1
|
Gamal NK, El-Naga RN, Ayoub IM, George MY. Neuromodulatory effect of troxerutin against doxorubicin and cyclophosphamide-induced cognitive impairment in rats: Potential crosstalk between gut-brain and NLRP3 inflammasome axes. Int Immunopharmacol 2025; 149:114216. [PMID: 39919456 DOI: 10.1016/j.intimp.2025.114216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/29/2024] [Accepted: 01/31/2025] [Indexed: 02/09/2025]
Abstract
"Chemobrain" refers to the cognitive impairment induced by chemotherapy. The doxorubicin and cyclophosphamide cocktail has been used for various cancers, especially breast cancer. However, both have been linked to chemobrain as well as gastrointestinal toxicity. Despite being distinct organs, the gut and the brain have a bidirectional connection between them known as the gut-brain axis. This research aimed to study the neuroprotective effect of troxerutin, a rutin derivative, in chemobrain induced by doxorubicin and cyclophosphamide via a potential impact on the gut-inflammasome-brain axis. Troxerutin was administered at 75, 150, and 300 mg/kg doses. Furthermore, behavioral, histological, and acetylcholinesterase assessments were performed. Accordingly, the highest dose of troxerutin was selected to investigate the potential underlying mechanisms. Troxerutin treatment reversed the chemotherapy-fecal metabolite alterations. Additionally, troxerutin demonstrated positive effects against deterioration of intestinal integrity, permeability, and microbial endotoxins translocation, as evidenced by its effect on tight junction proteins; ZO-1, and claudin-1 expression, and lipopolysaccharide serum levels. Consequently, troxerutin hindered lipopolysaccharide-induced oxidative damage, systemic inflammation, and neuroinflammation. Moreover, troxerutin demonstrated antioxidant effects via its impact on lipid peroxidation, catalase levels, and the Nrf2/HO-1 pathway. Furthermore, chemotherapy-induced inflammation was opposed by troxerutin via downregulation of NLRP3, caspase-1, and the downstream cytokines; IL-18 and IL-1β. Importantly, troxerutin did not abrogate the anticancer activity of doxorubicin and cyclophosphamide in human MCF7 cells. Collectively, our study suggested the potentiality of troxerutin as a therapeutic choice against chemobrain by inhibiting the gut-inflammasome-brain axis and hindering acetylcholinesterase, oxidative stress, and neuroinflammation.
Collapse
Affiliation(s)
- Nada K Gamal
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University 11566 Cairo, Egypt
| | - Reem N El-Naga
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University 11566 Cairo, Egypt
| | - Iriny M Ayoub
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo 11566 Egypt
| | - Mina Y George
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University 11566 Cairo, Egypt.
| |
Collapse
|
2
|
Iciek M, Bilska-Wilkosz A, Górny M, Bednarski M, Zygmunt M, Miller A, Nicosia N, Lombardo GP, Zammit P, Kotańska M. The Effect of Disulfiram and N-Acetylcysteine, Potential Compensators for Sulfur Disorders, on Lipopolysaccharide-Induced Neuroinflammation Leading to Memory Impairment and the Metabolism of L-Cysteine Disturbance. Molecules 2025; 30:578. [PMID: 39942681 PMCID: PMC11820383 DOI: 10.3390/molecules30030578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/20/2025] [Accepted: 01/24/2025] [Indexed: 02/16/2025] Open
Abstract
BACKGROUND The role of sulfur-containing drugs, disulfiram (DSF) and N-acetylcysteine (NAC), in alleviating neuroinflammation is poorly understood. The objective of this study was to examine the effect of DSF and NAC on memory and on the metabolism of L-cysteine and inflammation-related parameters in the cerebral cortex of rats in a model of neuroinflammation induced by the administration of lipopolysaccharide (LPS). METHODS All the treatments were administered intraperitoneally for 10 days (LPS at a dose of 0.5 mg/kg b.w., DSF at a dose of 100 mg/kg b.w, and NAC at a dose of 100 mg/kg b.w.). Behavior was evaluated by the novel object recognition (NOR) test and object location (OL) test, and the level of brain-derived neurotrophic factor (BDNF) was assayed to evaluate neuronal functioning. Cerebral cortex homogenates were tested for hydrogen sulfide (H2S), sulfane sulfur, sulfates, non-protein sulfhydryl groups (NPSH), nitric oxide (NO), and reactive oxygen species (ROS) by biochemical analysis. RESULTS Neither DSF nor NAC alleviated LPS-induced memory disorders estimated by the NOR test and OL test. The studied compounds also did not affect significantly the levels of BDNF, ROS, NO, H2S, and sulfane sulfur in the cerebral cortex. However, we observed an increase in sulfate concentration in brain tissues after LPS treatment, while DSF and NAC caused an additional increase in sulfate concentration. On the other hand, our study showed that the administration of DSF or NAC together with LPS significantly enhanced the cortical level of NPSH, of which glutathione is the main component. CONCLUSIONS Our study did not confirm the suggested potential of DSF and NAC to correct memory disorders; however, it corroborated the notion that they reduced oxidative stress induced by LPS by increasing the NPSH level. Additionally, our study showed an increase in sulfate concentration in the brain tissues after LPS treatment, which means the upregulation of sulfite and sulfate production in inflammatory conditions.
Collapse
Affiliation(s)
- Małgorzata Iciek
- Chair of Medical Biochemistry, Jagiellonian University Medical College, Kopernika 7, PL 31-034 Cracow, Poland; (M.I.); (A.B.-W.); (M.G.)
| | - Anna Bilska-Wilkosz
- Chair of Medical Biochemistry, Jagiellonian University Medical College, Kopernika 7, PL 31-034 Cracow, Poland; (M.I.); (A.B.-W.); (M.G.)
| | - Magdalena Górny
- Chair of Medical Biochemistry, Jagiellonian University Medical College, Kopernika 7, PL 31-034 Cracow, Poland; (M.I.); (A.B.-W.); (M.G.)
| | - Marek Bednarski
- Department of Pharmacological Screening, Jagiellonian University Medical College, Medyczna 9, PL 30-688 Cracow, Poland; (M.B.); (M.Z.); (A.M.); (P.Z.)
| | - Małgorzata Zygmunt
- Department of Pharmacological Screening, Jagiellonian University Medical College, Medyczna 9, PL 30-688 Cracow, Poland; (M.B.); (M.Z.); (A.M.); (P.Z.)
| | - Anthea Miller
- Department of Pharmacological Screening, Jagiellonian University Medical College, Medyczna 9, PL 30-688 Cracow, Poland; (M.B.); (M.Z.); (A.M.); (P.Z.)
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Noemi Nicosia
- PhD Program in Neuroscience, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy;
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Giorgia Pia Lombardo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy;
| | - Paula Zammit
- Department of Pharmacological Screening, Jagiellonian University Medical College, Medyczna 9, PL 30-688 Cracow, Poland; (M.B.); (M.Z.); (A.M.); (P.Z.)
- Department of Pharmacy, Faculty of Medicine and Surgery, University of Malta, MSD 2080 Msida, Malta
| | - Magdalena Kotańska
- Department of Pharmacological Screening, Jagiellonian University Medical College, Medyczna 9, PL 30-688 Cracow, Poland; (M.B.); (M.Z.); (A.M.); (P.Z.)
| |
Collapse
|
3
|
Capriotti Z, Klase Z. Innate immune memory in chronic HIV and HIV-associated neurocognitive disorders (HAND): potential mechanisms and clinical implications. J Neurovirol 2024:10.1007/s13365-024-01239-2. [PMID: 39733092 DOI: 10.1007/s13365-024-01239-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/26/2024] [Accepted: 12/13/2024] [Indexed: 12/30/2024]
Abstract
Although antiretroviral therapy (ART) has dramatically improved the outlook of the HIV/AIDS pandemic, people living with HIV (PLWH) on suppressive therapy are still at higher risk for a range of comorbidities including cardiovascular disease (CVD) and HIV-associated neurocognitive disorders (HAND), among others. Chronic inflammation and immune activation are thought to be an underlying cause of these comorbidities. Many of the factors thought to drive chronic inflammation and immune activation in HIV overlap with factors known to induce trained immunity. Trained immunity is a form of innate immune memory that metabolically and epigenetically reprograms innate immune cells to mount enhanced inflammatory responses upon secondary encounter with unrelated inflammatory stimuli. While this phenotype has been characterized in a variety of disease states in animals and humans, very little is known about its potential contribution to chronic HIV pathogenesis. In this review, a broad overview of innate immune memory in the periphery and the central nervous system (CNS) is provided and the evidence for trained immunity in the context of HIV is considered. In PLWH on ART, this phenotype could contribute to the chronic inflammation and immune activation associated with HIV comorbidities and could complicate HIV cure strategies due to the potential persistence of the phenotype after eradication of the virus. Further research into this immune state in the context of HIV may open the door for new therapeutics aimed at treating HIV comorbidities like HAND.
Collapse
Affiliation(s)
- Zachary Capriotti
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
- Molecular and Cell Biology and Genetics Graduate Program, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Zachary Klase
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA.
- Center for Neuroimmunology and CNS Therapeutics, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA.
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, 19102, USA.
| |
Collapse
|
4
|
Su C, Zhang L, Pan Y, Jiao J, Luo P, Chang X, Zhang H, Si X, Chen W, Huang Y. Enhancing aggression in Henan gamecocks via augmentation of serotonergic-dopaminergic signaling and attenuation of neuroimmune response. Poult Sci 2024; 103:104055. [PMID: 39190992 PMCID: PMC11395772 DOI: 10.1016/j.psj.2024.104055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/18/2024] [Accepted: 06/27/2024] [Indexed: 08/29/2024] Open
Abstract
Animal aggression is one of the most conserved behaviors. Excessive and inappropriate aggression was a serious social concern across species. After long-term selection under strict stress conditions, Henan gamecock serves as a good model for studying aggressive behavior. In this research, we constructed a Henan game chicken backcross population containing 25% Rhode Island Red (RIR), and conducted brain transcriptomics and serum metabolomics analyses on Henan gamecock (HGR) through its comparison with its female encounters (HGH) and the male backcross birds (BGR). The study revealed that seven differential metabolites in serum and 172 differentially expressed genes in the brain were commonly shared in both HGR vs. HGH and HGR vs. BGR comparisons. They exhibited the same patterns of modulation in Henan gamecocks, following either HGH < HGR > BGR or HGH > HGR < BGR style. Therein, some neurological genes involving in serotonergic and dopaminergic signaling were upregulated, while the levels of many genes related with neuro-immune function were decreased in Henan gamecock. In addition, many unknown genes specifically or highly expressed in the brain of the Henan gamecock were identified. These genes are potentially key candidates for enhancing the bird's aggression. Multi-omics joint analysis revealed that tyrosine metabolism and neuroactive ligand-receptor interaction were commonly affected. Overall, our results propose that the aggressiveness of Henan gamecocks can be heightened by the activation of the serotonergic-dopaminergic metabolic process in the brain, which concurrently impairs the neuroimmune system. Further research is needed to identify the function of these unknown genes on the bird's aggressive behavior.
Collapse
Affiliation(s)
- Chuanchen Su
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou Henan 450046, China
| | - Lin Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou Henan 450046, China
| | - Yuxian Pan
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou Henan 450046, China
| | - Jingya Jiao
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou Henan 450046, China
| | - Pengna Luo
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou Henan 450046, China
| | - Xinghai Chang
- Henan Changxing Agriculture and Animal Husbandry co., LTD, Kaifeng, Henan 475000, China
| | - Huaiyong Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou Henan 450046, China
| | - Xuemeng Si
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou Henan 450046, China
| | - Wen Chen
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou Henan 450046, China
| | - Yanqun Huang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou Henan 450046, China.
| |
Collapse
|
5
|
Khan H, Naseem T, Kaushik P, Narang J, Khan R, Panwar S, Parvez S. Decoding paradoxical links of cytokine markers in cognition: Cross talk between physiology, inflammaging, and Alzheimer's disease- related cognitive decline. Ageing Res Rev 2024; 101:102535. [PMID: 39374831 DOI: 10.1016/j.arr.2024.102535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/29/2024] [Accepted: 10/01/2024] [Indexed: 10/09/2024]
Abstract
Recent research has revolutionized our understanding of memory consolidation by emphasizing the critical role of astrocytes, microglia, and immune cells in through cytokine signaling. Cytokines, compact proteins, play pivotal roles in neuronal development, synaptic transmission, and normal aging. This review explores the cellular mechanisms contributing to cognitive decline in inflammaging and Alzheimer's disease, highlighting the paradoxical effects of most studied cytokines (IL-1, IL-6, TNF-α) in brain function, which act as a double-edged sword in brain physiology, acting both as facilitators of healthy cognitive function and as a potential contributor to cognitive decline.
Collapse
Affiliation(s)
- Hiba Khan
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Talib Naseem
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Pooja Kaushik
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Jagriti Narang
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Rehan Khan
- Chemical Biology Unit, Institute of Nano Science and Technology, Sector 81, Knowledge City, Sahibzada Ajit Singh Nagar, Mohali, Punjab 140306, India
| | - Siddharth Panwar
- School of Computing and Electrical Engineering, Indian Institute of Technology, Mandi, Himachal Pradesh 175075, India
| | - Suhel Parvez
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
6
|
Kiran R, Neelakandan V, Naveen Kumar B, Indla E. Neurohistopathological Alterations Induced by Clitoria Ternatea and Emblica Officinalis Extracts in Diabetic Male Wistar Rats. Cureus 2024; 16:e72079. [PMID: 39575021 PMCID: PMC11579403 DOI: 10.7759/cureus.72079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2024] [Indexed: 11/24/2024] Open
Abstract
Background Diabetes mellitus is a chronic condition that can lead to significant neurodegenerative complications. The extracts of traditional medicinal plants such as Clitoria ternatea and Emblica officinalis have neuroprotective properties. This study investigates the neurohistopathological alterations in diabetic male Wistar rats treated with these extracts. Objective This study aimed to assess the neuroprotective potential of Clitoria ternatea and Emblica officinalis extracts in mitigating neurohistopathological alterations in streptozotocin-induced diabetic male Wistar rats Methods In this experimental investigation, 48 male Wistar rats, aged 8-12 weeks and weighing 200-250g, were randomly allocated into eight groups (n=6): control, diabetic model, metformin treatment, Clitoria ternatea extract treatment, Emblica officinalis extract treatment, diabetic model + Clitoria ternatea extract treatment, diabetic model + Emblica officinalis extract treatment, and diabetic model + combined extract treatment. Streptozotocin 40 mg/kg was used to induce diabetes. Treatments included 100 mg/kg metformin, 300 mg/kg Clitoria ternatea extract, and 250 mg/kg Emblica officinalis extract. After three weeks, blood glucose levels, body weight, and neurohistopathological parameters (neuronal degeneration, gliosis, and vacuolation) were evaluated. Results The diabetic rats had much higher blood sugar levels (320.4 ± 15.3 mg/dL) and lost a lot of weight (180.7 ± 9.5 g) compared to the control group, which had normal blood sugar levels (92.3 ± 4.8 mg/dL) and stable body weight (225.4 ± 12.1 g) (p < 0.001). Treatment with Clitoria ternatea extract reduced blood glucose to 160.3 ± 12.1 mg/dL, while Emblica officinalis extract lowered it to 155.4 ± 11.8 mg/dL. The combined treatment brought glucose levels closer to normal (110.5 ± 8.9 mg/dL). Similarly, both extracts mitigated weight loss, with the combined treatment maintaining body weight at 220.4 ± 12.0 g, close to the control group (p < 0.05). The study of diabetic rats that had not been treated showed severe neuronal degeneration (4.2±0.4), gliosis (4.5±0.5), and vacuolation (4.7±0.5). Treatment groups showed marked reductions in these parameters, with the combined treatment producing the greatest neuroprotective effects, comparable to controls (p < 0.001). Conclusions Extracts from Clitoria ternatea and Emblica officinalis, particularly when combined, provide significant neuroprotective advantages in male Wistar diabetic rats, significantly lowering hyperglycemia and related neurohistopathological changes. These findings support the potential use of these extracts as complementary or alternative therapies in managing diabetic complications.
