1
|
Zhang Z, Huang W, Zhang X, Wang Z, Xie M, Xie B, Wang Y, Chen X, Xiang AP, Xiang Q. Human iPSC-derived mesenchymal stem cells relieve high blood pressure in spontaneously hypertensive rats via splenic nerve activated choline acetyltransferase-positive cells. SCIENCE CHINA. LIFE SCIENCES 2024:10.1007/s11427-023-2675-2. [PMID: 39428428 DOI: 10.1007/s11427-023-2675-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/28/2024] [Indexed: 10/22/2024]
Abstract
Despite substantial advancements in modern medicine, the management of hypertension remains a major challenge. Stem cell-based therapies have recently demonstrated remarkable efficacy in treating cardiovascular diseases, including hypertension. However, the antihypertensive mechanism of mesenchymal stem cells (MSCs) has not been extensively explored. This study aimed to investigate the role of injected MSCs in regulating blood pressure homeostasis. Our previous study demonstrated that human induced pluripotent stem cell-derived mesenchymal stem cells (hiPSC-MSCs) are functional and homogeneous sources for MSC-based therapy. After the injection of hiPSC-MSCs, a significant reduction in blood pressure and end target organ inflammation were observed in spontaneously hypertensive rats (SHRs). Cell tracking assays demonstrated that the injected hiPSC-MSCs accumulated in the spleens of the SHRs. The injected hiPSC-MSCs accumulated adjacent to the splenic nerve, potentially contributing to the antihypertensive effects. Furthermore, the hiPSC-MSCs released abundant glutamate, which acts as a neuromodulator to activate the splenic sympathetic nerve. After inhibition of glutamate synthesis by siRNA, the ability of hiPSC-MSCs to activate sympathetic nerves was significantly diminished. In addition, the antihypertensive effects of hiPSC-MSCs were eliminated after splenic nerve denervation (SND), underscoring the critical role of the splenic nerve. Moreover, activation of the splenic nerve resulted in increased release of norepinephrine (NE), which increased the number of choline acetyltransferase-positive (ChAT+) cells in the spleen and peripheral blood. Consequently, the acetylcholine (ACh) produced by elevated ChAT+ cells could act as a vasodilator, lowering blood pressure and mitigating inflammation in end target organs. In summary, our findings indicate that hiPSC-MSCs effectively lower blood pressure in hypertension by influencing the splenic nerves and regulating ChAT+ cells. The connection between blood pressure regulation and the splenic nerve may offer new insights into the treatment of hypertension.
Collapse
Affiliation(s)
- Zhen Zhang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Weijun Huang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiaoran Zhang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China
| | - Zhecun Wang
- Department of Vascular Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510062, China
| | - Manting Xie
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Bingbing Xie
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yiling Wang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiaoyong Chen
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China
| | - Andy Peng Xiang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Qiuling Xiang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China.
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
2
|
Breivik TJ, Gjermo P, Gundersen Y, Opstad PK, Murison R, Hugoson A, von Hörsten S, Fristad I. Microbiota-immune-brain interactions: A new vision in the understanding of periodontal health and disease. Periodontol 2000 2024. [PMID: 39233381 DOI: 10.1111/prd.12610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/01/2024] [Accepted: 08/19/2024] [Indexed: 09/06/2024]
Abstract
This review highlights the significance of interactions between the microbiota, immune system, nervous and hormonal systems, and the brain on periodontal health and disease. Microorganisms in the microbiota, immune cells, and neurons communicate via homeostatic nervous and hormonal systems, regulating vital body functions. By modulating pro-inflammatory and anti-inflammatory adaptive immune responses, these systems control the composition and number of microorganisms in the microbiota. The strength of these brain-controlled responses is genetically determined but is sensitive to early childhood stressors, which can permanently alter their responsiveness via epigenetic mechanisms, and to adult stressors, causing temporary changes. Clinical evidence and research with humans and animal models indicate that factors linked to severe periodontitis enhance the responsiveness of these homeostatic systems, leading to persistent hyperactivation. This weakens the immune defense against invasive symbiotic microorganisms (pathobionts) while strengthening the defense against non-invasive symbionts at the gingival margin. The result is an increased gingival tissue load of pathobionts, including Gram-negative bacteria, followed by an excessive innate immune response, which prevents infection but simultaneously destroys gingival and periodontal tissues. Thus, the balance between pro-inflammatory and anti-inflammatory adaptive immunity is crucial in controlling the microbiota, and the responsiveness of brain-controlled homeostatic systems determines periodontal health.
Collapse
Affiliation(s)
- Torbjørn Jarle Breivik
- Department of Periodontology, Faculty of Dentistry, Institute of Clinical Odontology, University of Oslo, Oslo, Norway
- Division for Protection, Norwegian Defence Research Establishment, Kjeller, Norway
| | - Per Gjermo
- Department of Periodontology, Faculty of Dentistry, Institute of Clinical Odontology, University of Oslo, Oslo, Norway
| | - Yngvar Gundersen
- Division for Protection, Norwegian Defence Research Establishment, Kjeller, Norway
| | - Per Kristian Opstad
- Division for Protection, Norwegian Defence Research Establishment, Kjeller, Norway
| | - Robert Murison
- Department of Biological and Medical Psychology, Faculty of Psychology, University of Bergen, Bergen, Norway
| | - Anders Hugoson
- Department of Periodontology, Institute of Odontology, The Sahlgrenska Academy at University of Gothenburg and School of Health and Welfare, Gothenburg, Sweden
| | - Stephan von Hörsten
- Department for Experimental Therapy, University Hospital Erlangen, Preclinical Experimental Center, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Inge Fristad
- Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| |
Collapse
|
3
|
Akinyemi DE, Chevre R, Soehnlein O. Neuro-immune crosstalk in hematopoiesis, inflammation, and repair. Trends Immunol 2024; 45:597-608. [PMID: 39030115 DOI: 10.1016/j.it.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/21/2024]
Abstract
Innate immune cells are primary effectors during host defense and in sterile inflammation. Their production in the bone marrow is tightly regulated by growth and niche factors, and their activity at sites of inflammation is orchestrated by a network of alarmins and cytokines. Yet, recent work highlights a significant role of the peripheral nervous system in these processes. Sympathetic neural pathways play a key role in regulating blood cell homeostasis, and sensory neural pathways mediate pro- or anti-inflammatory signaling in a tissue-specific manner. Here, we review emerging evidence of the fine titration of hematopoiesis, leukocyte trafficking, and tissue repair via neuro-immune crosstalk, and how its derailment can accelerate chronic inflammation, as in atherosclerosis.
Collapse
Affiliation(s)
- Damilola Emmanuel Akinyemi
- Institute of Experimental Pathology (ExPat), Center of Molecular Biology of Inflammation (ZMBE), University of Münster, Münster, Germany.
| | - Raphael Chevre
- Institute of Experimental Pathology (ExPat), Center of Molecular Biology of Inflammation (ZMBE), University of Münster, Münster, Germany
| | - Oliver Soehnlein
- Institute of Experimental Pathology (ExPat), Center of Molecular Biology of Inflammation (ZMBE), University of Münster, Münster, Germany.
| |
Collapse
|
4
|
Xie L, He M, Ying C, Chu H. Mechanisms of inflammation after ischemic stroke in brain-peripheral crosstalk. Front Mol Neurosci 2024; 17:1400808. [PMID: 38932932 PMCID: PMC11199882 DOI: 10.3389/fnmol.2024.1400808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Stroke is a devastating disease with high morbidity, disability, and mortality, among which ischemic stroke is more common. However, there is still a lack of effective methods to improve the prognosis and reduce the incidence of its complications. At present, there is evidence that peripheral organs are involved in the inflammatory response after stroke. Moreover, the interaction between central and peripheral inflammation includes the activation of resident and peripheral immune cells, as well as the activation of inflammation-related signaling pathways, which all play an important role in the pathophysiology of stroke. In this review, we discuss the mechanisms of inflammatory response after ischemic stroke, as well as the interactions through circulatory pathways between peripheral organs (such as the gut, heart, lung and spleen) and the brain to mediate and regulate inflammation after ischemic stroke. We also propose the potential role of meningeal lymphatic vessels (MLVs)-cervical lymph nodes (CLNs) as a brain-peripheral crosstalk lymphatic pathway in ischemic stroke. In addition, we also summarize the mechanisms of anti-inflammatory drugs in the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Ling Xie
- Department of Critical Medicine, First People's Hospital of Linping District, Hangzhou, China
| | - Ming He
- Department of Critical Medicine, First People's Hospital of Linping District, Hangzhou, China
| | - Caidi Ying
- Department of Hepatobiliary and Pancreatic Surgery, The Traditional Chinese Medicine Hospital of Ningbo, Ningbo, China
| | - Haifeng Chu
- Department of Neurosurgery, The Traditional Chinese Medicine Hospital of Linping District, Hangzhou, China
| |
Collapse
|
5
|
Moura MM, Monteiro A, Salgado AJ, Silva NA, Monteiro S. Disrupted autonomic pathways in spinal cord injury: Implications for the immune regulation. Neurobiol Dis 2024; 195:106500. [PMID: 38614275 DOI: 10.1016/j.nbd.2024.106500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/25/2024] [Accepted: 04/04/2024] [Indexed: 04/15/2024] Open
Abstract
Spinal Cord Injury (SCI) disrupts critical autonomic pathways responsible for the regulation of the immune function. Consequently, individuals with SCI often exhibit a spectrum of immune dysfunctions ranging from the development of damaging pro-inflammatory responses to severe immunosuppression. Thus, it is imperative to gain a more comprehensive understanding of the extent and mechanisms through which SCI-induced autonomic dysfunction influences the immune response. In this review, we provide an overview of the anatomical organization and physiology of the autonomic nervous system (ANS), elucidating how SCI impacts its function, with a particular focus on lymphoid organs and immune activity. We highlight recent advances in understanding how intraspinal plasticity that follows SCI may contribute to aberrant autonomic activity in lymphoid organs. Additionally, we discuss how sympathetic mediators released by these neuron terminals affect immune cell function. Finally, we discuss emerging innovative technologies and potential clinical interventions targeting the ANS as a strategy to restore the normal regulation of the immune response in individuals with SCI.
Collapse
Affiliation(s)
- Maria M Moura
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; ICVS/3B's Associate Lab, PT Government Associated Lab, 4710-057 Braga, Guimarães, Portugal
| | - Andreia Monteiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; ICVS/3B's Associate Lab, PT Government Associated Lab, 4710-057 Braga, Guimarães, Portugal
| | - António J Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; ICVS/3B's Associate Lab, PT Government Associated Lab, 4710-057 Braga, Guimarães, Portugal
| | - Nuno A Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; ICVS/3B's Associate Lab, PT Government Associated Lab, 4710-057 Braga, Guimarães, Portugal
| | - Susana Monteiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; ICVS/3B's Associate Lab, PT Government Associated Lab, 4710-057 Braga, Guimarães, Portugal.
| |
Collapse
|
6
|
Zhu X, Huang JY, Dong WY, Tang HD, Xu S, Wu Q, Zhang H, Cheng PK, Jin Y, Zhu MY, Zhao W, Mao Y, Wang H, Zhang Y, Wang H, Tao W, Tian Y, Bai L, Zhang Z. Somatosensory cortex and central amygdala regulate neuropathic pain-mediated peripheral immune response via vagal projections to the spleen. Nat Neurosci 2024; 27:471-483. [PMID: 38291284 DOI: 10.1038/s41593-023-01561-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 12/13/2023] [Indexed: 02/01/2024]
Abstract
Pain involves neuroimmune crosstalk, but the mechanisms of this remain unclear. Here we showed that the splenic T helper 2 (TH2) immune cell response is differentially regulated in male mice with acute versus chronic neuropathic pain and that acetylcholinergic neurons in the dorsal motor nucleus of the vagus (AChDMV) directly innervate the spleen. Combined in vivo recording and immune cell profiling revealed the following two distinct circuits involved in pain-mediated peripheral TH2 immune response: glutamatergic neurons in the primary somatosensory cortex (GluS1HL)→AChDMV→spleen circuit and GABAergic neurons in the central nucleus of the amygdala (GABACeA)→AChDMV→spleen circuit. The acute pain condition elicits increased excitation from GluS1HL neurons to spleen-projecting AChDMV neurons and increased the proportion of splenic TH2 immune cells. The chronic pain condition increased inhibition from GABACeA neurons to spleen-projecting AChDMV neurons and decreased splenic TH2 immune cells. Our study thus demonstrates how the brain encodes pain-state-specific immune responses in the spleen.
