1
|
Olmedo-Córdoba M, Moreno-Montoya M, Mora S, Prados-Pardo Á, Martín-González E. Avoidance and inhibitory control are possible transdiagnostic traits? A systematic review in animal models. Behav Brain Res 2023; 451:114500. [PMID: 37207979 DOI: 10.1016/j.bbr.2023.114500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 05/12/2023] [Accepted: 05/16/2023] [Indexed: 05/21/2023]
Abstract
In clinical research, aberrant avoidance behavior and inhibitory control deficit have a high comorbidity in different psychopathological disorders. Therefore, avoidance and impulsive and/or compulsive behaviors might be classified as transdiagnostic traits, where the assessment through animal models could address evidence of their contribution as neurobehavioral mechanisms in psychopathology. The objective of the present review has been to assess the avoidance trait and the implication of inhibitory control behaviors, through studies using passive and active avoidance tests in rodents, and a preclinical model using selective breeding of high- or low-avoidance Roman rats (RHA, RLA). A systematic search strategy was carried out in the PubMed and Web of Science databases, where a total of 40 studies were accepted in the qualitative synthesis. The results of the different studies reviewed pointed to a relation between a reduced avoidance profile in passive avoidance (PA) with impulsive decision making and novelty-seeking behaviors; an increased avoidance profile in PA with compulsive drinking; a high active avoidance profile, including RHA rats, with different types of impulsivity and novelty- seeking behaviors; and regarding compulsivity depending on its measure, a low active avoidance profile, including RLA rats, has been associated with increased anxiety in the EPM and increased grooming, while a high active avoidance profile, including RHA rats, has been associated with increased rearing, compulsive drinking including alcohol, and cognitive inflexibility. The results have been discussed in terms of environmental factors and the underlying mechanisms between these possible transdiagnostic traits in psychopathology.
Collapse
Affiliation(s)
- Manuela Olmedo-Córdoba
- Department of Psychology & Health Research Centre (CEINSA), University of Almería, Almería, Spain
| | - Margarita Moreno-Montoya
- Department of Psychology & Health Research Centre (CEINSA), University of Almería, Almería, Spain
| | - Santiago Mora
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Ángeles Prados-Pardo
- Department of Psychology & Health Research Centre (CEINSA), University of Almería, Almería, Spain
| | - Elena Martín-González
- Department of Psychology & Health Research Centre (CEINSA), University of Almería, Almería, Spain.
| |
Collapse
|
2
|
Oliveras I, Cañete T, Sampedro-Viana D, Río-Álamos C, Tobeña A, Corda MG, Giorgi O, Fernández-Teruel A. Neurobehavioral Profiles of Six Genetically-based Rat Models of Schizophrenia- related Symptoms. Curr Neuropharmacol 2023; 21:1934-1952. [PMID: 36809938 PMCID: PMC10514524 DOI: 10.2174/1570159x21666230221093644] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/02/2022] [Accepted: 11/28/2022] [Indexed: 02/24/2023] Open
Abstract
Schizophrenia is a chronic and severe mental disorder with high heterogeneity in its symptoms clusters. The effectiveness of drug treatments for the disorder is far from satisfactory. It is widely accepted that research with valid animal models is essential if we aim at understanding its genetic/ neurobiological mechanisms and finding more effective treatments. The present article presents an overview of six genetically-based (selectively-bred) rat models/strains, which exhibit neurobehavioral schizophrenia-relevant features, i.e., the Apomorphine-susceptible (APO-SUS) rats, the Low-prepulse inhibition rats, the Brattleboro (BRAT) rats, the Spontaneously Hypertensive rats (SHR), the Wisket rats and the Roman High-Avoidance (RHA) rats. Strikingly, all the strains display impairments in prepulse inhibition of the startle response (PPI), which remarkably, in most cases are associated with novelty-induced hyperlocomotion, deficits of social behavior, impairment of latent inhibition and cognitive flexibility, or signs of impaired prefrontal cortex (PFC) function. However, only three of the strains share PPI deficits and dopaminergic (DAergic) psychostimulant-induced hyperlocomotion (together with prefrontal cortex dysfunction in two models, the APO-SUS and RHA), which points out that alterations of the mesolimbic DAergic circuit are a schizophrenia-linked trait that not all models reproduce, but it characterizes some strains that can be valid models of schizophrenia-relevant features and drug-addiction vulnerability (and thus, dual diagnosis). We conclude by putting the research based on these genetically-selected rat models in the context of the Research Domain Criteria (RDoC) framework, suggesting that RDoC-oriented research programs using selectively-bred strains might help to accelerate progress in the various aspects of the schizophrenia-related research agenda.
Collapse
Affiliation(s)
- Ignasi Oliveras
- Medical Psychology Unit, Department of Psychiatry and Forensic Medicine & Institute of Neurosciences, School of Medicine, Autonomous University of Barcelona, Bellaterra, Barcelona, 08193, Spain
| | - Toni Cañete
- Medical Psychology Unit, Department of Psychiatry and Forensic Medicine & Institute of Neurosciences, School of Medicine, Autonomous University of Barcelona, Bellaterra, Barcelona, 08193, Spain
| | - Daniel Sampedro-Viana
- Medical Psychology Unit, Department of Psychiatry and Forensic Medicine & Institute of Neurosciences, School of Medicine, Autonomous University of Barcelona, Bellaterra, Barcelona, 08193, Spain
| | | | - Adolf Tobeña
- Medical Psychology Unit, Department of Psychiatry and Forensic Medicine & Institute of Neurosciences, School of Medicine, Autonomous University of Barcelona, Bellaterra, Barcelona, 08193, Spain
| | - Maria Giuseppa Corda
- Department of Life and Environmental Sciences (DiSVA), University of Cagliari, Sardinia, Italy
| | - Osvaldo Giorgi
- Department of Life and Environmental Sciences (DiSVA), University of Cagliari, Sardinia, Italy
| | - Alberto Fernández-Teruel
- Medical Psychology Unit, Department of Psychiatry and Forensic Medicine & Institute of Neurosciences, School of Medicine, Autonomous University of Barcelona, Bellaterra, Barcelona, 08193, Spain
| |
Collapse
|
3
|
Fernández-Teruel A, Oliveras I, Cañete T, Rio-Álamos C, Tapias-Espinosa C, Sampedro-Viana D, Sánchez-González A, Sanna F, Torrubia R, González-Maeso J, Driscoll P, Morón I, Torres C, Aznar S, Tobeña A, Corda MG, Giorgi O. Neurobehavioral and neurodevelopmental profiles of a heuristic genetic model of differential schizophrenia- and addiction-relevant features: The RHA vs. RLA rats. Neurosci Biobehav Rev 2021; 131:597-617. [PMID: 34571119 DOI: 10.1016/j.neubiorev.2021.09.042] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 12/26/2022]
Abstract
The Roman High- (RHA) and Low-(RLA) avoidance rat lines/strains were generated through bidirectional selective breeding for rapid (RHA) vs. extremely poor (RLA) two-way active avoidance acquisition. Compared with RLAs and other rat strains/stocks, RHAs are characterized by increased impulsivity, deficits in social behavior, novelty-induced hyper-locomotion, impaired attentional/cognitive abilities, vulnerability to psychostimulant sensitization and drug addiction. RHA rats also exhibit decreased function of the prefrontal cortex (PFC) and hippocampus, increased functional activity of the mesolimbic dopamine system and a dramatic deficit of central metabotropic glutamate-2 (mGlu2) receptors (due to a stop codon mutation at cysteine 407 in Grm2 -cys407*-), along with increased density of 5-HT2A receptors in the PFC, alterations of several synaptic markers and increased density of pyramidal "thin" (immature) dendrític spines in the PFC. These characteristics suggest an immature brain of RHA rats, and are reminiscent of schizophrenia features like hypofrontality and disruption of the excitation/inhibition cortical balance. RHA rats represent a promising heuristic model of neurodevelopmental schizophrenia-relevant features and comorbidity with drug addiction vulnerability.
Collapse
Affiliation(s)
- Alberto Fernández-Teruel
- Medical Psychology Unit, Department of Psychiatry & Forensic Medicine, Institute of Neurosciences, Autonomous University of Barcelona, 08193, Bellaterra, Barcelona, Spain.
| | - Ignasi Oliveras
- Medical Psychology Unit, Department of Psychiatry & Forensic Medicine, Institute of Neurosciences, Autonomous University of Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Toni Cañete
- Medical Psychology Unit, Department of Psychiatry & Forensic Medicine, Institute of Neurosciences, Autonomous University of Barcelona, 08193, Bellaterra, Barcelona, Spain
| | | | - Carles Tapias-Espinosa
- Medical Psychology Unit, Department of Psychiatry & Forensic Medicine, Institute of Neurosciences, Autonomous University of Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Daniel Sampedro-Viana
- Medical Psychology Unit, Department of Psychiatry & Forensic Medicine, Institute of Neurosciences, Autonomous University of Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Ana Sánchez-González
- Medical Psychology Unit, Department of Psychiatry & Forensic Medicine, Institute of Neurosciences, Autonomous University of Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Francesco Sanna
- Department of Life and Environmental Sciences (DiSVA), University of Cagliari, Italy
| | - Rafael Torrubia
- Medical Psychology Unit, Department of Psychiatry & Forensic Medicine, Institute of Neurosciences, Autonomous University of Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Javier González-Maeso
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | | | - Ignacio Morón
- Department of Psychobiology and Centre of Investigation of Mind, Brain, and Behaviour (CIMCYC), University of Granada, Spain
| | - Carmen Torres
- Department of Psychology, University of Jaén, 23071, Jaén, Spain.
| | - Susana Aznar
- Research Laboratory for Stereology and Neuroscience, Bispebjerg Copenhagen University Hospital, 2400, Copenhagen, Denmark.
