1
|
Basu S, Farago O. Mixing small proteins with lipids and cholesterol. J Chem Phys 2024; 161:224902. [PMID: 39651818 DOI: 10.1063/5.0239257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/25/2024] [Indexed: 12/11/2024] Open
Abstract
Many ternary mixtures composed of saturated and unsaturated lipids with cholesterol (Chol) exhibit a region of coexistence between liquid-disordered (Ld) and liquid-ordered (Lo) domains, bearing some similarities to lipid rafts in biological membranes. However, biological rafts also contain many proteins that interact with the lipids and modify the distribution of lipids. Here, we extend a previously published lattice model of ternary DPPC/DOPC/Chol mixtures by introducing a small amount of small proteins (peptides). We use Monte Carlo simulations to explore the mixing phase behavior of the components as a function of the interaction parameter representing the affinity between the proteins and the saturated DPPC chains and for different mixture compositions. At moderate fractions of DPPC, the system is in a two-phase Ld + Lo coexistence, and the proteins exhibit a simple partition behavior between the phases that depends on the protein-lipid affinity parameter. At low DPPC compositions, the mixture is in Ld phase with local nanoscopic ordered domains. The addition of proteins with sufficiently strong attraction to the saturated lipids can induce the separation of a distinct Lo large domain with tightly packed gel-like clusters of proteins and saturated lipids. Consistent with the theory of phase transitions, we observe that the domain sizes grow when the mixture composition is in the vicinity of the critical point. Our simulations show that the addition of a small amount of proteins to such mixtures can cause their size to grow even further and lead to the formation of metastable dynamic Lo domains with sizes comparable to biological rafts.
Collapse
Affiliation(s)
- Subhadip Basu
- Department of Biomedical Engineering, Ben Gurion University of the Negev, Be'er Sheva 84105, Israel
| | - Oded Farago
- Department of Biomedical Engineering, Ben Gurion University of the Negev, Be'er Sheva 84105, Israel
| |
Collapse
|
2
|
Lee Y, Yuan F, Cabriales JL, Stachowiak JC. Transmembrane coupling accelerates the growth of liquid-like protein condensates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.07.622512. [PMID: 39574691 PMCID: PMC11580992 DOI: 10.1101/2024.11.07.622512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2024]
Abstract
Timely and precise assembly of protein complexes on membrane surfaces is essential to the physiology of living cells. Recently, protein phase separation has been observed at cellular membranes, suggesting it may play a role in the assembly of protein complexes. Inspired by these findings, we observed that protein condensates on one side of a planar suspended membrane spontaneously colocalized with those on the opposite side. How might this phenomenon contribute to the assembly of stable transmembrane complexes? To address this question, we examined the diffusion and growth of protein condensates on both sides of membranes. Our results reveal that transmembrane coupling of protein condensates on opposite sides of the membrane slows down condensate diffusion while accelerating condensate growth. How can the rate of condensate growth increase simultaneously with a decrease in the rate of condensate diffusion? We provide insights into these seemingly contradictory observations by distinguishing between diffusion-limited and coupling-driven growth processes. While transmembrane coupling slows down diffusion, it also locally concentrates condensates within a confined area. This confinement increases the probability of condensate coalescence and thereby enhances the overall rate of growth for coupled condensates, substantially surpassing the growth rate for uncoupled condensates. These findings suggest that transmembrane coupling could play a role in the assembly of diverse membrane-bound structures by promoting the localization and growth of protein complexes on both membrane surfaces. This phenomenon could help to explain the efficient assembly of transmembrane structures in diverse cellular contexts. Significance Protein assemblies that span biological membranes are critical to cellular physiology. In the past decade, liquid-like protein condensates, which are flexible, multivalent protein assemblies, have been discovered on diverse membrane surfaces. Recently, we observed that protein condensates on opposite sides of a membrane spontaneously colocalize to form coupled, transmembrane complexes. Interestingly, while transmembrane coupling slows down the diffusion of membrane-bound condensates, it substantially accelerates their growth by strongly localizing interactions between them. These findings suggest that transmembrane coupling of protein condensates may play a role in promoting the robust assembly of membrane-bound protein complexes in crowded, complex cellular environments.
Collapse
Affiliation(s)
- Yohan Lee
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas, 78712, USA
| | - Feng Yuan
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas, 78712, USA
| | - Jerry L. Cabriales
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas, 78712, USA
| | - Jeanne C. Stachowiak
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas, 78712, USA
- Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas, 78712, USA
| |
Collapse
|
3
|
Kolokouris D, Kalenderoglou IE, Duncan AL, Corey RA, Sansom MSP, Kolocouris A. The Role of Cholesterol in M2 Clustering and Viral Budding Explained. J Chem Theory Comput 2024. [PMID: 39494590 DOI: 10.1021/acs.jctc.4c01026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
The influenza A M2 homotetrameric channel consists of four transmembrane (TM) and four amphipathic helices (AHs). This viral proton channel is suggested to form clusters in the catenoid budding neck areas in raft-like domains of the plasma membrane, resulting in cell membrane scission and viral release. The channel clustering environment is rich in cholesterol. Previous experiments have shown that cholesterol significantly contributes to lipid bilayer undulations in viral buds. However, a clear explanation of membrane curvature from the distribution of cholesterol around the M2TM-AH clusters is lacking. Using coarse-grained molecular dynamics simulations of M2TM-AH in bilayers, we observed that M2 channels form specific, C2-symmetric, clusters with conical shapes driven by the attraction of their AHs. We showed that cholesterol stabilized the formation of M2 channel clusters by filling and bridging the conical gap between M2 channels at specific sites in the N-termini of adjacent channels or via the C-terminal region of TM and AHs, with the latter sites displaying a longer interaction time and higher stability. The potential of mean force calculations showed that when cholesterols occupy the identified interfacial binding sites between two M2 channels, the dimer is stabilized by 11 kJ/mol. This translates to the cholesterol-bound dimer being populated by almost 2 orders of magnitude compared to a dimer lacking cholesterol. We demonstrated that the cholesterol-bridged M2 channels can exert a lateral force on the surrounding membrane to induce the necessary negative Gaussian curvature profile, which permits spontaneous scission of the catenoid membrane neck and leads to viral buds and scission.
Collapse
Affiliation(s)
- Dimitrios Kolokouris
- Laboratory of Medicinal Chemistry, Section of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens 15771, Greece
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, U.K
| | - Iris E Kalenderoglou
- Laboratory of Medicinal Chemistry, Section of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens 15771, Greece
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, U.K
| | - Anna L Duncan
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, U.K
| | - Robin A Corey
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol BS8 1TD, U.K
| | - Mark S P Sansom
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, U.K
| | - Antonios Kolocouris
- Laboratory of Medicinal Chemistry, Section of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens 15771, Greece
| |
Collapse
|
4
|
Jacomin AC, Dikic I. Membrane remodeling via ubiquitin-mediated pathways. Cell Chem Biol 2024; 31:1627-1635. [PMID: 39303699 DOI: 10.1016/j.chembiol.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/30/2024] [Accepted: 08/19/2024] [Indexed: 09/22/2024]
Abstract
The dynamic process of membrane shaping and remodeling plays a vital role in cellular functions, with proteins and cellular membranes interacting intricately to adapt to various cellular needs and environmental cues. Ubiquitination-a posttranslational modification-was shown to be essential in regulating membrane structure and shape. It influences virtually all pathways relying on cellular membranes, such as endocytosis and autophagy by directing protein degradation, sorting, and oligomerization. Ubiquitin is mostly known as a protein modifier; however, it was reported that ubiquitin and ubiquitin-like proteins can associate directly with lipids, affecting membrane curvature and dynamics. In this review, we summarize some of the current knowledge on ubiquitin-mediated membrane remodeling in the context of endocytosis, autophagy, and ER-phagy.
Collapse
Affiliation(s)
- Anne-Claire Jacomin
- Goethe University Frankfurt, Medical Faculty, Institute of Biochemistry II, Theodor-Stern-Kai 7, 60590 Frankfurt Am Main, Germany
| | - Ivan Dikic
- Goethe University Frankfurt, Medical Faculty, Institute of Biochemistry II, Theodor-Stern-Kai 7, 60590 Frankfurt Am Main, Germany; Goethe University Frankfurt, Buchmann Institute for Molecular Life Sciences, Max-von-Laue-Strasse 15, 60438 Frankfurt Am Main, Germany.
| |
Collapse
|
5
|
Carlson RP, Beck AE, Benitez MG, Harcombe WR, Mahadevan R, Gedeon T. Cell Geometry and Membrane Protein Crowding Constrain Growth Rate, Overflow Metabolism, Respiration, and Maintenance Energy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.21.609071. [PMID: 39229203 PMCID: PMC11370460 DOI: 10.1101/2024.08.21.609071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
A metabolic theory is presented for predicting maximum growth rate, overflow metabolism, respiration efficiency, and maintenance energy flux based on the intersection of cell geometry, membrane protein crowding, and metabolism. The importance of cytosolic macromolecular crowding on phenotype has been established in the literature but the importance of surface area has been largely overlooked due to incomplete knowledge of membrane properties. We demonstrate that the capacity of the membrane to host proteins increases with growth rate offsetting decreases in surface area-to-volume ratios (SA:V). This increase in membrane protein is hypothesized to be essential to competitive Escherichia coli phenotypes. The presented membrane-centric theory uses biophysical properties and metabolic systems analysis to successfully predict the phenotypes of E. coli K-12 strains, MG1655 and NCM3722, which are genetically similar but have SA:V ratios that differ up to 30%, maximum growth rates on glucose media that differ by 40%, and overflow phenotypes that start at growth rates that differ by 80%. These analyses did not consider cytosolic macromolecular crowding, highlighting the distinct properties of the presented theory. Cell geometry and membrane protein crowding are significant biophysical constraints on phenotype and provide a theoretical framework for improved understanding and control of cell biology.
Collapse
Affiliation(s)
- Ross P. Carlson
- Department of Chemical and Biological Engineering, Center for Biofilm Engineering, Montana State University, Bozeman, MT USA
| | - Ashley E. Beck
- Department of Biological and Environmental Sciences, Carroll College, Helena, MT USA
| | | | - William R. Harcombe
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN USA
| | | | - Tomáš Gedeon
- Department of Mathematical Sciences, Montana State University, Bozeman, MT USA
| |
Collapse
|
6
|
Spencer RKW, Smirnova YG, Soleimani A, Müller M. Transient pores in hemifusion diaphragms. Biophys J 2024; 123:2455-2475. [PMID: 38867448 PMCID: PMC11365115 DOI: 10.1016/j.bpj.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/07/2024] [Accepted: 06/07/2024] [Indexed: 06/14/2024] Open
Abstract
Exchange of material across two membranes, as in the case of synaptic neurotransmitter release from a vesicle, involves the formation and poration of a hemifusion diaphragm (HD). The nontrivial geometry of the HD leads to environment-dependent control, regarding the stability and dynamics of the pores required for this kind of exocytosis. This work combines particle simulations, field-based calculations, and phenomenological modeling to explore the factors influencing the stability, dynamics, and possible control mechanisms of pores in HDs. We find that pores preferentially form at the HD rim, and that their stability is sensitive to a number of factors, including the three line tensions, membrane tension, HD size, and the ability of lipids to "flip-flop" across leaflets. Along with a detailed analysis of these factors, we discuss ways that vesicles or cells may use them to open and close pores and thereby quickly and efficiently transport material.
