1
|
Batallán Burrowes AA, Moisan É, Garrone A, Buynack LM, Chapman CA. 17β-Estradiol reduces inhibitory synaptic currents in entorhinal cortex neurons through G protein-coupled estrogen receptor-1 activation of extracellular signal-regulated kinase. Hippocampus 2024; 34:454-463. [PMID: 39150316 DOI: 10.1002/hipo.23621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/02/2024] [Accepted: 06/05/2024] [Indexed: 08/17/2024]
Abstract
Estrogens are believed to modulate cognitive functions in part through the modulation of synaptic transmission in the cortex and hippocampus. Administration of 17β-estradiol (E2) can rapidly enhance excitatory synaptic transmission in the hippocampus and facilitate excitatory synaptic transmission in rat lateral entorhinal cortex via activation of the G protein-coupled estrogen receptor-1 (GPER1). To assess the mechanisms through which GPER1 activation facilitates synaptic transmission, we assessed the effects of acute 10 nM E2 administration on pharmacologically isolated evoked excitatory and inhibitory synaptic currents in layer II/III entorhinal neurons. Female Long-Evans rats were ovariectomized between postnatal day (PD) 63 and 74 and implanted with a subdermal E2 capsule to maintain continuous low levels of E2. Electrophysiological recordings were obtained between 7 and 20 days after ovariectomy. Application of E2 for 20 min did not significantly affect AMPA or NMDA receptor-mediated excitatory synaptic currents. However, GABA receptor-mediated inhibitory synaptic currents (IPSCs) were markedly reduced by E2 and returned towards baseline levels during the 20-min washout period. The inhibition of GABA-mediated IPSCs was blocked in the presence of the GPER1 receptor antagonist G15. GPER1 can modulate protein kinase A (PKA), but blocking PKA with intracellular KT5720 did not prevent the E2-induced reduction in IPSCs. GPER1 can also stimulate extracellular signal-regulated kinase (ERK), a negative modulator of GABAA receptors, and blocking activation of ERK with PD90859 prevented the E2-induced reduction of IPSCs. E2 can therefore result in a rapid GPER1 and ERK signaling-mediated reduction in GABA-mediated IPSCs. This provides a novel mechanism through which E2 can rapidly modulate synaptic excitability in entorhinal layer II/III neurons and may also contribute to E2 and ERK-dependent alterations in synaptic transmission in other brain areas.
Collapse
Affiliation(s)
- Ariel A Batallán Burrowes
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montreal, Québec, Canada
| | - Élyse Moisan
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montreal, Québec, Canada
| | - Aurelie Garrone
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montreal, Québec, Canada
| | - Lauren M Buynack
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montreal, Québec, Canada
| | - C Andrew Chapman
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montreal, Québec, Canada
| |
Collapse
|
2
|
Lemieux GA, Yoo S, Lin L, Vohra M, Ashrafi K. The steroid hormone ADIOL promotes learning by reducing neural kynurenic acid levels. Genes Dev 2023; 37:998-1016. [PMID: 38092521 PMCID: PMC10760639 DOI: 10.1101/gad.350745.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 11/22/2023] [Indexed: 12/28/2023]
Abstract
Reductions in brain kynurenic acid levels, a neuroinhibitory metabolite, improve cognitive function in diverse organisms. Thus, modulation of kynurenic acid levels is thought to have therapeutic potential in a range of brain disorders. Here we report that the steroid 5-androstene 3β, 17β-diol (ADIOL) reduces kynurenic acid levels and promotes associative learning in Caenorhabditis elegans We identify the molecular mechanisms through which ADIOL links peripheral metabolic pathways to neural mechanisms of learning capacity. Moreover, we show that in aged animals, which normally experience rapid cognitive decline, ADIOL improves learning capacity. The molecular mechanisms that underlie the biosynthesis of ADIOL as well as those through which it promotes kynurenic acid reduction are conserved in mammals. Thus, rather than a minor intermediate in the production of sex steroids, ADIOL is an endogenous hormone that potently regulates learning capacity by causing reductions in neural kynurenic acid levels.
Collapse
Affiliation(s)
- George A Lemieux
- Department of Physiology, University of California, San Francisco, San Francisco, California 94143, USA
| | - Shinja Yoo
- Department of Physiology, University of California, San Francisco, San Francisco, California 94143, USA
| | - Lin Lin
- Department of Physiology, University of California, San Francisco, San Francisco, California 94143, USA
| | - Mihir Vohra
- Department of Physiology, University of California, San Francisco, San Francisco, California 94143, USA
| | - Kaveh Ashrafi
- Department of Physiology, University of California, San Francisco, San Francisco, California 94143, USA
| |
Collapse
|
3
|
Pradhyumnan H, Reddy V, Bassett ZQ, Patel SH, Zhao W, Dave KR, Perez-Pinzon MA, Bramlett HM, Raval AP. Post-stroke periodic estrogen receptor-beta agonist improves cognition in aged female rats. Neurochem Int 2023; 165:105521. [PMID: 36933865 DOI: 10.1016/j.neuint.2023.105521] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/18/2023]
Abstract
Women have a higher risk of having an ischemic stroke and increased cognitive decline after stroke as compared to men. The female sex hormone 17β-estradiol (E2) is a potent neuro- and cognitive-protective agent. Periodic E2 or estrogen receptor subtype-beta (ER-β) agonist pre-treatments every 48 h before an ischemic episode ameliorated ischemic brain damage in young ovariectomized or reproductively senescent (RS) aged female rats. The current study aims to investigate the efficacy of post-stroke ER-β agonist treatments in reducing ischemic brain damage and cognitive deficits in RS female rats. Retired breeder (9-10 months) Sprague-Dawley female rats were considered RS after remaining in constant diestrus phase for more than a month. The RS rats were exposed to transient middle cerebral artery occlusion (tMCAO) for 90 min and treated with either ER-β agonist (beta 2, 3-bis(4-hydroxyphenyl) propionitrile; DPN; 1 mg/kg; s.c.) or DMSO vehicle at 4.5 h after induction of tMCAO. Subsequently, rats were treated with either ER-β agonist or DMSO vehicle every 48 h for ten injections. Forty-eight hours after the last treatment, animals were tested for contextual fear conditioning to measure post-stroke cognitive outcome. Neurobehavioral testing, infarct volume quantification, and hippocampal neuronal survival were employed to determine severity of stroke. Periodic post-stroke ER-β agonist treatment reduced infarct volume, improved recovery of cognitive capacity by increasing freezing in contextual fear conditioning, and decreased hippocampal neuronal death in RS female rats. These data suggest that periodic post-stroke ER-β agonist treatment to reduce stroke severity and improve post-stroke cognitive outcome in menopausal women has potential for future clinical investigation.