Collapse
Affiliation(s)
- Xia Zhu
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, P. R. China
| | - Ji-Ye Huang
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, P. R. China
| | - Wan-Ying Dong
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, P. R. China
| | - Hao-Di Tang
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, P. R. China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Si Xu
- Department of Neurology, The Second Affiliated Hospital of Anhui Medical University, Hefei, P. R. China
| | - Qielan Wu
- Department of Oncology, The First Affiliated Hospital of USTC, CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, P. R. China
| | - Huimin Zhang
- Department of Oncology, The First Affiliated Hospital of USTC, CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, P. R. China
| | - Ping-Kai Cheng
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, P. R. China
| | - Yuxin Jin
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, P. R. China
| | - Meng-Yu Zhu
- College & Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, P. R. China
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, P. R. China
| | - Wan Zhao
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of University of Science and Technique of China, Hefei, P. R. China
| | - Yu Mao
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, P. R. China
- Department of Anesthesiology and Pain Management, The First Affiliated Hospital of Anhui Medical University, Hefei, P. R. China
| | - Haitao Wang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, P. R. China
| | - Yan Zhang
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, P. R. China
| | - Hao Wang
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, P. R. China
| | - Wenjuan Tao
- College & Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, P. R. China.
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, P. R. China.
| | - Yanghua Tian
- Department of Neurology, The Second Affiliated Hospital of Anhui Medical University, Hefei, P. R. China.
| | - Li Bai
- Department of Oncology, The First Affiliated Hospital of USTC, CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, P. R. China.
| | - Zhi Zhang
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, P. R. China.
- Department of Biophysics and Neurobiology, CAS Key Laboratory of Brain Function and Disease, University of Science and Technology of China, Hefei, P. R. China.
- The Center for Advanced Interdisciplinary Science and Biomedicine, Institute of Health and Medicine, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, P. R. China.
| |
Collapse
|
7
|
Daria C, Lancaster G, Murphy AJ, Henderson LA, Dawood T, Macefield VG. Relationship between muscle sympathetic nerve activity and rapid increases in circulating leukocytes during experimental muscle pain. Clin Auton Res 2024; 34:227-231. [PMID: 38227276 DOI: 10.1007/s10286-023-01012-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 12/20/2023] [Indexed: 01/17/2024]
Affiliation(s)
- Camille Daria
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Department of Cardiometabolic Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Graeme Lancaster
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Department of Cardiometabolic Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Andrew J Murphy
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Department of Cardiometabolic Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Luke A Henderson
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
| | - Tye Dawood
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Department of Cardiometabolic Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Vaughan G Macefield
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.
- Department of Cardiometabolic Health, The University of Melbourne, Melbourne, VIC, Australia.
- Department of Neuroscience, Monash University Central Clinical School, Level 6, 99 Commercial Road, Melbourne, VIC, 3004, Australia.
| |
Collapse
|
8
|
Okkels N, Horsager J, Fedorova TD, Knudsen K, Skjærbæk C, Andersen KB, Labrador-Espinosa M, Vestergaard K, Mortensen JK, Klit H, Møller M, Danielsen EH, Johnsen EL, Bekan G, Hansen KV, Munk OL, Damholdt MF, Kjeldsen PL, Hansen AK, Gottrup H, Grothe MJ, Borghammer P. Impaired cholinergic integrity of the colon and pancreas in dementia with Lewy bodies. Brain 2024; 147:255-266. [PMID: 37975822 DOI: 10.1093/brain/awad391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/20/2023] [Accepted: 10/28/2023] [Indexed: 11/19/2023] Open
Abstract
Dementia with Lewy bodies is characterized by a high burden of autonomic dysfunction and Lewy pathology in peripheral organs and components of the sympathetic and parasympathetic nervous system. Parasympathetic terminals may be quantified with 18F-fluoroetoxybenzovesamicol, a PET tracer that binds to the vesicular acetylcholine transporter in cholinergic presynaptic terminals. Parasympathetic imaging may be useful for diagnostics, improving our understanding of autonomic dysfunction and for clarifying the spatiotemporal relationship of neuronal degeneration in prodromal disease. Therefore, we aimed to investigate the cholinergic parasympathetic integrity in peripheral organs and central autonomic regions of subjects with dementia with Lewy bodies and its association with subjective and objective measures of autonomic dysfunction. We hypothesized that organs with known parasympathetic innervation, especially the pancreas and colon, would have impaired cholinergic integrity. To achieve these aims, we conducted a cross-sectional comparison study including 23 newly diagnosed non-diabetic subjects with dementia with Lewy bodies (74 ± 6 years, 83% male) and 21 elderly control subjects (74 ± 6 years, 67% male). We obtained whole-body images to quantify PET uptake in peripheral organs and brain images to quantify PET uptake in regions of the brainstem and hypothalamus. Autonomic dysfunction was assessed with questionnaires and measurements of orthostatic blood pressure. Subjects with dementia with Lewy bodies displayed reduced cholinergic tracer uptake in the pancreas (32% reduction, P = 0.0003) and colon (19% reduction, P = 0.0048), but not in organs with little or no parasympathetic innervation. Tracer uptake in a region of the medulla oblongata overlapping the dorsal motor nucleus of the vagus correlated with autonomic symptoms (rs = -0.54, P = 0.0077) and changes in orthostatic blood pressure (rs = 0.76, P < 0.0001). Tracer uptake in the pedunculopontine region correlated with autonomic symptoms (rs = -0.52, P = 0.0104) and a measure of non-motor symptoms (rs = -0.47, P = 0.0230). In conclusion, our findings provide the first imaging-based evidence of impaired cholinergic integrity of the pancreas and colon in dementia with Lewy bodies. The observed changes may reflect parasympathetic denervation, implying that this process is initiated well before the point of diagnosis. The findings also support that cholinergic denervation in the brainstem contributes to dysautonomia.
Collapse
Affiliation(s)
- Niels Okkels
- Department of Nuclear Medicine and PET, Aarhus University Hospital, 8200 Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus C, Denmark
- Department of Neurology, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Jacob Horsager
- Department of Nuclear Medicine and PET, Aarhus University Hospital, 8200 Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Tatyana D Fedorova
- Department of Nuclear Medicine and PET, Aarhus University Hospital, 8200 Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Karoline Knudsen
- Department of Nuclear Medicine and PET, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Casper Skjærbæk
- Department of Nuclear Medicine and PET, Aarhus University Hospital, 8200 Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Katrine B Andersen
- Department of Nuclear Medicine and PET, Aarhus University Hospital, 8200 Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Miguel Labrador-Espinosa
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Seville, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | | | - Janne K Mortensen
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus C, Denmark
- Department of Neurology, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Henriette Klit
- Department of Neurology, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Mette Møller
- Department of Neurology, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Erik H Danielsen
- Department of Neurology, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Erik L Johnsen
- Department of Neurology, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Goran Bekan
- Department of Neurology, Regionshospitalet Gødstrup, 7400 Herning, Denmark
| | - Kim V Hansen
- Department of Nuclear Medicine and PET, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Ole L Munk
- Department of Nuclear Medicine and PET, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Malene F Damholdt
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Pernille L Kjeldsen
- Department of Nuclear Medicine and PET, Aarhus University Hospital, 8200 Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus C, Denmark
- Department of Neurology, Aalborg University Hospital, 9000 Aalborg, Denmark
| | - Allan K Hansen
- Department of Nuclear Medicine and PET, Aarhus University Hospital, 8200 Aarhus N, Denmark
- Department of Nuclear Medicine, Aalborg University Hospital, 9000 Aalborg, Denmark
| | - Hanne Gottrup
- Department of Neurology, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Michel J Grothe
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Seville, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Per Borghammer
- Department of Nuclear Medicine and PET, Aarhus University Hospital, 8200 Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
9
|
Gunsch G, Paradie E, Townsend KL. Peripheral nervous system glia in support of metabolic tissue functions. Trends Endocrinol Metab 2023; 34:622-639. [PMID: 37591710 DOI: 10.1016/j.tem.2023.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/16/2023] [Accepted: 07/20/2023] [Indexed: 08/19/2023]
Abstract
The peripheral nervous system (PNS) relays information between organs and tissues and the brain and spine to maintain homeostasis, regulate tissue functions, and respond to interoceptive and exteroceptive signals. Glial cells perform support roles to maintain nerve function, plasticity, and survival. The glia of the central nervous system (CNS) are well characterized, but PNS glia (PNSG) populations, particularly tissue-specific subtypes, are underexplored. PNSG are found in large nerves (such as the sciatic), the ganglia, and the tissues themselves, and can crosstalk with a range of cell types in addition to neurons. PNSG are also subject to phenotypic changes in response to signals from their local tissue environment, including metabolic changes. These topics and the importance of PNSG in metabolically active tissues, such as adipose, muscle, heart, and lymphatic tissues, are outlined in this review.
Collapse
Affiliation(s)
- Gilian Gunsch
- Department of Neurological Surgery, The Ohio State University, Columbus, OH, USA
| | - Emma Paradie
- Department of Neurological Surgery, The Ohio State University, Columbus, OH, USA
| | - Kristy L Townsend
- Department of Neurological Surgery, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
10
|
He S, Liu J, Xue Y, Fu T, Li Z. Sympathetic Nerves Coordinate Corneal Epithelial Wound Healing by Controlling the Mobilization of Ly6Chi Monocytes From the Spleen to the Injured Cornea. Invest Ophthalmol Vis Sci 2023; 64:13. [PMID: 37682569 PMCID: PMC10500368 DOI: 10.1167/iovs.64.12.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/10/2023] [Indexed: 09/09/2023] Open
Abstract
Purpose This study aims to investigate the potential involvement of spleen-derived monocytes in the repair process following corneal epithelial abrasion. Methods A corneal epithelial abrasion model was established in male C57BL/6J mice, and the dynamic changes of monocyte subpopulations in the injured cornea were analyzed using flow cytometry. The effects of Ly6Chi monocyte depletion and local adoptive transfer of purified Ly6Chi monocytes on wound closure and neutrophil recruitment to the injured cornea were observed. The effect of sympathetic nerves on the recruitment of spleen-derived Ly6Chi monocytes to the injured cornea was also investigated using multiple methods. The emigration of fluorescence-labeled monocytes to the injured cornea was validated through intravital microscopy. Finally, differential genes between different groups were identified through high-throughput RNA sequencing and analyzed for functional enrichment, followed by verification by quantitative PCR. Results Ly6Chi monocytes were present in large numbers in the injured cornea prior to neutrophil recruitment. Predepletion of Ly6Chi monocytes significantly inhibited neutrophil recruitment to the injured cornea. Furthermore, surgical removal of the spleen significantly reduced the number of Ly6Chi monocytes in the injured cornea. Further observations revealed that sympathetic blockade significantly reduced the number of Ly6Chi monocytes recruited to the injured cornea. In contrast, administration of the β2-adrenergic receptor agonist significantly increased the number of Ly6Chi monocytes recruited to the injured cornea in animals treated with sympathectomy and catecholamine synthesis inhibition. Conclusions Our results suggest that spleen-derived Ly6Chi monocytes, under the control of the sympathetic nervous system, play a critical role in the inflammatory response following corneal injury.
