1
|
Jingya L, Song L, Lu L, Zhang Q, Zhang W. Effect of Shenqi Jieyu formula on inflammatory response pathway in hippocampus of postpartum depression rats. Heliyon 2024; 10:e29978. [PMID: 38726147 PMCID: PMC11078882 DOI: 10.1016/j.heliyon.2024.e29978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 05/12/2024] Open
Abstract
Aim To investigate whether SJF functions in similar manner as the key substance in the inflammatory process, soluble epoxide hydrolase (sEH) inhibitor, to inhibit the arachidonic acid metabolic pathway and nuclear factor kappa-B(NF-κB) signal path in the hippocampi of postpartum depression rats. Methods The rats were subcutaneous injected estradiol benzoate and progesterone to build PPD rat model. SJF, paroxetine hydrochloride and sEH inhibitor (AUDA) were used to treat PPD rats for 3 weeks. Then the morphological changes of hippocampi and various proteins were observed after that behavioral test were conducted in all 36 SD rats in six group: SJF, paroxetine, AUDA, PPD, sham and normal group. Results Weight, results of sucrose preference, upright times, total and center squares crossing decreased significantly (P < 0.01), whereas immobility time increased (P < 0.01). Results above were reversed in animals that in the SJF, paroxetine and AUDA groups. Hippocampal neurons in PPD rats partially degenerated with narrowed nuclei, increased autophagy and mitochondria bound to lysosomes were visible while the autophagy of hippocampal neurons in the paroxetine and AUDA group decreased, with a small amount of lysosomes. sEH, COX-2, 5-LOX, TNF-α, IL-1, IL-6, NF-κB p65, and Cor increased in hippocampi of PPD rats while EETs and 5-HT decreased. Protein expressions of Ibal, GFAP, p-IκBα, p65, and p-p65(S536)increased in PPD animals. Those changes were reversed by SJF, paroxetine and AUDA. Gene expressions of TNF-α, IL-1β, IL-6, 5-LOX, COX-2 and p65 increased in PPD rats and the changes of expression in these genes were reversed by paroxetine and AUDA. SJF reversed the gene expression changes of COX-2, TNF-α, and IL-1β. Conclusion SJF may have an analogous effect as sEH inhibitor to relieve depressive symptoms by suppressing inflammatory signaling pathways in hippocampi of PPD rats, which involves AA metabolic pathway and NF-κB signal pathway.
Collapse
Affiliation(s)
- Li Jingya
- The First Affiliated Hospital of Zhejiang Chinese Medical University(Zhejiang Provincial Hospital of Chinese Medicine), 54 Youdian Road, Hangzhou, Zhejiang, 310000, PR China
| | - Linhong Song
- Affiliated Qingdao Central Hospital, Qingdao University, Qingdao, Shandong, PR China
| | - Lu Lu
- Affiliated Qingdao Central Hospital, Qingdao University, Qingdao, Shandong, PR China
| | - Qing Zhang
- The First Affiliated Hospital of Zhejiang Chinese Medical University(Zhejiang Provincial Hospital of Chinese Medicine), 54 Youdian Road, Hangzhou, Zhejiang, 310000, PR China
| | - Weijun Zhang
- The First Affiliated Hospital of Zhejiang Chinese Medical University(Zhejiang Provincial Hospital of Chinese Medicine), 54 Youdian Road, Hangzhou, Zhejiang, 310000, PR China
| |
Collapse
|
2
|
Burmistrov VV, Morisseau C, Danilov DV, Gladkikh BP, D’yachenko VS, Zefirov NA, Zefirova ON, Butov GM, Hammock BD. Fluorine and chlorine substituted adamantyl-urea as molecular tools for inhibition of human soluble epoxide hydrolase with picomolar efficacy. J Enzyme Inhib Med Chem 2023; 38:2274797. [PMID: 37975322 PMCID: PMC11003477 DOI: 10.1080/14756366.2023.2274797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/16/2023] [Indexed: 11/19/2023] Open
Abstract
Series of 1,3-disubstituted ureas and diadamantyl disubstituted diureas with fluorinated and chlorinated adamantane residues were shown to inhibit human soluble epoxide hydrolase (sEH) with inhibition potency ranging from 40 pM to 9.2 nM. The measured IC50 values for some molecules were below the accuracy limit of the existing in vitro assays. Such an increase in activity was achieved by minimal structural modifications to the molecules of known inhibitors, including 4-[trans-4-(1-adamantylcarbamoylamino)cyclohexyl]oxybenzoic acid. For the chlorinated homologue of the latter the sharp jump in inhibitory activity can be (according to molecular dynamics data) the result of interactions - Cl-π interaction. Considering the extremely high inhibitory activity, acceptable solubility and partial blockage of metabolically sensitive centres in their structures, some compounds are of interest for further in vivo biotesting.