| | - Adolf Tobeña
- Medical Psychology Unit, Department of Psychiatry & Forensic Medicine, Institute of Neurosciences, Autonomous University of Barcelona, 08193, Bellaterra, Barcelona, Spain.
| | - Maria G Corda
- Department of Life and Environmental Sciences (DiSVA), University of Cagliari, Italy.
| | - Osvaldo Giorgi
- Department of Life and Environmental Sciences (DiSVA), University of Cagliari, Italy.
| |
Collapse
|
4
|
Sánchez-González A, Oliveras I, Río-Álamos C, Piludu MA, Gerbolés C, Tapias-Espinosa C, Tobeña A, Aznar S, Fernández-Teruel A. Dissociation between schizophrenia-relevant behavioral profiles and volumetric brain measures after long-lasting social isolation in Roman rats. Neurosci Res 2019; 155:43-55. [PMID: 31306676 DOI: 10.1016/j.neures.2019.07.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 07/02/2019] [Accepted: 07/05/2019] [Indexed: 11/29/2022]
Abstract
Social isolation rearing of rodents is an environmental manipulation known to induce or potentiate psychotic-like symptoms and attentional and cognitive impairments relevant for schizophrenia. When subjected to a 28-week isolation rearing treatment, the Roman high-avoidance (RHA-I) rats display the common behavioral social isolation syndrome, with prepulse inhibition (PPI) deficits, hyperactivity, increased anxiety responses and learning/memory impairments when compared to their low-avoidance (RLA-I) counterparts. These results add face validity to the RHA-I rats as an animal model for schizophrenia-relevant behavioral and cognitive profiles and confirm previous results. The aim here was to further investigate the neuroanatomical effects of the isolation rearing, estimated through volume differences in medial prefrontal cortex (mPFC), dorsal striatum (dSt) and hippocampus (HPC). Results showed a global increase in volume in the mPFC in the isolated rats of both strains, as well as strain effects (RLA > RHA) in the three brain regions. These unexpected but robust results, might have unveiled some kind of compensatory mechanisms due to the particularly long-lasting isolation rearing period, much longer than those commonly used in the literature (which usually range from 4 to 12 weeks).
Collapse
Affiliation(s)
- A Sánchez-González
- Dept. Psychiatry & Forensic Medicine, Institute of Neurosciences, Universidad Autónoma de Barcelona, Barcelona, Spain.
| | - I Oliveras
- Dept. Psychiatry & Forensic Medicine, Institute of Neurosciences, Universidad Autónoma de Barcelona, Barcelona, Spain
| | - C Río-Álamos
- Dept. Psychology, School of Medicine, Austral University of Chile, Valdivia, Chile
| | - M A Piludu
- Dept. of Life and Environmental Sciences, Section of Pharmaceutical, Pharmacological and Nutraceutical Sciences, University of Cagliari, Cagliari, Italy
| | - C Gerbolés
- Dept. Psychiatry & Forensic Medicine, Institute of Neurosciences, Universidad Autónoma de Barcelona, Barcelona, Spain
| | - C Tapias-Espinosa
- Dept. Psychiatry & Forensic Medicine, Institute of Neurosciences, Universidad Autónoma de Barcelona, Barcelona, Spain
| | - A Tobeña
- Dept. Psychiatry & Forensic Medicine, Institute of Neurosciences, Universidad Autónoma de Barcelona, Barcelona, Spain
| | - S Aznar
- Research Laboratory for Stereology and Neuroscience, Bispebjerg and Frederiksberg Hospitals, Copenhagen, Denmark.
| | - A Fernández-Teruel
- Dept. Psychiatry & Forensic Medicine, Institute of Neurosciences, Universidad Autónoma de Barcelona, Barcelona, Spain.
| |
Collapse
|
5
|
Giorgi O, Corda MG, Fernández-Teruel A. A Genetic Model of Impulsivity, Vulnerability to Drug Abuse and Schizophrenia-Relevant Symptoms With Translational Potential: The Roman High- vs. Low-Avoidance Rats. Front Behav Neurosci 2019; 13:145. [PMID: 31333426 PMCID: PMC6624787 DOI: 10.3389/fnbeh.2019.00145] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 06/18/2019] [Indexed: 12/14/2022] Open
Abstract
The bidirectional selective breeding of Roman high- (RHA) and low-avoidance (RLA) rats for respectively rapid vs. poor acquisition of active avoidant behavior has generated two lines/strains that differ markedly in terms of emotional reactivity, with RHA rats being less fearful than their RLA counterparts. Many other behavioral traits have been segregated along the selection procedure; thus, compared with their RLA counterparts, RHA rats behave as proactive copers in the face of aversive conditions, display a robust sensation/novelty seeking (SNS) profile, and show high impulsivity and an innate preference for natural and drug rewards. Impulsivity is a multifaceted behavioral trait and is generally defined as a tendency to express actions that are poorly conceived, premature, highly risky or inappropriate to the situation, that frequently lead to unpleasant consequences. High levels of impulsivity are associated with several neuropsychiatric conditions including attention-deficit hyperactivity disorder, obsessive-compulsive disorder, schizophrenia, and drug addiction. Herein, we review the behavioral and neurochemical differences between RHA and RLA rats and survey evidence that RHA rats represent a valid genetic model, with face, construct, and predictive validity, to investigate the neural underpinnings of behavioral disinhibition, novelty seeking, impulsivity, vulnerability to drug addiction as well as deficits in attentional processes, cognitive impairments and other schizophrenia-relevant traits.
Collapse
Affiliation(s)
- Osvaldo Giorgi
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Maria G Corda
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Alberto Fernández-Teruel
- Medical Psychology Unit, Department of Psychiatry and Forensic Medicine, School of Medicine, Institute of Neurosciences, Universitat Autónoma de Barcelona, Barcelona, Spain
| |
Collapse
|
6
|
Río-Álamos C, Piludu MA, Gerbolés C, Barroso D, Oliveras I, Sánchez-González A, Cañete T, Tapias-Espinosa C, Sampedro-Viana D, Torrubia R, Tobeña A, Fernández-Teruel A. Volumetric brain differences between the Roman rat strains: Neonatal handling effects, sensorimotor gating and working memory. Behav Brain Res 2019; 361:74-85. [DOI: 10.1016/j.bbr.2018.12.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 11/23/2018] [Accepted: 12/17/2018] [Indexed: 12/20/2022]
|
7
|
Sanna F, Poddighe L, Serra MP, Boi M, Bratzu J, Sanna F, Corda MG, Giorgi O, Melis MR, Argiolas A, Quartu M. c-Fos, ΔFosB, BDNF, trkB and Arc Expression in the Limbic System of Male Roman High- and Low-Avoidance Rats that Show Differences in Sexual Behavior: Effect of Sexual Activity. Neuroscience 2019; 396:1-23. [DOI: 10.1016/j.neuroscience.2018.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/31/2018] [Accepted: 11/01/2018] [Indexed: 12/26/2022]
|
8
|
Giménez-Llort L, Guitart-Masip M, Tobeña A, Fernández-Teruel A, Johansson B. Distinct phenotypes of spontaneous activity and induction of amphetamine sensitization in inbred Roman high- and low-avoidance rats: Vulnerability and protection. Neurosci Lett 2018. [PMID: 29522836 DOI: 10.1016/j.neulet.2018.03.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The psychogenetically selected Roman high- (RHA) and low-avoidance (RLA) rats are being proposed as a valuable animal model of individual vulnerability to the two distinct neurobiological mechanisms of behavioral sensitization to psychostimulants, namely induction and expression. Most hallmarks of their divergent phenotypes are also found in the inbred RHA (RHA-I) and RLA (RLA-I) strains. For instance, they differ in the expression of sensitization to amphetamine. However, the pattern of spontaneous activity of the inbred rats seems to differ from that of outbred Roman strains. The present work shows the relevance of analyzing spontaneous activity as a covariant in order to determine the significance of day effect in the induction of behavioral sensitization to amphetamine (regime: 11 days, 1 mg/kg, i.p.) in the inbred strains and, for comparison, the standard low activity Sprague-Dawley (SD) strain. Our results also confirm that, in parallel to the outbred strains, only inbred RHA rats showed sensitization during the induction phase, here detectable from day 9 of treatment, while RLA-I and SD strains did not. Inbred RLA rats provide an interesting model to study individual resistance to sensitization, with nuances due to their underlying high spontaneous activity phenotype.
Collapse
Affiliation(s)
- Lydia Giménez-Llort
- Unitat de Psicologia Mèdica, Departament de Psiquiatria i Medicina Legal, Institut de Neurociències, Facultat de Medicina, Universitat Autònoma de Barcelona, Spain.