Collapse
Affiliation(s)
- Siyu He
- Key Laboratory of Regenerative Medicine of Ministry of Education, Department of Developmental & Regenerative Biology, Jinan University, Guangzhou, China
| | - Jun Liu
- International Ocular Surface Research Center, Institute of Ophthalmology, and Jinan University Medical School, Guangzhou, China
| | - Yunxia Xue
- International Ocular Surface Research Center, Institute of Ophthalmology, and Jinan University Medical School, Guangzhou, China
| | - Ting Fu
- International Ocular Surface Research Center, Institute of Ophthalmology, and Jinan University Medical School, Guangzhou, China
| | - Zhijie Li
- Key Laboratory of Regenerative Medicine of Ministry of Education, Department of Developmental & Regenerative Biology, Jinan University, Guangzhou, China
- International Ocular Surface Research Center, Institute of Ophthalmology, and Jinan University Medical School, Guangzhou, China
| |
Collapse
|
11
|
Pongratz G, Straub RH. Chronic Effects of the Sympathetic Nervous System in Inflammatory Models. Neuroimmunomodulation 2023; 30:113-134. [PMID: 37231902 DOI: 10.1159/000530969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/20/2023] [Indexed: 05/27/2023] Open
Abstract
The immune system is embedded in a network of regulatory systems to keep homeostasis in case of an immunologic challenge. Neuroendocrine immunologic research has revealed several aspects of these interactions over the past decades, e.g., between the autonomic nervous system and the immune system. This review will focus on evidence revealing the role of the sympathetic nervous system (SNS) in chronic inflammation, like colitis, multiple sclerosis, systemic sclerosis, lupus erythematodes, and arthritis with a focus on animal models supported by human data. A theory of the contribution of the SNS in chronic inflammation will be presented that spans these disease entities. One major finding is the biphasic nature of the sympathetic contribution to inflammation, with proinflammatory effects until the point of disease outbreak and mainly anti-inflammatory influence thereafter. Since sympathetic nerve fibers are lost from sites of inflammation during inflammation, local cells and immune cells achieve the capability to endogenously produce catecholamines to fine-tune the inflammatory response independent of brain control. On a systemic level, it has been shown across models that the SNS is activated in inflammation as opposed to the parasympathetic nervous system. Permanent overactivity of the SNS contributes to many of the known disease sequelae. One goal of neuroendocrine immune research is defining new therapeutic targets. In this respect, it will be discussed that at least in arthritis, it might be beneficial to support β-adrenergic and inhibit α-adrenergic activity besides restoring autonomic balance. Overall, in the clinical setting, we now need controlled interventional studies to successfully translate the theoretical knowledge into benefits for patients.
Collapse
Affiliation(s)
- Georg Pongratz
- Department of Gastroenterology, Division of Rheumatology and Clinical Immunology, St. John of God Hospital, Regensburg, Germany
- Medical Faculty of the University of Regensburg, Regensburg, Germany
| | - Rainer H Straub
- Laboratory of Experimental Rheumatology and Neuroendocrino-Immunology, Department of Internal Medicine I, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
12
|
Cao Y, Liu T, Zhou X, Fu W, Li J, Yang J. 3D anatomy of autonomic innervations in immune organs of a non-human primate and the human. FUNDAMENTAL RESEARCH 2023; 3:249-256. [PMID: 38932917 PMCID: PMC11197775 DOI: 10.1016/j.fmre.2022.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/03/2022] [Accepted: 03/08/2022] [Indexed: 11/25/2022] Open
Abstract
Direct neural inputs to immune organs have been observed for decades, with their functions in neuroimmune regulation being increasingly appreciated. However, the current knowledge of such neural structures, particularly those in primate immune organs, remains incomplete. In this study, we comprehensively assessed the 3D anatomy of autonomic (i.e., sympathetic and parasympathetic) innervations in the immune organs of the rhesus macaque monkey and the human for the first time. Aided with the advanced technique of whole-tissue immunolabeling and lightsheet fluorescence imaging, we revealed the densely organized sympathetic architecture in the parenchyma of the adult monkey and human spleens. On the other hand, only sparse, if any, sympathetic inputs were observed inside the lymph nodes, Peyer's patches, or thymus. In contrast, there were minimal parasympathetic innervations in the parenchyma of these examined immune organs. Together, this work has documented the unique patterns of autonomic innervations in different immune organs of a non-human primate and the human, serving as an essential reference for future research on neuroimmune regulation in the field.
Collapse
Affiliation(s)
- Ying Cao
- State Key Laboratory of Membrane Biology, School of Life Sciences, Center for Life Sciences, Peking University, Beijing 100871, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Tingting Liu
- State Key Laboratory of Membrane Biology, School of Life Sciences, Center for Life Sciences, Peking University, Beijing 100871, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Xin Zhou
- Department of General Surgery, Peking University Third Hospital, Beijing 100191, China
| | - Wei Fu
- Department of General Surgery, Peking University Third Hospital, Beijing 100191, China
| | - Jiali Li
- IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Jing Yang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Center for Life Sciences, Peking University, Beijing 100871, China
- IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
- Shenzhen Bay Laboratory, Institute of Molecular Physiology, Shenzhen, Guangdong 518055, China
- Chinese Institute for Brain Research, Beijing 102206, China
| |
Collapse
|
13
|
Jin X, Wang X, Sun J, Tan W, Zhang G, Han J, Xie M, Zhou L, Yu Z, Xu T, Wang C, Wang Y, Zhou X, Jiang H. Subthreshold splenic nerve stimulation prevents myocardial Ischemia-Reperfusion injury via neuroimmunomodulation of proinflammatory factor levels. Int Immunopharmacol 2023; 114:109522. [PMID: 36502595 DOI: 10.1016/j.intimp.2022.109522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/16/2022] [Accepted: 11/25/2022] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Clinical outcomes following myocardial ischemia-reperfusion (I/R) injury are strongly related to the intensity and duration of inflammation. The splenic nerve (SpN) is indispensable for the anti-inflammatory reflex. This study aimed to investigate whether splenic nerve stimulation (SpNS) plays a cardioprotective role in myocardial I/R injury and the potential underlying mechanism. METHODS Sprague-Dawley rats were randomly divided into four groups: sham group, I/R group, SpNS group, and I/R plus SpNS group. The highest SpNS intensity that did not influence heart rate was identified, and SpNS at this intensity was used as the subthreshold stimulus. Continuous subthreshold SpNS was applied for 1 h before ligation of the left coronary artery for 45 min. After 72 h of reperfusion, samples were collected for analysis. RESULTS SpN activity and splenic concentrations of cholinergic anti-inflammatory pathway (CAP)-related neurotransmitters were significantly increased by SpNS. The infarct size, oxidative stress, sympathetic tone, and the levels of proinflammatory cytokines, including TNF-α, IL-1β, and IL-6, were significantly reduced in rats subjected to subthreshold SpNS after myocardial I/R injury compared with those subjected to I/R injury alone. CONCLUSIONS Subthreshold SpNS ameliorates myocardial damage, the inflammatory response, and cardiac remodelling induced by myocardial I/R injury via neuroimmunomodulation of proinflammatory factor levels. SpNS is a potential therapeutic strategy for the treatment of myocardial I/R injury.
Collapse
Affiliation(s)
- Xiaoxing Jin
- Department of Cardiology, Renmin Hospital of Wuhan University Hubei Key Laboratory of Autonomic Nervous System Modulation Cardiac Autonomic Nervous System Research Center of Wuhan University Taikang Center for Life and Medical Sciences, Wuhan University Institute of Molecular Medicine, Renmin Hospital of Wuhan University Cardiovascular Research Institute, Wuhan University Hubei Key Laboratory of Cardiology, Wuhan 430060, P.R. China
| | - Xiaofei Wang
- Department of Cardiology, Renmin Hospital of Wuhan University Hubei Key Laboratory of Autonomic Nervous System Modulation Cardiac Autonomic Nervous System Research Center of Wuhan University Taikang Center for Life and Medical Sciences, Wuhan University Institute of Molecular Medicine, Renmin Hospital of Wuhan University Cardiovascular Research Institute, Wuhan University Hubei Key Laboratory of Cardiology, Wuhan 430060, P.R. China
| | - Ji Sun
- Department of Cardiology, Renmin Hospital of Wuhan University Hubei Key Laboratory of Autonomic Nervous System Modulation Cardiac Autonomic Nervous System Research Center of Wuhan University Taikang Center for Life and Medical Sciences, Wuhan University Institute of Molecular Medicine, Renmin Hospital of Wuhan University Cardiovascular Research Institute, Wuhan University Hubei Key Laboratory of Cardiology, Wuhan 430060, P.R. China
| | - Wuping Tan
- Department of Cardiology, Renmin Hospital of Wuhan University Hubei Key Laboratory of Autonomic Nervous System Modulation Cardiac Autonomic Nervous System Research Center of Wuhan University Taikang Center for Life and Medical Sciences, Wuhan University Institute of Molecular Medicine, Renmin Hospital of Wuhan University Cardiovascular Research Institute, Wuhan University Hubei Key Laboratory of Cardiology, Wuhan 430060, P.R. China
| | - Guocheng Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University Hubei Key Laboratory of Autonomic Nervous System Modulation Cardiac Autonomic Nervous System Research Center of Wuhan University Taikang Center for Life and Medical Sciences, Wuhan University Institute of Molecular Medicine, Renmin Hospital of Wuhan University Cardiovascular Research Institute, Wuhan University Hubei Key Laboratory of Cardiology, Wuhan 430060, P.R. China
| | - Jiapeng Han
- Department of Cardiology, Renmin Hospital of Wuhan University Hubei Key Laboratory of Autonomic Nervous System Modulation Cardiac Autonomic Nervous System Research Center of Wuhan University Taikang Center for Life and Medical Sciences, Wuhan University Institute of Molecular Medicine, Renmin Hospital of Wuhan University Cardiovascular Research Institute, Wuhan University Hubei Key Laboratory of Cardiology, Wuhan 430060, P.R. China
| | - Mengjie Xie
- Department of Cardiology, Renmin Hospital of Wuhan University Hubei Key Laboratory of Autonomic Nervous System Modulation Cardiac Autonomic Nervous System Research Center of Wuhan University Taikang Center for Life and Medical Sciences, Wuhan University Institute of Molecular Medicine, Renmin Hospital of Wuhan University Cardiovascular Research Institute, Wuhan University Hubei Key Laboratory of Cardiology, Wuhan 430060, P.R. China
| | - Liping Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University Hubei Key Laboratory of Autonomic Nervous System Modulation Cardiac Autonomic Nervous System Research Center of Wuhan University Taikang Center for Life and Medical Sciences, Wuhan University Institute of Molecular Medicine, Renmin Hospital of Wuhan University Cardiovascular Research Institute, Wuhan University Hubei Key Laboratory of Cardiology, Wuhan 430060, P.R. China
| | - Zhiyao Yu
- Department of Cardiology, Renmin Hospital of Wuhan University Hubei Key Laboratory of Autonomic Nervous System Modulation Cardiac Autonomic Nervous System Research Center of Wuhan University Taikang Center for Life and Medical Sciences, Wuhan University Institute of Molecular Medicine, Renmin Hospital of Wuhan University Cardiovascular Research Institute, Wuhan University Hubei Key Laboratory of Cardiology, Wuhan 430060, P.R. China
| | - Tianyou Xu
- Department of Cardiology, Renmin Hospital of Wuhan University Hubei Key Laboratory of Autonomic Nervous System Modulation Cardiac Autonomic Nervous System Research Center of Wuhan University Taikang Center for Life and Medical Sciences, Wuhan University Institute of Molecular Medicine, Renmin Hospital of Wuhan University Cardiovascular Research Institute, Wuhan University Hubei Key Laboratory of Cardiology, Wuhan 430060, P.R. China
| | - Changyi Wang
- Department of Cardiology, Renmin Hospital of Wuhan University Hubei Key Laboratory of Autonomic Nervous System Modulation Cardiac Autonomic Nervous System Research Center of Wuhan University Taikang Center for Life and Medical Sciences, Wuhan University Institute of Molecular Medicine, Renmin Hospital of Wuhan University Cardiovascular Research Institute, Wuhan University Hubei Key Laboratory of Cardiology, Wuhan 430060, P.R. China
| | - Yueyi Wang
- Department of Cardiology, Renmin Hospital of Wuhan University Hubei Key Laboratory of Autonomic Nervous System Modulation Cardiac Autonomic Nervous System Research Center of Wuhan University Taikang Center for Life and Medical Sciences, Wuhan University Institute of Molecular Medicine, Renmin Hospital of Wuhan University Cardiovascular Research Institute, Wuhan University Hubei Key Laboratory of Cardiology, Wuhan 430060, P.R. China.