Collapse
Affiliation(s)
- Vladimir V. Burmistrov
- Volgograd State Technical University, Volgograd, Russia
- Department of Entomology and Nematology, and Comprehensive Cancer Center, University of California, Davis, CA, USA
- Department of Chemistry, Technology and Equipment of Chemical Industry, Volzhsky Polytechnic Institute (branch) Volgograd State Technical University, Volzhsky, Russia
| | - Christophe Morisseau
- Department of Entomology and Nematology, and Comprehensive Cancer Center, University of California, Davis, CA, USA
| | | | | | - Vladimir S. D’yachenko
- Volgograd State Technical University, Volgograd, Russia
- Department of Entomology and Nematology, and Comprehensive Cancer Center, University of California, Davis, CA, USA
| | - Nikolay A. Zefirov
- Department of Chemistry, M. V. Lomonosov Moscow State University, Moscow, Russia
| | - Olga N. Zefirova
- Department of Chemistry, M. V. Lomonosov Moscow State University, Moscow, Russia
| | - Gennady M. Butov
- Volgograd State Technical University, Volgograd, Russia
- Department of Chemistry, Technology and Equipment of Chemical Industry, Volzhsky Polytechnic Institute (branch) Volgograd State Technical University, Volzhsky, Russia
| | - Bruce D. Hammock
- Department of Entomology and Nematology, and Comprehensive Cancer Center, University of California, Davis, CA, USA
| |
Collapse
|
3
|
Pu Y, Cheng R, Zhang Q, Huang T, Lu C, Tang Z, Zhong Y, Wu L, Hammock BD, Hashimoto K, Luo Y, Liu Y. Role of soluble epoxide hydrolase in the abnormal activation of fibroblast-like synoviocytes from patients with rheumatoid arthritis. Clin Immunol 2023; 257:109850. [PMID: 38013165 PMCID: PMC10872286 DOI: 10.1016/j.clim.2023.109850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 11/29/2023]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by enigmatic pathogenesis. Polyunsaturated fatty acids (PUFAs) are implicated in RA's development and progression, yet their exact mechanisms of influence are not fully understood. Soluble epoxide hydrolase (sEH) is an enzyme that metabolizes anti-inflammatory epoxy fatty acids (EpFAs), derivatives of PUFAs. In this study, we report elevated sEH expression in the joints of CIA (collagen-induced arthritis) rats, concomitant with diminished levels of two significant EpFAs. Additionally, increased sEH expression was detected in both the synovium of CIA rats and in the synovium and fibroblast-like synoviocytes (FLS) of RA patients. The sEH inhibitor TPPU attenuated the migration and invasion capabilities of FLS derived from RA patients and to reduce the secretion of inflammatory factors by these cells. Our findings indicate a pivotal role for sEH in RA pathogenesis and suggest that sEH inhibitors offer a promising new therapeutic strategy for managing RA.
Collapse
Affiliation(s)
- Yaoyu Pu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ruijuan Cheng
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Qiuping Zhang
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Tianwen Huang
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Chenyang Lu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zhigang Tang
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yutong Zhong
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Liang Wu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Bruce D Hammock
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California, Davis, CA 95616, United States of America.
