1
|
O'Donnell BL, Stefan D, Chiu YH, Zeitz MJ, Tang J, Johnston D, Leighton SE, Kessel CV, Barr K, Gyenis L, Freeman TJ, Kelly JJ, Sayedyahossein S, Litchfield DW, Roth K, Smyth JW, Hebb M, Ronald J, Bayliss DA, Penuela S. Novel Pannexin 1 isoform is increased in cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.09.612143. [PMID: 39314291 PMCID: PMC11419113 DOI: 10.1101/2024.09.09.612143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Pannexin 1 (PANX1) is upregulated in many cancers, where its activity and signalling promote tumorigenic properties. Here, we report a novel ∼25 kDa isoform of human PANX1 (hPANX1-25K) which lacks the N-terminus and was detected in several human cancer cell lines including melanoma, osteosarcoma, breast cancer and glioblastoma multiforme. This isoform was increased upon hPANX1 CRISPR/Cas9 deletion targeting the first exon near M1, suggesting a potential alternative translation initiation (ATI) site. hPANX1-25K was confirmed to be a hPANX1 isoform via mass spectrometry, can be N-linked glycosylated at N254, and can interact with both β-catenin and full length hPANX1. A double deletion of hPANX1 and hPANX1-25K reduces cell growth and viability in cancer cells. hPANX1-25K is prevalent throughout melanoma progression, and its levels are increased in squamous cell carcinoma cells and patient-derived tumours, compared to keratinocytes and normal skin, indicating that it may be differentially regulated in normal and cancer cells.
Collapse
|
2
|
Ruan Z, Lee J, Li Y, Du J, Lü W. Human pannexin 1 channel is not phosphorylated by Src tyrosine kinase at Tyr199 and Tyr309. eLife 2024; 13:RP95118. [PMID: 38780416 PMCID: PMC11115448 DOI: 10.7554/elife.95118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024] Open
Abstract
Protein phosphorylation is one of the major molecular mechanisms regulating protein activity and function throughout the cell. Pannexin 1 (PANX1) is a large-pore channel permeable to ATP and other cellular metabolites. Its tyrosine phosphorylation and subsequent activation have been found to play critical roles in diverse cellular conditions, including neuronal cell death, acute inflammation, and smooth muscle contraction. Specifically, the non-receptor kinase Src has been reported to phosphorylate Tyr198 and Tyr308 of mouse PANX1 (equivalent to Tyr199 and Tyr309 of human PANX1), resulting in channel opening and ATP release. Although the Src-dependent PANX1 activation mechanism has been widely discussed in the literature, independent validation of the tyrosine phosphorylation of PANX1 has been lacking. Here, we show that commercially available antibodies against the two phosphorylation sites mentioned above-which were used to identify endogenous PANX1 phosphorylation at these two sites-are nonspecific and should not be used to interpret results related to PANX1 phosphorylation. We further provide evidence that neither tyrosine residue is a major phosphorylation site for Src kinase in heterologous expression systems. We call on the field to re-examine the existing paradigm of tyrosine phosphorylation-dependent activation of the PANX1 channel.
Collapse
Affiliation(s)
- Zheng Ruan
- Department of Structural Biology, Van Andel InstituteGrand RapidsUnited States
| | - Junuk Lee
- Department of Structural Biology, Van Andel InstituteGrand RapidsUnited States
| | - Yangyang Li
- Department of Structural Biology, Van Andel InstituteGrand RapidsUnited States
| | - Juan Du
- Department of Structural Biology, Van Andel InstituteGrand RapidsUnited States
| | - Wei Lü
- Department of Structural Biology, Van Andel InstituteGrand RapidsUnited States
| |
Collapse
|
3
|
Ruan Z, Lee J, Li Y, Du J, Lü W. Human Pannexin 1 Channel is NOT Phosphorylated by Src Tyrosine Kinase at Tyr199 and Tyr309. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.10.557063. [PMID: 38168229 PMCID: PMC10760007 DOI: 10.1101/2023.09.10.557063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Protein phosphorylation is one of the major molecular mechanisms regulating protein activity and function throughout the cell. Pannexin 1 (PANX1) is a large-pore channel permeable to ATP and other cellular metabolites. Its tyrosine phosphorylation and subsequent activation have been found to play critical roles in diverse cellular conditions, including neuronal cell death, acute inflammation, and smooth muscle contraction. Specifically, the non-receptor kinase Src has been reported to phosphorylate Tyr198 and Tyr308 of mouse PANX1 (equivalent to Tyr199 and Tyr309 of human PANX1), resulting in channel opening and ATP release. Although the Src-dependent PANX1 activation mechanism has been widely discussed in the literature, independent validation of the tyrosine phosphorylation of PANX1 has been lacking. Here, we show that commercially available antibodies against the two phosphorylation sites mentioned above-which were used to identify endogenous PANX1 phosphorylation at these two sites-are nonspecific and should not be used to interpret results related to PANX1 phosphorylation. We further provide evidence that neither tyrosine residue is a major phosphorylation site for Src kinase in heterologous expression systems. We call on the field to re-examine the existing paradigm of tyrosine phosphorylation-dependent activation of the PANX1 channel.
Collapse
Affiliation(s)
- Zheng Ruan
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Junuk Lee
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Yangyang Li
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Juan Du
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Wei Lü
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI 49503, USA
| |
Collapse
|
4
|
Begni V, Marizzoni M, Creutzberg KC, Silipo DM, Papp M, Cattaneo A, Riva MA. Transcriptomic analyses of rats exposed to chronic mild stress: Modulation by chronic treatment with the antipsychotic drug lurasidone. Prog Neuropsychopharmacol Biol Psychiatry 2024; 129:110885. [PMID: 37865392 DOI: 10.1016/j.pnpbp.2023.110885] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/09/2023] [Accepted: 10/18/2023] [Indexed: 10/23/2023]
Abstract
Exposure to stressful experiences accounts for almost half of the risk for mental disorders. Hence, stress-induced alterations represent a key target for pharmacological interventions aimed at restoring brain function in affected individuals. We have previously demonstrated that lurasidone, a multi-receptor antipsychotic drug approved for the treatment of schizophrenia and bipolar depression, can normalize the functional and molecular impairments induced by stress exposure, representing a valuable tool for the treatment of stress-induced mental illnesses. However, the mechanisms that may contribute to the therapeutic effects of lurasidone are still poorly understood. Here, we performed a transcriptomic analysis on the prefrontal cortex (PFC) of adult male rats exposed to the chronic mild stress (CMS) paradigm and we investigated the impact of chronic lurasidone treatment on such changes. We found that CMS exposure leads to an anhedonic phenotype associated with a down-regulation of different pathways associated to neuronal guidance and synaptic plasticity within the PFC. Interestingly, a significant part of these alterations (around 25%) were counteracted by lurasidone treatment. In summary, we provided new insights on the transcriptional changes relevant for the therapeutic intervention with lurasidone, which may ultimately promote resilience.
Collapse
Affiliation(s)
- Veronica Begni
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy
| | - Moira Marizzoni
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Via Pilastroni 4, 25125 Brescia, Italy; Lab of Neuroimaging and Alzheimer's Epidemiology, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Via Pilastroni 4, 25125 Brescia, Italy
| | - Kerstin Camile Creutzberg
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy
| | - Diana Morena Silipo
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy
| | - Mariusz Papp
- Institute of Pharmacology and Polish Academy of Sciences, Smętna Street 12, Kraków 31-343, Poland
| | - Annamaria Cattaneo
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy; Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Via Pilastroni 4, 25125 Brescia, Italy
| | - Marco Andrea Riva
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy; Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Via Pilastroni 4, 25125 Brescia, Italy.
| |
Collapse
|
5
|
McAllister BB, Stokes-Heck S, Harding EK, van den Hoogen NJ, Trang T. Targeting Pannexin-1 Channels: Addressing the 'Gap' in Chronic Pain. CNS Drugs 2024; 38:77-91. [PMID: 38353876 DOI: 10.1007/s40263-024-01061-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/07/2024] [Indexed: 02/22/2024]
Abstract
Chronic pain complicates many diseases and is notoriously difficult to treat. In search of new therapeutic targets, pannexin-1 (Panx1) channels have sparked intense interest as a key mechanism involved in a variety of chronic pain conditions. Panx1 channels are transmembrane proteins that release ions and small molecules, such as adenosine triphosphate (ATP). They are expressed along important nodes of the pain pathway, modulating activity of diverse cell types implicated in the development and progression of chronic pain caused by injury or pathology. This review highlights advances that have unlocked the core structure and machinery controlling Panx1 function with a focus on understanding and treating chronic pain.
Collapse
Affiliation(s)
- Brendan B McAllister
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive, Calgary, AB, T2N 4N1, Canada
| | - Sierra Stokes-Heck
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive, Calgary, AB, T2N 4N1, Canada
| | - Erika K Harding
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive, Calgary, AB, T2N 4N1, Canada
| | - Nynke J van den Hoogen
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive, Calgary, AB, T2N 4N1, Canada
| | - Tuan Trang
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada.
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada.
- Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive, Calgary, AB, T2N 4N1, Canada.
| |
Collapse
|
6
|
Cibelli A, Dohare P, Spray DC, Scemes E. Differential activation of mouse and human Panx1 channel variants. PLoS One 2023; 18:e0295710. [PMID: 38100403 PMCID: PMC10723736 DOI: 10.1371/journal.pone.0295710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/22/2023] [Indexed: 12/17/2023] Open
Abstract
Pannexins are ubiquitously expressed in human and mouse tissues. Pannexin 1 (Panx1), the most thoroughly characterized member of this family, forms plasmalemmal membrane channels permeable to relatively large molecules, such as ATP. Although human and mouse Panx1 amino acid sequences are conserved in the presently known regulatory sites involved in trafficking and modulation of the channel, differences are reported in the N- and C-termini of the protein, and the mechanisms of channel activation by different stimuli remain controversial. Here we used a neuroblastoma cell line to study the activation properties of endogenous mPanx1 and exogenously expressed hPanx1. Dye uptake and electrophysiological recordings revealed that in contrast to mouse Panx1, the human ortholog is insensitive to stimulation with high extracellular [K+] but responds similarly to activation of the purinergic P2X7 receptor. The two most frequent Panx1 polymorphisms found in the human population, Q5H (rs1138800) and E390D (rs74549886), exogenously expressed in Panx1-null N2a cells revealed that regarding P2X7 receptor mediated Panx1 activation, the Q5H mutant is a gain of function whereas the E390D mutant is a loss of function variant. Collectively, we demonstrate differences in the activation between human and mouse Panx1 orthologs and suggest that these differences may have translational implications for studies where Panx1 has been shown to have significant impact.