| | - Xiaoya Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University Hubei Key Laboratory of Autonomic Nervous System Modulation Cardiac Autonomic Nervous System Research Center of Wuhan University Taikang Center for Life and Medical Sciences, Wuhan University Institute of Molecular Medicine, Renmin Hospital of Wuhan University Cardiovascular Research Institute, Wuhan University Hubei Key Laboratory of Cardiology, Wuhan 430060, P.R. China.
| | - Hong Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University Hubei Key Laboratory of Autonomic Nervous System Modulation Cardiac Autonomic Nervous System Research Center of Wuhan University Taikang Center for Life and Medical Sciences, Wuhan University Institute of Molecular Medicine, Renmin Hospital of Wuhan University Cardiovascular Research Institute, Wuhan University Hubei Key Laboratory of Cardiology, Wuhan 430060, P.R. China.
| |
Collapse
|
14
|
Alvarez MR, Alarcon JM, Roman CA, Lazaro D, Bobrowski-Khoury N, Baena-Caldas GP, Esber GR. Can a basic solution activate the inflammatory reflex? A review of potential mechanisms, opportunities, and challenges. Pharmacol Res 2023; 187:106525. [PMID: 36441036 DOI: 10.1016/j.phrs.2022.106525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/09/2022] [Accepted: 10/25/2022] [Indexed: 11/24/2022]
Abstract
Stimulation of the inflammatory reflex (IR) is a promising strategy to treat systemic inflammatory disorders. However, this strategy is hindered by the cost and side effects of traditional IR activators. Recently, oral intake of sodium bicarbonate (NaHCO3) has been suggested to activate the IR, providing a safe and inexpensive alternative. Critically, the mechanisms whereby NaHCO3 might achieve this effect and more broadly the pathways underlying the IR remain poorly understood. Here, we argue that the recognition of NaHCO3 as a potential IR activator presents exciting clinical and research opportunities. To aid this quest, we provide an integrative review of our current knowledge of the neural and cellular pathways mediating the IR and discuss the status of physiological models of IR activation. From this vantage point, we derive testable hypotheses on potential mechanisms whereby NaHCO3 might stimulate the IR and compare NaHCO3 with classic IR activators. Elucidation of these mechanisms will help determine the therapeutic value of NaHCO3 as an IR activator and provide new insights into the IR circuitry.
Collapse
Affiliation(s)
- Milena Rodriguez Alvarez
- Department of Internal Medicine, Division of Rheumatology, SUNY Downstate Health Sciences University, Brooklyn, NY, USA.
| | - Juan Marcos Alarcon
- Department of Pathology, The Robert F. Furchgott Center for Neural and Behavioral Science, SUNY Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, NY 11203, USA
| | - Christopher A Roman
- Department of Cell Biology, State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Deana Lazaro
- Division of Rheumatology, Department of Internal Medicine, Veterans Affairs New York Harbor Healthcare System, Brooklyn, NY, USA
| | | | | | | |
Collapse
|
15
|
Simon T, Kirk J, Dolezalova N, Guyot M, Panzolini C, Bondue A, Lavergne J, Hugues S, Hypolite N, Saeb-Parsy K, Perkins J, Macia E, Sridhar A, Vervoordeldonk MJ, Glaichenhaus N, Donegá M, Blancou P. The cholinergic anti-inflammatory pathway inhibits inflammation without lymphocyte relay. Front Neurosci 2023; 17:1125492. [PMID: 37123375 PMCID: PMC10140439 DOI: 10.3389/fnins.2023.1125492] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/20/2023] [Indexed: 05/02/2023] Open
Abstract
The magnitude of innate inflammatory immune responses is dependent on interactions between peripheral neural and immune cells. In particular, a cholinergic anti-inflammatory pathway (CAP) has been identified in the spleen whereby noradrenaline (NA) released by splenic nerves binds to ß2-adrenergic receptors (β2-AR) on CD4+ T cells which, in turn, release acetylcholine (ACh). The binding of ACh to α7 acetylcholine receptors (α7-AChR) expressed by splenic macrophages inhibits the production of inflammatory cytokines, including tumor necrosis factor (TNF). However, the role of ACh-secreting CD4+ T-cells in the CAP is still controversial and largely based on the absence of this anti-inflammatory pathway in mice lacking T-cells (nude, FoxN1-/-). Using four conscious, non-lymphopenic transgenic mouse models, we found that, rather than acting on CD4+ T-cells, NA released by splenic nerve terminals acts directly onto β2-AR on splenic myeloid cells to exert this anti-inflammatory effect. We also show that, while larger doses of LPS are needed to trigger CAP in nude mouse strain compared to other strains, TNF production can be inhibited in these animals lacking CD4+ T-cell by stimulating either the vagus or the splenic nerve. We demonstrate that CD4+ T-cells are dispensable for the CAP after antibody-mediated CD4+ T-cell depletion in wild type mice. Furthermore, we found that NA-mediated inhibition of in vitro LPS-induced TNF secretion by human or porcine splenocytes does not require α7-AChR signaling. Altogether our data demonstrate that activation of the CAP by stimulation of vagus or splenic nerves in mice is mainly mediated by direct binding of NA to β2-AR on splenic macrophages, and suggest that the same mechanism is at play in larger species.
Collapse
Affiliation(s)
- Thomas Simon
- Université Côte d’Azur, CNRS, Molecular and Cellular Pharmacology Institute, Valbonne, France
| | - Joseph Kirk
- The Royal Veterinary College, Hatfield, United Kingdom
| | - Nikola Dolezalova
- Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge, United Kingdom
| | - Mélanie Guyot
- Université Côte d’Azur, CNRS, Molecular and Cellular Pharmacology Institute, Valbonne, France
| | | | - Alexandre Bondue
- Université Côte d’Azur, CNRS, Molecular and Cellular Pharmacology Institute, Valbonne, France
| | - Julien Lavergne
- Université Côte d’Azur, CNRS, Molecular and Cellular Pharmacology Institute, Valbonne, France
| | | | - Nicolas Hypolite
- Université Côte d’Azur, CNRS, Molecular and Cellular Pharmacology Institute, Valbonne, France
| | - Kourosh Saeb-Parsy
- Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge, United Kingdom
| | - Justin Perkins
- Galvani Bioelectronics, Translational Sciences, Stevenage, United Kingdom
| | - Eric Macia
- Université Côte d’Azur, CNRS, Molecular and Cellular Pharmacology Institute, Valbonne, France
| | - Arun Sridhar
- Galvani Bioelectronics, Translational Sciences, Stevenage, United Kingdom
| | | | - Nicolas Glaichenhaus
- Université Côte d’Azur, CNRS, Molecular and Cellular Pharmacology Institute, Valbonne, France
| | - Matteo Donegá
- Galvani Bioelectronics, Translational Sciences, Stevenage, United Kingdom
| | - Philippe Blancou
- Université Côte d’Azur, CNRS, Molecular and Cellular Pharmacology Institute, Valbonne, France
- *Correspondence: Philippe Blancou,
| |
Collapse
|
16
|
Kirkland LG, Garbe CG, Hadaya J, Benson PV, Wagener BM, Tankovic S, Hoover DB. Sympathetic innervation of human and porcine spleens: implications for between species variation in function. Bioelectron Med 2022; 8:20. [PMID: 36536461 PMCID: PMC9762010 DOI: 10.1186/s42234-022-00102-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The vagus nerve affects innate immune responses by activating spleen-projecting sympathetic neurons, which modulate leukocyte function. Recent basic and clinical research investigating vagus nerve stimulation to engage the cholinergic anti-inflammatory pathway (CAP) has shown promising therapeutic results for a variety of inflammatory diseases. Abundant sympathetic innervation occurs in rodent spleens, and use of these species has dominated mechanistic research investigating the CAP. However, previous neuroanatomical studies of human spleen found a more restricted pattern of innervation compared to rodents. Therefore, our primary goal was to establish the full extent of sympathetic innervation of human spleens using donor tissue with the shortest procurement to fixation time. Parallel studies of porcine spleen, a large animal model, were performed as a positive control and for comparison. METHODS Human and porcine spleen tissue were fixed immediately after harvest and prepared for immunohistochemistry. Human heart and porcine spleen were stained in conjunction as positive controls. Several immunohistochemical protocols were compared for best results. Tissue was stained for tyrosine hydroxylase (TH), a noradrenergic marker, using VIP purple chromogen. Consecutive tissue slices were stained for neuropeptide Y (NPY), which often co-localizes with TH, or double-labelled for TH and CD3, a T cell marker. High-magnification images and full scans of the tissue were obtained and analyzed for qualitative differences between species. RESULTS TH had dominant perivascular localization in human spleen, with negligible innervation of parenchyma, but such nerves were abundant throughout ventricular myocardium. In marked contrast, noradrenergic innervation was abundant in all regions of porcine spleen, with red pulp having more nerves than white pulp. NPY stain results were consistent with this pattern. In human spleen, noradrenergic nerves only ran close to T cells at the boundary of the periarterial lymphatic sheath and arteries. In porcine spleen, noradrenergic nerves were closely associated with T cells in both white and red pulp as well as other leukocytes in red pulp. CONCLUSION Sympathetic innervation of the spleen varies between species in both distribution and abundance, with humans and pigs being at opposite extremes. This has important implications for sympathetic regulation of neuroimmune interactions in the spleen of different species and focused targeting of the CAP in humans.
Collapse
Affiliation(s)
- Logan G. Kirkland
- grid.255381.80000 0001 2180 1673Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614 USA
| | - Chloe G. Garbe
- grid.255381.80000 0001 2180 1673Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614 USA
| | - Joseph Hadaya
- grid.19006.3e0000 0000 9632 6718UCLA Cardiac Arrhythmia Center and Neurocardiology Research Program of Excellence, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095 USA ,grid.19006.3e0000 0000 9632 6718Molecular, Cellular, and Integrative Physiology Program, University of California, Los Angeles, Los Angeles, CA USA
| | - Paul V. Benson
- grid.265892.20000000106344187Department of Pathology, The University of Alabama at Birmingham, Heersink School of Medicine, Birmingham, AL 35249 USA
| | - Brant M. Wagener
- grid.265892.20000000106344187Department of Anesthesiology and Perioperative Medicine, The University of Alabama at Birmingham, Heersink School of Medicine, Birmingham, AL 35249 USA
| | - Sanjin Tankovic
- grid.265892.20000000106344187Department of Anesthesiology and Perioperative Medicine, The University of Alabama at Birmingham, Heersink School of Medicine, Birmingham, AL 35249 USA
| | - Donald B. Hoover
- grid.255381.80000 0001 2180 1673Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614 USA ,grid.255381.80000 0001 2180 1673Department of Biomedical Sciences, Quillen College of Medicine and Center of Excellence in Inflammation, Infectious Disease and Immunity, East Tennessee State University, Johnson City, TN 37614 USA
| |
Collapse
|
17
|
Gautron L. The parasympathetic innervation of the spleen: are we chasing a ghost? J Anat 2022; 240:772-774. [PMID: 34729780 PMCID: PMC8930805 DOI: 10.1111/joa.13586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 11/27/2022] Open
Affiliation(s)
- Laurent Gautron
- Center for Hypothalamic Research and Department of Internal MedicineUTSouthwestern Medical Center at DallasDallasTexasUSA
| |
Collapse
|
18
|
Horsager J, Okkels N, Van Den Berge N, Jacobsen J, Schact A, Munk OL, Vang K, Bender D, Brooks DJ, Borghammer P. In vivo vesicular acetylcholine transporter density in human peripheral organs: an [ 18F]FEOBV PET/CT study. EJNMMI Res 2022; 12:17. [PMID: 35362761 PMCID: PMC8975951 DOI: 10.1186/s13550-022-00889-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 03/17/2022] [Indexed: 11/20/2022] Open
Abstract
Background The autonomic nervous system is frequently affected in some neurodegenerative diseases, including Parkinson’s disease and Dementia with Lewy bodies. In vivo imaging methods to visualize and quantify the peripheral cholinergic nervous system are lacking. By using [18F]FEOBV PET, we here describe the peripheral distribution of the specific cholinergic marker, vesicular acetylcholine transporters (VAChT), in human subjects. We included 15 healthy subjects aged 53–86 years for 70 min dynamic PET protocol of peripheral organs. We performed kinetic modelling of the adrenal gland, pancreas, myocardium, renal cortex, spleen, colon, and muscle using an image-derived input function from the aorta. A metabolite correction model was generated from venous blood samples. Three non-linear compartment models were tested. Additional time-activity curves from 6 to 70 min post injection were generated for prostate, thyroid, submandibular-, parotid-, and lacrimal glands. Results A one-tissue compartment model generated the most robust fits to the data. Total volume-of-distribution rank order was: adrenal gland > pancreas > myocardium > spleen > renal cortex > muscle > colon. We found significant linear correlations between total volumes-of-distribution and standard uptake values in most organs. Conclusion High [18F]FEOBV PET signal was found in structures with known cholinergic activity. We conclude that [18F]FEOBV PET is a valid tool for estimating VAChT density in human peripheral organs. Simple static images may replace kinetic modeling in some organs and significantly shorten scan duration. Clinical Trial Registration Trial registration: NCT, NCT03554551. Registered 31 May 2018. https://clinicaltrials.gov/ct2/show/NCT03554551?term=NCT03554551&draw=2&rank=1. Supplementary Information The online version contains supplementary material available at 10.1186/s13550-022-00889-9.