Collapse
Affiliation(s)
- Russell K W Spencer
- Institute for Theoretical Physics, Georg-August University, Göttingen, Germany.
| | - Yuliya G Smirnova
- Institute for Theoretical Physics, Georg-August University, Göttingen, Germany; Technische Universität Dortmund, Dortmund, Germany
| | - Alireza Soleimani
- Institute for Theoretical Physics, Georg-August University, Göttingen, Germany
| | - Marcus Müller
- Institute for Theoretical Physics, Georg-August University, Göttingen, Germany.
| |
Collapse
|
7
|
Jahnke K, Struve N, Hofmann D, Gote MJ, Bach M, Kriegs M, Hausmann M. Formation of EGFRwt/EGFRvIII homo- and hetero-dimers in glioblastoma cells as detected by single molecule localization microscopy. NANOSCALE 2024; 16:15240-15255. [PMID: 39073345 DOI: 10.1039/d4nr01570c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Super-resolution microscopy has been used to show the formation of receptor clusters and adapted lipid organization of cell membranes for many members of the ErbB receptor family. The clustering behaviour depends on the receptor size and shape, possibly ligand binding or expression activity. Using single molecule localization microscopy (SMLM), we also showed this typical clustering for the epidermal growth factor receptor variant III (EGFRvIII) in glioblastoma multiforme (GBM) cells. EGFRvIII is co-expressed with the wild type (EGFRwt) and both receptors are assumed to preferentially form hetero-dimers leading to transactivation and elevated oncogenic EGFR-signalling in GBM cells. Here, we analysed EGFRvIII and EGFRwt co-localization using our already described model system of the glioblastoma cell line DKMG, displaying endogenous EGFRvIII expression. Using EGFRvIII and EGFRwt specific antibodies, EGFR localization and their potential for dimerization in a given membrane cluster were analysed by dual colour SMLM supported by novel approaches of mathematic evaluations including Ripley statistics, persistent homology and similarity algorithms. Surprisingly, cluster analysis, Ripley point-to-point distance statistics for cluster geometry and persistent homology comparing cluster topology, revealed that both EGFRvIII and EGFRwt do primarily not form hetero-dimers but the results support the hypothesis that they tend to form homo-dimers. The ratio of homo-dimers obtained by this calculation was significantly higher (>5σ, standard deviation) than expected from randomly arranged points. In comparison, hetero-dimer formation was only slightly increased. We confirmed these data by immunoprecipitation, which show no co-precipitation of EGFRvIII and EGFRwt. Furthermore, we showed that the topology of the clusters was more similar among the same type than among the different types of receptors. Taken together, these data indicate that EGFRvIII does induce oncogenic signalling by homo-dimerisation and not preferentially by hetero-dimer formation with EGFRwt. These data offer a new perspective on EGFRvIII signalling which will lead to a better understanding of this tumour associated receptor variant in GBM.
Collapse
Affiliation(s)
- Kevin Jahnke
- Kirchhoff-Institute for Physics, Heidelberg University, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany.
| | - Nina Struve
- Department of Radiotherapy & Radiation Oncology, University Medical Center Hamburg - Eppendorf, Martinistr. 52, 20246 Hamburg, Germany.
| | - Daniel Hofmann
- Kirchhoff-Institute for Physics, Heidelberg University, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany.
| | - Martin Julius Gote
- Kirchhoff-Institute for Physics, Heidelberg University, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany.
| | - Margund Bach
- Kirchhoff-Institute for Physics, Heidelberg University, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany.
| | - Malte Kriegs
- Department of Radiotherapy & Radiation Oncology, University Medical Center Hamburg - Eppendorf, Martinistr. 52, 20246 Hamburg, Germany.
| | - Michael Hausmann
- Kirchhoff-Institute for Physics, Heidelberg University, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany.
| |
Collapse
|
8
|
Ewald J, He Z, Dimitriew W, Schuster S. Including glutamine in a resource allocation model of energy metabolism in cancer and yeast cells. NPJ Syst Biol Appl 2024; 10:77. [PMID: 39025861 PMCID: PMC11258256 DOI: 10.1038/s41540-024-00393-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 06/10/2024] [Indexed: 07/20/2024] Open
Abstract
Energy metabolism is crucial for all living cells, especially during fast growth or stress scenarios. Many cancer and activated immune cells (Warburg effect) or yeasts (Crabtree effect) mostly rely on aerobic glucose fermentation leading to lactate or ethanol, respectively, to generate ATP. In recent years, several mathematical models have been proposed to explain the Warburg effect on theoretical grounds. Besides glucose, glutamine is a very important substrate for eukaryotic cells-not only for biosynthesis, but also for energy metabolism. Here, we present a minimal constraint-based stoichiometric model for explaining both the classical Warburg effect and the experimentally observed respirofermentation of glutamine (WarburQ effect). We consider glucose and glutamine respiration as well as the respective fermentation pathways. Our resource allocation model calculates the ATP production rate, taking into account enzyme masses and, therefore, pathway costs. While our calculation predicts glucose fermentation to be a superior energy-generating pathway in human cells, different enzyme characteristics in yeasts reduce this advantage, in some cases to such an extent that glucose respiration is preferred. The latter is observed for the fungal pathogen Candida albicans, which is a known Crabtree-negative yeast. Further, optimization results show that glutamine is a valuable energy source and important substrate under glucose limitation, in addition to its role as a carbon and nitrogen source of biomass in eukaryotic cells. In conclusion, our model provides insights that glutamine is an underestimated fuel for eukaryotic cells during fast growth and infection scenarios and explains well the observed parallel respirofermentation of glucose and glutamine in several cell types.
Collapse
Affiliation(s)
- Jan Ewald
- Department of Bioinformatics, Friedrich Schiller University of Jena, Ernst-Abbe-Platz 2, 07743, Jena, Germany
- Center for Scalable Data Analytics and Artificial Intelligence (ScaDS.AI) Dresden/Leipzig, Leipzig University, Humboldtstraße 25, 04105, Leipzig, Germany
| | - Ziyang He
- Department of Bioinformatics, Friedrich Schiller University of Jena, Ernst-Abbe-Platz 2, 07743, Jena, Germany
| | - Wassili Dimitriew
- Department of Bioinformatics, Friedrich Schiller University of Jena, Ernst-Abbe-Platz 2, 07743, Jena, Germany
| | - Stefan Schuster
- Department of Bioinformatics, Friedrich Schiller University of Jena, Ernst-Abbe-Platz 2, 07743, Jena, Germany.
| |
Collapse
|
9
|
Grassmann G, Miotto M, Desantis F, Di Rienzo L, Tartaglia GG, Pastore A, Ruocco G, Monti M, Milanetti E. Computational Approaches to Predict Protein-Protein Interactions in Crowded Cellular Environments. Chem Rev 2024; 124:3932-3977. [PMID: 38535831 PMCID: PMC11009965 DOI: 10.1021/acs.chemrev.3c00550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 04/11/2024]
Abstract
Investigating protein-protein interactions is crucial for understanding cellular biological processes because proteins often function within molecular complexes rather than in isolation. While experimental and computational methods have provided valuable insights into these interactions, they often overlook a critical factor: the crowded cellular environment. This environment significantly impacts protein behavior, including structural stability, diffusion, and ultimately the nature of binding. In this review, we discuss theoretical and computational approaches that allow the modeling of biological systems to guide and complement experiments and can thus significantly advance the investigation, and possibly the predictions, of protein-protein interactions in the crowded environment of cell cytoplasm. We explore topics such as statistical mechanics for lattice simulations, hydrodynamic interactions, diffusion processes in high-viscosity environments, and several methods based on molecular dynamics simulations. By synergistically leveraging methods from biophysics and computational biology, we review the state of the art of computational methods to study the impact of molecular crowding on protein-protein interactions and discuss its potential revolutionizing effects on the characterization of the human interactome.
Collapse
Affiliation(s)
- Greta Grassmann
- Department
of Biochemical Sciences “Alessandro Rossi Fanelli”, Sapienza University of Rome, Rome 00185, Italy
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Rome 00161, Italy
| | - Mattia Miotto
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Rome 00161, Italy
| | - Fausta Desantis
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Rome 00161, Italy
- The
Open University Affiliated Research Centre at Istituto Italiano di
Tecnologia, Genoa 16163, Italy
| | - Lorenzo Di Rienzo
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Rome 00161, Italy
| | - Gian Gaetano Tartaglia
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Rome 00161, Italy
- Department
of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genoa 16163, Italy
- Center
for Human Technologies, Genoa 16152, Italy
| | - Annalisa Pastore
- Experiment
Division, European Synchrotron Radiation
Facility, Grenoble 38043, France
| | - Giancarlo Ruocco
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Rome 00161, Italy
- Department
of Physics, Sapienza University, Rome 00185, Italy
| | - Michele Monti
- RNA
System Biology Lab, Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genoa 16163, Italy
| | - Edoardo Milanetti
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Rome 00161, Italy
- Department
of Physics, Sapienza University, Rome 00185, Italy
| |
Collapse
|
10
|
Alfano C, Fichou Y, Huber K, Weiss M, Spruijt E, Ebbinghaus S, De Luca G, Morando MA, Vetri V, Temussi PA, Pastore A. Molecular Crowding: The History and Development of a Scientific Paradigm. Chem Rev 2024; 124:3186-3219. [PMID: 38466779 PMCID: PMC10979406 DOI: 10.1021/acs.chemrev.3c00615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 02/13/2024] [Accepted: 02/26/2024] [Indexed: 03/13/2024]
Abstract
It is now generally accepted that macromolecules do not act in isolation but "live" in a crowded environment, that is, an environment populated by numerous different molecules. The field of molecular crowding has its origins in the far 80s but became accepted only by the end of the 90s. In the present issue, we discuss various aspects that are influenced by crowding and need to consider its effects. This Review is meant as an introduction to the theme and an analysis of the evolution of the crowding concept through time from colloidal and polymer physics to a more biological perspective. We introduce themes that will be more thoroughly treated in other Reviews of the present issue. In our intentions, each Review may stand by itself, but the complete collection has the aspiration to provide different but complementary perspectives to propose a more holistic view of molecular crowding.
Collapse
Affiliation(s)
- Caterina Alfano
- Structural
Biology and Biophysics Unit, Fondazione
Ri.MED, 90100 Palermo, Italy
| | - Yann Fichou
- CNRS,
Bordeaux INP, CBMN UMR 5248, IECB, University
of Bordeaux, F-33600 Pessac, France
| | - Klaus Huber
- Department
of Chemistry, University of Paderborn, 33098 Paderborn, Germany
| | - Matthias Weiss
- Experimental
Physics I, Physics of Living Matter, University
of Bayreuth, 95440 Bayreuth, Germany
| | - Evan Spruijt
- Institute
for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Simon Ebbinghaus
- Lehrstuhl
für Biophysikalische Chemie and Research Center Chemical Sciences
and Sustainability, Research Alliance Ruhr, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Giuseppe De Luca
- Dipartimento
di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Università degli Studi di Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | | | - Valeria Vetri
- Dipartimento
di Fisica e Chimica − Emilio Segrè, Università degli Studi di Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | | | - Annalisa Pastore
- King’s
College London, Denmark
Hill Campus, SE5 9RT London, United Kingdom
| |
Collapse
|
11
|
Vögele M, Köfinger J, Hummer G. Nanoporous Membranes of Densely Packed Carbon Nanotubes Formed by Lipid-Mediated Self-Assembly. ACS APPLIED BIO MATERIALS 2024; 7:528-534. [PMID: 36070609 PMCID: PMC10880049 DOI: 10.1021/acsabm.2c00585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/29/2022] [Indexed: 11/29/2022]
Abstract
Nanofiltration technology faces the competing challenges of achieving high fluid flux through uniformly narrow pores of a mechanically and chemically stable filter. Supported dense-packed 2D-crystals of single-walled carbon nanotube (CNT) porins with ∼1 nm wide pores could, in principle, meet these challenges. However, such CNT membranes cannot currently be synthesized at high pore density. Here, we use computer simulations to explore lipid-mediated self-assembly as a route toward densely packed CNT membranes, motivated by the analogy to membrane-protein 2D crystallization. In large-scale coarse-grained molecular dynamics (MD) simulations, we find that CNTs in lipid membranes readily self-assemble into large clusters. Lipids trapped between the CNTs lubricate CNT repacking upon collisions of diffusing clusters, thereby facilitating the formation of large ordered structures. Cluster diffusion follows the Saffman-Delbrück law and its generalization by Hughes, Pailthorpe, and White. On longer time scales, we expect the formation of close-packed CNT structures by depletion of the intervening shared annular lipid shell, depending on the relative strength of CNT-CNT and CNT-lipid interactions. Our simulations identify CNT length, diameter, and end functionalization as major factors for the self-assembly of CNT membranes.
Collapse
Affiliation(s)
- Martin Vögele
- Department
of Theoretical Biophysics, Max Planck Institute
of Biophysics, Max-von-Laue-Str. 3, 60438 Frankfurt am Main, Germany
| | - Jürgen Köfinger
- Department
of Theoretical Biophysics, Max Planck Institute
of Biophysics, Max-von-Laue-Str. 3, 60438 Frankfurt am Main, Germany
| | - Gerhard Hummer
- Department
of Theoretical Biophysics, Max Planck Institute
of Biophysics, Max-von-Laue-Str. 3, 60438 Frankfurt am Main, Germany
- Institute
for Biophysics, Goethe University Frankfurt, Max-von-Laue-Str. 1, 60438 Frankfurt am Main, Germany
| |
Collapse
|
12
|
Chaudhury A, Debnath K, Jana NR, Basu JK. Spontaneous unbinding transition of nanoparticles adsorbing onto biomembranes: interplay of electrostatics and crowding. NANOSCALE 2024; 16:856-867. [PMID: 38099655 DOI: 10.1039/d3nr05378d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Cellular membranes are constantly bombarded with biomolecules and nanoscale particles, and cell functionality depends on the fraction of the bound/internalized entities. Understanding the biophysical parameters underlying this complex process is very difficult in live cells. Model membranes provide an ideal platform to obtain insight into the minimal and essential parameters involved in determining cell membrane-nanoparticle (NP) interaction. Here we report spontaneous binding and unbinding of semiconductor NPs, carrying different net charges and interacting with model biomembranes, using in situ neutron reflectivity (NR) and fluorescence microscopy studies. We observe a critical concentration of NPs above which they spontaneously unbind along with lipids from lipid monolayer membranes, leaving behind fewer bound NPs. This critical concentration varies depending on whether the NPs carry a net charge or are neutral, and is also governed by the extent of NP crowding for a fixed NP charge. The observations suggest a subtle interplay between electrostatics, membrane fluidity, and NP crowding effects, which eventually determines the adsorbed concentration for unbinding transition. Our study provides valuable microscopic insight into the parameters that could determine the biophysical process underlying NP uptake and ejection by cells which, in turn, can be utilized for their potential applications in bioimaging and drug delivery.
