1
|
Vinutha AS, Rajasekaran R. Unlocking the Potential of Antimicrobial Maximin Peptides From Bombina maxima Against Staphylococcus aureus: Deciphering Their Mode of Action Through a Mimetic Bacterial Membrane Environment. Pept Sci (Hoboken) 2024. [DOI: 10.1002/pep2.24384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 10/24/2024] [Indexed: 01/03/2025]
Abstract
ABSTRACTAntimicrobial peptides (AMPs) offer a promising strategy to address bacterial resistance by targeting bacterial membranes, bypassing the limitations of receptor site‐based approaches. This study focuses on combating the notorious multidrug resistance of Staphylococcus aureus using AMPs, particularly maximin peptides derived from Bombina maxima. Previous research suggested that maximin peptides could disrupt bacterial membranes among anuran AMPs. This prompted us to screen these maximin peptides to identify those with strong membrane‐targeting abilities against S. aureus. Initially, stability and activity assessments on all 89 peptides involved analyzing hydrogen bond dilution, peptide permeation, and hemolytic activity predictions, leading to the rationalization of four promising candidates: Max_5, Max_13, Max_21, and Max_45. When subjected to membrane simulations, the monomeric state of these peptides displayed partial helix‐coil transitions with significant structural interactions that disrupted the membrane, particularly for Max_5 and Max_13. Additionally, the multimeric states of these two peptides were examined through membrane simulations to elucidate their mechanisms of action. Analyses focusing on membrane thickness, lipid distortions, and curvature revealed that both Max_5 and Max_13 exerted strong membrane‐rupturing effects. These peptides seemed to operate by forming pores, facilitating lipid diffusion, creating cavities, and affecting membrane thickness, which allowed water penetration due to increased membrane fluidity, indicating the barrel‐stave pore model. Despite structural differences between Max_5 and Max_13, both peptides demonstrated similar outcomes, emphasizing their potential for future therapeutic applications. This study highlights the efficacy of computational methods in accelerating the identification of potent antimicrobial peptides, providing a pathway for developing novel antimicrobial therapies.
Collapse
Affiliation(s)
- A. S. Vinutha
- Quantitative Biology Lab, Department of Integrative Biology, School of Bio Sciences and Technology Vellore Institute of Technology (VIT, Deemed to be University) Vellore Tamil Nadu India
| | - R. Rajasekaran
- Quantitative Biology Lab, Department of Integrative Biology, School of Bio Sciences and Technology Vellore Institute of Technology (VIT, Deemed to be University) Vellore Tamil Nadu India
| |
Collapse
|
2
|
Xing H, Wigham C, Lee SR, Pereira AJ, de Campos LJ, Picco AS, Huck-Iriart C, Escudero C, Perez-Chirinos L, Gajaweera S, Comer J, Sasselli IR, Stupp SI, Zha RH, Conda-Sheridan M. Enhanced Hydrogen Bonding by Urea Functionalization Tunes the Stability and Biological Properties of Peptide Amphiphiles. Biomacromolecules 2024; 25:2823-2837. [PMID: 38602228 DOI: 10.1021/acs.biomac.3c01463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Self-assembled nanostructures such as those formed by peptide amphiphiles (PAs) are of great interest in biological and pharmacological applications. Herein, a simple and widely applicable chemical modification, a urea motif, was included in the PA's molecular structure to stabilize the nanostructures by virtue of intermolecular hydrogen bonds. Since the amino acid residue nearest to the lipid tail is the most relevant for stability, we decided to include the urea modification at that position. We prepared four groups of molecules (13 PAs in all), with varying levels of intermolecular cohesion, using amino acids with distinct β-sheet promoting potential and/or containing hydrophobic tails of distinct lengths. Each subset contained one urea-modified PA and nonmodified PAs, all with the same peptide sequence. The varied responses of these PAs to variations in pH, temperature, counterions, and biologically related proteins were examined using microscopic, X-ray, spectrometric techniques, and molecular simulations. We found that the urea group contributes to the stabilization of the morphology and internal arrangement of the assemblies against environmental stimuli for all peptide sequences. In addition, microbiological and biological studies were performed with the cationic PAs. These assays reveal that the addition of urea linkages affects the PA-cell membrane interaction, showing the potential to increase the selectivity toward bacteria. Our data indicate that the urea motif can be used to tune the stability of a wide range of PA nanostructures, allowing flexibility on the biomaterial's design and opening a myriad of options for clinical therapies.
Collapse
Affiliation(s)
- Huihua Xing
- College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Caleb Wigham
- Department of Chemical & Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Sieun Ruth Lee
- Department of Materials Science & Engineering, Chemistry, Biomedical Engineering, Medicine, and Simpson Querrey Institute, Northwestern University, Evanston, Illinois 60208, United States
| | - Aramis J Pereira
- College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Luana J de Campos
- College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Agustín S Picco
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas, INIFTA-CONICET-UNLP, La Plata 1900, Argentina
| | - Cristián Huck-Iriart
- ALBA Synchrotron Light Source, Experiments Division, 08290 Cerdanyola del Vallès, Spain
| | - Carlos Escudero
- ALBA Synchrotron Light Source, Experiments Division, 08290 Cerdanyola del Vallès, Spain
| | - Laura Perez-Chirinos
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Donostia 20014, San Sebastián, Spain
| | - Sandun Gajaweera
- Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas 66506, United States
| | - Jeffrey Comer
- Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas 66506, United States
| | - Ivan R Sasselli
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Donostia 20014, San Sebastián, Spain
- Centro de Fisica de Materiales (CFM), CSIC-UPV/EHU, Donostia 20018, San Sebastián, Spain
| | - Samuel I Stupp
- Department of Materials Science & Engineering, Chemistry, Biomedical Engineering, Medicine, and Simpson Querrey Institute, Northwestern University, Evanston, Illinois 60208, United States
| | - R Helen Zha
- Department of Chemical & Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Martin Conda-Sheridan
- College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| |
Collapse
|
3
|
Nattich-Rak M, Kosior D, Morga M, Adamczyk Z. Kinetics of Human Serum Albumin Adsorption on Polycation Functionalized Silica. Biomolecules 2024; 14:531. [PMID: 38785938 PMCID: PMC11117822 DOI: 10.3390/biom14050531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/15/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024] Open
Abstract
The adsorption kinetics of human serum albumin (HSA) on bare and poly-L-arginine (PARG)-modified silica substrates were investigated using reflectometry and atomic force microscopy (AFM). Measurements were carried out at various pHs, flow rates and albumin concentrations in the 10 and 150 mM NaCl solutions. The mass transfer rate constants and the maximum protein coverages were determined for the bare silica at pH 4.0 and theoretically interpreted in terms of the hybrid random sequential adsorption model. These results were used as reference data for the analysis of adsorption kinetics at larger pHs. It was shown that the adsorption on bare silica rapidly decreased with pH and became negligible at pH 7.4. The albumin adsorption on PARG-functionalized silica showed an opposite trend, i.e., it was negligible at pH 4 and attained maximum values at pH 7.4 and 150 mM NaCl, the conditions corresponding to the blood serum environment. These results were interpreted as the evidence of a significant role of electrostatic interactions in the albumin adsorption on the bare and PARG-modified silica. It was also argued that our results can serve as useful reference data enabling a proper interpretation of protein adsorption on substrates functionalized by polyelectrolytes.
Collapse
Affiliation(s)
| | - Dominik Kosior
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, PL-30239 Krakow, Poland; (M.N.-R.); (M.M.)
| | | | - Zbigniew Adamczyk
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, PL-30239 Krakow, Poland; (M.N.-R.); (M.M.)
| |
Collapse
|
4
|
Rodrigues FEP, Darbre T, Machuqueiro M. High Charge Density in Peptide Dendrimers is Required to Destabilize Membranes: Insights into Endosome Evasion. J Chem Inf Model 2024; 64:3430-3442. [PMID: 38588472 DOI: 10.1021/acs.jcim.4c00018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Peptide dendrimers are a type of branched, symmetric, and topologically well-defined molecule that have already been used as delivery systems for nucleic acid transfection. Several of the most promising sequences showed high efficiency in many key steps of transfection, namely, binding siRNA, entering cells, and evading the endosome. However, small changes to the peptide dendrimers, such as in the hydrophobic core, the amino acid chirality, or the total available charges, led to significantly different experimental results with unclear mechanistic insights. In this work, we built a computational model of several of those peptide dendrimers (MH18, MH13, and MH47) and some of their variants to study the molecular details of the structure and function of these molecules. We performed CpHMD simulations in the aqueous phase and in interaction with a lipid bilayer to assess how conformation and protonation are affected by pH in different environments. We found that while the different peptide dendrimer sequences lead to no substantial structural differences in the aqueous phase, the total charge and, more importantly, the total charge density are key for the capacity of the dendrimer to interact and destabilize the membrane. These dendrimers become highly charged when the pH changes from 7.5 to 4.5, and the presence of a high charge density, which is decreased for MH47 that has four fewer titratable lysines, is essential to trigger membrane destabilization. These findings are in excellent agreement with the experimental data and help us to understand the high efficiency of some dendrimers and why the dendrimer MH47 is unable to complete the transfection process. This evidence provides further understanding of the mode of action of these peptide dendrimers and will be pivotal for the future design of new sequences with improved transfection capabilities.
Collapse
Affiliation(s)
- Filipe E P Rodrigues
- BioISI─Instituto de Biossistemas e Ciências Integrativas Faculdade de Ciências, Universidade de Lisboa, Lisboa 1749-016, Portugal
| | - Tamis Darbre
- Department of Chemistry Biochemistry and Pharmaceutical Sciences, University of Bern, Bern 3012, Switzerland
| | - Miguel Machuqueiro
- BioISI─Instituto de Biossistemas e Ciências Integrativas Faculdade de Ciências, Universidade de Lisboa, Lisboa 1749-016, Portugal
| |
Collapse
|
5
|
Tang Z, Feng J, Challa M, Rowthu SR, Xiong S, Zou C, Li J, Verma CS, Peng H, He X, Huang C, He Y. Discovery of novel Thymol-TPP antibiotics that eradicate MRSA persisters. Eur J Med Chem 2024; 270:116381. [PMID: 38604097 DOI: 10.1016/j.ejmech.2024.116381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/22/2024] [Accepted: 04/01/2024] [Indexed: 04/13/2024]
Abstract
The high prevalence of methicillin-resistant Staphylococcus aureus (MRSA) strains and the formation of non-growing, dormant "persisters" subsets help bacteria evade antibiotic treatment and enhance bacterial resistance, which poses a serious threat to human life and health. It is urgent to discover novel antibacterial therapies effective against MRSA persisters. Thymol is a common nutraceutical with weak antibacterial and antitumor activities. A series of Thymol triphenylphosphine (TPP) conjugates (TPP-Thy3) was designed and synthesized. These compounds showed significantly improved inhibitory activity against Gram-positive bacteria compared with Thymol. Among them, Thy3d displayed a low probability of resistance selection and showed excellent biocompatibility. Interestingly, Thy3d elicited a rapid killing effect of MRSA persisters (99.999%) at high concentration. Fluorescence experiments, electron microscopy, molecular dynamics simulation and bilayer experiment confirmed that Thy3d conjugates exerted potent antimicrobial activity by disrupting the integrity of the membrane of bacterial even the persister. Furthermore, Thy3d exhibited considerable efficacy in a mouse model of subcutaneous murine MRSA infection. In summary, TPP-Thy3 conjugates are a series of novel antibacterial agents and could serve as a new therapeutic strategy for combating antibiotic resistance.
Collapse
Affiliation(s)
- Ziyi Tang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Jizhou Feng
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China
| | - Mahesh Challa
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China
| | - Sankara Rao Rowthu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China
| | - Shuxin Xiong
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China
| | - Cheng Zou
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China
| | - Jianguo Li
- Singapore Eye Research Institute, Singapore, 169856, Singapore; Bioinformatics Institute, A*STAR, 30 Biopolis Street, Matrix, 138671, Singapore
| | - Chandra Shekhar Verma
- Bioinformatics Institute, A*STAR, 30 Biopolis Street, Matrix, 138671, Singapore; Department of Biological Sciences, National University of Singapore, 117543, Singapore; School of Biological Sciences, Nanyang Technological University, 637551, Singapore
| | - Haibo Peng
- Chongqing Academy of Science and Technology, Chongqing, 401123, China
| | - Xiaoli He
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Chao Huang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China.
| | - Yun He
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China; BayRay Innovation Center, Shenzhen Bay Laboratory, Shenzhen, 518132, China.
| |
Collapse
|
6
|
Pereira AJ, Xing H, de Campos LJ, Seleem MA, de Oliveira KMP, Obaro SK, Conda-Sheridan M. Structure-Activity Relationship Study to Develop Peptide Amphiphiles as Species-Specific Antimicrobials. Chemistry 2024; 30:e202303986. [PMID: 38221408 PMCID: PMC10939825 DOI: 10.1002/chem.202303986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 01/16/2024]
Abstract
Antimicrobial peptide amphiphiles (PAs) are a promising class of molecules that can disrupt the bacterial membrane or act as drug nanocarriers. In this study, we prepared 33 PAs to establish supramolecular structure-activity relationships. We studied the morphology and activity of the nanostructures against different Gram-positive and Gram-negative bacterial strains (such as Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa and Acinetobacter baumannii). Next, we used principal component analysis (PCA) to determine the key contributors to activity. We found that for S. aureus, the zeta potential was the major contributor to the activity while Gram-negative bacteria were more influenced by the partition coefficient (LogP) with the following order P. aeruginosa>E. coli>A. baumannii. We also performed a study of the mechanism of action of selected PAs on the bacterial membrane assessing the membrane permeability and depolarization, changes in zeta potential and overall integrity. We studied the toxicity of the nanostructures against mammalian cells. Finally, we performed an in vivo study using the wax moth larvae to determine the therapeutic efficacy of the active PAs. This study shows cationic PA nanostructures can be an intriguing platform for the development of nanoantibacterials.