Collapse
Affiliation(s)
- Antonio Cibelli
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, New York, United States of America
| | - Preeti Dohare
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, New York, United States of America
| | - David C. Spray
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, New York, United States of America
| | - Eliana Scemes
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, New York, United States of America
| |
Collapse
|
7
|
Khalili A, Safarian N, van Wijngaarden E, Zoidl GS, Zoidl GR, Rezai P. Loss of Panx1 function in zebrafish alters motor behavior in a lab-on-chip model of Parkinson's disease. J Neurosci Res 2023; 101:1814-1825. [PMID: 37688406 DOI: 10.1002/jnr.25241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 08/08/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023]
Abstract
Pannexin 1 (Panx1) forms ATP-permeable membrane channels that play roles in purinergic signaling in the nervous system. A link between Panx1 activity and neurodegenerative disorders including Parkinson's disease (PD) has been suggested, but experimental evidence is limited. Here, a zebrafish model of PD was produced by exposing panx1a+/+ and panx1a-/- zebrafish larvae to 6-hydroxydopamine (6-OHDA). Electrical stimulation in a microfluidic chip and quantitative real-time-qPCR of zebrafish larvae tested the role of Panx1 in both pathological and normal conditions. After 72-h treatment with 6-OHDA, the electric-induced locomotor activity of 5 days post fertilization (5dpf) panx1a+/+ larvae were reduced, while the stimulus did not affect locomotor activity of age-matched panx1a-/- larvae. A RT-qPCR analysis showed an increase in the expression of genes that are functionally related to dopaminergic signaling, like the tyrosine hydroxylase (th2) and the leucine-rich repeat kinase 2 (lrrk2). Extending the 6-OHDA treatment duration to 120 h caused a significant reduction in the locomotor response of 7dpf panx1a-/- larvae compared to the untreated panx1a-/- group. The RT-qPCR data showed a reduced expression of dopaminergic signaling genes in both genotypes. It was concluded that the absence of Panx1a channels compromised dopaminergic signaling in 6-OHDA-treated zebrafish larvae and that the increase in the expression of dopaminergic genes was transient, most likely due to a compensatory upregulation. We propose that zebrafish Panx1a models offer opportunities to shed light on PD's physiological and molecular basis. Panx1a might play a role on the progression of PD, and therefore deserves further investigation.
Collapse
Affiliation(s)
- Arezoo Khalili
- Department of Mechanical Engineering, York University, Toronto, Ontario, Canada
| | - Nickie Safarian
- Department of Biology, York University, Toronto, Ontario, Canada
| | | | - Georg S Zoidl
- Department of Biology, York University, Toronto, Ontario, Canada
| | - Georg R Zoidl
- Department of Biology, York University, Toronto, Ontario, Canada
| | - Pouya Rezai
- Department of Mechanical Engineering, York University, Toronto, Ontario, Canada
| |
Collapse
|
8
|
Frederiksen SD, Wicki-Stordeur LE, Swayne LA. Overlap in synaptic neurological condition susceptibility pathways and the neural pannexin 1 interactome revealed by bioinformatics analyses. Channels (Austin) 2023; 17:2253102. [PMID: 37807670 PMCID: PMC10563626 DOI: 10.1080/19336950.2023.2253102] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/22/2023] [Indexed: 10/10/2023] Open
Abstract
Many neurological conditions exhibit synaptic impairments, suggesting mechanistic convergence. Additionally, the pannexin 1 (PANX1) channel and signaling scaffold is linked to several of these neurological conditions and is an emerging regulator of synaptic development and plasticity; however, its synaptic pathogenic contributions are relatively unexplored. To this end, we explored connections between synaptic neurodevelopmental disorder and neurodegenerative disease susceptibility genes discovered by genome-wide association studies (GWASs), and the neural PANX1 interactome (483 proteins) identified from mouse Neuro2a (N2a) cells. To identify shared susceptibility genes, we compared synaptic suggestive GWAS candidate genes amongst autism spectrum disorders, schizophrenia, Parkinson's disease, and Alzheimer's disease. To further probe PANX1 signaling pathways at the synapse, we used bioinformatics tools to identify PANX1 interactome signaling pathways and protein-protein interaction clusters. To shed light on synaptic disease mechanisms potentially linking PANX1 and these four neurological conditions, we performed additional cross-analyses between gene ontologies enriched for the PANX1 synaptic and disease-susceptibility gene sets. Finally, to explore the regional specificity of synaptic PANX1-neurological condition connections, we identified brain region-specific elevations of synaptic PANX1 interactome and GWAS candidate gene set transcripts. Our results confirm considerable overlap in risk genes for autism spectrum disorders and schizophrenia and identify potential commonalities in genetic susceptibility for neurodevelopmental disorders and neurodegenerative diseases. Our findings also pinpointed novel putative PANX1 links to synaptic disease-associated pathways, such as regulation of vesicular trafficking and proteostasis, warranting further validation.
Collapse
Affiliation(s)
| | | | - Leigh Anne Swayne
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| |
Collapse
|
9
|
Badaoui M, Chanson M. Intercellular Communication in Airway Epithelial Cell Regeneration: Potential Roles of Connexins and Pannexins. Int J Mol Sci 2023; 24:16160. [PMID: 38003349 PMCID: PMC10671439 DOI: 10.3390/ijms242216160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/19/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Connexins and pannexins are transmembrane proteins that can form direct (gap junctions) or indirect (connexons, pannexons) intercellular communication channels. By propagating ions, metabolites, sugars, nucleotides, miRNAs, and/or second messengers, they participate in a variety of physiological functions, such as tissue homeostasis and host defense. There is solid evidence supporting a role for intercellular signaling in various pulmonary inflammatory diseases where alteration of connexin/pannexin channel functional expression occurs, thus leading to abnormal intercellular communication pathways and contributing to pathophysiological aspects, such as innate immune defense and remodeling. The integrity of the airway epithelium, which is the first line of defense against invading microbes, is established and maintained by a repair mechanism that involves processes such as proliferation, migration, and differentiation. Here, we briefly summarize current knowledge on the contribution of connexins and pannexins to necessary processes of tissue repair and speculate on their possible involvement in the shaping of the airway epithelium integrity.
Collapse
Affiliation(s)
| | - Marc Chanson
- Department of Cell Physiology & Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland;
| |
Collapse
|
10
|
Weilinger NL, Yang K, Choi HB, Groten CJ, Wendt S, Murugan M, Wicki-Stordeur LE, Bernier LP, Velayudhan PS, Zheng J, LeDue JM, Rungta RL, Tyson JR, Snutch TP, Wu LJ, MacVicar BA. Pannexin-1 opening in neuronal edema causes cell death but also leads to protection via increased microglia contacts. Cell Rep 2023; 42:113128. [PMID: 37742194 PMCID: PMC10824275 DOI: 10.1016/j.celrep.2023.113128] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 06/26/2023] [Accepted: 08/28/2023] [Indexed: 09/26/2023] Open
Abstract
Neuronal swelling during cytotoxic edema is triggered by Na+ and Cl- entry and is Ca2+ independent. However, the causes of neuronal death during swelling are unknown. Here, we investigate the role of large-conductance Pannexin-1 (Panx1) channels in neuronal death during cytotoxic edema. Panx1 channel inhibitors reduce and delay neuronal death in swelling triggered by voltage-gated Na+ entry with veratridine. Neuronal swelling causes downstream production of reactive oxygen species (ROS) that opens Panx1 channels. We confirm that ROS activates Panx1 currents with whole-cell electrophysiology and find scavenging ROS is neuroprotective. Panx1 opening and subsequent ATP release attract microglial processes to contact swelling neurons. Depleting microglia using the CSF1 receptor antagonist PLX3397 or blocking P2Y12 receptors exacerbates neuronal death, suggesting that the Panx1-ATP-dependent microglia contacts are neuroprotective. We conclude that cytotoxic edema triggers oxidative stress in neurons that opens Panx1 to trigger death but also initiates neuroprotective feedback mediated by microglia contacts.
Collapse
Affiliation(s)
- Nicholas L Weilinger
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| | - Kai Yang
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Hyun B Choi
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Christopher J Groten
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Stefan Wendt
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | | | - Leigh E Wicki-Stordeur
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Louis-Philippe Bernier
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Prashanth S Velayudhan
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Jiaying Zheng
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Jeffrey M LeDue
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Ravi L Rungta
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Department of Stomatology and Department of Neuroscience, Université de Montréal, Montréal, QC, Canada
| | - John R Tyson
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Terrance P Snutch
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Long-Jun Wu
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Brian A MacVicar
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
11
|
Rusiecka OM, Tournier M, Molica F, Kwak BR. Pannexin1 channels-a potential therapeutic target in inflammation. Front Cell Dev Biol 2022; 10:1020826. [PMID: 36438559 PMCID: PMC9682086 DOI: 10.3389/fcell.2022.1020826] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/20/2022] [Indexed: 08/11/2023] Open
Abstract
An exaggerated inflammatory response is the hallmark of a plethora of disorders. ATP is a central signaling molecule that orchestrates the initiation and resolution of the inflammatory response by enhancing activation of the inflammasome, leukocyte recruitment and activation of T cells. ATP can be released from cells through pannexin (Panx) channels, a family of glycoproteins consisting of three members, Panx1, Panx2, and Panx3. Panx1 is ubiquitously expressed and forms heptameric channels in the plasma membrane mediating paracrine and autocrine signaling. Besides their involvement in the inflammatory response, Panx1 channels have been shown to contribute to different modes of cell death (i.e., pyroptosis, necrosis and apoptosis). Both genetic ablation and pharmacological inhibition of Panx1 channels decrease inflammation in vivo and contribute to a better outcome in several animal models of inflammatory disease involving various organs, including the brain, lung, kidney and heart. Up to date, several molecules have been identified to inhibit Panx1 channels, for instance probenecid (Pbn), mefloquine (Mfq), flufenamic acid (FFA), carbenoxolone (Cbx) or mimetic peptides like 10Panx1. Unfortunately, the vast majority of these compounds lack specificity and/or serum stability, which limits their application. The recent availability of detailed structural information on the Panx1 channel from cryo-electron microscopy studies may open up innovative approaches to acquire new classes of synthetic Panx1 channel blockers with high target specificity. Selective inhibition of Panx1 channels may not only limit acute inflammatory responses but may also prove useful in chronic inflammatory diseases, thereby improving human health. Here, we reviewed the current knowledge on the role of Panx1 in the initiation and resolution of the inflammatory response, we summarized the effects of Panx1 inhibition in inflammatory pathologies and recapitulate current Panx1 channel pharmacology with an outlook towards future approaches.
Collapse
Affiliation(s)
- Olga M. Rusiecka
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Geneva Centre for Inflammation Research, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Malaury Tournier
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Geneva Centre for Inflammation Research, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Filippo Molica
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Geneva Centre for Inflammation Research, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Brenda R. Kwak
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Geneva Centre for Inflammation Research, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
12
|
Zlomuzica A, Plank L, Dere E. A new path to mental disorders: Through gap junction channels and hemichannels. Neurosci Biobehav Rev 2022; 142:104877. [PMID: 36116574 DOI: 10.1016/j.neubiorev.2022.104877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 08/20/2022] [Accepted: 09/13/2022] [Indexed: 11/18/2022]
Abstract
Behavioral disturbances related to emotional regulation, reward processing, cognition, sleep-wake regulation and activity/movement represent core symptoms of most common mental disorders. Increasing empirical and theoretical evidence suggests that normal functioning of these behavioral domains relies on fine graded coordination of neural and glial networks which are maintained and modulated by intercellular gap junction channels and unapposed pannexin or connexin hemichannels. Dysfunctions in these networks might contribute to the development and maintenance of psychopathological and neurobiological features associated with mental disorders. Here we review and discuss the evidence indicating a prominent role of gap junction channel and hemichannel dysfunction in core symptoms of mental disorders. We further discuss how the increasing knowledge on intercellular gap junction channels and unapposed pannexin or connexin hemichannels in the brain might lead to deeper mechanistic insight in common mental disorders and to the development of novel treatment approaches. We further attempt to exemplify what type of future research on this topic could be integrated into multidimensional approaches to understand and cure mental disorders.
