1
|
McNerlin C, Guan F, Bronk L, Lei K, Grosshans D, Young DW, Gaber MW, Maletic-Savatic M. Targeting hippocampal neurogenesis to protect astronauts' cognition and mood from decline due to space radiation effects. LIFE SCIENCES IN SPACE RESEARCH 2022; 35:170-179. [PMID: 36336363 DOI: 10.1016/j.lssr.2022.07.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/30/2022] [Accepted: 07/26/2022] [Indexed: 06/16/2023]
Abstract
Neurogenesis is an essential, lifelong process during which neural stem cells generate new neurons within the hippocampus, a center for learning, memory, and mood control. Neural stem cells are vulnerable to environmental insults spanning from chronic stress to radiation. These insults reduce their numbers and diminish neurogenesis, leading to memory decline, anxiety, and depression. Preserving neural stem cells could thus help prevent these neurogenesis-associated pathologies, an outcome particularly important for long-term space missions where environmental exposure to radiation is significantly higher than on Earth. Multiple developments, from mechanistic discoveries of radiation injury on hippocampal neurogenesis to new platforms for the development of selective, specific, effective, and safe small molecules as neurogenesis-protective agents hold great promise to minimize radiation damage on neurogenesis. In this review, we summarize the effects of space-like radiation on hippocampal neurogenesis. We then focus on current advances in drug discovery and development and discuss the nuclear receptor TLX/NR2E1 (oleic acid receptor) as an example of a neurogenic target that might rescue neurogenesis following radiation.
Collapse
Affiliation(s)
- Clare McNerlin
- Georgetown University School of Medicine, 3900 Reservoir Rd NW, Washington D.C. 20007, United States of America
| | - Fada Guan
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT, 06510, United States of America
| | - Lawrence Bronk
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, United States of America
| | - Kevin Lei
- Graduate School for Biomedical Sciences, Baylor College of Medicine, Houston, Texas, 77030, United States of America; Jan and Dan Duncan Neurological Research Institute, 1250 Moursund St. Houston, TX 77030, United States of America
| | - David Grosshans
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, United States of America
| | - Damian W Young
- Jan and Dan Duncan Neurological Research Institute, 1250 Moursund St. Houston, TX 77030, United States of America; Center for Drug Discovery, Department of Pathology and Immunology Baylor College of Medicine, Houston, Texas, 77030, United States of America; Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas 77030, United States of America
| | - M Waleed Gaber
- Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States of America.
| | - Mirjana Maletic-Savatic
- Jan and Dan Duncan Neurological Research Institute, 1250 Moursund St. Houston, TX 77030, United States of America; Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States of America; Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States of America.
| |
Collapse
|
2
|
Gunturkun MH, Flashner E, Wang T, Mulligan MK, Williams RW, Prins P, Chen H. GeneCup: mining PubMed and GWAS catalog for gene-keyword relationships. G3 (BETHESDA, MD.) 2022; 12:jkac059. [PMID: 35285473 PMCID: PMC9073678 DOI: 10.1093/g3journal/jkac059] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/04/2022] [Indexed: 11/13/2022]
Abstract
Interpreting and integrating results from omics studies typically requires a comprehensive and time consuming survey of extant literature. GeneCup is a literature mining web service that retrieves sentences containing user-provided gene symbols and keywords from PubMed abstracts. The keywords are organized into an ontology and can be extended to include results from human genome-wide association studies. We provide a drug addiction keyword ontology that contains over 300 keywords as an example. The literature search is conducted by querying the PubMed server using a programming interface, which is followed by retrieving abstracts from a local copy of the PubMed archive. The main results presented to the user are sentences where gene symbol and keywords co-occur. These sentences are presented through an interactive graphical interface or as tables. All results are linked to the original abstract in PubMed. In addition, a convolutional neural network is employed to distinguish sentences describing systemic stress from those describing cellular stress. The automated and comprehensive search strategy provided by GeneCup facilitates the integration of new discoveries from omic studies with existing literature. GeneCup is free and open source software. The source code of GeneCup and the link to a running instance is available at https://github.com/hakangunturkun/GeneCup.