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan.
| | - Yubin Luo
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Yi Liu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
4
|
Khiroya K, Sekyere E, McEwen B, Bayes J. Nutritional considerations in major depressive disorder: current evidence and functional testing for clinical practice. Nutr Res Rev 2023:1-12. [PMID: 37964733 DOI: 10.1017/s0954422423000276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Depression is a multifaceted condition with diverse underlying causes. Several contributing and inter-related factors such as genetic, nutritional, neurological, physiological, gut-brain-axis, metabolic and psychological stress factors play a role in the pathophysiology of depression. This review aims to highlight the role that nutritional factors play in the aetiology of depression. Secondly, we discuss the biomedical and functional pathology tests which measure these factors, and the current evidence supporting their use. Lastly, we make recommendations on how practitioners can incorporate the latest evidence-based research findings into clinical practice. This review highlights that diet and nutrition greatly affect the pathophysiology of depression. Nutrients influence gene expression, with folate and vitamin B12 playing vital roles in methylation reactions and homocysteine regulation. Nutrients are also involved in the tryptophan/kynurenine pathway and the expression of brain-derived neurotrophic factor (BDNF). Additionally, diet influences the hypothalamic-pituitary-adrenal (HPA) response and the composition and diversity of the gut microbiome, both of which have been implicated in depression. A comprehensive dietary assessment, combined with appropriate evaluation of biochemistry and blood pathology, may help uncover contributing factors to depressive symptoms. By employing such an approach, a more targeted and personalised treatment strategy can be devised, ultimately leading to improved patient outcomes.
Collapse
Affiliation(s)
- Kathryn Khiroya
- Endeavour College of Natural Health, Haymarket, NSW, Australia
| | - Eric Sekyere
- Endeavour College of Natural Health, Haymarket, NSW, Australia
| | - Bradley McEwen
- Faculty of Health, Southern Cross University, East Lismore, NSW, Australia
| | - Jessica Bayes
- National Centre for Naturopathic Medicine, Southern Cross University, East Lismore, NSW, Australia
| |
Collapse
|
5
|
Wang W, Wang Y, Wagner KM, Lee RD, Hwang SH, Morisseau C, Wulff H, Hammock BD. Aflatoxin B 1 Increases Soluble Epoxide Hydrolase in the Brain and Induces Neuroinflammation and Dopaminergic Neurotoxicity. Int J Mol Sci 2023; 24:9938. [PMID: 37373086 PMCID: PMC10298596 DOI: 10.3390/ijms24129938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Parkinson's disease (PD) is an increasingly common neurodegenerative movement disorder with contributing factors that are still largely unexplored and currently no effective intervention strategy. Epidemiological and pre-clinical studies support the close association between environmental toxicant exposure and PD incidence. Aflatoxin B1 (AFB1), a hazardous mycotoxin commonly present in food and environment, is alarmingly high in many areas of the world. Previous evidence suggests that chronic exposure to AFB1 leads to neurological disorders as well as cancer. However, whether and how aflatoxin B1 contributes to the pathogenesis of PD is poorly understood. Here, oral exposure to AFB1 is shown to induce neuroinflammation, trigger the α-synuclein pathology, and cause dopaminergic neurotoxicity. This was accompanied by the increased expression and enzymatic activity of soluble epoxide hydrolase (sEH) in the mouse brain. Importantly, genetic deletion or pharmacological inhibition of sEH alleviated the AFB1-induced neuroinflammation by reducing microglia activation and suppressing pro-inflammatory factors in the brain. Furthermore, blocking the action of sEH attenuated dopaminergic neuron dysfunction caused by AFB1 in vivo and in vitro. Together, our findings suggest a contributing role of AFB1 to PD etiology and highlight sEH as a potential pharmacological target for alleviating PD-related neuronal disorders caused by AFB1 exposure.
