Earth.
Collapse
Affiliation(s)
- Michael Levin
- Allen Discovery Center at Tufts University, 200 Boston Ave., Suite 4600, Medford, MA, 02155, USA.
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA.
| |
Collapse
|
10
|
Qi C, Lavriha P, Bayraktar E, Vaithia A, Schuster D, Pannella M, Sala V, Picotti P, Bortolozzi M, Korkhov VM. Structures of wild-type and selected CMT1X mutant connexin 32 gap junction channels and hemichannels. SCIENCE ADVANCES 2023; 9:eadh4890. [PMID: 37647412 PMCID: PMC10468125 DOI: 10.1126/sciadv.adh4890] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 07/27/2023] [Indexed: 09/01/2023]
Abstract
In myelinating Schwann cells, connection between myelin layers is mediated by gap junction channels (GJCs) formed by docked connexin 32 (Cx32) hemichannels (HCs). Mutations in Cx32 cause the X-linked Charcot-Marie-Tooth disease (CMT1X), a degenerative neuropathy without a cure. A molecular link between Cx32 dysfunction and CMT1X pathogenesis is still missing. Here, we describe the high-resolution cryo-electron cryo-myography (cryo-EM) structures of the Cx32 GJC and HC, along with two CMT1X-linked mutants, W3S and R22G. While the structures of wild-type and mutant GJCs are virtually identical, the HCs show a major difference: In the W3S and R22G mutant HCs, the amino-terminal gating helix partially occludes the pore, consistent with a diminished HC activity. Our results suggest that HC dysfunction may be involved in the pathogenesis of CMT1X.
Collapse
Affiliation(s)
- Chao Qi
- Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
- Laboratory of Biomolecular Research, Paul Scherrer Institute, Villigen, Switzerland
| | - Pia Lavriha
- Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
- Laboratory of Biomolecular Research, Paul Scherrer Institute, Villigen, Switzerland
| | - Erva Bayraktar
- Veneto Institute of Molecular Medicine (VIMM), Padua, Italy
- Department of Physics and Astronomy “G. Galilei”, University of Padua, Padua, Italy
| | - Anand Vaithia
- Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
- Laboratory of Biomolecular Research, Paul Scherrer Institute, Villigen, Switzerland
| | - Dina Schuster
- Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
- Laboratory of Biomolecular Research, Paul Scherrer Institute, Villigen, Switzerland
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Micaela Pannella
- Veneto Institute of Molecular Medicine (VIMM), Padua, Italy
- Department of Physics and Astronomy “G. Galilei”, University of Padua, Padua, Italy
| | - Valentina Sala
- Veneto Institute of Molecular Medicine (VIMM), Padua, Italy
| | - Paola Picotti
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Mario Bortolozzi
- Veneto Institute of Molecular Medicine (VIMM), Padua, Italy
- Department of Physics and Astronomy “G. Galilei”, University of Padua, Padua, Italy
| | - Volodymyr M. Korkhov
- Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
- Laboratory of Biomolecular Research, Paul Scherrer Institute, Villigen, Switzerland
| |
Collapse
|
11
|
Ca 2+-Dependent and -Independent Calmodulin Binding to the Cytoplasmic Loop of Gap Junction Connexins. Int J Mol Sci 2023; 24:ijms24044153. [PMID: 36835569 PMCID: PMC9961272 DOI: 10.3390/ijms24044153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Ca2+/calmodulin (Ca2+/CaM) interaction with connexins (Cx) is well-established; however, the mechanistic basis of regulation of gap junction function by Ca2+/CaM is not fully understood. Ca2+/CaM is predicted to bind to a domain in the C-terminal portion of the intracellular loop (CL2) in the vast majority of Cx isoforms and for a number of Cx-s this prediction has proved correct. In this study, we investigate and characterise both Ca2+/CaM and apo-CaM binding to selected representatives of each of the α, β and γ connexin family to develop a better mechanistic understanding of CaM effects on gap junction function. The affinity and kinetics Ca2+/CaM and apo-CaM interactions of CL2 peptides of β-Cx32, γ-Cx35, α-Cx43, α-Cx45 and α-Cx57 were investigated. All five Cx CL2 peptides were found to have high affinity for Ca2+/CaM with dissociation constants (Kd(+Ca)) from 20 to 150 nM. The limiting rate of binding and the rates of dissociation covered a broad range. In addition, we obtained evidence for high affinity Ca2+-independent interaction of all five peptides with CaM, consistent with CaM remaining anchored to gap junctions in resting cells. However, for the α-Cx45 and α-Cx57 CL2 peptides, Ca2+-dependent association at resting [Ca2+] of 50-100 nM is indicated in these complexes as one of the CaM Ca2+ binding sites displays high affinity with Kd of 70 and 30 nM for Ca2+, respectively. Furthermore, complex conformational changes were observed in peptide-apo-CaM complexes with the structure of CaM compacted or stretched by the peptide in a concentration dependent manner suggesting that the CL2 domain may undergo helix-to-coil transition and/or forms bundles, which may be relevant in the hexameric gap junction. We demonstrate inhibition of gap junction permeability by Ca2+/CaM in a dose dependent manner, further cementing Ca2+/CaM as a regulator of gap junction function. The motion of a stretched CaM-CL2 complex compacting upon Ca2+ binding may bring about the Ca2+/CaM block of the gap junction pore by a push and pull action on the CL2 C-terminal hydrophobic residues of transmembrane domain 3 (TM3) in and out of the membrane.
Collapse
|
12
|
Conformational changes in the human Cx43/GJA1 gap junction channel visualized using cryo-EM. Nat Commun 2023; 14:931. [PMID: 36805660 PMCID: PMC9938869 DOI: 10.1038/s41467-023-36593-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 02/07/2023] [Indexed: 02/20/2023] Open
Abstract
Connexin family proteins assemble into hexameric hemichannels in the cell membrane. The hemichannels dock together between two adjacent membranes to form gap junction intercellular channels (GJIChs). We report the cryo-electron microscopy structures of Cx43 GJICh, revealing the dynamic equilibrium state of various channel conformations in detergents and lipid nanodiscs. We identify three different N-terminal helix conformations of Cx43-gate-covering (GCN), pore-lining (PLN), and flexible intermediate (FIN)-that are randomly distributed in purified GJICh particles. The conformational equilibrium shifts to GCN by cholesteryl hemisuccinates and to PLN by C-terminal truncations and at varying pH. While GJIChs that mainly comprise GCN protomers are occluded by lipids, those containing conformationally heterogeneous protomers show markedly different pore sizes. We observe an α-to-π-helix transition in the first transmembrane helix, which creates a side opening to the membrane in the FIN and PLN conformations. This study provides basic structural information to understand the mechanisms of action and regulation of Cx43 GJICh.
Collapse
|
13
|
Hypertensive Nephropathy: Unveiling the Possible Involvement of Hemichannels and Pannexons. Int J Mol Sci 2022; 23:ijms232415936. [PMID: 36555574 PMCID: PMC9785367 DOI: 10.3390/ijms232415936] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Hypertension is one of the most common risk factors for developing chronic cardiovascular diseases, including hypertensive nephropathy. Within the glomerulus, hypertension causes damage and activation of mesangial cells (MCs), eliciting the production of large amounts of vasoactive and proinflammatory agents. Accordingly, the activation of AT1 receptors by the vasoactive molecule angiotensin II (AngII) contributes to the pathogenesis of renal damage, which is mediated mostly by the dysfunction of intracellular Ca2+ ([Ca2+]i) signaling. Similarly, inflammation entails complex processes, where [Ca2+]i also play crucial roles. Deregulation of this second messenger increases cell damage and promotes fibrosis, reduces renal blood flow, and impairs the glomerular filtration barrier. In vertebrates, [Ca2+]i signaling depends, in part, on the activity of two families of large-pore channels: hemichannels and pannexons. Interestingly, the opening of these channels depends on [Ca2+]i signaling. In this review, we propose that the opening of channels formed by connexins and/or pannexins mediated by AngII induces the ATP release to the extracellular media, with the subsequent activation of purinergic receptors. This process could elicit Ca2+ overload and constitute a feed-forward mechanism, leading to kidney damage.
Collapse
|
14
|
Bioelectric regulation of intestinal stem cells. Trends Cell Biol 2022:S0962-8924(22)00234-3. [PMID: 36396487 PMCID: PMC10183058 DOI: 10.1016/j.tcb.2022.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 11/17/2022]
Abstract
Proper regulation of ion balance across the intestinal epithelium is essential for physiological functions, while ion imbalance causes intestinal disorders with dire health consequences. Ion channels, pumps, and exchangers are vital for regulating ion movements (i.e., bioelectric currents) that control epithelial absorption and secretion. Recent in vivo studies used the Drosophila gut to identify conserved pathways that link regulators of Ca2+, Na+ and Cl- with intestinal stem cell (ISC) proliferation. These studies laid a foundation for using the Drosophila gut to identify conserved proliferative responses triggered by bioelectric regulators. Here, we review these studies, discuss their significance, as well as the advantages of using Drosophila to unravel conserved bioelectrically induced molecular pathways in the intestinal epithelium under physiological, pathophysiological, and regenerative conditions.
Collapse
|
15
|
Gap junctions mediate discrete regulatory steps during fly spermatogenesis. PLoS Genet 2022; 18:e1010417. [PMID: 36174062 PMCID: PMC9578636 DOI: 10.1371/journal.pgen.1010417] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 10/18/2022] [Accepted: 09/07/2022] [Indexed: 11/19/2022] Open
Abstract
Gametogenesis requires coordinated signaling between germ cells and somatic cells. We previously showed that Gap junction (GJ)-mediated soma-germline communication is essential for fly spermatogenesis. Specifically, the GJ protein Innexin4/Zero population growth (Zpg) is necessary for somatic and germline stem cell maintenance and differentiation. It remains unknown how GJ-mediated signals regulate spermatogenesis or whether the function of these signals is restricted to the earliest stages of spermatogenesis. Here we carried out comprehensive structure/function analysis of Zpg using insights obtained from the protein structure of innexins to design mutations aimed at selectively perturbing different regulatory regions as well as the channel pore of Zpg. We identify the roles of various regulatory sites in Zpg in the assembly and maintenance of GJs at the plasma membrane. Moreover, mutations designed to selectively disrupt, based on size and charge, the passage of cargos through the Zpg channel pore, blocked different stages of spermatogenesis. Mutations were identified that progressed through early germline and soma development, but exhibited defects in entry to meiosis or sperm individualisation, resulting in reduced fertility or sterility. Our work shows that specific signals that pass through GJs regulate the transition between different stages of gametogenesis.