Collapse
Affiliation(s)
- Mustafa H Gunturkun
- Department of Pharmacology, Addiction Science and Toxicology, University of Tennessee Health Science, Memphis, TN 38103, USA
| | - Efraim Flashner
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science, Memphis, TN 38103, USA
| | - Tengfei Wang
- Department of Pharmacology, Addiction Science and Toxicology, University of Tennessee Health Science, Memphis, TN 38103, USA
| | - Megan K Mulligan
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science, Memphis, TN 38103, USA
| | - Robert W Williams
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science, Memphis, TN 38103, USA
| | - Pjotr Prins
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science, Memphis, TN 38103, USA
| | - Hao Chen
- Department of Pharmacology, Addiction Science and Toxicology, University of Tennessee Health Science, Memphis, TN 38103, USA
| |
Collapse
|
3
|
Nelson AT, Wang Y, Nelson ER. TLX, an Orphan Nuclear Receptor With Emerging Roles in Physiology and Disease. Endocrinology 2021; 162:6360449. [PMID: 34463725 PMCID: PMC8462384 DOI: 10.1210/endocr/bqab184] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Indexed: 12/14/2022]
Abstract
TLX (NR2E1), an orphan member of the nuclear receptor superfamily, is a transcription factor that has been described to be generally repressive in nature. It has been implicated in several aspects of physiology and disease. TLX is best known for its ability to regulate the proliferation of neural stem cells and retinal progenitor cells. Dysregulation, overexpression, or loss of TLX expression has been characterized in numerous studies focused on a diverse range of pathological conditions, including abnormal brain development, psychiatric disorders, retinopathies, metabolic disease, and malignant neoplasm. Despite the lack of an identified endogenous ligand, several studies have described putative synthetic and natural TLX ligands, suggesting that this receptor may serve as a therapeutic target. Therefore, this article aims to briefly review what is known about TLX structure and function in normal physiology, and provide an overview of TLX in regard to pathological conditions. Particular emphasis is placed on TLX and cancer, and the potential utility of this receptor as a therapeutic target.
Collapse
Affiliation(s)
- Adam T Nelson
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Yu Wang
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Erik R Nelson
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
- University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, Illinois 60612, USA
- Carl R. Woese Institute for Genomic Biology, Anticancer Discovery from Pets to People Theme, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
- Correspondence: Erik R. Nelson, PhD, Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, 407 S Goodwin Ave (MC-114), Urbana, IL 61801, USA.
| |
Collapse
|
4
|
Parkitny L, Maletic-Savatic M. Glial PAMPering and DAMPening of Adult Hippocampal Neurogenesis. Brain Sci 2021; 11:1299. [PMID: 34679362 PMCID: PMC8533961 DOI: 10.3390/brainsci11101299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 09/16/2021] [Accepted: 09/22/2021] [Indexed: 12/24/2022] Open
Abstract
Adult neurogenesis represents a mature brain's capacity to integrate newly generated neurons into functional circuits. Impairment of neurogenesis contributes to the pathophysiology of various mood and cognitive disorders such as depression and Alzheimer's Disease. The hippocampal neurogenic niche hosts neural progenitors, glia, and vasculature, which all respond to intrinsic and environmental cues, helping determine their current state and ultimate fate. In this article we focus on the major immune communication pathways and mechanisms through which glial cells sense, interact with, and modulate the neurogenic niche. We pay particular attention to those related to the sensing of and response to innate immune danger signals. Receptors for danger signals were first discovered as a critical component of the innate immune system response to pathogens but are now also recognized to play a crucial role in modulating non-pathogenic sterile inflammation. In the neurogenic niche, viable, stressed, apoptotic, and dying cells can activate danger responses in neuroimmune cells, resulting in neuroprotection or neurotoxicity. Through these mechanisms glial cells can influence hippocampal stem cell fate, survival, neuronal maturation, and integration. Depending on the context, such responses may be appropriate and on-target, as in the case of learning-associated synaptic pruning, or excessive and off-target, as in neurodegenerative disorders.
