1
|
Goh JY, Rueda P, Taylor J, Rathbone A, Scott D, Langmead CJ, Fone KC, Stewart GD, King MV. Transcriptomic analysis of rat prefrontal cortex following chronic stress induced by social isolation - Relevance to psychiatric and neurodevelopmental illness, and implications for treatment. Neurobiol Stress 2024; 33:100679. [PMID: 39502833 PMCID: PMC11536066 DOI: 10.1016/j.ynstr.2024.100679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/27/2024] [Accepted: 10/10/2024] [Indexed: 11/08/2024] Open
Abstract
Social isolation is an established risk factor for psychiatric illness, and became increasingly topical with the spread of SARS-CoV-2. We used RNA sequencing (RNA-Seq) to enable unbiased assessment of transcriptomic changes within the prefrontal cortex (PFC) of isolation-reared rats. To provide insight into the relevance of this manipulation for studying human illness, we compared differentially expressed genes (DEGs) and enriched biological functions against datasets involving post-mortem frontal cortical tissue from patients with psychiatric and neurodevelopmental illnesses. Sixteen male Sprague-Dawley rats were reared in groups of four or individually from weaning on postnatal day (PND) 22-24 until PFC tissue collection for RNA-Seq (PND64-66). We identified a total of 183 DEGs in isolates, of which 128 mirrored those in PFC tissue from patients with stress-related mental illnesses and/or neurodevelopmental conditions featuring social deficits. Seventy-one encode proteins classed as druggable by the gene-drug interaction database. Interestingly there are antagonists or inhibitors for the products of three of these up-regulated DEGs (Hrh3, Snca and Sod1) and agonists or activators for products of six of these down-regulated DEGs (Chrm4, Klf2, Lrrk2, Nr4a1, Nr4a3 and Prkca). Some have already undergone pre-clinical and clinical evaluation, and studies with the remainder may be warranted. Changes to Hrh3, Sod1, Chrm4, Lrrk2, Nr4a1 and Prkca were replicated in an independent cohort of sixteen male Sprague-Dawley rats via quantitative reverse transcription polymerase chain reaction (qRT-PCR). Our findings support the continued use of post-weaning isolation rearing to investigate the neurobiology of stress-related disorders and evaluate therapeutic targets.
Collapse
Affiliation(s)
- Jen-Yin Goh
- Neuromedicines Discovery Centre, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- School of Life Sciences, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, NG7 2UH, UK
| | - Patricia Rueda
- Neuromedicines Discovery Centre, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Joy Taylor
- School of Life Sciences, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, NG7 2UH, UK
| | - Alex Rathbone
- School of Life Sciences, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, NG7 2UH, UK
| | - Daniel Scott
- School of Life Sciences, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, NG7 2UH, UK
| | - Christopher J. Langmead
- Neuromedicines Discovery Centre, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Kevin C.F. Fone
- School of Life Sciences, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, NG7 2UH, UK
| | - Gregory D. Stewart
- Neuromedicines Discovery Centre, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Madeleine V. King
- School of Life Sciences, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, NG7 2UH, UK
| |
Collapse
|
2
|
Tzeng NS, Chung JY, Lin CC, Cheng PY, Liu YP. Effects of Subchronic Buspirone Treatment on Depressive Profile in Socially Isolated Rats: Implication of Early Life Experience on 5-HT1A Receptor-Related Depression. Pharmaceuticals (Basel) 2024; 17:717. [PMID: 38931384 PMCID: PMC11206366 DOI: 10.3390/ph17060717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/15/2024] [Accepted: 05/18/2024] [Indexed: 06/28/2024] Open
Abstract
The heterogeneity of etiology may serve as a crucial factor in the challenges of treatment, including the low response rate and the delay in establishing therapeutic effect. In the present study, we examined whether social experience since early life is one of the etiologies, with the involvement of the 5-HT1A receptors, and explored the potentially therapeutic action of the subchronic administration of buspirone, a partial 5-HT1A agonist. Rats were isolation reared (IR) since their weaning, and the depressive profile indexed by the forced-swim test (FST) was examined in adulthood. Nonspecific locomotor activity was used for the IR validation. Buspirone administration (1 mg/kg/day) was introduced for 14 days (week 9-11). The immobility score of the FST was examined before and after the buspirone administration. Tissue levels of serotonin (5-HT) and its metabolite 5-HIAA were measured in the hippocampus, the amygdala, and the prefrontal cortex. Efflux levels of 5-HT, dopamine (DA), and norepinephrine (NE) were detected in the hippocampus by brain dialysis. Finally, the full 5-HT1A agonist 8-OH-DPAT (0.5 mg/kg) was acutely administered in both behavioral testing and the dialysis experiment. Our results showed (i) increased immobility time in the FST for the IR rats as compared to the social controls, which could not be reversed by the buspirone administration; (ii) IR-induced FST immobility in rats receiving buspirone was corrected by the 8-OH-DPAT; and (iii) IR-induced reduction in hippocampal 5-HT levels can be reversed by the buspirone administration. Our data indicated the 5-HT1A receptor-linked early life social experience as one of the mechanisms of later life depressive mood.
Collapse
Affiliation(s)
- Nian-Sheng Tzeng
- Department of Psychiatry, Tri-Service General Hospital, Taipei 114, Taiwan;
- Student Counseling Center, National Defense Medical Center, Taipei 114, Taiwan
| | - Jing-Yi Chung
- Laboratory of Cognitive Neuroscience, Department of Physiology and Biophysics, National Defense Medical Center, Taipei 114, Taiwan; (J.-Y.C.); (C.-C.L.); (P.-Y.C.)
| | - Chen-Cheng Lin
- Laboratory of Cognitive Neuroscience, Department of Physiology and Biophysics, National Defense Medical Center, Taipei 114, Taiwan; (J.-Y.C.); (C.-C.L.); (P.-Y.C.)
| | - Pao-Yun Cheng
- Laboratory of Cognitive Neuroscience, Department of Physiology and Biophysics, National Defense Medical Center, Taipei 114, Taiwan; (J.-Y.C.); (C.-C.L.); (P.-Y.C.)
| | - Yia-Ping Liu
- Laboratory of Cognitive Neuroscience, Department of Physiology and Biophysics, National Defense Medical Center, Taipei 114, Taiwan; (J.-Y.C.); (C.-C.L.); (P.-Y.C.)
- Department of Psychiatry, Cheng Hsin General Hospital, Taipei 112, Taiwan
| |
Collapse
|
3
|
Grolli RE, Bertollo AG, Behenck JP, de Araujo Borba L, Plissari ME, Soares SJB, Manica A, da Silva Joaquim L, Petronilho F, Quevedo J, Bagatini MD, Réus GZ, Ignácio ZM. Quetiapine effect on depressive-like behaviors, oxidative balance, and inflammation in serum of rats submitted to chronic stress. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023:10.1007/s00210-023-02406-8. [PMID: 36735044 DOI: 10.1007/s00210-023-02406-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/23/2023] [Indexed: 02/04/2023]
Abstract
Major depressive disorder (MDD) etiology is still not completely understood, and many individuals resist the traditional treatments. Chronic exposure to stressful events can contribute to development and progression and be involved in biological changes underlying MDD. Among the biological mechanisms involved, inflammatory changes and oxidative balance are associated with MDD pathophysiology. Quetiapine, a second-generation antipsychotic, induces a better therapeutic response in individuals refractory to traditional treatments. The main objectives of this research were as follows: to evaluate the effect of chronic mild stress (CMS) on depressive-like behaviors, oxidative stress, and inflammation in adult rats; to evaluate the possible antidepressant, antioxidant, and anti-inflammatory effects of quetiapine. The animals were submitted to CMS protocols. At the end of the CMS, the animals were submitted to a chronic treatment for 14 days with the following drugs: quetiapine (20 mg/kg), imipramine (30 mg/kg), and escitalopram (10 mg/kg). At the end of the treatments, the animals were evaluated in the open field tests, anhedonia (splash test), and forced swimming. The animals were euthanized after the behavioral tests, and serum samples were collected. Myeloperoxidase (MPO) activity and interleukin-6 (IL-6) levels were analyzed. CMS induced an increase in depressive-like behaviors, and quetiapine significantly reduced these behaviors. MPO activity and IL-6 levels increased in the serum of animals submitted to CMS. Quetiapine significantly reduced MPO activity and IL-6 levels. These results corroborate other evidence, indicating that chronic stress is a relevant phenomenon in the etiology of depression and suggesting that quetiapine induces an antidepressant effect because it reduces oxidative and inflammatory mechanisms.