Collapse
Affiliation(s)
- Anurag Chaudhury
- Department of Physics, Indian Institute of Science, Bangalore 560012, India.
| | - Koushik Debnath
- School of Materials Science, Indian Association for the Cultivation of Science, Kolkata-700032, India
| | - Nikhil R Jana
- School of Materials Science, Indian Association for the Cultivation of Science, Kolkata-700032, India
| | - Jaydeep K Basu
- Department of Physics, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
13
|
Peters J, Oliva R, Caliò A, Oger P, Winter R. Effects of Crowding and Cosolutes on Biomolecular Function at Extreme Environmental Conditions. Chem Rev 2023; 123:13441-13488. [PMID: 37943516 DOI: 10.1021/acs.chemrev.3c00432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
The extent of the effect of cellular crowding and cosolutes on the functioning of proteins and cells is manifold and includes the stabilization of the biomolecular systems, the excluded volume effect, and the modulation of molecular dynamics. Simultaneously, it is becoming increasingly clear how important it is to take the environment into account if we are to shed light on biological function under various external conditions. Many biosystems thrive under extreme conditions, including the deep sea and subseafloor crust, and can take advantage of some of the effects of crowding. These relationships have been studied in recent years using various biophysical techniques, including neutron and X-ray scattering, calorimetry, FTIR, UV-vis and fluorescence spectroscopies. Combining knowledge of the structure and conformational dynamics of biomolecules under extreme conditions, such as temperature, high hydrostatic pressure, and high salinity, we highlight the importance of considering all results in the context of the environment. Here we discuss crowding and cosolute effects on proteins, nucleic acids, membranes, and live cells and explain how it is possible to experimentally separate crowding-induced effects from other influences. Such findings will contribute to a better understanding of the homeoviscous adaptation of organisms and the limits of life in general.
Collapse
Affiliation(s)
- Judith Peters
- Univ. Grenoble Alpes, CNRS, LiPhy, 140 rue de la physique, 38400 St Martin d'Hères, France
- Institut Laue Langevin, 71 avenue des Martyrs, 38000 Grenoble, France
- Institut Universitaire de France, 75005 Paris, France
| | - Rosario Oliva
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, 80126 Naples, Italy
| | - Antonino Caliò
- European Synchrotron Radiation Facility, 71 avenue des Martyrs, 38000 Grenoble, France
| | - Philippe Oger
- INSA Lyon, Universite Claude Bernard Lyon1, CNRS, UMR5240, 69621 Villeurbanne, France
| | - Roland Winter
- Department of Chemistry and Chemical Biology, Biophysical Chemistry, TU Dortmund University, Dortmund, Otto-Hahn-Str. 4a, D-44227 Dortmund, Germany
| |
Collapse
|
14
|
Löwe M, Hänsch S, Hachani E, Schmitt L, Weidtkamp-Peters S, Kedrov A. Probing macromolecular crowding at the lipid membrane interface with genetically-encoded sensors. Protein Sci 2023; 32:e4797. [PMID: 37779215 PMCID: PMC10578116 DOI: 10.1002/pro.4797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/25/2023] [Accepted: 09/28/2023] [Indexed: 10/03/2023]
Abstract
Biochemical processes within the living cell occur in a highly crowded environment, where macromolecules, first of all proteins and nucleic acids, occupy up to 30% of the volume. The phenomenon of macromolecular crowding is not an exclusive feature of the cytoplasm and can be observed in the densely protein-packed, nonhomogeneous cellular membranes and at the membrane interfaces. Crowding affects diffusional and conformational dynamics of proteins within the lipid bilayer, alters kinetic and thermodynamic properties of biochemical reactions, and modulates the membrane organization. Despite its importance, the non-invasive quantification of the membrane crowding is not trivial. Here, we developed a genetically-encoded fluorescence-based sensor for probing the macromolecular crowding at the membrane interfaces. Two sensor variants, both composed of fluorescent proteins and a membrane anchor, but differing by flexible linker domains were characterized in vitro, and the procedures for the membrane reconstitution were established. Steric pressure induced by membrane-tethered synthetic and protein crowders altered the sensors' conformation, causing increase in the intramolecular Förster's resonance energy transfer. Notably, the effect of protein crowders only weakly correlated with their molecular weight, suggesting that other factors, such as shape and charge contribute to the crowding via the quinary interactions. Finally, measurements performed in inner membrane vesicles of Escherichia coli validated the crowding-dependent dynamics of the sensors in the physiologically relevant environment. The sensors offer broad opportunities to study interfacial crowding in a complex environment of native membranes, and thus add to the toolbox of methods for studying membrane dynamics and proteostasis.
Collapse
Affiliation(s)
- Maryna Löwe
- Synthetic Membrane Systems, Institute of Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sebastian Hänsch
- Center for Advanced imaging, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Eymen Hachani
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Lutz Schmitt
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | | | - Alexej Kedrov
- Synthetic Membrane Systems, Institute of Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
15
|
Recoulat Angelini AA, Incicco JJ, Melian NA, González-Flecha FL. Susceptibility of Cu(I) transport ATPases to sodium dodecyl sulfate. Relevance of the composition of the micellar phase. Arch Biochem Biophys 2023; 745:109704. [PMID: 37527700 DOI: 10.1016/j.abb.2023.109704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/11/2023] [Accepted: 07/28/2023] [Indexed: 08/03/2023]
Abstract
Sodium dodecyl sulfate (SDS) is a well-known protein denaturing agent. A less known property of this detergent is that it can activate or inactivate some enzymes at sub-denaturing concentrations. In this work we explore the effect of SDS on the ATPase activity of a hyper-thermophilic and a mesophilic Cu(I) ATPases reconstituted in mixed micelles of phospholipids and a non-denaturing detergent. An iterative procedure was used to evaluate the partition of SDS between the aqueous and the micellar phases, allowing to determine the composition of micelles prepared from phospholipid/detergent mixtures. The incubation of enzymes with SDS in the presence of different amounts of phospholipids reveals that higher SDS concentrations are required to obtain the same degree of inactivation when the initial concentration of phospholipids is increased. Remarkably, we found that, if represented as a function of the mole fraction of SDS in the micelle, the degree of inactivation obtained at different amounts of amphiphiles converges to a single inactivation curve. To interpret this result, we propose a simple model involving active and inactive enzyme molecules in equilibrium. This model allowed us to estimate the Gibbs free energy change for the inactivation process and its derivative with respect to the mole fraction of SDS in the micellar phase, the latter being a measure of the susceptibility of the enzyme to SDS. Our results showed that the inactivation free energy changes are similar for both proteins. Conversely, susceptibility to SDS is significantly lower for the hyperthermophilic ATPase, suggesting an inverse relation between thermophilicity and susceptibility to SDS.
Collapse
Affiliation(s)
- Alvaro A Recoulat Angelini
- Universidad de Buenos Aires - CONICET, Laboratorio de Biofísica Molecular. Instituto de Química y Fisicoquímica Biológicas, Buenos Aires, Argentina
| | - J Jeremías Incicco
- Universidad de Buenos Aires - CONICET, Laboratorio de Biofísica Molecular. Instituto de Química y Fisicoquímica Biológicas, Buenos Aires, Argentina
| | - Noelia A Melian
- Universidad de Buenos Aires - CONICET, Laboratorio de Biofísica Molecular. Instituto de Química y Fisicoquímica Biológicas, Buenos Aires, Argentina
| | - F Luis González-Flecha
- Universidad de Buenos Aires - CONICET, Laboratorio de Biofísica Molecular. Instituto de Química y Fisicoquímica Biológicas, Buenos Aires, Argentina.
| |
Collapse
|
16
|
Kobayashi M, Noguchi H, Sato G, Watanabe C, Fujiwara K, Yanagisawa M. Phase-Separated Giant Liposomes for Stable Elevation of α-Hemolysin Concentration in Lipid Membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:11481-11489. [PMID: 37531551 DOI: 10.1021/acs.langmuir.3c02019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Staphylococcus aureus α-hemolysin (αHL) is one of the most popular proteins in nanopore experiments within lipid membranes. Higher concentrations of αHL within the lipid membrane are desirable to enhance the mass transport capacity through nanopores. However, the reconstitution of αHL at high concentrations is associated with the problem of membrane lytic disruption. In this study, we present a method that effectively increases αHL concentration while maintaining membrane stability. This method is achieved by using phase-separated giant liposomes, where coexisting liquid-disordered (Ld) and liquid-ordered phases (Lo) are enriched in unsaturated lipids and saturated lipids with cholesterol (Chol), respectively. Fluorescence observation of αHL in liposomes revealed that the presence of Chol facilitates αHL insertion into the membrane. Despite the preferential localization of αHL in the Ld phase rather than the Lo phase, the coexistence of both Lo and Ld phases prevents membrane disruption in the presence of concentrated αHL. We have explained this stabilization mechanism considering the lower membrane tension exhibited by phase-separated liposomes compared to homogeneous liposomes. Under hypertonic conditions, we have successfully increased the local concentration of αHL by invagination of the lipid-only region in the Ld phase, leaving αHL behind. This method exhibits potential for the reconstitution of various nanochannels and membrane proteins that prefer the Ld phase over the Lo phase, thus enabling the production of giant liposomes at high concentrations and the replication of the membrane-crowding condition observed in cells.
Collapse
Affiliation(s)
- Mizuki Kobayashi
- Department of Applied Physics, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
- Graduate School of Arts and Sciences, Komaba Institute for Science, The University of Tokyo, Komaba, Meguro, Tokyo 153-8902, Japan
| | - Hiroshi Noguchi
- Institute for Solid State Physics, The University of Tokyo, Kashiwa, Chiba 277-8581, Japan
- Graduate School of Science, The University of Tokyo, Hongo, Bunkyo, Tokyo 113-0033, Japan
| | - Gaku Sato
- Department of Biosciences and Informatics, Keio University, Kohoku-ku, Yokohama 223-8522, Japan
| | - Chiho Watanabe
- Graduate School of Arts and Sciences, Komaba Institute for Science, The University of Tokyo, Komaba, Meguro, Tokyo 153-8902, Japan
- School of Integrated Arts and Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, Kagamiyama, Higashi, Hiroshima 739-8521, Japan
| | - Kei Fujiwara
- Department of Biosciences and Informatics, Keio University, Kohoku-ku, Yokohama 223-8522, Japan
| | - Miho Yanagisawa
- Graduate School of Arts and Sciences, Komaba Institute for Science, The University of Tokyo, Komaba, Meguro, Tokyo 153-8902, Japan
- Graduate School of Science, The University of Tokyo, Hongo, Bunkyo, Tokyo 113-0033, Japan
| |
Collapse
|
17
|
Sakamoto K, Akimoto T, Muramatsu M, Sansom MSP, Metzler R, Yamamoto E. Heterogeneous biological membranes regulate protein partitioning via fluctuating diffusivity. PNAS NEXUS 2023; 2:pgad258. [PMID: 37593200 PMCID: PMC10427746 DOI: 10.1093/pnasnexus/pgad258] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/22/2023] [Accepted: 07/27/2023] [Indexed: 08/19/2023]
Abstract
Cell membranes phase separate into ordered L o and disordered L d domains depending on their compositions. This membrane compartmentalization is heterogeneous and regulates the localization of specific proteins related to cell signaling and trafficking. However, it is unclear how the heterogeneity of the membranes affects the diffusion and localization of proteins in L o and L d domains. Here, using Langevin dynamics simulations coupled with the phase-field (LDPF) method, we investigate several tens of milliseconds-scale diffusion and localization of proteins in heterogeneous biological membrane models showing phase separation into L o and L d domains. The diffusivity of proteins exhibits temporal fluctuations depending on the field composition. Increases in molecular concentrations and domain preference of the molecule induce subdiffusive behavior due to molecular collisions by crowding and confinement effects, respectively. Moreover, we quantitatively demonstrate that the protein partitioning into the L o domain is determined by the difference in molecular diffusivity between domains, molecular preference of domain, and molecular concentration. These results pave the way for understanding how biological reactions caused by molecular partitioning may be controlled in heterogeneous media. Moreover, the methodology proposed here is applicable not only to biological membrane systems but also to the study of diffusion and localization phenomena of molecules in various heterogeneous systems.