Collapse
|
16
|
Anesthetics and Cell-Cell Communication: Potential Ca 2+-Calmodulin Role in Gap Junction Channel Gating by Heptanol, Halothane and Isoflurane. Int J Mol Sci 2022; 23:ijms23169017. [PMID: 36012286 PMCID: PMC9409107 DOI: 10.3390/ijms23169017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/08/2022] [Accepted: 08/11/2022] [Indexed: 11/17/2022] Open
Abstract
Cell–cell communication via gap junction channels is known to be inhibited by the anesthetics heptanol, halothane and isoflurane; however, despite numerous studies, the mechanism of gap junction channel gating by anesthetics is still poorly understood. In the early nineties, we reported that gating by anesthetics is strongly potentiated by caffeine and theophylline and inhibited by 4-Aminopyridine. Neither Ca2+ channel blockers nor 3-isobutyl-1-methylxanthine (IBMX), forskolin, CPT-cAMP, 8Br-cGMP, adenosine, phorbol ester or H7 had significant effects on gating by anesthetics. In our publication, we concluded that neither cytosolic Ca2+i nor pHi were involved, and suggested a direct effect of anesthetics on gap junction channel proteins. However, while a direct effect cannot be excluded, based on the potentiating effect of caffeine and theophylline added to anesthetics and data published over the past three decades, we are now reconsidering our earlier interpretation and propose an alternative hypothesis that uncoupling by heptanol, halothane and isoflurane may actually result from a rise in cytosolic Ca2+ concentration ([Ca2+]i) and consequential activation of calmodulin linked to gap junction proteins.
Collapse
|
17
|
Van Campenhout R, Leroy K, Cooreman A, Tabernilla A, Cogliati B, Kadam P, Vinken M. Connexin-Based Channels in the Liver. Compr Physiol 2022; 12:4147-4163. [PMID: 35950654 DOI: 10.1002/cphy.c220007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Connexin proteins oligomerize in hexameric structures called connexin hemichannels, which then dock to form gap junctions. Gap junctions direct cell-cell communication by allowing the exchange of small molecules and ions between neighboring cells. In this way, hepatic gap junctions support liver homeostasis. Besides serving as building blocks for gap junctions, connexin hemichannels provide a pathway between the intracellular and the extracellular environment. The activation of connexin hemichannels is associated with acute and chronic liver pathologies. This article discusses the role of gap junctions and connexin hemichannels in the liver. © 2022 American Physiological Society. Compr Physiol 12:1-17, 2022.
Collapse
Affiliation(s)
- Raf Van Campenhout
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Kaat Leroy
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Axelle Cooreman
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Andrés Tabernilla
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Bruno Cogliati
- School of Veterinary Medicine and Animal Science, Department of Pathology, University of São Paulo, São Paulo, Brazil
| | - Prashant Kadam
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Mathieu Vinken
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
18
|
Djamgoz MBA. Combinatorial Therapy of Cancer: Possible Advantages of Involving Modulators of Ionic Mechanisms. Cancers (Basel) 2022; 14:2703. [PMID: 35681682 PMCID: PMC9179511 DOI: 10.3390/cancers14112703] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/22/2022] [Accepted: 05/27/2022] [Indexed: 02/04/2023] Open
Abstract
Cancer is a global health problem that 1 in 2-3 people can expect to experience during their lifetime. Several different modalities exist for cancer management, but all of these suffer from significant shortcomings in both diagnosis and therapy. Apart from developing completely new therapies, a viable way forward is to improve the efficacy of the existing modalities. One way is to combine these with each other or with other complementary approaches. An emerging latter approach is derived from ionic mechanisms, mainly ion channels and exchangers. We evaluate the evidence for this systematically for the main treatment methods: surgery, chemotherapy, radiotherapy and targeted therapies (including monoclonal antibodies, steroid hormones, tyrosine kinase inhibitors and immunotherapy). In surgery, the possible systemic use of local anesthetics to suppress subsequent relapse is still being discussed. For all the other methods, there is significant positive evidence for several cancers and a range of modulators of ionic mechanisms. This applies also to some of the undesirable side effects of the treatments. In chemotherapy, for example, there is evidence for co-treatment with modulators of the potassium channel (Kv11.1), pH regulation (sodium-hydrogen exchanger) and Na+-K+-ATPase (digoxin). Voltage-gated sodium channels, shown previously to promote metastasis, appear to be particularly useful for co-targeting with inhibitors of tyrosine kinases, especially epidermal growth factor. It is concluded that combining current orthodox treatment modalities with modulators of ionic mechanisms can produce beneficial effects including (i) making the treatment more effective, e.g., by lowering doses; (ii) avoiding the onset of resistance to therapy; (iii) reducing undesirable side effects. However, in many cases, prospective clinical trials are needed to put the findings firmly into clinical context.
Collapse
Affiliation(s)
- Mustafa B. A. Djamgoz
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK; ; Tel.: +44-796-181-6959
- Biotechnology Research Centre, Cyprus International University, Haspolat, Mersin 10, Turkey
| |
Collapse
|
19
|
Trementozzi AN, Zhao C, Smyth H, Cui Z, Stachowiak JC. Gap Junction-Mediated Delivery of Polymeric Macromolecules. ACS Biomater Sci Eng 2022; 8:1566-1572. [PMID: 35263989 PMCID: PMC9157716 DOI: 10.1021/acsbiomaterials.1c01459] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cellular delivery of therapeutic macromolecules such as proteins, peptides, and nucleic acids remains limited due to inefficient transport across the cellular plasma membrane. Gap junction channels, composed of connexin proteins, provide a mechanism for direct transfer of small molecules across membranes, and recent evidence suggests that the transfer of larger, polymer-like molecules such as microRNAs may be possible. Here, we report direct evidence of gap junction-mediated transfer of polymeric macromolecules. Specifically, we examined the transport of dextran chains with molecular weights ranging from 10 to 70 kDa. We found that dextran chains of up to 40 kDa can diffuse through at least five cell layers in a gap junction-dependent manner within a 30 min time frame. Further, we evaluated the ability of connectosomes, cell-derived vesicles containing functional connexin proteins, to be loaded with dextran chains. By opening connexon hemichannel pores within the membranes of connectosomes, we found that 10 kDa dextran was loaded into more than 90% of vesicles, with reduced levels of loading for dextran chains of larger molecular weight. Upon delivering 10 kDa dextran-loaded connectosomes to cells, we further found that connectosomes transferred these membrane-impermeable molecules to the cellular cytosol with dramatically improved efficiency in comparison to the delivery of free, unencapsulated dextran. Collectively, these results reveal that polymeric macromolecules can be delivered to cells via gap junctions, suggesting that the gap junction route may be useful for the delivery of polymeric therapeutic molecules, such as nucleic acids and peptides.
Collapse
Affiliation(s)
- Andrea N Trementozzi
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Chi Zhao
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Hugh Smyth
- College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Zhengrong Cui
- College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jeanne C Stachowiak
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
20
|
Brotherton DH, Savva CG, Ragan TJ, Dale N, Cameron AD. Conformational changes and CO 2-induced channel gating in connexin26. Structure 2022; 30:697-706.e4. [PMID: 35276081 PMCID: PMC9592558 DOI: 10.1016/j.str.2022.02.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 01/24/2022] [Accepted: 02/14/2022] [Indexed: 12/22/2022]
Abstract
Connexins form large-pore channels that function either as dodecameric gap junctions or hexameric hemichannels to allow the regulated movement of small molecules and ions across cell membranes. Opening or closing of the channels is controlled by a variety of stimuli, and dysregulation leads to multiple diseases. An increase in the partial pressure of carbon dioxide (PCO2) has been shown to cause connexin26 (Cx26) gap junctions to close. Here, we use cryoelectron microscopy (cryo-EM) to determine the structure of human Cx26 gap junctions under increasing levels of PCO2. We show a correlation between the level of PCO2 and the size of the aperture of the pore, governed by the N-terminal helices that line the pore. This indicates that CO2 alone is sufficient to cause conformational changes in the protein. Analysis of the conformational states shows that movements at the N terminus are linked to both subunit rotation and flexing of the transmembrane helices. High-resolution cryo-EM structures of connexin26 at varying levels of PCO2 CO2 alone causes conformational changes in the protein under stable pH conditions The N-terminal helices regulate the aperture of the pore KID syndrome mutations affecting CO2 sensitivity map to flexion points of structure
Collapse
Affiliation(s)
- Deborah H Brotherton
- School of Life Sciences, University of Warwick, Gibbet Hill Road, CV4 7AL Coventry, UK
| | - Christos G Savva
- Leicester Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Lancaster Road, LE1 7HB Leicester, UK
| | - Timothy J Ragan
- Leicester Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Lancaster Road, LE1 7HB Leicester, UK
| | - Nicholas Dale
- School of Life Sciences, University of Warwick, Gibbet Hill Road, CV4 7AL Coventry, UK.
| | - Alexander D Cameron
- School of Life Sciences, University of Warwick, Gibbet Hill Road, CV4 7AL Coventry, UK.