Collapse
Affiliation(s)
- Weicang Wang
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California, Davis, CA 95616, USA; (W.W.); (Y.W.); (K.M.W.); (S.H.H.); (C.M.)
| | - Yuxin Wang
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California, Davis, CA 95616, USA; (W.W.); (Y.W.); (K.M.W.); (S.H.H.); (C.M.)
| | - Karen M. Wagner
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California, Davis, CA 95616, USA; (W.W.); (Y.W.); (K.M.W.); (S.H.H.); (C.M.)
| | - Ruth Diana Lee
- Department of Pharmacology, University of California Davis, Davis, CA 95616, USA; (R.D.L.); (H.W.)
| | - Sung Hee Hwang
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California, Davis, CA 95616, USA; (W.W.); (Y.W.); (K.M.W.); (S.H.H.); (C.M.)
| | - Christophe Morisseau
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California, Davis, CA 95616, USA; (W.W.); (Y.W.); (K.M.W.); (S.H.H.); (C.M.)
| | - Heike Wulff
- Department of Pharmacology, University of California Davis, Davis, CA 95616, USA; (R.D.L.); (H.W.)
| | - Bruce D. Hammock
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California, Davis, CA 95616, USA; (W.W.); (Y.W.); (K.M.W.); (S.H.H.); (C.M.)
| |
Collapse
|
6
|
Norman JE, Nuthikattu S, Milenkovic D, Rutledge JC, Villablanca AC. Sex-Specific Response of the Brain Free Oxylipin Profile to Soluble Epoxide Hydrolase Inhibition. Nutrients 2023; 15:1214. [PMID: 36904213 PMCID: PMC10005333 DOI: 10.3390/nu15051214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/22/2023] [Accepted: 02/25/2023] [Indexed: 03/04/2023] Open
Abstract
Oxylipins are the oxidation products of polyunsaturated fatty acids and have been implicated in neurodegenerative disorders, including dementia. Soluble epoxide hydrolase (sEH) converts epoxy-fatty acids to their corresponding diols, is found in the brain, and its inhibition is a treatment target for dementia. In this study, male and female C57Bl/6J mice were treated with an sEH inhibitor (sEHI), trans-4-[4-(3-adamantan-1-yl-ureido)-cyclohexyloxy]-benzoic acid (t-AUCB), for 12 weeks to comprehensively study the effect of sEH inhibition on the brain oxylipin profile, and modulation by sex. Ultra-high-performance liquid chromatography-tandem mass spectrometry was used to measure the profile of 53 free oxylipins in the brain. More oxylipins were modified by the inhibitor in males than in females (19 versus 3, respectively) and favored a more neuroprotective profile. Most were downstream of lipoxygenase and cytochrome p450 in males, and cyclooxygenase and lipoxygenase in females. The inhibitor-associated oxylipin changes were unrelated to serum insulin, glucose, cholesterol, or female estrous cycle. The inhibitor affected behavior and cognitive function as measured by open field and Y-maze tests in males, but not females. These findings are novel and important to our understanding of sexual dimorphism in the brain's response to sEHI and may help inform sex-specific treatment targets.
Collapse
Affiliation(s)
- Jennifer E. Norman
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California, Davis, CA 95616, USA
| | - Saivageethi Nuthikattu
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California, Davis, CA 95616, USA
| | - Dragan Milenkovic
- Department of Nutrition, University of California, Davis, CA 95616, USA
| | - John C. Rutledge
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California, Davis, CA 95616, USA
| | - Amparo C. Villablanca
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California, Davis, CA 95616, USA
| |
Collapse
|
7
|
Eccles JA, Baldwin WS. Detoxification Cytochrome P450s (CYPs) in Families 1-3 Produce Functional Oxylipins from Polyunsaturated Fatty Acids. Cells 2022; 12:82. [PMID: 36611876 PMCID: PMC9818454 DOI: 10.3390/cells12010082] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/18/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
This manuscript reviews the CYP-mediated production of oxylipins and the current known function of these diverse set of oxylipins with emphasis on the detoxification CYPs in families 1-3. Our knowledge of oxylipin function has greatly increased over the past 3-7 years with new theories on stability and function. This includes a significant amount of new information on oxylipins produced from linoleic acid (LA) and the omega-3 PUFA-derived oxylipins such as α-linolenic acid (ALA), docosahexaenoic acid (DHA), and eicosapentaenoic acid (EPA). However, there is still a lack of knowledge regarding the primary CYP responsible for producing specific oxylipins, and a lack of mechanistic insight for some clinical associations between outcomes and oxylipin levels. In addition, the role of CYPs in the production of oxylipins as signaling molecules for obesity, energy utilization, and development have increased greatly with potential interactions between diet, endocrinology, and pharmacology/toxicology due to nuclear receptor mediated CYP induction, CYP inhibition, and receptor interactions/crosstalk. The potential for diet-diet and diet-drug/chemical interactions is high given that these promiscuous CYPs metabolize a plethora of different endogenous and exogenous chemicals.