Collapse
Affiliation(s)
- Ken Sakamoto
- Department of System Design Engineering, Keio University, Yokohama, Kanagawa 223-8522, Japan
| | - Takuma Akimoto
- Department of Physics, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Mayu Muramatsu
- Department of Mechanical Engineering, Keio University, Yokohama, Kanagawa 223-8522, Japan
| | - Mark S P Sansom
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Ralf Metzler
- Institute of Physics & Astronomy, University of Potsdam, Potsdam-Golm 14476, Germany
- Asia Pacific Centre for Theoretical Physics, Pohang 37673, Republic of Korea
| | - Eiji Yamamoto
- Department of System Design Engineering, Keio University, Yokohama, Kanagawa 223-8522, Japan
| |
Collapse
|
18
|
Moreno-Pescador G, Arastoo MR, Ruhoff VT, Chiantia S, Daniels R, Bendix PM. Thermoplasmonic Vesicle Fusion Reveals Membrane Phase Segregation of Influenza Spike Proteins. NANO LETTERS 2023; 23:3377-3384. [PMID: 37040311 PMCID: PMC10141563 DOI: 10.1021/acs.nanolett.3c00371] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Many cellular processes involve the lateral organization of integral and peripheral membrane proteins into nanoscale domains. Despite the biological significance, the mechanisms that facilitate membrane protein clustering into nanoscale lipid domains remain enigmatic. In cells, the analysis of membrane protein phase affinity is complicated by the size and temporal nature of ordered and disordered lipid domains. To overcome these limitations, we developed a method for delivering membrane proteins from transfected cells into phase-separated model membranes that combines optical trapping with thermoplasmonic-mediated membrane fusion and confocal imaging. Using this approach, we observed clear phase partitioning into the liquid disordered phase following the transfer of GFP-tagged influenza hemagglutinin and neuraminidase from transfected cell membranes to giant unilamellar vesicles. The generic platform presented here allows investigation of the phase affinity of any plasma membrane protein which can be labeled or tagged with a fluorescent marker.
Collapse
Affiliation(s)
| | - Mohammad Reza Arastoo
- Niels
Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 København Ø, Denmark
| | | | - Salvatore Chiantia
- Institute
of Biochemistry and Biology, University
of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | - Robert Daniels
- Division
of Viral Products, Center for Biologics
Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Poul Martin Bendix
- Niels
Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 København Ø, Denmark
- Email
| |
Collapse
|
19
|
Parray ZA, Naqvi AAT, Ahanger IA, Shahid M, Ahmad F, Hassan MI, Islam A. Measuring Structural Changes in Cytochrome c under Crowded Conditions Using In Vitro and In Silico Approaches. Polymers (Basel) 2022; 14:polym14224808. [PMID: 36432935 PMCID: PMC9692323 DOI: 10.3390/polym14224808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 11/11/2022] Open
Abstract
It is known from in vitro studies that macromolecular crowding in the cell effects protein structure, stability and function; but predictive studies are relatively unexplored. There are few reports where the effect of various crowder mixtures has been exploited to discern their combined effect on the structural stability of proteins. These studies are more significant because their effect can mimicked with in vivo conditions, where the environment is heterogeneous. Effects of two crowders, polyethylene glycol (PEG 400 Da), and its monomer ethylene glycol (EG) alone and in mixture on the structural stability of cytochrome c (cyt c) were determined using various spectroscopic and bioinformatics tools. The main conclusions of our study are (i) the monomer EG has a kosmotropic effect on the protein (stabilizes the protein), and has no significant effect on the tertiary structure; (ii) PEG 400 destabilizes the structure as well as the stability of the protein; and (iii) EG counteracts the destabilizing effect of PEG 400. From this investigation, it seems evident that proteins may fold or unfold in the crowded environment of the cell where various interactions assist them to maintain their structure for their functions. Bioinformatics approaches were also used to support all of the in vitro observations. Cyt c is functional protein; if the structure of the protein is modulated due to change in the environment its nature of function will also change. Our research addresses the question by modulating the environment around the protein, and the macromolecule (protein) conformation dynamics and interaction study via in vitro and in silico approaches which indirectly compares with that of the environment in-cellular milieu, which is highly crowded.
Collapse
Affiliation(s)
- Zahoor Ahmad Parray
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
- Department of Chemistry, Indian Institute of Technology Delhi, IIT Campus, Hauz Khas, New Delhi 110016, India
| | - Ahmad Abu Turab Naqvi
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Ishfaq Ahmad Ahanger
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
- Department of Chemistry, Biochemistry and Forensic Science, Amity School of Applied Sciences, Amity University Haryana, Gurugram 122413, India
| | - Mohammad Shahid
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Faizan Ahmad
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Md. Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
- Correspondence: ; Tel.: +91-9312812007
| |
Collapse
|
20
|
Water Stress-Driven Changes in Bacterial Cell Surface Properties. Appl Environ Microbiol 2022; 88:e0073222. [PMID: 36226960 PMCID: PMC9642014 DOI: 10.1128/aem.00732-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Increased drought intensity and frequency exposes soil bacteria to prolonged water stress. While numerous studies reported on behavioral and physiological mechanisms of bacterial adaptation to water stress, changes in bacterial cell surface properties during adaptation are not well researched. We studied adaptive changes in cell surface hydrophobicity (CSH) after exposure to osmotic (NaCl) and matric stress (polyethylene glycol 8000 [PEG 8000]) for six typical soil bacteria (Bacillus subtilis, Arthrobacter chlorophenolicus, Pseudomonas fluorescens, Novosphingobium aromaticivorans, Rhodococcus erythropolis, and Mycobacterium pallens) covering a wide range of cell surface properties. Additional physicochemical parameters (surface chemical composition, surface charge, cell size and stiffness) of B. subtilis and P. fluorescens were analyzed to understand their possible contribution to CSH development. Changes in CSH caused by osmotic and matric stress depend on strain and stress type. CSH of B. subtilis and P. fluorescens increased with stress intensity, R. erythropolis and M. pallens exhibited a generally high but constant contact angle, while the response of A. chlorophenolicus and N. aromaticivorans depended on growth conditions and stress type. Osmotically driven changes in CSH of B. subtilis and P. fluorescens are accompanied by increasing surface N/C ratio, suggesting an increase in protein concentration within the cell wall. Cell envelope proteins thus presumably control bacterial CSH in two ways: (i) by increases in the relative density of surface proteins due to efflux of cytoplasmic water and subsequent cell shrinkage, and (ii) by destabilization of cell wall proteins, resulting in conformational changes which render the surface more hydrophobic. IMPORTANCE Changes in precipitation frequency, intensity, and temporal distribution are projected to result in increased frequency and intensity of droughts and heavy rainfall events. Prolonged droughts can promote the development of soil water repellency (SWR); this impacts the infiltration and distribution of water in the soil profile, exposing soil microorganisms to water stress. Exposure to water stress has recently been reported to result in increased cell surface hydrophobicity. However, the mechanism of this development is poorly understood. This study investigates the changes in the physicochemical properties of bacterial cell surfaces under water stress as a possible mechanism of increased surface hydrophobicity. Our results improve understanding of the microbial response to water stress in terms of surface properties, the variations in stress response depending on cell wall composition, and its contribution to the development of SWR.
Collapse
|
21
|
Ochoa-Gutiérrez D, Reyes-Torres AM, de la Fuente-Colmenares I, Escobar-Sánchez V, González J, Ortiz-Hernández R, Torres-Ramírez N, Segal-Kischinevzky C. Alternative CUG Codon Usage in the Halotolerant Yeast Debaryomyces hansenii: Gene Expression Profiles Provide New Insights into Ambiguous Translation. J Fungi (Basel) 2022; 8:jof8090970. [PMID: 36135695 PMCID: PMC9502446 DOI: 10.3390/jof8090970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/10/2022] [Accepted: 09/12/2022] [Indexed: 12/04/2022] Open
Abstract
The halotolerant yeast Debaryomyces hansenii belongs to the CTG-Ser1 clade of fungal species that use the CUG codon to translate as leucine or serine. The ambiguous decoding of the CUG codon is relevant for expanding protein diversity, but little is known about the role of leucine–serine ambiguity in cellular adaptations to extreme environments. Here, we examine sequences and structures of tRNACAG from the CTG-Ser1 clade yeasts, finding that D. hansenii conserves the elements to translate ambiguously. Then, we show that D. hansenii has tolerance to conditions of salinity, acidity, alkalinity, and oxidative stress associated with phenotypic and ultrastructural changes. In these conditions, we found differential expression in both the logarithmic and stationary growth phases of tRNASer, tRNALeu, tRNACAG, LeuRS, and SerRS genes that could be involved in the adaptive process of this yeast. Finally, we compare the proteomic isoelectric points and hydropathy profiles, detecting that the most important variations among the physicochemical characteristics of D. hansenii proteins are in their hydrophobic and hydrophilic interactions with the medium. We propose that the ambiguous translation, i.e., leucylation or serynation, on translation of the CUG-encoded residues, could be linked to adaptation processes in extreme environments.
Collapse
Affiliation(s)
- Daniel Ochoa-Gutiérrez
- Laboratorio de Biología Molecular y Genómica, Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Avenida Universidad # 3000, Cd. Universitaria, Coyoacán, Mexico City 04510, Mexico
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Avenida Universidad # 3000, Cd. Universitaria, Coyoacán, Mexico City 04510, Mexico
| | - Anya M. Reyes-Torres
- Laboratorio de Biología Molecular y Genómica, Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Avenida Universidad # 3000, Cd. Universitaria, Coyoacán, Mexico City 04510, Mexico
| | - Ileana de la Fuente-Colmenares
- Laboratorio de Biología Molecular y Genómica, Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Avenida Universidad # 3000, Cd. Universitaria, Coyoacán, Mexico City 04510, Mexico
| | - Viviana Escobar-Sánchez
- Laboratorio de Biología Molecular y Genómica, Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Avenida Universidad # 3000, Cd. Universitaria, Coyoacán, Mexico City 04510, Mexico
| | - James González
- Laboratorio de Biología Molecular y Genómica, Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Avenida Universidad # 3000, Cd. Universitaria, Coyoacán, Mexico City 04510, Mexico
| | - Rosario Ortiz-Hernández
- Laboratorio de Microscopía Electrónica, Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Avenida Universidad # 3000, Cd. Universitaria, Coyoacán, Mexico City 04510, Mexico
| | - Nayeli Torres-Ramírez
- Laboratorio de Microscopía Electrónica, Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Avenida Universidad # 3000, Cd. Universitaria, Coyoacán, Mexico City 04510, Mexico
| | - Claudia Segal-Kischinevzky
- Laboratorio de Biología Molecular y Genómica, Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Avenida Universidad # 3000, Cd. Universitaria, Coyoacán, Mexico City 04510, Mexico
- Correspondence:
| |
Collapse
|
22
|
Zendrini A, Guerra G, Sagini K, Vagner T, Di Vizio D, Bergese P. On the surface-to-bulk partition of proteins in extracellular vesicles. Colloids Surf B Biointerfaces 2022; 218:112728. [DOI: 10.1016/j.colsurfb.2022.112728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/20/2022] [Accepted: 07/24/2022] [Indexed: 10/16/2022]
|
23
|
Liu L, Chen Y, Yu S, Chen J, Zhou J. Enhanced production of l-sorbose by systematic engineering of dehydrogenases in Gluconobacter oxydans. Synth Syst Biotechnol 2022; 7:730-737. [PMID: 35356389 PMCID: PMC8927921 DOI: 10.1016/j.synbio.2022.02.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 02/16/2022] [Accepted: 02/21/2022] [Indexed: 11/10/2022] Open
Abstract
l-Sorbose is an essential intermediate for the industrial production of vitamin C (l-ascorbic acid). However, the formation of fructose and some unknown by-products significantly reduces the conversion ratio of D-sorbitol to l-sorbose. This study aimed to identify the key D-sorbitol dehydrogenases in Gluconobacter oxydans WSH-003 by gene knockout. Then, a total of 38 dehydrogenases were knocked out in G. oxydans WSH-003, and 23 dehydrogenase-deficient strains could increase l-sorbose production. G. oxydans-30, wherein a pyrroloquinoline quinone-dependent glucose dehydrogenase was deleted, showed a significant reduction of a by-product with the extension of fermentation time. In addition, the highest conversion ratio of 99.60% was achieved in G. oxydans MD-16, in which 16 different types of dehydrogenases were inactivated consecutively. Finally, the gene vhb encoding hemoglobin was introduced into the strain. The titer of l-sorbose was 298.61 g/L in a 5-L bioreactor. The results showed that the systematic engineering of dehydrogenase could significantly enhance the production of l-sorbose.