| | - Marc Guitart-Masip
- Unitat de Psicologia Mèdica, Departament de Psiquiatria i Medicina Legal, Institut de Neurociències, Facultat de Medicina, Universitat Autònoma de Barcelona, Spain
| | - Adolf Tobeña
- Unitat de Psicologia Mèdica, Departament de Psiquiatria i Medicina Legal, Institut de Neurociències, Facultat de Medicina, Universitat Autònoma de Barcelona, Spain
| | - Albert Fernández-Teruel
- Unitat de Psicologia Mèdica, Departament de Psiquiatria i Medicina Legal, Institut de Neurociències, Facultat de Medicina, Universitat Autònoma de Barcelona, Spain
| | - Björn Johansson
- Department of Molecular Medicine, Karolinska Institutet and Department of Geriatrics, Karolinska University Hospital, Sweden
| |
Collapse
|
9
|
Tournier BB, Dimiziani A, Tsartsalis S, Millet P, Ginovart N. Different effects of chronic THC on the neuroadaptive response of dopamine D2/3 receptor-mediated signaling in roman high- and roman low-avoidance rats. Synapse 2018; 72. [DOI: 10.1002/syn.22023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 12/01/2017] [Accepted: 12/18/2017] [Indexed: 12/16/2022]
Affiliation(s)
- Benjamin B. Tournier
- Department of Mental Health and Psychiatry, Laboratory for Translational Imaging in Psychiatric Neuroscience; University Hospitals of Geneva; Geneva Switzerland
| | - Andrea Dimiziani
- Department of Mental Health and Psychiatry, Laboratory for Translational Imaging in Psychiatric Neuroscience; University Hospitals of Geneva; Geneva Switzerland
- Department of Psychiatry; University of Geneva; Geneva Switzerland
| | - Stergios Tsartsalis
- Department of Mental Health and Psychiatry, Laboratory for Translational Imaging in Psychiatric Neuroscience; University Hospitals of Geneva; Geneva Switzerland
- Department of Psychiatry; University of Geneva; Geneva Switzerland
| | - Philippe Millet
- Department of Mental Health and Psychiatry, Laboratory for Translational Imaging in Psychiatric Neuroscience; University Hospitals of Geneva; Geneva Switzerland
- Department of Psychiatry; University of Geneva; Geneva Switzerland
| | - Nathalie Ginovart
- Department of Mental Health and Psychiatry, Laboratory for Translational Imaging in Psychiatric Neuroscience; University Hospitals of Geneva; Geneva Switzerland
- Department of Psychiatry; University of Geneva; Geneva Switzerland
| |
Collapse
|
10
|
Differential effects of antipsychotic and propsychotic drugs on prepulse inhibition and locomotor activity in Roman high- (RHA) and low-avoidance (RLA) rats. Psychopharmacology (Berl) 2017; 234:957-975. [PMID: 28154892 PMCID: PMC5492384 DOI: 10.1007/s00213-017-4534-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 01/09/2017] [Indexed: 10/20/2022]
Abstract
RATIONALE Animal models with predictive and construct validity are necessary for developing novel and efficient therapeutics for psychiatric disorders. OBJECTIVES We have carried out a pharmacological characterization of the Roman high- (RHA-I) and low-avoidance (RLA-I) rat strains with different acutely administered propsychotic (DOI, MK-801) and antipsychotic drugs (haloperidol, clozapine), as well as apomorphine, on prepulse inhibition (PPI) of startle and locomotor activity (activity cages). RESULTS RHA-I rats display a consistent deficit of PPI compared with RLA-I rats. The typical antipsychotic haloperidol (dopamine D2 receptor antagonist) reversed the PPI deficit characteristic of RHA-I rats (in particular at 65 and 70 dB prepulse intensities) and reduced locomotion in both strains. The atypical antipsychotic clozapine (serotonin/dopamine receptor antagonist) did not affect PPI in either strain, but decreased locomotion in a dose-dependent manner in both rat strains. The mixed dopamine D1/D2 agonist, apomorphine, at the dose of 0.05 mg/kg, decreased PPI in RHA-I, but not RLA-I rats. The hallucinogen drug DOI (5-HT2A agonist; 0.1-1.0 mg/kg) disrupted PPI in RLA-I rats in a dose-dependent manner at the 70 dB prepulse intensity, while in RHA-I rats, only the 0.5 mg/kg dose impaired PPI at the 80 dB prepulse intensity. DOI slightly decreased locomotion in both strains. Finally, clozapine attenuated the PPI impairment induced by the NMDA receptor antagonist MK-801 only in RLA-I rats. CONCLUSIONS These results add experimental evidence to the view that RHA-I rats represent a model with predictive and construct validity of some dopamine and 5-HT2A receptor-related features of schizophrenia.
Collapse
|
11
|
Oliveras I, Sánchez-González A, Piludu MA, Gerboles C, Río-Álamos C, Tobeña A, Fernández-Teruel A. Divergent effects of isolation rearing on prepulse inhibition, activity, anxiety and hippocampal-dependent memory in Roman high- and low-avoidance rats: A putative model of schizophrenia-relevant features. Behav Brain Res 2016; 314:6-15. [PMID: 27478139 DOI: 10.1016/j.bbr.2016.07.047] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 07/25/2016] [Accepted: 07/28/2016] [Indexed: 01/14/2023]
Abstract
Social isolation of rats induces a constellation of behavioral alterations known as "isolation syndrome" that are consistent with some of the positive and cognitive symptoms observed in schizophrenic patients. In the present study we have assessed whether isolation rearing of inbred Roman high-avoidance (RHA-I) and Roman low-avoidance (RLA-I) strains can lead to the appearance of some of the key features of the "isolation syndrome", such as prepulse inhibition (PPI) deficits, increased anxious behavior, hyperactivity and memory/learning impairments. Compared to RLA-I rats, the results show that isolation rearing (IR) in RHA-I rats has a more profound impact, as they exhibit isolation-induced PPI deficits, increased anxiety, hyperactivity and long-term reference memory deficits, while isolated RLA-I rats only exhibit deficits in a spatial working memory task. These results give further support to the validity of RHA-I rats as a genetically-based model of schizophrenia relevant-symptoms.
Collapse
Affiliation(s)
- Ignasi Oliveras
- Medical Psychology Unit, Department of Psychiatry and Forensic Medicine, School of Medicine, Institute of Neurosciences, Autonomous University of Barcelona 08193-Bellaterra, Barcelona, Spain.
| | - Ana Sánchez-González
- Medical Psychology Unit, Department of Psychiatry and Forensic Medicine, School of Medicine, Institute of Neurosciences, Autonomous University of Barcelona 08193-Bellaterra, Barcelona, Spain
| | - Maria Antonietta Piludu
- Department of Life and Environmental Sciences, Section of Pharmaceutical, Pharmacological and Nutraceutical Sciences, University of Cagliari, 09124 Cagliari, Italy
| | - Cristina Gerboles
- Medical Psychology Unit, Department of Psychiatry and Forensic Medicine, School of Medicine, Institute of Neurosciences, Autonomous University of Barcelona 08193-Bellaterra, Barcelona, Spain
| | - Cristóbal Río-Álamos
- Medical Psychology Unit, Department of Psychiatry and Forensic Medicine, School of Medicine, Institute of Neurosciences, Autonomous University of Barcelona 08193-Bellaterra, Barcelona, Spain
| | - Adolf Tobeña
- Medical Psychology Unit, Department of Psychiatry and Forensic Medicine, School of Medicine, Institute of Neurosciences, Autonomous University of Barcelona 08193-Bellaterra, Barcelona, Spain
| | - Alberto Fernández-Teruel
- Medical Psychology Unit, Department of Psychiatry and Forensic Medicine, School of Medicine, Institute of Neurosciences, Autonomous University of Barcelona 08193-Bellaterra, Barcelona, Spain.
| |
Collapse
|
12
|
Cuenya L, Sabariego M, Donaire R, Callejas-Aguilera JE, Torres C, Fernández-Teruel A. Exploration of a novel object in late adolescence predicts novelty-seeking behavior in adulthood: Associations among behavioral responses in four novelty-seeking tests. Behav Processes 2016; 125:34-42. [PMID: 26852869 DOI: 10.1016/j.beproc.2016.02.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 02/01/2016] [Accepted: 02/02/2016] [Indexed: 10/22/2022]
Abstract
UNLABELLED The sensation/novelty seeking behavioral trait refers to the exploration/preference for a novel environment. Novelty seeking increases during late adolescence and it has been associated with several neurobehavioral disorders. In this experiment, we asked whether inbred Roman high- and low-avoidance (RHA-I, RLA-I) rats (1) differ in novelty seeking in late adolescence and (2) whether late adolescent novelty seeking predicts this trait in adulthood. Thirty six male RHA-I and 36 RLA-I rats were exposed to a novel object exploration (NOE) test during late adolescence (pnd: 52-59; DEPENDENT VARIABLES contact latency, contact time, contact frequency). Head-dipping (hole-board, HB), time and visits to a novel-arm (Y-maze), and latency-in and emergence latency (emergence test) were registered in adulthood (pnd: 83-105). The results showed strain differences in all these tests (RHA-I>RLA-I). Factor analysis (RHA-I+RLA-I) revealed two clusters. The first one grouped HB and emergence test measures. The second one grouped NOE and Y-maze variables. Time exploring a novel object (NOE) was a significant predictor of novel arm time (RHA-I+RLA, RHA-I); contact latency was a significant predictor of novel arm frequency (RLA-I). Present results show consistent behavioral associations across four novelty-seeking tests and suggest that late adolescent novelty seeking predicts this genetically-influenced temperamental trait in adult Roman rats.
Collapse
Affiliation(s)
- Lucas Cuenya
- Laboratorio de Psicología Experimental y Aplicada, Instituto de Investigaciones Médicas Alfredo Lanari, CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Marta Sabariego
- Neurobiology Section and Center for Neural Circuits and Behavior, Division of Biological Sciences, University of California, San Diego, CA, USA
| | - Rocío Donaire
- Departamento de Psicología, Universidad de Jaén, Spain
| | | | - Carmen Torres
- Departamento de Psicología, Universidad de Jaén, Spain.
| | - Alberto Fernández-Teruel
- Departamento de Psiquiatría y Medicina Legal, Instituto de Neurociencias, Facultad de Medicina, Universidad Autónoma de Barcelona, Barcelona, Spain.