Collapse
Affiliation(s)
- Ravi Kiran
- Department of Anatomy, Meenakshi Academy of Higher Education and Research, Chennai, IND
| | | | | | - Edward Indla
- Department of Anatomy, Mamata Medical College, Khammam, IND
| |
Collapse
|
7
|
Talley S, Nguyen T, Van Ye L, Valiauga R, DeCarlo J, Mustafa J, Cook B, White FA, Campbell EM. Characterization of age-associated inflammasome activation reveals tissue specific differences in transcriptional and post-translational inflammatory responses. Immun Ageing 2024; 21:60. [PMID: 39256821 PMCID: PMC11384696 DOI: 10.1186/s12979-024-00462-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 08/15/2024] [Indexed: 09/12/2024]
Abstract
Aging is associated with systemic chronic, low-grade inflammation, termed 'inflammaging'. This pattern of inflammation is multifactorial and is driven by numerous inflammatory pathways, including the inflammasome. However, most studies to date have examined changes in the transcriptomes that are associated with aging and inflammaging, despite the fact that inflammasome activation is driven by a series of post-translational activation steps, culminating in the cleavage and activation of caspase-1. Here, we utilized transgenic mice expressing a caspase-1 biosensor to examine age-associated inflammasome activation in various organs and tissues to define these post-translational manifestations of inflammaging. Consistent with other studies, we observe increased inflammation, including inflammasome activation, in aged mice and specific tissues. However, we note that the degree of inflammasome activation is not uniformly associated with transcriptional changes commonly used as a surrogate for inflammasome activation in tissues. Furthermore, we used a skull thinning technique to monitor central nervous system inflammasome activation in vivo in aged mice and found that neuroinflammation is significantly amplified in aged mice in response to endotoxin challenge. Together, these data reveal that inflammaging is associated with both transcriptional and post-translational inflammatory pathways that are not uniform between tissues and establish new methodologies for measuring age-associated inflammasome activation in vivo and ex vivo.
Collapse
Affiliation(s)
- Sarah Talley
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, USA
| | - Tyler Nguyen
- Department of Anesthesia, Indiana University School of Medicine, Indianapolis, IN, USA
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA
| | - Lily Van Ye
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, USA
| | - Rasa Valiauga
- Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | - Jake DeCarlo
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, USA
| | - Jabra Mustafa
- Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | - Benjamin Cook
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, USA
| | - Fletcher A White
- Department of Anesthesia, Indiana University School of Medicine, Indianapolis, IN, USA
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA
| | - Edward M Campbell
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, USA.
| |
Collapse
|
8
|
Hou Q, Yuan J, Li S, Ma J, Li W, Zhang B, Zhao X, Zhang F, Ma Y, Zheng H, Wang H. Autophagic degradation of DHCR7 activates AKT3 and promotes sevoflurane-induced hippocampal neuroinflammation in neonatal mice. Free Radic Biol Med 2024; 222:304-316. [PMID: 38901498 DOI: 10.1016/j.freeradbiomed.2024.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/26/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
Repeated sevoflurane exposure in neonatal mice triggers neuroinflammation with detrimental effects on cognitive function. Yet, the mechanism of the sevoflurane-induced cytokine response is largely unknown. In this study, we reveal that 3-MA, an autophagy inhibitor, attenuated the sevoflurane-induced neuroinflammation and cognitive dysfunction, including the decreased freezing time and fewer platform crossings, in the neonate mice. 3-Methyladenine (3-MA) suppressed sevoflurane-induced expression of interleukin-6 and tumor necrosis factor-alpha in vitro. Moreover, sevoflurane activates IRF3, facilitating cytokine transcription in an AKT3-dependent manner. Mechanistically, sevoflurane-induced autophagic degradation of dehydrocholesterol-reductase-7 (DHCR7) resulted in accumulations of its substrate 7-dehydrocholesterol (7-DHC), mimicking the effect of sevoflurane on AKT3 activation and IRF3-driven cytokine expression. 3-MA significantly reversed sevoflurane-induced DHCR7 degradation, AKT phosphorylation, IRF3 activation, and the accumulation of 7-DHC in the hippocampal CA1 region. These findings pave the way for additional investigations aimed at developing novel strategies to mitigate postoperative cognitive impairment in pediatric patients.
Collapse
Affiliation(s)
- Qi Hou
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Junhu Yuan
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Shuai Li
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jianhui Ma
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Weiwei Li
- Zhejiang Key Laboratory of Radiation Oncology, Zhejiang Cancer Research Institute, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Bo Zhang
- Department of Anesthesiology, China-Japan Friendship Hospital, Beijing, 100021, China
| | - Xinhua Zhao
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Fanyu Zhang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yiming Ma
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Hui Zheng
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Hongying Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
9
|
Mandolfo O, Parker H, Aguado È, Ishikawa Learmonth Y, Liao AY, O'Leary C, Ellison S, Forte G, Taylor J, Wood S, Searle R, Holley RJ, Boutin H, Bigger BW. Systemic immune challenge exacerbates neurodegeneration in a model of neurological lysosomal disease. EMBO Mol Med 2024; 16:1579-1602. [PMID: 38890537 PMCID: PMC11251277 DOI: 10.1038/s44321-024-00092-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 05/30/2024] [Accepted: 06/04/2024] [Indexed: 06/20/2024] Open
Abstract
Mucopolysaccharidosis type IIIA (MPS IIIA) is a rare paediatric lysosomal storage disorder, caused by the progressive accumulation of heparan sulphate, resulting in neurocognitive decline and behavioural abnormalities. Anecdotal reports from paediatricians indicate a more severe neurodegeneration in MPS IIIA patients, following infection, suggesting inflammation as a potential driver of neuropathology. To test this hypothesis, we performed acute studies in which WT and MPS IIIA mice were challenged with the TLR3-dependent viral mimetic poly(I:C). The challenge with an acute high poly(I:C) dose exacerbated systemic and brain cytokine expression, especially IL-1β in the hippocampus. This was accompanied by an increase in caspase-1 activity within the brain of MPS IIIA mice with concomitant loss of hippocampal GFAP and NeuN expression. Similar levels of cell damage, together with exacerbation of gliosis, were also observed in MPS IIIA mice following low chronic poly(I:C) dosing. While further investigation is warranted to fully understand the extent of IL-1β involvement in MPS IIIA exacerbated neurodegeneration, our data robustly reinforces our previous findings, indicating IL-1β as a pivotal catalyst for neuropathological processes in MPS IIIA.
Collapse
Affiliation(s)
- Oriana Mandolfo
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, 3.721 Stopford Building, Manchester, UK
| | - Helen Parker
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, 3.721 Stopford Building, Manchester, UK
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Èlia Aguado
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, 3.721 Stopford Building, Manchester, UK
| | - Yuko Ishikawa Learmonth
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, 3.721 Stopford Building, Manchester, UK
| | - Ai Yin Liao
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, 3.721 Stopford Building, Manchester, UK
| | - Claire O'Leary
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, 3.721 Stopford Building, Manchester, UK
| | - Stuart Ellison
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, 3.721 Stopford Building, Manchester, UK
| | - Gabriella Forte
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, 3.721 Stopford Building, Manchester, UK
| | - Jessica Taylor
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, 3.721 Stopford Building, Manchester, UK
| | - Shaun Wood
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, 3.721 Stopford Building, Manchester, UK
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - Rachel Searle
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, 3.721 Stopford Building, Manchester, UK
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - Rebecca J Holley
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, 3.721 Stopford Building, Manchester, UK
| | - Hervé Boutin
- Division of Neuroscience & Experimental Psychology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK
- INSERM, UMR 1253, iBrain, Université de Tours, Tours, France
| | - Brian W Bigger
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, 3.721 Stopford Building, Manchester, UK.
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
10
|
Houle S, Tapp Z, Dobres S, Ahsan S, Reyes Y, Cotter C, Mitsch J, Zimomra Z, Peng J, Rowe RK, Lifshitz J, Sheridan J, Godbout J, Kokiko-Cochran ON. Sleep fragmentation after traumatic brain injury impairs behavior and conveys long-lasting impacts on neuroinflammation. Brain Behav Immun Health 2024; 38:100797. [PMID: 38803369 PMCID: PMC11128763 DOI: 10.1016/j.bbih.2024.100797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 05/12/2024] [Indexed: 05/29/2024] Open
Abstract
Traumatic brain injury (TBI) causes a prolonged inflammatory response in the central nervous system (CNS) driven by microglia. Microglial reactivity is exacerbated by stress, which often provokes sleep disturbances. We have previously shown that sleep fragmentation (SF) stress after experimental TBI increases microglial reactivity and impairs hippocampal function 30 days post-injury (DPI). The neuroimmune response is highly dynamic the first few weeks after TBI, which is also when injury induced sleep-wake deficits are detected. Therefore, we hypothesized that even a few weeks of TBI SF stress would synergize with injury induced sleep-wake deficits to promote neuroinflammation and impair outcome. Here, we investigated the effects of environmental SF in a lateral fluid percussion model of mouse TBI. Half of the mice were undisturbed, and half were exposed to 5 h of SF around the onset of the light cycle, daily, for 14 days. All mice were then undisturbed 15-30 DPI, providing a period for SF stress recovery (SF-R). Mice exposed to SF stress slept more than those in control housing 7-14 DPI and engaged in more total daily sleep bouts during the dark period. However, SF stress did not exacerbate post-TBI sleep deficits. Testing in the Morris water maze revealed sex dependent differences in spatial reference memory 9-14 DPI with males performing worse than females. Post-TBI SF stress suppressed neurogenesis-related gene expression and increased inflammatory signaling in the cortex at 14 DPI. No differences in sleep behavior were detected between groups during the SF stress recovery period 15-30 DPI. Microscopy revealed cortical and hippocampal IBA1 and CD68 percent-area increased in TBI SF-R mice 30 DPI. Additionally, neuroinflammatory gene expression was increased, and synaptogenesis-related gene expression was suppressed in TBI-SF mice 30 DPI. Finally, IPA canonical pathway analysis showed post-TBI SF impaired and delayed activation of synapse-related pathways between 14 and 30 DPI. These data show that transient SF stress after TBI impairs recovery and conveys long-lasting impacts on neuroimmune function independent of continuous sleep deficits. Together, these finding support that even limited exposure to post-TBI SF stress can have lasting impacts on cognitive recovery and regulation of the immune response to trauma.
Collapse
Affiliation(s)
- Samuel Houle
- Dept. of Neuroscience, College of Medicine, The Ohio State University, 1858 Neil Ave, 43210, Columbus, OH, USA
| | - Zoe Tapp
- Dept. of Neuroscience, College of Medicine, The Ohio State University, 1858 Neil Ave, 43210, Columbus, OH, USA
- Institute for Behavioral Medicine Research, Neurological Institute, The Ohio State University, 460 Medical Center Drive, 43210, Columbus, OH, USA
| | - Shannon Dobres
- Dept. of Neuroscience, College of Medicine, The Ohio State University, 1858 Neil Ave, 43210, Columbus, OH, USA
| | - Sakeef Ahsan
- Dept. of Neuroscience, College of Medicine, The Ohio State University, 1858 Neil Ave, 43210, Columbus, OH, USA
| | - Yvanna Reyes
- Dept. of Neuroscience, College of Medicine, The Ohio State University, 1858 Neil Ave, 43210, Columbus, OH, USA
| | - Christopher Cotter
- Dept. of Neuroscience, College of Medicine, The Ohio State University, 1858 Neil Ave, 43210, Columbus, OH, USA
| | - Jessica Mitsch
- Dept. of Neuroscience, College of Medicine, The Ohio State University, 1858 Neil Ave, 43210, Columbus, OH, USA
| | - Zachary Zimomra
- Institute for Behavioral Medicine Research, Neurological Institute, The Ohio State University, 460 Medical Center Drive, 43210, Columbus, OH, USA
| | - Juan Peng
- Center for Biostatistics, The Ohio State University, 320-55 Lincoln Tower, 1800 Cannon Drive, 43210, Columbus, OH, USA
| | - Rachel K. Rowe
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Jonathan Lifshitz
- Phoenix VA Health Care System and University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - John Sheridan
- Institute for Behavioral Medicine Research, Neurological Institute, The Ohio State University, 460 Medical Center Drive, 43210, Columbus, OH, USA
- Division of Biosciences, College of Dentistry, The Ohio State University, 305 W. 12th Ave, 43210, Columbus, OH, USA
| | - Jonathan Godbout
- Dept. of Neuroscience, College of Medicine, The Ohio State University, 1858 Neil Ave, 43210, Columbus, OH, USA
- Institute for Behavioral Medicine Research, Neurological Institute, The Ohio State University, 460 Medical Center Drive, 43210, Columbus, OH, USA
- Chronic Brain Injury Program, The Ohio State University, 190 North Oval Mall, 43210, Columbus, OH, USA
| | - Olga N. Kokiko-Cochran
- Dept. of Neuroscience, College of Medicine, The Ohio State University, 1858 Neil Ave, 43210, Columbus, OH, USA
- Institute for Behavioral Medicine Research, Neurological Institute, The Ohio State University, 460 Medical Center Drive, 43210, Columbus, OH, USA
- Chronic Brain Injury Program, The Ohio State University, 190 North Oval Mall, 43210, Columbus, OH, USA
| |
Collapse
|
11
|
Lee Y, Ju X, Cui J, Zhang T, Hong B, Kim YH, Ko Y, Park J, Choi CH, Heo JY, Chung W. Mitochondrial dysfunction precedes hippocampal IL-1β transcription and cognitive impairments after low-dose lipopolysaccharide injection in aged mice. Heliyon 2024; 10:e28974. [PMID: 38596096 PMCID: PMC11002287 DOI: 10.1016/j.heliyon.2024.e28974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/11/2024] Open
Abstract
Acute cognitive impairments termed delirium often occur after inflammatory insults in elderly patients. While previous preclinical studies suggest mitochondria as a target for reducing neuroinflammation and cognitive impairments after LPS injection, fewer studies have evaluated the effects of a low-grade systemic inflammation in the aged brain. Thus, to identify the significance of mitochondrial dysfunction after a clinically relevant systemic inflammatory stimulus, we injected old-aged mice (18-20 months) with low-dose lipopolysaccharide (LPS, 0.04 mg/kg). LPS injection reduced mitochondrial respiration in the hippocampus 24 h after injection (respiratory control ratio [RCR], state3u/state4o; control = 2.82 ± 0.19, LPS = 2.57 ± 0.08). However, gene expression of the pro-inflammatory cytokine IL-1β was increased (RT-PCR, control = 1.00 ± 0.30; LPS = 2.01 ± 0.67) at a more delayed time point, 48 h after LPS injection. Such changes were associated with cognitive impairments in the Barnes maze and fear chamber tests. Notably, young mice were unaffected by low-dose LPS, suggesting that mitochondrial dysfunction precedes neuroinflammation and cognitive decline in elderly patients following a low-grade systemic insult. Our findings highlight mitochondria as a potential therapeutic target for reducing delirium in elderly patients.