| |
Collapse
|
21
|
Kraujalis T, Gudaitis L, Kraujaliene L, Snipas M, Palacios-Prado N, Verselis VK. The Amino Terminal Domain and Modulation of Connexin36 Gap Junction Channels by Intracellular Magnesium Ions. Front Physiol 2022; 13:839223. [PMID: 35264979 PMCID: PMC8899287 DOI: 10.3389/fphys.2022.839223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 01/28/2022] [Indexed: 11/13/2022] Open
Abstract
Electrical synapses between neurons in the mammalian CNS are predominantly formed of the connexin36 (Cx36) gap junction (GJ) channel protein. Unique among GJs formed of a number of other members of the Cx gene family, Cx36 GJs possess a high sensitivity to intracellular Mg2+ that can robustly act to modulate the strength of electrical synaptic transmission. Although a putative Mg2+ binding site was previously identified to reside in the aqueous pore in the first extracellular (E1) loop domain, the involvement of the N-terminal (NT) domain in the atypical response of Cx36 GJs to pH was shown to depend on intracellular levels of Mg2+. In this study, we examined the impact of amino acid substitutions in the NT domain on Mg2+ modulation of Cx36 GJs, focusing on positions predicted to line the pore funnel, which constitutes the cytoplasmic entrance of the channel pore. We find that charge substitutions at the 8th, 13th, and 18th positions had pronounced effects on Mg2+ sensitivity, particularly at position 13 at which an A13K substitution completely abolished sensitivity to Mg2+. To assess potential mechanisms of Mg2+ action, we constructed and tested a series of mathematical models that took into account gating of the component hemichannels in a Cx36 GJ channel as well as Mg2+ binding to each hemichannel in open and/or closed states. Simultaneous model fitting of measurements of junctional conductance, gj, and transjunctional Mg2+ fluxes using a fluorescent Mg2+ indicator suggested that the most viable mechanism for Cx36 regulation by Mg2+ entails the binding of Mg2+ to and subsequent stabilization of the closed state in each hemichannel. Reduced permeability to Mg2+ was also evident, particularly for the A13K substitution, but homology modeling of all charge-substituted NT variants showed only a moderate correlation between a reduction in the negative electrostatic potential and a reduction in the permeability to Mg2+ ions. Given the reported role of the E1 domain in Mg2+ binding together with the impact of NT substitutions on gating and the apparent state-dependence of Mg2+ binding, this study suggests that the NT domain can be an integral part of Mg2+ modulation of Cx36 GJs likely through the coupling of conformational changes between NT and E1 domains.
Collapse
Affiliation(s)
- Tadas Kraujalis
- Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
- Department of Applied Informatics, Kaunas University of Technology, Kaunas, Lithuania
- *Correspondence: Tadas Kraujalis,
| | - Lukas Gudaitis
- Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Lina Kraujaliene
- Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Mindaugas Snipas
- Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
- Department of Mathematical Modelling, Kaunas University of Technology, Kaunas, Lithuania
| | - Nicolás Palacios-Prado
- Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro Interdisciplinario de Neurociencias de Valparaíso, Universidad de Valparaiso, Valparaíso, Chile
| | - Vytas K. Verselis
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY, United States
| |
Collapse
|
22
|
Unal YC, Yavuz B, Ozcivici E, Mese G. The role of connexins in breast cancer: from misregulated cell communication to aberrant intracellular signaling. Tissue Barriers 2022; 10:1962698. [PMID: 34355641 PMCID: PMC8794248 DOI: 10.1080/21688370.2021.1962698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/22/2021] [Accepted: 07/22/2021] [Indexed: 12/24/2022] Open
Abstract
In spite of clinical advancements and improved diagnostic techniques, breast cancers are the leading cause of cancer-associated deaths in women worldwide. Although 70% of early breast cancers can be cured, there are no efficient therapies against metastatic breast cancers. Several factors including connexins and gap junctions play roles in breast tumorigenesis. Connexins are critical for cellular processes as a linkage between connexin mutations and hereditary disorders demonstrated their importance for tissue homeostasis. Further, alterations in their expression, localization and channel activities were observed in many cancers including breast cancer. Both channel-dependent and independent functions of connexins were reported in initiation and progression of cancers. Unlike initial reports suggesting tumor suppressor functions, connexins and gap junctions have stage, context and isoform dependent effects in breast cancers similar to other cancers. In this review, we tried to describe the current understanding of connexins in tumorigenesis specifically in breast cancers.
Collapse
Affiliation(s)
- Yagmur Ceren Unal
- Faculty of Science, Department of Molecular Biology and Genetics, Izmir Institute of Technology, Urla, Izmir, Turkey
| | - Busra Yavuz
- Faculty of Science, Department of Molecular Biology and Genetics, Izmir Institute of Technology, Urla, Izmir, Turkey
| | - Engin Ozcivici
- Department of Bioengineering, Faculty of Engineering, Izmir Institute of Technology, Urla, Izmir, Turkey
| | - Gulistan Mese
- Faculty of Science, Department of Molecular Biology and Genetics, Izmir Institute of Technology, Urla, Izmir, Turkey
| |
Collapse
|
23
|
Peracchia C, Leverone Peracchia LM. Calmodulin-Connexin Partnership in Gap Junction Channel Regulation-Calmodulin-Cork Gating Model. Int J Mol Sci 2021; 22:ijms222313055. [PMID: 34884859 PMCID: PMC8658047 DOI: 10.3390/ijms222313055] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/27/2021] [Accepted: 11/29/2021] [Indexed: 01/19/2023] Open
Abstract
In the past four decades numerous findings have indicated that gap junction channel gating is mediated by intracellular calcium concentrations ([Ca2+i]) in the high nanomolar range via calmodulin (CaM). We have proposed a CaM-based gating model based on evidence for a direct CaM role in gating. This model is based on the following: CaM inhibitors and the inhibition of CaM expression to prevent chemical gating. A CaM mutant with higher Ca2+ sensitivity greatly increases gating sensitivity. CaM co-localizes with connexins. Connexins have high-affinity CaM-binding sites. Connexin mutants paired to wild type connexins have a higher gating sensitivity, which is eliminated by the inhibition of CaM expression. Repeated trans-junctional voltage (Vj) pulses progressively close channels by the chemical/slow gate (CaM’s N-lobe). At the single channel level, the gate closes and opens slowly with on-off fluctuations. Internally perfused crayfish axons lose gating competency but recover it by the addition of Ca-CaM to the internal perfusion solution. X-ray diffraction data demonstrate that isolated gap junctions are gated at the cytoplasmic end by a particle of the size of a CaM lobe. We have proposed two types of CaM-driven gating: “Ca-CaM-Cork” and “CaM-Cork”. In the first, the gating involves Ca2+-induced CaM activation. In the second, the gating occurs without a [Ca2+]i rise.
Collapse
|
24
|
Choudhary A, Mu C, Barrett KT, Charkhand B, Williams-Dyjur C, Marks WN, Shearer J, Rho JM, Scantlebury MH. The link between brain acidosis, breathing and seizures: a novel mechanism of action for the ketogenic diet in a model of infantile spasms. Brain Commun 2021; 3:fcab189. [PMID: 34734183 DOI: 10.1093/braincomms/fcab189] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2021] [Indexed: 11/12/2022] Open
Abstract
Infantile spasms (IS) syndrome is a catastrophic, epileptic encephalopathy of infancy that is often refractory to current antiepileptic therapies. The ketogenic diet (KD) has emerged as an alternative treatment for patients with medically intractable epilepsy, though the prospective validity and mechanism of action for IS remains largely unexplored. We investigated the KD's efficacy as well as its mechanism of action in a rodent model of intractable IS. The spasms were induced using the triple-hit paradigm and the animals were then artificially reared and put on either the KD (4:1 fats: carbohydrate + protein) or a control milk diet (CM; 1.7:1). 31Phosphorus magnetic resonance spectroscopy (31P MRS) and head-out plethysmography were examined in conjunction with continuous video-EEG behavioural recordings in lesioned animals and sham-operated controls. The KD resulted in a peripheral ketosis observed both in the blood and urine. The KD led to a robust reduction in the frequency of spasms observed, with approximately a 1.5-fold increase in the rate of survival. Intriguingly, the KD resulted in an intracerebral acidosis as measured with 31P MRS. In addition, the respiratory profile of the lesioned rats on the KD was significantly altered with slower, deeper and longer breathing, resulting in decreased levels of expired CO2. Sodium bicarbonate supplementation, acting as a pH buffer, partially reversed the KD's protective effects on spasm frequency. There were no differences in the mitochondrial respiratory profiles in the liver and brain frontal cortex measured between the groups, supporting the notion that the effects of the KD on breathing are not entirely due to changes in intermediary metabolism. Together, our results indicate that the KD produces its anticonvulsant effects through changes in respiration leading to intracerebral acidosis. These findings provide a novel understanding of the mechanisms underlying the anti-seizure effects of the KD in IS. Further research is required to determine whether the effects of the KD on breathing and intracerebral acid-base balance are seen in other paediatric models of epilepsy.