| |
Collapse
|
13
|
Oliveras I, Río-Álamos C, Cañete T, Blázquez G, Martínez-Membrives E, Giorgi O, Corda MG, Tobeña A, Fernández-Teruel A. Prepulse inhibition predicts spatial working memory performance in the inbred Roman high- and low-avoidance rats and in genetically heterogeneous NIH-HS rats: relevance for studying pre-attentive and cognitive anomalies in schizophrenia. Front Behav Neurosci 2015; 9:213. [PMID: 26347624 PMCID: PMC4539526 DOI: 10.3389/fnbeh.2015.00213] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 07/30/2015] [Indexed: 01/10/2023] Open
Abstract
Animal models of schizophrenia-relevant symptoms are increasingly important for progress in our understanding of the neurobiological basis of the disorder and for discovering novel and more specific treatments. Prepulse inhibition (PPI) and working memory, which are impaired in schizophrenic patients, are among the symptoms/processes modeled in those animal analogs. We have evaluated whether a genetically-selected rat model, the Roman high-avoidance inbred strain (RHA-I), displays PPI deficits as compared with its Roman low-avoidance (RLA-I) counterpart and the genetically heterogeneous NIH-HS rat stock. We have investigated whether PPI deficits predict spatial working memory impairments (in the Morris water maze; MWM) in these three rat types (Experiment 1), as well as in a separate sample of NIH-HS rats stratified according to their extreme (High, Medium, Low) PPI scores (Experiment 2). The results from Experiment 1 show that RHA-I rats display PPI and spatial working memory deficits compared to both RLA-I and NIH-HS rats. Likewise, in Experiment 2, "Low-PPI" NIH-HS rats present significantly impaired working memory with respect to "Medium-PPI" and "High-PPI" NIH-HS subgroups. Further support to these results comes from correlational, factorial, and multiple regression analyses, which reveal that PPI is positively associated with spatial working memory performance. Conversely, cued learning in the MWM was not associated with PPI. Thus, using genetically-selected and genetically heterogeneous rats, the present study shows, for the first time, that PPI is a positive predictor of performance in a spatial working memory task. These results may have translational value for schizophrenia symptom research in humans, as they suggest that either by psychogenetic selection or by focusing on extreme PPI scores from a genetically heterogeneous rat stock, it is possible to detect a useful (perhaps "at risk") phenotype to study cognitive anomalies linked to schizophrenia.
Collapse
Affiliation(s)
- Ignasi Oliveras
- Medical Psychology Unit, Department of Psychiatry and Forensic Medicine, School of Medicine, Institute of Neurosciences, Autonomous University of BarcelonaBarcelona, Spain
- *Correspondence: Ignasi Oliveras and Alberto Fernández-Teruel, Medical Psychology Unit, Department of Psychiatry and Forensic Medicine, School of Medicine, Autonomous University of Barcelona, 08913 Bellaterra, Barcelona, Spain ;
| | - Cristóbal Río-Álamos
- Medical Psychology Unit, Department of Psychiatry and Forensic Medicine, School of Medicine, Institute of Neurosciences, Autonomous University of BarcelonaBarcelona, Spain
| | - Toni Cañete
- Medical Psychology Unit, Department of Psychiatry and Forensic Medicine, School of Medicine, Institute of Neurosciences, Autonomous University of BarcelonaBarcelona, Spain
| | - Gloria Blázquez
- Medical Psychology Unit, Department of Psychiatry and Forensic Medicine, School of Medicine, Institute of Neurosciences, Autonomous University of BarcelonaBarcelona, Spain
| | - Esther Martínez-Membrives
- Medical Psychology Unit, Department of Psychiatry and Forensic Medicine, School of Medicine, Institute of Neurosciences, Autonomous University of BarcelonaBarcelona, Spain
| | - Osvaldo Giorgi
- Section of Pharmaceutical, Pharmacological and Nutraceutical Sciences, Department of Life and Environmental Sciences, University of CagliariCagliari, Italy
| | - Maria G. Corda
- Section of Pharmaceutical, Pharmacological and Nutraceutical Sciences, Department of Life and Environmental Sciences, University of CagliariCagliari, Italy
| | - Adolf Tobeña
- Medical Psychology Unit, Department of Psychiatry and Forensic Medicine, School of Medicine, Institute of Neurosciences, Autonomous University of BarcelonaBarcelona, Spain
| | - Alberto Fernández-Teruel
- Medical Psychology Unit, Department of Psychiatry and Forensic Medicine, School of Medicine, Institute of Neurosciences, Autonomous University of BarcelonaBarcelona, Spain
- *Correspondence: Ignasi Oliveras and Alberto Fernández-Teruel, Medical Psychology Unit, Department of Psychiatry and Forensic Medicine, School of Medicine, Autonomous University of Barcelona, 08913 Bellaterra, Barcelona, Spain ;
| |
Collapse
|
14
|
Manzo L, Gómez MJ, Callejas-Aguilera JE, Donaire R, Sabariego M, Fernández-Teruel A, Cañete A, Blázquez G, Papini MR, Torres C. Relationship between ethanol preference and sensation/novelty seeking. Physiol Behav 2014; 133:53-60. [PMID: 24825783 DOI: 10.1016/j.physbeh.2014.05.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 04/13/2014] [Accepted: 05/02/2014] [Indexed: 10/25/2022]
Abstract
High- and low-avoidance Roman inbred rat strains (RHA-I, RLA-I) were selected for extreme differences in two-way active avoidance. RHA-I rats also express less anxiety than RLA-I rats. This study compared male Roman rats in ethanol preference and sensation/novelty seeking. Rats were first exposed in counterbalanced order to the hole-board test (forced exposure to novelty) and the Y-maze and emergence tests (free choice between novel and familiar locations). Then, rats were tested in 24-h, two-bottle preference tests with water in one bottle and ethanol (2, 4, 6, 8, or 10% in successive days). Compared to RLA-I rats, RHA-I rats showed (1) higher frequency and time in head dipping, (2) higher activity, and (3) lower frequency of rearing and grooming in the hole-board test, and (4) remained in the novel arm longer in the Y-maze test. No strain differences were observed in the emergence test. RHA-I rats exhibited higher preference for and consumed more ethanol than RLA-I rats at all concentrations. However, both strains preferred ethanol over water for 2-4% concentrations, but water over ethanol for 6-10% concentrations. Factorial analysis with all the rats pooled identified a two-factor solution, one grouping preferred ethanol concentrations (2-4%) with head dipping and grooming in the hole board, and another factor grouping the nonpreferred ethanol concentrations (6-10%) with activity in the hole board and novel-arm time in the Y-maze test. These results show that preference for ethanol is associated with different aspects of behavior measured in sensation/novelty-seeking tests.
Collapse
|
15
|
Corda MG, Piras G, Piludu MA, Giorgi O. Differential Effects of Voluntary Ethanol Consumption on Dopamine Output in the Nucleus Accumbens Shell of Roman High- and Low-Avoidance Rats: A Behavioral and Brain Microdialysis Study. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/wjns.2014.43031] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
16
|
Río CD, Oliveras I, Cañete T, Blázquez G, Tobeña A, Fernández-Teruel A. Genetic Rat Models of Schizophrenia-Relevant Symptoms. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/wjns.2014.43030] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
17
|
Sabariego M, Morón I, Gómez MJ, Donaire R, Tobeña A, Fernández-Teruel A, Martínez-Conejero JA, Esteban FJ, Torres C. Incentive loss and hippocampal gene expression in inbred Roman high- (RHA-I) and Roman low- (RLA-I) avoidance rats. Behav Brain Res 2013; 257:62-70. [DOI: 10.1016/j.bbr.2013.09.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 09/06/2013] [Accepted: 09/10/2013] [Indexed: 11/29/2022]
|
18
|
Innately low D2 receptor availability is associated with high novelty-seeking and enhanced behavioural sensitization to amphetamine. Int J Neuropsychopharmacol 2013; 16:1819-34. [PMID: 23574629 DOI: 10.1017/s1461145713000205] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
High novelty-seeking has been related to an increased risk for developing addiction, but the neurobiological mechanism underlying this relationship is unclear. We investigated whether differences in dopamine (DA) D2/3-receptor (D2/3R) function underlie phenotypic divergence in novelty-seeking and vulnerability to addiction. Measures of D2/3R availability using the D2R-preferring antagonist [18F]Fallypride, and the D3R-preferring agonist [3H]-(+)-PHNO and of DA-related gene expression and behaviours were used to characterize DA signalling in Roman high- (RHA) and low-avoidance (RLA) rats, which respectively display high and low behavioural responsiveness both to novelty and psychostimulant exposure. When compared to RLA rats, high novelty-responding RHAs had lower levels of D2R, but not D3R, binding and mRNA in substantia nigra/ventral tegmental area (SN/VTA) and showed behavioural evidence of D2-autoreceptor subsensitivity. RHA rats also showed a higher expression of the tyrosine hydroxylase gene in SN/VTA, higher levels of extracellular DA in striatum and augmentation of the DA-releasing effects of amphetamine (Amph), suggesting hyperfunctioning of midbrain DA neurons. RHA rats also exhibited lower availabilities and functional sensitivity of D2R, but not D3R, in striatum, which were inversely correlated with individual scores of novelty-seeking, which, in turn, predicted the magnitude of Amph-induced behavioural sensitization. These results indicate that innately low levels of D2R in SN/VTA and striatum, whether they are a cause or consequence of the concomitantly observed elevated DA tone, result in a specific pattern of DA signalling that may subserve novelty-seeking and vulnerability to drug use. This suggests that D2R deficits in SN/VTA and striatum could both constitute neurochemical markers of an addiction-prone phenotype.