Collapse
Affiliation(s)
- Roberta Eduarda Grolli
- Laboratory of Physiology Pharmacology and Psychopathology, Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, 89815-899, Brazil
| | - Amanda Gollo Bertollo
- Laboratory of Physiology Pharmacology and Psychopathology, Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, 89815-899, Brazil
| | - João Paulo Behenck
- Laboratory of Translational Psychiatry, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Laura de Araujo Borba
- Laboratory of Translational Psychiatry, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Marcos Eduardo Plissari
- Laboratory of Physiology Pharmacology and Psychopathology, Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, 89815-899, Brazil
| | - Silvio José Batista Soares
- Laboratory of Physiology Pharmacology and Psychopathology, Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, 89815-899, Brazil
| | - Aline Manica
- Graduate Program in Health Sciences - Community University of the Chapecó Region, Chapecó, SC, Brazil
| | - Larissa da Silva Joaquim
- Neurobiology of Metabolic and Inflammatory Processes Laboratory, Graduate Program in Health Sciences, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Fabricia Petronilho
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - João Quevedo
- Laboratory of Translational Psychiatry, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciuma, SC, Brazil.,Center of Excellence On Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.,Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.,Neuroscience Graduate Program, Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Margarete Dulce Bagatini
- Laboratory of Cell Culture, Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| | - Gislaine Zilli Réus
- Laboratory of Translational Psychiatry, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Zuleide Maria Ignácio
- Laboratory of Physiology Pharmacology and Psychopathology, Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, 89815-899, Brazil.
| |
Collapse
|
4
|
Shirenova SD, Khlebnikova NN, Narkevich VB, Kudrin VS, Krupina NA. Nine-month-long Social Isolation Changes the Levels of Monoamines in the Brain Structures of Rats: A Comparative Study of Neurochemistry and Behavior. Neurochem Res 2023; 48:1755-1774. [PMID: 36680692 DOI: 10.1007/s11064-023-03858-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/30/2022] [Accepted: 01/06/2023] [Indexed: 01/22/2023]
Abstract
Social isolation (SI) is chronic psycho-emotional stress for humans and other socially living species. There are few comparative studies that have measured monoamine levels in brain structures in male and female rats subjected to SI. Existing data is highly controversial. In our recent study, we investigated behavioral effects of SI prolonged up to 9 months on a rather large sample of 69 male and female Wistar rats. In the present study, we measured the levels of monoamines-norepinephrine (NE), dopamine (DA), 5-hydroxytryptamine (5-HT), and DA and 5-HT metabolites-in the brain structures of 40 rats from the same sample. The single-housed rats of both sexes showed hyperactivity and reduced reactivity to novelty in the Open Field test, and impaired passive avoidance learning. Regardless of their sex, by the time of sacrifice, the single-housed rats weighed less and had lower pain sensitivity and decreased anxiety compared with group-housed animals. SI decreased NE levels in the hippocampus and increased them in the striatum. SI induced functional activation of the DA-ergic system in the frontal cortex and hypothalamus, with increased DA and 3-methoxytyramine levels. SI-related changes were found in the 5-HT-ergic system: 5-HT levels increased in the frontal cortex and striatum, while 5-hydroxyindoleacetic acid only increased in the frontal cortex. We believe that SI prolonged for multiple months could be a valuable model for comparative analysis of the behavioral alterations and the underlying molecular processes in dynamics of adaptation to chronic psychosocial stress in male and female rats in relation to age-dependent changes.
Collapse
Affiliation(s)
- Sophie D Shirenova
- Laboratory of General Pathology of the Nervous System, Research Institute of General Pathology and Pathophysiology, 8 Baltiyskaya St, 125315, Moscow, Russian Federation
| | - Nadezhda N Khlebnikova
- Laboratory of General Pathology of the Nervous System, Research Institute of General Pathology and Pathophysiology, 8 Baltiyskaya St, 125315, Moscow, Russian Federation
| | - Viktor B Narkevich
- Laboratory of Neurochemical Pharmacology, V. V. Zakusov Research Institute of Pharmacology, 8 Baltiyskaya St, 125315, Moscow, Russian Federation
| | - Vladimir S Kudrin
- Laboratory of Neurochemical Pharmacology, V. V. Zakusov Research Institute of Pharmacology, 8 Baltiyskaya St, 125315, Moscow, Russian Federation
| | - Nataliya A Krupina
- Laboratory of General Pathology of the Nervous System, Research Institute of General Pathology and Pathophysiology, 8 Baltiyskaya St, 125315, Moscow, Russian Federation.
| |
Collapse
|
5
|
Ferrari M, Godio M, Martini S, Callegari C, Cosentino M, Marino F. Inflammatory markers at baseline correlate with subsequent clinical response to quetiapine in patients with bipolar disorder. Hum Psychopharmacol 2022; 37:e2854. [PMID: 36069283 DOI: 10.1002/hup.2854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 07/11/2022] [Accepted: 08/18/2022] [Indexed: 11/07/2022]
Abstract
OBJECTIVES Recent studies proposed the existence of a correlation between patients' inflammatory status and therapy response in bipolar disorder (BD). Here we investigated the correlation between levels of inflammatory markers and quetiapine (QUE) effects in BD patients. METHODS In 15 hospitalised BD patients, we investigated changes in inflammatory markers such as C-Reactive Protein (CRP), Erythrocyte Sedimentation Rate (ESR) and cytokines after a 6-week treatment with QUE monotherapy. RESULTS We found QUE treatment to significantly reduce CRP and IL-6 plasma levels. Moreover, we found higher CRP and IL-6 plasma levels at baseline correlated with better improvement of patients' clinical symptoms. CONCLUSION The reported results, although preliminary, could be useful in clinical practice, providing not only markers for QUE response, but also allowing for identification of new targets and new therapies for the treatment of this condition.
Collapse
Affiliation(s)
- Marco Ferrari
- Center for Research in Medical Pharmacology, University of Insubria, Varese, Italy
| | - Marco Godio
- Center for Research in Medical Pharmacology, University of Insubria, Varese, Italy
| | - Stefano Martini
- Center for Research in Medical Pharmacology, University of Insubria, Varese, Italy
| | - Camilla Callegari
- Department of Medicine and Surgery, Division of Psychiatry, University of Insubria, Varese, Italy
| | - Marco Cosentino
- Center for Research in Medical Pharmacology, University of Insubria, Varese, Italy
| | - Franca Marino
- Center for Research in Medical Pharmacology, University of Insubria, Varese, Italy
| |
Collapse
|
6
|
Ferrari M, Godio M, Martini S, Callegari C, Cosentino M, Marino F. Effect of quetiapine on inflammation and immunity: a systematic review. Int J Psychiatry Clin Pract 2022:1-12. [PMID: 35913757 DOI: 10.1080/13651501.2022.2101928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
INTRODUCTION Knowledge about the neurobiology of psychiatric disorders is increasing in the last decades and evidence from literature suggests a central role for immuno-inflammatory mechanisms in these illnesses. The antipsychotic quetiapine acts on dopamine and serotonin signalling and well-established evidence demonstrates that these neurotransmitters can modulate immune functions in healthy and diseased conditions. Starting from this perspective, in the last few decades, a number of studies attempted to identify quetiapine effects on immune functions in order to highlight a possible additional effect of this drug in psychotic diseases, although no conclusive results were obtained. METHODS We critically reviewed preclinical and clinical studies evaluating quetiapine effects on immune systems, suggesting strategies for future work in this field. RESULTS Computerised search, in PubMed and Embase databases, was performed in March 2020: 120 studies were identified but only 29 relevant papers were selected for detailed review. CONCLUSION Despite some interesting preliminary findings about anti-inflammatory effects of quetiapine, mainly supported by preclinical studies, it is possible to conclude further studies are needed to investigate the immunomodulatory effects of this drug and achieve a better understanding of its relevance on clinical outcomes to finally identify new therapeutic approaches in psychiatric treatment.KeypointsMounting evidence points to a role for immuno-inflammatory mechanisms in psychiatric disorders.Quetiapine (QUE) acts on catecholamine (dopamine and norepinephrine) and serotonin signalling.The immunomodulatory effects of catecholamines are well established.Treatment with QUE in psychiatric disorders could leverage immunomodulatory effects.QUE unclear role in immune function modulation suggests future work.