Collapse
Affiliation(s)
- Aramis J. Pereira
- A. J. Pereira, Dr. H. Xing, L. J. de Campos, Prof. Dr. M. Conda-Sheridan, Department of Pharmaceutical Sciences, University of Nebraska Medical Center (UNMC), Omaha, NE 68198 (USA)
| | - Huihua Xing
- A. J. Pereira, Dr. H. Xing, L. J. de Campos, Prof. Dr. M. Conda-Sheridan, Department of Pharmaceutical Sciences, University of Nebraska Medical Center (UNMC), Omaha, NE 68198 (USA)
| | - Luana J. de Campos
- A. J. Pereira, Dr. H. Xing, L. J. de Campos, Prof. Dr. M. Conda-Sheridan, Department of Pharmaceutical Sciences, University of Nebraska Medical Center (UNMC), Omaha, NE 68198 (USA)
| | - Mohamed A. Seleem
- Dr. M.A. Seleem, Department of Pharmaceutical Organic Chemistry, Al-Azhar University, Cairo, 4434003 (Egypt)
| | - Kelly M. P. de Oliveira
- Prof. Dr. K. M. P. de Oliveira, Department of Biological and Environmental Science, Federal University of Grande Dourados (UFGD), Dourados, MS 79804-970 (Brazil)
| | - Stephen K. Obaro
- Prof. Dr. S. K. Obaro, Division of Pediatric Infectious Diseases, University of Alabama at Birmingham (UAB), Birmingham, AL 35233 (USA), International Foundation against Infectious Diseases in Nigeria (IFAIN), Abuja, 900108 (Nigeria)
| | - Martin Conda-Sheridan
- A. J. Pereira, Dr. H. Xing, L. J. de Campos, Prof. Dr. M. Conda-Sheridan, Department of Pharmaceutical Sciences, University of Nebraska Medical Center (UNMC), Omaha, NE 68198 (USA)
| |
Collapse
|
7
|
Li J, Monje-Galvan V. Effect of Glycone Diversity on the Interaction of Triterpenoid Saponins and Lipid Bilayers. ACS APPLIED BIO MATERIALS 2024; 7:553-563. [PMID: 36854194 DOI: 10.1021/acsabm.2c00928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Triterpenoid saponins are organic compounds widely available in the plant kingdom. These molecules have received extensive attention due to their antibacterial activity against both Gram-negative and Gram-positive bacteria. Recent studies identified the antibacterial activity of saponins closely relates to their interaction with bacterial membrane lipids; however, molecular details of this interaction remain unclear. Increased understanding of the mechanisms to disrupt bacterial lipid bilayers can help to mitigate development of antibiotic resistance. Here, we examined the effect of chemical structure and deprotonation states of saponin on its interaction with a bacterial membrane model using molecular dynamics simulations. We run multiple simulations with a ternary lipid mixture of POPE/POPG/DPPG (80/15/5 mol %) and different saponin molecules. While all saponin structures can permanently bind the membrane, their location and orientation inside the bilayer depend on the sugar chains attached to their backbone. Similarly, cluster formation and stability also depend on the chemical structure of the saponin molecule. Deprotonation site affects interactions with the bilayer by modulating hydrophilicity of the molecules. At the low concentrations simulated in this work, there is no statistically significant change in the membrane properties upon saponin(s) binding, but the molecules do preferentially partition to POPE lipid environment.
Collapse
Affiliation(s)
- Jinhui Li
- Department of Chemical and Biomolecular Engineering, State University of New York (SUNY) at Buffalo, Buffalo, New York 14260, United States
| | - Viviana Monje-Galvan
- Department of Chemical and Biomolecular Engineering, State University of New York (SUNY) at Buffalo, Buffalo, New York 14260, United States
| |
Collapse
|
8
|
Tamucci JD, Alder NN, May ER. Peptide Power: Mechanistic Insights into the Effect of Mitochondria-Targeted Tetrapeptides on Membrane Electrostatics from Molecular Simulations. Mol Pharm 2023; 20:6114-6129. [PMID: 37904323 PMCID: PMC10841697 DOI: 10.1021/acs.molpharmaceut.3c00480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
Mitochondrial dysfunction is implicated in nine of the ten leading causes of death in the US, yet there are no FDA-approved therapeutics to treat it. Synthetic mitochondria-targeted peptides (MTPs), including the lead compound SS-31, offer promise, as they have been shown to restore healthy mitochondrial function and treat a variety of common diseases. At the cellular level, research has shown that MTPs accumulate strongly at the inner mitochondrial membrane (IMM), slow energy sinks (e.g., proton leaks), and improve ATP production. Modulation of electrostatic fields around the IMM has been implicated as a key aspect in the mechanism of action (MoA) of these peptides; however, molecular and mechanistic details have remained elusive. In this study, we employed all-atom molecular dynamics simulations (MD) to investigate the interactions of four MTPs with lipid bilayers and calculate their effect on structural and electrostatic properties. In agreement with previous experimental findings, we observed the modulation of the membrane surface and dipole potentials by MTPs. The simulations reveal that the MTPs achieve a reduction in the dipole potential by acting to disorder both lipid head groups and water layers proximal to the bilayer surface. We also find that MTPs decrease the bilayer thickness and increase the membrane's capacitance. These changes suggest that MTPs may enhance how much potential energy can be stored across the IMM at a given transmembrane potential difference. The MTPs also displace cations away from the bilayer surface, modulating the surface potential and offering an alternative mechanism for how these MTPs reduce mitochondrial energy sinks like proton leaks and mitigate Ca2+ accumulation stress. In conclusion, this study highlights the therapeutic potential of MTPs and underlines how interactions of MTPs with lipid bilayers serve as a fundamental component of their MoA.
Collapse
Affiliation(s)
- Jeffrey D Tamucci
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Nathan N Alder
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Eric R May
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269, United States
| |
Collapse
|
9
|
Tang Z, Jiang W, Li S, Huang X, Yang Y, Chen X, Qiu J, Xiao C, Xie Y, Zhang X, Li J, Verma CS, He Y, Yang A. Design and evaluation of tadpole-like conformational antimicrobial peptides. Commun Biol 2023; 6:1177. [PMID: 37980400 PMCID: PMC10657444 DOI: 10.1038/s42003-023-05560-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 11/08/2023] [Indexed: 11/20/2023] Open
Abstract
Antimicrobial peptides are promising alternatives to conventional antibiotics. Herein, we report a class of "tadpole-like" peptides consisting of an amphipathic α-helical head and an aromatic tail. A structure-activity relationship (SAR) study of "tadpole-like" temporin-SHf and its analogs revealed that increasing the number of aromatic residues in the tail, introducing Arg to the α-helical head and rearranging the peptide topology dramatically increased antimicrobial activity. Through progressive structural optimization, we obtained two peptides, HT2 and RI-HT2, which exhibited potent antimicrobial activity, no hemolytic activity and cytotoxicity, and no propensity to induce resistance. NMR and molecular dynamics simulations revealed that both peptides indeed adopted "tadpole-like" conformations. Fluorescence experiments and electron microscopy confirmed the membrane targeting mechanisms of the peptides. Our studies not only lead to the discovery of a series of ultrashort peptides with potent broad-spectrum antimicrobial activities, but also provide a new strategy for rational design of novel "tadpole-like" antimicrobial peptides.
Collapse
Affiliation(s)
- Ziyi Tang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
- School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China
| | - Wuqiao Jiang
- School of Life Sciences, Chongqing University, Chongqing, 401331, China
| | - Shuangli Li
- National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Xue Huang
- School of Life Sciences, Chongqing University, Chongqing, 401331, China
| | - Yi Yang
- School of Life Sciences, Chongqing University, Chongqing, 401331, China
| | - Xiaorong Chen
- School of Life Sciences, Chongqing University, Chongqing, 401331, China
| | - Jingyi Qiu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Chuyu Xiao
- School of Life Sciences, Chongqing University, Chongqing, 401331, China
| | - Ying Xie
- School of Life Sciences, Chongqing University, Chongqing, 401331, China
| | - Xu Zhang
- National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Jianguo Li
- Bioinformatics Institute, A∗STAR, 30 Biopolis Street, Matrix, Singapore, 138671, Singapore
- Singapore Eye Research Institute, Singapore, 169856, Singapore
| | - Chandra Shekhar Verma
- Bioinformatics Institute, A∗STAR, 30 Biopolis Street, Matrix, Singapore, 138671, Singapore
- Department of Biological Sciences, National University of, Singapore, 117543, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Yun He
- School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China.
- BayRay Innovation Center, Shenzhen Bay Laboratory, Shenzhen, 518132, China.
| | - Aimin Yang
- School of Life Sciences, Chongqing University, Chongqing, 401331, China.
| |
Collapse
|
10
|
Vinutha AS, Rajasekaran R. Insight on the mechanism of hexameric Pseudin-4 against bacterial membrane-mimetic environment. J Comput Aided Mol Des 2023:10.1007/s10822-023-00516-2. [PMID: 37368161 DOI: 10.1007/s10822-023-00516-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/22/2023] [Indexed: 06/28/2023]
Abstract
As an alternative to antibiotics, Antimicrobial Peptides (AMPs) possess unique properties including cationic, amphipathic and their abundance in nature, but the exact characteristics of AMPs against bacterial membranes are still undetermined. To estimate the structural stability and functional activity of AMPs, the Pseudin AMPs (Pse-1, Pse-2, Pse-3, and Pse-4) from Hylid frog species, Pseudis paradoxa, an abundantly discovered source for AMPs were examined. We studied the intra-peptide interactions and thermal denaturation stability of peptides, as well as the geometrical parameters and secondary structure profiles of their conformational trajectories. On this basis, the peptides were screened out and the highly stable peptide, Pse-4 was subjected to membrane simulation in order to observe the changes in membrane curvature formed by Pse-4 insertion. Monomeric Pse-4 was found to initiate the membrane disruption; however, a stable multimeric form of Pse-4 might be competent to counterbalance the helix-coil transition and to resist the hydrophobic membrane environment. Eventually, hexameric Pse-4 on membrane simulation exhibited the hydrogen bond formation with E. coli bacterial membrane and thereby, leading to the formation of membrane spanning pore that allowed the entry of excess water molecules into the membrane shell, thus causing membrane deformation. Our report points out the mechanism of Pse-4 peptide against the bacterial membrane for the first time. Relatively, Pse-4 works on the barrel stave model against E. coli bacterial membrane; hence it might act as a good therapeutic scaffold in the treatment of multi-drug resistant bacterial strains.
Collapse
Affiliation(s)
- A S Vinutha
- Quantitative Biology Lab, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT, Deemed to be University), Vellore, Tamil Nadu, India
| | - R Rajasekaran
- Quantitative Biology Lab, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT, Deemed to be University), Vellore, Tamil Nadu, India.
| |
Collapse
|
11
|
Feng J, Jia Z, Yuan G, Zhu X, Liu Q, Wu K, Wang J, Zou J. Expression and functional characterization of three β-defensins in grass carp (Ctenopharyngodon idella). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 140:104616. [PMID: 36565823 DOI: 10.1016/j.dci.2022.104616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/07/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
β-defensins (BDs) are a group of cysteine-rich cationic antimicrobial peptides and play important roles in the first line of defense against infection. In this study, the expression and antibacterial activities of three grass carp (Ctenopharyngodon idella) (Ci) β-defensin (BD) peptides were comparatively investigated. Expression analysis reveals that CiBD1-3 were constitutively expressed in tissues, with the highest expression detected in the skin. The CiBD-1 transcripts were more abundant than CiBD-2 and CiBD-3. In the primary head kidney leukocytes, CiBDs were induced by PHA, LPS, poly(I:C) and cytokines such as IL-1β and IFN-γ. In vivo challenge of fish with Aeromonas hydrophila resulted in the up-regulation of CiBDs in the head kidney and hindgut. To determine the biological activities, recombinant CiBD proteins were produced in the HEK293-F cells and purified for the minimum inhibitory concentration assay. It was found that all three recombinant CiBD proteins were effective to inhibit the growth of Gram-negative fish bacterial pathogens including Aeromonas hydrophila, Edwardsiella tarda, Flavobacterium columnare and Klebsiella pneumoniae and Gram-positive Staphylococcus aureus. CiBD-2 and CiBD-3 were more effective than CiBD-1. Our results demonstrate that all the three CiBDs have broad antibacterial activity against fish bacterial pathogens.