Collapse
Affiliation(s)
- Luke Parkitny
- Baylor College of Medicine and Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX 77030, USA;
| | | |
Collapse
|
5
|
Majidi S, Ogilvie JM, Flaveny CA. Retinal Degeneration: Short-Term Options and Long-Term Vision for Future Therapy. MISSOURI MEDICINE 2021; 118:466-472. [PMID: 34658442 PMCID: PMC8504501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The leading cause blindness is the loss of retinal ganglion cells which connect the retina to the brain. Degenerative retinal diseases include retinal dystrophy, macular degeneration and diabetic retinopathy, which are currently incurable as the mammalian retina has no intrinsic regenerative capacity. By utilizing insight gained from retinal regeneration in simpler species we define an approach that may unlock regenerative programs in the mammalian retina that potentially facilitate the clinical restoration of retinal function.
Collapse
Affiliation(s)
- Shabnam Majidi
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Judith M Ogilvie
- Department of Biology; Saint Louis University School of Medicine, St. Louis, Missouri
| | - Colin A Flaveny
- Department of Biology; Saint Louis University School of Medicine, St. Louis, Missouri
| |
Collapse
|
6
|
He G, Gu J, Wang H, Cheng S, Xiong Q, Ke M, Hu Y, Feng J, Song L, Liu Z, Xu Y. Nr2e1 deficiency aggravates insulin resistance and chronic inflammation of visceral adipose tissues in a diet-induced obese mice model. Life Sci 2021; 278:119562. [PMID: 33915130 DOI: 10.1016/j.lfs.2021.119562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/11/2021] [Accepted: 04/23/2021] [Indexed: 10/21/2022]
Abstract
AIMS To investigate the nuclear receptor subfamily 2 group E member 1 (Nr2e1) expression in adipose tissues of obese mice and assess the role of Nr2e1 in insulin resistance and chronic inflammation of the adipose tissues. MAIN METHODS An obese model was established in Nr2e1 knockout (KO) mice and their wild type (WT) littermates through a long-term high-fat diet (HFD) feeding regime. The epididymal fat weight, body weight, and daily food intake were recorded. The blood lipid profile, blood inflammatory factors, and the levels of fasting blood glucose (FBG) and fasting insulin were determined. We estimated insulin resistance by the homeostasis model assessment (HOMA). The expression of inflammatory factors and F4/80 was examined by polymerase chain reaction (PCR) and western blotting to assess adipose tissues inflammation. We also determined the molecules of insulin signaling and the nuclear factor kappa B (NF-κB) pathway by western blotting. KEY FINDINGS The Nr2e1 expression was upregulated in WT obese mice when compared with that in control mice. Despite a lower body weight and epididymal fat mass in Nr2e1-/- mice, these rats showed increased inflammatory cytokines secretion, more pronounced hyperlipidemia, and impaired insulin sensitivity after HFD treatment. Further investigation revealed that Nr2e1 deletion affected the expression of insulin signaling and NF-κB pathway-related molecules in visceral adipose tissues. SIGNIFICANCE Nr2e1 may act as a potential target to improve insulin sensitivity and inflammation in obesity and related complications.
Collapse
Affiliation(s)
- Guangzhen He
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China; Department of Pediatrics, Affiliated Taihe Hospital of Hubei University of Medicine, Shiyan, Hubei, China
| | - Jiaowei Gu
- Department of Pediatrics, Affiliated Taihe Hospital of Hubei University of Medicine, Shiyan, Hubei, China
| | - Huawei Wang
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Siyuan Cheng
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Qing Xiong
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Mengting Ke
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Yong Hu
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Jieyuan Feng
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Linyang Song
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Zheng Liu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| | - Yancheng Xu
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China.