Collapse
Affiliation(s)
- Armin Zlomuzica
- Department of Behavioral and Clinical Neuroscience, Ruhr-University Bochum (RUB), Massenbergstraße 9-13, D-44787 Bochum, Germany.
| | - Laurin Plank
- Department of Behavioral and Clinical Neuroscience, Ruhr-University Bochum (RUB), Massenbergstraße 9-13, D-44787 Bochum, Germany
| | - Ekrem Dere
- Department of Behavioral and Clinical Neuroscience, Ruhr-University Bochum (RUB), Massenbergstraße 9-13, D-44787 Bochum, Germany; Sorbonne Université. Institut de Biologie Paris-Seine, (IBPS), Département UMR 8256: Adaptation Biologique et Vieillissement, UFR des Sciences de la Vie, Campus Pierre et Marie Curie, Bâtiment B, 9 quai Saint Bernard, F-75005 Paris, France.
| |
Collapse
|
13
|
Hernandez CA, Eliseo E. The Role of Pannexin-1 Channels in HIV and NeuroHIV Pathogenesis. Cells 2022; 11:2245. [PMID: 35883688 PMCID: PMC9323506 DOI: 10.3390/cells11142245] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/08/2022] [Accepted: 07/14/2022] [Indexed: 02/06/2023] Open
Abstract
The human immunodeficiency virus-1 (HIV) enters the brain shortly after infection, leading to long-term neurological complications in half of the HIV-infected population, even in the current anti-retroviral therapy (ART) era. Despite decades of research, no biomarkers can objectively measure and, more importantly, predict the onset of HIV-associated neurocognitive disorders. Several biomarkers have been proposed; however, most of them only reflect late events of neuronal damage. Our laboratory recently identified that ATP and PGE2, inflammatory molecules released through Pannexin-1 channels, are elevated in the serum of HIV-infected individuals compared to uninfected individuals and other inflammatory diseases. More importantly, high circulating ATP levels, but not PGE2, can predict a decline in cognition, suggesting that HIV-infected individuals have impaired ATP metabolism and associated signaling. We identified that Pannexin-1 channel opening contributes to the high serological ATP levels, and ATP in the circulation could be used as a biomarker of HIV-associated cognitive impairment. In addition, we believe that ATP is a major contributor to chronic inflammation in the HIV-infected population, even in the anti-retroviral era. Here, we discuss the mechanisms associated with Pannexin-1 channel opening within the circulation, as well as within the resident viral reservoirs, ATP dysregulation, and cognitive disease observed in the HIV-infected population.
Collapse
Affiliation(s)
| | - Eugenin Eliseo
- Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch (UTMB), Galveston, TX 77555, USA;
| |
Collapse
|
14
|
NMDA and P2X7 Receptors Require Pannexin 1 Activation to Initiate and Maintain Nociceptive Signaling in the Spinal Cord of Neuropathic Rats. Int J Mol Sci 2022; 23:ijms23126705. [PMID: 35743148 PMCID: PMC9223805 DOI: 10.3390/ijms23126705] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 02/01/2023] Open
Abstract
Pannexin 1 (Panx1) is involved in the spinal central sensitization process in rats with neuropathic pain, but its interaction with well-known, pain-related, ligand-dependent receptors, such as NMDA receptors (NMDAR) and P2X7 purinoceptors (P2X7R), remains largely unexplored. Here, we studied whether NMDAR- and P2X7R-dependent nociceptive signaling in neuropathic rats require the activation of Panx1 channels to generate spinal central sensitization, as assessed by behavioral (mechanical hyperalgesia) and electrophysiological (C-reflex wind-up potentiation) indexes. Administration of either a selective NMDAR agonist i.t. (NMDA, 2 mM) or a P2X7R agonist (BzATP, 150 μM) significantly increased both the mechanical hyperalgesia and the C-reflex wind-up potentiation, effects that were rapidly reversed (minutes) by i.t. administration of a selective pannexin 1 antagonist (10panx peptide, 300 μM), with the scores even reaching values of rats without neuropathy. Accordingly, 300 μM 10panx completely prevented the effects of NMDA and BzATP administered 1 h later, on mechanical hyperalgesia and C-reflex wind-up potentiation. Confocal immunofluorescence imaging revealed coexpression of Panx1 with NeuN protein in intrinsic dorsal horn neurons of neuropathic rats. The results indicate that both NMDAR- and P2X7R-mediated increases in mechanical hyperalgesia and C-reflex wind-up potentiation require neuronal Panx1 channel activation to initiate and maintain nociceptive signaling in neuropathic rats.
Collapse
|
15
|
Boginskaya I, Safiullin R, Tikhomirova V, Kryukova O, Nechaeva N, Bulaeva N, Golukhova E, Ryzhikov I, Kost O, Afanasev K, Kurochkin I. Human Angiotensin I-Converting Enzyme Produced by Different Cells: Classification of the SERS Spectra with Linear Discriminant Analysis. Biomedicines 2022; 10:biomedicines10061389. [PMID: 35740411 PMCID: PMC9219671 DOI: 10.3390/biomedicines10061389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 11/16/2022] Open
Abstract
Angiotensin I-converting enzyme (ACE) is a peptidase widely presented in human tissues and biological fluids. ACE is a glycoprotein containing 17 potential N-glycosylation sites which can be glycosylated in different ways due to post-translational modification of the protein in different cells. For the first time, surface-enhanced Raman scattering (SERS) spectra of human ACE from lungs, mainly produced by endothelial cells, ACE from heart, produced by endothelial heart cells and miofibroblasts, and ACE from seminal fluid, produced by epithelial cells, have been compared with full assignment. The ability to separate ACEs’ SERS spectra was demonstrated using the linear discriminant analysis (LDA) method with high accuracy. The intervals in the spectra with maximum contributions of the spectral features were determined and their contribution to the spectrum of each separate ACE was evaluated. Near 25 spectral features forming three intervals were enough for successful separation of the spectra of different ACEs. However, more spectral information could be obtained from analysis of 50 spectral features. Band assignment showed that several features did not correlate with band assignments to amino acids or peptides, which indicated the carbohydrate contribution to the final spectra. Analysis of SERS spectra could be beneficial for the detection of tissue-specific ACEs.
Collapse
Affiliation(s)
- Irina Boginskaya
- Institute for Theoretical and Applied Electromagnetics RAS, 125412 Moscow, Russia; (R.S.); (I.R.); (K.A.)
- Bakulev Scientific Center for Cardiovascular Surgery, Cardiology Department, 121552 Moscow, Russia; (N.B.); (E.G.)
- Correspondence:
| | - Robert Safiullin
- Institute for Theoretical and Applied Electromagnetics RAS, 125412 Moscow, Russia; (R.S.); (I.R.); (K.A.)
- Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
| | - Victoria Tikhomirova
- Faculty of Chemistry, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia; (V.T.); (O.K.); (O.K.); (I.K.)
| | - Olga Kryukova
- Faculty of Chemistry, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia; (V.T.); (O.K.); (O.K.); (I.K.)
| | - Natalia Nechaeva
- Emanuel Institute of Biochemical Physics RAS, 119334 Moscow, Russia;
| | - Naida Bulaeva
- Bakulev Scientific Center for Cardiovascular Surgery, Cardiology Department, 121552 Moscow, Russia; (N.B.); (E.G.)
| | - Elena Golukhova
- Bakulev Scientific Center for Cardiovascular Surgery, Cardiology Department, 121552 Moscow, Russia; (N.B.); (E.G.)
| | - Ilya Ryzhikov
- Institute for Theoretical and Applied Electromagnetics RAS, 125412 Moscow, Russia; (R.S.); (I.R.); (K.A.)
- FMN Laboratory, Bauman Moscow State Technical University, 105005 Moscow, Russia
| | - Olga Kost
- Faculty of Chemistry, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia; (V.T.); (O.K.); (O.K.); (I.K.)
| | - Konstantin Afanasev
- Institute for Theoretical and Applied Electromagnetics RAS, 125412 Moscow, Russia; (R.S.); (I.R.); (K.A.)
| | - Ilya Kurochkin
- Faculty of Chemistry, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia; (V.T.); (O.K.); (O.K.); (I.K.)
- Emanuel Institute of Biochemical Physics RAS, 119334 Moscow, Russia;
| |
Collapse
|
16
|
Repurposing Probenecid to Inhibit SARS-CoV-2, Influenza Virus, and Respiratory Syncytial Virus (RSV) Replication. Viruses 2022; 14:v14030612. [PMID: 35337018 PMCID: PMC8955960 DOI: 10.3390/v14030612] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/08/2022] [Accepted: 03/14/2022] [Indexed: 12/02/2022] Open
Abstract
Viral replication and transmissibility are the principal causes of endemic and pandemic disease threats. There remains a need for broad-spectrum antiviral agents. The most common respiratory viruses are endemic agents such as coronaviruses, respiratory syncytial viruses, and influenza viruses. Although vaccines are available for SARS-CoV-2 and some influenza viruses, there is a paucity of effective antiviral drugs, while for RSV there is no vaccine available, and therapeutic treatments are very limited. We have previously shown that probenecid is safe and effective in limiting influenza A virus replication and SARS-CoV-2 replication, along with strong evidence showing inhibition of RSV replication in vitro and in vivo. This review article will describe the antiviral activity profile of probenecid against these three viruses.
Collapse
|
17
|
Quercetin induces pannexin 1 expression via an alternative transcript with a translationally active 5' leader in rhabdomyosarcoma. Oncogenesis 2022; 11:9. [PMID: 35194046 PMCID: PMC8864035 DOI: 10.1038/s41389-022-00384-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 01/26/2022] [Accepted: 02/02/2022] [Indexed: 11/25/2022] Open
Abstract
Rhabdomyosarcoma (RMS) is a deadly cancer of skeletal muscle origin. Pannexin 1 (PANX1) is down-regulated in RMS and increasing its levels drastically inhibits RMS progression. PANX1 upregulation thus represents a prospective new treatment strategy for this malignancy. However, the mechanisms regulating PANX1 expression, in RMS and other contexts, remain largely unknown. Here we show that both RMS and normal skeletal muscle express a comparable amount of PANX1 mRNAs, but surprisingly the canonical 5′ untranslated region (5′ UTR) or 5′ leader of the transcript is completely lost in RMS. We uncover that quercetin, a natural plant flavonoid, increases PANX1 protein levels in RMS by inducing re-expression of a 5′ leader-containing PANX1 transcript variant that is efficiently translated. This particular PANX1 mRNA variant is also present in differentiated human skeletal muscle myoblasts (HSMM) that highly express PANX1. Mechanistically, abolishing ETV4 transcription factor binding sites in the PANX1 promoter significantly reduced the luciferase reporter activities and PANX1 5′ UTR levels, and both quercetin treatment in RMS cells and induction of differentiation in HSMM enriched the binding of ETV4 to its consensus element in the PANX1 promoter. Notably, quercetin treatment promoted RMS differentiation in a PANX1-dependent manner. Further showing its therapeutic potential, quercetin treatment prevented RMS in vitro tumor formation while inducing complete regression of established spheroids. Collectively, our results demonstrate the tumor-suppressive effects of quercetin in RMS and present a hitherto undescribed mechanism of PANX1 regulation via ETV4-mediated transcription of a translationally functional 5′ leader-containing PANX1 mRNA.
Collapse
|
18
|
O'Donnell BL, Penuela S. Pannexin 3 channels in health and disease. Purinergic Signal 2021; 17:577-589. [PMID: 34250568 DOI: 10.1007/s11302-021-09805-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/30/2021] [Indexed: 01/07/2023] Open
Abstract
Pannexin 3 (PANX3) is a member of the pannexin family of single membrane channel-forming glycoproteins. Originally thought to have a limited localization in cartilage, bone, and skin, PANX3 has now been detected in a variety of other tissues including skeletal muscle, mammary glands, the male reproductive tract, the cochlea, blood vessels, small intestines, teeth, and the vomeronasal organ. In many cell types of the musculoskeletal system, such as osteoblasts, chondrocytes, and odontoblasts, PANX3 has been shown to regulate the balance of proliferation and differentiation. PANX3 can be induced during progenitor cell differentiation, functioning at the cell surface as a conduit for ATP and/or in the endoplasmic reticulum as a calcium leak channel. Evidence in osteoblasts and monocytes also highlight a role for PANX3 in purinergic signalling through its function as an ATP release channel. PANX3 is critical in the development and ageing of bone and cartilage, with its levels temporally regulated in other tissues such as skeletal muscle, skin, and the cochlea. In diseases such as osteoarthritis and intervertebral disc degeneration, PANX3 can have either protective or detrimental roles depending on if the disease is age-related or injury-induced. This review will discuss PANX3 function in tissue growth and regeneration, its role in cellular differentiation, and how it becomes dysregulated in disease conditions such as obesity, Duchenne's muscular dystrophy, osteosarcoma, and non-melanoma skin cancer, where most of the findings on PANX3 function can be attributed to the characterization of Panx3 KO mouse models.