Collapse
Affiliation(s)
- Jacob Horsager
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, J220, 8200, Aarhus N, Denmark. .,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| | - Niels Okkels
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, J220, 8200, Aarhus N, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
| | - Nathalie Van Den Berge
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, J220, 8200, Aarhus N, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Jan Jacobsen
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, J220, 8200, Aarhus N, Denmark
| | - Anna Schact
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, J220, 8200, Aarhus N, Denmark
| | - Ole Lajord Munk
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, J220, 8200, Aarhus N, Denmark
| | - Kim Vang
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, J220, 8200, Aarhus N, Denmark
| | - Dirk Bender
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, J220, 8200, Aarhus N, Denmark
| | - David J Brooks
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, J220, 8200, Aarhus N, Denmark.,Institute of Translational and Clinical Research, University of Newcastle Upon Tyne, Newcastle upon Tyne, UK
| | - Per Borghammer
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, J220, 8200, Aarhus N, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
19
|
Lanfranchi F, D'Amico F, Raffa S, Pennone M, Donegani MI, Miceli A, Chiola S, Maggio S, Delucchi C, Cossu V, Morbelli S, Bauckneht M, Sambuceti G, Marini C. Spleen Perfusion as an Index of Gender Impact on Sympathetic Nervous System Response to Exercise. Front Physiol 2021; 12:780713. [PMID: 34975534 PMCID: PMC8715039 DOI: 10.3389/fphys.2021.780713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/19/2021] [Indexed: 11/30/2022] Open
Abstract
Objective: Sympathetic nervous system (SNS) reaction to exercise is gender dependent. Nevertheless, clinically applicable methods to identify this difference are still missing. An organ largely sensitive to SNS is the spleen whose response to exercise can be easily evaluated, being included in the field of view of myocardial perfusion imaging (MPI). Here, we aimed to verify whether gender interferes with the spleen perfusion and its response to exercise. Methods: For this purpose, we evaluated 286 original scans of consecutive patients submitted to MPI in the course of 2019. Our standard procedure implies a single-day stress-rest sequence with a gap of ≥2 h between the administrations of 180 and 500 MBq of 99mTc-Sestamibi, respectively. Imaging is performed 30 min after radiotracer administration, with scan duration set at 25 and 35 s per view, respectively. Non-gated scans were reconstructed with the filtered back-projection method. A volume of interest was drawn on the spleen and heart to estimate the dose-normalized average counting rate that was expressed in normalized counts per seconds (NCPS). Results: In all subjects submitted to exercise MPI (n = 228), NCPS were higher during stress than at rest (3.52 ± 2.03 vs. 2.78 ± 2.07, respectively; p < 0.01). This effect was not detected in the 58 patients submitted to dipyridamole-stress. The response to exercise selectively involved the spleen, since NCPS in heart were unchanged irrespective of the used stressor. This same response was dependent upon gender, indeed spleen NCPS during stress were significantly higher in the 75 women than in the 153 men (3.86 ± 1.8 vs. 3.23 ± 1.6, respectively, p < 0.01). Again, this variance was not reproduced by heart. Finally, spleen NCPS were lower in the 173 patients with myocardial reversible perfusion defects (summed difference score ≥3) than in the remaining 55, despite similar values of rate pressure product at tracer injection. Conclusion: Thus, exercise interference on spleen perfusion can be detected during MPI. This effect is dependent upon gender and ischemia confirming the high sensitivity of this organ to SNS activation.
Collapse
Affiliation(s)
- Francesco Lanfranchi
- Nuclear Medicine Unit, Department of Health Sciences, University of Genoa, Genoa, Italy
| | - Francesca D'Amico
- Nuclear Medicine Unit, Department of Health Sciences, University of Genoa, Genoa, Italy
| | - Stefano Raffa
- Nuclear Medicine Unit, Department of Health Sciences, University of Genoa, Genoa, Italy
| | | | | | - Alberto Miceli
- Nuclear Medicine Unit, Department of Health Sciences, University of Genoa, Genoa, Italy
| | - Silvia Chiola
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Sara Maggio
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | | | - Vanessa Cossu
- Nuclear Medicine Unit, Department of Health Sciences, University of Genoa, Genoa, Italy
| | - Silvia Morbelli
- Nuclear Medicine Unit, Department of Health Sciences, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | | | - Gianmario Sambuceti
- Nuclear Medicine Unit, Department of Health Sciences, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Cecilia Marini
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- CNR Institute of Molecular Bioimaging and Physiology (IBFM), Milan, Italy
| |
Collapse
|
20
|
Single-cell transcriptional profiling of splenic fibroblasts reveals subset-specific innate immune signatures in homeostasis and during viral infection. Commun Biol 2021; 4:1355. [PMID: 34857864 PMCID: PMC8640036 DOI: 10.1038/s42003-021-02882-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 11/11/2021] [Indexed: 01/12/2023] Open
Abstract
Our understanding of the composition and functions of splenic stromal cells remains incomplete. Here, based on analysis of over 20,000 single cell transcriptomes of splenic fibroblasts, we characterized the phenotypic and functional heterogeneity of these cells in healthy state and during virus infection. We describe eleven transcriptionally distinct fibroblastic cell clusters, reassuring known subsets and revealing yet unascertained heterogeneity amongst fibroblasts occupying diverse splenic niches. We further identify striking differences in innate immune signatures of distinct stromal compartments in vivo. Compared to other fibroblasts and to endothelial cells, Ly6C+ fibroblasts of the red pulp were selectively endowed with enhanced interferon-stimulated gene expression in homeostasis, upon systemic interferon stimulation and during virus infection in vivo. Collectively, we provide an updated map of fibroblastic cell diversity in the spleen that suggests a specialized innate immune function for splenic red pulp fibroblasts.
Collapse
|
21
|
Cleypool CGJ, Brinkman DJ, Mackaaij C, Nikkels PGJ, Nolte MA, Luyer MD, de Jonge WJ, Bleys RLAW. Age-Related Variation in Sympathetic Nerve Distribution in the Human Spleen. Front Neurosci 2021; 15:726825. [PMID: 34720859 PMCID: PMC8552063 DOI: 10.3389/fnins.2021.726825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/24/2021] [Indexed: 11/25/2022] Open
Abstract
Introduction: The cholinergic anti-inflammatory pathway (CAIP) has been proposed as an efferent neural pathway dampening the systemic inflammatory response via the spleen. The CAIP activates the splenic neural plexus and a subsequent series of intrasplenic events, which at least require a close association between sympathetic nerves and T cells. Knowledge on this pathway has mostly been derived from rodent studies and only scarce information is available on the innervation of the human spleen. This study aimed to investigate the sympathetic innervation of different structures of the human spleen, the topographical association of nerves with T cells and age-related variations in nerve distribution. Materials and Methods: Spleen samples were retrieved from a diagnostic archive and were allocated to three age groups; neonates, 10–25 and 25–70 years of age. Sympathetic nerves and T cells were identified by immunohistochemistry for tyrosine hydroxylase (TH) and the membrane marker CD3, respectively. The overall presence of sympathetic nerves and T cells was semi-automatically quantified and expressed as total area percentage. A predefined scoring system was used to analyze the distribution of nerves within different splenic structures. Results: Sympathetic nerves were observed in all spleens and their number appeared to slightly increase from birth to adulthood and to decrease afterward. Irrespective to age, more than halve of the periarteriolar lymphatic sheaths (PALSs) contained sympathetic nerves in close association with T cells. Furthermore, discrete sympathetic nerves were observed in the capsule, trabeculae and red pulp and comparable to the total amount of sympathetic nerves, showed a tendency to decrease with age. No correlation was found between the number of T cells and sympathetic nerves. Conclusion: The presence of discrete sympathetic nerves in the splenic parenchyma, capsule and trabecular of human spleens could suggest a role in functions other than vasoregulation. In the PALS, sympathetic nerves were observed to be in proximity to T cells and is suggestive for the existence of the CAIP in humans. Since sympathetic nerve distribution shows interspecies and age-related variation, and our general understanding of the relative and spatial contribution of splenic innervation in immune regulation is incomplete, it remains difficult to estimate the anti-inflammatory potential of targeting splenic nerves in patients.
Collapse
Affiliation(s)
- Cindy G J Cleypool
- Division of Surgical Specialties, Department of Anatomy, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - David J Brinkman
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Department of Surgery, Catharina Hospital, Eindhoven, Netherlands
| | - Claire Mackaaij
- Division of Surgical Specialties, Department of Anatomy, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Peter G J Nikkels
- Division of Laboratories, Pharmacy, Biomedical Genetics and Pathology, Department of Pathology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Martijn A Nolte
- Department of Molecular and Cellular Hemostasis, Sanquin Research and Landsteiner Laboratory, Amsterdam, Netherlands
| | - Misha D Luyer
- Department of Surgery, Catharina Hospital, Eindhoven, Netherlands
| | - Wouter J de Jonge
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Department of Surgery, University Hospital Bonn, Bonn, Germany
| | - Ronald L A W Bleys
- Division of Surgical Specialties, Department of Anatomy, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
22
|
Gonzalez-Gonzalez MA, Bendale GS, Wang K, Wallace GG, Romero-Ortega M. Platinized graphene fiber electrodes uncover direct spleen-vagus communication. Commun Biol 2021; 4:1097. [PMID: 34535751 PMCID: PMC8448843 DOI: 10.1038/s42003-021-02628-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 08/30/2021] [Indexed: 11/21/2022] Open
Abstract
Neural interfacing nerve fascicles along the splenic neurovascular plexus (SNVP) is needed to better understand the spleen physiology, and for selective neuromodulation of this major organ. However, their small size and anatomical location have proven to be a significant challenge. Here, we use a reduced liquid crystalline graphene oxide (rGO) fiber coated with platinum (Pt) as a super-flexible suture-like electrode to interface multiple SNVP. The Pt-rGO fibers work as a handover knot electrodes over the small SNVP, allowing sensitive recording from four splenic nerve terminal branches (SN 1–4), to uncover differential activity and axon composition among them. Here, the asymmetric defasciculation of the SN branches is revealed by electron microscopy, and the functional compartmentalization in spleen innervation is evidenced in response to hypoxia and pharmacological modulation of mean arterial pressure. We demonstrate that electrical stimulation of cervical and sub-diaphragmatic vagus nerve (VN), evokes activity in a subset of SN terminal branches, providing evidence for a direct VN control over the spleen. This notion is supported by adenoviral tract-tracing of SN branches, revealing an unconventional direct brain-spleen projection. High-performance Pt-rGO fiber electrodes, may be used for the fine neural modulation of other small neurovascular plexus at the point of entry of major organs as a bioelectronic medical alternative. Gonzalez-Gonzalez et al. use high-performance platinized graphene fiber electrodes to interface individual neurovascular plexus that innervate the spleen. Their approach provides evidence for distinct function of individual spleen terminal branches in organ function.