Collapse
|
19
|
Ijichi CL, Collins LM, Elwood RW. Evidence for the role of personality in stereotypy predisposition. Anim Behav 2013. [DOI: 10.1016/j.anbehav.2013.03.033] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
20
|
Mandt BH, Johnston NL, Zahniser NR, Allen RM. Acquisition of cocaine self-administration in male Sprague-Dawley rats: effects of cocaine dose but not initial locomotor response to cocaine. Psychopharmacology (Berl) 2012; 219:1089-97. [PMID: 21863236 PMCID: PMC3266438 DOI: 10.1007/s00213-011-2438-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Accepted: 08/02/2011] [Indexed: 02/06/2023]
Abstract
RATIONALE We have previously described a model in which adult outbred male Sprague-Dawley rats are classified as either low or high cocaine responders (LCRs or HCRs, respectively) based on acute cocaine-induced open-field activation. This model revealed important individual differences in cocaine's effects, including that LCRs exhibited greater responding than HCRs on a progressive ratio schedule of cocaine reinforcement. However, no LCR/HCR differences in acquisition of cocaine self-administration (0.25 mg/kg/12 s infusion) were observed under these conditions. OBJECTIVES To determine if LCRs and HCRs differ in the effectiveness of cocaine to function as a reinforcer under a broader range of conditions, the present study assessed the acquisition of cocaine self-administration (fixed ratio 1 schedule of reinforcement) as a function of i.v. cocaine dose (0.1875, 0.375, 0.5, 1, or 1.5 mg/kg/6 s infusion). RESULTS LCRs and HCRs did not differ significantly on any measure of acquisition examined, including the day to meet acquisition criterion, percent acquired, and cocaine intake. The effect of dose on percent acquired and rate of acquisition peaked at the 1-mg/kg/infusion dose of cocaine. In contrast, the effect of dose on cocaine intake was linear, with the highest rate of intake occurring at the 1.5-mg/kg/infusion dose of cocaine. CONCLUSIONS LCRs and HCRs do not appear to differ in their acquisition of cocaine-reinforced operant responding across a range of cocaine doses, including conditions that lead to high levels of cocaine intake.
Collapse
Affiliation(s)
| | | | - Nancy R. Zahniser
- University of Colorado Denver, Department of Pharmacology and Neuroscience Program
| | | |
Collapse
|
21
|
Coppens CM, de Boer SF, Koolhaas JM. Coping styles and behavioural flexibility: towards underlying mechanisms. Philos Trans R Soc Lond B Biol Sci 2011; 365:4021-8. [PMID: 21078654 DOI: 10.1098/rstb.2010.0217] [Citation(s) in RCA: 386] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A coping style (also termed behavioural syndrome or personality) is defined as a correlated set of individual behavioural and physiological characteristics that is consistent over time and across situations. This relatively stable trait is a fundamental and adaptively significant phenomenon in the biology of a broad range of species, i.e. it confers differential fitness consequences under divergent environmental conditions. Behavioural flexibility appears to be an important underlying attribute or feature of the coping style that might explain consistency across situations. Proactive coping is characterized by low flexibility expressed as rather rigid, routine-like behavioural tendencies and reduced impulse control (behavioural inhibition) in operant conditioning paradigms. This article summarizes some of the evidence that individual differentiation in behavioural flexibility emerges as a function of underlying variability in the activation of a brain circuitry that includes the prefrontal cortex and its key neurochemical signalling pathways (e.g. dopaminergic and serotonergic input). We argue that the multidimensional nature of animal personality and the terminology used for the various dimensions should reflect the differential pattern of activation of the underlying neuronal network and the behavioural control function of its components. Accordingly, unravelling the molecular mechanisms that give rise to individual differences in the coping style will be an important topic in biobehavioural neurosciences, ecology and evolutionary biology.
Collapse
Affiliation(s)
- Caroline M Coppens
- Department of Behavioural Physiology, University of Groningen, 9750 AA Haren, The Netherlands.
| | | | | |
Collapse
|
22
|
Effects of intraaccumbens amphetamine on production of 50kHz vocalizations in three lines of selectively bred Long-Evans rats. Behav Brain Res 2011; 217:32-40. [DOI: 10.1016/j.bbr.2010.10.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Revised: 09/28/2010] [Accepted: 10/04/2010] [Indexed: 11/20/2022]
|
23
|
Moreno M, Cardona D, Gómez MJ, Sánchez-Santed F, Tobeña A, Fernández-Teruel A, Campa L, Suñol C, Escarabajal MD, Torres C, Flores P. Impulsivity characterization in the Roman high- and low-avoidance rat strains: behavioral and neurochemical differences. Neuropsychopharmacology 2010; 35:1198-208. [PMID: 20090672 PMCID: PMC3055403 DOI: 10.1038/npp.2009.224] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Revised: 11/24/2009] [Accepted: 11/27/2009] [Indexed: 11/08/2022]
Abstract
The selective breeding of Roman high- (RHA) and low-avoidance (RLA) rats for rapid vs extremely poor acquisition of active avoidance behavior in a shuttle-box has generated two phenotypes with different emotional and motivational profiles. The phenotypic traits of the Roman rat lines/strains (outbred or inbred, respectively) include differences in sensation/novelty seeking, anxiety/fearfulness, stress responsivity, and susceptibility to addictive substances. We designed this study to characterize differences between the inbred RHA-I and RLA-I strains in the impulsivity trait by evaluating different aspects of the multifaceted nature of impulsive behaviors using two different models of impulsivity, the delay-discounting task and five-choice serial reaction time (5-CSRT) task. Previously, rats were evaluated on a schedule-induced polydipsia (SIP) task that has been suggested as a model of obsessive-compulsive disorder. RHA-I rats showed an increased acquisition of the SIP task, higher choice impulsivity in the delay-discounting task, and poor inhibitory control as shown by increased premature responses in the 5-CSRT task. Therefore, RHA-I rats manifested an increased impulsivity phenotype compared with RLA-I rats. Moreover, these differences in impulsivity were associated with basal neurochemical differences in striatum and nucleus accumbens monoamines found between the two strains. These findings characterize the Roman rat strains as a valid model for studying the different aspects of impulsive behavior and for analyzing the mechanisms involved in individual predisposition to impulsivity and its related psychopathologies.
Collapse
Affiliation(s)
- Margarita Moreno
- Departamento de Neurociencia y Ciencias de la Salud, Universidad de Almería, Almería, Spain
| | - Diana Cardona
- Departamento de Neurociencia y Ciencias de la Salud, Universidad de Almería, Almería, Spain
| | | | | | - Adolf Tobeña
- Departamento de Psiquiatria y Medicina Legal, Instituto de Neurociencias, Universidad Autónoma de Barcelona, Barcelona, Spain
| | - Alberto Fernández-Teruel
- Departamento de Psiquiatria y Medicina Legal, Instituto de Neurociencias, Universidad Autónoma de Barcelona, Barcelona, Spain
| | - Leticia Campa
- Instituto de Investigaciones Biomedicas de Barcelona, CSIC-IDIBAPS, CIBERESP (CS), CIBERSAM (LC), Barcelona, Spain
| | - Cristina Suñol
- Instituto de Investigaciones Biomedicas de Barcelona, CSIC-IDIBAPS, CIBERESP (CS), CIBERSAM (LC), Barcelona, Spain
| | | | - Carmen Torres
- Departamento de Psicología, Universidad de Jaén, Jaén, Spain
| | - Pilar Flores
- Departamento de Neurociencia y Ciencias de la Salud, Universidad de Almería, Almería, Spain
| |
Collapse
|
24
|
Ilango A, Wetzel W, Scheich H, Ohl FW. The combination of appetitive and aversive reinforcers and the nature of their interaction during auditory learning. Neuroscience 2010; 166:752-62. [PMID: 20080152 DOI: 10.1016/j.neuroscience.2010.01.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Revised: 12/16/2009] [Accepted: 01/06/2010] [Indexed: 10/20/2022]
Abstract
Learned changes in behavior can be elicited by either appetitive or aversive reinforcers. It is, however, not clear whether the two types of motivation, (approaching appetitive stimuli and avoiding aversive stimuli) drive learning in the same or different ways, nor is their interaction understood in situations where the two types are combined in a single experiment. To investigate this question we have developed a novel learning paradigm for Mongolian gerbils, which not only allows rewards and punishments to be presented in isolation or in combination with each other, but also can use these opposite reinforcers to drive the same learned behavior. Specifically, we studied learning of tone-conditioned hurdle crossing in a shuttle box driven by either an appetitive reinforcer (brain stimulation reward) or an aversive reinforcer (electrical footshock), or by a combination of both. Combination of the two reinforcers potentiated speed of acquisition, led to maximum possible performance, and delayed extinction as compared to either reinforcer alone. Additional experiments, using partial reinforcement protocols and experiments in which one of the reinforcers was omitted after the animals had been previously trained with the combination of both reinforcers, indicated that appetitive and aversive reinforcers operated together but acted in different ways: in this particular experimental context, punishment appeared to be more effective for initial acquisition and reward more effective to maintain a high level of conditioned responses (CRs). The results imply that learning mechanisms in problem solving were maximally effective when the initial punishment of mistakes was combined with the subsequent rewarding of correct performance.
Collapse
Affiliation(s)
- A Ilango
- Leibniz Institute for Neurobiology, Brenneckestr. 6, D-39118 Magdeburg, Germany
| | | | | | | |
Collapse
|
25
|
Fattore L, Piras G, Corda MG, Giorgi O. The Roman high- and low-avoidance rat lines differ in the acquisition, maintenance, extinction, and reinstatement of intravenous cocaine self-administration. Neuropsychopharmacology 2009; 34:1091-101. [PMID: 18418365 DOI: 10.1038/npp.2008.43] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The selective breeding of Roman high- (RHA) and low-avoidance (RLA) rats for, respectively, rapid vs extremely poor acquisition of avoidant behavior in a shuttlebox has produced two phenotypes that differ in temperament traits, in mesocortical/mesolimbic dopamine system function, and in the behavioral and neurochemical responses to the acute and repeated administration of psychostimulants and opiates. The phenotypic traits of the RHA line predict higher susceptibility, compared with RLA rats, to the reinforcing properties of addictive substances like cocaine. The present study was designed to compare the acquisition, maintenance, reinstatement of drug-seeking after long-term extinction, and reacquisition of intravenous cocaine self-administration (SA) behavior in the Roman lines. Compared with RLA rats, the rates of responding during cocaine SA acquisition were higher, extinction from cocaine SA was prolonged, and drug-induced reinstatement of cocaine-seeking behavior was more robust in RHA rats. Moreover, only RHA rats reacquired extinguished lever-pressing activity when a low reinforcing dose of cocaine was available. These findings are consistent with the view that subjects with genetically determined high responsiveness to the acute and chronic (ie, sensitizing) effects of psychostimulants, such as RHA rats, also display a higher propensity to self -administer cocaine. Further comparative studies in the Roman lines, using SA paradigms that distinguish mere drug-taking from the compulsive and uncontrolled drug use that characterizes addiction in humans, may eventually help to characterize the relationships among genotype, temperament traits, and neurobiological mechanisms involved in the individual vulnerability to cocaine addiction.