Collapse
Affiliation(s)
- Brooke L O'Donnell
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 5C1, Canada
| | - Silvia Penuela
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 5C1, Canada.
- Department of Oncology, Division of Experimental Oncology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 5C1, Canada.
| |
Collapse
|
19
|
Ying W, Zheng K, Wu Y, Wang O. Pannexin 1 Mediates Gastric Cancer Cell Epithelial-Mesenchymal Transition via Aquaporin 5. Biol Pharm Bull 2021; 44:1111-1119. [PMID: 34135208 DOI: 10.1248/bpb.b21-00292] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pannexin 1 (PANX1) has been implicated in cancer emergence and progression. However, its roles in gastric cancer remain unclear. In the present study, the function and molecular mechanisms of PANX1 in gastric cancer were investigated in vitro. Two gastric cancer cell lines exhibiting low and high PANX1 expression (SNU-16 and HCG-27, respectively) were transfected using a PANX1-containing plasmid or PANX1 transcript-targeting short hairpin (sh)RNA. In addition, HCG-27 cells and PANX1-overexpressing SNU-16 cells were subjected to short interfering (si)RNA-mediated aquaporin 5 (AQP5) knockdown. In vitro cell migration (scratch) and transwell invasion assays were performed to evaluate the cell migratory and invasive abilities. Real-time fluorescence quantitative PCR was used to detect transcripts encoding epithelial-mesenchymal transition markers. Immunofluorescence and Western blotting were conducted to quantify corresponding proteins. In SNU-16 cells, PANX1 overexpression induced conversion from round (cobblestone-like) to elongated (spindle-like) morphologies and enhanced the cell migratory and invasive abilities. PANX1 knockdown had the opposite effect in HGC-27 cells. In PANX1-overexpressing SNU-16 cells, expression of SLUG, vimentin, and AQP5 was significantly upregulated, whereas expression of E-cadherin was downregulated. In HGC-27 cells, PANX1 knockdown showed the opposite effect. In both PANX1-overexpressing SNU-16 cells and untransfected HGC-27 cells, silencing of AQP5 expression significantly inhibited PANX1-induced upregulation of SLUG and vimentin expression, as well as downregulation of E-cadherin expression and enhanced migratory and invasive abilities. In summary, elevated PANX1 expression induces gastric cancer cell epithelial-mesenchymal transition and the associated promotion of migratory and invasive abilities by inducing expression of AQP5, which facilitates SLUG-mediated regulation of vimentin and E-cadherin expression.
Collapse
Affiliation(s)
- Wenbing Ying
- Department of Oncology, Wenzhou People's Hospital, The Third Clinical Institute Affiliated to Wenzhou Medical University
| | - Kesi Zheng
- Department of Oncology, Wenzhou People's Hospital, The Third Clinical Institute Affiliated to Wenzhou Medical University
| | - Yuanzhao Wu
- Department of Oncology, Wenzhou People's Hospital, The Third Clinical Institute Affiliated to Wenzhou Medical University
| | - Ouchen Wang
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University
| |
Collapse
|
20
|
Identification and classification of innexin gene transcripts in the central nervous system of the terrestrial slug Limax valentianus. PLoS One 2021; 16:e0244902. [PMID: 33857131 PMCID: PMC8049302 DOI: 10.1371/journal.pone.0244902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/09/2021] [Indexed: 12/20/2022] Open
Abstract
Intercellular gap junction channels and single-membrane channels have been reported to regulate electrical synapse and the brain function. Innexin is known as a gap junction-related protein in invertebrates and is involved in the formation of intercellular gap junction channels and single-cell membrane channels. Multiple isoforms of innexin protein in each species enable the precise regulation of channel function. In molluscan species, sequence information of innexins is still limited and the sequences of multiple innexin isoforms have not been classified. This study examined the innexin transcripts expressed in the central nervous system of the terrestrial slug Limax valentianus and identified 16 transcripts of 12 innexin isoforms, including the splicing variants. We performed phylogenetic analysis and classified the isoforms with other molluscan innexin sequences. Next, the phosphorylation, N-glycosylation, and S-nitrosylation sites were predicted to characterize the innexin isoforms. Further, we identified 16 circular RNA sequences of nine innexin isoforms in the central nervous system of Limax. The identification and classification of molluscan innexin isoforms provided novel insights for understanding the regulatory mechanism of innexin in this phylum.
Collapse
|
21
|
Abstract
PANX2 forms large-pore channels mediating ATP release in response to physiological and pathological stimuli. Although PANX2 shows involvements in glioma genesis, the underlying mechanism remains unclear. PANX2 mRNA expression was analyzed via Oncomine and was confirmed via Gene Expression Profiling Interactive Analysis (GEPIA). The influence of PANX2 on overall survival (OS) of glioma was evaluated using LinkedOmics and further assessed through Cox regression analysis. The correlated genes with PANX2 acquired from LinkedOmics were validated through GEPIA and cBioPortal. Protein-protein interaction (PPI) of these genes was then obtained using Search Tool for the Retrieval of Interacting Genes (STRING) and Cytoscape with MCODE plug-in. All the PANX2-related genes underwent Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. The correlation between PANX2 and cancer immune infiltrates was evaluated via Tumor Immune Estimation Resource (TIMER). A higher expression of PANX2 only revealed a better OS in brain low grade glioma (LGG). PANX2-related genes in LGG functionally enriched in neuroactive ligand-receptor interaction, synaptic vesicle cycle, and calcium signaling. The hub genes from highest module of PPI were mainly linked to chemical synaptic transmission, plasma membrane, neuropeptide, and the pathway of neuroactive ligand-receptor interaction. Besides, PANX2 expression was negatively associated with infiltrating levels of macrophage, dendritic cells, and CD4+ T cells. This study demonstrated that PANX2 likely participated in LGG pathogenesis by affecting multiple molecular pathways and immune-related processes. PANX2 was associated with LGG prognosis and might become a promising therapeutic target of LGG.
Collapse
Affiliation(s)
- XiaoXue Xu
- Department of Neurology, The First
Hospital of China Medical University, Shenyang, China
- Key Laboratory of Neurological Disease
Big Data of Liaoning Province, Shenyang, China
| | - YueHan Hao
- Department of Neurology, The First
Hospital of China Medical University, Shenyang, China
- Key Laboratory of Neurological Disease
Big Data of Liaoning Province, Shenyang, China
| | - Shuang Xiong
- Liaoning Academy of Analytic Science,
Construction Engineering Center of Important Technology Innovation and Research and
Development Base in Liaoning Province, Shenyang, China
| | - ZhiYi He
- Department of Neurology, The First
Hospital of China Medical University, Shenyang, China
- Key Laboratory of Neurological Disease
Big Data of Liaoning Province, Shenyang, China
| |
Collapse
|
22
|
Purinergic signaling in nervous system health and disease: Focus on pannexin 1. Pharmacol Ther 2021; 225:107840. [PMID: 33753132 DOI: 10.1016/j.pharmthera.2021.107840] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2021] [Indexed: 02/06/2023]
Abstract
Purinergic signaling encompasses the cycle of adenosine 5' triphosphate (ATP) release and its metabolism into nucleotide and nucleoside derivatives, the direct release of nucleosides, and subsequent receptor-triggered downstream intracellular pathways. Since the discovery of nerve terminal and glial ATP release into the neuropil, purinergic signaling has been implicated in the modulation of nervous system development, function, and disease. In this review, we detail our current understanding of the roles of the pannexin 1 (PANX1) ATP-release channel in neuronal development and plasticity, glial signaling, and neuron-glial-immune interactions. We additionally provide an overview of PANX1 structure, activation, and permeability to orientate readers and highlight recent research developments. We identify areas of convergence between PANX1 and purinergic receptor actions. Additional highlights include data on PANX1's participation in the pathophysiology of nervous system developmental, degenerative, and inflammatory disorders. Our aim in combining this knowledge is to facilitate the movement of our current understanding of PANX1 in the context of other nervous system purinergic signaling mechanisms one step closer to clinical translation.
Collapse
|
23
|
Natha CM, Vemulapalli V, Fiori MC, Chang CWT, Altenberg GA. Connexin hemichannel inhibitors with a focus on aminoglycosides. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166115. [PMID: 33711451 DOI: 10.1016/j.bbadis.2021.166115] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 02/06/2021] [Accepted: 02/22/2021] [Indexed: 12/31/2022]
Abstract
Connexins are membrane proteins involved directly in cell-to-cell communication through the formation of gap-junctional channels. These channels result from the head-to-head docking of two hemichannels, one from each of two adjacent cells. Undocked hemichannels are also present at the plasma membrane where they mediate the efflux of molecules that participate in autocrine and paracrine signaling, but abnormal increase in hemichannel activity can lead to cell damage in disorders such as cardiac infarct, stroke, deafness, cataracts, and skin diseases. For this reason, connexin hemichannels have emerged as a valid therapeutic target. Know small molecule hemichannel inhibitors are not ideal leads for the development of better drugs for clinical use because they are not specific and/or have toxic effects. Newer inhibitors are more selective and include connexin mimetic peptides, anti-connexin antibodies and drugs that reduce connexin expression such as antisense oligonucleotides. Re-purposed drugs and their derivatives are also promising because of the significant experience with their clinical use. Among these, aminoglycoside antibiotics have been identified as inhibitors of connexin hemichannels that do not inhibit gap-junctional channels. In this review, we discuss connexin hemichannels and their inhibitors, with a focus on aminoglycoside antibiotics and derivatives of kanamycin A that inhibit connexin hemichannels, but do not have antibiotic effect.
Collapse
Affiliation(s)
- Cristina M Natha
- Department of Cell Physiology and Molecular Biophysics, and Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Varun Vemulapalli
- Department of Cell Physiology and Molecular Biophysics, and Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Mariana C Fiori
- Department of Cell Physiology and Molecular Biophysics, and Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Cheng-Wei T Chang
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT, USA
| | - Guillermo A Altenberg
- Department of Cell Physiology and Molecular Biophysics, and Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| |
Collapse
|
24
|
Xiang X, Langlois S, St-Pierre ME, Blinder A, Charron P, Graber TE, Fowler SL, Baird SD, Bennett SAL, Alain T, Cowan KN. Identification of pannexin 1-regulated genes, interactome, and pathways in rhabdomyosarcoma and its tumor inhibitory interaction with AHNAK. Oncogene 2021; 40:1868-1883. [PMID: 33564071 PMCID: PMC7946643 DOI: 10.1038/s41388-020-01623-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 12/07/2020] [Accepted: 12/11/2020] [Indexed: 01/31/2023]
Abstract
Rhabdomyosarcoma (RMS), the most common soft tissue sarcoma in children, is an aggressive cancer with a poor prognosis. Despite current management, the 5-year survival rate for patients with metastatic RMS is ∼30%; underscoring the need to develop better treatment strategies. We have recently reported that pannexin 1 (PANX1) levels are downregulated in RMS and that restoring its expression inhibits RMS progression. Here, we have surveyed and characterized the molecular changes induced by PANX1 re-expression in RMS. We cataloged transcriptomic changes in this context by RNA sequencing. At the protein level, we unveiled PANX1 interactors using BioID, complemented by co-immunoprecipitation coupled to high-performance liquid chromatography/electrospray ionization tandem mass spectrometry performed in PANX1-enriched fractions. Using these data, we generated searchable public databases for the PANX1 interactome and changes to the RMS transcriptome occurring when PANX1 expression is restored. STRING network analyses revealed a PANX1 interactome involving plasma membrane and cytoskeleton-associated proteins including the previously undescribed interactor AHNAK. Indeed, AHNAK knockdown abrogated the PANX1-mediated reduction in RMS cell viability and migration. Using these unbiased approaches, we bring insight to the mechanisms by which PANX1 inhibits RMS progression, identifying the cell migration protein AHNAK as a key modifier of PANX1-mediated changes in RMS malignant properties.