Collapse
Affiliation(s)
- Li Liu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Yue Chen
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Shiqin Yu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Jian Chen
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Jingwen Zhou
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| |
Collapse
|
24
|
Ukolova IV. VJ21.089The subcompartmented oxphosomic model of the phosphorylating system organization in mitochondria. Vavilovskii Zhurnal Genet Selektsii 2021; 25:778-786. [PMID: 34950849 PMCID: PMC8651570 DOI: 10.18699/vj21.089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 11/19/2022] Open
Abstract
The oxidative phosphorylation (OXPHOS) system of mitochondria supports all the vitally important energy-consuming processes in eukaryotic cells, providing them with energy in the form of ATP. OXPHOS enzymes (complexes I-V) are located in the inner mitochondrial membrane, mainly in the cristae subcompartment. At present, there is a large body of data evidencing that the respiratory complexes I, III2 and IV under in vivo conditions can physically interact with each other in diverse stoichiometry, thereby forming supercomplexes. Despite active accumulation of knowledge about the structure of the main supercomplexes of the OXPHOS system, its physical and functional organization in vivo remains unclear. Contemporary models of the OXPHOS system's organization in the inner membrane of mitochondria are contradictory and presume the existence of either highly organized respiratory strings, or, by contrast, a set of randomly dispersed respiratory supercomplexes and complexes. Furthermore, it is assumed that ATP-synthase (complex V) does not form associations with respiratory enzymes and operates autonomously. Our latest data obtained on mitochondria of etiolated shoots of pea evidence the possibility of physical association between the respiratory supercomplexes and dimeric ATP-synthase. These data have allowed us to reconsider the contemporary concept of the phosphorylation system organization and propose a new subcompartmented oxphosomic model. According to this model, a substantial number of the OXPHOS complexes form oxphosomes, which in a def inite stoichiometry include complexes I-V and are located predominantly in the cristae subcompartment of mitochondria in the form of highly organized strings or patches. These suprastructures represent "mini-factories" for ATP production. It is assumed that such an organization (1) contributes to increasing the eff iciency of the OXPHOS system operation, (2) involves new levels of activity regulation, and (3) may determine the inner membrane morphology to some extent. The review discusses the proposed model in detail. For a better understanding of the matter, the history of development of concepts concerning the OXPHOS organization with the emphasis on recent contemporary models is brief ly considered. The principal experimental data accumulated over the past 40 years, which conf irm the validity of the oxphosomic hypothesis, are also provided.
Collapse
Affiliation(s)
- I V Ukolova
- Сибирский институт физиологии и биохимии растений Сибирского отделения Российской академии наук, Иркутск, Россия
| |
Collapse
|
25
|
Barabás K, Kobolák J, Godó S, Kovács T, Ernszt D, Kecskés M, Varga C, Jánosi TZ, Fujiwara T, Kusumi A, Téglási A, Dinnyés A, Ábrahám IM. Live-Cell Imaging of Single Neurotrophin Receptor Molecules on Human Neurons in Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms222413260. [PMID: 34948057 PMCID: PMC8708879 DOI: 10.3390/ijms222413260] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/03/2021] [Accepted: 12/07/2021] [Indexed: 11/16/2022] Open
Abstract
Neurotrophin receptors such as the tropomyosin receptor kinase A receptor (TrkA) and the low-affinity binding p75 neurotrophin receptor p75NTR play a critical role in neuronal survival and their functions are altered in Alzheimer’s disease (AD). Changes in the dynamics of receptors on the plasma membrane are essential to receptor function. However, whether receptor dynamics are affected in different pathophysiological conditions is unexplored. Using live-cell single-molecule imaging, we examined the surface trafficking of TrkA and p75NTR molecules on live neurons that were derived from human-induced pluripotent stem cells (hiPSCs) of presenilin 1 (PSEN1) mutant familial AD (fAD) patients and non-demented control subjects. Our results show that the surface movement of TrkA and p75NTR and the activation of TrkA- and p75NTR-related phosphoinositide-3-kinase (PI3K)/serine/threonine-protein kinase (AKT) signaling pathways are altered in neurons that are derived from patients suffering from fAD compared to controls. These results provide evidence for altered surface movement of receptors in AD and highlight the importance of investigating receptor dynamics in disease conditions. Uncovering these mechanisms might enable novel therapies for AD.
Collapse
Affiliation(s)
- Klaudia Barabás
- NAP Molecular Neuroendocrinology Research Group, Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Institute, University of Pécs, 7624 Pécs, Hungary; (K.B.); (S.G.); (T.K.); (D.E.); (T.Z.J.); (I.M.Á.)
| | | | - Soma Godó
- NAP Molecular Neuroendocrinology Research Group, Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Institute, University of Pécs, 7624 Pécs, Hungary; (K.B.); (S.G.); (T.K.); (D.E.); (T.Z.J.); (I.M.Á.)
| | - Tamás Kovács
- NAP Molecular Neuroendocrinology Research Group, Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Institute, University of Pécs, 7624 Pécs, Hungary; (K.B.); (S.G.); (T.K.); (D.E.); (T.Z.J.); (I.M.Á.)
| | - Dávid Ernszt
- NAP Molecular Neuroendocrinology Research Group, Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Institute, University of Pécs, 7624 Pécs, Hungary; (K.B.); (S.G.); (T.K.); (D.E.); (T.Z.J.); (I.M.Á.)
| | - Miklós Kecskés
- NAP-B Cortical Microcircuits Research Group, Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Institute, 7624 Pécs, Hungary; (M.K.); (C.V.)
| | - Csaba Varga
- NAP-B Cortical Microcircuits Research Group, Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Institute, 7624 Pécs, Hungary; (M.K.); (C.V.)
| | - Tibor Z. Jánosi
- NAP Molecular Neuroendocrinology Research Group, Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Institute, University of Pécs, 7624 Pécs, Hungary; (K.B.); (S.G.); (T.K.); (D.E.); (T.Z.J.); (I.M.Á.)
| | - Takahiro Fujiwara
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8501, Japan;
| | - Akihiro Kusumi
- Membrane Cooperativity Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Onna 904-0495, Japan;
| | | | - András Dinnyés
- BioTalentum Ltd., 2100 Gödöllő, Hungary; (J.K.); (A.T.)
- Correspondence:
| | - István M. Ábrahám
- NAP Molecular Neuroendocrinology Research Group, Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Institute, University of Pécs, 7624 Pécs, Hungary; (K.B.); (S.G.); (T.K.); (D.E.); (T.Z.J.); (I.M.Á.)
| |
Collapse
|
26
|
Xu Y, Erdjument‐Bromage H, Phoon CKL, Neubert TA, Ren M, Schlame M. Cardiolipin remodeling enables protein crowding in the inner mitochondrial membrane. EMBO J 2021; 40:e108428. [PMID: 34661298 PMCID: PMC8634138 DOI: 10.15252/embj.2021108428] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 11/09/2022] Open
Abstract
Mitochondrial cristae are extraordinarily crowded with proteins, which puts stress on the bilayer organization of lipids. We tested the hypothesis that the high concentration of proteins drives the tafazzin-catalyzed remodeling of fatty acids in cardiolipin, thereby reducing bilayer stress in the membrane. Specifically, we tested whether protein crowding induces cardiolipin remodeling and whether the lack of cardiolipin remodeling prevents the membrane from accumulating proteins. In vitro, the incorporation of large amounts of proteins into liposomes altered the outcome of the remodeling reaction. In yeast, the concentration of proteins involved in oxidative phosphorylation (OXPHOS) correlated with the cardiolipin composition. Genetic ablation of either remodeling or biosynthesis of cardiolipin caused a substantial drop in the surface density of OXPHOS proteins in the inner membrane of the mouse heart and Drosophila flight muscle mitochondria. Our data suggest that OXPHOS protein crowding induces cardiolipin remodelling and that remodeled cardiolipin supports the high concentration of these proteins in the inner mitochondrial membrane.
Collapse
Affiliation(s)
- Yang Xu
- Department of AnesthesiologyNew York University Grossman School of MedicineNew YorkNYUSA
| | - Hediye Erdjument‐Bromage
- Kimmel Center for Biology and Medicine at the Skirball InstituteNew York University Grossman School of MedicineNew YorkNYUSA
- Department of Cell BiologyNew York University Grossman School of MedicineNew YorkNYUSA
| | - Colin K L Phoon
- Department of PediatricsNew York University Grossman School of MedicineNew YorkNYUSA
| | - Thomas A Neubert
- Kimmel Center for Biology and Medicine at the Skirball InstituteNew York University Grossman School of MedicineNew YorkNYUSA
- Department of Cell BiologyNew York University Grossman School of MedicineNew YorkNYUSA
| | - Mindong Ren
- Department of AnesthesiologyNew York University Grossman School of MedicineNew YorkNYUSA
- Department of Cell BiologyNew York University Grossman School of MedicineNew YorkNYUSA
| | - Michael Schlame
- Department of AnesthesiologyNew York University Grossman School of MedicineNew YorkNYUSA
- Department of Cell BiologyNew York University Grossman School of MedicineNew YorkNYUSA
| |
Collapse
|
27
|
Kell DB. The Transporter-Mediated Cellular Uptake and Efflux of Pharmaceutical Drugs and Biotechnology Products: How and Why Phospholipid Bilayer Transport Is Negligible in Real Biomembranes. Molecules 2021; 26:5629. [PMID: 34577099 PMCID: PMC8470029 DOI: 10.3390/molecules26185629] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/03/2021] [Accepted: 09/14/2021] [Indexed: 12/12/2022] Open
Abstract
Over the years, my colleagues and I have come to realise that the likelihood of pharmaceutical drugs being able to diffuse through whatever unhindered phospholipid bilayer may exist in intact biological membranes in vivo is vanishingly low. This is because (i) most real biomembranes are mostly protein, not lipid, (ii) unlike purely lipid bilayers that can form transient aqueous channels, the high concentrations of proteins serve to stop such activity, (iii) natural evolution long ago selected against transport methods that just let any undesirable products enter a cell, (iv) transporters have now been identified for all kinds of molecules (even water) that were once thought not to require them, (v) many experiments show a massive variation in the uptake of drugs between different cells, tissues, and organisms, that cannot be explained if lipid bilayer transport is significant or if efflux were the only differentiator, and (vi) many experiments that manipulate the expression level of individual transporters as an independent variable demonstrate their role in drug and nutrient uptake (including in cytotoxicity or adverse drug reactions). This makes such transporters valuable both as a means of targeting drugs (not least anti-infectives) to selected cells or tissues and also as drug targets. The same considerations apply to the exploitation of substrate uptake and product efflux transporters in biotechnology. We are also beginning to recognise that transporters are more promiscuous, and antiporter activity is much more widespread, than had been realised, and that such processes are adaptive (i.e., were selected by natural evolution). The purpose of the present review is to summarise the above, and to rehearse and update readers on recent developments. These developments lead us to retain and indeed to strengthen our contention that for transmembrane pharmaceutical drug transport "phospholipid bilayer transport is negligible".
Collapse
Affiliation(s)
- Douglas B. Kell
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown St, Liverpool L69 7ZB, UK;
- Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800 Kgs Lyngby, Denmark
- Mellizyme Biotechnology Ltd., IC1, Liverpool Science Park, Mount Pleasant, Liverpool L3 5TF, UK
| |
Collapse
|
28
|
Ilangumaran Ponmalar I, Ayappa KG, Basu JK. Bacterial protein listeriolysin O induces nonmonotonic dynamics because of lipid ejection and crowding. Biophys J 2021; 120:3040-3049. [PMID: 34214525 DOI: 10.1016/j.bpj.2021.06.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 05/27/2021] [Accepted: 06/02/2021] [Indexed: 01/15/2023] Open
Abstract
Membrane-bound protein complexes involving pore forming toxins (PFTs) released by virulent bacteria are known to form transmembrane pores leading to host cell lysis. Developing alternative strategies against PFT mediated bacterial virulence factors requires an understanding of the cellular membrane response. However, membrane disruption and related lipid reorganization events during attack by PFTs remain largely unexplored. We report counterintuitive and nonmonotonic variations in lipid diffusion, measured using confocal fluorescence correlation spectroscopy, due to interplay of lipid ejection and crowding by membrane-bound oligomers of a prototypical cholesterol-dependent cytolysin, listeriolysin O (LLO). The observed dynamical crossover is correlated with concentration dependent transitions of LLO oligomeric state populations from rings to arc-like pore complexes, predicted using a proposed two-state free area-based diffusion model. At low PFT concentrations, a hitherto unexplored regime of increased lipid diffusivity is attributed to lipid ejection events because of a preponderance of ring-like pore states. At higher protein concentrations in which membrane-inserted arc-like pores dominate, lipid ejection is less efficient and the ensuing crowding results in a lowering of lipid diffusion. These variations in lipid dynamics are corroborated by macroscopic rheological response measurements of PFT bound vesicles. Our study correlates PFT oligomeric state transitions, membrane remodeling, and mechanical property variations, providing unique insights into the pore forming mechanisms of cholesterol-dependent cytolysins.