Collapse
Affiliation(s)
- Jianhua Feng
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Zhao Jia
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Gaoliang Yuan
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Xiaozhen Zhu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Qin Liu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Kaizheng Wu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Junya Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Jun Zou
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200, China.
| |
Collapse
|
12
|
Arulrajah B, Qoms MS, Muhialdin BJ, Zarei M, Hussin ASM, Hasan H, Chau DM, Ramasamy R, Saari N. Antifungal efficacy of kenaf seed peptides mixture in cheese, safety assessment and unravelling its action mechanism against food spoilage fungi. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
13
|
Selective Induction of Intrinsic Apoptosis in Retinoblastoma Cells by Novel Cationic Antimicrobial Dodecapeptides. Pharmaceutics 2022; 14:pharmaceutics14112507. [PMID: 36432697 PMCID: PMC9694048 DOI: 10.3390/pharmaceutics14112507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/29/2022] [Accepted: 11/03/2022] [Indexed: 11/22/2022] Open
Abstract
Host defense peptides represent an important component of innate immunity. In this work, we report the anticancer properties of a panel of hyper-charged wholly cationic antimicrobial dodecapeptides (CAPs) containing multiple canonical forms of lysine and arginine residues. These CAPs displayed excellent bactericidal activities against a broad range of pathogenic bacteria by dissipating the cytoplasmic membrane potential. Specifically, we identified two CAPs, named HC3 and HC5, that effectively killed a significant number of retinoblastoma (WERI-Rb1) cells (p ≤ 0.01). These two CAPs caused the shrinkage of WERI-Rb1 tumor spheroids (p ≤ 0.01), induced intrinsic apoptosis in WERI-Rb1 cells via activation of caspase 9 and caspase 3, cleaved the PARP protein, and triggered off the phosphorylation of p53 and γH2A.X. Combining HC3 or HC5 with the standard chemotherapeutic drug topotecan showed synergistic anti-cancer activities. Overall, these results suggest that HC3 and HC5 can be exploited as potential therapeutic agents in retinoblastoma as monotherapy or as adjunctive therapy to enhance the effectiveness of currently used treatment modalities.
Collapse
|
14
|
Takahashi H, Sovadinova I, Yasuhara K, Vemparala S, Caputo GA, Kuroda K. Biomimetic antimicrobial polymers—Design, characterization, antimicrobial, and novel applications. WIRES NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 15:e1866. [PMID: 36300561 DOI: 10.1002/wnan.1866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 09/15/2022] [Accepted: 09/27/2022] [Indexed: 11/05/2022]
Abstract
Biomimetic antimicrobial polymers have been an area of great interest as the need for novel antimicrobial compounds grows due to the development of resistance. These polymers were designed and developed to mimic naturally occurring antimicrobial peptides in both physicochemical composition and mechanism of action. These antimicrobial peptide mimetic polymers have been extensively investigated using chemical, biophysical, microbiological, and computational approaches to gain a deeper understanding of the molecular interactions that drive function. These studies have helped inform SARs, mechanism of action, and general physicochemical factors that influence the activity and properties of antimicrobial polymers. However, there are still lingering questions in this field regarding 3D structural patterning, bioavailability, and applicability to alternative targets. In this review, we present a perspective on the development and characterization of several antimicrobial polymers and discuss novel applications of these molecules emerging in the field. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease.
Collapse
Affiliation(s)
- Haruko Takahashi
- Graduate School of Integrated Sciences for Life Hiroshima University Higashi‐Hiroshima Hiroshima Japan
| | - Iva Sovadinova
- RECETOX, Faculty of Science Masaryk University Brno Czech Republic
| | - Kazuma Yasuhara
- Division of Materials Science, Graduate School of Science and Technology Nara Institute of Science and Technology Nara Japan
- Center for Digital Green‐Innovation Nara Institute of Science and Technology Nara Japan
| | - Satyavani Vemparala
- The Institute of Mathematical Sciences CIT Campus Chennai India
- Homi Bhabha National Institute Training School Complex Mumbai India
| | - Gregory A. Caputo
- Department of Chemistry & Biochemistry Rowan University Glassboro New Jersey USA
| | - Kenichi Kuroda
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry University of Michigan Ann Arbor Michigan USA
| |
Collapse
|
15
|
Anticancer peptides mechanisms, simple and complex. Chem Biol Interact 2022; 368:110194. [PMID: 36195187 DOI: 10.1016/j.cbi.2022.110194] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/12/2022] [Accepted: 09/22/2022] [Indexed: 11/22/2022]
Abstract
Peptide therapy has started since 1920s with the advent of insulin application, and now it has emerged as a new approach in treatment of diseases including cancer. Using anti-cancer peptides (ACPs) is a promising way of cancer therapy as ACPs are continuing to be approved and arrived at major pharmaceutical markets. Traditional cancer treatments face different problems like intensive adverse effects to patient's body, cell resistance to conventional chemical drugs and in some worse cases the occurrence of cell multidrug resistance (MDR) of cancerous tissues against chemotherapy. On the other hand, there are some benefits conceived for peptides usage in treatment of diseases specifically cancer, as these compounds present favorable characteristics such as smaller size, high activity, low immunogenicity, good biocompatibility in vivo, convenient and rapid way of synthesis, amenable to sequence modification and revision and there is no limitation for the type of cargo they carry. It is possible to achieve an optimum molecular and functional structure of peptides based on previous experience and bank of peptide motif data which may result in novel peptide design. Bioactive peptides are able to form pores in cell membrane and induce necrosis or apoptosis of abnormal cells. Moreover, recent researches have focused on the tumor recognizing peptide motifs with the ability to permeate to cancerous cells with the aim of cancer treatment at earlier stages. In this strategy the most important factors for addressing cancer are choosing peptides with easy accessibility to tumor cell without cytotoxicity effect towards normal cells. The peptides must also meet acceptable pharmacokinetic requirements. In this review, the characteristics of peptides and cancer cells are discussed. The various mechanisms of peptides' action proposed against cancer cells make the next part of discussion. It will be followed by giving information on peptides application, various methods of peptide designing along with introducing various databases. Future aspects of peptides for employing in area of cancer treatment come as conclusion at the end.
Collapse
|
16
|
Kumari M, Roy S, Jaiswal A, Kashyap HK. Anionic Lipid Clustering-Mediated Bactericidal Activity and Selective Toxicity of Quaternary Ammonium-Substituted Polycationic Pullulan against the Staphylococcus aureus Bacterial Membrane. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:8065-8076. [PMID: 35731708 DOI: 10.1021/acs.langmuir.2c00871] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Non-amphiphilic polycations have recently been recognized to hold excellent antimicrobial potential with great mammalian cell compatibility. In a recent study, the excellent broad-spectrum bactericidal efficacy of a quaternary ammonium-substituted cationic pullulan (CP4) was demonstrated. Their selective toxicity and nominal probability to induce the acquisition of resistance among pathogens fulfill the fundamental requirements of new-generation antibacterials. However, there have been exiguous attempts in the literature to understand the antimicrobial activity of polycations against Gram-positive bacterial membranes. Here, for the first time, we have scrutinized the molecular level interactions of CP4 tetramers with a model Staphylococcus aureus membrane to understand their probable antibacterial function using molecular dynamics simulations. Our analysis reveals that the hydrophilic CP4 molecules are spontaneously adsorbed onto the membrane outer leaflet surface by virtue of strong electrostatic interactions and do not penetrate into the lipid tail hydrophobic region. This surface binding of CP4 is strengthened by the formation of anionic lipid-rich domains in their vicinity, causing lateral compositional heterogeneity. The major outcomes of the asymmetric accumulation of bulky polycationic CP4 on one leaflet are (i) anionic lipid segregation at the interaction site and (ii) a decrease in the cationic lipid acyl tail ordering and ease of water translocation across the lipid hydrophobic barrier. The membrane-CP4 interactions are strongly monitored by the ionic strength; a higher salt concentration weakens the binding of CP4 on the membrane surface. In addition, our study also substantiates the non-interacting behavior of CP4 oligomers with biomimetic 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) membrane, indicating their cell selectivity and specificity against pathogenic membranes.
Collapse
Affiliation(s)
- Monika Kumari
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Shounak Roy
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh 175075, India
| | - Amit Jaiswal
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh 175075, India
| | - Hemant K Kashyap
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
17
|
Kim H, Yoo YD, Lee GY. Identification of Bacterial Membrane Selectivity of Romo1-Derived Antimicrobial Peptide AMPR-22 via Molecular Dynamics. Int J Mol Sci 2022; 23:ijms23137404. [PMID: 35806412 PMCID: PMC9266825 DOI: 10.3390/ijms23137404] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/29/2022] [Accepted: 07/01/2022] [Indexed: 02/01/2023] Open
Abstract
The abuse or misuse of antibiotics has caused the emergence of extensively drug-resistant (XDR) bacteria, rendering most antibiotics ineffective and increasing the mortality rate of patients with bacteremia or sepsis. Antimicrobial peptides (AMPs) are proposed to overcome this problem; however, many AMPs have attenuated antimicrobial activities with hemolytic toxicity in blood. Recently, AMPR-11 and its optimized derivative, AMPR-22, were reported to be potential candidates for the treatment of sepsis with a broad spectrum of antimicrobial activity and low hemolytic toxicity. Here, we performed molecular dynamics (MD) simulations to clarify the mechanism of lower hemolytic toxicity and higher efficacy of AMPR-22 at an atomic level. We found four polar residues in AMPR-11 bound to a model mimicking the bacterial inner/outer membranes preferentially over eukaryotic plasma membrane. AMPR-22 whose polar residues were replaced by lysine showed a 2-fold enhanced binding affinity to the bacterial membrane by interacting with bacterial specific lipids (lipid A or cardiolipin) via hydrogen bonds. The MD simulations were confirmed experimentally in models that partially mimic bacteremia conditions in vitro and ex vivo. The present study demonstrates why AMPR-22 showed low hemolytic toxicity and this approach using an MD simulation would be helpful in the development of AMPs.
Collapse
Affiliation(s)
- Hana Kim
- Laboratory of Molecular Cell Biology, Graduate School of Medicine, Korea University College of Medicine, Korea University, Seoul 02841, Korea;
| | - Young Do Yoo
- Laboratory of Molecular Cell Biology, Graduate School of Medicine, Korea University College of Medicine, Korea University, Seoul 02841, Korea;
- Correspondence: (Y.D.Y.); (G.Y.L.)
| | - Gi Young Lee
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
- Correspondence: (Y.D.Y.); (G.Y.L.)
| |
Collapse
|
18
|
Soltani S, Mansouri K, Parvaneh S, Thakor AS, Pociot F, Yarani R. Diabetes complications and extracellular vesicle therapy. Rev Endocr Metab Disord 2022; 23:357-385. [PMID: 34647239 DOI: 10.1007/s11154-021-09680-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/30/2021] [Indexed: 02/06/2023]
Abstract
Diabetes is a chronic disorder characterized by dysregulated glycemic conditions. Diabetic complications include microvascular and macrovascular abnormalities and account for high morbidity and mortality rates in patients. Current clinical approaches for diabetic complications are limited to symptomatic treatments and tight control of blood sugar levels. Extracellular vesicles (EVs) released by somatic and stem cells have recently emerged as a new class of potent cell-free therapeutic delivery packets with a great potential to treat diabetic complications. EVs contain a mixture of bioactive molecules and can affect underlying pathological processes in favor of tissue healing. In addition, EVs have low immunogenicity and high storage capacity while maintaining nearly the same regenerative and immunomodulatory effects compared to current cell-based therapies. Therefore, EVs have received increasing attention for diabetes-related complications in recent years. In this review, we provide an outlook on diabetic complications and summarizes new knowledge and advances in EV applications. Moreover, we highlight recommendations for future EV-related research.
Collapse
Affiliation(s)
- Setareh Soltani
- Clinical Research Development Center, Taleghani and Imam Ali Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Kamran Mansouri
- Medical Biology Research Center, Health Technology Institute, Kermanshah, University of Medical Sciences, Kermanshah, Iran
| | - Shahram Parvaneh
- Regenerative Medicine and Cellular Pharmacology Laboratory (HECRIN), Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary
- Research Institute of Translational Biomedicine, Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary
| | - Avnesh S Thakor
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA, 94304, USA
| | - Flemming Pociot
- Translational Type 1 Diabetes Research, Department of Clinical Research, Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | - Reza Yarani
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA, 94304, USA.