Collapse
Affiliation(s)
- Anamika Choudhary
- Department of Paediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, University of Calgary Alberta, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Chunlong Mu
- Department of Paediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, University of Calgary Alberta, Calgary, Alberta, Canada.,Department of Biochemistry & Molecular Biology, Cumming School of Medicine and Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Karlene T Barrett
- Department of Paediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, University of Calgary Alberta, Calgary, Alberta, Canada
| | - Behshad Charkhand
- Department of Paediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Christine Williams-Dyjur
- Department of Paediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Wendie N Marks
- Department of Paediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, University of Calgary Alberta, Calgary, Alberta, Canada.,Department of Biochemistry & Molecular Biology, Cumming School of Medicine and Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Jane Shearer
- Alberta Children's Hospital Research Institute, University of Calgary Alberta, Calgary, Alberta, Canada.,Department of Biochemistry & Molecular Biology, Cumming School of Medicine and Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Jong M Rho
- Departments of Neurosciences and Pediatrics, University of California San Diego (UCSD), San Diego, CA, USA
| | - Morris H Scantlebury
- Department of Paediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, University of Calgary Alberta, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
25
|
The Effect of Calcium Ions on Mechanosensation and Neuronal Activity in Proprioceptive Neurons. NEUROSCI 2021. [DOI: 10.3390/neurosci2040026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Proprioception of all animals is important in being able to have coordinated locomotion. Stretch activated ion channels (SACs) transduce the mechanical force into electrical signals in the proprioceptive sensory endings. The types of SACs vary among sensory neurons in animals as defined by pharmacological, physiological and molecular identification. The chordotonal organs within insects and crustaceans offer a unique ability to investigate proprioceptive function. The effects of the extracellular environment on neuronal activity, as well as the function of associated SACs are easily accessible and viable in minimal saline for ease in experimentation. The effect of extracellular [Ca2+] on membrane properties which affect voltage-sensitivity of ion channels, threshold of action potentials and SACs can be readily addressed in the chordotonal organ in crab limbs. It is of interest to understand how low extracellular [Ca2+] enhances neural activity considering the SACs in the sensory endings could possibly be Ca2+ channels and that all neural activity is blocked with Mn2+. It is suggested that axonal excitability might be affected independent from the SAC activity due to potential presence of calcium activated potassium channels (K(Ca)) and the ability of Ca2+ to block voltage gated Na+ channels in the axons. Separating the role of Ca2+ on the function of the SACs and the excitability of the axons in the nerves associated with chordotonal organs is addressed. These experiments may aid in understanding the mechanisms of neuronal hyperexcitability during hypocalcemia within mammals.
Collapse
|
26
|
Abstract
It has previously been reported that in ex vivo planar explants prepared from Xenopus laevis embryos, the intracellular pH (pHi) increases in cells of the dorsal ectoderm from stage 10.5 to 11.5 (i.e. 11-12.5 hpf). It was proposed that such increases (potentially due to H+ being extruded, sequestered, or buffered in some manner), play a role in regulating neural induction. Here, we used an extracellular ion-selective electrode to non-invasively measure H+ fluxes at eight locations around the equatorial circumference of intact X. laevis embryos between stages 9-12 (˜7-13.25 hpf). We showed that at stages 9-11, there was a small H+ efflux recorded from all the measuring positions. At stage 12 there was a small, but significant, increase in the efflux of H+ from most locations, but the efflux from the dorsal side of the embryo was significantly greater than from the other positions. Embryos were also treated from stages 9-12 with bafilomycin A1, to block the activity of the ATP-driven H+ pump. By stage 22 (24 hpf), these embryos displayed retarded development, arresting before the end of gastrulation and therefore did not display the usual anterior and neural structures, which were observed in the solvent-control embryos. In addition, expression of the early neural gene, Zic3, was absent in treated embryos compared with the solvent controls. Together, our new in vivo data corroborated and extended the earlier explant-derived report describing changes in pHi that were suggested to play a role during neural induction in X. laevis embryos.
Collapse
|
27
|
Remodeling of Cardiac Gap Junctional Cell-Cell Coupling. Cells 2021; 10:cells10092422. [PMID: 34572071 PMCID: PMC8465208 DOI: 10.3390/cells10092422] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/03/2021] [Accepted: 09/08/2021] [Indexed: 12/29/2022] Open
Abstract
The heart works as a functional syncytium, which is realized via cell-cell coupling maintained by gap junction channels. These channels connect two adjacent cells, so that action potentials can be transferred. Each cell contributes a hexameric hemichannel (=connexon), formed by protein subuntis named connexins. These hemichannels dock to each other and form the gap junction channel. This channel works as a low ohmic resistor also allowing the passage of small molecules up to 1000 Dalton. Connexins are a protein family comprising of 21 isoforms in humans. In the heart, the main isoforms are Cx43 (the 43 kDa connexin; ubiquitous), Cx40 (mostly in atrium and specific conduction system), and Cx45 (in early developmental states, in the conduction system, and between fibroblasts and cardiomyocytes). These gap junction channels are mainly located at the polar region of the cardiomyocytes and thus contribute to the anisotropic pattern of cardiac electrical conductivity. While in the beginning the cell–cell coupling was considered to be static, similar to an anatomically defined structure, we have learned in the past decades that gap junctions are also subject to cardiac remodeling processes in cardiac disease such as atrial fibrillation, myocardial infarction, or cardiomyopathy. The underlying remodeling processes include the modulation of connexin expression by e.g., angiotensin, endothelin, or catecholamines, as well as the modulation of the localization of the gap junctions e.g., by the direction and strength of local mechanical forces. A reduction in connexin expression can result in a reduced conduction velocity. The alteration of gap junction localization has been shown to result in altered pathways of conduction and altered anisotropy. In particular, it can produce or contribute to non-uniformity of anisotropy, and thereby can pre-form an arrhythmogenic substrate. Interestingly, these remodeling processes seem to be susceptible to certain pharmacological treatment.
Collapse
|
28
|
Gap Junction Channelopathies and Calmodulinopathies. Do Disease-Causing Calmodulin Mutants Affect Direct Cell-Cell Communication? Int J Mol Sci 2021; 22:ijms22179169. [PMID: 34502077 PMCID: PMC8431743 DOI: 10.3390/ijms22179169] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/19/2021] [Accepted: 08/21/2021] [Indexed: 11/24/2022] Open
Abstract
The cloning of connexins cDNA opened the way to the field of gap junction channelopathies. Thus far, at least 35 genetic diseases, resulting from mutations of 11 different connexin genes, are known to cause numerous structural and functional defects in the central and peripheral nervous system as well as in the heart, skin, eyes, teeth, ears, bone, hair, nails and lymphatic system. While all of these diseases are due to connexin mutations, minimal attention has been paid to the potential diseases of cell–cell communication caused by mutations of Cx-associated molecules. An important Cx accessory protein is calmodulin (CaM), which is the major regulator of gap junction channel gating and a molecule relevant to gap junction formation. Recently, diseases caused by CaM mutations (calmodulinopathies) have been identified, but thus far calmodulinopathy studies have not considered the potential effect of CaM mutations on gap junction function. The major goal of this review is to raise awareness on the likely role of CaM mutations in defects of gap junction mediated cell communication. Our studies have demonstrated that certain CaM mutants affect gap junction channel gating or expression, so it would not be surprising to learn that CaM mutations known to cause diseases also affect cell communication mediated by gap junction channels.
Collapse
|
29
|
Connexins in the Heart: Regulation, Function and Involvement in Cardiac Disease. Int J Mol Sci 2021; 22:ijms22094413. [PMID: 33922534 PMCID: PMC8122935 DOI: 10.3390/ijms22094413] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/12/2021] [Accepted: 04/20/2021] [Indexed: 12/20/2022] Open
Abstract
Connexins are a family of transmembrane proteins that play a key role in cardiac physiology. Gap junctional channels put into contact the cytoplasms of connected cardiomyocytes, allowing the existence of electrical coupling. However, in addition to this fundamental role, connexins are also involved in cardiomyocyte death and survival. Thus, chemical coupling through gap junctions plays a key role in the spreading of injury between connected cells. Moreover, in addition to their involvement in cell-to-cell communication, mounting evidence indicates that connexins have additional gap junction-independent functions. Opening of unopposed hemichannels, located at the lateral surface of cardiomyocytes, may compromise cell homeostasis and may be involved in ischemia/reperfusion injury. In addition, connexins located at non-canonical cell structures, including mitochondria and the nucleus, have been demonstrated to be involved in cardioprotection and in regulation of cell growth and differentiation. In this review, we will provide, first, an overview on connexin biology, including their synthesis and degradation, their regulation and their interactions. Then, we will conduct an in-depth examination of the role of connexins in cardiac pathophysiology, including new findings regarding their involvement in myocardial ischemia/reperfusion injury, cardiac fibrosis, gene transcription or signaling regulation.
Collapse
|
30
|
Hirschhäuser C, Lissoni A, Görge PM, Lampe PD, Heger J, Schlüter KD, Leybaert L, Schulz R, Boengler K. Connexin 43 phosphorylation by casein kinase 1 is essential for the cardioprotection by ischemic preconditioning. Basic Res Cardiol 2021; 116:21. [PMID: 33751227 PMCID: PMC7985055 DOI: 10.1007/s00395-021-00861-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 03/10/2021] [Indexed: 02/07/2023]
Abstract
Myocardial connexin 43 (Cx43) forms gap junctions and hemichannels, and is also present within subsarcolemmal mitochondria. The protein is phosphorylated by several kinases including mitogen-activated protein kinase (MAPK), protein kinase C (PKC), and casein kinase 1 (CK1). A reduction in Cx43 content abrogates myocardial infarct size reduction by ischemic preconditioning (IPC). The present study characterizes the contribution of Cx43 phosphorylation towards mitochondrial function, hemichannel activity, and the cardioprotection by IPC in wild-type (WT) mice and in mice in which Cx43-phosphorylation sites targeted by above kinases are mutated to non-phosphorylatable residues (Cx43MAPKmut, Cx43PKCmut, and Cx43CK1mut mice). The amount of Cx43 in the left ventricle and in mitochondria was reduced in all mutant strains compared to WT mice and Cx43 phosphorylation was altered at residues not directly targeted by the mutations. Whereas complex 1 respiration was reduced in all strains, complex 2 respiration was decreased in Cx43CK1mut mice only. In Cx43 epitope-mutated mice, formation of reactive oxygen species and opening of the mitochondrial permeability transition pore were not affected. The hemichannel open probability was reduced in Cx43PKCmut and Cx43CK1mut but not in Cx43MAPKmut cardiomyocytes. Infarct size in isolated saline-perfused hearts after ischemia/reperfusion (45 min/120 min) was comparable between genotypes and was significantly reduced by IPC (3 × 3 min ischemia/5 min reperfusion) in WT, Cx43MAPKmut, and Cx43PKCmut, but not in Cx43CK1mut mice, an effect independent from the amount of Cx43 and the probability of hemichannel opening. Taken together, our study shows that alterations of Cx43 phosphorylation affect specific cellular functions and highlights the importance of Cx43 phosphorylation by CK1 for IPC's cardioprotection.