Collapse
Affiliation(s)
- Marco Ferrari
- Center for Research in Medical Pharmacology, University of Insubria, Varese, Italy
| | - Marco Godio
- Center for Research in Medical Pharmacology, University of Insubria, Varese, Italy.,PhD Program in Clinical and Experimental Medicine and Medical Humanities, University of Insubria, Varese, Italy
| | - Stefano Martini
- Center for Research in Medical Pharmacology, University of Insubria, Varese, Italy
| | - Camilla Callegari
- Department of Medicine and Surgery, Division of Psychiatry, University of Insubria, Varese, Italy
| | - Marco Cosentino
- Center for Research in Medical Pharmacology, University of Insubria, Varese, Italy
| | - Franca Marino
- Center for Research in Medical Pharmacology, University of Insubria, Varese, Italy
| |
Collapse
|
7
|
Analysis of Gut Microbiota in Patients with Exacerbated Symptoms of Schizophrenia following Therapy with Amisulpride: A Pilot Study. Behav Neurol 2022; 2022:4262094. [PMID: 35287288 PMCID: PMC8917950 DOI: 10.1155/2022/4262094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 02/18/2022] [Indexed: 11/24/2022] Open
Abstract
Evidence is mounting that the gut microbiome is related to the underlying pathogenesis of schizophrenia. However, effects of amisulpride on gut microbiota are poorly defined. This study was aimed at analyzing cytokines and fecal microbiota in patients with exacerbated symptoms of schizophrenia treated with amisulpride during four weeks of their hospital stay. In the present study, feces collected from patients with schizophrenia were analyzed using 16S rRNA pyrosequencing and bioinformatic analyses to ascertain gut microbiome composition and fasting peripheral blood cytokines. We found that patients undergoing treatment of schizophrenia with amisulpride had distinct changes in gut microbial composition at the genus level, increased levels of short-chain fatty acid-producing bacteria (Dorea and Butyricicoccus), and reduced levels of pathogenic bacteria (Actinomyces and Porphyromonas), but the level of Desulfovibrio was still high. We also found a significant downregulation of butanoate metabolism based on functional analysis of the microbiome. After treatment, elevated levels of interleukin- (IL-) 4 and decreased levels of IL-6 were found. Our findings extend prior work and suggest a possible pharmacological mechanism of amisulpride treatment for schizophrenia, which acts via mediation of the gut microbiome.
Collapse
|
8
|
Present and future antipsychotic drugs: a systematic review of the putative mechanisms of action for efficacy and a critical appraisal under a translational perspective. Pharmacol Res 2022; 176:106078. [PMID: 35026403 DOI: 10.1016/j.phrs.2022.106078] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/23/2021] [Accepted: 01/07/2022] [Indexed: 01/10/2023]
Abstract
Antipsychotics represent the mainstay of schizophrenia pharmacological therapy, and their role has been expanded in the last years to mood disorders treatment. Although introduced in 1952, many years of research were required before an accurate picture of how antipsychotics work began to emerge. Despite the well-recognized characterization of antipsychotics in typical and atypical based on their liability to induce motor adverse events, their main action at dopamine D2R to elicit the "anti-psychotic" effect, as well as the multimodal action at other classes of receptors, their effects on intracellular mechanisms starting with receptor occupancy is still not completely understood. Significant lines of evidence converge on the impact of these compounds on multiple molecular signaling pathways implicated in the regulation of early genes and growth factors, dendritic spine shape, brain inflammation, and immune response, tuning overall the function and architecture of the synapse. Here we present, based on PRISMA approach, a comprehensive and systematic review of the above mechanisms under a translational perspective to disentangle those intracellular actions and signaling that may underline clinically relevant effects and represent potential targets for further innovative strategies in antipsychotic therapy.
Collapse
|
9
|
Vrankova S, Galandakova Z, Benko J, Cebova M, Riecansky I, Pechanova O. Duration of Social Isolation Affects Production of Nitric Oxide in the Rat Brain. Int J Mol Sci 2021; 22:ijms221910340. [PMID: 34638682 PMCID: PMC8509065 DOI: 10.3390/ijms221910340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/17/2021] [Accepted: 09/22/2021] [Indexed: 12/23/2022] Open
Abstract
Social isolation deprives rodents of social interactions that are critical for normal development of brain and behavior. Several studies have indicated that postweaning isolation rearing may affect nitric oxide (NO) production. The aim of this study was to compare selected behavioral and biochemical changes related to NO production in the brain of rats reared in social isolation for different duration. At the age of 21 days, male Sprague Dawley rats were randomly assigned into four groups reared in isolation or socially for 10 or 29 weeks. At the end of the rearing, open-field and prepulse inhibition (PPI) tests were carried out. Furthermore, in several brain areas we assessed NO synthase (NOS) activity, protein expression of nNOS and iNOS isoforms and the concentration of conjugated dienes (CD), a marker of oxidative damage and lipid peroxidation. Social isolation for 10 weeks resulted in a significant decrease in PPI, which was accompanied by a decrease in NOS activity in the cerebral cortex and the cerebellum, an increase in iNOS in the hippocampus and an increase in CD concentration in cortex homogenate. On the other hand, a 29 week isolation had an opposite effect on NOS activity, which increased in the cerebral cortex and the cerebellum in animals reared in social isolation, accompanied by a decrease in CD concentration. The decrease in NOS activity after 10 weeks of isolation might have been caused by chronic stress induced by social isolation, which has been documented in previous studies. The increased oxidative state might result in the depleted NO bioavailability, as NO reacts with superoxide radical creating peroxynitrite. After 29 weeks of isolation, this loss of NO might be compensated by the subsequent increase in NOS activity.
Collapse
Affiliation(s)
- Stanislava Vrankova
- Centre of Experimental Medicine, Institute of Normal and Pathological Physiology, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia; (Z.G.); (J.B.); (M.C.); (I.R.); (O.P.)
- Correspondence:
| | - Zuzana Galandakova
- Centre of Experimental Medicine, Institute of Normal and Pathological Physiology, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia; (Z.G.); (J.B.); (M.C.); (I.R.); (O.P.)
| | - Jakub Benko
- Centre of Experimental Medicine, Institute of Normal and Pathological Physiology, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia; (Z.G.); (J.B.); (M.C.); (I.R.); (O.P.)
| | - Martina Cebova
- Centre of Experimental Medicine, Institute of Normal and Pathological Physiology, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia; (Z.G.); (J.B.); (M.C.); (I.R.); (O.P.)
| | - Igor Riecansky
- Centre of Experimental Medicine, Institute of Normal and Pathological Physiology, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia; (Z.G.); (J.B.); (M.C.); (I.R.); (O.P.)
- Social, Cognitive and Affective Neuroscience Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, 1010 Vienna, Austria
- Department of Psychiatry, Slovak Medical University, 833 03 Bratislava, Slovakia
| | - Olga Pechanova
- Centre of Experimental Medicine, Institute of Normal and Pathological Physiology, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia; (Z.G.); (J.B.); (M.C.); (I.R.); (O.P.)
| |
Collapse
|
10
|
Sanson A, Riva MA. Anti-Stress Properties of Atypical Antipsychotics. Pharmaceuticals (Basel) 2020; 13:E322. [PMID: 33092112 PMCID: PMC7589119 DOI: 10.3390/ph13100322] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 12/11/2022] Open
Abstract
Stress exposure represents a major environmental risk factor for schizophrenia and other psychiatric disorders, as it plays a pivotal role in the etiology as well as in the manifestation of disease symptomatology. It may be inferred that pharmacological treatments must be able to modulate the behavioral, functional, and molecular alterations produced by stress exposure to achieve significant clinical outcomes. This review aims at examining existing clinical and preclinical evidence that supports the ability of atypical antipsychotic drugs (AAPDs) to modulate stress-related alterations. Indeed, while the pharmacodynamic differences between AAPDs have been extensively characterized, less is known on their ability to regulate downstream mechanisms that are critical for functional recovery and patient stabilization. We will discuss stress-related mechanisms, spanning from neuroendocrine function to inflammation and neuronal plasticity, which are relevant for the manifestation of schizophrenic symptomatology, and we will discuss if and how AAPDs may interfere with such mechanisms. Considering the impact of stress in everyday life, we believe that a better understanding of the potential effects of AAPDs on stress-related mechanisms may provide novel and important insights for improving therapeutic strategies aimed at promoting coping mechanisms and enhancing the quality of life of patients affected by psychiatric disorders.