Collapse
Affiliation(s)
- Maria A Gonzalez-Gonzalez
- Biomedical Engineering and Biomedical Sciences, University of Houston, Health 2, 4849 Calhoun Rd., Room 6014, Houston, TX, 77204-6064, USA
| | - Geetanjali S Bendale
- Biomedical Engineering and Biomedical Sciences, University of Houston, Health 2, 4849 Calhoun Rd., Room 6014, Houston, TX, 77204-6064, USA
| | - Kezhong Wang
- Intelligent Polymer Research Institute, ARC Centre of Excellence for Electromaterials Science, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Gordon G Wallace
- Intelligent Polymer Research Institute, ARC Centre of Excellence for Electromaterials Science, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Mario Romero-Ortega
- Biomedical Engineering and Biomedical Sciences, University of Houston, Health 2, 4849 Calhoun Rd., Room 6014, Houston, TX, 77204-6064, USA.
| |
Collapse
|
23
|
Elkhatib SK, Moshfegh CM, Watson GF, Schwab AD, Katsurada K, Patel KP, Case AJ. Splenic denervation attenuates repeated social defeat stress-induced T-lymphocyte inflammation. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2021; 1:190-200. [PMID: 35330608 PMCID: PMC8941638 DOI: 10.1016/j.bpsgos.2021.05.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/12/2021] [Accepted: 05/06/2021] [Indexed: 11/28/2022] Open
Abstract
Background Post-traumatic stress disorder (PTSD) is a devastating psychological disorder. Patients with PTSD canonically demonstrate an increased risk for inflammatory diseases, as well as increased sympathetic tone and norepinephrine (NE) outflow. Yet, the exact etiology and causal nature of these physiologic changes remain unclear. Previously, we demonstrated that exogenous NE alters mitochondrial superoxide in T-lymphocytes to produce a pro-inflammatory T-helper 17 (TH17) phenotype, and observed similar TH17 polarization in a preclinical model of PTSD. Therefore, we hypothesized sympathetic-driven neuroimmune interactions could mediate psychological trauma-induced T-lymphocyte inflammation. Methods Repeated social defeat stress (RSDS) is a preclinical murine model that recapitulates the behavioral, autonomic, and inflammatory aspects of PTSD. Targeted splenic denervation (Dnx) was performed to deduce the contribution of splenic sympathetic nerves to RSDS-induced inflammation. Eighty-five C57BL/6J mice underwent Dnx or sham-operation, followed by RSDS or control paradigms. Animals were assessed for behavioral, autonomic, inflammatory, and redox profiles. Results Dnx did not alter the antisocial or anxiety-like behavior induced by RSDS. In circulation, RSDS Dnx animals exhibited diminished levels of T-lymphocyte-specific cytokines (IL-2, IL-17A, and IL-22) compared to intact animals, whereas other non-specific inflammatory cytokines (e.g., IL-6, TNF-α, and IL-10) were unaffected by Dnx. Importantly, Dnx specifically ameliorated the increases in RSDS-induced T-lymphocyte mitochondrial superoxide, TH17 polarization, and pro-inflammatory gene expression with minimal impact to non-T-lymphocyte immune populations. Conclusions Overall, our data suggest that sympathetic nerves regulate RSDS-induced splenic T-lymphocyte inflammation, but play less of a role in the behavioral and non-T-lymphocyte inflammatory phenotypes induced by this psychological trauma paradigm.
Collapse
Affiliation(s)
- Safwan K. Elkhatib
- Department of Cellular and Integrative Physiology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Cassandra M. Moshfegh
- Department of Cellular and Integrative Physiology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Gabrielle F. Watson
- Department of Cellular and Integrative Physiology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Aaron D. Schwab
- Department of Cellular and Integrative Physiology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Kenichi Katsurada
- Department of Cellular and Integrative Physiology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
- School of Medicine, Jichi Medical University, Shimotsuke, Japan
| | - Kaushik P. Patel
- Department of Cellular and Integrative Physiology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Adam J. Case
- Department of Cellular and Integrative Physiology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
- Department of Psychiatry and Behavioral Sciences, College of Medicine, Texas A&M Health Science Center, Bryan, Texas
| |
Collapse
|
24
|
Donegà M, Fjordbakk CT, Kirk J, Sokal DM, Gupta I, Hunsberger GE, Crawford A, Cook S, Viscasillas J, Stathopoulou TR, Miranda JA, Dopson WJ, Goodwin D, Rowles A, McGill P, McSloy A, Werling D, Witherington J, Chew DJ, Perkins JD. Human-relevant near-organ neuromodulation of the immune system via the splenic nerve. Proc Natl Acad Sci U S A 2021; 118:e2025428118. [PMID: 33972441 PMCID: PMC8157920 DOI: 10.1073/pnas.2025428118] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Neuromodulation of immune function by stimulating the autonomic connections to the spleen has been demonstrated in rodent models. Consequently, neuroimmune modulation has been proposed as a new therapeutic strategy for the treatment of inflammatory conditions. However, demonstration of the translation of these immunomodulatory mechanisms in anatomically and physiologically relevant models is still lacking. Additionally, translational models are required to identify stimulation parameters that can be transferred to clinical applications of bioelectronic medicines. Here, we performed neuroanatomical and functional comparison of the mouse, rat, pig, and human splenic nerve using in vivo and ex vivo preparations. The pig was identified as a more suitable model of the human splenic innervation. Using functional electrophysiology, we developed a clinically relevant marker of splenic nerve engagement through stimulation-dependent reversible reduction in local blood flow. Translation of immunomodulatory mechanisms were then assessed using pig splenocytes and two models of acute inflammation in anesthetized pigs. The pig splenic nerve was shown to locally release noradrenaline upon stimulation, which was able to modulate cytokine production by pig splenocytes. Splenic nerve stimulation was found to promote cardiovascular protection as well as cytokine modulation in a high- and a low-dose lipopolysaccharide model, respectively. Importantly, splenic nerve-induced cytokine modulation was reproduced by stimulating the efferent trunk of the cervical vagus nerve. This work demonstrates that immune responses can be modulated by stimulation of spleen-targeted autonomic nerves in translational species and identifies splenic nerve stimulation parameters and biomarkers that are directly applicable to humans due to anatomical and electrophysiological similarities.
Collapse
Affiliation(s)
- Matteo Donegà
- Translation and Engineering, Galvani Bioelectronics, Stevenage SG1 2NY, United Kingdom;
| | - Cathrine T Fjordbakk
- Clinical Sciences and Services, The Royal Veterinary College, Hatfield AL9 7TA, United Kingdom
| | - Joseph Kirk
- Clinical Sciences and Services, The Royal Veterinary College, Hatfield AL9 7TA, United Kingdom
| | - David M Sokal
- Translation and Engineering, Galvani Bioelectronics, Stevenage SG1 2NY, United Kingdom
| | - Isha Gupta
- Translation and Engineering, Galvani Bioelectronics, Stevenage SG1 2NY, United Kingdom
| | - Gerald E Hunsberger
- Translation and Engineering, Galvani Bioelectronics, Stevenage SG1 2NY, United Kingdom
| | - Abbe Crawford
- Clinical Sciences and Services, The Royal Veterinary College, Hatfield AL9 7TA, United Kingdom
| | - Simon Cook
- Clinical Sciences and Services, The Royal Veterinary College, Hatfield AL9 7TA, United Kingdom
| | - Jaime Viscasillas
- Clinical Sciences and Services, The Royal Veterinary College, Hatfield AL9 7TA, United Kingdom
| | | | - Jason A Miranda
- Translation and Engineering, Galvani Bioelectronics, Stevenage SG1 2NY, United Kingdom
| | - Wesley J Dopson
- Translation and Engineering, Galvani Bioelectronics, Stevenage SG1 2NY, United Kingdom
| | - David Goodwin
- Clinical Sciences and Services, The Royal Veterinary College, Hatfield AL9 7TA, United Kingdom
| | - Alison Rowles
- Non-Clinical Safety, GlaxoSmithKline, Ware SG12 0DP, United Kingdom
| | - Paul McGill
- Bioimaging, GlaxoSmithKline, Ware SG12 0DP, United Kingdom
| | - Alex McSloy
- Clinical Sciences and Services, The Royal Veterinary College, Hatfield AL9 7TA, United Kingdom
| | - Dirk Werling
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield AL9 7TA, United Kingdom
| | - Jason Witherington
- Translation and Engineering, Galvani Bioelectronics, Stevenage SG1 2NY, United Kingdom
| | - Daniel J Chew
- Translation and Engineering, Galvani Bioelectronics, Stevenage SG1 2NY, United Kingdom
| | - Justin D Perkins
- Clinical Sciences and Services, The Royal Veterinary College, Hatfield AL9 7TA, United Kingdom;
| |
Collapse
|
25
|
Mastitskaya S, Thompson N, Holder D. Selective Vagus Nerve Stimulation as a Therapeutic Approach for the Treatment of ARDS: A Rationale for Neuro-Immunomodulation in COVID-19 Disease. Front Neurosci 2021; 15:667036. [PMID: 33927594 PMCID: PMC8076564 DOI: 10.3389/fnins.2021.667036] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 03/23/2021] [Indexed: 12/15/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is the most severe form of acute lung injury. It is induced by sepsis, aspiration, and pneumonia, including that caused by SARS coronavirus and human influenza viruses. The main pathophysiological mechanism of ARDS is a systemic inflammatory response. Vagus nerve stimulation (VNS) can limit cytokine production in the spleen and thereby dampen any systemic inflammation and inflammation-induced tissue damage in the lungs and other organs. However, the effects of increased parasympathetic outflow to the lungs when non-selective VNS is applied may result in bronchoconstriction, increased mucus secretion and enhance local pulmonary inflammatory activity; this may outweigh the beneficial systemic anti-inflammatory action of VNS. Organ/function-specific therapy can be achieved by imaging of localized fascicle activity within the vagus nerve and selective stimulation of identified organ-specific fascicles. This may be able to provide selective neuromodulation of different pathways within the vagus nerve and offer a novel means to improve outcome in ARDS. This has motivated this review in which we discuss the mechanisms of anti-inflammatory effects of VNS, progress in selective VNS techniques, and a possible application for ARDS.
Collapse
Affiliation(s)
- Svetlana Mastitskaya
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | | | | |
Collapse
|
26
|
Sokal DM, McSloy A, Donegà M, Kirk J, Colas RA, Dolezalova N, Gomez EA, Gupta I, Fjordbakk CT, Ouchouche S, Matteucci PB, Schlegel K, Bashirullah R, Werling D, Harman K, Rowles A, Yazicioglu RF, Dalli J, Chew DJ, Perkins JD. Splenic Nerve Neuromodulation Reduces Inflammation and Promotes Resolution in Chronically Implanted Pigs. Front Immunol 2021; 12:649786. [PMID: 33859641 PMCID: PMC8043071 DOI: 10.3389/fimmu.2021.649786] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/11/2021] [Indexed: 11/28/2022] Open
Abstract
Neuromodulation of the immune system has been proposed as a novel therapeutic strategy for the treatment of inflammatory conditions. We recently demonstrated that stimulation of near-organ autonomic nerves to the spleen can be harnessed to modulate the inflammatory response in an anesthetized pig model. The development of neuromodulation therapy for the clinic requires chronic efficacy and safety testing in a large animal model. This manuscript describes the effects of longitudinal conscious splenic nerve neuromodulation in chronically-implanted pigs. Firstly, clinically-relevant stimulation parameters were refined to efficiently activate the splenic nerve while reducing changes in cardiovascular parameters. Subsequently, pigs were implanted with a circumferential cuff electrode around the splenic neurovascular bundle connected to an implantable pulse generator, using a minimally-invasive laparoscopic procedure. Tolerability of stimulation was demonstrated in freely-behaving pigs using the refined stimulation parameters. Longitudinal stimulation significantly reduced circulating tumor necrosis factor alpha levels induced by systemic endotoxemia. This effect was accompanied by reduced peripheral monocytopenia as well as a lower systemic accumulation of CD16+CD14high pro-inflammatory monocytes. Further, lipid mediator profiling analysis demonstrated an increased concentration of specialized pro-resolving mediators in peripheral plasma of stimulated animals, with a concomitant reduction of pro-inflammatory eicosanoids including prostaglandins. Terminal electrophysiological and physiological measurements and histopathological assessment demonstrated integrity of the splenic nerves up to 70 days post implantation. These chronic translational experiments demonstrate that daily splenic nerve neuromodulation, via implanted electronics and clinically-relevant stimulation parameters, is well tolerated and is able to prime the immune system toward a less inflammatory, pro-resolving phenotype.