Collapse
Affiliation(s)
- Yulim Lee
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea
- Department of Biochemistry, Chungnam National University School of Medicine, Daejeon, South Korea
- Brain Korea 21 FOUR Project for Medical Science, Chungnam National University, Daejeon, South Korea
| | - Xianshu Ju
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea
- Brain Research Institute, Chungnam National University School of Medicine, Daejeon, South Korea
- Department of Anesthesiology and Pain Medicine, Chungnam National University Hospital, Daejeon, South Korea
| | - Jianchen Cui
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea
- Department of Biochemistry, Chungnam National University School of Medicine, Daejeon, South Korea
- Brain Korea 21 FOUR Project for Medical Science, Chungnam National University, Daejeon, South Korea
- Department of Anesthesiology, The First People's Hospital of Yunnan Province. The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Tao Zhang
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea
- Department of Biochemistry, Chungnam National University School of Medicine, Daejeon, South Korea
- Brain Korea 21 FOUR Project for Medical Science, Chungnam National University, Daejeon, South Korea
| | - Boohwi Hong
- Department of Anesthesiology and Pain Medicine, Chungnam National University Hospital, Daejeon, South Korea
- Department of Anesthesiology and Pain Medicine, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Yoon Hee Kim
- Department of Anesthesiology and Pain Medicine, Chungnam National University Hospital, Daejeon, South Korea
- Department of Anesthesiology and Pain Medicine, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Youngkwon Ko
- Department of Anesthesiology and Pain Medicine, Chungnam National University Hospital, Daejeon, South Korea
- Department of Anesthesiology and Pain Medicine, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Jiho Park
- Department of Anesthesiology and Pain Medicine, Chungnam National University Hospital, Sejong, South Korea
| | - Chul Hee Choi
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea
- Brain Korea 21 FOUR Project for Medical Science, Chungnam National University, Daejeon, South Korea
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Jun Young Heo
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea
- Department of Biochemistry, Chungnam National University School of Medicine, Daejeon, South Korea
- Brain Korea 21 FOUR Project for Medical Science, Chungnam National University, Daejeon, South Korea
- Brain Research Institute, Chungnam National University School of Medicine, Daejeon, South Korea
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Woosuk Chung
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea
- Brain Korea 21 FOUR Project for Medical Science, Chungnam National University, Daejeon, South Korea
- Brain Research Institute, Chungnam National University School of Medicine, Daejeon, South Korea
- Department of Anesthesiology and Pain Medicine, Chungnam National University Hospital, Daejeon, South Korea
- Department of Anesthesiology and Pain Medicine, Chungnam National University School of Medicine, Daejeon, South Korea
| |
Collapse
|
12
|
Wang J, Wang Y, Zhu Y, Cui C, Feng T, Huang Q, Liu S, Wu Q. Peripheral inflammation triggering central anxiety through the hippocampal glutamate metabolized receptor 1. CNS Neurosci Ther 2024; 30:e14723. [PMID: 38676295 PMCID: PMC11053250 DOI: 10.1111/cns.14723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 02/01/2024] [Accepted: 03/30/2024] [Indexed: 04/28/2024] Open
Abstract
AIMS This study aimed to investigate the relationship between ulcerative colitis (UC) and anxiety and explore its central mechanisms using colitis mice. METHODS Anxiety-like behavior was assessed in mice induced by 3% dextran sodium sulfate (DSS) using the elevated plus maze and open-field test. The spatial transcriptome of the hippocampus was analyzed to assess the distribution of excitatory and inhibitory synapses, and Toll-like receptor 4 (TLR4) inhibitor TAK-242 (10 mg/kg) and AAV virus interference were used to examine the role of peripheral inflammation and central molecules such as Glutamate Receptor Metabotropic 1 (GRM1) in mediating anxiety behavior in colitis mice. RESULTS DSS-induced colitis increased anxiety-like behaviors, which was reduced by TAK-242. Spatial transcriptome analysis of the hippocampus showed an excitatory-inhibitory imbalance mediated by glutamatergic synapses, and GRM1 in hippocampus was identified as a critical mediator of anxiety behavior in colitis mice via differential gene screening and AAV virus interference. CONCLUSION Our work suggests that the hippocampus plays an important role in brain anxiety caused by peripheral inflammation, and over-excitation of hippocampal glutamate synapses by GRM1 activation induces anxiety-like behavior in colitis mice. These findings provide new insights into the central mechanisms underlying anxiety in UC and may contribute to the development of novel therapeutic strategies for UC-associated anxiety.
Collapse
Affiliation(s)
- Jun‐Meng Wang
- Acupuncture and Moxibustion SchoolChengdu University of Traditional Chinese MedicineChengduChina
| | - Yue‐Mei Wang
- Acupuncture and Moxibustion SchoolChengdu University of Traditional Chinese MedicineChengduChina
| | - Yuan‐Bing Zhu
- Acupuncture and Moxibustion SchoolChengdu University of Traditional Chinese MedicineChengduChina
| | - Chan Cui
- Acupuncture and Moxibustion SchoolChengdu University of Traditional Chinese MedicineChengduChina
| | - Tong Feng
- Acupuncture and Moxibustion SchoolChengdu University of Traditional Chinese MedicineChengduChina
| | - Qin Huang
- Acupuncture and Moxibustion SchoolChengdu University of Traditional Chinese MedicineChengduChina
| | - Shu‐Qing Liu
- Acupuncture and Moxibustion SchoolChengdu University of Traditional Chinese MedicineChengduChina
| | - Qiao‐Feng Wu
- Acupuncture and Moxibustion SchoolChengdu University of Traditional Chinese MedicineChengduChina
- Institute of Acupuncture and Homeostasis RegulationChengdu University of Traditional Chinese MedicineChengduChina
- Key Laboratory of Acupuncture for Senile Disease (Chengdu University of TCM), Ministry of EducationChengduChina
| |
Collapse
|
13
|
Charoensaensuk V, Huang BR, Huang ST, Lin C, Xie SY, Chen CW, Chen YC, Cheng HT, Liu YS, Lai SW, Shen CK, Lin HJ, Yang LY, Lu DY. LPS priming-induced immune tolerance mitigates LPS-stimulated microglial activation and social avoidance behaviors in mice. J Pharmacol Sci 2024; 154:225-235. [PMID: 38485340 DOI: 10.1016/j.jphs.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 03/19/2024] Open
Abstract
In this study, we investigated the regulatory mechanisms underlying the effects of LPS tolerance on the inflammatory homeostasis of immune cells. LPS priming-induced immune tolerance downregulated cyclooxygenase-2, and lowered the production of prostaglandin-E2 in microglial cells. In addition, LPS tolerance downregulated the expression of suppressor of cytokine signaling 3, and inducible nitric oxide synthase/nitric oxide; suppressed the LPS-mediated induction of tumor necrosis factor-α, interleukin (IL)-6, and IL-1; and reduced reactive oxygen species production in microglial cells. LPS stimulation increased the levels of the adaptive response-related proteins heme oxygenase-1 and superoxide dismutase 2, and the levels of heme oxygenase-1 (HO-1) enhanced after LPS priming. Systemic administration of low-dose LPS (0.5 mg/kg) to mice for 4 consecutive days attenuated high-dose LPS (5 mg/kg)-induced inflammatory response, microglial activation, and proinflammatory cytokine expression. Moreover, repeated exposure to low-dose LPS suppressed the recruitment of peripheral monocytes or macrophages to brain regions and downregulated the expression of proinflammatory cytokines. Notably, LPS-induced social avoidance behaviors in mice were mitigated by immune tolerance. In conclusion, immune tolerance may reduce proinflammatory cytokine expression and reactive oxygen species production. Our findings provide insights into the effects of endotoxin tolerance on innate immune cells and social behaviors.
Collapse
Affiliation(s)
- Vichuda Charoensaensuk
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Bor-Ren Huang
- Department of Neurosurgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan; School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Sian-Ting Huang
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Chingju Lin
- Department of Physiology, School of Medicine, China Medical University, Taichung, 404328, Taiwan
| | - Sheng-Yun Xie
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Chao-Wei Chen
- Institute of New Drug Development, China Medical University, Taichung, Taiwan
| | - Yen-Chang Chen
- Institute of New Drug Development, China Medical University, Taichung, Taiwan
| | - Han-Tsung Cheng
- Department of Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Yu-Shu Liu
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Sheng-Wei Lai
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Ching-Kai Shen
- Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan
| | - Hui-Jung Lin
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Liang-Yo Yang
- Department of Physiology, School of Medicine, China Medical University, Taichung, 404328, Taiwan; Laboratory for Neural Repair, China Medical University Hospital, Taichung, 404327, Taiwan; Biomedical Technology R&D Center, China Medical University Hospital, Taichung, 404327, Taiwan.
| | - Dah-Yuu Lu
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan; Department of Photonics and Communication Engineering, Asia University, Taichung, Taiwan.
| |
Collapse
|
14
|
El-Mansoury B, Smimih K, El Khiat A, Draoui A, Aimrane A, Chatoui R, Ferssiwi A, Bitar A, Gamrani H, Jayakumar AR, El Hiba O. Short Working Memory Impairment Associated with Hippocampal Microglia Activation in Chronic Hepatic Encephalopathy. Metabolites 2024; 14:193. [PMID: 38668321 PMCID: PMC11052478 DOI: 10.3390/metabo14040193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/03/2024] [Accepted: 01/06/2024] [Indexed: 04/28/2024] Open
Abstract
Hepatic encephalopathy (HE) is a major neuropsychological condition that occursas a result of impaired liver function. It is frequently observed in patients with advanced liver disease or cirrhosis. Memory impairment is among the symptoms of HE; the pathophysiologic mechanism for this enervating condition remains unclear. However, it is possible that neuroinflammation may be involved, as recent studies have emphasized such phenomena. Therefore, the aim of the present study is to assess short working memory (SWM) and examine the involvement of microglia in a chronic model of HE. The study was carried out with male Wistar rats that were induced by repeated thioacetamide (TAA) administration (100 mg/kg i.p injection for 10 days). SWM function was assessed through Y-maze, T-Maze, and novel object recognition (NOR) tests, together with an immunofluorescence study of microglia activation within the hippocampal areas. Our data showed impaired SWM in TAA-treated rats that was associated with microglial activation in the three hippocampal regions, and which contributed to cognitive impairment.
Collapse
Affiliation(s)
- Bilal El-Mansoury
- Laboratory of Anthropogenic, Biotechnology and Health, Nutritional Physiopathologies, Neurosciences and Toxicology Team, Faculty of Sciences, Chouaib Doukkali University, Av. Des Facultés, El Jadida 24000, Morocco; (B.E.-M.); (A.E.K.); (A.A.); (A.F.); (A.B.)
| | - Kamal Smimih
- Laboratory of Genie-Biology, Faculty of Sciences and Techniques, Sultan Moulay Slimane University, Beni Mellal 23000, Morocco; (K.S.); (R.C.)
| | - Abdelaati El Khiat
- Laboratory of Anthropogenic, Biotechnology and Health, Nutritional Physiopathologies, Neurosciences and Toxicology Team, Faculty of Sciences, Chouaib Doukkali University, Av. Des Facultés, El Jadida 24000, Morocco; (B.E.-M.); (A.E.K.); (A.A.); (A.F.); (A.B.)
- Higher Institute of Nursing Professions and Health Techniques, Ministry of Health, Ouarzazate 45000, Morocco
- Laboratory of Clinical and Experimental Neurosciences and Environment, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakech 40000, Morocco
| | - Ahmed Draoui
- Laboratory of Clinical and Experimental Neurosciences and Environment, Faculty of Science Semlalia, Cadi Ayyad University, Marrakech 40000, Morocco; (A.D.); (H.G.)
| | - Abdelmohcine Aimrane
- Laboratory of Anthropogenic, Biotechnology and Health, Nutritional Physiopathologies, Neurosciences and Toxicology Team, Faculty of Sciences, Chouaib Doukkali University, Av. Des Facultés, El Jadida 24000, Morocco; (B.E.-M.); (A.E.K.); (A.A.); (A.F.); (A.B.)
| | - Redouane Chatoui
- Laboratory of Genie-Biology, Faculty of Sciences and Techniques, Sultan Moulay Slimane University, Beni Mellal 23000, Morocco; (K.S.); (R.C.)
| | - Abdesslam Ferssiwi
- Laboratory of Anthropogenic, Biotechnology and Health, Nutritional Physiopathologies, Neurosciences and Toxicology Team, Faculty of Sciences, Chouaib Doukkali University, Av. Des Facultés, El Jadida 24000, Morocco; (B.E.-M.); (A.E.K.); (A.A.); (A.F.); (A.B.)
| | - Abdelali Bitar
- Laboratory of Anthropogenic, Biotechnology and Health, Nutritional Physiopathologies, Neurosciences and Toxicology Team, Faculty of Sciences, Chouaib Doukkali University, Av. Des Facultés, El Jadida 24000, Morocco; (B.E.-M.); (A.E.K.); (A.A.); (A.F.); (A.B.)
| | - Halima Gamrani
- Laboratory of Clinical and Experimental Neurosciences and Environment, Faculty of Science Semlalia, Cadi Ayyad University, Marrakech 40000, Morocco; (A.D.); (H.G.)
| | | | - Omar El Hiba
- Laboratory of Anthropogenic, Biotechnology and Health, Nutritional Physiopathologies, Neurosciences and Toxicology Team, Faculty of Sciences, Chouaib Doukkali University, Av. Des Facultés, El Jadida 24000, Morocco; (B.E.-M.); (A.E.K.); (A.A.); (A.F.); (A.B.)
| |
Collapse
|
15
|
Magalhães DM, Mampay M, Sebastião AM, Sheridan GK, Valente CA. Age-related impact of social isolation in mice: Young vs middle-aged. Neurochem Int 2024; 174:105678. [PMID: 38266657 DOI: 10.1016/j.neuint.2024.105678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/14/2024] [Accepted: 01/14/2024] [Indexed: 01/26/2024]
Abstract
Social isolation is a chronic mild stressor and a significant risk factor for mental health disorders. Herein we explored the impact of social isolation on depression- and anxiety-like behaviours, as well as spatial memory impairments, in middle-aged male mice compared to post-weaning mice. We aimed to quantify and correlate social isolation-induced behaviour discrepancies with changes in hippocampal glial cell reactivity and pro-inflammatory cytokine levels. Post-weaning and middle-aged C57BL7/J6 male mice were socially isolated for a 3-week period and behavioural tests were performed on the last five days of isolation. We found that 3 weeks of social isolation led to depressive-like behaviour in the forced swim test, anxiety-like behaviour in the open field test, and spatial memory impairment in the Morris water maze paradigm in middle-aged male mice. These behavioural alterations were not observed in male mice after post-weaning social isolation, indicating resilience to isolation-mediated stress. Increased Iba-1 expression and NLRP3 priming were both observed in the hippocampus of socially isolated middle-aged mice, suggesting a role for microglia and NLRP3 pathway in the detrimental effects of social isolation on cognition and behaviour. Young socially isolated mice also demonstrated elevated NLRP3 priming compared to controls, but no differences in Iba-1 levels and no significant changes in behaviour. Ageing-induced microglia activation and enhancement of IL-1β, TNF-α and IL-6 proinflammatory cytokines, known signs of a chronic low-grade inflammatory state, were also detected. Altogether, data suggest that social isolation, in addition to inflammaging, contributes to stress-related cognitive impairment in middle-aged mice.