Collapse
Affiliation(s)
- Hari Pradhyumnan
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratories, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, 33136, USA; Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Varun Reddy
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratories, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, 33136, USA; Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Zoe Q Bassett
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratories, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, 33136, USA; Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Shahil H Patel
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratories, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, 33136, USA; Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Weizhao Zhao
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, 33146, USA
| | - Kunjan R Dave
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratories, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, 33136, USA; Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, 33136, USA; Neuroscience Program, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Miguel A Perez-Pinzon
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratories, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, 33136, USA; Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, 33136, USA; Neuroscience Program, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Helen M Bramlett
- Department of Neurological Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, 33136, USA; Neuroscience Program, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, 33136, USA; Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, FL, 33136, USA
| | - Ami P Raval
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratories, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, 33136, USA; Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, 33136, USA; Neuroscience Program, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, 33136, USA; Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, FL, 33136, USA.
| |
Collapse
|
4
|
Kalinowski D, Bogus-Nowakowska K, Kozłowska A, Równiak M. Dopaminergic and cholinergic modulation of the amygdala is altered in female mice with oestrogen receptor β deprivation. Sci Rep 2023; 13:897. [PMID: 36650256 PMCID: PMC9845293 DOI: 10.1038/s41598-023-28069-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
The amygdala is modulated by dopaminergic and cholinergic neurotransmission, and this modulation is altered in mood disorders. Therefore, this study was designed to evaluate the presence/absence of quantitative alterations in the expression of main dopaminergic and cholinergic markers in the amygdala of mice with oestrogen receptor β (ERβ) knock-out which exhibit increased anxiety, using immunohistochemistry and quantitative methods. Such alterations could either contribute to increased anxiety or be a compensatory mechanism for reducing anxiety. The results show that among dopaminergic markers, the expression of tyrosine hydroxylase (TH), dopamine transporter (DAT) and dopamine D2-like receptor (DA2) is significantly elevated in the amygdala of mice with ERβ deprivation when compared to matched controls, whereas the content of dopamine D1-like receptor (DA1) is not altered by ERβ knock-out. In the case of cholinergic markers, muscarinic acetylcholine type 1 receptor (AChRM1) and alpha-7 nicotinic acetylcholine receptor (AChRα7) display overexpression while the content of acetylcholinesterase (AChE) and vesicular acetylcholine transporter (VAChT) remains unchanged. In conclusion, in the amygdala of ERβ knock-out female the dopaminergic and cholinergic signalling is altered, however, to determine the exact role of ERβ in the anxiety-related behaviour further studies are required.
Collapse
Affiliation(s)
- Daniel Kalinowski
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, pl. Łódzki 3, 10-727, Olsztyn, Poland.
| | - Krystyna Bogus-Nowakowska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, pl. Łódzki 3, 10-727, Olsztyn, Poland
| | - Anna Kozłowska
- Department of Human Physiology and Pathophysiology, School of Medicine, University of Warmia and Mazury in Olsztyn, Warszawska 30, 10-082, Olsztyn, Poland
| | - Maciej Równiak
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, pl. Łódzki 3, 10-727, Olsztyn, Poland
| |
Collapse
|
5
|
Khuleshwari K, Vijay P. Genistein enhances expression of extracellular regulated kinases (ERK) 1/2, and learning and memory of mouse. IBRO Neurosci Rep 2021; 10:90-95. [PMID: 33842915 PMCID: PMC8019993 DOI: 10.1016/j.ibneur.2021.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 01/20/2021] [Indexed: 01/08/2023] Open
Abstract
Genistein (GEN) is a well known phytoestrogen. It acts through estrogen receptor (ER) and performs plethora of functions in the brain. ERK1/2 is an activated kinase which involves in neuron differentiation, adult neurogenesis and several brain functions including learning and memory. However, GEN dependent expression of ERK1/2 and its effect in learning and memory of mice are unknown. In this study, Swiss albino male mice of 25weeks weighing 30 g were used for the experiments. Mice were placed in two groups- control (C) and genistein treated (GEN). Treated group received GEN dissolved in sesame oil (1 mg/kg/day) whereas the control group received sesame oil only. To study the effects of GEN on learning and memory, open-field (OF) test and novel object recognition (NOR) test were performed. Moreover, immunoblotting (IB) was performed to check the expression of ERK1/2 in the mouse brain of both groups. In the OF test, no significant change was observed in motor activity and anxiety in GEN treated mice as compared to control. Moreover, NOR test suggested that entry towards the dissimilar object was higher in case of GEN treated mice as compared to control. These findings suggest higher learning and memory of GEN treated mice than of control. IB showed that the expression of ERK1/2 was significantly high in GEN treated mouse brain as compared to control. Such study may be helpful to understand GEN mediated learning and memory involving ERK1/2.