Collapse
Affiliation(s)
- Christine Hirschhäuser
- Institut für Physiologie, Justus-Liebig Universität Gießen, Aulweg 129, 35392, Giessen, Germany
| | - Alessio Lissoni
- Department of Basic Medical Sciences, Physiology group, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | | | - Paul D Lampe
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Jacqueline Heger
- Institut für Physiologie, Justus-Liebig Universität Gießen, Aulweg 129, 35392, Giessen, Germany
| | - Klaus-Dieter Schlüter
- Institut für Physiologie, Justus-Liebig Universität Gießen, Aulweg 129, 35392, Giessen, Germany
| | - Luc Leybaert
- Department of Basic Medical Sciences, Physiology group, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Rainer Schulz
- Institut für Physiologie, Justus-Liebig Universität Gießen, Aulweg 129, 35392, Giessen, Germany
| | - Kerstin Boengler
- Institut für Physiologie, Justus-Liebig Universität Gießen, Aulweg 129, 35392, Giessen, Germany.
| |
Collapse
|
31
|
Sridhar KC, Hersch N, Dreissen G, Merkel R, Hoffmann B. Calcium mediated functional interplay between myocardial cells upon laser-induced single-cell injury: an in vitro study of cardiac cell death signaling mechanisms. Cell Commun Signal 2020; 18:191. [PMID: 33371897 PMCID: PMC7771078 DOI: 10.1186/s12964-020-00689-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 11/23/2020] [Indexed: 01/09/2023] Open
Abstract
Background The electromechanical function of myocardial tissue depends on the intercellular communication between cardiomyocytes (CMs) as well as their crosstalk with other cell types. Cell injury, and subsequent death trigger inflammation as in myocardial infarction (MI) resulting in myocardial remodeling. Although mechanisms underlying myocardial cell death have been studied so far, the signaling events following single cell death and spontaneous response of connected cells in the myocardial tissue is still barely understood. Methods Here, we investigated the effect of laser-induced single cell death on Calcium (Ca2+) concentrations and transport in myocardial cell clusters in vitro. Spatial and temporal changes in intracellular Ca2+ concentrations [Ca2+]i were studied using a fluorescent calcium indicator, Fluo-4AM. Spontaneous signaling events following cell death were studied in rat embryonic cardiomyocytes and non-myocytes using separate cell culture systems. Results Cell death triggered spontaneous increase in intracellular Ca2+ levels ([Ca2+]i) of surrounding cells. The spread of the observed propagating Ca2+ signal was slow and sustained in myocytes while it was rapid and transient in fibroblasts (Fbs). Further, sustained high Ca2+ levels temporarily impaired the contractility in CMs. The cell-type specific effect of ablation was confirmed using separate cultures of CMs and Fbs. Comparing Ca2+ propagation speed in myocytes and fibroblasts, we argue for a diffusion-driven Ca2+ propagation in myocytes, but not in fibroblasts. Radial and sequential Ca2+ diffusion across the CMs through cell–cell contacts and presence of Cx43-based intercellular junctions indicated a gap junction flow of Ca2+. Conclusions These findings illustrate the spontaneous Ca2+-mediated functional interplay in myocardial cell clusters upon mechanical injury and, further, the difference in Ca2+ signaling in cardiomyocytes and fibroblasts. Video Abstract
Collapse
Affiliation(s)
- Krishna Chander Sridhar
- Institute of Biological Information Processing, IBI-2: Mechanobiology, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Nils Hersch
- Institute of Biological Information Processing, IBI-2: Mechanobiology, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Georg Dreissen
- Institute of Biological Information Processing, IBI-2: Mechanobiology, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Rudolf Merkel
- Institute of Biological Information Processing, IBI-2: Mechanobiology, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Bernd Hoffmann
- Institute of Biological Information Processing, IBI-2: Mechanobiology, Forschungszentrum Jülich, 52425, Jülich, Germany.
| |
Collapse
|
32
|
Strauss RE, Gourdie RG. Cx43 and the Actin Cytoskeleton: Novel Roles and Implications for Cell-Cell Junction-Based Barrier Function Regulation. Biomolecules 2020; 10:E1656. [PMID: 33321985 PMCID: PMC7764618 DOI: 10.3390/biom10121656] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/07/2020] [Accepted: 12/07/2020] [Indexed: 12/13/2022] Open
Abstract
Barrier function is a vital homeostatic mechanism employed by epithelial and endothelial tissue. Diseases across a wide range of tissue types involve dynamic changes in transcellular junctional complexes and the actin cytoskeleton in the regulation of substance exchange across tissue compartments. In this review, we focus on the contribution of the gap junction protein, Cx43, to the biophysical and biochemical regulation of barrier function. First, we introduce the structure and canonical channel-dependent functions of Cx43. Second, we define barrier function and examine the key molecular structures fundamental to its regulation. Third, we survey the literature on the channel-dependent roles of connexins in barrier function, with an emphasis on the role of Cx43 and the actin cytoskeleton. Lastly, we discuss findings on the channel-independent roles of Cx43 in its associations with the actin cytoskeleton and focal adhesion structures highlighted by PI3K signaling, in the potential modulation of cellular barriers. Mounting evidence of crosstalk between connexins, the cytoskeleton, focal adhesion complexes, and junctional structures has led to a growing appreciation of how barrier-modulating mechanisms may work together to effect solute and cellular flux across tissue boundaries. This new understanding could translate into improved therapeutic outcomes in the treatment of barrier-associated diseases.
Collapse
Affiliation(s)
- Randy E. Strauss
- Virginia Tech, Translational Biology Medicine and Health (TBMH) Program, Roanoke, VA 24016, USA
| | - Robert G. Gourdie
- Center for Heart and Reparative Medicine Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA 24016, USA
- Virginia Tech Carilion School of Medicine, Roanoke, VA 24016, USA
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA
| |
Collapse
|
33
|
Wang L, MacGowan GA, Ali S, Dark JH. Ex situ heart perfusion: The past, the present, and the future. J Heart Lung Transplant 2020; 40:69-86. [PMID: 33162304 DOI: 10.1016/j.healun.2020.10.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/30/2020] [Accepted: 10/08/2020] [Indexed: 01/06/2023] Open
Abstract
Despite the advancements in medical treatment, mechanical support, and stem cell therapy, heart transplantation remains the most effective treatment for selected patients with advanced heart failure. However, with an increase in heart failure prevalence worldwide, the gap between donor hearts and patients on the transplant waiting list keeps widening. Ex situ machine perfusion has played a key role in augmenting heart transplant activities in recent years by enabling the usage of donation after circulatory death hearts, allowing longer interval between procurement and implantation, and permitting the safe use of some extended-criteria donation after brainstem death hearts. This exciting field is at a hinge point, with 1 commercially available heart perfusion machine, which has been used in hundreds of heart transplantations, and a number of devices being tested in the pre-clinical and Phase 1 clinical trial stage. However, no consensus has been reached over the optimal preservation temperature, perfusate composition, and perfusion parameters. In addition, there is a lack of objective measurement for allograft quality and viability. This review aims to comprehensively summarize the lessons about ex situ heart perfusion as a platform to preserve, assess, and repair donor hearts, which we have learned from the pre-clinical studies and clinical applications, and explore its exciting potential of revolutionizing heart transplantation.
Collapse
Affiliation(s)
- Lu Wang
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom; Cardiothoracic Centre, Freeman Hospital, Newcastle upon Tyne, United Kingdom
| | - Guy A MacGowan
- Cardiothoracic Centre, Freeman Hospital, Newcastle upon Tyne, United Kingdom; Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Simi Ali
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - John H Dark
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom.
| |
Collapse
|
34
|
Hu Z, Riquelme MA, Gu S, Jiang JX. Regulation of Connexin Gap Junctions and Hemichannels by Calcium and Calcium Binding Protein Calmodulin. Int J Mol Sci 2020; 21:E8194. [PMID: 33147690 PMCID: PMC7663298 DOI: 10.3390/ijms21218194] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 10/30/2020] [Accepted: 10/31/2020] [Indexed: 12/20/2022] Open
Abstract
Connexins are the structural components of gap junctions and hemichannels that mediate the communication and exchange of small molecules between cells, and between the intracellular and extracellular environment, respectively. Connexin (Cx) 46 is predominately expressed in lens fiber cells, where they function in maintaining the homeostasis and transparency of the lens. Cx46 mutations are associated with impairment of channel function, which results in the development of congenital cataracts. Cx46 gap junctions and hemichannels are closely regulated by multiple mechanisms. Key regulators of Cx46 channel function include Ca2+ and calmodulin (CaM). Ca2+ plays an essential role in lens homeostasis, and its dysregulation causes cataracts. Ca2+ associated CaM is a well-established inhibitor of gap junction coupling. Recent studies suggest that elevated intracellular Ca2+ activates Cx hemichannels in lens fiber cells and Cx46 directly interacts with CaM. A Cx46 site mutation (Cx46-G143R), which is associated with congenital Coppock cataracts, shows an increased Cx46-CaM interaction and this interaction is insensitive to Ca2+, given that depletion of Ca2+ reduces the interaction between CaM and wild-type Cx46. Moreover, inhibition of CaM function greatly reduces the hemichannel activity in the Cx46 G143R mutant. These research findings suggest a new regulatory mechanism by which enhanced association of Cx46 with CaM leads to the increase in hemichannel activity and dysregulation may lead to cataract development. In this review, we will first discuss the involvement of Ca2+/CaM in lens homeostasis and pathology, and follow by providing a general overview of Ca2+/CaM in the regulation of Cx46 gap junctions. We discuss the most recent studies concerning the molecular mechanism of Ca2+/CaM in regulating Cx46 hemichannels. Finally, we will offer perspectives of the impacts of Ca2+/CaM and dysregulation on Cx46 channels and vice versa.