Collapse
Affiliation(s)
- Liana Fattore
- Institute of Neuroscience CNR, Section of Cagliari, Italy
| | | | | | | |
Collapse
|
26
|
Abrahao KP, Quadros IMH, Souza-Formigoni MLO. Individual differences to repeated ethanol administration may predict locomotor response to other drugs, and vice versa. Behav Brain Res 2009; 197:404-10. [DOI: 10.1016/j.bbr.2008.10.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2008] [Revised: 09/29/2008] [Accepted: 10/04/2008] [Indexed: 11/28/2022]
|
27
|
Scholl JL, Feng N, Watt MJ, Renner KJ, Forster GL. Individual differences in amphetamine sensitization, behavior and central monoamines. Physiol Behav 2008; 96:493-504. [PMID: 19103211 DOI: 10.1016/j.physbeh.2008.12.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Revised: 11/29/2008] [Accepted: 12/03/2008] [Indexed: 01/21/2023]
Abstract
Repeated amphetamine treatment results in behavioral sensitization in a high percentage of rats. Alterations to plasma corticosterone, neural monoamines and stress behavior can accompany amphetamine sensitization. Whether these changes occur following repeated amphetamine treatment in the absence of behavioral sensitization is not known. Male Sprague-Dawley rats were treated with amphetamine (2.5 mg/kg, i.p.) or saline once daily for 6 days. Amphetamine-induced locomotion and stereotypy, open-field anxiety behavior, plasma corticosterone and limbic monoamines were measured during withdrawal. Sixty-two percent of amphetamine-treated rats showed behavioral sensitization over the test periods. Only amphetamine-sensitized rats showed increased latency to enter the center of the open-field, as well as increased plasma corticosterone when compared to saline-treated controls. Amphetamine-sensitized rats showed increased dopamine concentrations in the shell of the nucleus accumbens and increased serotonin concentrations in the dorsal hippocampus, which were not observed in amphetamine-treated non-sensitized rats. These findings suggest that anxiety behavior, plasma corticosterone and limbic monoamines concentrations are altered by repeated amphetamine (2.5 mg/kg) treatment, and that these neuroendocrine and behavioral changes are often associated with sensitization to the psychostimulant effects of amphetamine.
Collapse
Affiliation(s)
- Jamie L Scholl
- Basic Biomedical Sciences & Neuroscience Group, Sanford School of Medicine, University of South Dakota, 414 E. Clark St. Vermillion, SD 57069, USA
| | | | | | | | | |
Collapse
|
28
|
Gómez MJ, de la Torre L, Callejas-Aguilera JE, Lerma-Cabrera JM, Rosas JM, Escarabajal MD, Agüero Á, Tobeña A, Fernández-Teruel A, Torres C. The partial reinforcement extinction effect (PREE) in female Roman high- (RHA-I) and low-avoidance (RLA-I) rats. Behav Brain Res 2008; 194:187-92. [DOI: 10.1016/j.bbr.2008.07.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2008] [Revised: 06/30/2008] [Accepted: 07/10/2008] [Indexed: 10/21/2022]
|
29
|
Quantitative trait locus analysis identifies rat genomic regions related to amphetamine-induced locomotion and Galpha(i3) levels in nucleus accumbens. Neuropsychopharmacology 2008; 33:2735-46. [PMID: 18216777 PMCID: PMC2818767 DOI: 10.1038/sj.npp.1301667] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Identification of the genetic factors that underlie stimulant responsiveness in animal models has significant implications for better understanding and treating stimulant addiction in humans. F(2) progeny derived from parental rat strains F344/NHsd and LEW/NHsd, which differ in responses to drugs of abuse, were used in quantitative trait locus (QTL) analyses to identify genomic regions associated with amphetamine-induced locomotion (AIL) and G-protein levels in the nucleus accumbens (NAc). The most robust QTLs were observed on chromosome 3 (maximal log ratio statistic score (LRS(max))=21.3) for AIL and on chromosome 2 (LRS(max)=22.0) for Galpha(i3). A 'suggestive' QTL (LRS(max)=12.5) was observed for AIL in a region of chromosome 2 that overlaps with the Galpha(i3) QTL. Novelty-induced locomotion (NIL) showed different QTL patterns from AIL, with the most robust QTL on chromosome 13 (LRS(max)=12.2). Specific unique and overlapping genomic regions influence AIL, NIL, and inhibitory G-protein levels in the NAc. These findings suggest that common genetic mechanisms influence certain biochemical and behavioral aspects of stimulant responsiveness.
Collapse
|
30
|
Mandt BH, Allen RM, Zahniser NR. Individual differences in initial low-dose cocaine-induced locomotor activity and locomotor sensitization in adult outbred female Sprague-Dawley rats. Pharmacol Biochem Behav 2008; 91:511-6. [PMID: 18817807 DOI: 10.1016/j.pbb.2008.09.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Revised: 09/03/2008] [Accepted: 09/05/2008] [Indexed: 10/21/2022]
Abstract
Sex and individual differences are important considerations when studying cocaine responsiveness. We have previously shown that male Sprague-Dawley (S-D) rats can be classified as low or high cocaine responders (LCRs or HCRs, respectively) based on their locomotor activity following a single dose of cocaine (10 mg/kg, i.p.). Further, this distinction was found to predict dopamine transporter function, cocaine-induced locomotor sensitization, cocaine conditioned place preference and motivation to self-administer cocaine. Here we investigated whether or not individual differences in cocaine-induced locomotor activity and locomotor sensitization exist in female S-D rats. Female rats exhibited a broad range of locomotor activation following either a 5 or 10 mg/kg cocaine injection, allowing for classification as LCRs or HCRs. When administered over 7 days, both doses induced locomotor sensitization in female LCRs/HCRs. However, the magnitude of effects produced by 5 mg/kg cocaine in female LCRs/HCRs was more comparable to that produced by 10 mg/kg in male LCRs/HCRs, both of which, interestingly, developed sensitization in this study. These findings suggest that female S-D rats, like male S-D rats, can be classified as LCRs/HCRs and highlight the importance of accounting for dose when studying sex and individual differences to the effects of cocaine.
Collapse
Affiliation(s)
- Bruce H Mandt
- University of Colorado Denver, School of Medicine, Department of Pharmacology, Aurora, CO 80045, United States.
| | | | | |
Collapse
|
31
|
Guitart-Masip M, Johansson B, Fernández-Teruel A, Tobeña A, Giménez-Llort L. Divergent effect of the selective D3 receptor agonist pd-128,907 on locomotor activity in Roman high- and low-avoidance rats: relationship to NGFI-A gene expression in the Calleja islands. Psychopharmacology (Berl) 2008; 196:39-49. [PMID: 17952413 DOI: 10.1007/s00213-007-0925-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2006] [Accepted: 08/19/2007] [Indexed: 11/26/2022]
Abstract
RATIONALE The inbred Roman high- (RHA-I) and low-avoidance (RLA-I) rats, differing in dopaminergic activity and novelty/substance-seeking profiles, may be a suitable model to study the implication of the dopaminergic system in vulnerability to drug abuse. Differences in D3 receptor binding recently described between the two strains (Guitart-Masip M, Johansson B, Fernández-Teruel A, Cañete T, Tobeña A, Terenius L, Giménez-Llort L, Neuroscience 142:1231-1243, 2006b) may be important in shaping the aforementioned differences in novelty seeking. OBJECTIVE The aim of the present work was to study the effect of D3 receptor activation on novelty-induced locomotor activity in these two strains of rats. MATERIALS AND METHODS We administered saline and PD-128,907 (0.01 and 0.1 mg/kg), a putative D3 receptor agonist, to the Roman rats and studied the locomotor activity when animals were placed in a novel environment. Thereafter, by means of in situ hybridization, nerve growth factor inducible clone A (NGFI-A) mRNA was measured in the striatum and the Calleja islands of these animals. RESULTS We found that RLA-I rats showed stronger locomotor inhibition than RHA-I rats after PD-128,907 administration. Moreover, RLA-I rats showed stronger reduction of NGFI-A mRNA in the Calleja islands than RHA-I rats. CONCLUSIONS These results, together with previous findings, suggest that differences in D3 receptor expression in the Calleja islands may contribute to the divergent behavioral effect of PD-128,907 administration in the two strains of Roman rats.
Collapse
Affiliation(s)
- Marc Guitart-Masip
- Medical Psychology Unit, Department of Psychiatry and Forensic Medicine, Institute of Neuroscience, Autonomous University of Barcelona, 08193 Bellaterra, Barcelona, Spain
| | | | | | | | | |
Collapse
|
32
|
Rosas JM, Callejas-Aguilera JE, Escarabajal MD, Gómez MJ, de la Torre L, Agüero A, Tobeña A, Fernández-Teruel A, Torres C. Successive negative contrast effect in instrumental runway behaviour: A study with Roman high- (RHA) and Roman low- (RLA) avoidance rats. Behav Brain Res 2007; 185:1-8. [PMID: 17764760 DOI: 10.1016/j.bbr.2007.07.027] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2006] [Revised: 06/26/2007] [Accepted: 07/09/2007] [Indexed: 12/01/2022]
Abstract
It has been recently shown that Roman high- (RHA) and low- (RLA) avoidance rats show behavioural divergence in successive negative contrast (SNC) induced in one-way avoidance learning [Torres C, Cándido A, Escarabajal MD, de la Torre L, Maldonado A, Tobeña A, et al. Successive negative contrast effect in one-way avoidance learning in female roman rats. Physiol Behav 2005;85:377-82]. A 2-experiment study was conducted with the goal of analyzing whether these differences in SNC can also be extended to a different experimental paradigm. Food-deprived RHA and RLA female rats were exposed to a straight alley, recording the latency (DV) between leaving the start box and reaching the food available in the goal box at the end of the alley. To induce the SNC effect the amount of reinforcement received went from 12 pellets in the pre-shift phase to 1 pellet (Experiment 1) or 2 pellets (Experiment 2) in the postshift phase. The SNC effect appeared in both strains in Experiment 1, but only in RLA rats in Experiment 2. These results are discussed within the framework of SNC theories that account for this effect by using emotional mechanisms, as related to the differences in emotional reactivity seen between the RHA and RLA strains in a number of behavioural tests of fear/anxiety.