Collapse
Affiliation(s)
- Kurrey Khuleshwari
- Cellular and Molecular Neurobiology & Drug Targeting Laboratory, Department of Zoology, Indira Gandhi National Tribal University, Amarkantak, MP-484 887, India
| | - Paramanik Vijay
- Cellular and Molecular Neurobiology & Drug Targeting Laboratory, Department of Zoology, Indira Gandhi National Tribal University, Amarkantak, MP-484 887, India
| |
Collapse
|
6
|
Qin C, Hu S, Zhang S, Zhao D, Wang Y, Li H, Peng Y, Shi L, Xu X, Wang C, Liu J, Cheng Y, Long J. Hydroxytyrosol Acetate Improves the Cognitive Function of APP/PS1 Transgenic Mice in ERβ-dependent Manner. Mol Nutr Food Res 2021; 65:e2000797. [PMID: 33296142 DOI: 10.1002/mnfr.202000797] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/10/2020] [Indexed: 12/17/2022]
Abstract
SCOPE Alzheimer's disease (AD) is the most prevalent form of dementia in the aging population; however, no effective therapy has been established. It has been previously demonstrated that daily intake of hydroxytyrosol (HT), a polyphenol in olive oil, at a daily dietary level mildly improves cognition in AD mice. In the present study, HT acetate (HT-ac), which is a natural derivative of HT in olive oil that exhibits better bioactivity than HT improves cognition. METHODS AND RESULTS HT-ac to APP/PS1 is orally administered to transgenic mice and used Aβ-treated neuronal cultures to explore the neuroprotective effects of HT-ac in preventing AD progression. It is found that HT-ac remarkably improved the escape latency, escape distance, and the number of platform crossings of AD mice in the water maze test by ameliorating neuronal apoptosis and decreasing inflammatory cytokine levels. It is further demonstrated that HT-ac stimulated the transcription of ERβ and enhanced neuronal viability and electrophysiological activity in primary neurons but that these beneficial effects of HT-ac are abolished upon ERβ deficiency. CONCLUSIONS This study suggests that as the bioactive component of olive oil, HT-ac is a promising neuroprotective nutrient that may be used to alleviate AD-related cognitive dysfunction.
Collapse
Affiliation(s)
- Chuan Qin
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Shaoqin Hu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Shuangxi Zhang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Daina Zhao
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yongyao Wang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Hua Li
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yunhua Peng
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Le Shi
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xiaohong Xu
- Pharmacy School, Chengdu Medical College, Chengdu, 610500, China
| | - Changhe Wang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jiankang Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Ying Cheng
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jiangang Long
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
7
|
The HECT E3 Ligase E6AP/UBE3A as a Therapeutic Target in Cancer and Neurological Disorders. Cancers (Basel) 2020; 12:cancers12082108. [PMID: 32751183 PMCID: PMC7464832 DOI: 10.3390/cancers12082108] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 11/23/2022] Open
Abstract
The HECT (Homologous to the E6-AP Carboxyl Terminus)-family protein E6AP (E6-associated protein), encoded by the UBE3A gene, is a multifaceted ubiquitin ligase that controls diverse signaling pathways involved in cancer and neurological disorders. The oncogenic role of E6AP in papillomavirus-induced cancers is well known, with its action to trigger p53 degradation in complex with the E6 viral oncoprotein. However, the roles of E6AP in non-viral cancers remain poorly defined. It is well established that loss-of-function alterations of the UBE3A gene cause Angelman syndrome, a severe neurodevelopmental disorder with autosomal dominant inheritance modified by genomic imprinting on chromosome 15q. Moreover, excess dosage of the UBE3A gene markedly increases the penetrance of autism spectrum disorders, suggesting that the expression level of UBE3A must be regulated tightly within a physiologically tolerated range during brain development. In this review, current the knowledge about the substrates of E6AP-mediated ubiquitination and their functions in cancer and neurological disorders is discussed, alongside with the ongoing efforts to pharmacologically modulate this ubiquitin ligase as a promising therapeutic target.
Collapse
|
8
|
Matthews DG, Caruso M, Murchison CF, Zhu JY, Wright KM, Harris CJ, Gray NE, Quinn JF, Soumyanath A. Centella Asiatica Improves Memory and Promotes Antioxidative Signaling in 5XFAD Mice. Antioxidants (Basel) 2019; 8:antiox8120630. [PMID: 31817977 PMCID: PMC6943631 DOI: 10.3390/antiox8120630] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/03/2019] [Accepted: 12/06/2019] [Indexed: 12/11/2022] Open
Abstract
Centella asiatica (CA) herb is a traditional medicine, long reputed to provide cognitive benefits. We have reported that CA water extract (CAW) treatment improves cognitive function of aged Alzheimer’s disease (AD) model Tg2576 and wild-type (WT) mice, and induces an NRF2-regulated antioxidant response in aged WT mice. Here, CAW was administered to AD model 5XFAD female and male mice and WT littermates (age: 7.6 +/− 0.6 months), and object recall and contextual fear memory were tested after three weeks treatment. CAW’s impact on amyloid-β plaque burden, and markers of neuronal oxidative stress and synaptic density, was assessed after five weeks treatment. CAW antioxidant activity was evaluated via nuclear transcription factor (erythroid-derived 2)-like 2 (NRF2) and NRF2-regulated antioxidant response element gene expression. Memory improvement in both genders and genotypes was associated with dose-dependent CAW treatment without affecting plaque burden, and marginally increased synaptic density markers in the hippocampus and prefrontal cortex. CAW treatment increased Nrf2 in hippocampus and other NRF2 targets (heme oxygenase-1, NAD(P)H quinone dehydrogenase 1, glutamate-cysteine ligase catalytic subunit). Reduced plaque-associated SOD1, an indicator of oxidative stress, was observed in the hippocampi and cortices of CAW-treated 5XFAD mice. We postulate that CAW treatment leads to reduced oxidative stress, contributing to improved neuronal health and cognition.
Collapse
Affiliation(s)
- Donald G Matthews
- Department of Neurology, Oregon Health and Science University, Portland, OR 97239, USA; (D.G.M.); (M.C.); (C.F.M.); (J.Y.Z.); (K.M.W.); (C.J.H.); (N.E.G.); (J.F.Q.)
| | - Maya Caruso
- Department of Neurology, Oregon Health and Science University, Portland, OR 97239, USA; (D.G.M.); (M.C.); (C.F.M.); (J.Y.Z.); (K.M.W.); (C.J.H.); (N.E.G.); (J.F.Q.)
| | - Charles F Murchison
- Department of Neurology, Oregon Health and Science University, Portland, OR 97239, USA; (D.G.M.); (M.C.); (C.F.M.); (J.Y.Z.); (K.M.W.); (C.J.H.); (N.E.G.); (J.F.Q.)