Collapse
Affiliation(s)
- Daniela M Magalhães
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal; School of Applied Sciences, University of Brighton, Brighton, UK
| | - Myrthe Mampay
- School of Applied Sciences, University of Brighton, Brighton, UK
| | - Ana M Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | | | - Cláudia A Valente
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|
16
|
Ni RJ, Wang YY, Pu WJ, Wei YY, Wei JX, Zhao LS, Ma XH. Differential effects of sleep deprivation on behavior and microglia in a brain-region-specific manner in young and aged male mice. Brain Behav Immun 2024; 117:12-19. [PMID: 38157946 DOI: 10.1016/j.bbi.2023.12.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024] Open
Abstract
Microglia, resident immune cells in the central nervous system, constantly monitor the state of the surrounding brain activity. The animal model induced by sleep deprivation (SD) is widely used to study the pathophysiological mechanisms of insomnia and bipolar disorder. However, it remains unclear whether SD affects behaviors in young and aged male mice and microglia in various brain regions. In this study, we confirmed brain region-specific changes in microglial density and morphology in the accumbens nucleus (Acb), amygdala (AMY), cerebellum (Cb), corpus callosum (cc), caudate putamen, hippocampus (HIP), hypothalamus (HYP), medial prefrontal cortex (mPFC), and thalamus (TH) of young mice. In addition, the density of microglia in old mice was higher than that in young mice. Compared with young mice, old mice showed a markedly increased microglial size, decreased total length of microglial processes, and decreased maximum length. Importantly, we found that 48-h SD decreased microglial density and morphology in old mice, whereas SD increased microglial density and morphology in most observed brain regions in young mice. SD-induced hyperactivity was observed only in young mice but not in old mice. Moreover, microglial density (HIP, AMY, mPFC, CPu) was significantly positively correlated with behaviors in SD- and vehicle-treated young mice. Contrarily, negative correlations were shown between the microglial density (cc, Cb, TH, HYP, Acb, AMY) and behaviors in vehicle-treated young and old mice. These results suggest that SD dysregulates the homeostatic state of microglia in a region- and age-dependent manner. Microglia may be involved in regulating age-related behavioral responses to SD.
Collapse
Affiliation(s)
- Rong-Jun Ni
- Mental Health Center and Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, Sichuan 610044, China.
| | - Yi-Yan Wang
- Mental Health Center and Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, Sichuan 610044, China
| | - Wen-Jun Pu
- Mental Health Center and Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, Sichuan 610044, China
| | - Ying-Ying Wei
- Mental Health Center and Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, Sichuan 610044, China
| | - Jin-Xue Wei
- Mental Health Center and Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, Sichuan 610044, China
| | - Lian-Sheng Zhao
- Mental Health Center and Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, Sichuan 610044, China
| | - Xiao-Hong Ma
- Mental Health Center and Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, Sichuan 610044, China.
| |
Collapse
|
17
|
da Silva AAF, Fiadeiro MB, Bernardino LI, Fonseca CSP, Baltazar GMF, Cristóvão ACB. "Lipopolysaccharide-induced animal models for neuroinflammation - An overview.". J Neuroimmunol 2024; 387:578273. [PMID: 38183948 DOI: 10.1016/j.jneuroim.2023.578273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 11/07/2023] [Accepted: 11/29/2023] [Indexed: 01/08/2024]
Abstract
Neuroinflammation is a pathological mechanism contributing to neurodegenerative diseases. For in-depth studies of neuroinflammation, several animal models reported reproducing behavioral dysfunctions and cellular pathological mechanisms induced by brain inflammation. One of the most popular models of neuroinflammation is the one generated by lipopolysaccharide exposure. Despite its importance, the reported results using this model show high heterogeneity, making it difficult to analyze and compare the outcomes between studies. Therefore, the current review aims to summarize the different experimental paradigms used to reproduce neuroinflammation by lipopolysaccharide exposure and its respective outcomes, helping to choose the model that better suits each specific research aim.
Collapse
Affiliation(s)
- Ana Alexandra Flores da Silva
- CICS-UBI - Health Sciences Research Center, University of Beira Interior, Covilhã, Portugal; NeuroSoV/Fastprinciple-Lda, UBIMedical, Universidade da Beira Interior, Covilhã, Portugal
| | - Mariana Bernardo Fiadeiro
- CICS-UBI - Health Sciences Research Center, University of Beira Interior, Covilhã, Portugal; NeuroSoV/Fastprinciple-Lda, UBIMedical, Universidade da Beira Interior, Covilhã, Portugal
| | | | | | | | - Ana Clara Braz Cristóvão
- CICS-UBI - Health Sciences Research Center, University of Beira Interior, Covilhã, Portugal; NeuroSoV/Fastprinciple-Lda, UBIMedical, Universidade da Beira Interior, Covilhã, Portugal.
| |
Collapse
|
18
|
Church KA, Cardona AE, Hopp SC. Roles in Innate Immunity. ADVANCES IN NEUROBIOLOGY 2024; 37:263-286. [PMID: 39207697 DOI: 10.1007/978-3-031-55529-9_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Microglia are best known as the resident phagocytes of the central nervous system (CNS). As a resident brain immune cell population, microglia play key roles during the initiation, propagation, and resolution of inflammation. The discovery of resident adaptive immune cells in the CNS has unveiled a relationship between microglia and adaptive immune cells for CNS immune-surveillance during health and disease. The interaction of microglia with elements of the peripheral immune system and other CNS resident cells mediates a fine balance between neuroprotection and tissue damage. In this chapter, we highlight the innate immune properties of microglia, with a focus on how pattern recognition receptors, inflammatory signaling cascades, phagocytosis, and the interaction between microglia and adaptive immune cells regulate events that initiate an inflammatory or neuroprotective response within the CNS that modulates immune-mediated disease exacerbation or resolution.
Collapse
Affiliation(s)
- Kaira A Church
- Department of Molecular Microbiology & Immunology, The University of Texas at San Antonio, San Antonio, TX, USA
- South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, USA
| | - Astrid E Cardona
- Department of Molecular Microbiology & Immunology, The University of Texas at San Antonio, San Antonio, TX, USA
- South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, USA
| | - Sarah C Hopp
- Department of Pharmacology, Biggs Institute for Alzheimer's and Neurodegenerative Disease, The University of Texas Health Science Center San Antonio, San Antonio, TX, USA.
| |
Collapse
|
19
|
Wangler LM, Godbout JP. Microglia moonlighting after traumatic brain injury: aging and interferons influence chronic microglia reactivity. Trends Neurosci 2023; 46:926-940. [PMID: 37723009 PMCID: PMC10592045 DOI: 10.1016/j.tins.2023.08.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/11/2023] [Accepted: 08/24/2023] [Indexed: 09/20/2023]
Abstract
Most of the individuals who experience traumatic brain injury (TBI) develop neuropsychiatric and cognitive complications that negatively affect recovery and health span. Activation of multiple inflammatory pathways persists after TBI, but it is unclear how inflammation contributes to long-term behavioral and cognitive deficits. One outcome of TBI is microglial priming and subsequent hyper-reactivity to secondary stressors, injuries, or immune challenges that further augment complications. Additionally, microglia priming with aging contributes to exaggerated glial responses to TBI. One prominent inflammatory pathway, interferon (IFN) signaling, is increased after TBI and may contribute to microglial priming and subsequent reactivity. This review discusses the contributions of microglia to inflammatory processes after TBI, as well as the influence of aging and IFNs on microglia reactivity and chronic inflammation after TBI.
Collapse
Affiliation(s)
- Lynde M Wangler
- Department of Neuroscience, The Ohio State University Wexner Medical Center, 333 W 10th Ave, Columbus, OH, USA
| | - Jonathan P Godbout
- Department of Neuroscience, The Ohio State University Wexner Medical Center, 333 W 10th Ave, Columbus, OH, USA; Institute for Behavioral Medicine Research, Ohio State University Wexner Medical Center, 460 Medical Center Drive, Columbus, OH, USA; Chronic Brain Injury Program, The Ohio State University, 190 North Oval Mall, Columbus, OH, USA.
| |
Collapse
|
20
|
Indla E, Rajasekar KV, Naveen Kumar B, Kumar SS, Chelli S, Babu Sayana S. Neurohistopathological Alterations Induced by Theobroma Cacao and Camellia Sinensis Extracts in Diabetic Male Wistar Rats. Cureus 2023; 15:e48492. [PMID: 38073976 PMCID: PMC10704851 DOI: 10.7759/cureus.48492] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/08/2023] [Indexed: 10/03/2024] Open
Abstract
Background Diabetes mellitus is often associated with neurohistopathological changes, resulting in cognitive deficits. This study aimed to explore the neurohistopathological alterations induced by Theobroma Cacao and Camellia Sinensis extracts in diabetic male Wistar rats. Methods In this randomized controlled trial, a total of 64 male Wistar rats aged between 8 and 12 weeks were allocated evenly into eight different groups. The first group, consisting of eight rats, served as the control, receiving only a standard diet with no additional treatment. The second group was treated with 150mg/kg body weight of alloxan to induce a diabetic model. The third group received a metformin treatment at a dose of 100mg/kg body weight. The fourth and fifth groups were administered with Theobroma cacao and Camellia sinensis extracts, respectively, at respective doses of 340 mg/kg and 200 mg/kg body weight. Groups six and seven were diabetic models treated with either Theobroma cacao extract (340 mg/kg) or Camellia sinensis extract (200 mg/kg). The eighth group, another diabetic model, was treated with a combination of both extracts at the same doses. Brain tissues were harvested at the end of an eight-week treatment period for histopathological evaluation. Cresyl violet staining was the method used for histopathological examination of the harvested brain tissues. Results Histopathological evaluations revealed normal neuronal structures in the control group. Alloxan-treated rats displayed significant neurodegeneration, including vacuolization and apoptosis. Metformin treatment showed moderate improvements in the neural architecture. Remarkably, Theobroma Cacao and Camellia Sinensis extracts exhibited protective effects against neurodegeneration in both non-diabetic and diabetic rats. Furthermore, a combination of both extracts in diabetic rats led to synergistic improvements in the neural structures, closely approximating normal conditions. One-way Analysis of Variance (ANOVA) revealed significant differences among the groups (F(7,56) = 24.11, p < 0.001). A Tukey post hoc test further indicated significant improvements in Metformin, Theobroma Cacao, and Camellia Sinensis-treated groups compared to the alloxan-induced diabetes model. Conclusions Both Theobroma Cacao and Camellia Sinensis extracts unveiled notable promise in countering the neurohistopathological alterations spurred by diabetes in the study. This pioneering observation accentuates the innovative possibility of utilizing these natural extracts as potential therapeutic agents for neural complications in diabetes mellitus. The compelling findings of this study contribute significantly to the existing body of research and emphatically advocate for further exhaustive exploration into the mechanistic actions of Theobroma Cacao and Camellia Sinensis extracts. The understanding gleaned from such in-depth studies could revolutionize the approach to managing and treating neural complications associated with diabetes, thereby enhancing the quality of life for affected individuals.
Collapse
Affiliation(s)
- Edward Indla
- Department of Anatomy, Mamata Medical College, Khammam, IND
| | - K V Rajasekar
- Department of Radiology, Meenakshi Medical College Hospital and Research Institute, Chennai, IND
| | | | - S Saravana Kumar
- Department of Anatomy, Meenakshi Medical College Hospital and Research Institute, Chennai, IND
| | - Sudhakara Chelli
- Department of Anatomy, MediCiti Institute of Medical Sciences, KNR university, Hyderabad, IND
| | - Suresh Babu Sayana
- Department of Pharmacology, Government Medical College and General Hospital, Suryapet, IND
| |
Collapse
|
21
|
Kuijer EJ, Steenbergen L. The microbiota-gut-brain axis in hippocampus-dependent learning and memory: current state and future challenges. Neurosci Biobehav Rev 2023; 152:105296. [PMID: 37380040 DOI: 10.1016/j.neubiorev.2023.105296] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 05/15/2023] [Accepted: 06/23/2023] [Indexed: 06/30/2023]
Abstract
A fundamental shift in neuroscience suggests bidirectional interaction of gut microbiota with the healthy and dysfunctional brain. This microbiota-gut-brain axis has mainly been investigated in stress-related psychopathology (e.g. depression, anxiety). The hippocampus, a key structure in both the healthy brain and psychopathologies, is implicated by work in rodents that suggests gut microbiota substantially impact hippocampal-dependent learning and memory. However, understanding microbiota-hippocampus mechanisms in health and disease, and translation to humans, is hampered by the absence of a coherent evaluative approach. We review the current knowledge regarding four main gut microbiota-hippocampus routes in rodents: through the vagus nerve; via the hypothalamus-pituitary-adrenal-axis; by metabolism of neuroactive substances; and through modulation of host inflammation. Next, we suggest an approach including testing (biomarkers of) the four routes as a function of the influence of gut microbiota (composition) on hippocampal-dependent (dys)functioning. We argue that such an approach is necessary to proceed from the current state of preclinical research to beneficial application in humans to optimise microbiota-based strategies to treat and enhance hippocampal-dependent memory (dys)functions.
Collapse
Affiliation(s)
- Eloise J Kuijer
- Leiden University Medical Centre, Leiden, the Netherlands; Department of Life Sciences, University of Bath, United Kingdom.
| | - Laura Steenbergen
- Clinical Psychology Unit, Leiden University & Leiden Institute for Brain and Cognition, Leiden, the Netherlands
| |
Collapse
|
22
|
Zhang E, Huang Z, Zang Z, Qiao X, Yan J, Shao X. Identifying circulating biomarkers for major depressive disorder. Front Psychiatry 2023; 14:1230246. [PMID: 37599893 PMCID: PMC10436517 DOI: 10.3389/fpsyt.2023.1230246] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 07/13/2023] [Indexed: 08/22/2023] Open
Abstract
Objective To date, the current diagnosis of major depressive disorder (MDD) still depends on clinical symptomatologic criteria, misdiagnosis and ineffective treatment are common. The study aimed to explore circulating biomarkers for MDD diagnosis. Methods A high-throughput antibody array technology was utilized to detect 440 circulating cytokines in eight MDD patients and eight age-and gender-matched healthy controls. LASSO regression was conducted for MDD-related characteristic proteins selection. Enzyme-linked immunosorbent assay (ELISA) was used to validate the characteristic proteins in 40 MDD patients and 40 healthy controls. Receiver operating characteristic (ROC) curve was employed to evaluate the diagnostic values of characteristic proteins for discriminating MDD patients from healthy controls. Correlations between the levels of characteristic proteins and depression severity (HAMD-17 scores) were evaluated using linear regression. Results The levels of 59 proteins were found aberrant in MDD patients compared with healthy controls. LASSO regression found six MDD-related characteristic proteins including insulin, CD40L, CD155, Lipocalin-2, HGF and LIGHT. ROC curve analysis showed that the area under curve (AUC) values of six characteristic proteins were more than 0.85 in discriminating patients with MDD from healthy controls. Furthermore, significant relationship was found between the levels of insulin, CD155, Lipocalin-2, HGF, LIGHT and HAMD-17 scores in MDD group. Conclusion These results suggested that six characteristic proteins screened from 59 proteins differential in MDD may hold promise as diagnostic biomarkers in discriminating patients with MDD. Among six characteristic proteins, insulin, CD155, Lipocalin-2, HGF and LIGHT might be useful to estimate the severity of depressive symptoms.