Collapse
Affiliation(s)
| | - Marco A. Riva
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Giuseppe Balzaretti 9, 20133 Milan, Italy;
| |
Collapse
|
11
|
Reddaway J, Brydges NM. Enduring neuroimmunological consequences of developmental experiences: From vulnerability to resilience. Mol Cell Neurosci 2020; 109:103567. [PMID: 33068720 PMCID: PMC7556274 DOI: 10.1016/j.mcn.2020.103567] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 09/14/2020] [Accepted: 10/12/2020] [Indexed: 12/14/2022] Open
Abstract
The immune system is crucial for normal neuronal development and function (neuroimmune system). Both immune and neuronal systems undergo significant postnatal development and are sensitive to developmental programming by environmental experiences. Negative experiences from infection to psychological stress at a range of different time points (in utero to adolescence) can permanently alter the function of the neuroimmune system: given its prominent role in normal brain development and function this dysregulation may increase vulnerability to psychiatric illness. In contrast, positive experiences such as exercise and environmental enrichment are protective and can promote resilience, even restoring the detrimental effects of negative experiences on the neuroimmune system. This suggests the neuroimmune system is a viable therapeutic target for treatment and prevention of psychiatric illnesses, especially those related to stress. In this review we will summarise the main cells, molecules and functions of the immune system in general and with specific reference to central nervous system development and function. We will then discuss the effects of negative and positive environmental experiences, especially during development, in programming the long-term functioning of the neuroimmune system. Finally, we will review the sparse but growing literature on sex differences in neuroimmune development and response to environmental experiences. The immune system is essential for development and function of the central nervous system (neuroimmune system) Environmental experiences can permanently alter neuroimmune function and associated brain development Altered neuroimmune function following negative developmental experiences may play a role in psychiatric illnesses Positive experiences can promote resilience and rescue the effects of negative experiences on the neuroimmune system The neuroimmune system is therefore a viable therapeutic target for preventing and treating psychiatric illnesses
Collapse
Affiliation(s)
- Jack Reddaway
- Neuroscience and Mental Health Research Institute, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff CF24 4HQ, UK
| | - Nichola M Brydges
- Neuroscience and Mental Health Research Institute, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff CF24 4HQ, UK.
| |
Collapse
|
12
|
Chamera K, Kotarska K, Szuster-Głuszczak M, Trojan E, Skórkowska A, Pomierny B, Krzyżanowska W, Bryniarska N, Basta-Kaim A. The prenatal challenge with lipopolysaccharide and polyinosinic:polycytidylic acid disrupts CX3CL1-CX3CR1 and CD200-CD200R signalling in the brains of male rat offspring: a link to schizophrenia-like behaviours. J Neuroinflammation 2020; 17:247. [PMID: 32829711 PMCID: PMC7444338 DOI: 10.1186/s12974-020-01923-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 08/10/2020] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND The bidirectional communication between neurons and microglia is fundamental for the homeostasis and biological function of the central nervous system. Maternal immune activation (MIA) is considered to be one of the factors affecting these interactions. Accordingly, MIA has been suggested to be involved in several neuropsychiatric diseases, including schizophrenia. The crucial regulatory systems for neuron-microglia crosstalk are the CX3CL1-CX3CR1 and CD200-CD200R axes. METHODS We aimed to clarify the impact of MIA on CX3CL1-CX3CR1 and CD200-CD200R signalling pathways in the brains of male Wistar rats in early and adult life by employing two neurodevelopmental models of schizophrenia based on the prenatal challenge with lipopolysaccharide (LPS) and polyinosinic:polycytidylic acid (Poly I:C). We also examined the effect of MIA on the expression of microglial markers and the profile of cytokines released in the brains of young offspring, as well as the behaviour of adult animals. Moreover, we visualized the localization of ligand-receptor systems in the hippocampal regions (CA1, CA3 and DG) and the frontal cortex of young rats exposed to MIA. The differences between groups were analysed using Student's t test. RESULTS We observed that MIA altered developmental trajectories in neuron-microglia communication in the brains of young offspring, as evidenced by the disruption of CX3CL1-CX3CR1 and/or CD200-CD200R axes. Our data demonstrated the presence of abnormalities after LPS-induced MIA in levels of Cd40, Il-1β, Tnf-α, Arg1, Tgf-β and Il-10, as well as IBA1, IL-1β and IL-4, while after Poly I:C-generated MIA in levels of Cd40, iNos, Il-6, Tgf-β, Il-10, and IBA1, IL-1β, TNF-α, IL-6, TGF-β and IL-4 early in the life of male animals. In adult male rats that experienced prenatal exposure to MIA, we observed behavioural changes resembling a schizophrenia-like phenotype. CONCLUSIONS Our study provides evidence that altered CX3CL1-CX3CR1 and/or CD200-CD200R pathways, emerging after prenatal immune challenge with LPS and Poly I:C, might be involved in the aetiology of schizophrenia.
Collapse
Affiliation(s)
- Katarzyna Chamera
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St, 31-343, Kraków, Poland
| | - Katarzyna Kotarska
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St, 31-343, Kraków, Poland
| | - Magdalena Szuster-Głuszczak
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St, 31-343, Kraków, Poland
| | - Ewa Trojan
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St, 31-343, Kraków, Poland
| | - Alicja Skórkowska
- Department of Toxicology, Faculty of Pharmacy, Jagiellonian University Collegium Medicum, 9 Medyczna St, 30-688, Kraków, Poland
| | - Bartosz Pomierny
- Department of Toxicology, Faculty of Pharmacy, Jagiellonian University Collegium Medicum, 9 Medyczna St, 30-688, Kraków, Poland
| | - Weronika Krzyżanowska
- Department of Toxicology, Faculty of Pharmacy, Jagiellonian University Collegium Medicum, 9 Medyczna St, 30-688, Kraków, Poland
| | - Natalia Bryniarska
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St, 31-343, Kraków, Poland
| | - Agnieszka Basta-Kaim
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St, 31-343, Kraków, Poland.
| |
Collapse
|
13
|
Lin CC, Cheng PY, Liu YP. Effects of early life social experience on fear extinction and related glucocorticoid profiles - behavioral and neurochemical approaches in a rat model of PTSD. Behav Brain Res 2020; 391:112686. [PMID: 32428628 DOI: 10.1016/j.bbr.2020.112686] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/30/2020] [Accepted: 04/30/2020] [Indexed: 01/06/2023]
Abstract
People may agonize over an intrusive fear-inducing memory even when the traumatic event has passed, which is the principle manifestation of posttraumatic stress disorder (PTSD). However, many traumatized people do not present symptoms of PTSD, implying that certain hidden factors help those individuals to cope with the traumatic stress. Increasing evidence suggests that early life experience may serve as a predisposing factor in the development of PTSD. For example, early life social deprivation disrupts the glucocorticoid system, one of the biological abnormalities of PTSD. By employing isolation rearing (IR) with a subsequent single prolonged stress (SPS) paradigm, we examined the hypothesis that early-life social experience may change the outcome of traumatic stress in both behavioral and neurochemical profiles. Behaviorally, the performance of rats on a Pavlovian fear conditioning test was measured to evaluate their retrieval ability of fear memory extinction. Neurochemically, plasma corticosterone levels and glucocorticoid receptor (GR), FK506-binding proteins 4 and 5 (FKBP4 and FKBP5) and early growth response-1 (Egr-1) expression were measured in GR-abundant brain areas, including the hypothalamus, medial prefrontal cortex, and hippocampus. Our results demonstrated an area-dependent IR effect on the SPS outcomes. IR prevented the SPS-impaired fear extinction retrieval ability and averted the SPS-elevated expression of GR, FKBP4, and Egr-1 in the hippocampus, whereas it did not change the SPS-reduced plasma corticosterone levels and SPS-enhanced GR activity in the mPFC and hypothalamus. The present study provides some new insights to support the hypothesis that early-life experience may play a role in the occurrence of PTSD.