Collapse
Affiliation(s)
| | - William S. Baldwin
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
8
|
Is depression the missing link between inflammatory mediators and cancer? Pharmacol Ther 2022; 240:108293. [PMID: 36216210 DOI: 10.1016/j.pharmthera.2022.108293] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/14/2022] [Accepted: 09/26/2022] [Indexed: 11/05/2022]
Abstract
Patients with cancer are at greater risk of developing depression in comparison to the general population and this is associated with serious adverse effects, such as poorer quality of life, worse prognosis and higher mortality. Although the relationship between depression and cancer is now well established, a common underlying pathophysiological mechanism between the two conditions is yet to be elucidated. Existing theories of depression, based on monoamine neurotransmitter system dysfunction, are insufficient as explanations of the disorder. Recent advances have implicated neuroinflammatory mechanisms in the etiology of depression and it has been demonstrated that inflammation at a peripheral level may be mirrored centrally in astrocytes and microglia serving to promote chronic levels of inflammation in the brain. Three major routes to depression in cancer in which proinflammatory mediators are implicated, seem likely. Activation of the kynurenine pathway involving cytokines, increases tryptophan catabolism, resulting in diminished levels of serotonin which is widely acknowledged as being the hallmark of depression. It also results in neurotoxic effects on brain regions thought to be involved in the evolution of major depression. Proinflammatory mediators also play a crucial role in impairing regulatory glucocorticoid mediated feedback of the hypothalamic-pituitary-adrenal axis, which is activated by stress and considered to be involved in both depression and cancer. The third route is via the glutamatergic pathway, whereby glutamate excitotoxicity may lead to depression associated with cancer. A better understanding of the mechanisms underlying these dysregulated and other newly emerging pathways may provide a rationale for therapeutic targeting, serving to improve the care of cancer patients.
Collapse
|
9
|
Pflieger FJ, Wolf J, Feldotto M, Nockher A, Wenderoth T, Hernandez J, Roth J, Ott D, Rummel C. Norepinephrine Inhibits Lipopolysaccharide-Stimulated TNF-α but Not Oxylipin Induction in n-3/n-6 PUFA-Enriched Cultures of Circumventricular Organs. Int J Mol Sci 2022; 23:ijms23158745. [PMID: 35955879 PMCID: PMC9368774 DOI: 10.3390/ijms23158745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/02/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022] Open
Abstract
Sensory circumventricular organs (sCVOs) are pivotal brain structures involved in immune-to-brain communication with a leaky blood-brain barrier that detect circulating mediators such as lipopolysaccharide (LPS). Here, we aimed to investigate the potential of sCVOs to produce n-3 and n-6 oxylipins after LPS-stimulation. Moreover, we investigated if norepinephrine (NE) co-treatment can alter cytokine- and oxylipin-release. Thus, we stimulated rat primary neuroglial sCVO cultures under n-3- or n-6-enriched conditions with LPS or saline combined with NE or vehicle. Supernatants were assessed for cytokines by bioassays and oxylipins by HPLC-MS/MS. Expression of signaling pathways and enzymes were analyzed by RT-PCR. Tumor necrosis factor (TNF)α bioactivity and signaling, IL-10 expression, and cyclooxygenase (COX)2 were increased, epoxide hydroxylase (Ephx)2 was reduced, and lipoxygenase 15-(LOX) was not changed by LPS stimulation. Moreover, LPS induced increased levels of several n-6-derived oxylipins, including the COX-2 metabolite 15d-prostaglandin-J2 or the Ephx2 metabolite 14,15-DHET. For n-3-derived oxylipins, some were down- and some were upregulated, including 15-LOX-derived neuroprotectin D1 and 18-HEPE, known for their anti-inflammatory potential. While the LPS-induced increase in TNFα levels was significantly reduced by NE, oxylipins were not significantly altered by NE or changes in TNFα levels. In conclusion, LPS-induced oxylipins may play an important functional role in sCVOs for immune-to-brain communication.