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jennifer Y Zhu
- Department of Neurology, Oregon Health and Science University, Portland, OR 97239, USA; (D.G.M.); (M.C.); (C.F.M.); (J.Y.Z.); (K.M.W.); (C.J.H.); (N.E.G.); (J.F.Q.)
| | - Kirsten M Wright
- Department of Neurology, Oregon Health and Science University, Portland, OR 97239, USA; (D.G.M.); (M.C.); (C.F.M.); (J.Y.Z.); (K.M.W.); (C.J.H.); (N.E.G.); (J.F.Q.)
| | - Christopher J Harris
- Department of Neurology, Oregon Health and Science University, Portland, OR 97239, USA; (D.G.M.); (M.C.); (C.F.M.); (J.Y.Z.); (K.M.W.); (C.J.H.); (N.E.G.); (J.F.Q.)
- Parkinson’s Disease Research Education and Clinical Care Center, Veterans’ Administration Portland Health Care System, Portland, OR 97239, USA
| | - Nora E Gray
- Department of Neurology, Oregon Health and Science University, Portland, OR 97239, USA; (D.G.M.); (M.C.); (C.F.M.); (J.Y.Z.); (K.M.W.); (C.J.H.); (N.E.G.); (J.F.Q.)
| | - Joseph F Quinn
- Department of Neurology, Oregon Health and Science University, Portland, OR 97239, USA; (D.G.M.); (M.C.); (C.F.M.); (J.Y.Z.); (K.M.W.); (C.J.H.); (N.E.G.); (J.F.Q.)
- Parkinson’s Disease Research Education and Clinical Care Center, Veterans’ Administration Portland Health Care System, Portland, OR 97239, USA
| | - Amala Soumyanath
- Department of Neurology, Oregon Health and Science University, Portland, OR 97239, USA; (D.G.M.); (M.C.); (C.F.M.); (J.Y.Z.); (K.M.W.); (C.J.H.); (N.E.G.); (J.F.Q.)
- Correspondence: ; Tel.: +1-503-494-6878
| |
Collapse
|
9
|
Ravi M, Stevens JS, Michopoulos V. Neuroendocrine pathways underlying risk and resilience to PTSD in women. Front Neuroendocrinol 2019; 55:100790. [PMID: 31542288 PMCID: PMC6876844 DOI: 10.1016/j.yfrne.2019.100790] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 08/26/2019] [Accepted: 09/18/2019] [Indexed: 01/23/2023]
Abstract
Women are twice as likely than men to suffer from posttraumatic stress disorder (PTSD). While women have increased exposure to traumatic events of many types and have greater prevalence of comorbid psychiatric disorders compared to men, these differences do not account for the overall sex difference in the prevalence of PTSD. The current review summarizes significant findings that implicate the role of estradiol, progesterone, and allopregnanolone in female risk for PTSD symptoms and dysregulation of fear psychophysiology that is cardinal to PTSD. We also discuss how these steroid hormones influence the stress axis and neural substrates critical for the regulation of fear responses. Understanding the role of ovarian steroid hormones in risk and resilience for trauma-related adverse mental health outcomes across the lifespan in women has important translational, clinical, and intergenerational implications for mitigating the consequences of trauma exposure.
Collapse
Affiliation(s)
- Meghna Ravi
- Emory University Graduate Program in Neuroscience, Atlanta, GA, United States
| | - Jennifer S Stevens
- Emory University School of Medicine, Department of Psychiatry and Behavioral Sciences, Atlanta, GA, United States
| | - Vasiliki Michopoulos
- Emory University School of Medicine, Department of Psychiatry and Behavioral Sciences, Atlanta, GA, United States; Yerkes National Primate Research Center, Atlanta, GA, United States.
| |
Collapse
|
10
|
Mhaouty-Kodja S, Belzunces LP, Canivenc MC, Schroeder H, Chevrier C, Pasquier E. Impairment of learning and memory performances induced by BPA: Evidences from the literature of a MoA mediated through an ED. Mol Cell Endocrinol 2018; 475:54-73. [PMID: 29605460 DOI: 10.1016/j.mce.2018.03.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 03/28/2018] [Accepted: 03/28/2018] [Indexed: 11/29/2022]
Abstract
Many rodent studies and a few non-human primate data report impairments of spatial and non-spatial memory induced by exposure to bisphenol A (BPA), which are associated with neural modifications, particularly in processes involved in synaptic plasticity. BPA-induced alterations involve disruption of the estrogenic pathway as established by reversal of BPA-induced effects with estrogenic receptor antagonist or by interference of BPA with administered estradiol in ovariectomized animals. Sex differences in hormonal impregnation during critical periods of development and their influence on maturation of learning and memory processes may explain the sexual dimorphism observed in BPA-induced effects in some studies. Altogether, these data highly support the plausibility that alteration of learning and memory and synaptic plasticity by BPA is essentially mediated by disturbance of the estrogenic pathways. As memory function in humans involves similar signaling pathways, this mode of action of BPA has the potential to alter human cognitive abilities.