Collapse
Affiliation(s)
- Xiao Xiang
- Molecular Biomedicine Program, Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Stéphanie Langlois
- Molecular Biomedicine Program, Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
- Department of Surgery, Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, ON, Canada
| | - Marie-Eve St-Pierre
- Molecular Biomedicine Program, Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | - Anna Blinder
- Molecular Biomedicine Program, Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Philippe Charron
- Molecular Biomedicine Program, Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | - Tyson E Graber
- Molecular Biomedicine Program, Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | - Stephanie L Fowler
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
- Neural Regeneration Laboratory and Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada
- UK Dementia Research Institute, University College London, London, UK
| | - Stephen D Baird
- Molecular Biomedicine Program, Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | - Steffany A L Bennett
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
- Neural Regeneration Laboratory and Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada
| | - Tommy Alain
- Molecular Biomedicine Program, Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Kyle N Cowan
- Molecular Biomedicine Program, Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada.
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.
- Department of Surgery, Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
25
|
Zhang P, Ishikawa M, Doyle A, Nakamura T, He B, Yamada Y. Pannexin 3 regulates skin development via Epiprofin. Sci Rep 2021; 11:1779. [PMID: 33469169 PMCID: PMC7815752 DOI: 10.1038/s41598-021-81074-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 12/28/2020] [Indexed: 12/11/2022] Open
Abstract
Pannexin 3 (Panx3), a member of the gap junction pannexin family is required for the development of hard tissues including bone, cartilage and teeth. However, the role of Panx3 in skin development remains unclear. Here, we demonstrate that Panx3 regulates skin development by modulating the transcription factor, Epiprofin (Epfn). Panx3-/- mice have impaired skin development and delayed hair follicle regeneration. Loss of Panx3 in knockout mice and suppression by shRNA both elicited a reduction of Epfn expression in the epidermis. In cell culture, Panx3 overexpression promoted HaCaT cell differentiation, cell cycle exit and enhanced Epfn expression. Epfn-/- mice and inhibition of Epfn by siRNA showed no obvious differences of Panx3 expression. Furthermore, Panx3 promotes Akt/NFAT signaling pathway in keratinocyte differentiation by both Panx3 ATP releasing channel and ER Ca2+ channel functions. Our results reveal that Panx3 has a key role factor for the skin development by regulating Epfn.
Collapse
Affiliation(s)
- Peipei Zhang
- Molecular Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Masaki Ishikawa
- Division of Operative Dentistry, Department of Restorative Dentistry, Tohoku University, Graduate School of Dentistry 4-1, Seiryo chou, Aoba-ku, Sendai, Miyagi, 980-8575, Japan.
| | - Andrew Doyle
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Takashi Nakamura
- Division of Molecular Pharmacology and Cell Biophysics, Department of Oral Biology, Tohoku University Graduate School of Dentistry, Sendai, 980-8575, Japan
| | - Bing He
- Protein Section, Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yoshihiko Yamada
- Molecular Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
26
|
Andelova K, Egan Benova T, Szeiffova Bacova B, Sykora M, Prado NJ, Diez ER, Hlivak P, Tribulova N. Cardiac Connexin-43 Hemichannels and Pannexin1 Channels: Provocative Antiarrhythmic Targets. Int J Mol Sci 2020; 22:ijms22010260. [PMID: 33383853 PMCID: PMC7795512 DOI: 10.3390/ijms22010260] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 12/12/2022] Open
Abstract
Cardiac connexin-43 (Cx43) creates gap junction channels (GJCs) at intercellular contacts and hemi-channels (HCs) at the peri-junctional plasma membrane and sarcolemmal caveolae/rafts compartments. GJCs are fundamental for the direct cardiac cell-to-cell transmission of electrical and molecular signals which ensures synchronous myocardial contraction. The HCs and structurally similar pannexin1 (Panx1) channels are active in stressful conditions. These channels are essential for paracrine and autocrine communication through the release of ions and signaling molecules to the extracellular environment, or for uptake from it. The HCs and Panx1 channel-opening profoundly affects intracellular ionic homeostasis and redox status and facilitates via purinergic signaling pro-inflammatory and pro-fibrotic processes. These conditions promote cardiac arrhythmogenesis due to the impairment of the GJCs and selective ion channel function. Crosstalk between GJCs and HCs/Panx1 channels could be crucial in the development of arrhythmogenic substrates, including fibrosis. Despite the knowledge gap in the regulation of these channels, current evidence indicates that HCs and Panx1 channel activation can enhance the risk of cardiac arrhythmias. It is extremely challenging to target HCs and Panx1 channels by inhibitory agents to hamper development of cardiac rhythm disorders. Progress in this field may contribute to novel therapeutic approaches for patients prone to develop atrial or ventricular fibrillation.
Collapse
Affiliation(s)
- Katarina Andelova
- Centre of Experimental Medicine, Slovak Academy of Sciences, Institute for Heart Research, 84104 Bratislava, Slovakia; (K.A.); (T.E.B.); (B.S.B.); (M.S.)
| | - Tamara Egan Benova
- Centre of Experimental Medicine, Slovak Academy of Sciences, Institute for Heart Research, 84104 Bratislava, Slovakia; (K.A.); (T.E.B.); (B.S.B.); (M.S.)
| | - Barbara Szeiffova Bacova
- Centre of Experimental Medicine, Slovak Academy of Sciences, Institute for Heart Research, 84104 Bratislava, Slovakia; (K.A.); (T.E.B.); (B.S.B.); (M.S.)
| | - Matus Sykora
- Centre of Experimental Medicine, Slovak Academy of Sciences, Institute for Heart Research, 84104 Bratislava, Slovakia; (K.A.); (T.E.B.); (B.S.B.); (M.S.)
| | - Natalia Jorgelina Prado
- Instituto de Medicina y Biología Experimental de Cuyo, Consejo Nacional de Investigaciones Científicas y Técnicas, M5500 Mendoza, Argentina; (N.J.P.); (E.R.D.)
| | - Emiliano Raul Diez
- Instituto de Medicina y Biología Experimental de Cuyo, Consejo Nacional de Investigaciones Científicas y Técnicas, M5500 Mendoza, Argentina; (N.J.P.); (E.R.D.)
| | - Peter Hlivak
- Department of Arrhythmias and Pacing, National Institute of Cardiovascular Diseases, Pod Krásnou Hôrkou 1, 83348 Bratislava, Slovakia;
| | - Narcis Tribulova
- Centre of Experimental Medicine, Slovak Academy of Sciences, Institute for Heart Research, 84104 Bratislava, Slovakia; (K.A.); (T.E.B.); (B.S.B.); (M.S.)
- Correspondence: ; Tel.: +421-2-32295-423
| |
Collapse
|
27
|
Kameritsch P, Pogoda K. The Role of Connexin 43 and Pannexin 1 During Acute Inflammation. Front Physiol 2020; 11:594097. [PMID: 33192611 PMCID: PMC7658380 DOI: 10.3389/fphys.2020.594097] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/08/2020] [Indexed: 12/17/2022] Open
Abstract
During acute inflammation, the recruitment of leukocytes from the blood stream into the inflamed tissue is a well-described mechanism encompassing the interaction of endothelial cells with leukocytes allowing leukocytes to reach the site of tissue injury or infection where they can fulfill their function such as phagocytosis. This process requires a fine-tuned regulation of a plethora of signaling cascades, which are still incompletely understood. Here, connexin 43 (Cx43) and pannexin 1 (Panx1) are known to be pivotal for the correct communication of endothelial cells with leukocytes. Pharmacological as well as genetic approaches provide evidence that endothelial Cx43-hemichannels and Panx1-channels release signaling molecules including ATP and thereby regulate vessel function and permeability as well as the recruitment of leukocytes during acute inflammation. Furthermore, Cx43 hemichannels and Panx1-channels in leukocytes release signaling molecules and can mediate the activation and function of leukocytes in an autocrine manner. The focus of the present review is to summarize the current knowledge of the role of Cx43 and Panx1 in endothelial cells and leukocytes in the vasculature during acute inflammation and to discuss relevant molecular mechanisms regulating Cx43 and Panx1 function.
Collapse
Affiliation(s)
- Petra Kameritsch
- Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center, Ludwig-Maximilians-University Munich, Munich, Germany.,Walter Brendel Center of Experimental Medicine, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Kristin Pogoda
- Medical Faculty, Department of Physiology, Augsburg University, Augsburg, Germany
| |
Collapse
|
28
|
Rameshwar P. Purinergic signaling in bone marrow stem cell mobilization. Purinergic Signal 2020; 16:255-256. [PMID: 32885351 DOI: 10.1007/s11302-020-09726-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 08/26/2020] [Indexed: 10/23/2022] Open
Affiliation(s)
- Pranela Rameshwar
- Department of Medicine, Hematology/Oncology, Rutgers New Jersey Medical School, Newark, NJ, 07103, USA.
| |
Collapse
|
29
|
Dere D, Zlomuzica A, Dere E. Channels to consciousness: a possible role of gap junctions in consciousness. Rev Neurosci 2020; 32:/j/revneuro.ahead-of-print/revneuro-2020-0012/revneuro-2020-0012.xml. [PMID: 32853172 DOI: 10.1515/revneuro-2020-0012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 06/26/2020] [Indexed: 12/20/2022]
Abstract
The neurophysiological basis of consciousness is still unknown and one of the most challenging questions in the field of neuroscience and related disciplines. We propose that consciousness is characterized by the maintenance of mental representations of internal and external stimuli for the execution of cognitive operations. Consciousness cannot exist without working memory, and it is likely that consciousness and working memory share the same neural substrates. Here, we present a novel psychological and neurophysiological framework that explains the role of consciousness for cognition, adaptive behavior, and everyday life. A hypothetical architecture of consciousness is presented that is organized as a system of operation and storage units named platforms that are controlled by a consciousness center (central executive/online platform). Platforms maintain mental representations or contents, are entrusted with different executive functions, and operate at different levels of consciousness. The model includes conscious-mode central executive/online and mental time travel platforms and semiconscious steady-state and preconscious standby platforms. Mental representations or contents are represented by neural circuits and their support cells (astrocytes, oligodendrocytes, etc.) and become conscious when neural circuits reverberate, that is, fire sequentially and continuously with relative synchronicity. Reverberatory activity in neural circuits may be initiated and maintained by pacemaker cells/neural circuit pulsars, enhanced electronic coupling via gap junctions, and unapposed hemichannel opening. The central executive/online platform controls which mental representations or contents should become conscious by recruiting pacemaker cells/neural network pulsars, the opening of hemichannels, and promoting enhanced neural circuit coupling via gap junctions.