- Translational Type 1 Diabetes Research, Department of Clinical Research, Steno Diabetes Center Copenhagen, Gentofte, Denmark.
| |
Collapse
|
19
|
Morga M, Batys P, Kosior D, Bonarek P, Adamczyk Z. Poly-L-Arginine Molecule Properties in Simple Electrolytes: Molecular Dynamic Modeling and Experiments. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:3588. [PMID: 35329277 PMCID: PMC8951092 DOI: 10.3390/ijerph19063588] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/04/2022] [Accepted: 03/11/2022] [Indexed: 01/01/2023]
Abstract
Physicochemical properties of poly-L-arginine (P-Arg) molecules in NaCl solutions were determined by molecular dynamics (MD) modeling and various experimental techniques. Primarily, the molecule conformations, the monomer length and the chain diameter were theoretically calculated. These results were used to interpret experimental data, which comprised the molecule secondary structure, the diffusion coefficient, the hydrodynamic diameter and the electrophoretic mobility determined at various ionic strengths and pHs. Using these data, the electrokinetic charge and the effective ionization degree of P-Arg molecules were determined. In addition, the dynamic viscosity measurements for dilute P-Arg solutions enabledto determine the molecule intrinsic viscosity, which was equal to 500 and 90 for ionic strength of 10-5 and 0.15 M, respectively. This confirmed that P-Arg molecules assumed extended conformations and approached the slender body limit at the low range of ionic strength. The experimental data were also used to determine the molecule length and the chain diameter, which agreed with theoretical predictions. Exploiting these results, a robust method for determining the molar mass of P-Arg samples, the hydrodynamic diameter, the radius of gyration and the sedimentation coefficient was proposed.
Collapse
Affiliation(s)
- Maria Morga
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, PL-30239 Krakow, Poland; (P.B.); (D.K.)
| | - Piotr Batys
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, PL-30239 Krakow, Poland; (P.B.); (D.K.)
| | - Dominik Kosior
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, PL-30239 Krakow, Poland; (P.B.); (D.K.)
| | - Piotr Bonarek
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, PL-30387 Krakow, Poland;
| | - Zbigniew Adamczyk
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, PL-30239 Krakow, Poland; (P.B.); (D.K.)
| |
Collapse
|
20
|
Franco LR, Park P, Chaimovich H, Coutinho K, Cuccovia IM, Lima FS. Simulations reveal that antimicrobial BP100 induces local membrane thinning, slows lipid dynamics and favors water penetration. RSC Adv 2022; 12:4573-4588. [PMID: 35425494 PMCID: PMC8981376 DOI: 10.1039/d1ra06267k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 01/26/2022] [Indexed: 11/21/2022] Open
Abstract
MD simulations reveal that BP100 peptide induces local membrane thinning and negative curvature, slows lipid dynamics and increases the water life time in the lipid hydrophobic core and transmembrane water transport in the direction of the peptide.
Collapse
Affiliation(s)
| | - Peter Park
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Hernan Chaimovich
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Kaline Coutinho
- Instituto de Física, Universidade de São Paulo, São Paulo, Brazil
| | - Iolanda M. Cuccovia
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Filipe S. Lima
- Departamento de Química Fundamental, Centro de Ciências Exatas e da Natureza, Universidade Federal de Pernambuco, Recife, Brazil
| |
Collapse
|
21
|
Roy S, Kumari M, Haloi P, Chawla S, Konkimalla VB, Kumar A, Kashyap HK, Jaiswal A. Quaternary ammonium substituted pullulan accelerates wound healing and disinfects Staphylococcus aureus infected wounds in mouse through an atypical 'non-pore forming' pathway of bacterial membrane disruption. Biomater Sci 2021; 10:581-601. [PMID: 34907410 DOI: 10.1039/d1bm01542g] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The emergence of multi-drug resistant pathogens has fueled the search for alternatives to the existing line of antibiotics that can eradicate pathogens without inducing resistance development. Here, we report the accelerated wound healing and disinfection potential of a non-amphiphilic quaternized fungal exopolysaccharide, pullulan, without resistance generation in pathogens. The quaternary ammonium substituted pullulan (CP) derivatives showed excellent bactericidal activity against both Gram negative (MBC90 = 1.5 μg mL-1) and Gram positive (MBC90 = 0.25 μg mL-1) bacteria at very low concentrations without showing any toxicity towards mammalian cells. A combined approach of atomistic molecular dynamics simulation and experimental assays revealed that CP exerts a membrane directed bactericidal action through an atypical "non-pore forming" pathway which is not yet established for any known antibacterial polysaccharides. This involves an increase in membrane roughness, disorder among anionic lipid tails, formation of localized anionic lipid clusters and membrane depolarization, finally leading to physical disruption of the membrane integrity. Moreover, CP also displayed biofilm eradication abilities and emerged as an excellent therapeutic material for disinfection and healing of infected wounds. The present work shows the potential of exploiting polysaccharides as next-generation broad-spectrum antimicrobials and provides a platform for further development of rationally designed pullulan-based functional materials for biomedical applications.
Collapse
Affiliation(s)
- Shounak Roy
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh 175005, India.
| | - Monika Kumari
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| | - Prakash Haloi
- School of Biological Sciences, National Institute of Science Education and Research, HBNI, Jatni, Odisha 752050, India
| | - Saurabh Chawla
- School of Biological Sciences, National Institute of Science Education and Research, HBNI, Jatni, Odisha 752050, India
| | - V Badireenath Konkimalla
- School of Biological Sciences, National Institute of Science Education and Research, HBNI, Jatni, Odisha 752050, India
| | - Ajith Kumar
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh 175005, India.
| | - Hemant K Kashyap
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| | - Amit Jaiswal
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh 175005, India.
| |
Collapse
|
22
|
Roshanak S, Shahidi F, Tabatabaei Yazdi F, Javadmanesh A, Movaffagh J. Buforin I an alternative to conventional antibiotics: Evaluation of the antimicrobial properties, stability, and safety. Microb Pathog 2021; 161:105301. [PMID: 34822969 DOI: 10.1016/j.micpath.2021.105301] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 11/28/2022]
Abstract
Cationic antimicrobial peptides are being developed as a promising class of antimicrobial sub-stances. The introduction of a new antibiotic component requires a comprehensive study of its properties so that it can be relied upon to continue laboratory procedures and clinical trials on laboratory animals or human volunteers. Antimicrobial activity of buforin I was evaluated against 15 of the most important pathogenic bacterial and fungal strains. This was followed by assessing anti-biofilm activity, time-dependent inhibitory, thermal stability, plas-ma stability, hemolysis, and cytotoxic activities. The range of obtained MICs was between 4 and 16 μg/mL. The most resistant and most sensitive microbial strains were S. salivarius and C. perfringens, respectively. Buforin I not only inhibited biofilm formation, but also showed a high biofilm radiation activity. Buforin I was stable in human plasma and also at different temperatures including 40, 60, and 80 °C. Although no significant anti-cancer properties were observed for buforin I, the lack of cytotoxicity as well as the lack of hemolytic activity confirm its safety. The high therapeutic index indicated that buforin I has a considerable pharmaceutical potential and can be a reasonable candidate to replace antibiotics or administered in combination with antibiotics to increase the effectiveness as well as reduce the dose of antibiotics.
Collapse
Affiliation(s)
- Sahar Roshanak
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Fakhri Shahidi
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Farideh Tabatabaei Yazdi
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Ali Javadmanesh
- Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran; Stem Cell Biology and Regenerative Medicine Research Group, Research Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Jebraeil Movaffagh
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
23
|
Sahiner N. One step synthesis of an amino acid derived particles, poly(
L‐Arginine
) and its biomedical application. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Nurettin Sahiner
- Faculty of Science and Arts, Department of Chemistry, Terzioglu Campus Canakkale Onsekiz Mart University Canakkale Turkey
- Nanoscience and Technology Research and Application Center (NANORAC), Terzioglu Campus Canakkale Onsekiz Mart University Canakkale Turkey
- Department of Chemical and Biomolecular Engineering University of South Florida Tampa Florida USA
- Department of Ophthalmology, Morsani College of Medicine University of South Florida Tampa Florida USA
| |
Collapse
|
24
|
Ghosh S, Pandit G, Debnath S, Chatterjee S, Satpati P. Effect of monovalent salt concentration and peptide secondary structure in peptide-micelle binding. RSC Adv 2021; 11:36836-36849. [PMID: 35494385 PMCID: PMC9043568 DOI: 10.1039/d1ra06772a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/27/2021] [Indexed: 12/14/2022] Open
Abstract
Recently, we reported a cationic 14 residue peptide LL-14 (LKWLKKLLKWLKKL) with salt-sensitive broad-spectrum antimicrobial potency. However, the mechanism of its salt (NaCl) sensitivity remained unclear. In this study, we have reported computational (∼14.2 μs of MD) and experimental (CD, fluorescence) investigations to examine the salt-sensitivity and the role of peptide secondary structure on LL-14 binding to simple membrane mimetic (SDS, DPC) systems. LL-14 was shown to adopt a random coil (Pc) conformation in water and α-helical conformation (Ph) in the peptide:SDS micelle complex, accompanied by tryptophan burial, using both simulations and experiments. Simulations successfully deconvoluted the LL-14:micelle binding event in terms of secondary structure (random coil Pcversus helix Ph) and gave atomic insight into the initial and final LL-14:SDS complexes. Electrostatics drove the N-terminus (L1 and K2) of LL-14 (Pc or Ph) to bind the SDS micellar surface, initiating complex formation. LL-14 in amphipathic Ph conformation bound faster and buried deeper into the SDS micelle relative to Pc. Increasing NaCl concentration incrementally delayed LL-14:micelle binding by shielding the overall charges of the interacting partners. LL-14 binding to the SDS micelle was significantly faster relative to that of the zwitterionic DPC micelle due to electrostatic reasons. Cationic α-helical amphipathic peptides (with positively charged N-terminus) with low salt-ion concentration seemed to be ideal for faster SDS binding. We report computational (∼14.2 μs of MD) and experimental (CD, fluorescence) investigations to examine the salt-sensitivity and the role of the peptide secondary structure on LL-14 binding to simple membrane mimetic systems.![]()
Collapse
Affiliation(s)
- Suvankar Ghosh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati Guwahati 781039 Assam India +91-361-2582249 +91-361-2583205
| | - Gopal Pandit
- Department of Chemistry, Indian Institute of Technology Guwahati Guwahati 781039 Assam India +91-361-2583310
| | - Swapna Debnath
- Department of Chemistry, Indian Institute of Technology Guwahati Guwahati 781039 Assam India +91-361-2583310
| | - Sunanda Chatterjee
- Department of Chemistry, Indian Institute of Technology Guwahati Guwahati 781039 Assam India +91-361-2583310
| | - Priyadarshi Satpati
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati Guwahati 781039 Assam India +91-361-2582249 +91-361-2583205
| |
Collapse
|
25
|
Gong T, Fu J, Shi L, Chen X, Zong X. Antimicrobial Peptides in Gut Health: A Review. Front Nutr 2021; 8:751010. [PMID: 34660671 PMCID: PMC8514777 DOI: 10.3389/fnut.2021.751010] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/03/2021] [Indexed: 12/15/2022] Open
Abstract
Animal antimicrobial peptides (AMPs), known as broad-spectrum and high-efficiency antibacterial activity, are important effector molecules in innate immune system. AMPs not only have antimicrobial, antiviral and antitumor effects but also exhibit important effects in vivo, such as anti-inflammatory response, recruiting immune cells, promoting epithelial damage repair, and promoting phagocytosis of bacteria. However, research on the application of AMPs is incomplete and controversial. This review mainly introduces the classification of AMPs, biological functions, as well as the mechanisms of action, expression rules, and nutrition regulation from three perspectives, aiming to provide important information for the application of AMPs.
Collapse
Affiliation(s)
- Tao Gong
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Jie Fu
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Lexuan Shi
- Guangzhou Dublin International College of Life Sciences and Technology, South China Agricultural University, Guangzhou, China
| | - Xin Chen
- School of Medicine, Foshan University, Foshan, China
| | - Xin Zong
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
26
|
Nie RZ, Dang MZ, Ge ZZ, Huo YQ, Yu B, Tang SW. Interactions of chlorogenic acid and isochlorogenic acid A with model lipid bilayer membranes: Insights from molecular dynamics simulations. Chem Phys Lipids 2021; 240:105136. [PMID: 34529979 DOI: 10.1016/j.chemphyslip.2021.105136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 11/29/2022]
Abstract
Because of the negative side-effects of synthetic preservatives, the naturally-occurring polyphenols aroused intense interest of researchers. It has been suggested that chlorogenic acid (CA) and isochlorogenic acid A (iso-CAA) were good candidates to replace the synthetic preservatives. Moreover, the bactericidal activity of iso-CAA was stronger than CA, and the anti-bacterial activities of iso-CAA and CA were highly membrane-dependent. However, the mechanisms were still unclear. Therefore, in the present study, we investigated the mechanisms of the interactions between the two polyphenols and lipid bilayers through molecular dynamics simulations. The results revealed that iso-CAA could be inserted much deeper into POPG lipid bilayer than CA. We also found that hydrophobic interactions and hydrogen bonds both contributed to the insertion of iso-CAA into the POPG lipid bilayer, and the quinic acid moiety was the key structure in iso-CAA to form hydrogen bonds with POPG lipid bilayer. We believed that these findings would provide more useful information to explain the stronger bactericidal activity of iso-CAA than CA at the atomic level.