Collapse
Affiliation(s)
- Fabian Johannes Pflieger
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Jacqueline Wolf
- Institute for Laboratory Medicine, Pathobiochemistry, and Molecular Diagnostics, University Hospital of Giessen and Marburg, 35043 Marburg, Germany
| | - Martin Feldotto
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Andreas Nockher
- Institute for Laboratory Medicine, Pathobiochemistry, and Molecular Diagnostics, University Hospital of Giessen and Marburg, 35043 Marburg, Germany
| | - Tatjana Wenderoth
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Jessica Hernandez
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Joachim Roth
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, 35392 Giessen, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, 35032 Marburg, Germany
| | - Daniela Ott
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Christoph Rummel
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, 35392 Giessen, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, 35032 Marburg, Germany
- Correspondence:
| |
Collapse
|
10
|
Jarne-Ferrer J, Griñán-Ferré C, Bellver-Sanchis A, Vázquez S, Muñoz-Torrero D, Pallàs M. A Combined Chronic Low-Dose Soluble Epoxide Hydrolase and Acetylcholinesterase Pharmacological Inhibition Promotes Memory Reinstatement in Alzheimer’s Disease Mice Models. Pharmaceuticals (Basel) 2022; 15:ph15080908. [PMID: 35893732 PMCID: PMC9394299 DOI: 10.3390/ph15080908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 12/04/2022] Open
Abstract
Alzheimer’s disease (AD) is a progressive neurological disorder with multifactorial and heterogeneous causes. AD involves several etiopathogenic mechanisms such as aberrant protein accumulation, neurotransmitter deficits, synaptic dysfunction and neuroinflammation, which lead to cognitive decline. Unfortunately, the currently available anti-AD drugs only alleviate the symptoms temporarily and provide a limited therapeutic effect. Thus, new therapeutic strategies, including multitarget approaches, are urgently needed. It has been demonstrated that a co-treatment of acetylcholinesterase (AChE) inhibitor with other neuroprotective agents has beneficial effects on cognition. Here, we have assessed the neuroprotective effects of chronic dual treatment with a soluble epoxide hydrolase (sEH) inhibitor (TPPU) and an AChE inhibitor (6-chlorotacrine or rivastigmine) in in vivo studies. Interestingly, we have found beneficial effects after chronic low-dose co-treatment with TPPU and 6-chlorotacrine in the senescence-accelerated mouse prone 8 (SAMP8) mouse model as well as with TPPU and rivastigmine co-treatment in the 5XFAD mouse model, in comparison with the corresponding monotherapy treatments. In the SAMP8 model, no substantial improvements in synaptic plasticity markers were found, but the co-treatment of TPPU and 6-chlorotacrine led to a significantly reduced gene expression of neuroinflammatory markers, such as interleukin 6 (Il-6), triggering receptor expressed on myeloid cell 2 (Trem2) and glial fibrillary acidic protein (Gfap). In 5XFAD mice, chronic low-dose co-treatment of TPPU and rivastigmine led to enhanced protein levels of synaptic plasticity markers, such as the phospho-cAMP response element-binding protein (p-CREB) ratio, brain-derived neurotrophic factor (BDNF) and postsynaptic density protein 95 (PSD95), and also to a reduction in neuroinflammatory gene expression. Collectively, these results support the neuroprotectant role of chronic low-dose co-treatment strategy with sEH and AChE inhibitors in AD mouse models, opening new avenues for effective AD treatment.