Collapse
Affiliation(s)
- En Zhang
- Department of Psychiatry, The Fourth People's Hospital of Wuhu City, Wuhu, China
| | - Zhongfei Huang
- Department of Psychiatry, The Fourth People's Hospital of Wuhu City, Wuhu, China
| | - Zongjun Zang
- Department of Psychiatry, The Fourth People's Hospital of Wuhu City, Wuhu, China
| | - Xin Qiao
- College of Humanities and Management, Wannan Medical College, Wuhu, China
| | - Jiaxin Yan
- College of Humanities and Management, Wannan Medical College, Wuhu, China
| | - Xuefei Shao
- Department of Neurosurgery, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
| |
Collapse
|
23
|
Xu X, Zhou B, Liu J, Ma Q, Zhang T, Wu X. Ru360 Alleviates Postoperative Cognitive Dysfunction in Aged Mice by Inhibiting MCU-Mediated Mitochondrial Dysfunction. Neuropsychiatr Dis Treat 2023; 19:1531-1542. [PMID: 37424959 PMCID: PMC10329430 DOI: 10.2147/ndt.s409568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/22/2023] [Indexed: 07/11/2023] Open
Abstract
Purpose Ru360, a selective inhibitor of mitochondrial calcium uptake, maintains mitochondrial calcium homeostasis. To evaluate whether mitochondrial calcium uniporter (MCU)-mediated mitochondrial function is associated with the pathological process of Postoperative cognitive dysfunction (POCD), elucidate its relationship with neuroinflammation, and observe whether the relevant pathological process can be improved with Ru360. Methods Aged mice underwent experimental open abdominal surgery after anesthesia. Open field tests, Novel object recognition tests and Y Maze Tests were used to conduct behavioral experiments. The reactive oxygen species (ROS) content, the levels of inflammatory cytokines interleukin-1β (IL-1β), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α), intra-mitochondrial calcium, mitochondrial membrane potential (MMP) and the activity of antioxidant superoxide dismutase (SOD) in the hippocampus of mice were detected using kits. The expression of proteins was detected using Western blot. Results After treatment with Ru360, MCU-mediated mitochondrial dysfunction was inhibited, neuroinflammation was reduced, and the learning ability of the mice was improved after surgery. Conclusion Our study demonstrated that mitochondrial function plays a crucial role in the pathology of POCD, and using Ru360 to improve mitochondrial function may be a new and necessary direction for the treatment of POCD.
Collapse
Affiliation(s)
- Xiaoxiao Xu
- The First Hospital of Ningbo University, Ningbo, 315211, People’s Republic of China
| | - Bin Zhou
- The First Hospital of Ningbo University, Ningbo, 315211, People’s Republic of China
| | - Jun Liu
- The First Hospital of Ningbo University, Ningbo, 315211, People’s Republic of China
| | - Qianli Ma
- The First Hospital of Ningbo University, Ningbo, 315211, People’s Republic of China
| | - Tengyu Zhang
- The First Hospital of Ningbo University, Ningbo, 315211, People’s Republic of China
| | - Xiang Wu
- The First Hospital of Ningbo University, Ningbo, 315211, People’s Republic of China
| |
Collapse
|
24
|
Kumar P, Mathew S, Gamage R, Bodkin F, Doyle K, Rossetti I, Wagnon I, Zhou X, Raju R, Gyengesi E, Münch G. From the Bush to the Brain: Preclinical Stages of Ethnobotanical Anti-Inflammatory and Neuroprotective Drug Discovery-An Australian Example. Int J Mol Sci 2023; 24:11086. [PMID: 37446262 DOI: 10.3390/ijms241311086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/29/2023] [Accepted: 07/01/2023] [Indexed: 07/15/2023] Open
Abstract
The Australian rainforest is a rich source of medicinal plants that have evolved in the face of dramatic environmental challenges over a million years due to its prolonged geographical isolation from other continents. The rainforest consists of an inherent richness of plant secondary metabolites that are the most intense in the rainforest. The search for more potent and more bioavailable compounds from other plant sources is ongoing, and our short review will outline the pathways from the discovery of bioactive plants to the structural identification of active compounds, testing for potency, and then neuroprotection in a triculture system, and finally, the validation in an appropriate neuro-inflammatory mouse model, using some examples from our current research. We will focus on neuroinflammation as a potential treatment target for neurodegenerative diseases including multiple sclerosis (MS), Parkinson's (PD), and Alzheimer's disease (AD) for these plant-derived, anti-inflammatory molecules and highlight cytokine suppressive anti-inflammatory drugs (CSAIDs) as a better alternative to conventional nonsteroidal anti-inflammatory drugs (NSAIDs) to treat neuroinflammatory disorders.
Collapse
Affiliation(s)
- Payaal Kumar
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Shintu Mathew
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Rashmi Gamage
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Frances Bodkin
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Kerrie Doyle
- Indigenous Health Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Ilaria Rossetti
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Ingrid Wagnon
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Xian Zhou
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia
| | - Ritesh Raju
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Erika Gyengesi
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Gerald Münch
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia
| |
Collapse
|
25
|
Edler MK, Munger EL, Maycon H, Hopkins WD, Hof PR, Sherwood CC, Raghanti MA. The association of astrogliosis and microglial activation with aging and Alzheimer's disease pathology in the chimpanzee brain. J Neurosci Res 2023; 101:881-900. [PMID: 36647571 DOI: 10.1002/jnr.25167] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/31/2022] [Accepted: 12/30/2022] [Indexed: 01/18/2023]
Abstract
Aging and neurodegenerative disorders, such as Alzheimer's disease (AD), trigger an immune response known as glial activation in the brain. Recent evidence indicates species differences in inflammatory responses to AD pathology, highlighting the need for additional comparative studies to further understand human-specific neuropathologies. In the present study, we report on the occurrence of astrogliosis, microglial activation, and their relationship with age and AD-like pathology in a cohort of male and female chimpanzees (Pan troglodytes). Chimpanzees with severe astrogliosis exhibited widespread upregulation of hypertrophic astrocytes immunoreactive for glial fibrillary acidic protein (GFAP) throughout all layers of the dorsolateral prefrontal cortex and a loss of the interlaminar palisade. In addition, extreme astrogliosis was associated with increased astrocyte density in the absence of significant microglial activation and AD lesions. A shift from decreased resting to increased phagocytotic microglia occurred with aging, although proliferation was absent and no changes in astrogliosis was observed. Vascular amyloid correlated with decreased astrocyte and microglia densities, while tau lesions were associated with morphological changes in microglia and greater total glia density and glia: neuron ratio. These results further our understanding of inflammatory processes within the chimpanzee brain and provide comparative data to improve our understanding of human aging and neuropathological processes.
Collapse
Affiliation(s)
- Melissa K Edler
- Department of Anthropology, School of Biomedical Sciences, and Brain Health Research Institute, Kent State University, Kent, Ohio, USA
| | - Emily L Munger
- Department of Anthropology, School of Biomedical Sciences, and Brain Health Research Institute, Kent State University, Kent, Ohio, USA
| | - Hannah Maycon
- Department of Anthropology, School of Biomedical Sciences, and Brain Health Research Institute, Kent State University, Kent, Ohio, USA
| | - William D Hopkins
- Department of Comparative Medicine, University of Texas MD Anderson Cancer Center, Bastrop, Texas, USA
| | - Patrick R Hof
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Chet C Sherwood
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, District of Columbia, USA
| | - Mary Ann Raghanti
- Department of Anthropology, School of Biomedical Sciences, and Brain Health Research Institute, Kent State University, Kent, Ohio, USA
| |
Collapse
|
26
|
Barichello T, Giridharan VV, Catalão CHR, Ritter C, Dal-Pizzol F. Neurochemical effects of sepsis on the brain. Clin Sci (Lond) 2023; 137:401-414. [PMID: 36942500 PMCID: PMC11315270 DOI: 10.1042/cs20220549] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/07/2023] [Accepted: 03/13/2023] [Indexed: 03/23/2023]
Abstract
Sepsis is a life-threatening organ dysfunction triggered by a dysregulated host immune response to eliminate an infection. After the host immune response is activated, a complex, dynamic, and time-dependent process is triggered. This process promotes the production of inflammatory mediators, including acute-phase proteins, complement system proteins, cytokines, chemokines, and antimicrobial peptides, which are required to initiate an inflammatory environment for eliminating the invading pathogen. The physiological response of this sepsis-induced systemic inflammation can affect blood-brain barrier (BBB) function; subsequently, endothelial cells produce inflammatory mediators, including cytokines, chemokines, and matrix metalloproteinases (MMPs) that degrade tight junction (TJ) proteins and decrease BBB function. The resulting BBB permeability allows peripheral immune cells from the bloodstream to enter the brain, which then release a range of inflammatory mediators and activate glial cells. The activated microglia and astrocytes release reactive oxygen species (ROS), cytokines, chemokines, and neurochemicals, initiate mitochondrial dysfunction and neuronal damage, and exacerbate the inflammatory milieu in the brain. These changes trigger sepsis-associated encephalopathy (SAE), which has the potential to increase cognitive deterioration and susceptibility to cognitive decline later in life.
Collapse
Affiliation(s)
- Tatiana Barichello
- Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, U.S.A
- Graduate Program in Health Sciences, Department of Medicine, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Vijayasree V Giridharan
- Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, U.S.A
| | - Carlos Henrique R Catalão
- Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, U.S.A
- Department of Neurosciences and Behavioral Sciences, Ribeirao Preto Medical School, University of São Paulo (USP), Ribeirao Preto, SP, Brazil
| | - Cristiane Ritter
- Graduate Program in Health Sciences, Department of Medicine, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Felipe Dal-Pizzol
- Graduate Program in Health Sciences, Department of Medicine, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| |
Collapse
|
27
|
Brier LM, Chen S, Sherafati A, Bice AR, Lee JM, Culver JP. Transient disruption of functional connectivity and depression of neural fluctuations in a mouse model of acute septic encephalopathy. Cereb Cortex 2023; 33:3548-3561. [PMID: 35972424 PMCID: PMC10068285 DOI: 10.1093/cercor/bhac291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 11/13/2022] Open
Abstract
Septic encephalopathy leads to major and costly burdens for a large percentage of admitted hospital patients. Elderly patients are at an increased risk, especially those with dementia. Current treatments are aimed at sedation to combat mental status changes and are not aimed at the underlying cause of encephalopathy. Indeed, the underlying pathology linking together peripheral infection and altered neural function has not been established, largely because good, acutely accessible readouts of encephalopathy in animal models do not exist. Behavioral testing in animals lasts multiple days, outlasting the time frame of acute encephalopathy. Here, we propose optical fluorescent imaging of neural functional connectivity (FC) as a readout of encephalopathy in a mouse model of acute sepsis. Imaging and basic behavioral assessment were performed at baseline, Hr8, Hr24, and Hr72 following injection of either lipopolysaccharide or phosphate buffered saline. Neural FC strength decreased at Hr8 and returned to baseline by Hr72 in motor, somatosensory, parietal, and visual cortical regions. Additionally, neural fluctuations transiently declined at Hr8 and returned to baseline by Hr72. Both FC strength and fluctuation tone correlated with neuroscore indicating this imaging methodology is a sensitive and acute readout of encephalopathy.
Collapse
Affiliation(s)
- L M Brier
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - S Chen
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - A Sherafati
- Department of Physics, Washington University School of Arts and Science, St. Louis, MO 63110, USA
| | - A R Bice
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - J M Lee
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - J P Culver
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Physics, Washington University School of Arts and Science, St. Louis, MO 63110, USA
- Department of Biomedical Engineering, Washington University School of Engineering, St. Louis, MO 63110, USA
- Department of Electrical and Systems Engineering, Washington University School of Engineering, St. Louis, MO 63110, USA
| |
Collapse
|
28
|
Engler-Chiurazzi EB, Russell AE, Povroznik JM, McDonald KO, Porter KN, Wang DS, Hammock J, Billig BK, Felton CC, Yilmaz A, Schreurs BG, O'Callaghan JD, Zwezdaryk KJ, Simpkins JW. Intermittent systemic exposure to lipopolysaccharide-induced inflammation disrupts hippocampal long-term potentiation and impairs cognition in aging male mice. Brain Behav Immun 2023; 108:279-291. [PMID: 36549577 PMCID: PMC10019559 DOI: 10.1016/j.bbi.2022.12.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
Age-related cognitive decline, a common component of the brain aging process, is associated with significant impairment in daily functioning and quality of life among geriatric adults. While the complexity of mechanisms underlying cognitive aging are still being elucidated, microbial exposure and the multifactorial inflammatory cascades associated with systemic infections are emerging as potential drivers of neurological senescence. The negative cognitive and neurobiological consequences of a single pathogen-associated inflammatory experience, such as that modeled through treatment with lipopolysaccharide (LPS), are well documented. Yet, the brain aging impacts of repeated, intermittent inflammatory challenges are less well studied. To extend the emerging literature assessing the impact of infection burden on cognitive function among normally aging mice, here, we repeatedly exposed adult mice to intermittent LPS challenges during the aging period. Male 10-month-old C57BL6 mice were systemically administered escalating doses of LPS once every two weeks for 2.5 months. We evaluated cognitive consequences using the non-spatial step-through inhibitory avoidance task, and both spatial working and reference memory versions of the Morris water maze. We also probed several potential mechanisms, including cortical and hippocampal cytokine/chemokine gene expression, as well as hippocampal neuronal function via extracellular field potential recordings. Though there was limited evidence for an ongoing inflammatory state in cortex and hippocampus, we observed impaired learning and memory and a disruption of hippocampal long-term potentiation. These data suggest that a history of intermittent exposure to LPS-induced inflammation is associated with subtle but significantly impaired cognition among normally aging mice. The broader impact of these findings may have important implications for standard of care involving infections in aging individuals or populations at-risk for dementia.
Collapse
Affiliation(s)
- E B Engler-Chiurazzi
- Clinical Neuroscience Research Center, Department of Neurosurgery, Tulane Brain Institute, Tulane University, New Orleans, LA 70114, USA; Center for Basic and Translational Stroke Research, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26505, USA; Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26505, USA.
| | - A E Russell
- Center for Basic and Translational Stroke Research, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26505, USA; Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26505, USA; Department of Biology, School of Science, Penn State Erie, The Behrend College, Erie, PA 16563, USA; Magee Women's Research Institute, Allied Member, Pittsburgh, PA 15213, USA
| | - J M Povroznik
- Center for Basic and Translational Stroke Research, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26505, USA; Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26505, USA
| | - K O McDonald
- Clinical Neuroscience Research Center, Department of Neurosurgery, Tulane Brain Institute, Tulane University, New Orleans, LA 70114, USA
| | - K N Porter
- Center for Basic and Translational Stroke Research, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26505, USA
| | - D S Wang
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26505, USA
| | - J Hammock
- Center for Basic and Translational Stroke Research, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26505, USA
| | - B K Billig
- Health Effects Laboratory Division, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA
| | - C C Felton
- Health Effects Laboratory Division, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA
| | - A Yilmaz
- Health Effects Laboratory Division, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA
| | - B G Schreurs
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26505, USA
| | - J D O'Callaghan
- Health Effects Laboratory Division, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA
| | - K J Zwezdaryk
- Department of Microbiology and Immunology, Tulane Brain Institute, Tulane University, New Orleans, LA 70114, USA
| | - J W Simpkins
- Center for Basic and Translational Stroke Research, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26505, USA; Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26505, USA
| |
Collapse
|
29
|
Amraie E, Pouraboli I, Salehi H, Rajaei Z. Treadmill running and Levisticum Officinale extract protect against LPS-induced memory deficits by modulating neurogenesis, neuroinflammation and oxidative stress. Metab Brain Dis 2022; 38:999-1011. [PMID: 36478529 DOI: 10.1007/s11011-022-01140-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022]
Abstract
Neuroinflammation plays an essential role in the pathogenesis of Alzheimer's disease. The preventive effect of physical exercise on attenuating neuroinflammation has not been completely defined. Levisticum officinale is known as a medicinal plant with antioxidant and anti-inflammatory properties. The current study was designed to investigate the neuroprotective impacts of treadmill running and Levisticum officinale on lipopolysaccharide (LPS)-induced learning and memory impairments and neuroinflammation in rats. Male Wistar rats ran on a treadmill and/or were pretreated with Levisticum officinale extract at a dose of 100 mg/kg for a week. Then, rats received intraperitoneal injection of LPS at a dose of 1 mg/kg. Treadmill running and/or treatment of extract lasted three more weeks. Behavioral, molecular, biochemical and immunohistochemical assessments were carried out after the end of the experiment. LPS administration resulted in spatial learning and memory impairments along with increased mRNA expression of interleukin-6 and malondialdehyde levels, as well as decreased superoxide dismutase activity and neurogenesis in the hippocampus. Moreover, treadmill running for four weeks, alone and in combination with Levisticum officinale extract attenuated spatial learning and memory deficits, decreased the mRNA expression of interleukin-6 and malondialdehyde levels, and enhanced superoxide dismutase activity and neurogenesis in the hippocampus. In conclusion, the advantageous effects of running exercise and Levisticum officinale extract on LPS-induced memory impairments are possibly due to the antioxidant and anti-inflammatory activity and enhancing neurogenesis.