Collapse
Affiliation(s)
| | - K Ganapathy Ayappa
- Center for BioSystems Science and Engineering Bengaluru, India; Department of Chemical Engineering Bengaluru, India.
| | - Jaydeep K Basu
- Department of Physics, Indian Institute of Science, Bengaluru, India.
| |
Collapse
|
29
|
Abstract
Pattern formation processes in active systems give rise to a plethora of collective structures. Predicting how the emergent structures depend on the microscopic interactions between the moving agents remains a challenge. By introducing a high-density actin gliding assay on a fluid membrane, we demonstrate the emergence of polar structures in a regime of nematic binary interactions dominated by steric repulsion. The transition from a microscopic nematic symmetry to a macroscopic polar structure is linked to microscopic polarity sorting mechanisms, including accumulation in wedge-like topological defects. Our results should be instrumental for a better understanding of pattern formation and polarity sorting processes in active matter. Collective motion of active matter is ubiquitously observed, ranging from propelled colloids to flocks of bird, and often features the formation of complex structures composed of agents moving coherently. However, it remains extremely challenging to predict emergent patterns from the binary interaction between agents, especially as only a limited number of interaction regimes have been experimentally observed so far. Here, we introduce an actin gliding assay coupled to a supported lipid bilayer, whose fluidity forces the interaction between self-propelled filaments to be dominated by steric repulsion. This results in filaments stopping upon binary collisions and eventually aligning nematically. Such a binary interaction rule results at high densities in the emergence of dynamic collectively moving structures including clusters, vortices, and streams of filaments. Despite the microscopic interaction having a nematic symmetry, the emergent structures are found to be polar, with filaments collectively moving in the same direction. This is due to polar biases introduced by the stopping upon collision, both on the individual filaments scale as well as on the scale of collective structures. In this context, positive half-charged topological defects turn out to be a most efficient trapping and polarity sorting conformation.
Collapse
|
30
|
Deshwal A, Maiti S. Macromolecular Crowding Effect on the Activity of Liposome-Bound Alkaline Phosphatase: A Paradoxical Inhibitory Action. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:7273-7284. [PMID: 34086469 DOI: 10.1021/acs.langmuir.1c01177] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The cytoplasm of a cell is extremely crowded, with 20-30% being large biomolecules. This crowding enforces a significant amount of the physical and chemical barrier around biomolecules, so understanding any biomolecular event within the cellular system is challenging. Unsurprisingly, enzymes show a diverse kind of catalytic behavior inside a crowded environment and thus have remained an area of active interest in the last few decades. The situation can become even more complex and exciting in the case of understanding the behavior of a membrane-bound enzyme (almost 25-30% of enzymes are membrane-bound) in such a crowded environment that until now has remained unexplored. Herein, we have particularly investigated how a membrane-bound enzyme (using liposome-bound alkaline phosphatase) can behave in a crowded environment comprising polymer molecule-like poly(ethylene glycol) (PEG) of different weights (PEG400, PEG4000, and PEG9000) and Ficoll 400. We have compared the activity using a polymer microbead conjugated enzyme and have found that liposome-bound alkaline phosphatase had much higher activity in crowded environments, showing the importance and superiority of soft-deformable particles (i.e., vesicles) over hard spheres in macro-molecularly crowded media. Interstingly, we have found a paradoxical behavior of inhibitors in terms of both their extent and pathway of inhibitory action. For instance, phosphates, known as competitive inhibitors in buffer, behave as uncompetitive inhibitors in liposome-bound enzymes in crowded media with an ∼5-fold less inhibitory effect, whereas phenyl alanine (an uncompetitive inhibitor in buffer) did not show any inhibitory potential when the enzyme was membrane-bound and in crowded media containing PEG9000 (30 wt %). Overall, this demonstration elucidates aspects of membrane-bound enzymes in crowded media in terms of both catalytic behavior and inhibitory actions and can lead to further studies of the understanding of enzymatic behavior in such complex crowded environments having a dampening effect in regular diffusive transport.
Collapse
Affiliation(s)
- Akshi Deshwal
- Indian Institute of Science Education and Research (IISER) Mohali, Department of Chemical Sciences, Knowledge City, Manauli 140306, India
| | - Subhabrata Maiti
- Indian Institute of Science Education and Research (IISER) Mohali, Department of Chemical Sciences, Knowledge City, Manauli 140306, India
| |
Collapse
|
31
|
Mularski A, Sønder SL, Heitmann ASB, Nylandsted J, Simonsen AC. Simultaneous membrane binding of Annexin A4 and A5 suppresses 2D lattice formation while maintaining curvature induction. J Colloid Interface Sci 2021; 600:854-864. [PMID: 34052534 DOI: 10.1016/j.jcis.2021.05.067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/25/2021] [Accepted: 05/12/2021] [Indexed: 10/21/2022]
Abstract
HYPOTHESIS Annexin A4 and A5 (ANXA4, ANXA5), both shown to be required for efficient plasma membrane repair (PMR) in living cells, bind as trimers to anionic membranes in the presence of calcium. Both annexins induce membrane curvature and self-assemble into crystal arrays on membranes, observations that have been associated with PMR. However, in-vitro studies of annexins have traditionally been performed using single annexins, despite the recruitment of multiple annexins to the damage site in cells. Hence, we study the potential cooperativity of ANXA4 and ANXA5 during membrane binding. EXPERIMENTS Laser injury experiments were performed on MCF7 cells transfected to transiently express labelled ANXA4 and ANXA5 to study the localization of the proteins at the damage site. Using free-edged DOPC/DOPS (9:1) membranes we investigated the annexin-induced membrane rolling by fluorescence microscopy and the lateral arrangement of annexin trimers on the membrane surface by atomic force microscopy (AFM). FINDING ANXA4 and ANXA5 colocalise at the damage site of MCF7 cells during repair. A (1:1) mixture of ANXA4 and ANXA5 induces membrane rolling with a time constant intermediate between the value for the pure annexins. While binding of the pure annexins creates crystal lattices, the (1:1) mixture generates a random arrangement of trimers. Thus, curvature induction remains as a functional property of annexin mixtures in PMR rather than crystal formation.
Collapse
Affiliation(s)
- Anna Mularski
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark.
| | - Stine Lauritzen Sønder
- Membrane Integrity, Danish Cancer Society Research Center, Strandboulevarden 49, DK 2100 Copenhagen, Denmark.
| | - Anne Sofie Busk Heitmann
- Membrane Integrity, Danish Cancer Society Research Center, Strandboulevarden 49, DK 2100 Copenhagen, Denmark.
| | - Jesper Nylandsted
- Membrane Integrity, Danish Cancer Society Research Center, Strandboulevarden 49, DK 2100 Copenhagen, Denmark; Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark.
| | - Adam Cohen Simonsen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark.
| |
Collapse
|
32
|
Single-molecule imaging reveals that Z-ring condensation is essential for cell division in Bacillus subtilis. Nat Microbiol 2021; 6:553-562. [PMID: 33737746 PMCID: PMC8085161 DOI: 10.1038/s41564-021-00878-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 02/11/2021] [Indexed: 01/31/2023]
Abstract
Although many components of the cell division machinery in bacteria have been identified1,2, the mechanisms by which they work together to divide the cell remain poorly understood. Key among these components is the tubulin FtsZ, which forms a Z ring at the midcell. FtsZ recruits the other cell division proteins, collectively called the divisome, and the Z ring constricts as the cell divides. We applied live-cell single-molecule imaging to describe the dynamics of the divisome in detail, and to evaluate the individual roles of FtsZ-binding proteins (ZBPs), specifically FtsA and the ZBPs EzrA, SepF and ZapA, in cytokinesis. We show that the divisome comprises two subcomplexes that move differently: stationary ZBPs that transiently bind to treadmilling FtsZ filaments, and a moving complex that includes cell wall synthases. Our imaging analyses reveal that ZBPs bundle FtsZ filaments together and condense them into Z rings, and that this condensation is necessary for cytokinesis.
Collapse
|
33
|
Kruyer NS, Sugianto W, Tickman BI, Alba Burbano D, Noireaux V, Carothers JM, Peralta-Yahya P. Membrane Augmented Cell-Free Systems: A New Frontier in Biotechnology. ACS Synth Biol 2021; 10:670-681. [PMID: 33749249 DOI: 10.1021/acssynbio.0c00625] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Membrane proteins are present in a wide array of cellular processes from primary and secondary metabolite synthesis to electron transport and single carbon metabolism. A key barrier to applying membrane proteins industrially is their difficult functional production. Beyond expression, folding, and membrane insertion, membrane protein activity is influenced by the physicochemical properties of the associated membrane, making it difficult to achieve optimal membrane protein performance outside the endogenous host. In this review, we highlight recent work on production of membrane proteins in membrane augmented cell-free systems (CFSs) and applications thereof. CFSs lack membranes and can thus be augmented with user-specified, tunable, mimetic membranes to generate customized environments for production of functional membrane proteins of interest. Membrane augmented CFSs would enable the synthesis of more complex plant secondary metabolites, the growth and division of synthetic cells for drug delivery and cell therapeutic applications, as well as enable green energy applications including methane capture and artificial photosynthesis.
Collapse
Affiliation(s)
- Nicholas S. Kruyer
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Widianti Sugianto
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Benjamin I. Tickman
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, Washington 98195, United States
| | - Diego Alba Burbano
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, Washington 98195, United States
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Vincent Noireaux
- School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - James M. Carothers
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, Washington 98195, United States
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Pamela Peralta-Yahya
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
34
|
Bruggeman FJ, Planqué R, Molenaar D, Teusink B. Searching for principles of microbial physiology. FEMS Microbiol Rev 2021; 44:821-844. [PMID: 33099619 PMCID: PMC7685786 DOI: 10.1093/femsre/fuaa034] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 08/02/2020] [Indexed: 12/27/2022] Open
Abstract
Why do evolutionarily distinct microorganisms display similar physiological behaviours? Why are transitions from high-ATP yield to low(er)-ATP yield metabolisms so widespread across species? Why is fast growth generally accompanied with low stress tolerance? Do these regularities occur because most microbial species are subject to the same selective pressures and physicochemical constraints? If so, a broadly-applicable theory might be developed that predicts common microbiological behaviours. Microbial systems biologists have been working out the contours of this theory for the last two decades, guided by experimental data. At its foundations lie basic principles from evolutionary biology, enzyme biochemistry, metabolism, cell composition and steady-state growth. The theory makes predictions about fitness costs and benefits of protein expression, physicochemical constraints on cell growth and characteristics of optimal metabolisms that maximise growth rate. Comparisons of the theory with experimental data indicates that microorganisms often aim for maximisation of growth rate, also in the presence of stresses; they often express optimal metabolisms and metabolic proteins at optimal concentrations. This review explains the current status of the theory for microbiologists; its roots, predictions, experimental evidence and future directions.
Collapse
Affiliation(s)
- Frank J Bruggeman
- Systems Biology Lab, AIMMS, De Boelelaan 1108, 1081 HZ, VU University, Amsterdam, The Netherlands
| | - Robert Planqué
- Department of Mathematics, De Boelelaan 1111, 1081 HV, VU University, Amsterdam, The Netherlands
| | - Douwe Molenaar
- Systems Biology Lab, AIMMS, De Boelelaan 1108, 1081 HZ, VU University, Amsterdam, The Netherlands
| | - Bas Teusink
- Systems Biology Lab, AIMMS, De Boelelaan 1108, 1081 HZ, VU University, Amsterdam, The Netherlands
| |
Collapse
|
35
|
Zhang D, Howarth GS, Parkin LA, McDermott AE. NMR studies of lipid regulation of the K + channel KcsA. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2021; 1863:183491. [PMID: 33065136 PMCID: PMC9189731 DOI: 10.1016/j.bbamem.2020.183491] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 09/24/2020] [Accepted: 09/28/2020] [Indexed: 11/18/2022]
Abstract
The membrane environment, including specific lipid characteristics, plays important roles in the folding, stability, and gating of the prokaryotic potassium channel KcsA. Here we study the effect of membrane composition on the population of various functional states of KcsA. The spectra provide support for the previous observation of copurifying phospholipids with phosphoglycerol headgroups. Additional, exogenously added anionic lipids do not appear to be required to stabilize the open conductive conformation of KcsA, which was previously thought to be the case. On the contrary, NMR-based binding studies indicate that including anionic lipids in proteoliposomes at acidic pH leads to a weaker potassium ion affinity at the selectivity filter. Since K+ ion loss leads to channel inactivation, these results suggest that anionic lipids promote channel inactivation.