Collapse
Affiliation(s)
- David M. Sokal
- Translation and Engineering, Galvani Bioelectronics, Stevenage, United Kingdom
| | - Alex McSloy
- Clinical Science & Services, The Royal Veterinary College, Hatfield, United Kingdom
| | - Matteo Donegà
- Translation and Engineering, Galvani Bioelectronics, Stevenage, United Kingdom
| | - Joseph Kirk
- Clinical Science & Services, The Royal Veterinary College, Hatfield, United Kingdom
| | - Romain A. Colas
- Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, London, United Kingdom
| | - Nikola Dolezalova
- Department of Surgery, University of Cambridge, Cambridge, United Kingdom
| | - Esteban A. Gomez
- Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, London, United Kingdom
| | - Isha Gupta
- Translation and Engineering, Galvani Bioelectronics, Stevenage, United Kingdom
| | | | - Sebastien Ouchouche
- Translation and Engineering, Galvani Bioelectronics, Stevenage, United Kingdom
| | - Paul B. Matteucci
- Translation and Engineering, Galvani Bioelectronics, Stevenage, United Kingdom
| | - Kristina Schlegel
- Translation and Engineering, Galvani Bioelectronics, Stevenage, United Kingdom
| | - Rizwan Bashirullah
- Translation and Engineering, Galvani Bioelectronics, Stevenage, United Kingdom
| | - Dirk Werling
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, United Kingdom
| | - Kim Harman
- Clinical Science & Services, The Royal Veterinary College, Hatfield, United Kingdom
| | - Alison Rowles
- Non-Clinical Safety, GlaxoSmithKline, Ware, United Kingdom
| | | | - Jesmond Dalli
- Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, London, United Kingdom
| | - Daniel J. Chew
- Translation and Engineering, Galvani Bioelectronics, Stevenage, United Kingdom
| | - Justin D. Perkins
- Clinical Science & Services, The Royal Veterinary College, Hatfield, United Kingdom
| |
Collapse
|
27
|
Leister I, Linde LD, Vo AK, Haider T, Mattiassich G, Grassner L, Schaden W, Resch H, Jutzeler CR, Geisler FH, Kramer JLK, Aigner L. Routine Blood Chemistry Predicts Functional Recovery After Traumatic Spinal Cord Injury: A Post Hoc Analysis. Neurorehabil Neural Repair 2021; 35:321-333. [PMID: 33615895 DOI: 10.1177/1545968321992328] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND Spinal cord injury (SCI) leads to various degrees of lifelong functional deficits. Most individuals with incomplete SCI experience a certain degree of functional recovery, especially within the first-year postinjury. However, this is difficult to predict, and surrogate biomarkers are urgently needed. OBJECTIVE We aimed to (1) determine if routine blood chemistry parameters are related to neurological recovery after SCI, (2) evaluate if such parameters could predict functional recovery, and (3) establish cutoff values that could inform clinical decision-making. METHODS We performed a post hoc analysis of routine blood chemistry parameters in patients with traumatic SCI (n = 676). Blood samples were collected between 24 and 72 hours as well as at 1, 2, 4, 8, and 52 weeks postinjury. Linear mixed models, regression analysis, and unbiased recursive partitioning (URP) of blood chemistry data were used to relate to and predict walking recovery 1 year postinjury. RESULTS The temporal profile of platelet counts and serum levels of albumin, alkaline phosphatase, and creatinine differentiated patients who recovered walking from those who remained wheelchair bound. The 4 blood chemistry parameters from the sample collection 8 weeks postinjury predicted functional recovery observed 1 year after incomplete SCI. Finally, URP defined a cutoff for serum albumin at 3.7 g/dL, which in combination with baseline injury severity differentiates individuals who regain ambulation from those not able to walk. Specifically, about 80% of those with albumin >3.7 g/dL recovered walking. CONCLUSIONS Routine blood chemistry data from the postacute phase, together with baseline injury severity, predict functional outcome after incomplete SCI.
Collapse
Affiliation(s)
- Iris Leister
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria.,Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), and ParaMove, Paracelsus Medical University, Salzburg, Austria.,International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada
| | - Lukas D Linde
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada
| | - Anh Khoa Vo
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada
| | - Thomas Haider
- Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Vienna, Austria
| | - Georg Mattiassich
- Ludwig-Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria.,Traumacenter Graz, Teaching Hospital of the Medical University Graz, Graz, Austria
| | - Lukas Grassner
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria.,Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), and ParaMove, Paracelsus Medical University, Salzburg, Austria.,Department of Neurosurgery, Medical University Innsbruck, Innsbruck, Austria.,Department of Paraplegiology, BG Trauma Center Murnau, Murnau, Germany.,ParaMove, Paracelsus Medical University Salzburg, Austria, and Department of Paraplegiology, BG Trauma Center Murnau, Murnau, Germany
| | - Wolfgang Schaden
- Ludwig-Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria.,AUVA Trauma Center Meidling, Vienna, Austria
| | - Herbert Resch
- Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), and ParaMove, Paracelsus Medical University, Salzburg, Austria
| | - Catherine R Jutzeler
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada.,Spinal Cord Injury Center, University Hospital Balgrist, University of Zurich, Zurich, Switzerland.,Department of Biosystems Science and Engineering, Swiss Federal Institute, Basel, Switzerland
| | - Fred H Geisler
- College of Medicine at the University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - John L K Kramer
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada.,Shared senior-authorship
| | - Ludwig Aigner
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria.,Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), and ParaMove, Paracelsus Medical University, Salzburg, Austria.,Austrian Cluster for Tissue Regeneration.,ParaMove, Paracelsus Medical University Salzburg, Austria, and Department of Paraplegiology, BG Trauma Center Murnau, Murnau, Germany.,Shared senior-authorship
| |
Collapse
|
28
|
Morphometric analysis of the splenic artery using contrast-enhanced computed tomography (CT). Surg Radiol Anat 2020; 43:377-384. [PMID: 33104863 PMCID: PMC7897610 DOI: 10.1007/s00276-020-02598-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 10/10/2020] [Indexed: 10/30/2022]
Abstract
PURPOSE To evaluate the morphology and course of the splenic artery, which might impact the surgical implantation of systems that stimulate the nerves surrounding the splenic artery. Experimental studies indicate that these nerves play an important part in immune modulation, and might be a potential target in the treatment of autoimmune diseases. METHODS This retrospective cohort study made use of contrast-enhanced CT images from 40 male and 40 female patients (age 30-69) that underwent a CT examination of the aorta, kidneys or pancreas. Anatomic features were described including total splenic artery length, calibers, tortuosity, the presence of arterial loops and the branching pattern of the splenic artery. RESULTS No age-gender-related differences could be found related to tortuosity or branching pattern. The length of splenic artery in contact with pancreatic tissue decreased with increasing age, but was not different between genders. Artery diameters were wider in male compared to female subjects. Loops of variable directions, that represent a part of the artery that curls out of the pancreatic tissue, were identified in each age-gender category and were present in nearly all subjects (86%). CONCLUSION This study suggests that although some anatomic features of the splenic artery are subject to factors as age and gender, the tortuosity of the splenic artery is not age dependent. Most subjects had one or multiple loops, which can serve as a target for neuromodulatory devices. Future studies should investigate whether splenic nerve stimulation is safe and feasible.
Collapse
|
29
|
Cleypool CGJ, Lotgerink Bruinenberg D, Roeling T, Irwin E, Bleys RLAW. Splenic artery loops: Potential splenic plexus stimulation sites for neuroimmunomodulatory-based anti-inflammatory therapy? Clin Anat 2020; 34:371-380. [PMID: 32583891 PMCID: PMC7984037 DOI: 10.1002/ca.23643] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 06/15/2020] [Accepted: 06/20/2020] [Indexed: 02/05/2023]
Abstract
INTRODUCTION The splenic plexus might represent a novel neuroimmunomodulatory therapeutic target as electrical stimulation of this tissue has been shown to have beneficial anti-inflammatory effects. Tortuous splenic artery segments (splenic artery loops), including their surrounding nerve plexus, have been evaluated as potential stimulation sites in humans. At present, however, our understanding of these loops and their surrounding nerve plexus is incomplete. This study aims to characterize the dimensions of these loops and their surrounding nerve tissue. MATERIALS AND METHODS Six formaldehyde fixed human cadavers were dissected and qualitative and quantitative macro- and microscopic data on splenic artery loops and their surrounding nerve plexus were collected. RESULTS One or multiple loops were observed in 83% of the studied specimens. These loops, including their surrounding nerve plexus could be easily dissected free circumferentially thereby providing sufficient space for further surgical intervention. The splenic plexus surrounding the loops contained a significant amount of nerves that contained predominantly sympathetic fibers. CONCLUSION The results of this study support that splenic artery loops could represent suitable electrical splenic plexus stimulation sites in humans. Dimensions with respect to loop height and width, provide sufficient space for introduction of surgical instruments and electrode implantation, and, the dissected neurovascular bundles contain a substantial amount of sympathetic nerve tissue. This knowledge may contribute to further development of surgical techniques and neuroelectrode interface design.
Collapse
Affiliation(s)
- Cindy G J Cleypool
- Department of Anatomy, Division of Surgical Specialties, University Medical Center Utrecht, Utrecht University, The Netherlands
| | - Dyonne Lotgerink Bruinenberg
- Department of Anatomy, Division of Surgical Specialties, University Medical Center Utrecht, Utrecht University, The Netherlands
| | - Tom Roeling
- Department of Anatomy, Division of Surgical Specialties, University Medical Center Utrecht, Utrecht University, The Netherlands
| | - Eric Irwin
- Galvani Bioelectronics, Stevenage, UK.,Department of Surgery, University of Minnesota School of Medicine, Minneapolis, Minnesota, USA
| | - Ronald L A W Bleys
- Department of Anatomy, Division of Surgical Specialties, University Medical Center Utrecht, Utrecht University, The Netherlands
| |
Collapse
|
30
|
Cai J, Nash WT, Okusa MD. Ultrasound for the treatment of acute kidney injury and other inflammatory conditions: a promising path toward noninvasive neuroimmune regulation. Am J Physiol Renal Physiol 2020; 319:F125-F138. [PMID: 32508112 PMCID: PMC7468827 DOI: 10.1152/ajprenal.00145.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/25/2020] [Accepted: 06/01/2020] [Indexed: 02/08/2023] Open
Abstract
Acute kidney injury (AKI) is an important clinical disorder with high prevalence, serious consequences, and limited therapeutic options. Modulation of neuroimmune interaction by nonpharmacological methods is emerging as a novel strategy for treating inflammatory diseases, including AKI. Recently, pulsed ultrasound (US) treatment was shown to protect from AKI by stimulating the cholinergic anti-inflammatory pathway. Because of the relatively simple, portable, and noninvasive nature of US procedures, US stimulation may be a valuable therapeutic option for treating inflammatory conditions. This review discusses potential impacts of US bioeffects on the nervous system and how this may generate feedback onto the immune system. We also discuss recent evidence supporting the use of US as a means to treat AKI and other inflammatory diseases.
Collapse
Affiliation(s)
- Jieru Cai
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, Virgnia
| | - William T Nash
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, Virgnia
| | - Mark D Okusa
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, Virgnia
| |
Collapse
|
31
|
Wu C, Hua Q, Zheng L. Generation of Myeloid Cells in Cancer: The Spleen Matters. Front Immunol 2020; 11:1126. [PMID: 32582203 PMCID: PMC7291604 DOI: 10.3389/fimmu.2020.01126] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 05/07/2020] [Indexed: 02/06/2023] Open
Abstract
Myeloid cells are key components of the tumor microenvironment and critical regulators of disease progression. These innate immune cells are usually short-lived and require constant replenishment. Emerging evidence indicates that tumors alter the host hematopoietic system and induce the biased differentiation of myeloid cells to tip the balance of the systemic immune activities toward tumor-promoting functions. Altered myelopoiesis is not restricted to the bone marrow and also occurs in extramedullary organs. In this review, we outline the recent advances in the field of cancer-associated myelopoiesis, with a focus on the spleen, the major site of extramedullary hematopoiesis in the cancer setting. We discuss the functional specialization, distinct mechanisms, and clinical relevance of cancer-associated myeloid cell generation from early progenitors in the spleen and its potential as a novel therapeutic target.