Collapse
Affiliation(s)
- Chen-Cheng Lin
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 11490, Taiwan; Department of Psychiatry, Cheng Hsin General Hospital, Taipei 11220, Taiwan; Laboratory of Cognitive Neuroscience, Department of Physiology, National Defense Medical Center, Taipei 11490, Taiwan
| | - Pao-Yun Cheng
- Department of Physiology, National Defense Medical Center, Taipei 11490, Taiwan
| | - Yia-Ping Liu
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 11490, Taiwan; Department of Psychiatry, Cheng Hsin General Hospital, Taipei 11220, Taiwan; Laboratory of Cognitive Neuroscience, Department of Physiology, National Defense Medical Center, Taipei 11490, Taiwan.
| |
Collapse
|
14
|
Lin CC, Chen TY, Cheng PY, Liu YP. Early life social experience affects adulthood fear extinction deficit and associated dopamine profile abnormalities in a rat model of PTSD. Prog Neuropsychopharmacol Biol Psychiatry 2020; 101:109914. [PMID: 32165120 DOI: 10.1016/j.pnpbp.2020.109914] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 02/13/2020] [Accepted: 03/06/2020] [Indexed: 12/20/2022]
Abstract
Individuals may develop fear extinction deficits after life-threatening traumatic events; such deficits indicate posttraumatic stress disorder (PTSD). Because the occurrence of this disorder differs among people who have experienced trauma, hidden underlying factors should be determined. Increasing evidence suggests the involvement of neuronal dysregulation of information processes or cognitive function during development. This neuronal dysregulation is caused by disturbances in dopamine (DA) transmission within the fear circuit, which comprises the medial prefrontal cortex (mPFC), amygdala, and hippocampus. Single prolonged stress (SPS) combined with an isolation rearing (IR) paradigm was used to randomly assign rats to four groups [social rearing-no SPS (SR-NS), SR-SPS, IR-NS, and IR-SPS], and their performance in prepulse inhibition (PPI) and on Pavlovian fear conditioning tests was assessed. Tissue DA levels and the expression of DA receptors (D1R and D2R) in the fear circuit were measured at the end of the experiment. Our results indicated that PPI deficits and fear extinction problems were specific to rats subjected to IR and SPS, respectively. Furthermore, IR-induced PPI deficits were not influenced by SPS, but SPS-induced fear extinction retrieval impairment could be adjusted according to previous IR experiences. Neurochemically, tissue DA levels and D1R expression in the mPFC and amygdala were nonspecifically reduced by IR and SPS, whereas D2R expression in the mPFC and amygdala was higher in IR-SPS than in SR-SPS rats. These findings suggest that early life experiences may influence fear responses in adulthood through a change in DA profiles within the fear circuit.
Collapse
Affiliation(s)
- Chen-Cheng Lin
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 11490, Taiwan; Department of Psychiatry, Cheng Hsin General Hospital, Taipei 11220, Taiwan; Laboratory of Cognitive Neuroscience, Department of Physiology, National Defense Medical Center, Taipei 11490, Taiwan
| | - Tzung-Yan Chen
- Department of Psychiatry, Cheng Hsin General Hospital, Taipei 11220, Taiwan; Laboratory of Cognitive Neuroscience, Department of Physiology, National Defense Medical Center, Taipei 11490, Taiwan
| | - Pao-Yun Cheng
- Department of Physiology, National Defense Medical Center, Taipei 11490, Taiwan.
| | - Yia-Ping Liu
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 11490, Taiwan; Department of Psychiatry, Cheng Hsin General Hospital, Taipei 11220, Taiwan; Laboratory of Cognitive Neuroscience, Department of Physiology, National Defense Medical Center, Taipei 11490, Taiwan.
| |
Collapse
|
15
|
Brydges NM, Reddaway J. Neuroimmunological effects of early life experiences. Brain Neurosci Adv 2020; 4:2398212820953706. [PMID: 33015371 PMCID: PMC7513403 DOI: 10.1177/2398212820953706] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 08/07/2020] [Indexed: 12/18/2022] Open
Abstract
Exposure to adverse experiences during development increases the risk of psychiatric illness later in life. Growing evidence suggests a role for the neuroimmune system in this relationship. There is now substantial evidence that the immune system is critical for normal brain development and behaviour, and responds to environmental perturbations experienced early in life. Severe or chronic stress results in dysregulated neuroimmune function, concomitant with abnormal brain morphology and function. Positive experiences including environmental enrichment and exercise exert the opposite effect, promoting normal brain and immune function even in the face of early life stress. The neuroimmune system may therefore provide a viable target for prevention and treatment of psychiatric illness. This review will briefly summarise the neuroimmune system in brain development and function, and review the effects of stress and positive environmental experiences during development on neuroimmune function. There are also significant sex differences in how the neuroimmune system responds to environmental experiences early in life, which we will briefly review.
Collapse
Affiliation(s)
- Nichola M. Brydges
- Neuroscience and Mental Health Research
Institute, Cardiff University, Cardiff, UK
| | - Jack Reddaway
- Neuroscience and Mental Health Research
Institute, Cardiff University, Cardiff, UK
| |
Collapse
|
16
|
Ko CY, Fan JM, Hu AK, Su HZ, Yang JH, Huang LM, Yan FR, Zhang HP, Zeng YM. Disruption of sleep architecture in Prevotella enterotype of patients with obstructive sleep apnea-hypopnea syndrome. Brain Behav 2019; 9:e01287. [PMID: 30957979 PMCID: PMC6520469 DOI: 10.1002/brb3.1287] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/14/2019] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION Intermittent hypoxia and sleep fragmentation are critical pathophysiological processes involved in obstructive sleep apnea-hypopnea syndrome (OSAHS). Those manifestations independently affect similar brain regions and contribute to OSAHS-related comorbidities that are known to be related to the host gut alteration microbiota. We hypothesized that gut microbiota disruption may cross talk the brain function via the microbiota-gut-brain axis. Thus, we aim to survey enterotypes and polysomnographic data of patients with OSAHS. METHODS Subjects were diagnosed by polysomnography, from whom fecal samples were obtained and analyzed for the microbiome composition by variable regions 3-4 of 16S rRNA pyrosequencing and bioinformatic analyses. We examined the fasting levels of interleukin-6 and tumor necrosis factor-alpha of all subjects. RESULTS Three enterotypes Bacteroides, Ruminococcus, and Prevotella were identified in patients with OSAHS. Arousal-related parameters or sleep stages are significantly disrupted in apnea-hypopnea index (AHI) ≥15 patients with Prevotella enterotype; further analysis this enterotype subjects, obstructive, central, and mixed apnea indices, and mean heart rate are also significantly elevated in AHI ≥15 patients. However, blood cytokines levels of all subjects were not significantly different. CONCLUSIONS This study indicates the possibility of pathophysiological interplay between enterotypes and sleeps structure disruption in sleep apnea through a microbiota-gut-brain axis and offers some new insight toward the pathogenesis of OSAHS.