Collapse
Affiliation(s)
- Esmaeil Amraie
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Iran Pouraboli
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Hossein Salehi
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ziba Rajaei
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
30
|
Microbiota-derived metabolite Indoles induced aryl hydrocarbon receptor activation and inhibited neuroinflammation in APP/PS1 mice. Brain Behav Immun 2022; 106:76-88. [PMID: 35961580 DOI: 10.1016/j.bbi.2022.08.003] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/23/2022] [Accepted: 08/05/2022] [Indexed: 01/12/2023] Open
Abstract
Gut microbiota alterations might affect the development of Alzheimer's disease (AD) through microbiota-derived metabolites. For example, microbiota-derived Indoles via tryptophan metabolism prevented Aβ accumulation and Tau hyperphosphorylation, restored synaptic plasticity, and then promoted the cognitive and behavioral ability of APP/PS1 mice. The imbalanced compositions of Indoles-producing bacteria with tryptophan deficiency were found in male APP/PS1 mice, but the molecular mechanisms remained unclear. Our current study revealed that Indoles (including indole, indole-3-acetic acid and indole-3-propionic acid) upregulated the production of aryl hydrocarbon receptor (AhR), inhibited the activation of the NF-κB signal pathway as well as the formation of the NLRP3 inflammasome, reduced the release of inflammatory cytokines, including TNF-α, IL-6, IL-1β and IL-18, alleviating the inflammatory response of APP/PS1 mice. These findings demonstrated the roles of Indoles-producing bacteria in activating the AhR pathway to regulate neuroinflammation of AD through gut microbiota-derived Indoles, which implied a novel way for AD treatment.
Collapse
|
31
|
Associations between cardiorespiratory fitness, monocyte polarization, and exercise-related changes in mnemonic discrimination performance in older adults. Exp Gerontol 2022; 169:111973. [PMID: 36206875 DOI: 10.1016/j.exger.2022.111973] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/23/2022] [Accepted: 09/27/2022] [Indexed: 12/15/2022]
Abstract
Biological aging is accompanied by a chronic pro-inflammatory state that may facilitate losses in hippocampal-dependent mnemonic discrimination. Aerobic exercise training promotes adaptations that include improved immune competency, higher cardiorespiratory fitness, and maintenance of hippocampal function. However, it is poorly understood whether, in active older adults, baseline immune cell profiles and cardiorespiratory fitness are possible mechanisms that facilitate the long-term benefits to hippocampal dependent mnemonic discrimination performance. This within-subjects study with counterbalanced conditions aimed to investigate whether baseline monocyte polarization and cardiorespiratory fitness influenced performance in the mnemonic similarity task (MST) and related Lure Discrimination Index (LDI) score after an acute bout of exercise. Twenty-one active older adults (M = 68 ± 5 yrs) underwent baseline testing in which blood samples were collected and cardiorespiratory fitness measured. Participants then returned and completed a seated rest or moderate intensity aerobic exercise condition in which the MST was proctored prior to and 5 min after each condition. A linear mixed effects model was used in which Participant ID was a random effect and Condition (rest v. exercise), Time (pre- v post-), and order were fixed main effects. Simple linear regression models were used to determine the variance accounted for by monocyte phenotypes and cardiorespiratory fitness for LDI scores post-condition. Post-rest LDI scores were significantly lower than post-exercise LDI scores (t(20) = -2.65, p < 0.02, d = -0.57). Intermediate monocytes were significant predictors of the change in pre- to post-exercise LDI scores (F(1, 19) = 6.03, p = 0.024, R2 = 0.24) and cardiorespiratory fitness was a significant predictor of the difference between post-condition LDI scores (F(1, 19) = 6.71, p = 0.018, R2 = 0.26). Our results suggest baseline cardiorespiratory fitness and intermediate monocytes may relate to the integrity of hippocampal-dependent mnemonic discrimination performance, and possibly the degree of responsiveness to aerobic exercise interventions.
Collapse
|
32
|
Micheli L, Toti A, Lucarini E, Ferrara V, Ciampi C, Olivero G, Pittaluga A, Mattoli L, Pelucchini C, Burico M, Lucci J, Carrino D, Pacini A, Pallanti S, Di Cesare Mannelli L, Ghelardini C. Efficacy of a vegetal mixture composed of Zingiber officinale, Echinacea purpurea, and Centella asiatica in a mouse model of neuroinflammation: In vivo and ex vivo analysis. Front Nutr 2022; 9:887378. [PMID: 36118773 PMCID: PMC9472218 DOI: 10.3389/fnut.2022.887378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 07/25/2022] [Indexed: 12/04/2022] Open
Abstract
Experimental evidence suggests that neuroinflammation is a key pathological event of many diseases affecting the nervous system. It has been well recognized that these devastating illnesses (e.g., Alzheimer’s, Parkinson’s, depression, and chronic pain) are multifactorial, involving many pathogenic mechanisms, reason why pharmacological treatments are unsatisfactory. The purpose of this study was to evaluate the efficacy of a vegetal mixture capable of offering a multiple approach required to manage the multifactoriality of neuroinflammation. A mixture composed of Zingiber officinale (150 mg kg−1), Echinacea purpurea (20 mg kg−1), and Centella asiatica (200 mg kg−1) was tested in a mouse model of systemic neuroinflammation induced by lipopolysaccharide (LPS, 1 mg kg−1). Repeated treatment with the vegetal mixture was able to completely counteract thermal and mechanical allodynia as reported by the Cold plate and von Frey tests, respectively, and to reduce the motor impairments as demonstrated by the Rota rod test. Moreover, the mixture was capable of neutralizing the memory loss in the Passive avoidance test and reducing depressive-like behavior in the Porsolt test, while no efficacy was shown in decreasing anhedonia as demonstrated by the Sucrose preference test. Finally, LPS stimulation caused a significant increase in the activation of glial cells, of the central complement proteins and of inflammatory cytokines in selected regions of the central nervous system (CNS), which were rebalanced in animals treated with the vegetal mixture. In conclusion, the vegetal mixture tested thwarted the plethora of symptoms evoked by LPS, thus being a potential candidate for future investigations in the context of neuroinflammation.
Collapse
Affiliation(s)
- Laura Micheli
- Neurofarba—Pharmacology and Toxicology Section, Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
- *Correspondence: Laura Micheli,
| | - Alessandra Toti
- Neurofarba—Pharmacology and Toxicology Section, Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Elena Lucarini
- Neurofarba—Pharmacology and Toxicology Section, Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Valentina Ferrara
- Neurofarba—Pharmacology and Toxicology Section, Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Clara Ciampi
- Neurofarba—Pharmacology and Toxicology Section, Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Guendalina Olivero
- Department of Pharmacy, School of Medical and Pharmaceutical Sciences, University of Genoa, Genoa, Italy
- Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Anna Pittaluga
- Department of Pharmacy, School of Medical and Pharmaceutical Sciences, University of Genoa, Genoa, Italy
- Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Luisa Mattoli
- Innovation and Medical Science Division, Aboca SpA Società Agricola, Sansepolcro, Italy
| | - Caroline Pelucchini
- Innovation and Medical Science Division, Aboca SpA Società Agricola, Sansepolcro, Italy
| | - Michela Burico
- Innovation and Medical Science Division, Aboca SpA Società Agricola, Sansepolcro, Italy
| | - Jacopo Lucci
- Innovation and Medical Science Division, Aboca SpA Società Agricola, Sansepolcro, Italy
| | - Donatello Carrino
- Anatomy and Histology Section, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Alessandra Pacini
- Anatomy and Histology Section, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Stefano Pallanti
- Psychiatry Section, Department of Neurofarba, University of Florence, Florence, Italy
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, New York, NY, United States
- Institute of Neuroscience, Florence, Italy
| | - Lorenzo Di Cesare Mannelli
- Neurofarba—Pharmacology and Toxicology Section, Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Carla Ghelardini
- Neurofarba—Pharmacology and Toxicology Section, Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| |
Collapse
|
33
|
Mozafari N, Dehshahri A, Ashrafi H, Mohammadi-Samani S, Shahbazi MA, Heidari R, Azarpira N, Azadi A. Vesicles of yeast cell wall-sitagliptin to alleviate neuroinflammation in Alzheimer's disease. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2022; 44:102575. [PMID: 35714923 DOI: 10.1016/j.nano.2022.102575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/26/2022] [Accepted: 06/05/2022] [Indexed: 06/15/2023]
Abstract
A cell-based drug delivery system based on yeast-cell wall loaded with sitagliptin, a drug with an anti-inflammatory effect, was developed to control neuroinflammation associated with Alzheimer's disease. The optimized nanoparticles had a spherical shape with a negative surface charge, and were shown to be less toxic than the carrier and sitagliptin. Moreover, the nanoparticles caused anti-inflammatory effects against tumor necrosis factor-alpha in mice model of neuroinflammation. The pharmacokinetics study showed the brain concentration of drug in the nanoparticles group was much higher than in the control group. To evaluate the effect of P-glycoprotein on brain entry of sitagliptin, the experiment was repeated with verapamil, as a P-glycoprotein inhibitor. Brain concentration of the nanoparticles group remained approximately unchanged, proving the "Trojan Horse" effect of the developed nanocarriers. The results are promising for using yeast-cell wall as a carrier for targeted delivery to immune cells for the management of inflammation.
Collapse
Affiliation(s)
- Negin Mozafari
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Dehshahri
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Sciences Research Centre, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hajar Ashrafi
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Soliman Mohammadi-Samani
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Sciences Research Centre, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad-Ali Shahbazi
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands; Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), Zanjan University of Medical Sciences, 45139-56184 Zanjan, Iran
| | - Reza Heidari
- Pharmaceutical Sciences Research Centre, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Azadi
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Sciences Research Centre, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
34
|
Inhibition of Monoacylglycerol Lipase by NSD1819 as an Effective Strategy for the Endocannabinoid System Modulation against Neuroinflammation-Related Disorders. Int J Mol Sci 2022; 23:ijms23158428. [PMID: 35955562 PMCID: PMC9369272 DOI: 10.3390/ijms23158428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 02/04/2023] Open
Abstract
Neuroinflammation is a key pathological event shared by different diseases affecting the nervous system. Since the underlying mechanism of neuroinflammation is a complex and multifaceted process, current pharmacological treatments are unsatisfactory—a reason why new therapeutic approaches are mandatory. In this context, the endocannabinoid system has proven to possess neuroprotective and immunomodulatory actions under neuroinflammatory status, and its modulation could represent a valuable approach to address different inflammatory processes. To this aim, we evaluated the efficacy of a repeated treatment with NSD1819, a potent β-lactam-based monoacylglycerol lipase inhibitor in a mouse model of neuroinflammation induced by lipopolysaccharide (LPS) injection. Mice were intraperitoneally injected with LPS 1 mg/kg for five consecutive days to induce systemic inflammation. Concurrently, NSD1819 (3 mg/kg) was daily per os administered from day 1 until the end of the experiment (day 11). Starting from day 8, behavioral measurements were performed to evaluate the effect of the treatment on cognitive impairments, allodynia, motor alterations, anhedonia, and depressive-like behaviors evoked by LPS. Histologically, glial analysis of the spinal cord was also performed. The administration of NSD1819 was able to completely counteract thermal and mechanical allodynia as highlighted by the Cold plate and von Frey tests, respectively, and to reduce motor impairments as demonstrated by the Rota rod test. Moreover, the compound was capable of neutralizing the memory loss in the Passive avoidance test, and reducing depressive-like behavior in the Porsolt test. Finally, LPS stimulation caused a significant glial cells activation in the dorsal horn of the lumbar spinal cord that was significantly recovered by NSD1819 repeated treatment. In conclusion, NSD1819 was able to thwart the plethora of symptoms evoked by LPS, thus representing a promising candidate for future applications in the context of neuroinflammation and related diseases.
Collapse
|
35
|
Baek SH, Kim H, Kim JW, Ryu S, Lee JY, Kim JM, Shin IS, Kim SW. Association between Peripheral Inflammatory Cytokines and Cognitive Function in Patients with First-Episode Schizophrenia. J Pers Med 2022; 12:jpm12071137. [PMID: 35887634 PMCID: PMC9317024 DOI: 10.3390/jpm12071137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/07/2022] [Accepted: 07/10/2022] [Indexed: 11/25/2022] Open
Abstract
In this study, we investigated the impact of inflammatory cytokines on the cognitive performance of patients with schizophrenia. The included patients met the criteria for schizophrenia spectrum disorder and were aged between 15 and 40 years, with a duration of illness ≤1 year. Plasma tumor necrosis factor (TNF)-α; interferon-γ; and interleukin (IL)-1β, IL-6, IL-8, IL-10, and IL-12 levels were measured. A computerized neurocognitive battery, measures for social cognitive function, and clinical measures were administered. A total of 174 patients with first-episode psychosis were enrolled. The TNF-α level was negatively correlated with scores on the digit span, verbal learning, and Wisconsin card sorting tests, and the number of correct responses on the continuous performance test (CR-CPT), whereas a positive correlation was detected with the trail making test (TMT)-B time. The interferon-γ level was negatively correlated with performance on the false belief and visual learning tests. The IL-1β level was positively correlated with the TMT-A time and CPT reaction time, whereas it was negatively correlated with the CR-CPT and performance on the visual learning and social cognitive tests. The IL-12 level was negatively correlated with the CR-CPT and false belief test. Our results suggest that proinflammatory cytokines are associated with cognitive impairment in patients with schizophrenia.
Collapse
Affiliation(s)
- Seon-Hwa Baek
- Department of Psychiatry, Chonnam National University Medical School, Gwangju 61419, Korea; (S.-H.B.); (H.K.); (J.-W.K.); (S.R.); (J.-Y.L.); (J.-M.K.); (I.-S.S.)
| | - Honey Kim
- Department of Psychiatry, Chonnam National University Medical School, Gwangju 61419, Korea; (S.-H.B.); (H.K.); (J.-W.K.); (S.R.); (J.-Y.L.); (J.-M.K.); (I.-S.S.)
| | - Ju-Wan Kim
- Department of Psychiatry, Chonnam National University Medical School, Gwangju 61419, Korea; (S.-H.B.); (H.K.); (J.-W.K.); (S.R.); (J.-Y.L.); (J.-M.K.); (I.-S.S.)
| | - Seunghyong Ryu
- Department of Psychiatry, Chonnam National University Medical School, Gwangju 61419, Korea; (S.-H.B.); (H.K.); (J.-W.K.); (S.R.); (J.-Y.L.); (J.-M.K.); (I.-S.S.)
| | - Ju-Yeon Lee
- Department of Psychiatry, Chonnam National University Medical School, Gwangju 61419, Korea; (S.-H.B.); (H.K.); (J.-W.K.); (S.R.); (J.-Y.L.); (J.-M.K.); (I.-S.S.)
| | - Jae-Min Kim
- Department of Psychiatry, Chonnam National University Medical School, Gwangju 61419, Korea; (S.-H.B.); (H.K.); (J.-W.K.); (S.R.); (J.-Y.L.); (J.-M.K.); (I.-S.S.)
| | - Il-Seon Shin
- Department of Psychiatry, Chonnam National University Medical School, Gwangju 61419, Korea; (S.-H.B.); (H.K.); (J.-W.K.); (S.R.); (J.-Y.L.); (J.-M.K.); (I.-S.S.)
| | - Sung-Wan Kim
- Department of Psychiatry, Chonnam National University Medical School, Gwangju 61419, Korea; (S.-H.B.); (H.K.); (J.-W.K.); (S.R.); (J.-Y.L.); (J.-M.K.); (I.-S.S.)