Collapse
Affiliation(s)
- Rong-Zu Nie
- School of Food Science and Technology·School of Chemical Engineering, Hubei University of Arts and Science, Xiangyang 441053, China; Food Ingredients Engineering Technology Research Center of Hubei, Xiangyang 441053, China
| | - Mei-Zhu Dang
- School of Energy and Intelligence Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou 450002, China
| | - Zhen-Zhen Ge
- School of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Yin-Qiang Huo
- School of Food Science and Technology·School of Chemical Engineering, Hubei University of Arts and Science, Xiangyang 441053, China; Food Ingredients Engineering Technology Research Center of Hubei, Xiangyang 441053, China
| | - Bo Yu
- School of Food Science and Technology·School of Chemical Engineering, Hubei University of Arts and Science, Xiangyang 441053, China; Food Ingredients Engineering Technology Research Center of Hubei, Xiangyang 441053, China
| | - Shang-Wen Tang
- School of Food Science and Technology·School of Chemical Engineering, Hubei University of Arts and Science, Xiangyang 441053, China; Food Ingredients Engineering Technology Research Center of Hubei, Xiangyang 441053, China.
| |
Collapse
|
27
|
Vishweshwaraiah YL, Acharya A, Hegde V, Prakash B. Rational design of hyperstable antibacterial peptides for food preservation. NPJ Sci Food 2021; 5:26. [PMID: 34471114 PMCID: PMC8410836 DOI: 10.1038/s41538-021-00109-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 06/11/2021] [Indexed: 02/07/2023] Open
Abstract
We describe the design of peptides with properties like thermostability, pH stability, and antibacterial activity against a few bacterial food pathogens. Insights obtained from classical structure-function analysis of natural peptides and their mutants through antimicrobial and enzymatic assays are used to rationally develop a set of peptides. pH and thermostability assays were performed to demonstrate robust antimicrobial activity post-treatment with high temperatures and at wide pH ranges. We have also investigated the mode of action of these hyperstable peptides using membrane permeability assays, electron microscopy, and molecular dynamics simulations. Notably, through mutational studies, we show that these peptides elicit their antibacterial action via both membrane destabilization and inhibition of intracellular trypsin-the two functions attributable to separate peptide segments. Finally, toxicity studies and food preservation assays demonstrate the safety and efficacy of the designed peptides for food preservation. Overall, the study provides a general 'blueprint' for the development of stable antimicrobial peptides (AMPs). Insights obtained from this work may also be combined with combinatorial methods in high-throughput studies for future development of antimicrobials for various applications.
Collapse
Affiliation(s)
- Yashavantha L. Vishweshwaraiah
- grid.417629.f0000 0004 0501 5711Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute, Mysore, India
| | - Abhishek Acharya
- grid.417629.f0000 0004 0501 5711Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute, Mysore, India
| | - Vinayak Hegde
- grid.417629.f0000 0004 0501 5711Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute, Mysore, India ,grid.469887.c0000 0004 7744 2771Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh India
| | - Balaji Prakash
- grid.417629.f0000 0004 0501 5711Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute, Mysore, India ,grid.448607.90000 0004 1781 3606Division of Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Ahmedabad, Gujarat India
| |
Collapse
|
28
|
Yan Y, Li Y, Zhang Z, Wang X, Niu Y, Zhang S, Xu W, Ren C. Advances of peptides for antibacterial applications. Colloids Surf B Biointerfaces 2021; 202:111682. [PMID: 33714188 DOI: 10.1016/j.colsurfb.2021.111682] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 12/09/2020] [Accepted: 03/05/2021] [Indexed: 01/08/2023]
Abstract
In the past few decades, peptide antibacterial products with unique antibacterial mechanisms have attracted widespread interest. They can effectively reduce the probability of drug resistance of bacteria and are biocompatible, so they possess tremendous development prospects. This review provides recent research and analysis on the basic types of antimicrobial peptides (including poly (amino acid)s, short AMPs, and lipopeptides) and factors to optimize antimicrobial effects. It also summarizes the two most important modes of action of antimicrobial peptides and the latest developments in the application of AMPs, including antimicrobial agent, wound healing, preservative, antibacterial coating and others. Finally, we discuss the remaining challenges to improve the antibacterial peptides and propose prospects in the field.
Collapse
Affiliation(s)
- Yuhan Yan
- School of Chemistry and Materials Science, Ludong University, Yantai, 264025, China
| | - Yuanze Li
- School of Chemistry and Materials Science, Ludong University, Yantai, 264025, China
| | - Zhiwen Zhang
- School of Chemistry and Materials Science, Ludong University, Yantai, 264025, China
| | - Xinhao Wang
- School of Chemistry and Materials Science, Ludong University, Yantai, 264025, China
| | - Yuzhong Niu
- School of Chemistry and Materials Science, Ludong University, Yantai, 264025, China
| | - Shaohua Zhang
- School of Chemistry and Materials Science, Ludong University, Yantai, 264025, China.
| | - Wenlong Xu
- School of Chemistry and Materials Science, Ludong University, Yantai, 264025, China.
| | - Chunguang Ren
- Yantai Institute of Materia Medica, Yantai, 264000, China.
| |
Collapse
|
29
|
Zhang B, Kang Z, Zhang J, Kang Y, Liang L, Liu Y, Wang Q. Simultaneous binding mechanism of multiple substrates for multidrug resistance transporter P-glycoprotein. Phys Chem Chem Phys 2021; 23:4530-4543. [PMID: 33595579 DOI: 10.1039/d0cp05910b] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
P-glycoprotein (P-gp), a member of ATP-binding cassette (ABC) transporters, is a multidrug resistance pump. Its promiscuous nature is the main cause of multidrug resistance in cancer cells. P-gp can bind multiple drug molecules simultaneously; however, the binding mechanism is still not clear. Furthermore, the upper limit of the number of substrates that can be accommodated by the binding pocket is not fully understood. In this work, we explore the dynamic process of P-gp binding to multiple substrates by using molecular dynamics (MD) simulations. Our results show that P-gp possesses the ability for simultaneous binding, and that the number of substrates has an upper limit. The accommodating ability of P-gp relates to the size of the binding drugs, and conforms to induced fit theory. In the binding process, the residues 339PHE, 982MET and 986GLN are essential. The pocket of P-gp presents strong flexibility and adaptability features according to the mutation results in this work. Drug molecules tend to gather in the pocket during binding, and interactions between these molecules are beneficial to simultaneous binding. These findings provide new insights into the mechanism of the promiscuous nature of P-gp, and may give us a guideline for inhibiting the process of multidrug resistance.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Chemistry and Soft Matter Research Center, Zhejiang University, Hangzhou 310027, People's Republic of China.
| | - Zhengzhong Kang
- Department of Chemistry and Soft Matter Research Center, Zhejiang University, Hangzhou 310027, People's Republic of China.
| | - Junqiao Zhang
- Department of Chemistry and Soft Matter Research Center, Zhejiang University, Hangzhou 310027, People's Republic of China.
| | - Yu Kang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Lijun Liang
- College of Life Information Science and Instrument Engineering, Hangzhou Dianzi University, Hangzhou, People's Republic of China
| | - Yingchun Liu
- Department of Chemistry and Soft Matter Research Center, Zhejiang University, Hangzhou 310027, People's Republic of China.
| | - Qi Wang
- Department of Chemistry and Soft Matter Research Center, Zhejiang University, Hangzhou 310027, People's Republic of China.
| |
Collapse
|
30
|
Liu L, Zhao L, Liu L, Yue S, Wang J, Cao Z. Influence of Different Aromatic Hydrophobic Residues on the Antimicrobial Activity and Membrane Selectivity of BRBR-NH 2 Tetrapeptide. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:15331-15342. [PMID: 33295774 DOI: 10.1021/acs.langmuir.0c02777] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The ultrashort linear antimicrobial tetrapeptide BRBR-NH2 with an unnatural residue biphenylalanine (B) has potent and rapid antimethicillin-resistant Staphylococcus aureus (MRSA) activity but lacks hemolytic activity. The anti-MRSA activity of BRBR-NH2 is 8-fold more potent than that of WRWR-NH2 and 16-fold more potent than that of FRFR-NH2. However, how to influence their antimicrobial activities and mechanisms through the substitution of different aromatic hydrophobic residues is still unclear. In this work, to study the effects of varying hydrophobic interactions and membrane selectivities of BRBR-NH2, we performed multiple long-time (1000 ns) molecular dynamics (MD) simulations to investigate the interactions of a red blood cell (RBC) membrane and a Gram-positive bacterial cell membrane with three different tetrapeptides (BRBR-NH2, WRWR-NH2, and FRFR-NH2) under different ratios of peptides and lipids and also explored the changes in the membrane and structural characteristics of peptides. The binding energy results show that BRBR-NH2 interacts weakly with the RBC membrane, while not all BRBR-NH2 can be adsorbed to the RBC membrane surface. The MD simulation results produced significant local membrane thinning of multiBRBR-NH2 peptides in the Gram-positive bacterial cell membrane. An in-depth analysis of structural features and peptide-membrane interactions suggests that the aggregation of BRBR-NH2 on the membrane surface plays a crucial role in the destruction of the cell membrane. Taken together with the observed local membrane thinning, the in-depth analysis demonstrated that the interactions between the lipid bilayer and the BRBR-NH2 aggregation surface result in a local disturbance of the membrane structure. It can be concluded that the high anti-MRSA activity of BRBR-NH2 is attributed to the aggregation of BRBR-NH2 on the membrane surface. On the other hand, WRWR-NH2 and FRFR-NH2 peptides tend to bind with the membrane surface in a monomeric form and cover the membrane surface in a carpet-like manner. Therefore, these results provide an advanced microscopic understanding of how hydrophobic interactions or hydrophobic residues affect the antimicrobial activity and mechanism of antimicrobial peptides (AMPs).
Collapse
Affiliation(s)
- Lei Liu
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
| | - Liling Zhao
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
| | - Lixia Liu
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
| | - Shizhong Yue
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
| | - Jihua Wang
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
| | - Zanxia Cao
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
| |
Collapse
|
31
|
Zhang B, Zhang J, Kang Z, Liang L, Liu Y, Wang Q. On interactions of P-glycoprotein with various anti-tumor drugs by binding free energy calculations. J Biomol Struct Dyn 2020; 39:5335-5347. [PMID: 32608321 DOI: 10.1080/07391102.2020.1786456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
P-glycoprotein (P-gp, MDR1), one of ATP-binding cassette transporters, may confer tumor cells cross-resistance to chemotherapeutics. A large amount of P-gp inhibitors were designed to inhibit the multidrug resistance (MDR) feature of P-gp. However, no sufficient researches were reported to explore the correlation between binding capacity and drug property by experiment. Without particular drug property found to inhibit the MDR feature of P-gp, the orientation of drug design is indefinite. In this work, 10 representative cancer drugs with various properties are used to bind with P-gp by molecular dynamics simulation. Binding free energy between P-gp and 10 drugs ranges -139 to -253 kJ/mol. It reveals that the promiscuity nature of P-gp is in light of the similar binding free energy in separate P-gp-ligand binding systems. The binding effect of P-gp and drugs correlates well with the size of drugs and has no apparent correlation with the polarity of each drug. The key reason is that van der Waal's interaction occupies most of the total binding free energy, and it is led by the number of atoms in the drugs. Two transmembrane segments (TM6 and TM12) and three types of amino acids (PHE, MET, and GLN) are vital in binding drugs with van der Waal's energy, which evident the influence between binding stability and size of drugs. This work provides the cause and theoretical basis for the promiscuity nature of P-gp.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Chemistry and Soft Matter Research Center, Zhejiang University, Hangzhou, People's Republic of China
| | - Junqiao Zhang
- Department of Chemistry and Soft Matter Research Center, Zhejiang University, Hangzhou, People's Republic of China
| | - Zhengzhong Kang
- Department of Chemistry and Soft Matter Research Center, Zhejiang University, Hangzhou, People's Republic of China
| | - Lijun Liang
- Department of Chemistry and Soft Matter Research Center, Zhejiang University, Hangzhou, People's Republic of China.,College of Life Information Science and Instrument Engineering, Hangzhou Dianzi University, Hangzhou, People's Republic of China
| | - Yingchun Liu
- Department of Chemistry and Soft Matter Research Center, Zhejiang University, Hangzhou, People's Republic of China
| | - Qi Wang
- Department of Chemistry and Soft Matter Research Center, Zhejiang University, Hangzhou, People's Republic of China
| |
Collapse
|
32
|
Luca S, Seal P, Parekh HS, Tupally KR, Smith SC. Cell Membrane Penetration without Pore Formation: Chameleonic Properties of Dendrimers in Response to Hydrophobic and Hydrophilic Environments. ADVANCED THEORY AND SIMULATIONS 2020. [DOI: 10.1002/adts.201900152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Sergio Luca
- Integrated Materials Design LaboratoryDepartment of Applied MathematicsResearch School of PhysicsAustralian National University Acton ACT 2601 Australia
| | - Prasenjit Seal
- Department of ChemistryUniversity of Helsinki P.O. Box 55 (A.I. Virtasen aukio 1) Helsinki 00014 Finland
| | - Harendra S. Parekh
- School of PharmacyThe University of Queensland Brisbane QLD 4072 Australia
| | | | - Sean C. Smith
- Integrated Materials Design LaboratoryDepartment of Applied MathematicsResearch School of PhysicsAustralian National University Acton ACT 2601 Australia
| |
Collapse
|
33
|
Antimicrobial peptide ROAD-1 triggers phase change in local membrane environment to execute its activity. J Mol Model 2019; 25:281. [PMID: 31468141 DOI: 10.1007/s00894-019-4163-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 08/15/2019] [Indexed: 10/26/2022]
Abstract
Emergence of antibiotic-resistant pathogens has paved way for development of newer class of drugs that would not be susceptible to resistance. Antimicrobial peptides such as defensins that target the microbial membrane are promising candidates. ROAD-1 is an alpha-defensin present in the oral cavity of rhesus macaque and shares very high sequence similarity to human enteric defensin 5. In this study we have performed microsecond long all atom molecular dynamic simulations to understand the mechanism of action of ROAD-1. We find that ROAD-1 is able to adopt an energetically stable conformation predominantly stabilized by electrostatic interactions only in presence of bacterial membranes. In mammalian membrane even though it gets absorbed onto the bilayer, it is unable to adopt an equilibrium conformation. Binding of ROAD-1 to bilayer induces clustering of POPG molecules up to 15 Å around the peptide. POPG molecules show higher order parameters than the neighboring POPE implying coexistence of different phases. Analysis of binding free energy of ROAD-1-membrane complex indicates Arg1, Arg2, Arg7, and Arg25 to play key role in its antimicrobial activity. Unlike its homolog HD5, ROAD-1 is not observed to form a dimer. Our study gives insight into the membrane-bound conformation of ROAD-1 and its mechanism of action that can aid in designing defensin-based therapeutics. Graphical abstract Antimicrobial peptide ROAD-1 adopts a different membrane-bound conformation as compared with HD5 even though they belong to the same family implying a different mechanism of action.