Collapse
Affiliation(s)
- Júlia Jarne-Ferrer
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Institut de Neurociències-Universitat de Barcelona, Avenida Joan XXIII, 27-31, E-08028 Barcelona, Spain; (J.J.-F.); (C.G.-F.); (A.B.-S.)
| | - Christian Griñán-Ferré
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Institut de Neurociències-Universitat de Barcelona, Avenida Joan XXIII, 27-31, E-08028 Barcelona, Spain; (J.J.-F.); (C.G.-F.); (A.B.-S.)
| | - Aina Bellver-Sanchis
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Institut de Neurociències-Universitat de Barcelona, Avenida Joan XXIII, 27-31, E-08028 Barcelona, Spain; (J.J.-F.); (C.G.-F.); (A.B.-S.)
| | - Santiago Vázquez
- CSIC Associated Unit, Laboratory of Medicinal Chemistry, Faculty of Pharmacy and Food Sciences, Institute of Biomedicine (IBUB), University of Barcelona, Avenida Joan XXIII, 27-31, E-08028 Barcelona, Spain; (S.V.); (D.M.-T.)
| | - Diego Muñoz-Torrero
- CSIC Associated Unit, Laboratory of Medicinal Chemistry, Faculty of Pharmacy and Food Sciences, Institute of Biomedicine (IBUB), University of Barcelona, Avenida Joan XXIII, 27-31, E-08028 Barcelona, Spain; (S.V.); (D.M.-T.)
| | - Mercè Pallàs
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Institut de Neurociències-Universitat de Barcelona, Avenida Joan XXIII, 27-31, E-08028 Barcelona, Spain; (J.J.-F.); (C.G.-F.); (A.B.-S.)
- Correspondence:
| |
Collapse
|
11
|
Kytikova OY, Denisenko YK, Novgorodtseva TP, Bocharova NV, Kovalenko IS. [Fatty acid epoxides in the regulation of the inflammation]. BIOMEDITSINSKAIA KHIMIIA 2022; 68:177-189. [PMID: 35717582 DOI: 10.18097/pbmc20226803177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Cyclooxygenase and lipoxygenase derived lipid metabolites of polyunsaturated fatty acids (PUFAs), as well as their role in the inflammation, have been studied quite thoroughly. However, cytochrome P450 derived lipid mediators, as well as their participation in the regulation of the inflammation, need deeper understanding. In recent years, it has become known that PUFAs are oxidized by cytochrome P450 epoxygenases to epoxy fatty acids, which act as the extremely powerful lipid mediators involved in resolving inflammation. Recent studies have shown that the anti-inflammatory mechanisms of ω-3 PUFAs are also mediated by their conversion to the endocannabinoid epoxides. Thus, it is clear that a number of therapeutically relevant functions of PUFAs are due to their conversion to PUFA epoxides. However, with the participation of cytochrome P450 epoxygenases, not only PUFA epoxides, but also other metabolites are formed. They are further are converted by epoxide hydrolases into pro-inflammatory dihydroxy fatty acids and anti-inflammatory dihydroxyeicosatrienoic acids. The study of the role of PUFA epoxides in the regulation of the inflammation and pharmacological modeling of the activity of epoxide hydrolases are the promising strategies for the treatment of the inflammatory diseases. This review systematizes the current literature data of the fatty acid epoxides, in particular, the endocannabinoid epoxides. Their role in the regulation of inflammation is discussed.