Collapse
Affiliation(s)
- Zhengping Hu
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA 02114, USA;
- Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Manuel A. Riquelme
- Departments of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229, USA; (M.A.R.); (S.G.)
| | - Sumin Gu
- Departments of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229, USA; (M.A.R.); (S.G.)
| | - Jean X. Jiang
- Departments of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229, USA; (M.A.R.); (S.G.)
| |
Collapse
|
35
|
Ruan Y, Zeng J, Jin Q, Chu M, Ji K, Wang Z, Li L. Endoplasmic reticulum stress serves an important role in cardiac ischemia/reperfusion injury (Review). Exp Ther Med 2020; 20:268. [PMID: 33199993 PMCID: PMC7664614 DOI: 10.3892/etm.2020.9398] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 08/19/2020] [Indexed: 12/12/2022] Open
Abstract
Although acute myocardial infarction is one of the most common fatal diseases worldwide, the understanding of its underlying pathogenesis continues to develop. Myocardial ischemia/reperfusion (I/R) can restore myocardial oxygen and nutrient supply. However, a large number of studies have demonstrated that recovery of blood perfusion after acute ischemia causes reperfusion injury to the heart. With progress made in the understanding of the underlying mechanisms of myocardial I/R and oxidative stress, a novel area of research that merits greater study has been identified, that of I/R-induced endoplasmic reticulum (ER) stress (ERS). Cardiac I/R can alter the function of the ER, leading to the accumulation of unfolded/misfolded proteins. The resulting ERS then induces the activation of signal transduction pathways, which in turn contribute to the development of I/R injury. The mechanism of I/R injury, and the causal relationship between I/R and ERS are reviewed in the present article.
Collapse
Affiliation(s)
- Yongxue Ruan
- Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Jingjing Zeng
- Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Qike Jin
- Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Maoping Chu
- Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Kangting Ji
- Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Zhongyu Wang
- Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Lei Li
- Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| |
Collapse
|
36
|
Serova OV, Gantsova EA, Deyev IE, Petrenko AG. The Value of pH Sensors in Maintaining Homeostasis of the Nervous System. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1068162020040196] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
37
|
Aseervatham J, Li X, Mitchell CK, Lin YP, Heidelberger R, O’Brien J. Calmodulin Binding to Connexin 35: Specializations to Function as an Electrical Synapse. Int J Mol Sci 2020; 21:E6346. [PMID: 32882943 PMCID: PMC7504508 DOI: 10.3390/ijms21176346] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 08/27/2020] [Accepted: 08/30/2020] [Indexed: 12/25/2022] Open
Abstract
Calmodulin binding is a nearly universal property of gap junction proteins, imparting a calcium-dependent uncoupling behavior that can serve in an emergency to decouple a stressed cell from its neighbors. However, gap junctions that function as electrical synapses within networks of neurons routinely encounter large fluctuations in local cytoplasmic calcium concentration; frequent uncoupling would be impractical and counterproductive. We have studied the properties and functional consequences of calmodulin binding to the electrical synapse protein Connexin 35 (Cx35 or gjd2b), homologous to mammalian Connexin 36 (Cx36 or gjd2). We find that specializations in Cx35 calmodulin binding sites make it relatively impervious to moderately high levels of cytoplasmic calcium. Calmodulin binding to a site in the C-terminus causes uncoupling when calcium reaches low micromolar concentrations, a behavior prevented by mutations that eliminate calmodulin binding. However, milder stimuli promote calcium/calmodulin-dependent protein kinase II activity that potentiates coupling without interference from calmodulin binding. A second calmodulin binding site in the end of the Cx35 cytoplasmic loop, homologous to a calmodulin binding site present in many connexins, binds calmodulin with very low affinity and stoichiometry. Together, the calmodulin binding sites cause Cx35 to uncouple only at extreme levels of intracellular calcium.
Collapse
Affiliation(s)
- Jaya Aseervatham
- Ruiz Department of Ophthalmology & Visual Science, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (J.A.); (X.L.); (C.K.M.); (Y.-P.L.)
| | - Xiaofan Li
- Ruiz Department of Ophthalmology & Visual Science, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (J.A.); (X.L.); (C.K.M.); (Y.-P.L.)
| | - Cheryl K. Mitchell
- Ruiz Department of Ophthalmology & Visual Science, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (J.A.); (X.L.); (C.K.M.); (Y.-P.L.)
| | - Ya-Ping Lin
- Ruiz Department of Ophthalmology & Visual Science, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (J.A.); (X.L.); (C.K.M.); (Y.-P.L.)
| | - Ruth Heidelberger
- Department of Neurobiology & Anatomy, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA;
- The MD Anderson Cancer Center/UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - John O’Brien
- Ruiz Department of Ophthalmology & Visual Science, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (J.A.); (X.L.); (C.K.M.); (Y.-P.L.)
- The MD Anderson Cancer Center/UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| |
Collapse
|
38
|
Lee HJ, Jeong H, Hyun J, Ryu B, Park K, Lim HH, Yoo J, Woo JS. Cryo-EM structure of human Cx31.3/GJC3 connexin hemichannel. SCIENCE ADVANCES 2020; 6:eaba4996. [PMID: 32923625 PMCID: PMC7455182 DOI: 10.1126/sciadv.aba4996] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 07/15/2020] [Indexed: 05/28/2023]
Abstract
Connexin family proteins assemble into hexameric channels called hemichannels/connexons, which function as transmembrane channels or dock together to form gap junction intercellular channels (GJIChs). We determined the cryo-electron microscopy structures of human connexin 31.3 (Cx31.3)/GJC3 hemichannels in the presence and absence of calcium ions and with a hearing-loss mutation R15G at 2.3-, 2.5-, and 2.6-Å resolutions, respectively. Compared with available structures of GJICh in open conformation, Cx31.3 hemichannel shows substantial structural changes of highly conserved regions in the connexin family, including opening of calcium ion-binding tunnels, reorganization of salt-bridge networks, exposure of lipid-binding sites, and collocation of amino-terminal helices at the cytoplasmic entrance. We also found that the hemichannel has a pore with a diameter of ~8 Å and selectively transports chloride ions. Our study provides structural insights into the permeant selectivity of Cx31.3 hemichannel.
Collapse
Affiliation(s)
- Hyuk-Joon Lee
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Hyeongseop Jeong
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea
- Korea Basic Science Institute, Chungcheongbuk-do 28119, Republic of Korea
| | - Jaekyung Hyun
- Korea Basic Science Institute, Chungcheongbuk-do 28119, Republic of Korea
- Molecular Cryo-electron Microscopy Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0496, Japan
| | - Bumhan Ryu
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Kunwoong Park
- Neurovascular Unit Research Group, Korea Brain Research Institute (KBRI), 41062 Daegu, Republic of Korea
| | - Hyun-Ho Lim
- Neurovascular Unit Research Group, Korea Brain Research Institute (KBRI), 41062 Daegu, Republic of Korea
| | - Jejoong Yoo
- Department of Physics, Sungkyunkwan University, Suwon, Republic of Korea
- Center for Self-assembly and Complexity (CSC), Institute for Basic Science (IBS), Pohang 37673, Republic of Korea
| | - Jae-Sung Woo
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
39
|
Yang W, Wang Y, Guo J, He L, Zhou Y, Zheng H, Liu Z, Zhu P, Zhang XC. Cryo-electron microscopy structure of CLHM1 ion channel from Caenorhabditis elegans. Protein Sci 2020; 29:1803-1815. [PMID: 32557855 PMCID: PMC7380676 DOI: 10.1002/pro.3904] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 02/02/2023]
Abstract
Calcium homeostasis modulators (CALHMs/CLHMs) comprise a family of pore-forming protein complexes assembling into voltage-gated, Ca2+ -sensitive, nonselective channels. These complexes contain an ion-conduction pore sufficiently wide to permit the passing of ATP molecules serving as neurotransmitters. While their function and structure information is accumulating, the precise mechanisms of these channel complexes remain to be full understood. Here, we present the structure of the Caenorhabditis elegans CLHM1 channel in its open state solved through single-particle cryo-electron microscopy at 3.7-Å resolution. The transmembrane region of the channel structure of the dominant class shows an assembly of 10-fold rotational symmetry in one layer, and its cytoplasmic region is involved in additional twofold symmetrical packing in a tail-to-tail manner. Furthermore, we identified a series of amino acid residues critical for the regulation of CeCLHM1 channel using functional assays, electrophysiological analyses as well as structural-based analysis. Our structure and function analyses provide new insights into the mechanisms of CALHM channels.