Collapse
Affiliation(s)
- Dongyu Zhang
- Department of Chemistry, Columbia University, New York, NY, 10027, United States of America
| | - Gary S Howarth
- Department of Chemistry, Columbia University, New York, NY, 10027, United States of America
| | - Lia A Parkin
- Department of Chemistry, Columbia University, New York, NY, 10027, United States of America
| | - Ann E McDermott
- Department of Chemistry, Columbia University, New York, NY, 10027, United States of America.
| |
Collapse
|
36
|
Sarkar P, Chattopadhyay A. Insights into cellular signaling from membrane dynamics. Arch Biochem Biophys 2021; 701:108794. [PMID: 33571482 DOI: 10.1016/j.abb.2021.108794] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/20/2021] [Accepted: 02/03/2021] [Indexed: 12/16/2022]
Abstract
Biological membranes allow morphological compartmentalization of cells and represent complex micro-heterogeneous fluids exhibiting a range of dynamics. The plasma membrane occupies a central place in cellular signaling which allows the cell to perform a variety of functions. In this review, we analyze cellular signaling in a dynamic biophysical framework guided by the "mobile receptor hypothesis". We describe a variety of examples from literature in which lateral diffusion of signaling membrane proteins acts as an important determinant in the efficiency of signaling. A major focus in our review is on membrane-embedded G protein-coupled receptors (GPCRs) which act as cellular signaling hubs for diverse cellular functions. Taken together, we describe a dynamics-based signaling paradigm with chosen examples from literature to elucidate how such a paradigm helps us understand signaling by GPCRs, maintenance of cellular polarity in yeast and infection by pathogens. We envision that with further technological advancement, it would be possible to explore cellular signaling more holistically as cells undergo development, differentiation and aging, thereby providing us a robust window into the dynamics of the cellular interior and its functional correlates.
Collapse
Affiliation(s)
- Parijat Sarkar
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | | |
Collapse
|
37
|
Florentsen CD, Kamp-Sonne A, Moreno-Pescador G, Pezeshkian W, Hakami Zanjani AA, Khandelia H, Nylandsted J, Bendix PM. Annexin A4 trimers are recruited by high membrane curvatures in giant plasma membrane vesicles. SOFT MATTER 2021; 17:308-318. [PMID: 32756654 DOI: 10.1039/d0sm00241k] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The plasma membrane (PM) of eukaryotic cells consists of a crowded environment comprised of a high diversity of proteins in a complex lipid matrix. The lateral organization of membrane proteins in the PM is closely correlated with biological functions such as endocytosis, membrane budding and other processes which involve protein mediated shaping of the membrane into highly curved structures. Annexin A4 (ANXA4) is a prominent player in a number of biological functions including PM repair. Its binding to membranes is activated by Ca2+ influx and it is therefore rapidly recruited to the cell surface near rupture sites where Ca2+ influx takes place. However, the free edges near rupture sites can easily bend into complex curvatures and hence may accelerate recruitment of curvature sensing proteins to facilitate rapid membrane repair. To analyze the curvature sensing behavior of curvature inducing proteins in crowded membranes, we quantifify the affinity of ANXA4 monomers and trimers for high membrane curvatures by extracting membrane nanotubes from giant PM vesicles (GPMVs). ANXA4 is found to be a sensor of negative membrane curvatures. Multiscale simulations, in which we extract molecular information from atomistic scale simulations as input to our macroscopic scale simulations, furthermore predicted that ANXA4 trimers generate membrane curvature upon binding and have an affinity for highly curved membrane regions only within a well defined membrane curvature window. Our results indicate that curvature sensing and mobility of ANXA4 depend on the trimer structure of ANXA4 which could provide new biophysical insight into the role of ANXA4 in membrane repair and other biological processes.
Collapse
Affiliation(s)
| | | | | | - Weria Pezeshkian
- Groningen Biomolecular Sciences and Biotechnology, Institute and Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
| | | | - Himanshu Khandelia
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Denmark
| | - Jesper Nylandsted
- Danish Cancer Society Research Center, Strandboulevarden 49, DK-2100 Copenhagen, Denmark and Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Denmark
| | | |
Collapse
|
38
|
Rojas Molina R, Liese S, Alimohamadi H, Rangamani P, Carlson A. Diffuso-kinetic membrane budding dynamics. SOFT MATTER 2020; 16:10889-10899. [PMID: 33125025 DOI: 10.1039/d0sm01028f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A wide range of proteins are known to create shape transformations of biological membranes, where the remodelling is a coupling between the energetic costs from deforming the membrane, the recruitment of proteins that induce a local spontaneous curvature C0 and the diffusion of proteins along the membrane. We propose a minimal mathematical model that accounts for these processes to describe the diffuso-kinetic dynamics of membrane budding processes. By deploying numerical simulations we map out the membrane shapes, the time for vesicle formation and the vesicle size as a function of the dimensionless kinetic recruitment parameter K1 and the proteins sensitivity to mean curvature. We derive a time for scission that follows a power law ∼K1-2/3, a consequence of the interplay between the spreading of proteins by diffusion and the kinetic-limited increase of the protein density on the membrane. We also find a scaling law for the vesicle size ∼1/([small sigma, Greek, macron]avC0), with [small sigma, Greek, macron]av the average protein density in the vesicle, which is confirmed in the numerical simulations. Rescaling all the membrane profiles at the time of vesicle formation highlights that the membrane adopts a self-similar shape.
Collapse
Affiliation(s)
- Rossana Rojas Molina
- Mechanics Division, Department of Mathematics, University of Oslo, 0316 Oslo, Norway.
| | | | | | | | | |
Collapse
|
39
|
The Gαi protein subclass selectivity to the dopamine D 2 receptor is also decided by their location at the cell membrane. Cell Commun Signal 2020; 18:189. [PMID: 33308256 PMCID: PMC7731117 DOI: 10.1186/s12964-020-00685-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 11/10/2020] [Indexed: 11/10/2022] Open
Abstract
Background G protein-coupled receptor (GPCR) signaling via heterotrimeric G proteins plays an important role in the cellular regulation of responses to external stimuli. Despite intensive structural research, the mechanism underlying the receptor–G protein coupling of closely related subtypes of Gαi remains unclear. In addition to the structural changes of interacting proteins, the interactions between lipids and proteins seem to be crucial in GPCR-dependent cell signaling due to their functional organization in specific membrane domains. In previous works, we found that Gαs and Gαi3 subunits prefer distinct types of membrane-anchor lipid domains that also modulate the G protein trimer localization. In the present study, we investigated the functional selectivity of dopamine D2 long receptor isoform (D2R) toward the Gαi1, Gαi2, and Gαi3 subunits, and analyzed whether the organization of Gαi heterotrimers at the plasma membrane affects the signal transduction. Methods We characterized the lateral diffusion and the receptor–G protein spatial distribution in living cells using two assays: fluorescence recovery after photobleaching microscopy and fluorescence resonance energy transfer detected by fluorescence-lifetime imaging microscopy. Depending on distribution of data differences between Gα subunits were investigated using parametric approach–unpaired T-test or nonparametric–Mann–Whitney U test. Results Despite the similarities between the examined subunits, the experiments conducted in the study revealed a significantly faster lateral diffusion of the Gαi2 subunit and the singular distribution of the Gαi1 subunit in the plasma membrane. The cell membrane partitioning of distinct Gαi heterotrimers with dopamine receptor correlated very well with the efficiency of D2R-mediated inhibition the formation of cAMP. Conclusions This study showed that even closely related subunits of Gαi differ in their membrane-trafficking properties that impact on their signaling. The interactions between lipids and proteins seem to be crucial in GPCR-dependent cell signaling due to their functional organization in specific membrane domains, and should therefore be taken into account as one of the selectivity determinants of G protein coupling. Video abstract
Collapse
|
40
|
Protein crowding mediates membrane remodeling in upstream ESCRT-induced formation of intraluminal vesicles. Proc Natl Acad Sci U S A 2020; 117:28614-28624. [PMID: 33139578 DOI: 10.1073/pnas.2014228117] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
As part of the lysosomal degradation pathway, the endosomal sorting complexes required for transport (ESCRT-0 to -III/VPS4) sequester receptors at the endosome and simultaneously deform the membrane to generate intraluminal vesicles (ILVs). Whereas ESCRT-III/VPS4 have an established function in ILV formation, the role of upstream ESCRTs (0 to II) in membrane shape remodeling is not understood. Combining experimental measurements and electron microscopy analysis of ESCRT-III-depleted cells with a mathematical model, we show that upstream ESCRT-induced alteration of the Gaussian bending rigidity and their crowding in concert with the transmembrane cargo on the membrane induce membrane deformation and facilitate ILV formation: Upstream ESCRT-driven budding does not require ATP consumption as only a small energy barrier needs to be overcome. Our model predicts that ESCRTs do not become part of the ILV, but localize with a high density at the membrane neck, where the steep decline in the Gaussian curvature likely triggers ESCRT-III/VPS4 assembly to enable neck constriction and scission.
Collapse
|
41
|
Yan R, Chen K, Xu K. Probing Nanoscale Diffusional Heterogeneities in Cellular Membranes through Multidimensional Single-Molecule and Super-Resolution Microscopy. J Am Chem Soc 2020; 142:18866-18873. [PMID: 33084318 DOI: 10.1021/jacs.0c08426] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Diffusion properties notably determine the behavior of biomembranes. Here we report the concurrent nanoscale fine-mapping of membrane topography, diffusivity, and packing order in live mammalian cells through a synergy of single-molecule and super-resolution methods. By identifying a bright, lipophilic fluorescence turn-on probe that enables sustained single-molecule imaging of cellular membranes under stroboscopic excitation, we accumulate the positions and transient displacements of >106 probe molecules to achieve super-resolution topography and diffusivity mapping. We thus determine a trend that the membrane diffusivity drops with increased lipid packing order when comparing the endoplasmic reticulum (ER) membrane, plasma membrane, and nanodomains induced by cholera toxin B. Utilizing our nanoscale mapping capability, we further unveil reduced diffusivity in the ER membrane at ER-plasma membrane contact sites. By next integrating spectrally resolved single-molecule imaging, we show that this localized diffusion slowdown is not due to altered lipid packing order but may instead be attributed to local protein crowding. Our integrated multidimensional single-molecule approach thus unveils and differentiates between nanoscale diffusional heterogeneities of different origins in live-cell membranes.
Collapse
Affiliation(s)
- Rui Yan
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Chan Zuckerberg Biohub, San Francisco, California 94158, United States
| | - Kun Chen
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Chan Zuckerberg Biohub, San Francisco, California 94158, United States
| | - Ke Xu
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Chan Zuckerberg Biohub, San Francisco, California 94158, United States
| |
Collapse
|
42
|
Yao X, Tao F, Tang H, Hu H, Wang W, Xu P. Unique regulator SrpR mediates crosstalk between efflux pumps TtgABC and SrpABC in Pseudomonas putida B6-2 (DSM 28064). Mol Microbiol 2020; 115:131-141. [PMID: 32945019 DOI: 10.1111/mmi.14605] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 09/03/2020] [Accepted: 09/07/2020] [Indexed: 11/28/2022]
Abstract
The coexistence of multiple homologous resistance-nodulation-division (RND) efflux pumps in bacteria is frequently described with overlapping substrate profiles. However, it is unclear how bacteria balance their transcription in response to the changing environment. Here, we characterized a repressor, SrpR, in Pseudomonas putida B6-2 (DSM 28064), whose coding gene is adjacent to srpS that encodes the local repressor of the RND-type efflux pump SrpABC gene cluster. SrpR was demonstrated as a specific repressor of another RND efflux pump gene cluster ttgABC that is locally repressed by TtgR. SrpR was found to be capable of binding to the ttgABC operator with a higher affinity (KD , 138.0 nM) compared to TtgR (KD , 15.4 μM). EMSA and β-galactosidase assays were performed to survey possible effectors of SrpR with 35 available chemicals being tested. Only 2,3,4-trichlorophenol was identified as an effector of SrpR. A regulation model was then proposed, representing a novel strategy for balancing the efflux systems with partially overlapping substrate profiles. This study highlights sophisticated interactions among the RND efflux pumps in a Pseudomonas strain, which may endow bacteria with certain advantages in a fluctuant environment.