Collapse
Affiliation(s)
- Dorothea Dere
- Département UMR 8256 Adaptation Biologique et Vieillissement, Sorbonne Université, Institut de Biologie Paris-Seine, (IBPS), UFR des Sciences de la Vie, Campus Pierre et Marie Curie, Bâtiment B, 9 quai Saint Bernard, F-75005 Paris Cedex, France
| | - Armin Zlomuzica
- Faculty of Psychology, Behavioral and Clinical Neuroscience, University of Bochum, Massenbergstraße 9-13, D-44787 Bochum, Germany
| | - Ekrem Dere
- Département UMR 8256 Adaptation Biologique et Vieillissement, Sorbonne Université, Institut de Biologie Paris-Seine, (IBPS), UFR des Sciences de la Vie, Campus Pierre et Marie Curie, Bâtiment B, 9 quai Saint Bernard, F-75005 Paris Cedex, France
| |
Collapse
|
30
|
Pannexin 1 Regulates Dendritic Protrusion Dynamics in Immature Cortical Neurons. eNeuro 2020; 7:ENEURO.0079-20.2020. [PMID: 32737184 PMCID: PMC7544189 DOI: 10.1523/eneuro.0079-20.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 07/16/2020] [Accepted: 07/21/2020] [Indexed: 11/21/2022] Open
Abstract
The integration of neurons into networks relies on the formation of dendritic spines. These specialized structures arise from dynamic filopodia-like dendritic protrusions. It was recently reported that cortical neurons lacking the channel protein pannexin 1 (PANX1) exhibited higher dendritic spine densities. Here, we expanded on those findings to investigate, at an earlier developmental time point (with more abundant dendritic protrusions), whether differences in the properties of dendritic protrusion dynamics could contribute to this previously discovered phenomenon. Using a fluorescent membrane tag (mCherry-CD9-10) to visualize dendritic protrusions in developing neurons [at 10 d in vitro (DIV10)], we confirmed that lack of PANX1 led to higher protrusion density, while transient transfection of Panx1 led to decreased protrusion density. To quantify the impact of PANX1 expression on protrusion formation, elimination, and motility, we used live cell imaging in DIV10 neurons (one frame every 5 s for 10 min). We discovered that at DIV10, loss of PANX1 stabilized protrusions. Notably, re-expression of PANX1 in Panx1 knock-out (KO) neurons resulted in a significant increase in protrusion motility and turnover. In summary, these new data revealed that PANX1 could regulate the development of dendritic spines, in part, by controlling dendritic protrusion dynamics.
Collapse
|
31
|
Injection of minocycline into the periaqueductal gray attenuates morphine withdrawal signs. Neurosci Lett 2020; 736:135283. [PMID: 32739271 DOI: 10.1016/j.neulet.2020.135283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 07/07/2020] [Accepted: 07/28/2020] [Indexed: 11/22/2022]
Abstract
This study investigated the effects of minocycline microinjections, into the midbrain periaqueductal gray (PAG), on morphine withdrawal and the expression of pannexin-1 (panx1), phosphorylated mammalian target of rapamycin (p-mTOR), protein kinase A (PKA), and cAMP response element-binding protein (CREB). Rats were injected with morphine, intraperitoneally, at increasing doses, twice per day, to establish animal models of morphine exposure. Minocycline was administered into the PAG before the first intraperitoneal (i.p.) injection of morphine each day, on days 1-4. On the last day of the experiment, all rats were injected with naloxone, and morphine withdrawal was observed, and then changes in the expression levels of ionized calcium-binding adaptor molecule 1 (Iba1) and its downstream factors, panx1, p-mTOR, PKA, and CREB were evaluated by western blot and immunohistochemistry analyses. Morphine withdrawal increased microglial activation, whereas minocycline could inhibit microglial activation and withdrawal and the downregulation of panx1, p-mTOR, PKA, and CREB expression, reducing the effects of morphine withdrawal.
Collapse
|
32
|
Sanchez Arias JC, Wicki-Stordeur LE, Candlish RC, van der Slagt E, Paci I, Rao PPN, MacVicar BA, Swayne LA. PANX1 in inflammation heats up: New mechanistic insights with implications for injury and infection. Cell Calcium 2020; 90:102253. [PMID: 32688074 DOI: 10.1016/j.ceca.2020.102253] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/10/2020] [Accepted: 07/10/2020] [Indexed: 10/23/2022]
Abstract
A new study by Yang and colleagues has revealed that TNF-alpha regulates PANX1 levels through an NF-kB-dependent mechanism in human endothelial cells. PANX1 modulates Ca2+ influx contributing to IL-1beta production independent of purinergic signaling. These novel findings expand our understanding of TNF-alpha-mediated upregulation of IL-1beta with implications for responses to tissue injury and infection.
Collapse
Affiliation(s)
- Juan C Sanchez Arias
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Leigh E Wicki-Stordeur
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Rebecca C Candlish
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Emma van der Slagt
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Irina Paci
- Department of Chemistry, University of Victoria, Victoria, British Columbia, Canada
| | - Praveen P N Rao
- School of Pharmacy, Health Sciences Campus, University of Waterloo, Waterloo, Canada
| | - Brian A MacVicar
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Leigh Anne Swayne
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
33
|
Caufriez A, Böck D, Martin C, Ballet S, Vinken M. Peptide-based targeting of connexins and pannexins for therapeutic purposes. Expert Opin Drug Discov 2020; 15:1213-1222. [PMID: 32539572 DOI: 10.1080/17460441.2020.1773787] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
INTRODUCTION Connexin and pannexin (hemi)channels play an important role in paracrine and autocrine signaling pathways. The opening of these cellular pores is linked to a wide range of diseases. Therefore, pharmacological closing of connexin and pannexin (hemi)channels seems a promising therapeutic strategy. However, the currently available inhibitors cope with recurring problems concerning selectivity, specificity, stability and/or solubility. AREAS COVERED A number of peptides that mimic specific regions in the native sequence of connexins and pannexins have the potential to overcome some of these hurdles. In this paper, an overview is provided on these peptide-based inhibitors of connexin and pannexin (hemi)channels for therapeutic purposes. The authors also provide the reader with their expert perspectives on the future of these peptide-based inhibitors. EXPERT OPINION Peptide mimetics can become valuable tools in the treatment of connexin-related and pannexin-related diseases. This can be made possible provided that available peptides are optimized, and new peptide mimetics are designed based on knowledge of the mechanisms underlying the gating control of connexin and pannexin (hemi)channels.
Collapse
Affiliation(s)
- Anne Caufriez
- Department of in Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel , 1090, Brussels, Belgium
| | - Denise Böck
- Department of in Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel , 1090, Brussels, Belgium
| | - Charlotte Martin
- Department of Organic Chemistry, Vrije Universiteit Brussel , 1050, Brussels, Belgium
| | - Steven Ballet
- Department of Organic Chemistry, Vrije Universiteit Brussel , 1050, Brussels, Belgium
| | - Mathieu Vinken
- Department of in Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel , 1090, Brussels, Belgium
| |
Collapse
|
34
|
Swayne LA, Johnstone SR, Ng CS, Sanchez-Arias JC, Good ME, Penuela S, Lohman AW, Wolpe AG, Laubach VE, Koval M, Isakson BE. Consideration of Pannexin 1 channels in COVID-19 pathology and treatment. Am J Physiol Lung Cell Mol Physiol 2020; 319:L121-L125. [PMID: 32519892 PMCID: PMC7347959 DOI: 10.1152/ajplung.00146.2020] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Leigh Anne Swayne
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Scott R Johnstone
- Fralin Biomedical Research Institute at Virginia Tech Carilion Center for Heart and Reparative Medicine Research, Virginia Tech, Roanoke, Virginia.,Department of Biological Sciences, Virginia Tech, Roanoke, Virginia
| | - Chen Seng Ng
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,Centre for Heart Lung Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Juan C Sanchez-Arias
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Miranda E Good
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts
| | - Silvia Penuela
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario, Canada
| | - Alexander W Lohman
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Abigail G Wolpe
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia.,Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Victor E Laubach
- Department of Surgery, University of Virginia School of Medicine, Charlottesville, Virginia.,Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Michael Koval
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Brant E Isakson
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia.,Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, Virginia
| |
Collapse
|
35
|
Yang Y, Delalio LJ, Best AK, Macal E, Milstein J, Donnelly I, Miller AM, McBride M, Shu X, Koval M, Isakson BE, Johnstone SR. Endothelial Pannexin 1 Channels Control Inflammation by Regulating Intracellular Calcium. THE JOURNAL OF IMMUNOLOGY 2020; 204:2995-3007. [PMID: 32312847 PMCID: PMC7336877 DOI: 10.4049/jimmunol.1901089] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 03/27/2020] [Indexed: 12/26/2022]
Abstract
The proinflammatory cytokine IL-1β is a significant risk factor in cardiovascular disease that can be targeted to reduce major cardiovascular events. IL-1β expression and release are tightly controlled by changes in intracellular Ca2+ ([Ca2+]i), which has been associated with ATP release and purinergic signaling. Despite this, the mechanisms that regulate these changes have not been identified. The pannexin 1 (Panx1) channels have canonically been implicated in ATP release, especially during inflammation. We examined Panx1 in human umbilical vein endothelial cells following treatment with the proinflammatory cytokine TNF-α. Analysis by whole transcriptome sequencing and immunoblot identified a dramatic increase in Panx1 mRNA and protein expression that is regulated in an NF-κB-dependent manner. Furthermore, genetic inhibition of Panx1 reduced the expression and release of IL-1β. We initially hypothesized that increased Panx1-mediated ATP release acted in a paracrine fashion to control cytokine expression. However, our data demonstrate that IL-1β expression was not altered after direct ATP stimulation in human umbilical vein endothelial cells. Because Panx1 forms a large pore channel, we hypothesized it may permit Ca2+ diffusion into the cell to regulate IL-1β. High-throughput flow cytometric analysis demonstrated that TNF-α treatments lead to elevated [Ca2+]i, corresponding with Panx1 membrane localization. Genetic or pharmacological inhibition of Panx1 reduced TNF-α-associated increases in [Ca2+]i, blocked phosphorylation of the NF-κB-p65 protein, and reduced IL-1β transcription. Taken together, the data in our study provide the first evidence, to our knowledge, that [Ca2+]i regulation via the Panx1 channel induces a feed-forward effect on NF-κB to regulate IL-1β synthesis and release in endothelium during inflammation.
Collapse
Affiliation(s)
- Yang Yang
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908.,Department of Pharmacology, Dalian Medical University, Dalian 116044, China
| | - Leon J Delalio
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Angela K Best
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Edgar Macal
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Jenna Milstein
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Iona Donnelly
- British Heart Foundation Cardiovascular Research Centre, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - Ashley M Miller
- British Heart Foundation Cardiovascular Research Centre, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - Martin McBride
- British Heart Foundation Cardiovascular Research Centre, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - Xiaohong Shu
- Department of Pharmacology, Dalian Medical University, Dalian 116044, China
| | - Michael Koval
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322.,Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322; and
| | - Brant E Isakson
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908; .,Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Scott R Johnstone
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908;
| |
Collapse
|
36
|
Pannexin-1 Channel Regulates ATP Release in Epilepsy. Neurochem Res 2020; 45:965-971. [PMID: 32170674 DOI: 10.1007/s11064-020-02981-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 01/16/2020] [Accepted: 02/01/2020] [Indexed: 12/28/2022]
Abstract
With the deepening of research on epilepsy in recent decades, great progress has been made in the diagnosis and treatment of the disease. However, the clinical outcome remains unsatisfactory due to the confounding symptoms and complications, as well as complex intrinsic pathogenesis. A better understanding of the pathogenesis of epilepsy should be able to hinder the progress of the disease and improve the therapeutic effectiveness. Since the discovery of pannexin (Panx), unremitting efforts on the study of this gap junction protein family member have revealed its role in participating in the expression of various physiopathological processes. Among them, the activation or inhibition of Panx channel has been shown to regulate the release of adenosine triphosphate (ATP) and other signals, which is very important for the onset and control of nervous system diseases including epilepsy. In this article, we summarize the factors influencing the regulation of Panx channel opening, hoping to find a way to interfere with the activation or inhibition of Panx channel that regulates the signal transduction of ATP and other factors so as to control the progression of epilepsy and improve the quality of life of epileptic patients who fail to respond to the existing medical therapies and those at risk of surgical treatment.