Collapse
Affiliation(s)
- Chih-Yuan Ko
- Department of Pulmonary and Critical Care Medicine, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, China.,Respiratory Medicine Center of Fujian Province, Quanzhou, China.,Key Laboratory of Fujian Medical University, Fujian Province University, Quanzhou, China.,Department of Endocrinology and Metabolism, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Ji-Mim Fan
- Department of Pulmonary and Critical Care Medicine, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, China.,Respiratory Medicine Center of Fujian Province, Quanzhou, China.,Key Laboratory of Fujian Medical University, Fujian Province University, Quanzhou, China
| | - An-Ke Hu
- Department of Pulmonary and Critical Care Medicine, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, China.,Respiratory Medicine Center of Fujian Province, Quanzhou, China.,Key Laboratory of Fujian Medical University, Fujian Province University, Quanzhou, China
| | - Huan-Zhang Su
- Department of Pulmonary and Critical Care Medicine, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, China.,Respiratory Medicine Center of Fujian Province, Quanzhou, China.,Key Laboratory of Fujian Medical University, Fujian Province University, Quanzhou, China
| | - Jiao-Hong Yang
- Department of Pulmonary and Critical Care Medicine, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, China.,Respiratory Medicine Center of Fujian Province, Quanzhou, China.,Key Laboratory of Fujian Medical University, Fujian Province University, Quanzhou, China
| | - Li-Mei Huang
- Department of Pulmonary and Critical Care Medicine, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, China.,Respiratory Medicine Center of Fujian Province, Quanzhou, China.,Key Laboratory of Fujian Medical University, Fujian Province University, Quanzhou, China
| | - Fu-Rong Yan
- Department of Pulmonary and Critical Care Medicine, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, China.,Respiratory Medicine Center of Fujian Province, Quanzhou, China.,Key Laboratory of Fujian Medical University, Fujian Province University, Quanzhou, China.,Center for Molecular Diagnosis and Therapy, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Hua-Ping Zhang
- Department of Pulmonary and Critical Care Medicine, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, China.,Respiratory Medicine Center of Fujian Province, Quanzhou, China.,Key Laboratory of Fujian Medical University, Fujian Province University, Quanzhou, China
| | - Yi-Ming Zeng
- Department of Pulmonary and Critical Care Medicine, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, China.,Respiratory Medicine Center of Fujian Province, Quanzhou, China.,Key Laboratory of Fujian Medical University, Fujian Province University, Quanzhou, China
| |
Collapse
|
17
|
Corsi-Zuelli F, Fachim HA, Loureiro CM, Shuhama R, Bertozi G, Joca SRL, Menezes PR, Louzada-Junior P, Del-Ben CM. Prolonged Periods of Social Isolation From Weaning Reduce the Anti-inflammatory Cytokine IL-10 in Blood and Brain. Front Neurosci 2019; 12:1011. [PMID: 30686977 PMCID: PMC6337063 DOI: 10.3389/fnins.2018.01011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 12/17/2018] [Indexed: 01/31/2023] Open
Abstract
Life stressors during critical periods are reported to trigger an immune dysfunction characterised by abnormal production of inflammatory cytokines. Despite the relationship between early stressors and schizophrenia is described, the evidence on inflammatory biomarkers remains limited. We aimed to investigate whether an imbalance between pro- and anti-inflammatory cytokines in the brain is reflected in the peripheral blood of rats submitted to post-weaning social isolation (pwSI), a model with validity to study schizophrenia. We evaluated pro- and anti-inflammatory cytokines (IL-6, TNF-α, and IL-10) simultaneously at blood, prefrontal cortex and hippocampal tissues (Milliplex MAP), including the respective cytokines gene expression (mRNA) (qRT-PCR TaqMan mastermix). We also performed a correlation matrix to explore significant correlations among cytokines (protein and mRNA) in blood and brain, as well as cytokines and total number of square crossings in the open field for isolated-reared animals. Male Wistar rats (n = 10/group) were kept isolated (n = 1/cage) or grouped (n = 3–4/cage) since weaning for 10 weeks. After this period, rats were assessed for locomotion and sacrificed for blood and brain cytokines measurements. Prolonged pwSI decreased IL-10 protein and mRNA in the blood, and IL-10 protein in the hippocampus, along with decreased IL-6 and its mRNA expression in the prefrontal cortex. Our results also showed that cytokines tend to correlate to one-another among the compartments investigated, although blood and brain correlations are far from perfect. IL-10 hippocampal levels were negatively correlated with hyperlocomotion in the open field. Despite the unexpected decrease in IL-6 and unchanged TNF-α levels contrast to the expected pro-inflammatory phenotype, this may suggest that reduced anti-inflammatory signalling may be critical for eliciting abnormal behaviour in adulthood. Altogether, these results suggest that prolonged early-life adverse events reduce the ability to build proper anti-inflammatory cytokine that is translated from blood-to-brain.
Collapse
Affiliation(s)
- Fabiana Corsi-Zuelli
- Division of Psychiatry, Department of Neuroscience and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Helene Aparecida Fachim
- Division of Psychiatry, Department of Neuroscience and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, United Kingdom
| | - Camila Marcelino Loureiro
- Division of Clinical Immunology, Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Rosana Shuhama
- Division of Psychiatry, Department of Neuroscience and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Giuliana Bertozi
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Sâmia Regiane Lourenço Joca
- Department of Physics and Chemistry, School of Pharmaceutical Sciences, University of São Paulo, Ribeirão Preto, Brazil.,Department of Clinical Medicine, Translational Neuropsychiatry Unit, Aarhus University, Aarhus, Denmark
| | - Paulo Rossi Menezes
- Department of Preventive Medicine, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Paulo Louzada-Junior
- Division of Clinical Immunology, Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Cristina Marta Del-Ben
- Division of Psychiatry, Department of Neuroscience and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
18
|
Liu WJ, Wang XD, Wu W, Huang X. Relationship between depression and blood cytokine levels in lung cancer patients. Med Sci (Paris) 2018; 34 Focus issue F1:113-115. [PMID: 30403185 DOI: 10.1051/medsci/201834f119] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
OBJECTIVE To study the correlation between depression and blood cytokine levels in lung cancer patients. METHODS 92 patients with advanced lung cancer were evaluated for depression using the scoring index of depression self-rating scale. Lack of depression (n=24), mild depression (n=45), and moderate depression (n=23) were found in the cohort. Meanwhile, 40 healthy subjects were selected as the control group. The levels of IL-10, IL-6, IL-8, and TNF-α in each group were detected by sandwich enzyme-linked immunosorbent assays, and their correlation with the degree of depression was analyzed. RESULTS The levels of IL-10, IL-6, IL-8, and TNF-α were all higher than those in the control group (P<0.05). Moreover, the depression statuses of patients with lung cancer were positively correlated with IL-10, IL-6, and TNF-α levels (r = 0.705, 0.301, and 0.446, P<0.01); however, the level of IL-8 was not relevant (r=0.136, p>0.05). CONCLUSION Serum levels of IL-10, IL-6, and TNF-α are associated with depression scoring in patients with lung cancer.
Collapse
Affiliation(s)
- Wen-Juan Liu
- MD, Department of Psychological Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai (200032), China
| | - Xiao-Dan Wang
- Department of Respiratory Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Wei Wu
- Department of Pharmacy, Zhongshan Hospital, Fudan University, Shangai 200032, China
| | - Xiao Huang
- MD, Department of Psychological Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai (200032), China
| |
Collapse
|
19
|
Shen H, Wu D, Wang S, Zhao M, Sun W, Zhu X, Zhang N, Yao H, Cui Q, Xiao H. Atypical Antipsychotic Administration in Schizophrenic Patients Leads to Elevated Lipoprotein-Associated Phospholipase A2 Levels and Increased Cardiovascular Risk: A Retrospective Cohort Study. Basic Clin Pharmacol Toxicol 2018; 123:756-765. [PMID: 29938908 DOI: 10.1111/bcpt.13079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 06/13/2018] [Indexed: 12/31/2022]
Abstract
The prevalence of cardiovascular disease (CVD) is higher in patients with schizophrenia than in the general population. We aimed to investigate whether atypical antipsychotics (AAP) increase the levels of lipoprotein-associated phospholipase A2 (Lp-PLA2), thereby increasing the risk of CVD. The data were from inpatients aged 18-60 years with a diagnosis of schizophrenia according to ICD-10 at the Affiliated Brain Hospital of Nanjing Medical University who underwent physical examination between 1 October 2014 and 30 September 2016. A retrospective cohort study was used to analyse the correlation between AAP, Lp-PLA2 levels and the CVD risk (it was determined that Lp-PLA2 values >200 ng/mL were defined as high CVD risk) in patients treated with monotherapy, olanzapine, clozapine or quetiapine. Data were collected for 452 patients with eligible schizophrenia: 163 treated with clozapine, 186 treated with olanzapine, 47 treated with quetiapine and 56 receiving no medication. Compared with the no-medication patients, AAP administration in patients with olanzapine, clozapine or quetiapine had higher serum Lp-PLA2 levels when age, sex, BMI and fasting glucose level were matched. AAP were significantly associated with serum Lp-PLA2 level by Spearman's correlation coefficients. The results of logistic regression analysis showed that AAP administration was an independent factor of CVD risk when adjusted by potential confounding factors. This study is the first to confirm that AAP administration, especially clozapine and olanzapine, could increase Lp-PLA2 levels and CVD risk, independent of drug-induced weight gain in schizophrenia. The extent and the factors of increasing Lp-PLA2 level and CVD risk in olanzapine, clozapine and quetiapine are discrepant. The possible effects of AAP on Lp-PLA2 in schizophrenia patients are involved in pro-inflammatory cytokines and hormones.