Collapse
Affiliation(s)
- Weixin Yang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in BiomacromoleculesInstitute of Biophysics, Chinese Academy of SciencesBeijingChina
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Youwang Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in BiomacromoleculesInstitute of Biophysics, Chinese Academy of SciencesBeijingChina
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Jianli Guo
- National Laboratory of Biomacromolecules, CAS Center for Excellence in BiomacromoleculesInstitute of Biophysics, Chinese Academy of SciencesBeijingChina
| | - Lingli He
- National Laboratory of Biomacromolecules, CAS Center for Excellence in BiomacromoleculesInstitute of Biophysics, Chinese Academy of SciencesBeijingChina
| | - Ye Zhou
- National Laboratory of Biomacromolecules, CAS Center for Excellence in BiomacromoleculesInstitute of Biophysics, Chinese Academy of SciencesBeijingChina
| | - Hui Zheng
- National Laboratory of Biomacromolecules, CAS Center for Excellence in BiomacromoleculesInstitute of Biophysics, Chinese Academy of SciencesBeijingChina
| | - Zhenfeng Liu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in BiomacromoleculesInstitute of Biophysics, Chinese Academy of SciencesBeijingChina
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Ping Zhu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in BiomacromoleculesInstitute of Biophysics, Chinese Academy of SciencesBeijingChina
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Xuejun C. Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in BiomacromoleculesInstitute of Biophysics, Chinese Academy of SciencesBeijingChina
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
40
|
Mechanosensitivity Is a Characteristic Feature of Cultured Suburothelial Interstitial Cells of the Human Bladder. Int J Mol Sci 2020; 21:ijms21155474. [PMID: 32751838 PMCID: PMC7432121 DOI: 10.3390/ijms21155474] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/24/2020] [Accepted: 07/29/2020] [Indexed: 12/11/2022] Open
Abstract
Bladder dysfunction is characterized by urgency, frequency (pollakisuria, nocturia), and dysuria and may lead to urinary incontinence. Most of these symptoms can be attributed to disturbed bladder sensitivity. There is growing evidence that, besides the urothelium, suburothelial interstitial cells (suICs) are involved in bladder afferent signal processing. The massive expansion of the bladder during the filling phase implicates mechanical stress delivered to the whole bladder wall. Little is known about the reaction of suICs upon mechanical stress. Therefore, we investigated the effects of mechanical stimulation in cultured human suICs. We used fura-2 calcium imaging as a major physiological readout. We found spontaneous intracellular calcium activity in 75 % of the cultured suICs. Defined local pressure application via a glass micropipette led to local increased calcium activity in all stimulated suICs, spreading over the whole cell. A total of 51% of the neighboring cells in a radius of up to 100 µm from the stimulated cell showed an increased activity. Hypotonic ringer and shear stress also induced calcium transients. We found an 18-times increase in syncytial activity compared to unstimulated controls, resulting in an amplification of the primary calcium signal elicited in single cells by 50%. Our results speak in favor of a high sensitivity of suICs for mechanical stress and support the view of a functional syncytium between suICs, which can amplify and distribute local stimuli. Previous studies of connexin expression in the human bladder suggest that this mechanism could also be relevant in normal and pathological function of the bladder in vivo.
Collapse
|
41
|
Peracchia C. Calmodulin-Cork Model of Gap Junction Channel Gating-One Molecule, Two Mechanisms. Int J Mol Sci 2020; 21:E4938. [PMID: 32668628 PMCID: PMC7404200 DOI: 10.3390/ijms21144938] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/08/2020] [Accepted: 07/10/2020] [Indexed: 12/11/2022] Open
Abstract
The Calmodulin-Cork gating model is based on evidence for the direct role of calmodulin (CaM) in channel gating. Indeed, chemical gating of cell-to-cell channels is sensitive to nanomolar cytosolic calcium concentrations [Ca2+]i. Calmodulin inhibitors and inhibition of CaM expression prevent chemical gating. CaMCC, a CaM mutant with higher Ca2+-sensitivity greatly increases chemical gating sensitivity (in CaMCC the NH2-terminal EF-hand pair (res. 9-76) is replaced by the COOH-terminal pair (res. 82-148). Calmodulin colocalizes with connexins. Connexins have high-affinity CaM binding sites. Several connexin mutants paired to wild-type connexins have a high gating sensitivity that is eliminated by inhibition of CaM expression. Repeated transjunctional voltage (Vj) pulses slowly and progressively close a large number of channels by the chemical/slow gate (CaM lobe). At the single-channel level, the chemical/slow gate closes and opens slowly with on-off fluctuations. The model proposes two types of CaM-driven gating: "Ca-CaM-Cork" and "CaM-Cork". In the first, gating involves Ca2+-induced CaM-activation. In the second, gating takes place without [Ca2+]i rise. The Ca-CaM-Cork gating is only reversed by a return of [Ca2+]i to resting values, while the CaM-Cork gating is reversed by Vj positive at the gated side.
Collapse
Affiliation(s)
- Camillo Peracchia
- Department of Pharmacology and Physiology, School of Medicine and Dentistry, University Rochester, Rochester, NY 14642, USA
| |
Collapse
|
42
|
Chemical and Voltage Gating of Gap Junction Channels Expressed in Xenopus Oocytes. Methods Mol Biol 2020. [PMID: 32548808 DOI: 10.1007/7651_2020_291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
In most tissues, cells in contact with each other directly intercommunicate via cell-to-cell channels aggregated at gap junctions. Direct cell-to-cell communication provides a fundamental mechanism for coordinating many cellular functions in mature and developing organs, as it enables free exchange of small cytosolic molecules. Gap junction channels are regulated by a chemical gating mechanism sensitive to cytosolic calcium concentration [Ca2+]i in the nanomolar range mediated by Ca2+-activated calmodulin (CaM). Evidence for the relevance of chemical regulation of gap junctional communication to cell function in health and disease prompted the development of methodologies aimed at quantitatively monitoring channel gating. A widely used method is the double voltage clamp of Xenopus laevis oocytes. Basically, this method involves pairing at the vegetal pole devitellinized oocytes in a conical well of a culture dish, inserting in each of them a current and a voltage microelectrode, establishing double voltage clamp and measuring junctional conductance (Gj) from voltage and current records.
Collapse
|
43
|
Structural insights into gap junction channels boosted by cryo-EM. Curr Opin Struct Biol 2020; 63:42-48. [PMID: 32339861 DOI: 10.1016/j.sbi.2020.03.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 03/15/2020] [Accepted: 03/15/2020] [Indexed: 11/23/2022]
Abstract
Regulating intercellular communication is essential for multicellular organisms. Gap junction channels are the major components mediating this function, but the molecular mechanisms underlying their opening and closing remain unclear. Single-particle cryo-electron microscopy (cryo-EM) is a powerful tool for investigating high-resolution protein structures that are difficult to crystallize, such as gap junction channels. Membrane protein structures are often determined in a detergent solubilized form, but lipid bilayers provide a near native environment for structural analysis. This review focuses on recent reports of gap junction channel structures visualized by cryo-EM. An overview of the differences observed in gap junction channel structures in the presence and absence of lipids is described, which may contribute to elucidating the regulation mechanisms of gap junction channel function.
Collapse
|
44
|
Giaume C, Naus CC, Sáez JC, Leybaert L. Glial Connexins and Pannexins in the Healthy and Diseased Brain. Physiol Rev 2020; 101:93-145. [PMID: 32326824 DOI: 10.1152/physrev.00043.2018] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Over the past several decades a large amount of data have established that glial cells, the main cell population in the brain, dynamically interact with neurons and thus impact their activity and survival. One typical feature of glia is their marked expression of several connexins, the membrane proteins forming intercellular gap junction channels and hemichannels. Pannexins, which have a tetraspan membrane topology as connexins, are also detected in glial cells. Here, we review the evidence that connexin and pannexin channels are actively involved in dynamic and metabolic neuroglial interactions in physiological as well as in pathological situations. These features of neuroglial interactions open the way to identify novel non-neuronal aspects that allow for a better understanding of behavior and information processing performed by neurons. This will also complement the "neurocentric" view by facilitating the development of glia-targeted therapeutic strategies in brain disease.
Collapse
Affiliation(s)
- Christian Giaume
- Collège de France, Center for Interdisciplinary Research in Biology (CIRB)/Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7241/Institut National de la Santé et de la Recherche Médicale U1050, Paris, France; University Pierre et Marie Curie, Paris, France; MEMOLIFE Laboratory of Excellence and Paris Science Lettre Research University, Paris, France; Department of Cellular & Physiological Sciences, Life Sciences Institute, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Departamento de Fisiología, Pontificia Universidad Católica de Chile, Santiago, Chile; Instituo de Neurociencias, Centro Interdisciplinario de Neurociencias, Universidad de Valparaíso, Valparaíso, Chile; Physiology Group, Department of Basic and Applied Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Christian C Naus
- Collège de France, Center for Interdisciplinary Research in Biology (CIRB)/Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7241/Institut National de la Santé et de la Recherche Médicale U1050, Paris, France; University Pierre et Marie Curie, Paris, France; MEMOLIFE Laboratory of Excellence and Paris Science Lettre Research University, Paris, France; Department of Cellular & Physiological Sciences, Life Sciences Institute, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Departamento de Fisiología, Pontificia Universidad Católica de Chile, Santiago, Chile; Instituo de Neurociencias, Centro Interdisciplinario de Neurociencias, Universidad de Valparaíso, Valparaíso, Chile; Physiology Group, Department of Basic and Applied Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Juan C Sáez
- Collège de France, Center for Interdisciplinary Research in Biology (CIRB)/Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7241/Institut National de la Santé et de la Recherche Médicale U1050, Paris, France; University Pierre et Marie Curie, Paris, France; MEMOLIFE Laboratory of Excellence and Paris Science Lettre Research University, Paris, France; Department of Cellular & Physiological Sciences, Life Sciences Institute, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Departamento de Fisiología, Pontificia Universidad Católica de Chile, Santiago, Chile; Instituo de Neurociencias, Centro Interdisciplinario de Neurociencias, Universidad de Valparaíso, Valparaíso, Chile; Physiology Group, Department of Basic and Applied Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Luc Leybaert
- Collège de France, Center for Interdisciplinary Research in Biology (CIRB)/Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7241/Institut National de la Santé et de la Recherche Médicale U1050, Paris, France; University Pierre et Marie Curie, Paris, France; MEMOLIFE Laboratory of Excellence and Paris Science Lettre Research University, Paris, France; Department of Cellular & Physiological Sciences, Life Sciences Institute, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Departamento de Fisiología, Pontificia Universidad Católica de Chile, Santiago, Chile; Instituo de Neurociencias, Centro Interdisciplinario de Neurociencias, Universidad de Valparaíso, Valparaíso, Chile; Physiology Group, Department of Basic and Applied Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
45
|
Connexin/Innexin Channels in Cytoplasmic Organelles. Are There Intracellular Gap Junctions? A Hypothesis! Int J Mol Sci 2020; 21:ijms21062163. [PMID: 32245189 PMCID: PMC7139775 DOI: 10.3390/ijms21062163] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 03/18/2020] [Accepted: 03/19/2020] [Indexed: 12/21/2022] Open
Abstract
This paper proposes the hypothesis that cytoplasmic organelles directly interact with each other and with gap junctions forming intracellular junctions. This hypothesis originated over four decades ago based on the observation that vesicles lining gap junctions of crayfish giant axons contain electron-opaque particles, similar in size to junctional innexons that often appear to directly interact with junctional innexons; similar particles were seen also in the outer membrane of crayfish mitochondria. Indeed, vertebrate connexins assembled into hexameric connexons are present not only in the membranes of the Golgi apparatus but also in those of the mitochondria and endoplasmic reticulum. It seems possible, therefore, that cytoplasmic organelles may be able to exchange small molecules with each other as well as with organelles of coupled cells via gap junctions.