Collapse
Affiliation(s)
- O Y Kytikova
- Vladivostok Branch of Far Eastern Scientific Center of Physiology and Pathology of Respiration - Institute of Medical Climatology and Rehabilitative Treatment, Vladivostok, Russia
| | - Y K Denisenko
- Vladivostok Branch of Far Eastern Scientific Center of Physiology and Pathology of Respiration - Institute of Medical Climatology and Rehabilitative Treatment, Vladivostok, Russia
| | - T P Novgorodtseva
- Vladivostok Branch of Far Eastern Scientific Center of Physiology and Pathology of Respiration - Institute of Medical Climatology and Rehabilitative Treatment, Vladivostok, Russia
| | - N V Bocharova
- Vladivostok Branch of Far Eastern Scientific Center of Physiology and Pathology of Respiration - Institute of Medical Climatology and Rehabilitative Treatment, Vladivostok, Russia
| | - I S Kovalenko
- Vladivostok Branch of Far Eastern Scientific Center of Physiology and Pathology of Respiration - Institute of Medical Climatology and Rehabilitative Treatment, Vladivostok, Russia
| |
Collapse
|
12
|
Shan J, Hashimoto K. Soluble Epoxide Hydrolase as a Therapeutic Target for Neuropsychiatric Disorders. Int J Mol Sci 2022; 23:ijms23094951. [PMID: 35563342 PMCID: PMC9099663 DOI: 10.3390/ijms23094951] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/28/2022] [Accepted: 04/28/2022] [Indexed: 12/14/2022] Open
Abstract
It has been found that soluble epoxide hydrolase (sEH; encoded by the EPHX2 gene) in the metabolism of polyunsaturated fatty acids (PUFAs) plays a key role in inflammation, which, in turn, plays a part in the pathogenesis of neuropsychiatric disorders. Meanwhile, epoxy fatty acids such as epoxyeicosatrienoic acids (EETs), epoxyeicosatetraenoic acids (EEQs), and epoxyeicosapentaenoic acids (EDPs) have been found to exert neuroprotective effects in animal models of neuropsychiatric disorders through potent anti-inflammatory actions. Soluble expoxide hydrolase, an enzyme present in all living organisms, metabolizes epoxy fatty acids into the corresponding dihydroxy fatty acids, which are less active than the precursors. In this regard, preclinical findings using sEH inhibitors or Ephx2 knock-out (KO) mice have indicated that the inhibition or deficiency of sEH can have beneficial effects in several models of neuropsychiatric disorders. Thus, this review discusses the current findings of the role of sEH in neuropsychiatric disorders, including depression, autism spectrum disorder (ASD), schizophrenia, Parkinson’s disease (PD), and stroke, as well as the potential mechanisms underlying the therapeutic effects of sEH inhibitors.
Collapse
|
13
|
Kentner AC, Harden L, de Melo Soares D, Rummel C. Editorial commentary on the special issue emerging psychoneuroimmunology research: Future leaders in focus. Brain Behav Immun Health 2022; 20:100423. [PMID: 35169756 PMCID: PMC8829553 DOI: 10.1016/j.bbih.2022.100423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 11/25/2022] Open
Abstract
The theme of this BBI-Health special issue is to promote the research, creativity and forward-thinking of future key opinion leaders in the field of psychoneuroimmunology (PNI). We asked contributing researchers to identify new ideas and spaces for innovation to map out the future trajectory of our discipline. This special issue provides global and diverse views from early career investigators focused on science, society, and/or policy, with an emphasis on diversity in all its aspects. The common thread weaving through the articles contained in this special issue is that all authors were invited to consider the future of PNI while they were experiencing the global COVID-19 lockdowns that slowed down or even prevented them from access to their "hands-on" research. The contributors vary from Master level to assistant professors, and all have already significantly contributed to the field of PNI. Each contributor has provided a photograph and short biography alongside their written perspectives. We hope that you will enjoy learning about their visions for the future of PNI and will join us with enthusiasm as we watch our field grow through the advancement of their scientific careers.
Collapse
Affiliation(s)
- Amanda C. Kentner
- School of Arts & Sciences, Massachusetts College of Pharmacy and Health Sciences, Boston, MA, 02115, United States
| | - Lois Harden
- Brain Function Research Group, School of Physiology, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, South Africa
| | - Denis de Melo Soares
- Faculdade de Farmácia, Universidade Federal da Bahia, Rua Barão Do Jeremoabo, No. 147, Ondina, Salvador, Bahia, 40170-115, Brazil
| | - Christoph Rummel
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|