Collapse
Affiliation(s)
- Xuemei Yao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China.,School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, People's Republic of China
| | - Fei Tao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Hongzhi Tang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Haiyang Hu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Weiwei Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| |
Collapse
|
43
|
Abstract
Lipid membranes are more than just barriers between cell compartments; they provide molecular environments with a finely tuned balance between hydrophilic and hydrophobic interactions that enable proteins to dynamically fold and self-assemble to regulate biological function. Characterizing dynamics at the lipid-water interface is essential to understanding molecular complexities from the thermodynamics of liquid-liquid phase separation down to picosecond-scale reorganization of interfacial hydrogen-bond networks.Ultrafast vibrational spectroscopy, including two-dimensional infrared (2D IR) and vibrational sum-frequency generation (VSFG) spectroscopies, is a powerful tool to examine picosecond interfacial dynamics. Two-dimensional IR spectroscopy provides a bond-centered view of dynamics with subpicosecond time resolutions, as vibrational frequencies are highly sensitive to the local environment. Recently, 2D IR spectroscopy has been applied to carbonyl and phosphate vibrations intrinsically located at the lipid-water interface. Interface-specific VSFG spectroscopy probes the water vibrational modes directly, accessing H-bond strength and water organization at lipid headgroup positions. Signals in VSFG arise from the interfacial dipole contributions, directly probing headgroup ordering and water orientation to provide a structural view of the interface.In this Account we discuss novel applications of ultrafast spectroscopy to lipid membranes, a field that has experienced significant growth over the past decade. In particular, ultrafast experiments now offer a molecular perspective on increasingly complex membranes. The powerful combination of ultrafast, interface-selective spectroscopy and simulations opens up new routes to understanding multicomponent membranes and their function. This Account highlights key prevailing views that have emerged from recent experiments: (1) Water dynamics at the lipid-water interface are slow compared to those of bulk water as a result of disrupted H-bond networks near the headgroups. (2) Peptides, ions, osmolytes, and cosolvents perturb interfacial dynamics, indicating that dynamics at the interface are affected by bulk solvent dynamics and vice versa. (3) The interfacial environment is generally dictated by the headgroup structure and orientation, but hydrophobic interactions within the acyl chains also modulate interfacial dynamics. Ultrafast spectroscopy has been essential to characterizing the biophysical chemistry of the lipid-water interface; however, challenges remain in interpreting congested spectra as well as designing appropriate model systems to capture the complexity of a membrane environment.
Collapse
Affiliation(s)
- Jennifer C. Flanagan
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street Stop A5300, Austin, Texas 78712-1224, United States
| | - Mason L. Valentine
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street Stop A5300, Austin, Texas 78712-1224, United States
| | - Carlos R. Baiz
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street Stop A5300, Austin, Texas 78712-1224, United States
| |
Collapse
|
44
|
Schlame M. Protein crowding in the inner mitochondrial membrane. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1862:148305. [PMID: 32916174 DOI: 10.1016/j.bbabio.2020.148305] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/24/2020] [Accepted: 09/03/2020] [Indexed: 10/23/2022]
Abstract
The inner membrane of mitochondria is known for its low lipid-to-protein ratio. Calculations based on the size and the concentration of the principal membrane components, suggest about half of the hydrophobic volume of the membrane is occupied by proteins. Such high degree of crowding is expected to strain the hydrophobic coupling between proteins and lipids unless stabilizing mechanisms are in place. Both protein supercomplexes and cardiolipin are likely to be critical for the integrity of the inner mitochondrial membrane because they reduce the energy penalty of crowding.
Collapse
Affiliation(s)
- Michael Schlame
- Departments of Anesthesiology and Cell Biology, New York University School of Medicine, NY 10016, USA.
| |
Collapse
|
45
|
Horne JE, Brockwell DJ, Radford SE. Role of the lipid bilayer in outer membrane protein folding in Gram-negative bacteria. J Biol Chem 2020; 295:10340-10367. [PMID: 32499369 PMCID: PMC7383365 DOI: 10.1074/jbc.rev120.011473] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 06/03/2020] [Indexed: 01/09/2023] Open
Abstract
β-Barrel outer membrane proteins (OMPs) represent the major proteinaceous component of the outer membrane (OM) of Gram-negative bacteria. These proteins perform key roles in cell structure and morphology, nutrient acquisition, colonization and invasion, and protection against external toxic threats such as antibiotics. To become functional, OMPs must fold and insert into a crowded and asymmetric OM that lacks much freely accessible lipid. This feat is accomplished in the absence of an external energy source and is thought to be driven by the high thermodynamic stability of folded OMPs in the OM. With such a stable fold, the challenge that bacteria face in assembling OMPs into the OM is how to overcome the initial energy barrier of membrane insertion. In this review, we highlight the roles of the lipid environment and the OM in modulating the OMP-folding landscape and discuss the factors that guide folding in vitro and in vivo We particularly focus on the composition, architecture, and physical properties of the OM and how an understanding of the folding properties of OMPs in vitro can help explain the challenges they encounter during folding in vivo Current models of OMP biogenesis in the cellular environment are still in flux, but the stakes for improving the accuracy of these models are high. OMP folding is an essential process in all Gram-negative bacteria, and considering the looming crisis of widespread microbial drug resistance it is an attractive target. To bring down this vital OMP-supported barrier to antibiotics, we must first understand how bacterial cells build it.
Collapse
Affiliation(s)
- Jim E Horne
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - David J Brockwell
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
46
|
Löwe M, Kalacheva M, Boersma AJ, Kedrov A. The more the merrier: effects of macromolecular crowding on the structure and dynamics of biological membranes. FEBS J 2020; 287:5039-5067. [DOI: 10.1111/febs.15429] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 12/23/2022]
Affiliation(s)
- Maryna Löwe
- Synthetic Membrane Systems Institute of Biochemistry Heinrich Heine University Düsseldorf Germany
| | | | | | - Alexej Kedrov
- Synthetic Membrane Systems Institute of Biochemistry Heinrich Heine University Düsseldorf Germany
| |
Collapse
|
47
|
Ras assemblies and signaling at the membrane. Curr Opin Struct Biol 2020; 62:140-148. [DOI: 10.1016/j.sbi.2020.01.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 01/16/2020] [Indexed: 02/07/2023]
|
48
|
Flanagan JC, Cardenas AE, Baiz CR. Ultrafast Spectroscopy of Lipid-Water Interfaces: Transmembrane Crowding Drives H-Bond Dynamics. J Phys Chem Lett 2020; 11:4093-4098. [PMID: 32364385 DOI: 10.1021/acs.jpclett.0c00783] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Biology takes place in crowded, heterogeneous environments, and it is therefore essential to account for crowding effects in our understanding of biophysical processes at the molecular level. Comparable to the cytosol, proteins occupy approximately 30% of the plasma membrane surface; thus, crowding should have an effect on the local structure and dynamics at the lipid-water interface. Using a combination of ultrafast two-dimensional infrared spectroscopy and molecular dynamics simulations, we quantify the effects of membrane peptide concentration on the picosecond interfacial H-bond dynamics. The measurements reveal a nonmonotonic dependence of water orientation and dynamics as a function of transmembrane peptide:lipid ratio. We observe three dynamical regimes: a "pure lipid-like" regime at low peptide concentrations, a bulk-like region at intermediate peptide concentrations where dynamics are faster by ∼20% compared to those of the pure lipid bilayer, and a crowded regime where high peptide concentrations slow dynamics by ∼50%.
Collapse
|
49
|
Javanainen M, Ollila OHS, Martinez-Seara H. Rotational Diffusion of Membrane Proteins in Crowded Membranes. J Phys Chem B 2020; 124:2994-3001. [PMID: 32188248 DOI: 10.1021/acs.jpcb.0c00884] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Membrane proteins travel along cellular membranes and reorient themselves to form functional oligomers and protein-lipid complexes. Following the Saffman-Delbrück model, protein radius sets the rate of this diffusive motion. However, it is unclear how this model, derived for ideal and dilute membranes, performs under crowded conditions of cellular membranes. Here, we study the rotational motion of membrane proteins using molecular dynamics simulations of coarse-grained membranes and 2-dimensional Lennard-Jones fluids with varying levels of crowding. We find that the Saffman-Delbrück model captures the size-dependency of rotational diffusion under dilute conditions where protein-protein interactions are negligible, whereas stronger scaling laws arise under crowding. Together with our recent work on lateral diffusion, our results reshape the description of protein dynamics in native membrane environments: The translational and rotational motions of proteins with small transmembrane domains are rapid, whereas larger proteins or protein complexes display substantially slower dynamics.
Collapse
Affiliation(s)
- Matti Javanainen
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague 166 10, Czech Republic.,Computational Physics Laboratory, Tampere University, Tampere 33720, Finland
| | - O H Samuli Ollila
- Institute of Biotechnology, University of Helsinki, Helsinki 00014, Finland
| | - Hector Martinez-Seara
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague 166 10, Czech Republic
| |
Collapse
|
50
|
Vakirlis N, Acar O, Hsu B, Castilho Coelho N, Van Oss SB, Wacholder A, Medetgul-Ernar K, Bowman RW, Hines CP, Iannotta J, Parikh SB, McLysaght A, Camacho CJ, O'Donnell AF, Ideker T, Carvunis AR. De novo emergence of adaptive membrane proteins from thymine-rich genomic sequences. Nat Commun 2020; 11:781. [PMID: 32034123 PMCID: PMC7005711 DOI: 10.1038/s41467-020-14500-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 12/20/2019] [Indexed: 11/14/2022] Open
Abstract
Recent evidence demonstrates that novel protein-coding genes can arise de novo from non-genic loci. This evolutionary innovation is thought to be facilitated by the pervasive translation of non-genic transcripts, which exposes a reservoir of variable polypeptides to natural selection. Here, we systematically characterize how these de novo emerging coding sequences impact fitness in budding yeast. Disruption of emerging sequences is generally inconsequential for fitness in the laboratory and in natural populations. Overexpression of emerging sequences, however, is enriched in adaptive fitness effects compared to overexpression of established genes. We find that adaptive emerging sequences tend to encode putative transmembrane domains, and that thymine-rich intergenic regions harbor a widespread potential to produce transmembrane domains. These findings, together with in-depth examination of the de novo emerging YBR196C-A locus, suggest a novel evolutionary model whereby adaptive transmembrane polypeptides emerge de novo from thymine-rich non-genic regions and subsequently accumulate changes molded by natural selection. There is increasing evidence that protein-coding genes can emerge de novo from noncoding genomic regions. Vakirlis et al. propose that sequences encoding transmembrane polypeptides can emerge de novo in thymine-rich genomic regions and provide organisms with fitness benefits.
Collapse
Affiliation(s)
- Nikolaos Vakirlis
- Smurfit Institute of Genetics, Trinity College Dublin, University of Dublin, Dublin, 2, Ireland
| | - Omer Acar
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, United States.,Pittsburgh Center for Evolutionary Biology and Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, United States
| | - Brian Hsu
- Department of Medicine, Division of Medical Genetics, University of California San Diego, La Jolla, CA, 92093, United States
| | - Nelson Castilho Coelho
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, United States.,Pittsburgh Center for Evolutionary Biology and Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, United States
| | - S Branden Van Oss
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, United States.,Pittsburgh Center for Evolutionary Biology and Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, United States
| | - Aaron Wacholder
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, United States.,Pittsburgh Center for Evolutionary Biology and Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, United States
| | - Kate Medetgul-Ernar
- Department of Medicine, Division of Medical Genetics, University of California San Diego, La Jolla, CA, 92093, United States
| | - Ray W Bowman
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, United States
| | - Cameron P Hines
- Department of Medicine, Division of Medical Genetics, University of California San Diego, La Jolla, CA, 92093, United States
| | - John Iannotta
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, United States.,Pittsburgh Center for Evolutionary Biology and Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, United States
| | - Saurin Bipin Parikh
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, United States.,Pittsburgh Center for Evolutionary Biology and Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, United States
| | - Aoife McLysaght
- Smurfit Institute of Genetics, Trinity College Dublin, University of Dublin, Dublin, 2, Ireland
| | - Carlos J Camacho
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, United States
| | - Allyson F O'Donnell
- Pittsburgh Center for Evolutionary Biology and Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, United States. .,Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, United States.
| | - Trey Ideker
- Department of Medicine, Division of Medical Genetics, University of California San Diego, La Jolla, CA, 92093, United States.
| | - Anne-Ruxandra Carvunis
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, United States. .,Pittsburgh Center for Evolutionary Biology and Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, United States.
| |
Collapse
|