Collapse
|
46
|
Chen Z, Lu X, McGee-Lawrence ME, Watsky MA. Transient Cell Membrane Disruptions induce Calcium Waves in Corneal Keratocytes. Sci Rep 2020; 10:2840. [PMID: 32071321 PMCID: PMC7029045 DOI: 10.1038/s41598-020-59570-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 01/31/2020] [Indexed: 11/21/2022] Open
Abstract
The purpose of this study was to determine if transient cell membrane disruptions (TPMDs) in single keratocytes can trigger signaling events in neighboring keratocytes. Stromal cells were cultured from human corneas (HCSC) and mouse corneas (MCSC). TPMDs were produced using a multiphoton microscope in Cal-520-AM loaded cells. TPMD-induced calcium increases (Ca++i) were measured in Ca++-containing and Ca++-free solutions containing thapsigargin, ryanodine, BAPTA-AM, 18-α-glycyrrhetinic acid (18α-GA), apyrase, BCTC, AMG 9810, or AMTB. Fluorescence intensity was recorded as the number of cells responding and the area under the fluorescence versus time curve. The maximum distance of responding neighboring cells in ex vivo human corneas was measured. Connexin 43 protein in HCSC and MCSC was examined using immunofluorescence staining, and corneal rubbing was applied to confirm whether TPMDs occur following mechanical manipulation. Our results demonstrate that single cell TPMDs result in Ca++ waves in neighboring keratocytes both in culture and within ex vivo corneas. The source of Ca++ is both intra-and extra-cellular, and the signal can be mediated by ATP and/or gap junctions, and is species dependent. Stromal rubbing confirmed that TPMDs do occur following mechanical manipulation. Keratocyte TPMDs and their associated signaling events are likely common occurrences following minor or major corneal trauma.
Collapse
Affiliation(s)
- Zhong Chen
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Xiaowen Lu
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Meghan E McGee-Lawrence
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, Georgia, USA.,Department of Orthopedic Surgery, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Mitchell A Watsky
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, Georgia, USA. .,The Graduate School, Augusta University, Augusta, GA, Georgia.
| |
Collapse
|
47
|
Burendei B, Shinozaki R, Watanabe M, Terada T, Tani K, Fujiyoshi Y, Oshima A. Cryo-EM structures of undocked innexin-6 hemichannels in phospholipids. SCIENCE ADVANCES 2020; 6:eaax3157. [PMID: 32095518 PMCID: PMC7015682 DOI: 10.1126/sciadv.aax3157] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 12/02/2019] [Indexed: 06/01/2023]
Abstract
Gap junctions form intercellular conduits with a large pore size whose closed and open states regulate communication between adjacent cells. The structural basis of the mechanism by which gap junctions close, however, remains uncertain. Here, we show the cryo-electron microscopy structures of Caenorhabditis elegans innexin-6 (INX-6) gap junction proteins in an undocked hemichannel form. In the nanodisc-reconstituted structure of the wild-type INX-6 hemichannel, flat double-layer densities obstruct the channel pore. Comparison of the hemichannel structures of a wild-type INX-6 in detergent and nanodisc-reconstituted amino-terminal deletion mutant reveals that lipid-mediated amino-terminal rearrangement and pore obstruction occur upon nanodisc reconstitution. Together with molecular dynamics simulations and electrophysiology functional assays, our results provide insight into the closure of the INX-6 hemichannel in a lipid bilayer before docking of two hemichannels.
Collapse
Affiliation(s)
- Batuujin Burendei
- Division of Biological Science, School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Ruriko Shinozaki
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Masakatsu Watanabe
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tohru Terada
- Interfaculty Initiative in Information Studies, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kazutoshi Tani
- Cellular and Structural Physiology Institute (CeSPI), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Yoshinori Fujiyoshi
- Cellular and Structural Physiology Institute (CeSPI), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
- CeSPIA Inc., Ōtemachi, Chiyoda, Tokyo 100-0004, Japan
| | - Atsunori Oshima
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
- Cellular and Structural Physiology Institute (CeSPI), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| |
Collapse
|
48
|
Peracchia C. Calmodulin-Mediated Regulation of Gap Junction Channels. Int J Mol Sci 2020; 21:E485. [PMID: 31940951 PMCID: PMC7014422 DOI: 10.3390/ijms21020485] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/03/2020] [Accepted: 01/06/2020] [Indexed: 12/25/2022] Open
Abstract
Evidence that neighboring cells uncouple from each other as one dies surfaced in the late 19th century, but it took almost a century for scientists to start understanding the uncoupling mechanism (chemical gating). The role of cytosolic free calcium (Ca2+i) in cell-cell channel gating was first reported in the mid-sixties. In these studies, only micromolar [Ca2+]i were believed to affect gating-concentrations reachable only in cell death, which would discard Ca2+i as a fine modulator of cell coupling. More recently, however, numerous researchers, including us, have reported the effectiveness of nanomolar [Ca2+]i. Since connexins do not have high-affinity calcium sites, the effectiveness of nanomolar [Ca2+]i suggests the role of Ca-modulated proteins, with calmodulin (CaM) being most obvious. Indeed, in 1981 we first reported that a CaM-inhibitor prevents chemical gating. Since then, the CaM role in gating has been confirmed by studies that tested it with a variety of approaches such as treatments with CaM-inhibitors, inhibition of CaM expression, expression of CaM mutants, immunofluorescent co-localization of CaM and gap junctions, and binding of CaM to peptides mimicking connexin domains identified as CaM targets. Our gating model envisions Ca2+-CaM to directly gate the channels by acting as a plug ("Cork" gating model), and probably also by affecting connexin conformation.
Collapse
Affiliation(s)
- Camillo Peracchia
- Department of Pharmacology and Physiology, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
| |
Collapse
|
49
|
Babola TA, Kersbergen CJ, Wang HC, Bergles DE. Purinergic signaling in cochlear supporting cells reduces hair cell excitability by increasing the extracellular space. eLife 2020; 9:e52160. [PMID: 31913121 PMCID: PMC7015667 DOI: 10.7554/elife.52160] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 01/07/2020] [Indexed: 11/13/2022] Open
Abstract
Neurons in developing sensory pathways exhibit spontaneous bursts of electrical activity that are critical for survival, maturation and circuit refinement. In the auditory system, intrinsically generated activity arises within the cochlea, but the molecular mechanisms that initiate this activity remain poorly understood. We show that burst firing of mouse inner hair cells prior to hearing onset requires P2RY1 autoreceptors expressed by inner supporting cells. P2RY1 activation triggers K+ efflux and depolarization of hair cells, as well as osmotic shrinkage of supporting cells that dramatically increased the extracellular space and speed of K+ redistribution. Pharmacological inhibition or genetic disruption of P2RY1 suppressed neuronal burst firing by reducing K+ release, but unexpectedly enhanced their tonic firing, as water resorption by supporting cells reduced the extracellular space, leading to K+ accumulation. These studies indicate that purinergic signaling in supporting cells regulates hair cell excitability by controlling the volume of the extracellular space.
Collapse
Affiliation(s)
- Travis A Babola
- The Solomon Snyder Department of NeuroscienceJohns Hopkins UniversityBaltimoreUnited States
| | - Calvin J Kersbergen
- The Solomon Snyder Department of NeuroscienceJohns Hopkins UniversityBaltimoreUnited States
| | - Han Chin Wang
- The Solomon Snyder Department of NeuroscienceJohns Hopkins UniversityBaltimoreUnited States
| | - Dwight E Bergles
- The Solomon Snyder Department of NeuroscienceJohns Hopkins UniversityBaltimoreUnited States
- Department of Otolaryngology Head and Neck SurgeryJohns Hopkins UniversityBaltimoreUnited States
- Kavli Neuroscience Discovery InstituteJohns Hopkins UniversityBaltimoreUnited States
| |
Collapse
|
50
|
Yeo JH, Choi EJ, Lee J. Inhibition of gap junctional intercellular communication by an anti-migraine agent, flunarizine. PLoS One 2019; 14:e0222326. [PMID: 31513635 PMCID: PMC6742374 DOI: 10.1371/journal.pone.0222326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 08/27/2019] [Indexed: 02/08/2023] Open
Abstract
Gap junctions (GJs), which consist of proteins called connexins, are intercellular channels that allow the passage of ions, second messengers, and small molecules. GJs and connexins are considered as emerging therapeutic targets for various diseases. Previously, we screened numerous compounds using our recently developed iodide yellow fluorescent protein gap junctional intercellular communication (I-YFP GJIC) assay and found that flunarizine (FNZ), used for migraine prophylaxis and as an add-on therapy for epilepsy, inhibits GJIC in LN215 human glioma cells. In this study, we confirmed that FNZ inhibits GJIC using the I-YFP GJIC assay. We demonstrated that FNZ inhibits GJ activities via a mechanism that is independent of calcium channels and dopaminergic D2, histaminergic H1, or 5-HT receptors. In addition, we showed that FNZ significantly increases connexin 43 (Cx43) phosphorylation on the cell surface, but does not alter the total amount of Cx43. The beneficial effects of FNZ on migraines and epilepsy might be related to GJ inhibition.
Collapse
Affiliation(s)
- Joo Hye Yeo
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Songdogwahak-ro, Yeonsu-gu, Korea
| | - Eun Ju Choi
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Songdogwahak-ro, Yeonsu-gu, Korea
| | - Jinu Lee
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Songdogwahak-ro, Yeonsu-gu, Korea
| |
Collapse
|