Collapse
|
34
|
De Novo Design and In Vitro Testing of Antimicrobial Peptides against Gram-Negative Bacteria. Pharmaceuticals (Basel) 2019; 12:ph12020082. [PMID: 31163671 PMCID: PMC6631481 DOI: 10.3390/ph12020082] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 05/26/2019] [Accepted: 05/30/2019] [Indexed: 12/13/2022] Open
Abstract
Antimicrobial peptides (AMPs) have been identified as a potentially new class of antibiotics to combat bacterial resistance to conventional drugs. The design of de novo AMPs with high therapeutic indexes, low cost of synthesis, high resistance to proteases and high bioavailability remains a challenge. Such design requires computational modeling of antimicrobial properties. Currently, most computational methods cannot accurately calculate antimicrobial potency against particular strains of bacterial pathogens. We developed a tool for AMP prediction (Special Prediction (SP) tool) and made it available on our Web site (https://dbaasp.org/prediction). Based on this tool, a simple algorithm for the design of de novo AMPs (DSP) was created. We used DSP to design short peptides with high therapeutic indexes against gram-negative bacteria. The predicted peptides have been synthesized and tested in vitro against a panel of gram-negative bacteria, including drug resistant ones. Predicted activity against Escherichia coli ATCC 25922 was experimentally confirmed for 14 out of 15 peptides. Further improvements for designed peptides included the synthesis of D-enantiomers, which are traditionally used to increase resistance against proteases. One synthetic D-peptide (SP15D) possesses one of the lowest values of minimum inhibitory concentration (MIC) among all DBAASP database short peptides at the time of the submission of this article, while being highly stable against proteases and having a high therapeutic index. The mode of anti-bacterial action, assessed by fluorescence microscopy, shows that SP15D acts similarly to cell penetrating peptides. SP15D can be considered a promising candidate for the development of peptide antibiotics. We plan further exploratory studies with the SP tool, aiming at finding peptides which are active against other pathogenic organisms.
Collapse
|
35
|
Enkavi G, Javanainen M, Kulig W, Róg T, Vattulainen I. Multiscale Simulations of Biological Membranes: The Challenge To Understand Biological Phenomena in a Living Substance. Chem Rev 2019; 119:5607-5774. [PMID: 30859819 PMCID: PMC6727218 DOI: 10.1021/acs.chemrev.8b00538] [Citation(s) in RCA: 194] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Indexed: 12/23/2022]
Abstract
Biological membranes are tricky to investigate. They are complex in terms of molecular composition and structure, functional over a wide range of time scales, and characterized by nonequilibrium conditions. Because of all of these features, simulations are a great technique to study biomembrane behavior. A significant part of the functional processes in biological membranes takes place at the molecular level; thus computer simulations are the method of choice to explore how their properties emerge from specific molecular features and how the interplay among the numerous molecules gives rise to function over spatial and time scales larger than the molecular ones. In this review, we focus on this broad theme. We discuss the current state-of-the-art of biomembrane simulations that, until now, have largely focused on a rather narrow picture of the complexity of the membranes. Given this, we also discuss the challenges that we should unravel in the foreseeable future. Numerous features such as the actin-cytoskeleton network, the glycocalyx network, and nonequilibrium transport under ATP-driven conditions have so far received very little attention; however, the potential of simulations to solve them would be exceptionally high. A major milestone for this research would be that one day we could say that computer simulations genuinely research biological membranes, not just lipid bilayers.
Collapse
Affiliation(s)
- Giray Enkavi
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
| | - Matti Javanainen
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy
of Sciences, Flemingovo naḿesti 542/2, 16610 Prague, Czech Republic
- Computational
Physics Laboratory, Tampere University, P.O. Box 692, FI-33014 Tampere, Finland
| | - Waldemar Kulig
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
| | - Tomasz Róg
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
- Computational
Physics Laboratory, Tampere University, P.O. Box 692, FI-33014 Tampere, Finland
| | - Ilpo Vattulainen
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
- Computational
Physics Laboratory, Tampere University, P.O. Box 692, FI-33014 Tampere, Finland
- MEMPHYS-Center
for Biomembrane Physics
| |
Collapse
|
36
|
Duay SS, Sharma G, Prabhakar R, Angeles-Boza AM, May ER. Molecular Dynamics Investigation into the Effect of Zinc(II) on the Structure and Membrane Interactions of the Antimicrobial Peptide Clavanin A. J Phys Chem B 2019; 123:3163-3176. [PMID: 30908921 DOI: 10.1021/acs.jpcb.8b11496] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Clavanin A (ClavA) is an antimicrobial peptide (AMP) whose antimicrobial activity is enhanced in the presence of Zn(II) ions. The antimicrobial activity of ClavA has been shown to increase 16-fold in the presence of Zn(II) ions. In this study, we investigate the potential sources of this enhancement, namely, the effect of Zn(II) binding on the helical conformation of ClavA and on the ClavA interaction with a model for gram-negative bacterial membranes. In addition, we investigate the effect of Zn(II) on the membrane mechanical properties. We employed all-atom equilibrium molecular dynamics simulations initiated from both fully helical and random coil structures of ClavA. We observe that Zn(II) can stabilize an existing helical conformation in the Zn(II)-binding region, but we do not observe induction of helical conformations in systems initiated in random coil configurations. Zn(II) binding to ClavA provides more favorable electrostatics for membrane association in the C-terminal region. This is evidenced by longer and stronger C-terminal-lipid interactions. Zn(II) is also capable of modulating the membrane properties in a manner which favors ClavA insertion and the potential for enhanced translocation into the cell. This work provides insights into the role of divalent metal cations in the antimicrobial activity of ClavA. This information can be used for the development of synthetic AMPs containing motifs that can bind metals (metalloAMPs) for therapeutic and medical purposes.
Collapse
Affiliation(s)
| | - Gaurav Sharma
- Department of Chemistry , University of Miami , Coral Gables , Florida 33146 , United States
| | - Rajeev Prabhakar
- Department of Chemistry , University of Miami , Coral Gables , Florida 33146 , United States
| | | | - Eric R May
- Department of Molecular and Cell Biology , University of Connecticut , 91 N. Eagleville Road , Storrs , Connecticut 06269 , United States
| |
Collapse
|
37
|
Shahmoradi S, Golzar H, Hashemi M, Mansouri V, Omidi M, Yazdian F, Yadegari A, Tayebi L. Optimizing the nanostructure of graphene oxide/silver/arginine for effective wound healing. NANOTECHNOLOGY 2018; 29:475101. [PMID: 30179859 DOI: 10.1088/1361-6528/aadedc] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
In this study, we introduce a novel graphene oxide/silver/arginine (GO/Ag/Arg) nanohybrid structure, which can act as an angiogenesis promoter and provide antibacterial nanostructure for improving the wound healing process. GO/Ag nanostructure has been optimized in terms of the GO/Ag mass ratio and pH values using central composite design and the response surface method to increase the Ag loading efficiency. Then, Arg was chemically introduced to the surface of GO/Ag nanostructure. Electrospun polycaprolactone (PCL)-GO/Ag/Arg nanocomposite was successfully fabricated and characterized. The synthesized nanocomposite demonstrated not only a great antibacterial effect on both Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) bacterial species, but appropriate biocompatibility against L929 fibroblastic cell lines. The results demonstrated that the preparation of the PCL-GO/Ag/Arg nanocomposite at a concentration of 1.0 wt% GO/Ag/Arg possessed the best biological and mechanical features. In vivo experiments also revealed that the use of optimized PCL-GO/Ag/Arg nanocomposite, after 12 d of treatment, led to significant increase in the healing process and also regeneration of the wound via reconstruction of a thickened epidermis layer on the wound surface, which was confirmed by histological analysis. In conclusion, the proposed approach can introduce a novel notion for preparing antibacterial material that significantly promotes angiogenesis.
Collapse
Affiliation(s)
- Saleheh Shahmoradi
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran. Department of Life Science Engineering, Faculty of New Science and Technologies, University of Tehran, Tehran, Iran
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Avci FG, Akbulut BS, Ozkirimli E. Membrane Active Peptides and Their Biophysical Characterization. Biomolecules 2018; 8:biom8030077. [PMID: 30135402 PMCID: PMC6164437 DOI: 10.3390/biom8030077] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/08/2018] [Accepted: 08/13/2018] [Indexed: 12/12/2022] Open
Abstract
In the last 20 years, an increasing number of studies have been reported on membrane active peptides. These peptides exert their biological activity by interacting with the cell membrane, either to disrupt it and lead to cell lysis or to translocate through it to deliver cargos into the cell and reach their target. Membrane active peptides are attractive alternatives to currently used pharmaceuticals and the number of antimicrobial peptides (AMPs) and peptides designed for drug and gene delivery in the drug pipeline is increasing. Here, we focus on two most prominent classes of membrane active peptides; AMPs and cell-penetrating peptides (CPPs). Antimicrobial peptides are a group of membrane active peptides that disrupt the membrane integrity or inhibit the cellular functions of bacteria, virus, and fungi. Cell penetrating peptides are another group of membrane active peptides that mainly function as cargo-carriers even though they may also show antimicrobial activity. Biophysical techniques shed light on peptide–membrane interactions at higher resolution due to the advances in optics, image processing, and computational resources. Structural investigation of membrane active peptides in the presence of the membrane provides important clues on the effect of the membrane environment on peptide conformations. Live imaging techniques allow examination of peptide action at a single cell or single molecule level. In addition to these experimental biophysical techniques, molecular dynamics simulations provide clues on the peptide–lipid interactions and dynamics of the cell entry process at atomic detail. In this review, we summarize the recent advances in experimental and computational investigation of membrane active peptides with particular emphasis on two amphipathic membrane active peptides, the AMP melittin and the CPP pVEC.