| |
Collapse
|
7
|
Abstract
Background: This study was performed to investigate the clinical significance of miR-4535 and miR-1915-5p in severe chorioamnionitis. Materials & methods: Amniotic fluid samples from 37 patients with severe chorioamnionitis were subjected to miRNA array analysis and ddPCR™. Diagnostic values were assessed using the receiver operating characteristic curve. The patients were separated into three groups according to Blanc’s criteria. Results: The expression of miR-4535 and miR-1915-5p was significantly correlated with the copy number of 16S rDNA, had extremely high diagnostic accuracy for severe chorioamnionitis, and was linked to maternal and fetal inflammation. Conclusion: miR-4535 and miR-1915-5p serve as promising biomarkers for the diagnosis of severe chorioamnionitis. Chorioamnionitis and fetal inflammatory response syndrome, which is linked to chorioamnionitis, are considered serious diseases in perinatal care. In this study, miR-4535 and miR-1915-5p are recognized as promising biomarkers for the diagnosis of chorioamnionitis before delivery. In particular, the increased expression of miR-4535 in amniotic fluid is expected to be regarded as a positive indicator for fetal inflammatory response syndrome, and the elevated expression of miR-4535 in serum is also considered to predictively diagnose intrauterine infection in pregnancy. Our results highlight that further studies should explore the underlying clinical significance of miR-4535 and miR-1915-5p.
Collapse
|
8
|
Qu C, Qu C, Xu L, Shen J, Lv D, Li Y, Song H, Li T, Zheng J, Zhang J. Nuclear receptor TLX may be through regulating the SIRT1/NF-κB pathway to ameliorate cognitive impairment in chronic cerebral hypoperfusion. Brain Res Bull 2020; 166:142-149. [PMID: 33197535 DOI: 10.1016/j.brainresbull.2020.11.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 11/05/2020] [Accepted: 11/10/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Chronic cerebral hypoperfusion (CCH) is a common pathophysiological mechanism in neurodegenerative diseases, such as Alzheimer's disease and vascular dementia. The orphan nuclear receptor TLX plays an important role in neural development, adult neurogenesis and cognition. The aim of this study was to investigate the neuroprotective effects of TLX on cognitive dysfunction, hippocampal neurogenesis and neuroinflammation in a rat model of CCH and to assess the possible mechanisms. METHODS Permanent bilateral common carotid artery occlusion (2-VO) was used to establish a model of CCH. Stereotaxic injection of an adeno-associated virus vector expressing TLX was used to overexpress TLX in the hippocampus. Cognitive function was evaluated by the Morris Water Maze test. Immunofluorescent staining was used to assess hippocampal neurogenesis. The effects of overexpression of TLX on SIRT1 and inflammatory cytokines were analyzed with qRT-PCR and western blot. RESULT After 2-VO, CCH rats exhibited cognitive impairment and reduction of hippocampal TLX levels. Overexpression of TLX ameliorated cognitive impairments with increasing number of BrdU + cells and BrdU + NeuN + cells in DG. Furthermore, TLX rescued the reduced SIRT1 usually induced by CCH. Additionally, TLX also inhibited the expression of inflammatory cytokines such as NF-κB and IL-1β. CONCLUSIONS The present findings suggested that TLX exerted protective effects against cognitive deficits induced by CCH. The possible mechanisms of TLX may be through regulating the SIRT1/NF-κB pathway, promoting hippocampal neurogenesis and inhibiting the neuroinflammatory response.