Collapse
Affiliation(s)
- Hong Shen
- Neuro-Psychiatric Institute, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Danyang Wu
- Department of Pharmacy, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Shanshan Wang
- Department of Pharmacy, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Mengjie Zhao
- Neuro-Psychiatric Institute, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Wenbo Sun
- Neuro-Psychiatric Institute, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaozhou Zhu
- Neuro-Psychiatric Institute, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Ning Zhang
- Department of Medical Psychology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Hui Yao
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Qing Cui
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Hong Xiao
- Neuro-Psychiatric Institute, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
20
|
Lukkes JL, Meda S, Norman KJ, Andersen SL. Anhedonic behavior and γ-amino butyric acid during a sensitive period in female rats exposed to early adversity. J Psychiatr Res 2018; 100:8-15. [PMID: 29471082 PMCID: PMC6295145 DOI: 10.1016/j.jpsychires.2018.02.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 12/22/2017] [Accepted: 02/08/2018] [Indexed: 12/15/2022]
Abstract
Early life adversity increases depressive behavior that emerges during adolescence. Sensitive periods have been associated with fewer GABAergic interneurons, especially parvalbumin (PV), brain derived growth factor, and its receptor, TrkB. Here, maternal separation (MS) and social isolation (ISO) were used to establish a sensitive period for anhedonic depression using the learned helplessness (LH) paradigm. Female Sprague-Dawley rat pups underwent MS for 4-h/day or received typical care (CON) between postnatal days 2-20; for the ISO condition, separate cohorts were individually housed between days 20-40 or served as controls (CON2). Anhedonia was defined by dichotomizing subjects into two groups based on one standard deviation of the mean number of escapes for the CON group (<14). This approach categorized 22% of CON subjects and 44% of MS subjects as anhedonic (p < 0.05), similar to the prevalence in maltreated human populations. Only 12.5% of ISO rats met criterion versus 28.5% in CON2 rats. Levels of PV and TrkB were reduced in the amygdala and prelimbic prefrontal cortex (PFC) in MS rats with <14 escapes, but elevated in behaviorally resilient MS rats (>13 escapes). The number of escapes in MS subjects significantly correlated with PV and TrkB levels (PFC: r = 0.93 and 0.91 and amygdala: r = 0.63 and 0.81, respectively; n = 9), but not in CON/ISO/CON2 subjects. Calretinin, but not calbindin, was elevated in the amygdala of MS subjects. These data suggest that low levels of PV and TrkB double the risk for anhedonia in females with an MS history compared to normal adolescent females.
Collapse
Affiliation(s)
- Jodi L. Lukkes
- Laboratory for Developmental Neuropharmacology, McLean Hospital,Harvard Medical School
| | - Shirisha Meda
- Laboratory for Developmental Neuropharmacology, McLean Hospital
| | - Kevin J. Norman
- Laboratory for Developmental Neuropharmacology, McLean Hospital
| | - Susan L. Andersen
- Laboratory for Developmental Neuropharmacology, McLean Hospital,Harvard Medical School,to whom correspondence should be addressed: 115 Mill Street, Mailstop 333, Belmont, MA 02478, Tel: (617)-855-3211, FAX: (617)-855-3479,
| |
Collapse
|
21
|
Schipper L, Harvey L, van der Beek EM, van Dijk G. Home alone: a systematic review and meta-analysis on the effects of individual housing on body weight, food intake and visceral fat mass in rodents. Obes Rev 2018; 19:614-637. [PMID: 29334694 DOI: 10.1111/obr.12663] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 11/11/2017] [Accepted: 11/21/2017] [Indexed: 12/09/2022]
Abstract
Rats and mice are widely used to study environmental effects on psychological and metabolic health. Study designs differ widely and are often characterized by varying (social) housing conditions. In itself, housing has a profound influence on physiology and behaviour of rodents, affecting energy balance and sustainable metabolic health. However, evidence for potential long-term consequences of individual versus social housing on body weight and metabolic phenotype is inconsistent. We conducted a systematic literature review and meta-analyses assessing effects of individual versus social housing of rats and mice, living under well-accepted laboratory conditions, on measures of metabolic health, including body weight, food intake and visceral adipose tissue mass. Seventy-one studies were included in this review; 59 were included in the meta-analysis. Whilst housing did not affect body weight, both food intake and visceral adipose tissue mass were significantly higher in individually compared with socially housed animals. A combination of emotional stress and lack of social thermoregulation likely contributed to these effects. Increased awareness of consequences and improved specifications of housing conditions are necessary to accurately evaluate efficacy of drugs, diets or other interventions on metabolic and other health outcomes because housing conditions are rarely considered as possible moderators of reported outcomes.
Collapse
Affiliation(s)
- L Schipper
- Groningen Institute for Evolutionary Life Sciences (GELIFES), Neurobiology Cluster, Department Behavioural Neurosciences, University of Groningen, Groningen, The Netherlands.,Nutricia Research, Utrecht, The Netherlands
| | | | - E M van der Beek
- Nutricia Research, Utrecht, The Netherlands.,Department of Paediatrics, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - G van Dijk
- Groningen Institute for Evolutionary Life Sciences (GELIFES), Neurobiology Cluster, Department Behavioural Neurosciences, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
22
|
Characterization of Behavioral, Signaling and Cytokine Alterations in a Rat Neurodevelopmental Model for Schizophrenia, and Their Reversal by the 5-HT 6 Receptor Antagonist SB-399885. Mol Neurobiol 2018; 55:7413-7430. [PMID: 29423817 PMCID: PMC6096968 DOI: 10.1007/s12035-018-0940-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 01/28/2018] [Indexed: 12/15/2022]
Abstract
Post-weaning social isolation of rats produces neuroanatomical, neurochemical and behavioral alterations resembling some core features of schizophrenia. This study examined the ability of the 5-HT6 receptor antagonist SB-399885 to reverse isolation-induced cognitive deficits, then investigated alterations in hippocampal cell proliferation and hippocampal and frontal cortical expression of selected intracellular signaling molecules and cytokines. Male Lister hooded rats (weaned on post-natal days 21-24 and housed individually or in groups of 3-4) received six i.p. injections of vehicle (1% Tween 80, 1 mL/kg) or SB-399885 (5 or 10 mg/kg) over a 2-week period starting 40 days post-weaning, on the days that locomotor activity, novel object discrimination (NOD), pre-pulse inhibition of acoustic startle and acquisition, retention and extinction of a conditioned freezing response (CFR) were assessed. Tissue was collected 24 h after the final injection for immunohistochemistry, reverse-phase protein microarray and western blotting. Isolation rearing impaired NOD and cue-mediated CFR, decreased cell proliferation within the dentate gyrus, and elevated hippocampal TNFα levels and Cdc42 expression. SB-399885 reversed the NOD deficit and partially normalized CFR and cell proliferation. These effects were accompanied by altered expression of several members of the c-Jun N-terminal Kinase (JNK) and p38 MAPK signaling pathways (including TAK1, MKK4 and STAT3). Although JNK and p38 themselves were unaltered at this time point hippocampal TAK1 expression and phosphorylation correlated with visual recognition memory in the NOD task. Continued use of this neurodevelopmental model could further elucidate the neurobiology of schizophrenia and aid assessment of novel therapies for drug-resistant cognitive symptoms.
Collapse
|
23
|
Liu YP, Yang YY, Wan FJ, Tung CS. Importance of intervention timing in the effectiveness of antipsychotics. Prog Neuropsychopharmacol Biol Psychiatry 2018; 81:493-500. [PMID: 28174128 DOI: 10.1016/j.pnpbp.2017.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 11/08/2016] [Accepted: 02/03/2017] [Indexed: 11/16/2022]
Abstract
The use of early pharmacological intervention in treating young patients with schizophrenia is a debating issue for psychiatrists. However, on the basis of developmental theory, early antipsychotic intervention can be beneficial in terms of protecting neurons from further deterioration. This study investigated whether the initiation of second-generation antipsychotic (SGA) treatment at a younger age can effectively reverse schizophrenia-relevant behavioral and neurochemical features, namely acoustic prepulse inhibition (PPI) and accumbal dopamine (DA) efflux, respectively. Risperidone (RIS, 1mg/kg/day) or olanzapine (OLA, 2.5mg/kg/day) was administered for 6weeks in rats subjected to isolation rearing (IR) in adolescence or young adulthood. Behavioral testing was performed at 3 and 5 (for locomotor activity) and 2 and 4 (for PPI) weeks after the initiation of the pharmacological regimen. An additional PPI test was performed 6weeks after the initiation of the pharmacological regimen to assess the acute add-on effect of RIS or OLA. Dopamine (DA) efflux of the nucleus accumbens was evaluated through in vivo microdialysis at the end of the study, for measuring both the baseline levels after the chronic regimen and the responsiveness to acute add-on RIS or OLA treatment. Our results demonstrated that the effects of SGAs on PPI and accumbal DA efflux were dissociated. Specifically, RIS intervention was more beneficial for adolescent than young adult IR rats in restoring their PPI deficit, whereas OLA was age-independently effective in stimulating the accumbal DA efflux. Both PPI and accumbal DA could be employed to reflect IR-induced abnormalities, in which accumbal DA appeared to be more suitable in depicting the long-term effect of IR, whereas PPI might be a more accurate biological index for revealing the advantages of early RIS intervention.