Collapse
Affiliation(s)
- Chong Wu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Qiaomin Hua
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Limin Zheng
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
32
|
Jiang W, Li Y, Wei W, Li JW, Li L, Zhang C, Zhang SQ, Kong GY, Li ZF. Spleen contributes to restraint stress induced hepatocellular carcinoma progression. Int Immunopharmacol 2020; 83:106420. [PMID: 32203905 DOI: 10.1016/j.intimp.2020.106420] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/08/2020] [Accepted: 03/16/2020] [Indexed: 12/17/2022]
Abstract
The spleen is the largest secondary immune organ and plays a critical role in the progression of tumor. Psychological stress promotes tumor progression through inhibiting antitumor immune. However, the role of spleen in tumor progression induced by stress is unclear. Here, we showed that restraint stress promoted tumor growth, increased the percentage of CD11b+Gr-1+ MDSC while decreased the percentages of CD3-NK1.1+ NK and CD3+NK1.1+ NKT in the tumor tissues. Restraint stress decreased the percentages of CD3+CD4+ T lymphocytes and CD3+CD8+ T lymphocytes while increased the percentage of CD11b+Gr-1+ MDSC in the blood of tumor-bearing mice. Restraint stress increased the percentages of CD3+CD4+ T lymphocytes, CD3+CD8+ T lymphocytes, CD4+PD1+ T lymphocytes and CD8+PD1+ T lymphocytes while decreased the percentage of CD11b+Gr-1+ MDSC in the spleen of tumor-bearing mice. Interestingly, splenectomy inhibited tumor growth and attenuated the changes of CD3+CD4+ T lymphocytes, CD3+CD8+ T lymphocytes, and CD11b+Gr-1+ MDSC in blood induced by chronic restraint stress. Finally, splenectomy blocked the increases of CD11b+Gr-1+ MDSC but did not attenuate the decreases of CD3-NK1.1+ NK and CD3+NK1.1+ NKT in tumor tissue induced by chronic stress. Together, these data indicate that chronic restraint stress promotes hepatocellular carcinoma growth and suppresses the antitumor immunity of tumor-bearing mice. Splenectomy could inhibit tumor growth and partly block the decrease of antitumor immune activity induced by stress.
Collapse
MESH Headings
- Animals
- Bone Marrow/immunology
- Cell Line, Tumor
- Disease Progression
- Immune Tolerance
- Liver Neoplasms, Experimental/etiology
- Liver Neoplasms, Experimental/immunology
- Liver Neoplasms, Experimental/metabolism
- Liver Neoplasms, Experimental/psychology
- Male
- Mice
- Mice, Inbred C57BL
- Myeloid-Derived Suppressor Cells/immunology
- Myeloid-Derived Suppressor Cells/metabolism
- Restraint, Physical/adverse effects
- Spleen/immunology
- Splenectomy
- Stress, Psychological/complications
- Stress, Psychological/immunology
- Stress, Psychological/metabolism
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
Collapse
Affiliation(s)
- Wei Jiang
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yu Li
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Department of thoracic surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Wei Wei
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jiang-Wei Li
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Liang Li
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Department of thoracic surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Chen Zhang
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shu-Qun Zhang
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Guang-Yao Kong
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zong-Fang Li
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China; Key Laboratory of Environment and Disease-Related Gene, Ministry of Education, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| |
Collapse
|
33
|
Fedorova TD, Knudsen K, Hartmann B, Holst JJ, Viborg Mortensen F, Krogh K, Borghammer P. In vivo positron emission tomography imaging of decreased parasympathetic innervation in the gut of vagotomized patients. Neurogastroenterol Motil 2020; 32:e13759. [PMID: 31715652 DOI: 10.1111/nmo.13759] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/16/2019] [Accepted: 10/18/2019] [Indexed: 12/08/2022]
Abstract
BACKGROUND Parasympathetic neuropathy is a key feature in many common disorders, including diabetes, neurological disorders, and cancers, but few objective methods exist for assessing damage to the parasympathetic nervous system, particularly in the gastrointestinal system. This study aimed to validate the use of 11 C-donepezil positron emission tomography (PET) to assess parasympathetic integrity in a group of vagotomized patients. METHODS Sixteen healthy controls and 12 patients, vagotomized due to esophagectomy, underwent 11 C-donepezil PET, measurement of colonic transit time, quantification of plasma pancreatic polypeptide (PP), and assessment of subjective long-term symptoms. KEY RESULTS Vagotomized patients had significantly decreased PET signal in the small intestine and colon compared with healthy controls (5.7 [4.4-7.9] vs 7.4 [4.5-11.3], P = .01 and 1.4 [1.1-2.1] vs 1.6 [1.4-2.4], P < .01, respectively). Vagotomized patients also displayed a significantly increased colonic transit time (2.9 ± 0.9 h vs 1.9 ± 0.8 h), P < .01 and increased volumes of the small intestine and colon (715 ccm [544-1177] vs 443 ccm [307-613], P < .01 and 971 ccm [713-1389] vs 711 ccm [486-1394], P = .01, respectively). Patients and controls did not differ in PP ratio levels after sham feeding, but PP ratio at 10 minutes. after sham feeding and PET signal intensity in the small intestine was positively correlated (P = .03). CONCLUSIONS AND INFERENCES We found significantly decreased 11 C-donepezil signal in the intestine of vagotomized patients, supporting that 11 C-donepezil PET is a valid measure of intestinal parasympathetic denervation.
Collapse
Affiliation(s)
| | - Karoline Knudsen
- Department of Nuclear Medicine and PET-Centre, Aarhus University Hospital, Aarhus, Denmark
| | - Bolette Hartmann
- NNF Center for Basic Metabolic Research, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens J Holst
- NNF Center for Basic Metabolic Research, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Klaus Krogh
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | - Per Borghammer
- Department of Nuclear Medicine and PET-Centre, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
34
|
Bassi GS, Kanashiro A, Coimbra NC, Terrando N, Maixner W, Ulloa L. Anatomical and clinical implications of vagal modulation of the spleen. Neurosci Biobehav Rev 2020; 112:363-373. [PMID: 32061636 DOI: 10.1016/j.neubiorev.2020.02.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 01/31/2020] [Accepted: 02/11/2020] [Indexed: 02/06/2023]
Abstract
The vagus nerve coordinates most physiologic functions including the cardiovascular and immune systems. This mechanism has significant clinical implications because electrical stimulation of the vagus nerve can control inflammation and organ injury in infectious and inflammatory disorders. The complex mechanisms that mediate vagal modulation of systemic inflammation are mainly regulated via the spleen. More specifically, vagal stimulation prevents organ injury and systemic inflammation by inhibiting the production of cytokines in the spleen. However, the neuronal regulation of the spleen is controversial suggesting that it can be mediated by either monosynaptic innervation of the splenic parenchyma or secondary neurons from the celiac ganglion depending on the experimental conditions. Recent physiologic and anatomic studies suggest that inflammation is regulated by neuro-immune multi-synaptic interactions between the vagus and the splanchnic nerves to modulate the spleen. Here, we review the current knowledge on these interactions, and discuss their experimental and clinical implications in infectious and inflammatory disorders.
Collapse
Affiliation(s)
- Gabriel S Bassi
- Center for Perioperative Organ Protection, Department of Anesthesiology. Duke University Medical Center, Durham, NC 27710, USA.
| | - Alexandre Kanashiro
- Department of Pharmacology and Department of Neurosciences and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Norberto C Coimbra
- Department of Pharmacology and Department of Neurosciences and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Niccolò Terrando
- Center for Perioperative Organ Protection, Department of Anesthesiology. Duke University Medical Center, Durham, NC 27710, USA
| | - William Maixner
- Center for Translational Pain Medicine, Department of Anesthesiology. Duke University, Durham, NC 27710, USA
| | - Luis Ulloa
- Center for Perioperative Organ Protection, Department of Anesthesiology. Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
35
|
Splenic artery denervation: target micro-anatomy, feasibility, and early preclinical experience. Transl Res 2019; 213:100-111. [PMID: 31415732 DOI: 10.1016/j.trsl.2019.07.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 07/09/2019] [Accepted: 07/22/2019] [Indexed: 01/28/2023]
Abstract
This study sought to evaluate perisplenic artery nerve distribution and the feasibility of splenic artery denervation (SDN). The NEXION radiofrequency catheter was used to perform SDN in healthy and inflammatory arthritis pigs. Splenic artery anatomy, nerve distribution, and splenic norepinephrine (NEPI) levels were evaluated before and after SDN. Perisplenic artery nerves were primarily distributed within 2.5 mm of the arterial lumen and were largely sympathetic on the basis of tyrosine hydroxylase expression. The pancreas, tended to be circumferentially positioned around the proximal splenic artery, typically >2.5 mm from the lumen, ensuring that most of the nerves could be targeted without affecting this sensitive organ. The mid segment of the splenic artery was relatively free of contact with the adjacent pancreas. Splenic NEPI levels and nerve abundance followed a decreasing gradient from the proximal to distal splenic artery. SDN resulted in significant reductions in splenic NEPI levels at day 14 (60.7%, P = 0.024) in naïve pigs and day 45 (100%, P = 0.001) in inflammatory arthritis pigs. There was no significant effect of SDN on joint soft tissue injury or circulating inflammatory markers in the inflammatory arthritis model. The majority of perisplenic arterial nerves are within close proximity of the lumen and are primarily sympathetic efferent fibers. Nerves in the mid-segment may be the preferred SDN target given their proximity to the artery and paucity of periarterial off-target organs. SDN appears safe and effective at reducing splenic NEPI levels.
Collapse
|
36
|
Neuroimmune Interactions in the Gut and Their Significance for Intestinal Immunity. Cells 2019; 8:cells8070670. [PMID: 31269754 PMCID: PMC6679154 DOI: 10.3390/cells8070670] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/24/2019] [Accepted: 06/28/2019] [Indexed: 12/12/2022] Open
Abstract
Inflammatory bowel diseases (IBD) have a complex, multifactorial pathophysiology with an unmet need for effective treatment. This calls for novel strategies to improve disease outcome and quality of life for patients. Increasing evidence suggests that autonomic nerves and neurotransmitters, as well as neuropeptides, modulate the intestinal immune system, and thereby regulate the intestinal inflammatory processes. Although the autonomic nervous system is classically divided in a sympathetic and parasympathetic branch, both play a pivotal role in the crosstalk with the immune system, with the enteric nervous system acting as a potential interface. Pilot clinical trials that employ vagus nerve stimulation to reduce inflammation are met with promising results. In this paper, we review current knowledge on the innervation of the gut, the potential of cholinergic and adrenergic systems to modulate intestinal immunity, and comment on ongoing developments in clinical trials.
Collapse
|
37
|
Bordoni B, Simonelli M, Morabito B. The Other Side of the Fascia: The Smooth Muscle Part 1. Cureus 2019; 11:e4651. [PMID: 31312576 PMCID: PMC6624154 DOI: 10.7759/cureus.4651] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 05/13/2019] [Indexed: 02/06/2023] Open
Abstract
According to current scientific standards, the fascia is a connective tissue derived from two separate germ layers, the mesoderm (trunk and limbs, part of the neck) and the ectoderm (cervical tract and skull). The fascia has the property of maintaining the shape and function of its anatomical district, but it also can adapt to mechanical-metabolic stimuli. Smooth muscle and non-voluntary striated musculature originated from the mesoderm have never been properly considered as a type of fascia. They are some of the viscera present in the mediastinum, in the abdomen and in the pelvic floor. This text represents the first article in the international scientific field that discusses the inclusion of some viscera in the context of what is considered fascia, thanks to the efforts of our committee for the definition and nomenclature of the fascial tissue of the Foundation of Osteopathic Research and Clinical Endorsement (FORCE).
Collapse
Affiliation(s)
- Bruno Bordoni
- Cardiology, Foundation Don Carlo Gnocchi, Milan, ITA
| | | | - Bruno Morabito
- Osteopathy, School of Osteopathic Centre for Research and Studies, Milan, ITA
| |
Collapse
|