Collapse
Affiliation(s)
- Chujie Qu
- Department of Neurology, Zhongnan Hospital, Wuhan University, No.169, Donghu Road, Wuhan, 430071, Hubei, China
| | - Changhua Qu
- Department of Neurology, Zhongnan Hospital, Wuhan University, No.169, Donghu Road, Wuhan, 430071, Hubei, China
| | - Linling Xu
- Department of Neurology, Zhongnan Hospital, Wuhan University, No.169, Donghu Road, Wuhan, 430071, Hubei, China
| | - Jun Shen
- Department of Neurology, Zhongnan Hospital, Wuhan University, No.169, Donghu Road, Wuhan, 430071, Hubei, China
| | - Dongwei Lv
- Department of Neurology, Zhongnan Hospital, Wuhan University, No.169, Donghu Road, Wuhan, 430071, Hubei, China
| | - Yaqing Li
- Department of Neurology, Zhongnan Hospital, Wuhan University, No.169, Donghu Road, Wuhan, 430071, Hubei, China
| | - Hao Song
- Department of Neurology, Zhongnan Hospital, Wuhan University, No.169, Donghu Road, Wuhan, 430071, Hubei, China
| | - Tian Li
- Department of Neurology, Zhongnan Hospital, Wuhan University, No.169, Donghu Road, Wuhan, 430071, Hubei, China
| | - Jiaxin Zheng
- Department of Neurology, Zhongnan Hospital, Wuhan University, No.169, Donghu Road, Wuhan, 430071, Hubei, China
| | - Junjian Zhang
- Department of Neurology, Zhongnan Hospital, Wuhan University, No.169, Donghu Road, Wuhan, 430071, Hubei, China.
| |
Collapse
|
9
|
Veerasammy S, Van Steenwinckel J, Le Charpentier T, Seo JH, Fleiss B, Gressens P, Levison SW. Perinatal IL-1β-induced inflammation suppresses Tbr2 + intermediate progenitor cell proliferation in the developing hippocampus accompanied by long-term behavioral deficits. Brain Behav Immun Health 2020; 7:100106. [PMID: 34589867 PMCID: PMC8474668 DOI: 10.1016/j.bbih.2020.100106] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 07/12/2020] [Indexed: 12/12/2022] Open
Abstract
Meta-analyses have revealed associations between the incidence of maternal infections during pregnancy, premature birth, smaller brain volumes, and subsequent cognitive, motor and behavioral deficits as these children mature. Inflammation during pregnancy in rodents produces cognitive and behavioral deficits in the offspring that are similar to those reported in human studies. These deficits are accompanied by decreased neurogenesis and proliferation in the subgranular zone (SGZ) of the dentate gyrus (DG) of the hippocampus. As systemically administering interleukin-1 β (IL-1β) to neonatal mice recapitulates many of the brain abnormalities seen in premature babies including developmental delays, the goal of this study was to determine whether IL-1-mediated neuroinflammation would affect hippocampal growth during development to produce cognitive and behavioral abnormalities. For these studies, 10 ng/g IL-1β was administered twice daily to Swiss Webster mice during the first 5 days of life, which increased hippocampal levels of IL-1α and acutely reduced the proliferation of Tbr2+ neural progenitors in the DG. In vitro, both IL-1α and IL-1β produced G1/S cell cycle arrest that resulted in reduced progenitor cell proliferation within the transit amplifying progenitor cell cohort. By contrast, IL-1β treatment increased neural stem cell frequency. Upon terminating IL-1β treatment, the progenitor cell pool regained its proliferative capacity. An earlier study that used this in vivo model of perinatal inflammation showed that mice that received IL-1β as neonates displayed memory deficits which suggested abnormal hippocampal function. To evaluate whether other cognitive and behavioral traits associated with hippocampal function would also be altered, mice were tested in tasks designed to assess exploratory and anxiety behavior as well as working and spatial memory. Interestingly, mice that received IL-1β as neonates showed signs of anxiety in several behavioral assays during adolescence that were also evident in adulthood. Additionally, these mice did not display working memory deficits in adulthood, but they did display deficits in long-term spatial memory. Altogether, these data support the view that perinatal inflammation negatively affects the developing hippocampus by producing behavioral deficits that persist into adulthood. These data provide a new perspective into the origin of the cognitive and behavioral impairments observed in prematurely-born sick infants.