- Mindlink, Gwangju Bukgu Mental Health Center, Gwangju 61220, Korea
- Correspondence: ; Tel.: +82-62-220-6148
| |
Collapse
|
36
|
Abstract
Systemic inflammation elicited by sepsis can induce an acute cerebral dysfunction known as sepsis-associated encephalopathy (SAE). Recent evidence suggests that SAE is common but shows a dynamic trajectory over time. Half of all patients with sepsis develop SAE in the intensive care unit, and some survivors present with sustained cognitive impairments for several years after initial sepsis onset. It is not clear why some, but not all, patients develop SAE and also the factors that determine the persistence of SAE. Here, we first summarize the chronic pathology and the dynamic changes in cognitive functions seen after the onset of sepsis. We then outline the cerebral effects of sepsis, such as neuroinflammation, alterations in neuronal synapses and neurovascular changes. We discuss the key factors that might contribute to the development and persistence of SAE in older patients, including premorbid neurodegenerative pathology, side effects of sedatives, renal dysfunction and latent virus reactivation. Finally, we postulate that some of the mechanisms that underpin neuropathology in SAE may also be relevant to delirium and persisting cognitive impairments that are seen in patients with severe COVID-19.
Collapse
Affiliation(s)
- Tatsuya Manabe
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University of Bonn Medical Center, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Michael T Heneka
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University of Bonn Medical Center, Bonn, Germany.
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.
- Department of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
37
|
Targeting Microglia in Alzheimer’s Disease: From Molecular Mechanisms to Potential Therapeutic Targets for Small Molecules. Molecules 2022; 27:molecules27134124. [PMID: 35807370 PMCID: PMC9268715 DOI: 10.3390/molecules27134124] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 02/01/2023] Open
Abstract
Alzheimer’s disease (AD) is a common, progressive, and devastating neurodegenerative disorder that mainly affects the elderly. Microglial dysregulation, amyloid-beta (Aβ) plaques, and intracellular neurofibrillary tangles play crucial roles in the pathogenesis of AD. In the brain, microglia play roles as immune cells to provide protection against virus injuries and diseases. They have significant contributions in the development of the brain, cognition, homeostasis of the brain, and plasticity. Multiple studies have confirmed that uncontrolled microglial function can result in impaired microglial mitophagy, induced Aβ accumulation and tau pathology, and a chronic neuroinflammatory environment. In the brain, most of the genes that are associated with AD risk are highly expressed by microglia. Although it was initially regarded that microglia reaction is incidental and induced by dystrophic neurites and Aβ plaques. Nonetheless, it has been reported by genome-wide association studies that most of the risk loci for AD are located in genes that are occasionally uniquely and highly expressed in microglia. This finding further suggests that microglia play significant roles in early AD stages and they be targeted for the development of novel therapeutics. In this review, we have summarized the molecular pathogenesis of AD, microglial activities in the adult brain, the role of microglia in the aging brain, and the role of microglia in AD. We have also particularly focused on the significance of targeting microglia for the treatment of AD.
Collapse
|
38
|
Tamura Y, Yamato M, Kataoka Y. Animal Models for Neuroinflammation and Potential Treatment Methods. Front Neurol 2022; 13:890217. [PMID: 35832182 PMCID: PMC9271866 DOI: 10.3389/fneur.2022.890217] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 06/03/2022] [Indexed: 11/25/2022] Open
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a debilitating chronic disease of unknown etiology and without effective treatment options. The onset of ME/CFS is often associated with neuroinflammation following bacterial or viral infection. A positron emission tomography imaging study revealed that the degree of neuroinflammation was correlated with the severity of several symptoms in patients with ME/CFS. In animal studies, lipopolysaccharide- and polyinosinic-polycytidylic acid-induced models are thought to mimic the pathological features of ME/CFS and provoke neuroinflammation, characterized by increased levels of proinflammatory cytokines and activation of microglia. In this review, we described the anti-inflammatory effects of three compounds on neuroinflammatory responses utilizing animal models. The findings of the included studies suggest that anti-inflammatory substances may be used as effective therapies to ameliorate disease symptoms in patients with ME/CFS.
Collapse
Affiliation(s)
- Yasuhisa Tamura
- Laboratory for Cellular Function Imaging, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
- Multi-Modal Microstructure Analysis Unit, RIKEN-JEOL Collaboration Center, RIKEN, Kobe, Japan
| | - Masanori Yamato
- Laboratory for Cellular Function Imaging, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
- Multi-Modal Microstructure Analysis Unit, RIKEN-JEOL Collaboration Center, RIKEN, Kobe, Japan
| | - Yosky Kataoka
- Laboratory for Cellular Function Imaging, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
- Multi-Modal Microstructure Analysis Unit, RIKEN-JEOL Collaboration Center, RIKEN, Kobe, Japan
- *Correspondence: Yosky Kataoka
| |
Collapse
|
39
|
Dai W, Liu J, Qiu Y, Teng Z, Li S, Yuan H, Huang J, Xiang H, Tang H, Wang B, Chen J, Wu H. Gut Microbial Dysbiosis and Cognitive Impairment in Bipolar Disorder: Current Evidence. Front Pharmacol 2022; 13:893567. [PMID: 35677440 PMCID: PMC9168430 DOI: 10.3389/fphar.2022.893567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/20/2022] [Indexed: 12/11/2022] Open
Abstract
Recent studies have reported that the gut microbiota influences mood and cognitive function through the gut-brain axis, which is involved in the pathophysiology of neurocognitive and mental disorders, including Parkinson’s disease, Alzheimer’s disease, and schizophrenia. These disorders have similar pathophysiology to that of cognitive dysfunction in bipolar disorder (BD), including neuroinflammation and dysregulation of various neurotransmitters (i.e., serotonin and dopamine). There is also emerging evidence of alterations in the gut microbial composition of patients with BD, suggesting that gut microbial dysbiosis contributes to disease progression and cognitive impairment in BD. Therefore, microbiota-centered treatment might be an effective adjuvant therapy for BD-related cognitive impairment. Given that studies focusing on connections between the gut microbiota and BD-related cognitive impairment are lagging behind those on other neurocognitive disorders, this review sought to explore the potential mechanisms of how gut microbial dysbiosis affects cognitive function in BD and identify potential microbiota-centered treatment.
Collapse
Affiliation(s)
- Wenyu Dai
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jieyu Liu
- Department of Ultrasound Diagnostic, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yan Qiu
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Ziwei Teng
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Sujuan Li
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Hui Yuan
- Department of Ultrasound Diagnostic, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jing Huang
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Hui Xiang
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Hui Tang
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Bolun Wang
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jindong Chen
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Haishan Wu
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
40
|
Brain temperature as an indicator of neuroinflammation induced by typhoid vaccine: Assessment using whole-brain magnetic resonance spectroscopy in a randomised crossover study. Neuroimage Clin 2022; 35:103053. [PMID: 35617872 PMCID: PMC9136180 DOI: 10.1016/j.nicl.2022.103053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 11/23/2022]
Abstract
MRSI-derived whole-brain temperature did not detect low-level neuroinflammation. Regional brain temperature was a more sensitive measure of neuroinflammation. MRSI/EPSI might be a useful measure of neuroinflammation in psychiatric disorders.
Prior studies indicate a pathogenic role of neuroinflammation in psychiatric disorders; however, there are no accepted methods that can reliably measure low-level neuroinflammation non-invasively in these individuals. Magnetic resonance spectroscopic imaging (MRSI) is a versatile, non-invasive neuroimaging technique that demonstrates sensitivity to brain inflammation. MRSI in conjunction with echo-planar spectroscopic imaging (EPSI) measures brain metabolites to derive whole-brain and regional brain temperatures, which may increase in neuroinflammation. The validity of MRSI/EPSI for measurement of low level neuroinflammation was tested using a safe experimental model of human brain inflammation – intramuscular administration of typhoid vaccine. Twenty healthy volunteers participated in a double-blind, placebo-controlled crossover study including MRSI/EPSI scans before and 3 h after vaccine/placebo administration. Body temperature and mood, assessed using the Profile of Mood States, were measured every hour up to four hours post-treatment administration. A mixed model analysis of variance was used to test for treatment effects. A significant proportion of brain regions (44/47) increased in temperature post-vaccine compared to post-placebo (p < 0.0001). For temperature change in the brain as a whole, there was no significant treatment effect. Significant associations were seen between mood scores assessed at 4 h and whole brain and regional temperatures post-treatment. Findings indicate that regional brain temperature may be a more sensitive measure of low-level neuroinflammation than whole-brain temperature. Future work where these measurement techniques are applied to populations with psychiatric disorders would be of clinical interest.
Collapse
|
41
|
Rosenblum SL, Kosman DJ. Aberrant Cerebral Iron Trafficking Co-morbid With Chronic Inflammation: Molecular Mechanisms and Pharmacologic Intervention. Front Neurol 2022; 13:855751. [PMID: 35370907 PMCID: PMC8964494 DOI: 10.3389/fneur.2022.855751] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 02/14/2022] [Indexed: 12/24/2022] Open
Abstract
The redox properties that make iron an essential nutrient also make iron an efficient pro-oxidant. Given this nascent cytotoxicity, iron homeostasis relies on a combination of iron transporters, chaperones, and redox buffers to manage the non-physiologic aqueous chemistry of this first-row transition metal. Although a mechanistic understanding of the link between brain iron accumulation (BIA) and neurodegenerative diseases is lacking, BIA is co-morbid with the majority of cognitive and motor function disorders. The most prevalent neurodegenerative disorders, including Alzheimer's Disease (AD), Parkinson's Disease (PD), Multiple System Atrophy (MSA), and Multiple Sclerosis (MS), often present with increased deposition of iron into the brain. In addition, ataxias that are linked to mutations in mitochondrial-localized proteins (Friedreich's Ataxia, Spinocerebellar Ataxias) result in mitochondrial iron accumulation and degradation of proton-coupled ATP production leading to neuronal degeneration. A comorbidity common in the elderly is a chronic systemic inflammation mediated by primary cytokines released by macrophages, and acute phase proteins (APPs) released subsequently from the liver. Abluminal inflammation in the brain is found downstream as a result of activation of astrocytes and microglia. Reasonably, the iron that accumulates in the brain comes from the cerebral vasculature via the microvascular capillary endothelial cells whose tight junctions represent the blood-brain barrier. A premise amenable to experimental interrogation is that inflammatory stress alters both the trans- and para-cellular flux of iron at this barrier resulting in a net accumulation of abluminal iron over time. This review will summarize the evidence that lends support to this premise; indicate the mechanisms that merit delineation; and highlight possible therapeutic interventions based on this model.
Collapse
Affiliation(s)
| | - Daniel J. Kosman
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| |
Collapse
|
42
|
Untersmayr E, Brandt A, Koidl L, Bergheim I. The Intestinal Barrier Dysfunction as Driving Factor of Inflammaging. Nutrients 2022; 14:949. [PMID: 35267924 PMCID: PMC8912763 DOI: 10.3390/nu14050949] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/17/2022] [Accepted: 02/21/2022] [Indexed: 12/13/2022] Open
Abstract
The intestinal barrier, composed of the luminal microbiota, the mucus layer, and the physical barrier consisting of epithelial cells and immune cells, the latter residing underneath and within the epithelial cells, plays a special role in health and disease. While there is growing knowledge on the changes to the different layers associated with disease development, the barrier function also plays an important role during aging. Besides changes in the composition and function of cellular junctions, the entire gastrointestinal physiology contributes to essential age-related changes. This is also reflected by substantial differences in the microbial composition throughout the life span. Even though it remains difficult to define physiological age-related changes and to distinguish them from early signs of pathologies, studies in centenarians provide insights into the intestinal barrier features associated with longevity. The knowledge reviewed in this narrative review article might contribute to the definition of strategies to prevent the development of diseases in the elderly. Thus, targeted interventions to improve overall barrier function will be important disease prevention strategies for healthy aging in the future.
Collapse
Affiliation(s)
- Eva Untersmayr
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria;
| | - Annette Brandt
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, 1090 Vienna, Austria;
| | - Larissa Koidl
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria;
| | - Ina Bergheim
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, 1090 Vienna, Austria;
| |
Collapse
|
43
|
Országhová Z, Mego M, Chovanec M. Long-Term Cognitive Dysfunction in Cancer Survivors. Front Mol Biosci 2022; 8:770413. [PMID: 34970595 PMCID: PMC8713760 DOI: 10.3389/fmolb.2021.770413] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 11/17/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer-related cognitive impairment (CRCI) is a frequent side effect experienced by an increasing number of cancer survivors with a significant impact on their quality of life. Different definitions and means of evaluation have been used in available literature; hence the exact incidence of CRCI remains unknown. CRCI can be described as cognitive symptoms reported by cancer patients in self-reported questionnaires or as cognitive changes evaluated by formal neuropsychological tests. Nevertheless, association between cognitive symptoms and objectively assessed cognitive changes is relatively weak or absent. Studies have focused especially on breast cancer patients, but CRCI has been reported in multiple types of cancer, including colorectal, lung, ovarian, prostate, testicular cancer and hematological malignancies. While CRCI has been associated with various treatment modalities, including radiotherapy, chemotherapy, hormone therapy and novel systemic therapies, it has been also detected prior to cancer treatment. Therefore, the effects of cancer itself with or without the psychological distress may be involved in the pathogenesis of CRCI as a result of altered coping mechanisms after cancer diagnosis. The development of CRCI is probably multifactorial and the exact mechanisms are currently not completely understood. Possible risk factors include administered treatment, genetic predisposition, age and psychological factors such as anxiety, depression or fatigue. Multiple mechanisms are suggested to be responsible for CRCI, including direct neurotoxic injury of systemic treatment and radiation while other indirect contributing mechanisms are hypothesized. Chronic neuroinflammation mediated by active innate immune system, DNA-damage or endothelial dysfunction is hypothesized to be a central mechanism of CRCI pathogenesis. There is increasing evidence of potential plasma (e.g., damage associated molecular patterns, inflammatory components, circulating microRNAs, exosomes, short-chain fatty acids, and others), cerebrospinal fluid and radiological biomarkers of cognitive dysfunction in cancer patients. Discovery of biomarkers of cognitive impairment is crucial for early identification of cancer patients at increased risk for the development of CRCI or development of treatment strategies to lower the burden of CRCI on long-term quality of life. This review summarizes current literature on CRCI with a focus on long-term effects of different cancer treatments, possible risk factors, mechanisms and promising biomarkers.