Collapse
Affiliation(s)
- Sakina Mhaouty-Kodja
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Neuroscience Paris Seine, Institut de Biologie Paris Seine, 75005 Paris, France
| | - Luc P Belzunces
- INRA, Laboratoire de Toxicologie Environnementale, UR 406 A&E, CS 40509, 84914 Avignon Cedex 9, France
| | - Marie-Chantal Canivenc
- Centre des Sciences du Goût et de l'Alimentation, INRA, CNRS, agrosup, Université de Bourgogne, Franche-Comté, Dijon, 21000, France
| | - Henri Schroeder
- Calbinotox, EA7488, Faculté des Sciences et Technologies, Université de Lorraine, 54500, Vandoeuvre les Nancy, France
| | - Cécile Chevrier
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
| | | |
Collapse
|
11
|
Lalert L, Kruevaisayawan H, Amatyakul P, Ingkaninan K, Khongsombat O. Neuroprotective effect of Asparagus racemosus root extract via the enhancement of brain-derived neurotrophic factor and estrogen receptor in ovariectomized rats. JOURNAL OF ETHNOPHARMACOLOGY 2018; 225:336-341. [PMID: 30009979 DOI: 10.1016/j.jep.2018.07.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 06/01/2018] [Accepted: 07/11/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Asparagus racemosus (AR) is well known as an Ayurvedic rasayana which used traditionally by Ayurvedic practitioners for nervous disorders and prevent aging. In our previous study it was found that ethanol AR root extract can improve learning and memory impairment, induced by an ovariectomy, but the extract's mechanisms as a neuroprotective property are still unknown. AIM OF THE STUDY This study aimed to examine the effects and mechanisms of ethanol AR root extract on the alteration of brain-derived neurotrophic factor (BDNF) and estrogen receptor (ER) subtypes in ovariectomized (OVX) rats. MATERIALS AND METHODS Adult female Wistar rats were divided into five groups, 4 groups underwent ovariectomy, and one group was designed to be the sham control group. Two groups were gavaged with propylene glycol for sham, and a second group similarly prepared for OVX. Two further groups of OVX rats were gavaged once daily, one group with 100 mg/kg b.w. of ethanol AR root extract and the second group with 1000 mg/kg b.w. of ethanol AR root extract. The fifth group was gavaged once daily with 0.1 mg/kg b.w. of 17α-ethynylestradiol (EE). BDNF, ERα and ERβ expression were evaluated by western blot analysis. RESULTS The western blot analysis revealed that the OVX rats showed a significant decrease in BDNF and a down-regulation of ERα and ERβ in the frontal cortex and hippocampus. It was also demonstrated that EE and AR root extract increased BDNF, ERα and ERβ in the frontal cortex and hippocampus of ovariectomized rats. CONCLUSIONS Based on these results, the enhancement of BDNF and ERs up-regulation may be involved in the neuroprotective effects of ethanol AR root extract in ovariectomized rat.
Collapse
Affiliation(s)
- Laddawan Lalert
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Hathairat Kruevaisayawan
- Department of Anatomy, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Patcharada Amatyakul
- Department of Obstetrics and Gynecology, Faculty of Medicine, Naresuan University, Phitsanulok 65000, Thailand
| | - Kornkanok Ingkaninan
- Pharmaceutical Chemistry and Pharmacognosy, Faculty of Pharmaceutical Sciences and Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok 65000, Thailand
| | - Onrawee Khongsombat
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand; Center of Excellence in Medical Biotechnology, Naresuan University, Phitsanulok, Thailand.
| |
Collapse
|
12
|
Zhao Y, He L, Zhang Y, Zhao J, Liu Z, Xing F, Liu M, Feng Z, Li W, Zhang J. Estrogen receptor alpha and beta regulate actin polymerization and spatial memory through an SRC-1/mTORC2-dependent pathway in the hippocampus of female mice. J Steroid Biochem Mol Biol 2017; 174:96-113. [PMID: 28789972 DOI: 10.1016/j.jsbmb.2017.08.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 07/29/2017] [Accepted: 08/03/2017] [Indexed: 12/18/2022]
Abstract
Aging-related decline of estrogens, especially 17β-estradiol (E2), has been shown to play an important role in the impairment of learning and memory in dementias, such as Alzheimer's disease (AD), but the underlying molecular mechanisms are poorly understood. In this study, we first demonstrated decreases in E2 signaling (aromatase, classic estrogen receptor ERα and ERβ and their coactivator SRC-1), mTORC2 signaling (Rictor and phospho-AKTser473) and actin polymerization (phospho-Cofilin, Profilin-1 and the F-actin/G-actin ratio) in the hippocampus of old female mice compared with those levels detected in the adult hippocampus. We then showed that ERα and ERβ antagonists induced a significant decrease in SRC-1, mTORC2 signaling, actin polymerization, and CA1 spine density, as well as impairments of learning and memory; however, ovariectomy-induced changes of these parameters could be significantly reversed by treatment with ER agonists. We further showed that expression of SRC-1, mTORC2 signaling and actin polymerization could be upregulated by E2 treatment, and the effects of E2 were blocked by the ER antagonists but mimicked by the agonists. We also showed that the lentivirus-mediated SRC-1 knockdown significantly inhibited the agonist-activated mTORC2 signaling and actin polymerization, and the lentivirus-mediated Rictor knockdown also significantly inhibited the agonist-activated actin polymerization. Finally, we demonstrated that the ERα and ERβ antagonists induced a disruption in actin polymerization and an impairment of spatial memory, which were rescued by activation of mTORC2. Taken together, the above results clearly demonstrated an mTORC2-dependent regulation of actin polymerization that contributed to the effects of ERα and ERβ on spatial learning, which may provide a novel target for the prevention and treatment of E2-related dementia in the aged population.
Collapse
Affiliation(s)
- Yangang Zhao
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing 400038, China
| | - Li He
- School of Nursing, Third Military Medical University, Chongqing 400038, China
| | - Yuanyuan Zhang
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing 400038, China
| | - Jikai Zhao
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing 400038, China
| | - Zhi Liu
- Department of Histology and Embryology, Third Military Medical University, Chongqing 400038, China
| | - Fangzhou Xing
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Mengying Liu
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing 400038, China
| | - Ziqi Feng
- Cadet Brigade, Third Military Medical University, Chongqing 400038, China
| | - Wei Li
- School of Nursing, Third Military Medical University, Chongqing 400038, China.
| | - Jiqiang Zhang
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing 400038, China.