Collapse
Affiliation(s)
- Fatma Gizem Avci
- Bioengineering Department, Marmara University, Kadikoy, 34722 Istanbul, Turkey.
| | | | - Elif Ozkirimli
- Chemical Engineering Department, Bogazici University, Bebek, 34342 Istanbul, Turkey.
| |
Collapse
|
39
|
Koh JJ, Lin S, Bai Y, Sin WWL, Aung TT, Li J, Chandra V, Pervushin K, Beuerman RW, Liu S. Antimicrobial activity profiles of Amphiphilic Xanthone derivatives are a function of their molecular Oligomerization. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:2281-2298. [PMID: 29782818 DOI: 10.1016/j.bbamem.2018.05.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 05/09/2018] [Accepted: 05/16/2018] [Indexed: 01/01/2023]
Abstract
Currently, membrane-targeting small antimicrobial peptidomimetics (SAP) are important in antibiotic development because bacteria appear to develop resistance to these surface-active compounds less readily. However, the molecular membrane-targeting action of SAPs has received little attention. In this study, we investigated the effect of oligomerization of amphiphilic xanthone, a model SAP, on its antimicrobial properties against both Gram-positive and Gram-negative bacteria. First, oligomer formation by an amphiphilic xanthone, compound 2 (also coded as AM052), was investigated via solution-state nuclear magnetic resonance (NMR) spectroscopy. Then, the effects of oligomerization on membrane disruption were further studied via biophysical approaches. The results showed that the antimicrobial activities of SAPs develop in several stages: oligomer formation in aqueous solution, initial binding of oligomers to the membrane-water interface followed by insertion into the membrane bilayer, aggregation of antimicrobial oligomers in the membrane, and induced membrane leakage. Ultimately, the presence of the oligomers in the bacterial membrane leads to decreased membrane fluidity and bacterial cell death. Interestingly, the early formation of large oligomers leads to stronger membrane disruption and more rapid bacterial killing. However, reduced antimicrobial activities against Gram-negative bacteria were observed for compounds that formed larger oligomers because the LPS layer acts as a barrier to large complexes. Taken together, our results suggest that oligomerization of SAPs has a strong impact on their antimicrobial properties.
Collapse
Affiliation(s)
- Jun-Jie Koh
- Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower Level 6, 169856, Singapore
| | - Shuimu Lin
- Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower Level 6, 169856, Singapore
| | - Yang Bai
- Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower Level 6, 169856, Singapore; School of Biological Sciences, Nanyang Technological University, 637551, Singapore
| | - Wendy Wan Ling Sin
- Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower Level 6, 169856, Singapore
| | - Thet Tun Aung
- Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower Level 6, 169856, Singapore
| | - Jianguo Li
- Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower Level 6, 169856, Singapore; Bioinformatics Institute, 138671, Singapore
| | - Verma Chandra
- Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower Level 6, 169856, Singapore; Bioinformatics Institute, 138671, Singapore
| | - Konstantin Pervushin
- School of Biological Sciences, Nanyang Technological University, 637551, Singapore.
| | - Roger W Beuerman
- Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower Level 6, 169856, Singapore; Duke-NUS Medical School, SRP Neuroscience and Behavioral Disorders, 169857, Singapore.
| | - Shouping Liu
- Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower Level 6, 169856, Singapore; Duke-NUS Medical School, SRP Neuroscience and Behavioral Disorders, 169857, Singapore.
| |
Collapse
|
40
|
Zhao L, Cao Z, Bian Y, Hu G, Wang J, Zhou Y. Molecular Dynamics Simulations of Human Antimicrobial Peptide LL-37 in Model POPC and POPG Lipid Bilayers. Int J Mol Sci 2018; 19:ijms19041186. [PMID: 29652823 PMCID: PMC5979298 DOI: 10.3390/ijms19041186] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 04/10/2018] [Accepted: 04/11/2018] [Indexed: 12/29/2022] Open
Abstract
Cathelicidins are a large family of cationic antimicrobial peptides (AMPs) found in mammals with broad spectrum antimicrobial activity. LL-37 is the sole amphipathic α-helical AMP from human Cathelicidins family. In addition to its bactericidal capability, LL-37 has antiviral, anti-tumor, and immunoregulatory activity. Despite many experimental studies, its molecular mechanism of action is not yet fully understood. Here, we performed three independent molecular dynamics simulations (600 ns or more) of a LL-37 peptide in the presence of 256 lipid bilayers with 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPG) mimicking bacterial and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) mimicking mammalian membranes. We found that LL-37 can be quickly absorbed onto the POPG bilayer without loss of its helical conformation in the core region and with the helix lying in parallel to the bilayer. The POPG bilayer was deformed. In contrast, LL-37 is slower in reaching the POPC surface and loss much of its helical conformation during the interaction with the bilayer. LL-37 only partially entered the POPC bilayer without significant deformation of the membrane. The observed difference for different bilayers is largely due to the fact that LL-37 is positively charged, POPG is negatively charged, and POPC is neutral. Our simulation results demonstrated the initial stage of disruption of the bacterial membrane by LL-37 in atomic details. Comparison to experimental results on LL-37 and simulation studies in other systems was made.
Collapse
Affiliation(s)
- Liling Zhao
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China.
- College of Physics and Electronic Information, Dezhou University, Dezhou 253023, China.
| | - Zanxia Cao
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China.
- College of Physics and Electronic Information, Dezhou University, Dezhou 253023, China.
| | - Yunqiang Bian
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China.
- College of Physics and Electronic Information, Dezhou University, Dezhou 253023, China.
| | - Guodong Hu
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China.
- College of Physics and Electronic Information, Dezhou University, Dezhou 253023, China.
| | - Jihua Wang
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China.
- College of Physics and Electronic Information, Dezhou University, Dezhou 253023, China.
| | - Yaoqi Zhou
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China.
- Institute for Glycomics and School of Information and Communication Technology, Griffith University, Parklands Dr, Southport, Queensland 4222, Australia.
| |
Collapse
|
41
|
Conjugates and nano-delivery of antimicrobial peptides for enhancing therapeutic activity. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2017.12.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
42
|
Li J, Beuerman RW, Verma CS. Molecular Insights into the Membrane Affinities of Model Hydrophobes. ACS OMEGA 2018; 3:2498-2507. [PMID: 30023836 PMCID: PMC6044992 DOI: 10.1021/acsomega.7b01759] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 02/19/2018] [Indexed: 06/08/2023]
Abstract
Membrane-active antibiotics are of great interest in fighting bacterial resistance. α-Mangostin is a membrane-active molecule, but there are no details of its mechanism of action at the atomistic level. We have employed free-energy simulations and microsecond-long conventional molecular dynamics simulations to study the mode of interaction of α-mangostin with a model bacterial membrane and compare it with the mechanisms of three hydrophobic molecules (ciprofloxacin, xanthone, and tetracycline). We find that α-mangostin is thermodynamically more favored to insert into the membrane compared to the other three molecules. Apart from tetracycline, which is largely hydrophilic, the other three molecules aggregate in water; however, only α-mangostin can penetrate into the lipid tail region of the membrane. When it reaches a high concentration in the lipid tail region, α-mangostin can form tubular clusters that span the two head group regions of the membrane, resulting in a large number of water translocations along the transmembrane aggregates. Structure-activity relationship analysis revealed two structural properties that characterize α-mangostin, namely, the two isoprenyl groups and the polar groups present in the aromatic rings, which result in "disruptive amphiphilicity" and hence its excellent membrane activity.
Collapse
Affiliation(s)
- Jianguo Li
- Singapore
Eye Research Institute, The Academia, 20 College Road, 169856, Singapore
- Bioinformatics
Institute (A*-STAR), 30 Biopolis Street, #07-01 Matrix, 138671 Singapore
| | - Roger W. Beuerman
- Singapore
Eye Research Institute, The Academia, 20 College Road, 169856, Singapore
- Department
of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Lower Kent Ridge Road, 119074 Singapore
- Duke-NUS,
SRP Neuroscience & Behavioural Disorders, 8 College Road, 169857, Singapore
| | - Chandra S. Verma
- Singapore
Eye Research Institute, The Academia, 20 College Road, 169856, Singapore
- Bioinformatics
Institute (A*-STAR), 30 Biopolis Street, #07-01 Matrix, 138671 Singapore
- School
of Biological Sciences, Nanyang Technological
University, 60 Nanyang
Drive, 637551 Singapore
- Department
of Biological Sciences, National University
of Singapore, 14 Science
Drive 4, 117543 Singapore
| |
Collapse
|
43
|
Tanvir F, Yaqub A, Tanvir S, Anderson WA. Poly-L-arginine Coated Silver Nanoprisms and Their Anti-Bacterial Properties. NANOMATERIALS (BASEL, SWITZERLAND) 2017; 7:E296. [PMID: 28953233 PMCID: PMC5666461 DOI: 10.3390/nano7100296] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 09/13/2017] [Accepted: 09/22/2017] [Indexed: 01/28/2023]
Abstract
The aim of this study was to test the effect of two different morphologies of silver nanoparticles, spheres, and prisms, on their antibacterial properties when coated with poly-L-arginine (poly-Arg) to enhance the interactions with cells. Silver nanoparticle solutions were characterized by UV-visible spectroscopy, transmission electron microscopy, dynamic light scattering, zeta potential, as well as antimicrobial tests. These ultimately showed that a prismatic morphology exhibited stronger antimicrobial effects against Escherichia coli, Pseudomonas aeruginosa and Salmonella enterica. The minimum bactericidal concentration was found to be 0.65 μg/mL in the case of a prismatic AgNP-poly-Arg-PVP (silver nanoparticle-poly-L-arginine-polyvinylpyrrolidone) nanocomposite. The anticancer cell activity of the silver nanoparticles was also studied, where the maximum effect against a HeLa cell line was 80% mortality with a prismatic AgNP-poly-Arg-PVP nanocomposite at a concentration of 11 μg/mL. The antimicrobial activity of these silver nanocomposites demonstrates the potential of such coated silver nanoparticles in the area of nano-medicine.
Collapse
Affiliation(s)
- Fouzia Tanvir
- Department of Zoology, Government College University, Lahore 54000, Pakistan.
| | - Atif Yaqub
- Department of Zoology, Government College University, Lahore 54000, Pakistan.
| | - Shazia Tanvir
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
| | - William A Anderson
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
| |
Collapse
|
44
|
Zhang Y, Wang H, Xu W, Meng F. Structural effects and translocation of spontaneous membrane-translocating peptides with POPC bilayer. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2017. [DOI: 10.1142/s021963361750002x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Martini coarse-grained force field simulations have been carried out to estimate the free energy profiles of the spontaneous membrane-translocating peptide TP2 and one negative control peptide ONEG with POPC as the model bilayer. The results show that the free energy minimum of TP2 is [Formula: see text]20[Formula: see text]kJ/mol lower than that of ONEG. In addition, the minimum of TP2 shifts slightly to the bilayer center compared with ONEG. The translocation barrier height for TP2 and ONEG are 119.0[Formula: see text]kJ/mol and 155.7[Formula: see text]kJ/mol, respectively. The lower central energy barrier of TP2 facilitates the transition between two leaflets of POPC. Both translocating peptides induce the formation of funnel-shaped structures at the bilayer center, but TP2 has a more compact structure and brings less perturbation compared with ONEG. Subsequently all atom molecular simulations testify the findings. It is indicated that compared with its negative control ONEG, TP2 binds better with lipid and penetrates deeper into bilayer with less perturbation to the bilayer structure. Our findings may shed light on the design and virtual screening of spontaneous membrane-translocating peptides.
Collapse
Affiliation(s)
- Yuan Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin 300193, P. R. China
| | - Huanjie Wang
- Tianjin Key Laboratory of Molecular Design and Drug Discovery, Tianjin Institute of Pharmaceutical, Research, Tianjin 300193, P. R. China
| | - Weiren Xu
- Tianjin Key Laboratory of Molecular Design and Drug Discovery, Tianjin Institute of Pharmaceutical, Research, Tianjin 300193, P. R. China
| | - Fancui Meng
- Tianjin Key Laboratory of Molecular Design and Drug Discovery, Tianjin Institute of Pharmaceutical, Research, Tianjin 300193, P. R. China
| |
Collapse
|
45
|
Li J, Koh JJ, Liu S, Lakshminarayanan R, Verma CS, Beuerman RW. Membrane Active Antimicrobial Peptides: Translating Mechanistic Insights to Design. Front Neurosci 2017; 11:73. [PMID: 28261050 PMCID: PMC5306396 DOI: 10.3389/fnins.2017.00073] [Citation(s) in RCA: 346] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 01/31/2017] [Indexed: 01/10/2023] Open
Abstract
Antimicrobial peptides (AMPs) are promising next generation antibiotics that hold great potential for combating bacterial resistance. AMPs can be both bacteriostatic and bactericidal, induce rapid killing and display a lower propensity to develop resistance than do conventional antibiotics. Despite significant progress in the past 30 years, no peptide antibiotic has reached the clinic yet. Poor understanding of the action mechanisms and lack of rational design principles have been the two major obstacles that have slowed progress. Technological developments are now enabling multidisciplinary approaches including molecular dynamics simulations combined with biophysics and microbiology toward providing valuable insights into the interactions of AMPs with membranes at atomic level. This has led to increasingly robust models of the mechanisms of action of AMPs and has begun to contribute meaningfully toward the discovery of new AMPs. This review discusses the detailed action mechanisms that have been put forward, with detailed atomistic insights into how the AMPs interact with bacterial membranes. The review further discusses how this knowledge is exploited toward developing design principles for novel AMPs. Finally, the current status, associated challenges, and future directions for the development of AMP therapeutics are discussed.