Collapse
Affiliation(s)
- Juan Manuel Rosas
- Department of Psychology, University of Jaén, Paraje Las Lagunillas s/n Edif. D-2, 23071 Jaén, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Guitart-Masip M, Johansson B, Cañete T, Fernández-Teruel A, Tobeña A, Terenius L, Giménez-Llort L. Regional adaptations in PSD-95, NGFI-A and secretogranin gene transcripts related to vulnerability to behavioral sensitization to amphetamine in the Roman rat strains. Neuroscience 2007; 151:195-208. [PMID: 18093743 DOI: 10.1016/j.neuroscience.2007.09.072] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2007] [Revised: 08/17/2007] [Accepted: 10/06/2007] [Indexed: 12/23/2022]
Abstract
Genetically selected for high or low two-way active avoidance, Roman high-avoidance (RHA) and Roman low-avoidance (RLA) rats differ in their central dopaminergic activity, sensation/novelty- and substance-seeking profiles. These animals are, therefore, well suited to identify anatomical and neurochemical concomitants of behavioral sensitization, a phenomenon linked to addictive liability. We submitted inbred RHA (RHA-I), inbred RLA (RLA-I) and Sprague-Dawley-OFA (SD-OFA) rats to a sensitization regimen with amphetamine and studied the behavioral response to an amphetamine challenge after a 2-week withdrawal period. The expression patterns of nerve growth factor inducible clone A (NGFI-A), secretogranin, post-synaptic density protein of 95 Kd (PSD-95), prodynorphin and proenkephalin mRNA were also analyzed using in situ hybridization, after the challenge with amphetamine. RHA-I rats showed stronger sensitization than SD-OFA rats. RLA-I rats did not show sensitization but were hyper-reactive to amphetamine. Expression of behavioral sensitization in RHA-I rats activated secretogranin and PSD-95 mRNA in the nucleus accumbens core. On the other hand, high induction of NGFI-A mRNA in the central amygdala was observed in RLA-I rats when they experienced amphetamine for the first time in the challenge. Our results reveal that 1) the acute locomotor response to amphetamine does not predict vulnerability to behavioral sensitization and 2) differences in vulnerability to sensitization may involve distinctive cellular adaptations at particular brain locations which may be related to addictive vulnerability.
Collapse
Affiliation(s)
- M Guitart-Masip
- Department of Psychiatry and Forensic Medicine, Institute of Neuroscience, Autonomous University of Barcelona, 08193 Bellaterra, Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
34
|
Ding Y, Restrepo J, Won L, Hwang DY, Kim KS, Kang UJ. Chronic 3,4-dihydroxyphenylalanine treatment induces dyskinesia in aphakia mice, a novel genetic model of Parkinson's disease. Neurobiol Dis 2007; 27:11-23. [PMID: 17499513 PMCID: PMC2570533 DOI: 10.1016/j.nbd.2007.03.013] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2006] [Revised: 02/25/2007] [Accepted: 03/17/2007] [Indexed: 11/26/2022] Open
Abstract
L-DOPA-induced dyskinesia (LID) is one of the main limitations of long term L-DOPA use in Parkinson's disease (PD) patients. We show that chronic L-DOPA treatment induces novel dyskinetic behaviors in aphakia mouse with selective nigrostriatal deficit mimicking PD. The stereotypical abnormal involuntary movements were induced by dopamine receptor agonists and attenuated by antidyskinetic agents. The development of LID was accompanied by preprodynorphin and preproenkephalin expression changes in the denervated dorsal striatum. Increased FosB-expression was also noted in the dorsal striatum. In addition, FosB expression was noted in the pedunculopontine nucleus and the zona incerta, structures previously not examined in the setting of LID. The aphakia mouse is a novel genetic model with behavioral and biochemical characteristics consistent with those of PD dyskinesia and provides a more consistent, convenient, and physiologic model than toxic lesion models to study the mechanism of LID and to test therapeutic approaches for LID.
Collapse
Affiliation(s)
- Yunmin Ding
- Department of Neurology, University of Chicago, Chicago, Illinois 60637
| | | | - Lisa Won
- Department of Neurology, University of Chicago, Chicago, Illinois 60637
| | - Dong-Youn Hwang
- Molecular Neurobiology Laboratory, McLean Hospital and Harvard Medical School, Belmont, Massachusetts, 02478
| | - Kwang-Soo Kim
- Molecular Neurobiology Laboratory, McLean Hospital and Harvard Medical School, Belmont, Massachusetts, 02478
| | - Un Jung Kang
- Department of Neurology, University of Chicago, Chicago, Illinois 60637
- Committee on Neurobiology, University of Chicago, Chicago, Illinois 60637
- Corresponding author with complete address, including an email address: *: Un Jung Kang,
| |
Collapse
|
35
|
Giorgi O, Piras G, Corda MG. The psychogenetically selected Roman high- and low-avoidance rat lines: A model to study the individual vulnerability to drug addiction. Neurosci Biobehav Rev 2007; 31:148-63. [PMID: 17164110 DOI: 10.1016/j.neubiorev.2006.07.008] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2006] [Accepted: 07/22/2006] [Indexed: 11/19/2022]
Abstract
The Roman high- (RHA) and low-avoidance (RLA) rat lines were selected for, respectively, rapid vs poor acquisition of two-way active avoidance in the shuttle-box. Here, we review experimental evidence indicating that, compared with their RLA counterparts, RHA rats display a robust sensation/novelty seeking profile, a marked preference and intake of natural or drug rewards, and more pronounced behavioral and neurochemical responses to the acute administration of morphine and psychostimulants. Moreover, we show that (i) the repeated administration of morphine and cocaine elicits behavioral sensitization in RHA, but not RLA, rats, (ii) in sensitized RHA rats, acute morphine and cocaine cause a larger increment in dopamine output in the core, and an attenuated dopaminergic response in the shell of the nucleus accumbens, as compared with RHA rats repeatedly treated with saline, and (iii) such neurochemical changes are not observed in the mesoaccumbens dopaminergic system of the sensitization-resistant RLA line. Behavioral sensitization plays a key role in several cardinal features of addiction, including drug craving, compulsive drug seeking and propensity to relapse following detoxification. Comparative studies in the Roman lines may therefore represent a valid approach to evaluate the contribution of the genotype on the neural substrates of drug sensitization and addiction.
Collapse
Affiliation(s)
- Osvaldo Giorgi
- Department of Toxicology, University of Cagliari, Via Ospedale, 72, 09124 Cagliari, Italy.
| | | | | |
Collapse
|
36
|
Corda MG, Piras G, Giorgi O. Neonatal ventral hippocampal lesions potentiate amphetamine-induced increments in dopamine efflux in the core, but not the shell, of the nucleus accumbens. Biol Psychiatry 2006; 60:1188-95. [PMID: 16934777 DOI: 10.1016/j.biopsych.2006.03.047] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2005] [Revised: 03/09/2006] [Accepted: 03/09/2006] [Indexed: 11/17/2022]
Abstract
BACKGROUND In rats, neonatal ventral hippocampal lesions (NVHLs) result in the postpubertal emergence of alterations reminiscent of several features of schizophrenia, including increased responsivity to the behavioral effects of amphetamine (AMPH). The precise nature of presynaptic aspects of accumbal dopamine (DA) function in these alterations is however uncertain: previous studies have found that the exacerbated responses to AMPH of NVHL rats are associated with either decreased or unchanged DA efflux in the nucleus accumbens (NAc) as compared with shams. Because these studies investigated DA output in the whole NAc, it was considered of interest to examine the impact of NVHLs on DA transmission in NAc subregions involved in distinct aspects of goal-directed behavior. METHODS The effects of AMPH (.25 mg/kg, subcutaneous) on the accumbal DA efflux of adult rats were evaluated using brain microdialysis, and motor activity was recorded alongside dialysate sample collection. RESULTS The enhanced behavioral responsivity to AMPH of NVHL rats is associated with potentiation of AMPH-induced DA output in the NAc core and a concomitant attenuation of DA overflow in the NAc shell. CONCLUSIONS The functional alterations in the NAc core induced by NVHLs provide a link between the hippocampal damage and striatal DA hyperactivity in schizophrenia.