Collapse
Affiliation(s)
- Stephanie Veerasammy
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers University, New Jersey Medical School, Cancer Center, 205 South Orange Avenue, Newark, NJ, 07103, USA
| | | | - Tifenn Le Charpentier
- Université de Paris, NeuroDiderot, Inserm, F-75019, Paris, France
- PremUP, F-75006, Paris, France
| | - Joon Ho Seo
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers University, New Jersey Medical School, Cancer Center, 205 South Orange Avenue, Newark, NJ, 07103, USA
| | - Bobbi Fleiss
- Université de Paris, NeuroDiderot, Inserm, F-75019, Paris, France
- PremUP, F-75006, Paris, France
- School of Health and Biomedical Sciences, RMIT University, Bundoora, 3083, VIC, Australia
| | - Pierre Gressens
- Université de Paris, NeuroDiderot, Inserm, F-75019, Paris, France
- PremUP, F-75006, Paris, France
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King’s College London, King’s Health Partners, St. Thomas’ Hospital, London, SE1 7EH, UK
| | - Steven W. Levison
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers University, New Jersey Medical School, Cancer Center, 205 South Orange Avenue, Newark, NJ, 07103, USA
| |
Collapse
|
10
|
Kumari E, Velloso FJ, Nasuhidehnavi A, Somasundaram A, Savanur VH, Buono KD, Levison SW. Developmental IL-6 Exposure Favors Production of PDGF-Responsive Multipotential Progenitors at the Expense of Neural Stem Cells and Other Progenitors. Stem Cell Reports 2020; 14:861-875. [PMID: 32302560 PMCID: PMC7220986 DOI: 10.1016/j.stemcr.2020.03.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 03/17/2020] [Accepted: 03/18/2020] [Indexed: 12/13/2022] Open
Abstract
Interleukin-6 (IL-6) is increased in maternal serum and amniotic fluid of children subsequently diagnosed with autism spectrum disorders. However, it is not clear how increased IL-6 alters brain development. Here, we show that IL-6 increases the prevalence of a specific platelet-derived growth factor (PDGF)-responsive multipotent progenitor, with opposite effects on neural stem cells and on subsets of bipotential glial progenitors. Acutely, increasing circulating IL-6 levels 2-fold above baseline in neonatal mice specifically stimulated the proliferation of a PDGF-responsive multipotential progenitor accompanied by increased phosphorylated STAT3, increased Fbxo15 expression, and decreased Dnmt1 and Tlx expression. Fate mapping studies using a Nestin-CreERT2 driver revealed decreased astrogliogenesis in the frontal cortex. IL-6-treated mice were hyposmic; however, olfactory bulb neuronogenesis was unaffected. Altogether, these studies provide important insights into how inflammation alters neural stem cells and progenitors and provide new insights into the molecular and cellular underpinnings of neurodevelopmental disorders associated with maternal infections.
Collapse
Affiliation(s)
- Ekta Kumari
- Department of Pharmacology, Physiology and Neuroscience, Rutgers Biomedical Health Sciences of Rutgers University, 205 South Orange Ave. Newark, NJ 07103, USA
| | - Fernando J Velloso
- Department of Pharmacology, Physiology and Neuroscience, Rutgers Biomedical Health Sciences of Rutgers University, 205 South Orange Ave. Newark, NJ 07103, USA
| | - Azadeh Nasuhidehnavi
- Department of Pharmacology, Physiology and Neuroscience, Rutgers Biomedical Health Sciences of Rutgers University, 205 South Orange Ave. Newark, NJ 07103, USA
| | - Aditya Somasundaram
- Department of Pharmacology, Physiology and Neuroscience, Rutgers Biomedical Health Sciences of Rutgers University, 205 South Orange Ave. Newark, NJ 07103, USA
| | - Vibha H Savanur
- Department of Pharmacology, Physiology and Neuroscience, Rutgers Biomedical Health Sciences of Rutgers University, 205 South Orange Ave. Newark, NJ 07103, USA
| | | | - Steven W Levison
- Department of Pharmacology, Physiology and Neuroscience, Rutgers Biomedical Health Sciences of Rutgers University, 205 South Orange Ave. Newark, NJ 07103, USA.