| |
Collapse
|
13
|
Sárvári M, Kalló I, Hrabovszky E, Solymosi N, Rodolosse A, Liposits Z. Long-Term Estrogen Receptor Beta Agonist Treatment Modifies the Hippocampal Transcriptome in Middle-Aged Ovariectomized Rats. Front Cell Neurosci 2016; 10:149. [PMID: 27375434 PMCID: PMC4901073 DOI: 10.3389/fncel.2016.00149] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 05/27/2016] [Indexed: 11/13/2022] Open
Abstract
Estradiol (E2) robustly activates transcription of a broad array of genes in the hippocampal formation of middle-aged ovariectomized rats via estrogen receptors (ERα, ERβ, and G protein-coupled ER). Selective ERβ agonists also influence hippocampal functions, although their downstream molecular targets and mechanisms are not known. In this study, we explored the effects of long-term treatment with ERβ agonist diarylpropionitrile (DPN, 0.05 mg/kg/day, sc.) on the hippocampal transcriptome in ovariectomized, middle-aged (13 month) rats. Isolated hippocampal formations were analyzed by Affymetrix oligonucleotide microarray and quantitative real-time PCR. Four hundred ninety-seven genes fulfilled the absolute fold change higher than 2 (FC > 2) selection criterion. Among them 370 genes were activated. Pathway analysis identified terms including glutamatergic and cholinergic synapse, RNA transport, endocytosis, thyroid hormone signaling, RNA degradation, retrograde endocannabinoid signaling, and mRNA surveillance. PCR studies showed transcriptional regulation of 58 genes encoding growth factors (Igf2, Igfb2, Igf1r, Fgf1, Mdk, Ntf3, Bdnf), transcription factors (Otx2, Msx1), potassium channels (Kcne2), neuropeptides (Cck, Pdyn), peptide receptors (Crhr2, Oprm1, Gnrhr, Galr2, Sstr1, Sstr3), neurotransmitter receptors (Htr1a, Htr2c, Htr2a, Gria2, Gria3, Grm5, Gabra1, Chrm5, Adrb1), and vesicular neurotransmitter transporters (Slc32a1, Slc17a7). Protein-protein interaction analysis revealed networking of clusters associated with the regulation of growth/troph factor signaling, transcription, translation, neurotransmitter and neurohormone signaling mechanisms and potassium channels. Collectively, the results reveal the contribution of ERβ-mediated processes to the regulation of transcription, translation, neurogenesis, neuromodulation, and neuroprotection in the hippocampal formation of ovariectomized, middle-aged rats and elucidate regulatory channels responsible for DPN-altered functional patterns. These findings support the notion that selective activation of ERβ may be a viable approach for treating the neural symptoms of E2 deficiency in menopause.
Collapse
Affiliation(s)
- Miklós Sárvári
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences Budapest, Hungary
| | - Imre Kalló
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of SciencesBudapest, Hungary; Faculty of Information Technology and Bionics, Pázmány Péter Catholic UniversityBudapest, Hungary
| | - Erik Hrabovszky
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences Budapest, Hungary
| | - Norbert Solymosi
- Faculty of Veterinary Science, Szent István University Budapest, Hungary
| | - Annie Rodolosse
- Functional Genomics Core, Institute for Research in Biomedicine Barcelona, Spain
| | - Zsolt Liposits
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of SciencesBudapest, Hungary; Faculty of Information Technology and Bionics, Pázmány Péter Catholic UniversityBudapest, Hungary
| |
Collapse
|
14
|
Lubec G, Korz V. Concerted Gene Expression of Hippocampal Steroid Receptors during Spatial Learning in Male Wistar Rats: A Correlation Analysis. Front Behav Neurosci 2016; 10:94. [PMID: 27242463 PMCID: PMC4868845 DOI: 10.3389/fnbeh.2016.00094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 04/29/2016] [Indexed: 11/29/2022] Open
Abstract
Adrenal and gonadal steroid receptor activities are significantly involved and interact in the regulation of learning, memory and stress. Thus, a coordinated expression of steroid receptor genes during a learning task can be expected. Although coexpression of steroid receptors in response to behavioral tasks has been reported the correlative connection is unclear. According to the inverted U-shape model of the impact of stress upon learning and memory we hypothesized that glucocorticoid (GR) receptor expression should be correlated to corticosterone levels in a linear or higher order manner. Other cognition modulating steroid receptors like estrogen receptors (ER) should be correlated to GR receptors in a quadratic manner, which describes a parabola and thus a U-shaped connection. Therefore, we performed a correlational meta-analyis of data of a previous study (Meyer and Korz, 2013a) of steroid receptor gene expressions during spatial learning, which provides a sufficient data basis in order to perform such correlational connections. In that study male rats of different ages were trained in a spatial holeboard or remained untrained and the hippocampal gene expression of different steroid receptors as well as serum corticosterone levels were measured. Expressions of mineralocorticoid (MR) and GR receptors were positively and linearly correlated with blood serum corticosterone levels in spatially trained but not in untrained animals. Training induced a cubic (best fit) relationship between mRNA levels of estrogen receptor α (ERα) and androgen receptor (AR) with MR mRNA. GR gene expression was linearly correlated with MR expression under both conditions. ERα m RNA levels were negatively and linearily and MR and GR gene expressions were cubicely correlated with reference memory errors (RME). Due to only three age classes correlations with age could not be performed. The findings support the U-shape theory of steroid receptor interaction, however the cubic fit suggest a more complex situation, which mechanisms may be revealed in further studies.
Collapse
Affiliation(s)
- Gert Lubec
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna Vienna, Austria
| | - Volker Korz
- Department of Pediatrics, Medical University of Vienna Vienna, Austria
| |
Collapse
|
15
|
Picot M, Billard JM, Dombret C, Albac C, Karameh N, Daumas S, Hardin-Pouzet H, Mhaouty-Kodja S. Neural Androgen Receptor Deletion Impairs the Temporal Processing of Objects and Hippocampal CA1-Dependent Mechanisms. PLoS One 2016; 11:e0148328. [PMID: 26849367 PMCID: PMC4743963 DOI: 10.1371/journal.pone.0148328] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 01/15/2016] [Indexed: 12/04/2022] Open
Abstract
We studied the role of testosterone, mediated by the androgen receptor (AR), in modulating temporal order memory for visual objects. For this purpose, we used male mice lacking AR specifically in the nervous system. Control and mutant males were gonadectomized at adulthood and supplemented with equivalent amounts of testosterone in order to normalize their hormonal levels. We found that neural AR deletion selectively impaired the processing of temporal information for visual objects, without affecting classical object recognition or anxiety-like behavior and circulating corticosterone levels, which remained similar to those in control males. Thus, mutant males were unable to discriminate between the most recently seen object and previously seen objects, whereas their control littermates showed more interest in exploring previously seen objects. Because the hippocampal CA1 area has been associated with temporal memory for visual objects, we investigated whether neural AR deletion altered the functionality of this region. Electrophysiological analysis showed that neural AR deletion affected basal glutamate synaptic transmission and decreased the magnitude of N-methyl-D-aspartate receptor (NMDAR) activation and high-frequency stimulation-induced long-term potentiation. The impairment of NMDAR function was not due to changes in protein levels of receptor. These results provide the first evidence for the modulation of temporal processing of information for visual objects by androgens, via AR activation, possibly through regulation of NMDAR signaling in the CA1 area in male mice.