Collapse
Affiliation(s)
- Maria G Corda
- Department of Toxicology, University of Cagliari, Cagliari, Italy
| | | | | |
Collapse
|
37
|
Guitart-Masip M, Johansson B, Fernández-Teruel A, Cañete T, Tobeña A, Terenius L, Giménez-Llort L. Divergent anatomical pattern of D1 and D3 binding and dopamine- and cyclic AMP-regulated phosphoprotein of 32 kDa mRNA expression in the Roman rat strains: Implications for drug addiction. Neuroscience 2006; 142:1231-43. [PMID: 17008016 DOI: 10.1016/j.neuroscience.2006.07.041] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2005] [Revised: 07/06/2006] [Accepted: 07/11/2006] [Indexed: 11/24/2022]
Abstract
Autoradiography analysis of D1, D2 and D3 dopamine receptors and in situ hybridization analysis of mRNA for dopamine and cAMP regulated phosphoprotein of 32 kDa (DARPP-32) were performed in brains of naïve Roman high avoidance (RHA) and Roman low avoidance (RLA) inbred rats. These strains, genetically selected for high (RHA) or extremely low (RLA) active avoidance acquisition in the two-way shuttle box, differ in indices of dopaminergic activity along with sensation/novelty and substance-seeking behavioral profiles. The present study shows no differences in D2 receptor binding between the two strains. In contrast, the D1 and D3 receptor binding in the nucleus accumbens was higher in RHA-I rats, whereas RLA-I rats show higher D3 binding in the Calleja islands. Together with previous evidence showing behavioral and presynaptic differences related to the dopamine system, the present results suggest a higher dopaminergic tone at the nucleus accumbens shell in RHA-I rats. Besides, the comparison of the expression pattern of DARPP-32 mRNA with that of dopamine receptor binding revealed a mismatch in some amygdala nuclei. In some cortical structures (prelimbic and cingulate cortices, the dentate gyrus) as well as in the central amygdala, RHA-I rats showed higher DARPP-32 mRNA expression than RLA-I rats. Hence, RHA-I and RLA-I rats may be a useful tool to identify dopamine-related mechanisms that predispose to drug and alcohol dependence.
Collapse
Affiliation(s)
- M Guitart-Masip
- Medical Psychology Unit, Department of Psychiatry and Forensic Medicine, Institute of Neuroscience, Autonomous University of Barcelona, 08193 Bellaterra, Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
38
|
Wang SM, Lin CC, Li TL, Shih CY, Giang YS, Liu RH. Distribution characteristics of methamphetamine and amphetamine in urine and hair specimens collected from alleged methamphetamine users in northern Taiwan. Anal Chim Acta 2006; 576:140-6. [PMID: 17723626 DOI: 10.1016/j.aca.2006.01.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2005] [Revised: 01/04/2006] [Accepted: 01/06/2006] [Indexed: 11/19/2022]
Abstract
This study was conducted to better understand the distribution characteristics of methamphetamine and amphetamine in urine and hair specimens collected from alleged methamphetamine users in the local population. It is anticipated that the data hereby obtained will be helpful to the interpretation of the time and pattern of drug use. Eight alleged methamphetamine-using arrestees from Keelung Police Department (north of Taipei, Taiwan) consented to contribute both urine and hair specimens. Each arrestee contributed seven urine specimens collected at 0, 12, 24, 48, 72, 96, and 120 h, respectively, after the arrest. Hair specimens were cut into 2-cm sections. The limits of detection and quantitation of the urine protocol were 40 and 50 ng/mL, respectively, for both amphetamine and methamphetamine, while the corresponding limits of detection and quantitation for the hair protocol were 0.8 and 1.0 ng/mg, respectively. The concentration variations of methamphetamine and amphetamine in the urine specimens exhibited three distinct patterns: (a) continuous decrease in the analytes' concentrations for specimens collected at hours 0-120; (b) increase in the analytes' concentrations in specimens collected at hours 0-12, followed by decrease; (c) increase in analytes' concentrations in specimens collected at later times. Together with the amphetamine/methamphetamine concentration ratios found in these urine specimens, the observed trends in the changes of the analytes' concentrations are helpful for the interpretation on the time of drug use. Unlike urine specimens, amphetamine/methamphetamine concentration ratios in various hair specimens and hair sections remain relatively constant.
Collapse
Affiliation(s)
- Sheng-Meng Wang
- Department of Forensic Science, Central Police University, 56 Shujen Road, Kueishan, Taoyuan 33304, Taiwan.
| | | | | | | | | | | |
Collapse
|
39
|
Guitart-Masip M, Giménez-Llort L, Fernández-Teruel A, Cañete T, Tobeña A, Ogren SO, Terenius L, Johansson B. Reduced ethanol response in the alcohol-preferring RHA rats and neuropeptide mRNAs in relevant structures. Eur J Neurosci 2006; 23:531-40. [PMID: 16420460 DOI: 10.1111/j.1460-9568.2005.04556.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Roman rat strains, genetically selected for high (RHA) or low (RLA) active avoidance acquisition in the two-way shuttle box, differ in dopaminergic activity. These two strains appear to be a valid laboratory model of divergent sensation/novelty and substance-seeking profiles. RHA rats show higher ethanol intake and preference than do RLA rats, and it was suggested that RHA rats are more tolerant than RLA to the effects of alcohol. In the hole-board test, we found that the non-alcohol-preferring RLA rats showed enhanced responsiveness to the stimulatory effects of intraperitoneal administration of 0.25 g/kg ethanol when compared with RHA rats. In situ hybridization analysis showed higher levels of preprodynorphin in the accumbens shell and higher levels of preproenkephalin in the cingulate cortex in RHA rats. RLA rats showed higher levels of enkephalin gene transcripts in restricted areas of the dorsal striatum. Finally, differences in cholecystokinin gene transcript, suggestive of a different arrangement of certain interneurons, were found in different cortical areas. The differences in peptide gene expression found between the two strains might reflect the differences in alcohol preference and sensitivity. RHA rats may have more predictive value than other rodent alcoholism models, as high initial tolerance to ethanol is a risk factor for alcoholism in humans.
Collapse
Affiliation(s)
- Marc Guitart-Masip
- Medical Psychology Unit, Department of Psychiatry and Forensic Medicine, Neuroscience Institute, Autonomous University of Barcelona, 08193 Bellaterra, Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Giorgi O, Piras G, Lecca D, Corda MG. Behavioural effects of acute and repeated cocaine treatments: a comparative study in sensitisation-prone RHA rats and their sensitisation-resistant RLA counterparts. Psychopharmacology (Berl) 2005; 180:530-8. [PMID: 15772864 DOI: 10.1007/s00213-005-2177-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2004] [Accepted: 11/22/2004] [Indexed: 11/24/2022]
Abstract
RATIONALE Dopamine (DA) transmission is critically involved in the motor effects of psychostimulants and opiates, as well as in the augmentation of these effects resulting from repeated drug administration-a process termed behavioural sensitisation. The latter is known to play a central role in the development and maintenance of drug addiction as well as in the high frequency of relapse observed in drug addicts following detoxification. The selective breeding of Roman high- (RHA) and low-avoidance (RLA) rats for extreme performances in the acquisition of avoidant behaviour has generated two phenotypes that differ in the functional properties of the mesocortical and mesolimbic DA systems and in their behavioural and neurochemical responses to the acute administration of psychostimulants and opiates. More recently, we showed that repeated morphine or amphetamine injections induce behavioural sensitisation in RHA, but not RLA, rats. OBJECTIVE To further characterize the differences in the susceptibility to develop psychostimulant sensitisation between the Roman lines, we evaluated the behavioural effects of acute cocaine (5 and 10 mg kg(-1), i.p.) 1 day before and 8 days after repeated administration of saline (2 ml kg(-1), i.p.) or cocaine (10 mg kg(-1), i.p. for 14 consecutive days). RESULTS We show that repeated cocaine administration elicits augmented behavioural responses to both challenge doses of the same drug only in RHA rats. CONCLUSIONS The Roman lines represent a useful model to investigate how, and to what extent, the genetic make-up influences the neural substrates of individual vulnerability to addiction.
Collapse
Affiliation(s)
- Osvaldo Giorgi
- Department of Toxicology, University of Cagliari, Via Ospedale, 72, 09124 Cagliari, Italy.
| | | | | | | |
Collapse
|
41
|
Giorgi O, Piras G, Lecca D, Corda MG. Differential activation of dopamine release in the nucleus accumbens core and shell after acute or repeated amphetamine injections: A comparative study in the Roman high- and low-avoidance rat lines. Neuroscience 2005; 135:987-98. [PMID: 16154292 DOI: 10.1016/j.neuroscience.2005.06.075] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2005] [Revised: 05/23/2005] [Accepted: 06/21/2005] [Indexed: 10/25/2022]
Abstract
The selectively bred Roman high- and low-avoidance rats differ in emotionality and responsiveness to the motor effects of acute and repeated psychostimulant administration. These lines also show drastic differences in the neurochemical responses of their mesolimbic dopamine systems to addictive drugs. The nucleus accumbens is critically involved in the locomotor activation produced by psychostimulants and in the augmentation of this effect observed upon repeated drug administration (i.e. behavioral sensitization), although there is not a general consensus as to whether the nucleus accumbens-core or the nucleus accumbens-shell is preferentially involved in such alterations. This study was designed to evaluate the effects of acute amphetamine (0.20 mg/kg, s.c.) on dopamine output in the nucleus accumbens-shell and nucleus accumbens-core of the Roman lines under basal conditions (i.e. naïve rats) and after the repeated administration of amphetamine (1 mg/kg, s.c. x 10 days) or saline. We show that (1) in naïve rats, amphetamine caused a larger increment in dopamine output in the nucleus accumbens-shell vs the nucleus accumbens-core only in the Roman high-avoidance line; (2) repeated amphetamine elicits behavioral sensitization in Roman high-avoidance, but not Roman low-avoidance, rats; (3) in sensitized Roman high-avoidance rats, amphetamine provokes a larger increment in dopamine output in the nucleus accumbens-core, and an attenuated dopaminergic response in the nucleus accumbens-shell, as compared with Roman high-avoidance rats repeatedly treated with saline; and (4) such neurochemical changes are not observed in the mesoaccumbens dopaminergic system of the sensitization-resistant Roman low-avoidance line. We propose that (1) Roman high-avoidance and Roman low-avoidance rats differ in the vulnerability to develop psychostimulant sensitization, (2) the nucleus accumbens-core and nucleus accumbens-shell subserve distinct functional roles in this phenomenon, and (3) comparative studies in the Roman lines may provide insight into the influence of neural substrates and genetic background on the individual vulnerability to addiction.
Collapse
Affiliation(s)
- O Giorgi
- Department of Toxicology, University of Cagliari, Via Ospedale 72, 09124 Cagliari, Italy.
| | | | | | | |
Collapse
|