Collapse
Affiliation(s)
- Yia-Ping Liu
- Department of Physiology and Biophysics, National Defense Medical Center, Taipei, Taiwan, ROC; Department of Psychiatry, Tri-Service General Hospital, Taipei, Taiwan, ROC.
| | - Yu-Yin Yang
- Department of Physiology and Biophysics, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Fang-Jung Wan
- Department of Psychiatry, Tri-Service General Hospital, Taipei, Taiwan, ROC
| | - Che-Se Tung
- Division of Medical Research and Education, Cheng Hsin General Hospital, Taipei, Taiwan, ROC
| |
Collapse
|
24
|
Tai YM, Ko CY, Lin CC, Wan YY, Chung JY, Liu YP. Effects of 5HT1A Activation on Gating Profile Following 5HT Depletion in Rats Lacking Social Attachment Since Weanling. Psychiatry Investig 2018; 15:193-199. [PMID: 29475221 PMCID: PMC5900402 DOI: 10.30773/pi.2017.05.14.2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 02/06/2017] [Accepted: 05/14/2017] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE Central 5-HT1A receptor is involved in the modulation of sensorimotor gating function. However, its precise role is not clearly defined in developmentally social deprived (isolation rearing, IR) rats featured with impaired sensorimotor gating ability. We therefore aimed to examine the effects of 5HT1A activation on acoustic startle response (ASR) and prepulse inhibition (PPI) in IR rats in a condition of compromised presynaptic 5-HT functions. METHODS Social control (SOC) and IR rats received an intracerebraoventricular (ICV) injection of 5-HT depletor, 5,7-DHT. Seven days later rats entered a protocol of 8-OH-DPAT, a 5-HT1A agonist, in which locomotor activity, ASR and PPI and their tissue levels of 5-HT were measured. RESULTS Our results found that both IR and 5,7-DHT decreased the tissue concentration of 5-HT. IR-induced hyperactivity and gating impairment were unaffected by 5-HT depletion. 8-OH-DPAT strengthened the ASR in IR but not SOC rats and the drug-reduced PPI could be adjusted by 5,7-DHT pretreatment. 8-OH-DPAT at 100 μg/kg enhanced PPI in 5-HT-depleted SOC rats. However for IR rats, 8-OH-DPAT strengthened PPI in sham rats but downgraded it in depletion condition. CONCLUSION The integrity of central 5-HT system is important to 5-HT1A-modulated sensorimotor gating in isolation-reared rats.
Collapse
Affiliation(s)
- Yueh-Ming Tai
- Department of Psychiatry, Beitou Branch, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chih-Yuan Ko
- Respiratory Medicine Center of Fujian Province, Quanzhou, China.,Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Chen-Cheng Lin
- Laboratory of Cognitive Neuroscience, Department of Physiology and Biophysics, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Yue Wan
- Laboratory of Cognitive Neuroscience, Department of Physiology and Biophysics, National Defense Medical Center, Taipei, Taiwan
| | - Jing-Yi Chung
- Laboratory of Cognitive Neuroscience, Department of Physiology and Biophysics, National Defense Medical Center, Taipei, Taiwan
| | - Yia-Ping Liu
- Laboratory of Cognitive Neuroscience, Department of Physiology and Biophysics, National Defense Medical Center, Taipei, Taiwan.,Department of Psychiatry, Tri-Service General Hospital, Taipei, Taiwan
| |
Collapse
|
25
|
Poddar I, Callahan PM, Hernandez CM, Yang X, Bartlett MG, Terry AV. Tropisetron enhances recognition memory in rats chronically treated with risperidone or quetiapine. Biochem Pharmacol 2017; 151:180-187. [PMID: 29175423 DOI: 10.1016/j.bcp.2017.11.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 11/22/2017] [Indexed: 12/16/2022]
Abstract
While impairments of cognition in schizophrenia have the greatest impact on long-term functional outcome, the currently prescribed treatments, antipsychotic drugs (APDs), do not effectively improve cognition. Moreover, while more than 20 years have been devoted to the development of new drugs to treat cognitive deficits in schizophrenia, none have been approved to date. One area that has not been given proper attention at the preclinical or clinical stage of drug development is the chronic medication history of the test subject. Hence, very little is known about how chronic treatment with drugs that affect multiple receptors like APDs influence the response to a potential pro-cognitive agent. Therefore, the purpose of this study was to evaluate the α7 nicotinic acetylcholine receptor (α7 nAChR) partial agonist, tropisetron in rats chronically treated with APDs with distinct pharmacological profiles. Rats were treated orally with either risperidone (2.5 mg/kg/day) or quetiapine (25.0 mg/kg/day) for 30 or 90 days and then an acute injection of vehicle or tropisetron (3.0 mg/kg) was administered before training in a novel object recognition (NOR) task. After a 48 h delay (when recollection of the familiar object was impaired in vehicle-treated animals) neither 30 nor 90 days of risperidone or quetiapine treatment improved NOR performance. In contrast, tropisetron markedly improved NOR performance in rats treated with either APD for 30 or 90 days. These animal data reinforce the argument that two commonly prescribed APDs are not pro-cognitive agents and that α7 nAChR ligands like tropisetron have potential as adjunctive treatments in schizophrenia.
Collapse
Affiliation(s)
- Indrani Poddar
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, Georgia
| | - Patrick M Callahan
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, Georgia; Small Animal Behavior Core, Augusta University, Augusta, GA 30912, Georgia
| | - Caterina M Hernandez
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, Georgia; Small Animal Behavior Core, Augusta University, Augusta, GA 30912, Georgia
| | - Xiangkun Yang
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia College of Pharmacy, Athens, GA 30607, Georgia
| | - Michael G Bartlett
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia College of Pharmacy, Athens, GA 30607, Georgia
| | - Alvin V Terry
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, Georgia; Small Animal Behavior Core, Augusta University, Augusta, GA 30912, Georgia.
| |
Collapse
|
26
|
Sun L, Min L, Zhou H, Li M, Shao F, Wang W. Adolescent social isolation affects schizophrenia-like behavior and astrocyte biomarkers in the PFC of adult rats. Behav Brain Res 2017; 333:258-266. [DOI: 10.1016/j.bbr.2017.07.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 07/05/2017] [Accepted: 07/09/2017] [Indexed: 10/19/2022]
|
27
|
Hicks-Nelson A, Beamer G, Gurel K, Cooper R, Nephew BC. Transgenerational Social Stress Alters Immune-Behavior Associations and the Response to Vaccination. Brain Sci 2017; 7:E89. [PMID: 28753980 PMCID: PMC5532602 DOI: 10.3390/brainsci7070089] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 06/28/2017] [Accepted: 07/14/2017] [Indexed: 12/28/2022] Open
Abstract
Similar to the multi-hit theory of schizophrenia, social behavior pathologies are mediated by multiple factors across generations, likely acting additively, synergistically, or antagonistically. Exposure to social adversity, especially during early life, has been proposed to induce depression symptoms through immune mediated mechanisms. Basal immune factors are altered in a variety of neurobehavioral models. In the current study, we assessed two aspects of a transgenerational chronic social stress (CSS) rat model and its effects on the immune system. First, we asked whether exposure of F0 dams and their F1 litters to CSS changes basal levels of IL-6, TNF, IFN-γ, and social behavior in CSS F1 female juvenile rats. Second, we asked whether the F2 generation could generate normal immunological responses following vaccination with Mycobacterium bovis Bacillus Calmette-Guérin (BCG). We report several changes in the associations between social behaviors and cytokines in the F1 juvenile offspring of the CSS model. It is suggested that changes in the immune-behavior relationships in F1 juveniles indicate the early stages of immune mediated disruption of social behavior that becomes more apparent in F1 dams and the F2 generation. We also report preliminary evidence of elevated IL-6 and impaired interferon-gamma responses in BCG-vaccinated F2 females. In conclusion, transgenerational social stress alters both immune-behavior associations and responses to vaccination. It is hypothesized that the effects of social stress may accumulate over generations through changes in the immune system, establishing the immune system as an effective preventative or treatment target for social behavior pathologies.
Collapse
Affiliation(s)
- Alexandria Hicks-Nelson
- Department of Biomedical Sciences, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA 01536, USA.
| | - Gillian Beamer
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA 01536, USA.
| | - Kursat Gurel
- Department of Biomedical Sciences, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA 01536, USA.
| | - Rachel Cooper
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA 01536, USA.
| | - Benjamin C Nephew
- Department of Biomedical Sciences, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA 01536, USA.
| |
Collapse
|
28
|
Ko CY, Wang SC, Liu YP. Sensorimotor gating deficits are inheritable in an isolation-rearing paradigm in rats. Behav Brain Res 2016; 302:115-21. [DOI: 10.1016/j.bbr.2016.01.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 12/09/2015] [Accepted: 01/05/2016] [Indexed: 12/30/2022]
|