Collapse
Affiliation(s)
- Jianguo Li
- Ocular Chemistry and Anti-Infectives, Singapore Eye Research InstituteSingapore, Singapore
- Agency for Science, Technology and Research (ASTAR), Bioinformatics InstituteSingapore, Singapore
- Duke-NUS Graduate Medical School, SRP Neuroscience and BDSingapore, Singapore
| | - Jun-Jie Koh
- Ocular Chemistry and Anti-Infectives, Singapore Eye Research InstituteSingapore, Singapore
| | - Shouping Liu
- Ocular Chemistry and Anti-Infectives, Singapore Eye Research InstituteSingapore, Singapore
| | | | - Chandra S. Verma
- Ocular Chemistry and Anti-Infectives, Singapore Eye Research InstituteSingapore, Singapore
- Agency for Science, Technology and Research (ASTAR), Bioinformatics InstituteSingapore, Singapore
- Department of Biological Sciences, National University of SingaporeSingapore, Singapore
- School of Biological Sciences, Nanyang Technological UniversitySingapore, Singapore
| | - Roger W. Beuerman
- Ocular Chemistry and Anti-Infectives, Singapore Eye Research InstituteSingapore, Singapore
- Duke-NUS Graduate Medical School, SRP Neuroscience and BDSingapore, Singapore
| |
Collapse
|
46
|
Lin S, Koh JJ, Aung TT, Lim F, Li J, Zou H, Wang L, Lakshminarayanan R, Verma C, Wang Y, Tan DTH, Cao D, Beuerman RW, Ren L, Liu S. Symmetrically Substituted Xanthone Amphiphiles Combat Gram-Positive Bacterial Resistance with Enhanced Membrane Selectivity. J Med Chem 2017; 60:1362-1378. [DOI: 10.1021/acs.jmedchem.6b01403] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Shuimu Lin
- School
of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Singapore
Eye Research Institute, The Academia, 20 College Road, Discovery Tower
Level 6, 169856, Singapore
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China
| | - Jun-Jie Koh
- Singapore
Eye Research Institute, The Academia, 20 College Road, Discovery Tower
Level 6, 169856, Singapore
| | - Thet Tun Aung
- Singapore
Eye Research Institute, The Academia, 20 College Road, Discovery Tower
Level 6, 169856, Singapore
| | - Fanghui Lim
- Singapore
Eye Research Institute, The Academia, 20 College Road, Discovery Tower
Level 6, 169856, Singapore
| | - Jianguo Li
- Singapore
Eye Research Institute, The Academia, 20 College Road, Discovery Tower
Level 6, 169856, Singapore
- Bioinformatics Institute (A*STAR), 30
Biopolis Street, 07-01 Matrix, 138671, Singapore
| | - Hanxun Zou
- Singapore
Eye Research Institute, The Academia, 20 College Road, Discovery Tower
Level 6, 169856, Singapore
| | - Lin Wang
- School
of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China
| | - Rajamani Lakshminarayanan
- Singapore
Eye Research Institute, The Academia, 20 College Road, Discovery Tower
Level 6, 169856, Singapore
- SRP
Neuroscience and Behavioral Disorders, Duke-NUS Graduate Medical School, 169857, Singapore
| | - Chandra Verma
- Singapore
Eye Research Institute, The Academia, 20 College Road, Discovery Tower
Level 6, 169856, Singapore
- Bioinformatics Institute (A*STAR), 30
Biopolis Street, 07-01 Matrix, 138671, Singapore
- School of
Biological Sciences, Nanyang Technological University, 60 Nanyang
Drive, 637551, Singapore
- Department
of Biological Sciences, National University of Singapore, 14 Science
Drive 4, 117543, Singapore
| | - Yingjun Wang
- School
of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China
| | - Donald T. H. Tan
- Singapore
Eye Research Institute, The Academia, 20 College Road, Discovery Tower
Level 6, 169856, Singapore
- Singapore National Eye Center, 11 Third Hospital Avenue, 168751, Singapore
| | - Derong Cao
- School
of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Roger W. Beuerman
- Singapore
Eye Research Institute, The Academia, 20 College Road, Discovery Tower
Level 6, 169856, Singapore
- SRP
Neuroscience and Behavioral Disorders, Duke-NUS Graduate Medical School, 169857, Singapore
| | - Li Ren
- School
of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China
| | - Shouping Liu
- Singapore
Eye Research Institute, The Academia, 20 College Road, Discovery Tower
Level 6, 169856, Singapore
- SRP
Neuroscience and Behavioral Disorders, Duke-NUS Graduate Medical School, 169857, Singapore
| |
Collapse
|
47
|
Qi Z, Xu W, Meng F, Zhang Q, Chen C, Shao R. Cloning and Expression of β-Defensin from Soiny Mullet (Liza haematocheila), with Insights of its Antibacterial Mechanism. PLoS One 2016; 11:e0157544. [PMID: 27322675 PMCID: PMC4913945 DOI: 10.1371/journal.pone.0157544] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 06/01/2016] [Indexed: 11/18/2022] Open
Abstract
Beta-defensins are important part of innate immunity of fish, which are the first defense line against invading pathogens. In this study, the β-defensin (Lhβ-defensin) gene was cloned from spleen tissue of soiny mullet (Liza haematocheila). Lhβ-defensin cDNA was 747 bp in length, encoding 63 amino acids. Sequence alignment revealed that Lhβ-defensin contained six conserved cysteine residues and shared 97.5% sequence identities with grouper (Epinephelus coioides) β-defensin. Realtime PCR revealed that Lhβ-defensin was highest expressed in the immune related organs, such as spleen, kidney and gut of healthy fish. Following Streptococcus dysgalactiae infection, Lhβ-defensin was up-regulated in immune related organs, e.g. 17.6-fold in spleen and 10.87-fold in gut at 24 h post infection (hpi). Lhβ-defensin possessed a monomeric structure of a three-stranded anti-parallel β-sheet and an α-helix stabilized by three disulfide bonds formed by Cys30-Cys58, Cys36-Cys52, and Cys40-Cys59. In addition to the experimental work, computer simulation was also carried out to determine the possible conformation of β-defensin and its interaction with palmitoyloleoylphosphatidylglycerol (POPG), a model of bacteria membrane. The Lhβ-defensin was found to form dimeric structure stabilized by the van der Waals contacts of Leu35 and Cys37 in two anti-parallel β1-strands and the cation-π interaction between Tyr32 and Arg54 respectively in the two β1-strands. The most important interactions between β-defensin and membrane are the electrostatic interactions between Arg residues in β-defensin and head group of POPG bilayer as well as hydrogen bond interactions between them. Our results were useful for further understanding the potential mechanism of antimicrobial property of fish β-defensins.
Collapse
Affiliation(s)
- Zhitao Qi
- Key Laboratory of Biochemistry and Biotechnology of Marine Wetland of Jiangsu Province, Yancheng Institute of Technology, Yancheng, 224051, Jiangsu, China
- Key Laboratory of Aquaculture and Ecology of Coastal Pool in Jiangsu Province, Yancheng Institute of Technology, Yancheng, 224051, Jiangsu, China
| | - Wei Xu
- Key Laboratory of Biochemistry and Biotechnology of Marine Wetland of Jiangsu Province, Yancheng Institute of Technology, Yancheng, 224051, Jiangsu, China
| | - Fancui Meng
- Tianjin Institute of Pharmaceutical Research, Tianjin, 300193, China
| | - Qihuan Zhang
- Key Laboratory of Biochemistry and Biotechnology of Marine Wetland of Jiangsu Province, Yancheng Institute of Technology, Yancheng, 224051, Jiangsu, China
| | - Chenglung Chen
- Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan, ROC
| | - Rong Shao
- Key Laboratory of Biochemistry and Biotechnology of Marine Wetland of Jiangsu Province, Yancheng Institute of Technology, Yancheng, 224051, Jiangsu, China
| |
Collapse
|
48
|
Branched Peptide, B2088, Disrupts the Supramolecular Organization of Lipopolysaccharides and Sensitizes the Gram-negative Bacteria. Sci Rep 2016; 6:25905. [PMID: 27174567 PMCID: PMC4865820 DOI: 10.1038/srep25905] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 04/25/2016] [Indexed: 12/30/2022] Open
Abstract
Dissecting the complexities of branched peptide-lipopolysaccharides (LPS) interactions provide rationale for the development of non-cytotoxic antibiotic adjuvants. Using various biophysical methods, we show that the branched peptide, B2088, binds to lipid A and disrupts the supramolecular organization of LPS. The disruption of outer membrane in an intact bacterium was demonstrated by fluorescence spectroscopy and checkerboard assays, the latter confirming strong to moderate synergism between B2088 and various classes of antibiotics. The potency of synergistic combinations of B2088 and antibiotics was further established by time-kill kinetics, mammalian cell culture infections model and in vivo model of bacterial keratitis. Importantly, B2088 did not show any cytotoxicity to corneal epithelial cells for at least 96 h continuous exposure or hemolytic activity even at 20 mg/ml. Peptide congeners containing norvaline, phenylalanine and tyrosine (instead of valine in B2088) displayed better synergism compared to other substitutions. We propose that high affinity and subsequent disruption of the supramolecular assembly of LPS by the branched peptides are vital for the development of non-cytotoxic antibiotic adjuvants that can enhance the accessibility of conventional antibiotics to the intracellular targets, decrease the antibiotic consumption and holds promise in averting antibiotic resistance.
Collapse
|
49
|
Pöyry S, Vattulainen I. Role of charged lipids in membrane structures - Insight given by simulations. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:2322-2333. [PMID: 27003126 DOI: 10.1016/j.bbamem.2016.03.016] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 03/09/2016] [Accepted: 03/11/2016] [Indexed: 01/28/2023]
Abstract
Lipids and proteins are the main components of cell membranes. It is becoming increasingly clear that lipids, in addition to providing an environment for proteins to work in, are in many cases also able to modulate the structure and function of those proteins. Particularly charged lipids such as phosphatidylinositols and phosphatidylserines are involved in several examples of such effects. Molecular dynamics simulations have proved an invaluable tool in exploring these aspects. This so-called computational microscope can provide both complementing explanations for the experimental results and guide experiments to fruitful directions. In this paper, we review studies that have utilized molecular dynamics simulations to unravel the roles of charged lipids in membrane structures. We focus on lipids as active constituents of the membranes, affecting both general membrane properties as well as non-lipid membrane components, mainly proteins. This article is part of a Special Issue entitled: Biosimulations edited by Ilpo Vattulainen and Tomasz Róg.
Collapse
Affiliation(s)
- Sanja Pöyry
- Department of Physics, Tampere University of Technology, POB 692, FI-33101 Tampere, Finland
| | - Ilpo Vattulainen
- Department of Physics, Tampere University of Technology, POB 692, FI-33101 Tampere, Finland; MEMPHYS - Center for Biomembrane Physics, University of Southern Denmark, Odense, Denmark; Department of Physics, University of Helsinki, POB 64, FI-00014 Helsinki, Finland.
| |
Collapse
|
50
|
Lee J, Jung SW, Cho AE. Molecular Insights into the Adsorption Mechanism of Human β-Defensin-3 on Bacterial Membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:1782-1790. [PMID: 26835546 DOI: 10.1021/acs.langmuir.5b04113] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Human β-defensin-3 (hBD3) is an endogenous antimicrobial peptide that exhibits broad-spectrum antibacterial activity without eukaryotic cytotoxicity. In this work, we carried out molecular dynamics (MD) simulations to explore its adsorption mechanism on, and the structural and thermodynamic contributions of individual residues to its antibacterial activity with both Gram-negative (GN) and Gram-positive (GP) bacterial membrane. Due to the strong electrostatic interaction of hBD3 with POPG lipids, which are more prevalent on the GP membrane, its adhesion to the GP membrane is stronger than to the GN membrane and stabilized more rapidly. On the surface of both bacterial membranes, the orientation of hBD3 is dominated by an electric dipole. We next analyzed the binding free energy decompositions of the hBD3-membrane complex using the molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) method. The results of both the GN and the GP membrane simulations show that Arg17, Arg36, and Arg38 form both polar and nonpolar interactions and are potentially the key residues for hBD3 antibacterial activity. On the other hand, there was a significant difference in the energy contribution of Arg12 between the GP and GN membrane simulations, suggesting that Arg12 is a key factor in the toxicity of hBD3 to specifically GP bacteria. Our findings shed light on the antibacterial activity of hBD3 on bacterial membranes and yield insights useful for the design of potent antimicrobial peptides targeting multidrug resistant bacteria.
Collapse
Affiliation(s)
- Juho Lee
- Department of Bioinformatics, Korea University , Sejong 02841, Korea
| | - Sang Won Jung
- Department of Bioinformatics, Korea University , Sejong 02841, Korea
| | - Art E Cho
- Department of Bioinformatics, Korea University , Sejong 02841, Korea
| |
Collapse
|