Collapse
Affiliation(s)
- Marie Picot
- Neuroscience Paris Seine, Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche (UMR) S1130, Université P. et M. Curie, Paris, France
- Centre National de la Recherche Scientifique, UMR 8246, Université P. et M. Curie, Paris, France
- Sorbonne Universités, Université P. et M. Curie UM CR18, Université Paris 06, France
| | - Jean-Marie Billard
- Centre de Psychiatrie et Neurosciences, Université Paris Descartes, Sorbonne Paris Cité, UMR 894, Paris, 75014 France
| | - Carlos Dombret
- Neuroscience Paris Seine, Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche (UMR) S1130, Université P. et M. Curie, Paris, France
- Centre National de la Recherche Scientifique, UMR 8246, Université P. et M. Curie, Paris, France
- Sorbonne Universités, Université P. et M. Curie UM CR18, Université Paris 06, France
| | - Christelle Albac
- Neuroscience Paris Seine, Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche (UMR) S1130, Université P. et M. Curie, Paris, France
- Centre National de la Recherche Scientifique, UMR 8246, Université P. et M. Curie, Paris, France
- Sorbonne Universités, Université P. et M. Curie UM CR18, Université Paris 06, France
| | - Nida Karameh
- Neuroscience Paris Seine, Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche (UMR) S1130, Université P. et M. Curie, Paris, France
- Centre National de la Recherche Scientifique, UMR 8246, Université P. et M. Curie, Paris, France
- Sorbonne Universités, Université P. et M. Curie UM CR18, Université Paris 06, France
| | - Stéphanie Daumas
- Neuroscience Paris Seine, Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche (UMR) S1130, Université P. et M. Curie, Paris, France
- Centre National de la Recherche Scientifique, UMR 8246, Université P. et M. Curie, Paris, France
- Sorbonne Universités, Université P. et M. Curie UM CR18, Université Paris 06, France
| | - Hélène Hardin-Pouzet
- Neuroscience Paris Seine, Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche (UMR) S1130, Université P. et M. Curie, Paris, France
- Centre National de la Recherche Scientifique, UMR 8246, Université P. et M. Curie, Paris, France
- Sorbonne Universités, Université P. et M. Curie UM CR18, Université Paris 06, France
| | - Sakina Mhaouty-Kodja
- Neuroscience Paris Seine, Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche (UMR) S1130, Université P. et M. Curie, Paris, France
- Centre National de la Recherche Scientifique, UMR 8246, Université P. et M. Curie, Paris, France
- Sorbonne Universités, Université P. et M. Curie UM CR18, Université Paris 06, France
- * E-mail:
| |
Collapse
|
16
|
Pisani SL, Neese SL, Katzenellenbogen JA, Schantz SL, Korol DL. Estrogen Receptor-Selective Agonists Modulate Learning in Female Rats in a Dose- and Task-Specific Manner. Endocrinology 2016; 157:292-303. [PMID: 26465198 PMCID: PMC4701887 DOI: 10.1210/en.2015-1616] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Estrogens are well known for their enhancing effects on hippocampus-sensitive cognition. However, estrogens can also impair learning and memory, particularly the acquisition of striatum-sensitive tasks. These cognitive shifts appear to be mediated through local estrogen receptor (ER) activation in each neural structure, but little information is known regarding which specific ER subtypes drive the opposing effects on learning. Elucidating the mnemonic roles of discrete ER subtypes is essential for predicting how treatments with distinct ER pharmacology such as drugs, hormone therapies, and phytoestrogen supplements affect cognitive abilities in and thus the daily lives of the women who take them. The present study examined the effects of the ERα-selective compound propyl pyrazole triol and the ERβ-selective compounds diarylpropionitrile and Br-ERb-041 on place and response learning in young adult female rats. Long-Evans rats were ovariectomized and maintained on phytoestrogen-free chow for 3 weeks before behavioral training, with treatments administered via subcutaneous injection 48 and 24 hours before testing. A dose-response paradigm was used, with each compound tested at 4 different doses in separate groups of rats. Propyl pyrazole triol, diarylpropionitrile, and Br-ERb-041 all enhanced place learning and impaired response learning, albeit with distinct dose-response patterns for each compound and task. These results are consistent with the detection of ERα and ERβ in the hippocampus and striatum and suggest that learning is modulated via activation of either ER subtype.