Collapse
Affiliation(s)
- Zuzana Országhová
- 2nd Department of Oncology, Faculty of Medicine, Comenius University and National Cancer Institute, Bratislava, Slovakia
| | - Michal Mego
- 2nd Department of Oncology, Faculty of Medicine, Comenius University and National Cancer Institute, Bratislava, Slovakia
| | - Michal Chovanec
- 2nd Department of Oncology, Faculty of Medicine, Comenius University and National Cancer Institute, Bratislava, Slovakia
| |
Collapse
|
44
|
Talley S, Valiauga R, Anderson L, Cannon AR, Choudhry MA, Campbell EM. DSS-induced inflammation in the colon drives a proinflammatory signature in the brain that is ameliorated by prophylactic treatment with the S100A9 inhibitor paquinimod. J Neuroinflammation 2021; 18:263. [PMID: 34758843 PMCID: PMC8578918 DOI: 10.1186/s12974-021-02317-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 11/03/2021] [Indexed: 12/23/2022] Open
Abstract
Background Inflammatory bowel disease (IBD) is established to drive pathological sequelae in organ systems outside the intestine, including the central nervous system (CNS). Many patients exhibit cognitive deficits, particularly during disease flare. The connection between colonic inflammation and neuroinflammation remains unclear and characterization of the neuroinflammatory phenotype in the brain during colitis is ill-defined. Methods Transgenic mice expressing a bioluminescent reporter of active caspase-1 were treated with 2% dextran sodium sulfate (DSS) for 7 days to induce acute colitis, and colonic, systemic and neuroinflammation were assessed. In some experiments, mice were prophylactically treated with paquinimod (ABR-215757) to inhibit S100A9 inflammatory signaling. As a positive control for peripheral-induced neuroinflammation, mice were injected with lipopolysaccharide (LPS). Colonic, systemic and brain inflammatory cytokines and chemokines were measured by cytokine bead array (CBA) and Proteome profiler mouse cytokine array. Bioluminescence was quantified in the brain and caspase activation was confirmed by immunoblot. Immune cell infiltration into the CNS was measured by flow cytometry, while light sheet microscopy was used to monitor changes in resident microglia localization in intact brains during DSS or LPS-induced neuroinflammation. RNA sequencing was performed to identify transcriptomic changes occurring in the CNS of DSS-treated mice. Expression of inflammatory biomarkers were quantified in the brain and serum by qRT-PCR, ELISA and WB. Results DSS-treated mice exhibited clinical hallmarks of colitis, including weight loss, colonic shortening and inflammation in the colon. We also detected a significant increase in inflammatory cytokines in the serum and brain, as well as caspase and microglia activation in the brain of mice with ongoing colitis. RNA sequencing of brains isolated from DSS-treated mice revealed differential expression of genes involved in the regulation of inflammatory responses. This inflammatory phenotype was similar to the signature detected in LPS-treated mice, albeit less robust and transient, as inflammatory gene expression returned to baseline following cessation of DSS. Pharmacological inhibition of S100A9, one of the transcripts identified by RNA sequencing, attenuated colitis severity and systemic and neuroinflammation. Conclusions Our findings suggest that local inflammation in the colon drives systemic inflammation and neuroinflammation, and this can be ameliorated by inhibition of the S100 alarmin, S100A9. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-021-02317-6.
Collapse
Affiliation(s)
- Sarah Talley
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, USA
| | - Rasa Valiauga
- Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | - Lillian Anderson
- Alcohol Research Program, Burn and Shock Trauma Research Institute, Stritch School of Medicine, Loyola University Chicago Health Science Division, Maywood, IL, USA
| | - Abigail R Cannon
- Alcohol Research Program, Burn and Shock Trauma Research Institute, Stritch School of Medicine, Loyola University Chicago Health Science Division, Maywood, IL, USA
| | - Mashkoor A Choudhry
- Alcohol Research Program, Burn and Shock Trauma Research Institute, Stritch School of Medicine, Loyola University Chicago Health Science Division, Maywood, IL, USA
| | - Edward M Campbell
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, USA. .,Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA.
| |
Collapse
|
45
|
Microbiome profiles are associated with cognitive functioning in 45-month-old children. Brain Behav Immun 2021; 98:151-160. [PMID: 34371134 DOI: 10.1016/j.bbi.2021.08.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/22/2021] [Accepted: 08/03/2021] [Indexed: 12/22/2022] Open
Abstract
Prenatal, perinatal, and postnatal factors have been shown to shape neurobiological functioning and alter the risk for mental disorders later in life. The gut microbiome is established early in life, and interacts with the brain via the brain-immune-gut axis. However, little is known about how the microbiome relates to early-life cognitive functioning in children. The present study, where the fecal microbiome of 380 children was characterized using 16S rDNA and metagenomic sequencing aimed to investigate the association between the microbiota and cognitive functioning of children at the age of 45 months measured with the Wechsler Preschool and Primary Scale of Intelligence (WPPSI-III). Overall the microbiome profile showed a significant association with cognitive functioning. A strong correlation was found between cognitive functioning and the relative abundance of an unidentified genus of the family Enterobacteriaceae. Follow-up mediation analyses revealed significant mediation effects of the level of this genus on the association of maternal smoking during pregnancy and current cigarette smoking with cognitive function. Metagenomic sequencing of a subset of these samples indicated that the identified genus was most closely related to Enterobacter asburiae. Analysis of metabolic potential showed a nominally significant association of cognitive functioning with the microbial norspermidine biosynthesis pathway. Our results indicate that alteration of the gut microflora is associated with cognitive functioning in childhood. Furthermore, they suggest that the altered microflora might interact with other environmental factors such as maternal cigarette smoking. Interventions directed at altering the microbiome should be explored in terms of improving cognitive functioning in young children.
Collapse
|
46
|
Porcher L, Bruckmeier S, Burbano SD, Finnell JE, Gorny N, Klett J, Wood SK, Kelly MP. Aging triggers an upregulation of a multitude of cytokines in the male and especially the female rodent hippocampus but more discrete changes in other brain regions. J Neuroinflammation 2021; 18:219. [PMID: 34551810 PMCID: PMC8459490 DOI: 10.1186/s12974-021-02252-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 08/25/2021] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Despite widespread acceptance that neuroinflammation contributes to age-related cognitive decline, studies comparing protein expression of cytokines in the young versus old brains are surprisingly limited in terms of the number of cytokines and brain regions studied. Complicating matters, discrepancies abound-particularly for interleukin 6 (IL-6)-possibly due to differences in sex, species/strain, and/or the brain regions studied. METHODS As such, we clarified how cytokine expression changes with age by using a Bioplex and Western blot to measure multiple cytokines across several brain regions of both sexes, using 2 mouse strains bred in-house as well as rats obtained from NIA. Parametric and nonparametric statistical tests were used as appropriate. RESULTS In the ventral hippocampus of C57BL/6J mice, we found age-related increases in IL-1α, IL-1β, IL-2, IL-3, IL-4, IL-6, IL-9, IL-10, IL-12p40, IL-12p70, IL-13, IL-17, eotaxin, G-CSF, interfeuron δ, KC, MIP-1a, MIP-1b, rantes, and TNFα that are generally more pronounced in females, but no age-related change in IL-5, MCP-1, or GM-CSF. We also find aging is uniquely associated with the emergence of a module (a.k.a. network) of 11 strongly intercorrelated cytokines, as well as an age-related shift from glycosylated to unglycosylated isoforms of IL-10 and IL-1β in the ventral hippocampus. Interestingly, age-related increases in extra-hippocampal cytokine expression are more discreet, with the prefrontal cortex, striatum, and cerebellum of male and female C57BL/6J mice demonstrating robust age-related increase in IL-6 expression but not IL-1β. Importantly, we found this widespread age-related increase in IL-6 also occurs in BALB/cJ mice and Brown Norway rats, demonstrating conservation across species and rearing environments. CONCLUSIONS Thus, age-related increases in cytokines are more pronounced in the hippocampus compared to other brain regions and can be more pronounced in females versus males depending on the brain region, genetic background, and cytokine examined.
Collapse
Affiliation(s)
- Latarsha Porcher
- Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, 6439 Garners Ferry Rd, Columbia, SC, 29209, USA
| | - Sophie Bruckmeier
- Department of Anatomy & Neurobiology, University of Maryland School of Medicine, 20 Penn St, HSFII Rm 216, Baltimore, MD, 21201, USA
| | - Steven D Burbano
- Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, 6439 Garners Ferry Rd, Columbia, SC, 29209, USA
| | - Julie E Finnell
- Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, 6439 Garners Ferry Rd, Columbia, SC, 29209, USA
| | - Nicole Gorny
- Department of Anatomy & Neurobiology, University of Maryland School of Medicine, 20 Penn St, HSFII Rm 216, Baltimore, MD, 21201, USA
| | - Jennifer Klett
- Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, 6439 Garners Ferry Rd, Columbia, SC, 29209, USA
| | - Susan K Wood
- Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, 6439 Garners Ferry Rd, Columbia, SC, 29209, USA
| | - Michy P Kelly
- Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, 6439 Garners Ferry Rd, Columbia, SC, 29209, USA. .,Department of Anatomy & Neurobiology, University of Maryland School of Medicine, 20 Penn St, HSFII Rm 216, Baltimore, MD, 21201, USA. .,Center for Research on Aging, University of Maryland School of Medicine, 20 Penn St, HSFII Rm 216, Baltimore, MD, 21201, USA.
| |
Collapse
|
47
|
Ji A, Xu J. Neuropathic Pain: Biomolecular Intervention and Imaging via Targeting Microglia Activation. Biomolecules 2021; 11:1343. [PMID: 34572554 PMCID: PMC8466763 DOI: 10.3390/biom11091343] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 08/20/2021] [Accepted: 09/07/2021] [Indexed: 12/22/2022] Open
Abstract
Many diseases, including cancer, can lead to neuropathic pain (NP). NP is one of the accompanying symptoms of suffering in many conditions and the life quality of NP patient is seriously affected. Due to complex causes, the effects of clinical treatments have been very unsatisfactory. Many experts have found that neuron-microglia interaction plays an essential role in NP occurrence and development. Therefore, the activation of microglia, related inflammatory mediators and molecular and cellular signaling pathways have become the focus of NP research. With the help of modern functional imaging technology, advanced pre-and clinical studies have been carried out and NP interventions have been attempted by using the different pharmaceuticals and the extracted active components of various traditional herbal medicines. In this communication, we review the mechanism of microglia on NP formation and treatment and molecular imaging technology's role in the clinical diagnosis and evaluation of NP therapies.
Collapse
Affiliation(s)
| | - Jinbin Xu
- Department of Radiology, Washington University School of Medicine, 510 S. Kingshighway Blvd., St. Louis, MO 63110, USA;
| |
Collapse
|
48
|
P2X7-deficiency improves plasticity and cognitive abilities in a mouse model of Tauopathy. Prog Neurobiol 2021; 206:102139. [PMID: 34391810 DOI: 10.1016/j.pneurobio.2021.102139] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 07/06/2021] [Accepted: 08/06/2021] [Indexed: 12/29/2022]
Abstract
Alzheimer's disease is the most common form of dementia characterized by intracellular aggregates of hyperphosphorylated Tau protein and extracellular accumulation of amyloid β (Aβ) peptides. We previously demonstrated that the purinergic receptor P2X7 (P2X7) plays a major role in Aβ-mediated neurodegeneration but the relationship between P2X7 and Tau remained overlooked. Such a link was supported by cortical upregulation of P2X7 in patients with various type of frontotemporal lobar degeneration, including mutation in the Tau-coding gene, MAPT, as well as in the brain of a Tauopathy mouse model (THY-Tau22). Subsequent phenotype analysis of P2X7-deficient Tau mice revealed the instrumental impact of this purinergic receptor. Indeed, while P2X7-deficiency had a moderate effect on Tau pathology itself, we observed a significant reduction of microglia activation and of Tau-related inflammatory mediators, particularly CCL4. Importantly, P2X7 deletion ultimately rescued synaptic plasticity and memory impairments of Tau mice. Altogether, the present data support a contributory role of P2X7 dysregulation on processes governing Tau-induced brain anomalies. Due to the convergent role of P2X7 blockade in both Aβ and Tau background, P2X7 inhibitors might prove to be ideal candidate drugs to curb the devastating cognitive decline in Alzheimer's disease and Tauopathies.
Collapse
|
49
|
Qigong exercise enhances cognitive functions in the elderly via an interleukin-6-hippocampus pathway: A randomized active-controlled trial. Brain Behav Immun 2021; 95:381-390. [PMID: 33872709 PMCID: PMC9758881 DOI: 10.1016/j.bbi.2021.04.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/30/2021] [Accepted: 04/14/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Evidence has suggested that exercise protects against cognitive decline in aging, but the recent lockdown measures associated with the COVID-19 pandemic have limited the opportunity for outdoor exercise. Herein we tested the effects of an indoor exercise, Qigong, on neurocognitive functioning as well as its potential neuro-immune pathway. METHODS We conducted a 12-week randomized active-controlled trial with two study arms in cognitively healthy older people. We applied Wu Xing Ping Heng Gong (Qigong), which was designed by an experienced Daoist Qigong master, to the experimental group, whereas we applied the physical stretching exercise to the control group. The Qigong exercise consisted of a range of movements involving the stretching of arms and legs, the turning of the torso, and relaxing, which would follow the fundamental principles of Daoism and traditional Chinese medicine (e.g., Qi). We measured aging-sensitive neurocognitive abilities, serum interleukin-6 (IL-6) levels, and brain structural volumes in the experimental (Qigong, n = 22) and control groups (stretching, n = 26) before and after the 12-week training. RESULTS We observed that Qigong caused significant improvement in processing speed (t (46) = 2.03, p = 0.048) and sustained attention (t (46) = -2.34, p = 0.023), increased hippocampal volume (t (41) = 3.94, p < 0.001), and reduced peripheral IL-6 levels (t (46) = -3.17, p = 0.003). Moreover, following Qigong training, greater reduction of peripheral IL-6 levels was associated with a greater increase of processing speed performance (bootstrapping CI: [0.16, 3.30]) and a more significant training-induced effect of hippocampal volume on the improvement in sustained attention (bootstrapping CI: [-0.35, -0.004]). CONCLUSION Overall, these findings offer significant insight into the mechanistic role of peripheral IL-6-and its intricate interplay with neural processes-in the beneficial neurocognitive effects of Qigong. The findings have profound implications for early identification and intervention of older individuals vulnerable to cognitive decline, focusing on the neuro-immune pathway. The trial was registered at clinicaltrials.gov (identifier: NCT04641429).
Collapse
|
50
|
Li H, Ni J, Qing H. Gut Microbiota: Critical Controller and Intervention Target in Brain Aging and Cognitive Impairment. Front Aging Neurosci 2021; 13:671142. [PMID: 34248602 PMCID: PMC8267942 DOI: 10.3389/fnagi.2021.671142] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/07/2021] [Indexed: 12/12/2022] Open
Abstract
The current trend for the rapid growth of the global aging population poses substantial challenges for society. The human aging process has been demonstrated to be closely associated with changes in gut microbiota composition, diversity, and functional features. During the first 2 years of life, the gut microbiota undergoes dramatic changes in composition and metabolic functions as it colonizes and develops in the body. Although the gut microbiota is nearly established by the age of three, it continues to mature until adulthood, when it comprises more stable and diverse microbial species. Meanwhile, as the physiological functions of the human body deteriorated with age, which may be a result of immunosenescence and "inflammaging," the guts of elderly people are generally characterized by an enrichment of pro-inflammatory microbes and a reduced abundance of beneficial species. The gut microbiota affects the development of the brain through a bidirectional communication system, called the brain-gut-microbiota (BGM) axis, and dysregulation of this communication is pivotal in aging-related cognitive impairment. Microbiota-targeted dietary interventions and the intake of probiotics/prebiotics can increase the abundance of beneficial species, boost host immunity, and prevent gut-related diseases. This review summarizes the age-related changes in the human gut microbiota based on recent research developments. Understanding these changes will likely facilitate the design of novel therapeutic strategies to achieve healthy aging.
Collapse
Affiliation(s)
| | - Junjun Ni
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - Hong Qing
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences, Beijing Institute of Technology, Beijing, China
| |
Collapse
|