Collapse
|
37
|
Epp AL, Ebert SN, Sanchez-Arias JC, Wicki-Stordeur LE, Boyce AKJ, Swayne LA. A novel motif in the proximal C-terminus of Pannexin 1 regulates cell surface localization. Sci Rep 2019; 9:9721. [PMID: 31278290 PMCID: PMC6611761 DOI: 10.1038/s41598-019-46144-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 06/24/2019] [Indexed: 12/11/2022] Open
Abstract
The Pannexin 1 (Panx1) ion and metabolite channel is expressed in a wide variety of cells where it regulates a number of cell behaviours including proliferation and differentiation. Panx1 is expressed on the cell surface as well as intracellular membranes. Previous work suggests that a region within the proximal Panx1 C-terminus (Panx1CT) regulates cell surface localization. Here we report the discovery of a putative leucine-rich repeat (LRR) motif in the proximal Panx1CT necessary for Panx1 cell surface expression in HEK293T cells. Deletion of the putative LRR motif results in significant loss of Panx1 cell surface distribution. Outcomes of complementary cell surface oligomerization and glycosylation state analyses were consistent with reduced cell surface expression of Panx1 LRR deletion mutants. Of note, the oligomerization analysis revealed the presence of putative dimers and trimers of Panx1 at the cell surface. Expression of Panx1 increased HEK293T cell growth and reduced doubling time, while expression of a Panx1 LRR deletion mutant (highly conserved segment) did not reproduce this effect. In summary, here we discovered the presence of a putative LRR motif in the Panx1CT that impacts on Panx1 cell surface localization. Overall these findings provide new insights into the molecular mechanisms underlying C-terminal regulation of Panx1 trafficking and raise potential new lines of investigation with respect to Panx1 oligomerization and glycosylation.
Collapse
Affiliation(s)
- Anna L Epp
- Division of Medical Sciences and Island Medical Program, University of Victoria, Victoria, V8P 5C2, Canada
| | - Sarah N Ebert
- Division of Medical Sciences and Island Medical Program, University of Victoria, Victoria, V8P 5C2, Canada
| | - Juan C Sanchez-Arias
- Division of Medical Sciences and Island Medical Program, University of Victoria, Victoria, V8P 5C2, Canada
| | - Leigh E Wicki-Stordeur
- Division of Medical Sciences and Island Medical Program, University of Victoria, Victoria, V8P 5C2, Canada
| | - Andrew K J Boyce
- Division of Medical Sciences and Island Medical Program, University of Victoria, Victoria, V8P 5C2, Canada
| | - Leigh Anne Swayne
- Division of Medical Sciences and Island Medical Program, University of Victoria, Victoria, V8P 5C2, Canada.
| |
Collapse
|
38
|
Pannexin 1 Regulates Network Ensembles and Dendritic Spine Development in Cortical Neurons. eNeuro 2019; 6:ENEURO.0503-18.2019. [PMID: 31118206 PMCID: PMC6557035 DOI: 10.1523/eneuro.0503-18.2019] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 05/13/2019] [Accepted: 05/14/2019] [Indexed: 01/22/2023] Open
Abstract
Dendritic spines are the postsynaptic targets of excitatory synaptic inputs that undergo extensive proliferation and maturation during the first postnatal month in mice. However, our understanding of the molecular mechanisms that regulate spines during this critical period is limited. Previous work has shown that pannexin 1 (Panx1) regulates neurite growth and synaptic plasticity. We therefore investigated the impact of global Panx1 KO on spontaneous cortical neuron activity using Ca2+ imaging and in silico network analysis. Panx1 KO increased both the number and size of spontaneous co-active cortical neuron network ensembles. To understand the basis for these findings, we investigated Panx1 expression in postnatal synaptosome preparations from early postnatal mouse cortex. Between 2 and 4 postnatal weeks, we observed a precipitous drop in cortical synaptosome protein levels of Panx1, suggesting it regulates synapse proliferation and/or maturation. At the same time points, we observed significant enrichment of the excitatory postsynaptic density proteins PSD-95, GluA1, and GluN2a in cortical synaptosomes from global Panx1 knock-out mice. Ex vivo analysis of pyramidal neuron structure in somatosensory cortex revealed a consistent increase in dendritic spine densities in both male and female Panx1 KO mice. Similar findings were observed in an excitatory neuron-specific Panx1 KO line (Emx1-Cre driven; Panx1 cKOE) and in primary Panx1 KO cortical neurons cultured in vitro. Altogether, our study suggests that Panx1 negatively regulates cortical dendritic spine development.
Collapse
|
39
|
Chen W, Zhu S, Wang Y, Li J, Qiang X, Zhao X, Yang H, D'Angelo J, Becker L, Wang P, Tracey KJ, Wang H. Enhanced Macrophage Pannexin 1 Expression and Hemichannel Activation Exacerbates Lethal Experimental Sepsis. Sci Rep 2019; 9:160. [PMID: 30655582 PMCID: PMC6336828 DOI: 10.1038/s41598-018-37232-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 12/04/2018] [Indexed: 12/20/2022] Open
Abstract
We have recently reported an important role of Connexin 43 (Cx43) hemichannels in the pathogenesis of lethal sepsis through facilitating ATP efflux to potentiate the double-stranded RNA-activated protein kinase R (PKR)-dependent macrophage activation. Here we further elucidated the possible role of Pannexin 1 (Panx1) hemichannel in lethal sepsis by assessing its expression along with the impact of a Panx1-specific mimetic inhibitory peptide, 10Panx, on macrophage hemichannel activity in vitro and animal sepsis lethality in vivo. Both crude bacterial lipopolysaccharide (LPS) and purified serum amyloid A (SAA) effectively induced the expression and extracellular release of Panx1 by macrophages or monocytes as judged by Western blotting and immunocytochemistry assays. In animal model of lethal sepsis, Panx1 expression levels were significantly elevated in the heart, but reduced in the kidney, lung, spleen, and blood. At relatively lower doses (10, 50, and 100 mg/kg), the Panx1 mimetic peptide, 10Panx, reproducibly exacerbated the sepsis-induced animal lethality, reducing survival rates from 60-70% to 0-10%. Consistently, 10Panx did not inhibit, but rather promoted, the LPS-induced elevation of Lucifer Yellow dye uptake, ATP release, and Nitric Oxide (NO) production. Collectively, these findings suggested that elevated macrophage Panx1 expression and hemichannel activation contribute to the pathogenesis of lethal sepsis.
Collapse
Affiliation(s)
- Weiqiang Chen
- The Feinstein Institute for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Shu Zhu
- The Feinstein Institute for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Yongjun Wang
- The Feinstein Institute for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Jianhua Li
- The Feinstein Institute for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Xiaoling Qiang
- The Feinstein Institute for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
- Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra Blvd, Hempstead, NY, 11549, USA
| | - Xiaoling Zhao
- Department of Pathology, New York University School of Medicine, 550 1st Ave, New York, NY, 10016, USA
| | - Huan Yang
- The Feinstein Institute for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
| | - John D'Angelo
- The Feinstein Institute for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
- Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra Blvd, Hempstead, NY, 11549, USA
| | - Lance Becker
- The Feinstein Institute for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
- Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra Blvd, Hempstead, NY, 11549, USA
| | - Ping Wang
- The Feinstein Institute for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
- Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra Blvd, Hempstead, NY, 11549, USA
| | - Kevin J Tracey
- The Feinstein Institute for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
- Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra Blvd, Hempstead, NY, 11549, USA
| | - Haichao Wang
- The Feinstein Institute for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA.
- Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra Blvd, Hempstead, NY, 11549, USA.
| |
Collapse
|
40
|
Abstract
The connexin family of channel-forming proteins is present in every tissue type in the human anatomy. Connexins are best known for forming clustered intercellular channels, structurally known as gap junctions, where they serve to exchange members of the metabolome between adjacent cells. In their single-membrane hemichannel form, connexins can act as conduits for the passage of small molecules in autocrine and paracrine signalling. Here, we review the roles of connexins in health and disease, focusing on the potential of connexins as therapeutic targets in acquired and inherited diseases as well as wound repair, while highlighting the associated clinical challenges.
Collapse
|
41
|
Sharma AK, Charles EJ, Zhao Y, Narahari AK, Baderdinni PK, Good ME, Lorenz UM, Kron IL, Bayliss DA, Ravichandran KS, Isakson BE, Laubach VE. Pannexin-1 channels on endothelial cells mediate vascular inflammation during lung ischemia-reperfusion injury. Am J Physiol Lung Cell Mol Physiol 2018; 315:L301-L312. [PMID: 29745255 PMCID: PMC6139659 DOI: 10.1152/ajplung.00004.2018] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 04/17/2018] [Accepted: 05/02/2018] [Indexed: 12/31/2022] Open
Abstract
Ischemia-reperfusion (I/R) injury (IRI), which involves inflammation, vascular permeability, and edema, remains a major challenge after lung transplantation. Pannexin-1 (Panx1) channels modulate cellular ATP release during inflammation. This study tests the hypothesis that endothelial Panx1 is a key mediator of vascular inflammation and edema after I/R and that IRI can be blocked by Panx1 antagonism. A murine hilar ligation model of IRI was used whereby left lungs underwent 1 h of ischemia and 2 h of reperfusion. Treatment of wild-type mice with Panx1 inhibitors (carbenoxolone or probenecid) significantly attenuated I/R-induced pulmonary dysfunction, edema, cytokine production, and neutrophil infiltration versus vehicle-treated mice. In addition, VE-Cad-CreERT2+/Panx1fl/fl mice (tamoxifen-inducible deletion of Panx1 in vascular endothelium) treated with tamoxifen were significantly protected from IRI (reduced dysfunction, endothelial permeability, edema, proinflammatory cytokines, and neutrophil infiltration) versus vehicle-treated mice. Furthermore, extracellular ATP levels in bronchoalveolar lavage fluid is Panx1-mediated after I/R as it was markedly attenuated by Panx1 antagonism in wild-type mice and by endothelial-specific Panx1 deficiency. Panx1 gene expression in lungs after I/R was also significantly elevated compared with sham. In vitro experiments demonstrated that TNF-α and/or hypoxia-reoxygenation induced ATP release from lung microvascular endothelial cells, which was attenuated by Panx1 inhibitors. This study is the first, to our knowledge, to demonstrate that endothelial Panx1 plays a key role in mediating vascular permeability, inflammation, edema, leukocyte infiltration, and lung dysfunction after I/R. Pharmacological antagonism of Panx1 activity may be a novel therapeutic strategy to prevent IRI and primary graft dysfunction after lung transplantation.