| |
Collapse
|
11
|
Yue D, Zhao J, Chen H, Guo M, Chen C, Zhou Y, Xu L. MicroRNA-7, synergizes with RORα, negatively controls the pathology of brain tissue inflammation. J Neuroinflammation 2020; 17:28. [PMID: 31959187 PMCID: PMC6970296 DOI: 10.1186/s12974-020-1710-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 01/13/2020] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Accumulating evidence has documented that microRNA-7 (miR-7) plays an important role in the pathology of various diseases. However, the potential role of miR-7 in brain tissue inflammation (BTI) remains unclear. METHODS We detected the expression of miR-7 in LPS-induced murine BTI model and observed the possible effects of miR-7 deficiency on the pathology of BTI. To elucidate the mechanism, the target gene of miR-7 was screened out by Gene chip assay and its potential roles in BTI were evaluated by Western blot, immunofluorescence, and RNAi assay, respectively. RESULTS MiR-7 was upregulated in brain tissue in BTI mice and its deficiency could significantly aggravate the pathology of brain tissue. Moreover, RORα, a new target molecule of miR-7, was upregulated in brain tissue from miR-7 deficiency BTI mice. Of note, downregulation of RORα could remarkably exacerbate the pathology of brain tissue and elevate the transduction of NF-κB and ERK1/2 signaling pathways in brain tissue from miR-7 deficiency BTI mice. Furthermore, RORα and miR-7 were dominantly co-expressed in neurons of BTI mice. Finally, RORα synergized with miR-7 to control the inflammatory reaction of neuronal cells in response to LPS stimulation. CONCLUSIONS MiR-7 expression is upregulated in BTI model. Moreover, miR-7 synergizes with its target gene RORα to control the inflammation reaction of neurons, thereby orchestrating the pathology of BTI.
Collapse
Affiliation(s)
- Dongxu Yue
- Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi, 563099, Guizhou, China.,Department of Immunology, Zunyi Medical University, Zunyi, 563099, Guizhou, China
| | - Juanjuan Zhao
- Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi, 563099, Guizhou, China.,Department of Immunology, Zunyi Medical University, Zunyi, 563099, Guizhou, China
| | - Huizi Chen
- Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi, 563099, Guizhou, China.,Department of Immunology, Zunyi Medical University, Zunyi, 563099, Guizhou, China
| | - Mengmeng Guo
- Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi, 563099, Guizhou, China.,Department of Immunology, Zunyi Medical University, Zunyi, 563099, Guizhou, China
| | - Chao Chen
- Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi, 563099, Guizhou, China.,Department of Immunology, Zunyi Medical University, Zunyi, 563099, Guizhou, China
| | - Ya Zhou
- Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi, 563099, Guizhou, China.,Department of Medical Physics, Zunyi Medical University, Zunyi, 563099, Guizhou, China
| | - Lin Xu
- Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi, 563099, Guizhou, China. .,Department of Immunology, Zunyi Medical University, Zunyi, 563099, Guizhou, China.
| |
Collapse
|
12
|
The orphan nuclear receptor TLX: an emerging master regulator of cross-talk between microglia and neural precursor cells. Neuronal Signal 2019; 3:NS20180208. [PMID: 32271856 PMCID: PMC7104320 DOI: 10.1042/ns20180208] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/11/2019] [Accepted: 05/13/2019] [Indexed: 12/12/2022] Open
Abstract
Neuroinflammation and neurogenesis have both been the subject of intensive investigation over the past 20 years. The sheer complexity of their regulation and their ubiquity in various states of health and disease have sometimes obscured the progress that has been made in unraveling their mechanisms and regulation. A recent study by Kozareva et al. (Neuronal Signaling (2019) 3), provides evidence that the orphan nuclear receptor TLX is central to communication between microglia and neural precursor cells and could help us understand how inflammation, mediated by microglia, influences the development of new neurons in the adult hippocampus. Here, we put recent studies on TLX into the context of what is known about adult neurogenesis and microglial activation in the brain, along with the many hints that these processes must be inter-related.
Collapse
|