Collapse
Affiliation(s)
- Ashish K Sharma
- Department of Surgery, University of Virginia School of Medicine , Charlottesville, Virginia
| | - Eric J Charles
- Department of Surgery, University of Virginia School of Medicine , Charlottesville, Virginia
| | - Yunge Zhao
- Department of Surgery, University of Virginia School of Medicine , Charlottesville, Virginia
| | - Adishesh K Narahari
- Department of Pharmacology, University of Virginia School of Medicine , Charlottesville, Virginia
| | - Pranav K Baderdinni
- Department of Pharmacology, University of Virginia School of Medicine , Charlottesville, Virginia
| | - Miranda E Good
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine , Charlottesville, Virginia
| | - Ulrike M Lorenz
- Department of Microbiology, Immunology, and Cancer, University of Virginia School of Medicine , Charlottesville, Virginia
| | - Irving L Kron
- Department of Surgery, University of Virginia School of Medicine , Charlottesville, Virginia
| | - Douglas A Bayliss
- Department of Pharmacology, University of Virginia School of Medicine , Charlottesville, Virginia
| | - Kodi S Ravichandran
- Department of Microbiology, Immunology, and Cancer, University of Virginia School of Medicine , Charlottesville, Virginia
| | - Brant E Isakson
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine , Charlottesville, Virginia
| | - Victor E Laubach
- Department of Surgery, University of Virginia School of Medicine , Charlottesville, Virginia
| |
Collapse
|
42
|
Boucher J, Simonneau C, Denet G, Clarhaut J, Balandre AC, Mesnil M, Cronier L, Monvoisin A. Pannexin-1 in Human Lymphatic Endothelial Cells Regulates Lymphangiogenesis. Int J Mol Sci 2018; 19:ijms19061558. [PMID: 29882918 PMCID: PMC6032340 DOI: 10.3390/ijms19061558] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 05/17/2018] [Accepted: 05/22/2018] [Indexed: 12/23/2022] Open
Abstract
The molecular mechanisms governing the formation of lymphatic vasculature are not yet well understood. Pannexins are transmembrane proteins that form channels which allow for diffusion of ions and small molecules (<1 kDa) between the extracellular space and the cytosol. The expression and function of pannexins in blood vessels have been studied in the last few decades. Meanwhile, no studies have been conducted to evaluate the role of pannexins during human lymphatic vessel formation. Here we show, using primary human dermal lymphatic endothelial cells (HDLECs), pharmacological tools (probenecid, Brilliant Blue FCF, mimetic peptides [10Panx]) and siRNA-mediated knockdown that Pannexin-1 is necessary for capillary tube formation on Matrigel and for VEGF-C-induced invasion. These results newly identify Pannexin-1 as a protein highly expressed in HDLECs and its requirement during in vitro lymphangiogenesis.
Collapse
Affiliation(s)
- Jonathan Boucher
- CNRS ERL 7003, Laboratoire "Signalisation & Transports Ioniques Membranaires", University of Poitiers, 86073 Poitiers, France.
| | - Claire Simonneau
- CNRS ERL 7003, Laboratoire "Signalisation & Transports Ioniques Membranaires", University of Poitiers, 86073 Poitiers, France.
| | - Golthlay Denet
- CNRS ERL 7003, Laboratoire "Signalisation & Transports Ioniques Membranaires", University of Poitiers, 86073 Poitiers, France.
| | - Jonathan Clarhaut
- CNRS UMR 7285, Institut de Chimie des Milieux et des Matériaux de Poitiers (IC2MP), University of Poitiers, 86073 Poitiers, France.
- CHU de Poitiers, 86021 Poitiers, France.
| | - Annie-Claire Balandre
- CNRS ERL 7003, Laboratoire "Signalisation & Transports Ioniques Membranaires", University of Poitiers, 86073 Poitiers, France.
| | - Marc Mesnil
- CNRS ERL 7003, Laboratoire "Signalisation & Transports Ioniques Membranaires", University of Poitiers, 86073 Poitiers, France.
| | - Laurent Cronier
- CNRS ERL 7003, Laboratoire "Signalisation & Transports Ioniques Membranaires", University of Poitiers, 86073 Poitiers, France.
| | - Arnaud Monvoisin
- CNRS ERL 7003, Laboratoire "Signalisation & Transports Ioniques Membranaires", University of Poitiers, 86073 Poitiers, France.
| |
Collapse
|
43
|
Xu X, Wicki-Stordeur LE, Sanchez-Arias JC, Liu M, Weaver MS, Choi CSW, Swayne LA. Probenecid Disrupts a Novel Pannexin 1-Collapsin Response Mediator Protein 2 Interaction and Increases Microtubule Stability. Front Cell Neurosci 2018; 12:124. [PMID: 29867357 PMCID: PMC5958195 DOI: 10.3389/fncel.2018.00124] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 04/17/2018] [Indexed: 12/25/2022] Open
Abstract
Neurite formation relies on finely-tuned control of the cytoskeleton. Here we identified a novel protein-protein interaction between the ion and metabolite channel protein Pannexin 1 (Panx1) and collapsin response mediator protein 2 (Crmp2), a positive regulator of microtubule polymerization and stabilization. Panx1 and Crmp2 co-precipitated from both Neuro-2a (N2a) cells and mouse ventricular zone (VZ) tissue. In vitro binding assays between purified proteins revealed the interaction occurs directly between the Panx1 C-terminus (Panx1 CT) and Crmp2. Because Crmp2 is a well-established microtubule-stabilizing protein, and we previously observed a marked increase in neurite formation following treatment with the Panx1 blocker, probenecid, in N2a cells and VZ neural precursor cells (NPCs), we investigated the impact of probenecid on the Panx1-Crmp2 interaction. Probenecid treatment significantly disrupted the Panx1-Crmp2 interaction by both immunoprecipitation (IP) and proximity ligation analysis, without altering overall Crmp2 protein expression levels. In the presence of probenecid, Crmp2 was concentrated at the distal ends of growing neurites. Moreover, probenecid treatment increased tubulin polymerization and microtubule stability in N2a cells. These results reveal that probenecid disrupts a novel interaction between Panx1 and the microtubule stabilizer, Crmp2, and also increases microtubule stability.
Collapse
Affiliation(s)
- Xiaoxue Xu
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | | | | | - Mei Liu
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.,Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nanjing, China
| | - Maria S Weaver
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Catherine S W Choi
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Leigh A Swayne
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.,Department of Biology, University of Victoria, Victoria, BC, Canada.,Island Medical Program and Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
44
|
Willebrords J, Maes M, Crespo Yanguas S, Vinken M. Inhibitors of connexin and pannexin channels as potential therapeutics. Pharmacol Ther 2017; 180:144-160. [PMID: 28720428 PMCID: PMC5802387 DOI: 10.1016/j.pharmthera.2017.07.001] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
While gap junctions support the exchange of a number of molecules between neighboring cells, connexin hemichannels provide communication between the cytosol and the extracellular environment of an individual cell. The latter equally holds true for channels composed of pannexin proteins, which display an architecture reminiscent of connexin hemichannels. In physiological conditions, gap junctions are usually open, while connexin hemichannels and, to a lesser extent, pannexin channels are typically closed, yet they can be activated by a number of pathological triggers. Several agents are available to inhibit channels built up by connexin and pannexin proteins, including alcoholic substances, glycyrrhetinic acid, anesthetics and fatty acids. These compounds not always strictly distinguish between gap junctions, connexin hemichannels and pannexin channels, and may have effects on other targets as well. An exception lies with mimetic peptides, which reproduce specific amino acid sequences in connexin or pannexin primary protein structure. In this paper, a state-of-the-art overview is provided on inhibitors of cellular channels consisting of connexins and pannexins with specific focus on their mode-of-action and therapeutic potential.
Collapse
Affiliation(s)
- Joost Willebrords
- Department of In Vitro Toxicology and Dermato-cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels, Belgium
| | - Michaël Maes
- Department of In Vitro Toxicology and Dermato-cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels, Belgium
| | - Sara Crespo Yanguas
- Department of In Vitro Toxicology and Dermato-cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels, Belgium
| | - Mathieu Vinken
- Department of In Vitro Toxicology and Dermato-cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels, Belgium.
| |
Collapse
|
45
|
Swayne LA, Boyce AKJ. Regulation of Pannexin 1 Surface Expression by Extracellular ATP: Potential Implications for Nervous System Function in Health and Disease. Front Cell Neurosci 2017; 11:230. [PMID: 28848396 PMCID: PMC5550711 DOI: 10.3389/fncel.2017.00230] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 07/24/2017] [Indexed: 02/02/2023] Open
Abstract
Pannexin 1 (Panx1) channels are widely recognized for their role in ATP release, and as follows, their function is closely tied to that of ATP-activated P2X7 purinergic receptors (P2X7Rs). Our recent work has shown that extracellular ATP induces clustering of Panx1 with P2X7Rs and their subsequent internalization through a non-canonical cholesterol-dependent mechanism. In other words, we have demonstrated that extracellular ATP levels can regulate the cell surface expression of Panx1. Here we discuss two situations in which we hypothesize that ATP modulation of Panx1 surface expression could be relevant for central nervous system function. The first scenario involves the development of new neurons in the ventricular zone. We propose that ATP-induced Panx1 endocytosis could play an important role in regulating the balance of cell proliferation, survival, and differentiation within this neurogenic niche in the healthy brain. The second scenario relates to the spinal cord, in which we posit that an impairment of ATP-induced Panx1 endocytosis could contribute to pathological neuroplasticity. Together, the discussion of these hypotheses serves to highlight important outstanding questions regarding the interplay between extracellular ATP, Panx1, and P2X7Rs in the nervous system in health and disease.
Collapse
Affiliation(s)
- Leigh A Swayne
- Division of Medical Sciences and Island Medical Program, University of Victoria, VictoriaBC, Canada.,Department of Cellular and Physiological Sciences, University of British Columbia, VancouverBC, Canada
| | - Andrew K J Boyce
- Division of Medical Sciences and Island Medical Program, University of Victoria, VictoriaBC, Canada
| |
Collapse
|
46
|
Burma NE, Leduc-Pessah H, Trang T. Genetic deletion of microglial Panx1 attenuates morphine withdrawal, but not analgesic tolerance or hyperalgesia in mice. Channels (Austin) 2017; 11:487-494. [PMID: 28745932 DOI: 10.1080/19336950.2017.1359361] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Opioids are among the most powerful analgesics for managing pain, yet their repeated use can lead to the development of severe adverse effects. In a recent study, we identified the microglial pannexin-1 channel (Panx1) as a critical substrate for opioid withdrawal. Here, we investigated whether microglial Panx1 contributes to opioid-induced hyperalgesia (OIH) and opioid analgesic tolerance using mice with a tamoxifen-inducible deletion of microglial Panx1. We determined that escalating doses of morphine resulted in thermal pain hypersensitivity in both Panx1-expressing and microglial Panx1-deficient mice. In microglial Panx1-deficient mice, we also found that acute morphine antinociception remained intact, and repeated morphine treatment at a constant dose resulted in a progressive decline in morphine antinociception and a reduction in morphine potency. This reduction in morphine antinociceptive potency was indistinguishable from that observed in Panx1-expressing mice. Notably, morphine tolerant animals displayed increased spinal microglial reactivity, but no change of microglial Panx1 expression. Collectively, our findings indicate microglial Panx1 differentially contributes to opioid withdrawal, but not the development of opioid-induced hyperalgesia or tolerance.
Collapse
Affiliation(s)
- Nicole E Burma
- a Comparative Biology and Experimental Medicine , University of Calgary , Calgary, Alberta , Canada.,b Physiology and Pharmacology, Hotchkiss Brain Institute , University of Calgary , Calgary, Alberta , Canada
| | - Heather Leduc-Pessah
- a Comparative Biology and Experimental Medicine , University of Calgary , Calgary, Alberta , Canada.,b Physiology and Pharmacology, Hotchkiss Brain Institute , University of Calgary , Calgary, Alberta , Canada
| | - Tuan Trang
- a Comparative Biology and Experimental Medicine , University of Calgary , Calgary, Alberta , Canada.,b Physiology and Pharmacology, Hotchkiss Brain Institute , University of Calgary , Calgary, Alberta , Canada
| |
Collapse
|