Collapse
Affiliation(s)
- Samantha L Pisani
- Neuroscience Program (S.L.P., S.L.N., S.L.S., D.L.K.) and Department of Chemistry (J.A.K.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801; Department of Comparative Biosciences (S.L.N., S.L.S.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Department of Psychology and Neuroscience (S.L.N.), Baldwin Wallace University, Berea, Ohio 44017; and Department of Biology (D.L.K.), Syracuse University, Syracuse, New York 13244
| | - Steven L Neese
- Neuroscience Program (S.L.P., S.L.N., S.L.S., D.L.K.) and Department of Chemistry (J.A.K.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801; Department of Comparative Biosciences (S.L.N., S.L.S.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Department of Psychology and Neuroscience (S.L.N.), Baldwin Wallace University, Berea, Ohio 44017; and Department of Biology (D.L.K.), Syracuse University, Syracuse, New York 13244
| | - John A Katzenellenbogen
- Neuroscience Program (S.L.P., S.L.N., S.L.S., D.L.K.) and Department of Chemistry (J.A.K.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801; Department of Comparative Biosciences (S.L.N., S.L.S.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Department of Psychology and Neuroscience (S.L.N.), Baldwin Wallace University, Berea, Ohio 44017; and Department of Biology (D.L.K.), Syracuse University, Syracuse, New York 13244
| | - Susan L Schantz
- Neuroscience Program (S.L.P., S.L.N., S.L.S., D.L.K.) and Department of Chemistry (J.A.K.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801; Department of Comparative Biosciences (S.L.N., S.L.S.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Department of Psychology and Neuroscience (S.L.N.), Baldwin Wallace University, Berea, Ohio 44017; and Department of Biology (D.L.K.), Syracuse University, Syracuse, New York 13244
| | - Donna L Korol
- Neuroscience Program (S.L.P., S.L.N., S.L.S., D.L.K.) and Department of Chemistry (J.A.K.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801; Department of Comparative Biosciences (S.L.N., S.L.S.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Department of Psychology and Neuroscience (S.L.N.), Baldwin Wallace University, Berea, Ohio 44017; and Department of Biology (D.L.K.), Syracuse University, Syracuse, New York 13244
| |
Collapse
|
17
|
Zhao L, Woody SK, Chhibber A. Estrogen receptor β in Alzheimer's disease: From mechanisms to therapeutics. Ageing Res Rev 2015; 24:178-90. [PMID: 26307455 DOI: 10.1016/j.arr.2015.08.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 08/04/2015] [Accepted: 08/17/2015] [Indexed: 12/21/2022]
Abstract
Alzheimer's disease (AD) disproportionally affects women and men. The female susceptibility for AD has been largely associated with the loss of ovarian sex hormones during menopause. This review examines the current understanding of the role of estrogen receptor β (ERβ) in the regulation of neurological health and its implication in the development and intervention of AD. Since its discovery in 1996, research conducted over the last 15-20 years has documented a great deal of evidence indicating that ERβ plays a pivotal role in a broad spectrum of brain activities from development to aging. ERβ genetic polymorphisms have been associated with cognitive impairment and increased risk for AD predominantly in women. The role of ERβ in the intervention of AD has been demonstrated by the alteration of AD pathology in response to treatment with ERβ-selective modulators in transgenic models that display pronounced plaque and tangle histopathological presentations as well as learning and memory deficits. Future studies that explore the potential interactions between ERβ signaling and the genetic isoforms of human apolipoprotein E (APOE) in brain aging and development of AD-risk phenotype are critically needed. The current trend of lost-in-translation in AD drug development that has primarily been based on early-onset familial AD (FAD) models underscores the urgent need for novel models that recapitulate the etiology of late-onset sporadic AD (SAD), the most common form of AD representing more than 95% of the current human AD population. Combining the use of FAD-related models that generally have excellent face validity with SAD-related models that hold more reliable construct validity would together increase the predictive validity of preclinical findings for successful translation into humans.
Collapse
Affiliation(s)
- Liqin Zhao
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS 66045, USA; Neuroscience Graduate Program, University of Kansas, Lawrence, KS 66045, USA.
| | - Sarah K Woody
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS 66045, USA
| | - Anindit Chhibber
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS 66045, USA
| |
Collapse
|
18
|
Menze ET, Esmat A, Tadros MG, Abdel-Naim AB, Khalifa AE. Genistein improves 3-NPA-induced memory impairment in ovariectomized rats: impact of its antioxidant, anti-inflammatory and acetylcholinesterase modulatory properties. PLoS One 2015; 10:e0117223. [PMID: 25675218 PMCID: PMC4326416 DOI: 10.1371/journal.pone.0117223] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 12/20/2014] [Indexed: 12/21/2022] Open
Abstract
Huntington's disease (HD) is a progressive neurodegenerative disorder. The pre-motor symptomatic stages of the disease are commonly characterized by cognitive problems including memory loss. 3-Nitropropionic acid (3-NPA) is a mitochondrial toxin that produces selective lesions in the brain similar to that of HD and was proven to cause memory impairment in rodents. Phytoestrogens have well-established neuroprotective and memory enhancing effects with fewer side effects in comparison to estrogens. This study investigated the potential neuroprotective and memory enhancing effect of genistein (5, 10 and 20 mg/kg), a phytoestrogen, in ovariectomized rats challenged with 3-NPA (20 mg/kg). These potential effects were compared to those of 17β-estradiol (2.5 mg/kg). Systemic administration of 3-NPA for 4 consecutive days impaired locomotor activity, decreased retention latencies in the passive avoidance task, decreased striatal, cortical and hippocampal ATP levels, increased oxidative stress, acetylcholinesterase (AChE) activity, cycloxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) expressions. Pretreatment with genistein and 17β-estradiol attenuated locomotor hypoactivity, increased retention latencies in the passive avoidance task, increased ATP levels, improved the oxidative stress profile, attenuated the increase in AChE activity and decreased the expression of COX-2 and iNOS. Overall, the higher genistein dose (20 mg/kg) was the most effective. In conclusion, this study suggests neuroprotective and memory enhancing effects for genistein in a rat model of HD. These effects might be attributed to its antioxidant, anti-inflammatory and cholinesterase inhibitory activities.
Collapse
Affiliation(s)
- Esther T. Menze
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Ahmed Esmat
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mariane G. Tadros
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Ashraf B. Abdel-Naim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Amani E. Khalifa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
19
|
Impact of endocrine-disrupting chemicals on neural development and the onset of neurological disorders. Pharmacol Rep 2014; 65:1632-9. [PMID: 24553011 DOI: 10.1016/s1734-1140(13)71524-x] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 11/25/2013] [Indexed: 10/25/2022]
Abstract
Even though high doses of organic pollutants are toxic, relatively low concentrations have been reported to cause long-term alterations in functioning of individual organisms, populations and even next generations. Among these pollutants are dioxins, polychlorinated biphenyls, pesticides, brominated flame retardants, plasticizers (bisphenol A, nonylphenol, and phthalates) as well as personal care products and drugs. In addition to toxic effects, they are able to interfere with hormone receptors, hormone synthesis or hormone conversion. Because these chemicals alter hormone-dependent processes and disrupt functioning of the endocrine glands, they have been classified as endocrine-disrupting chemicals (EDCs). Because certain EDCs are able to alter neural transmission and the formation of neural networks, the term neural-disrupting chemicals has been introduced, thus implicating EDCs in the etiology of neurological disorders. Recently, public concern has been focused on the effects of EDCs on brain function, concomitantly with an increase in neuropsychiatric disorders, including autism, attention deficit and hyperactivity disorder as well as learning disabilities and aggressiveness. Several lines of evidence suggest that exposure to EDCs is associated with depression and could result in neural degeneration. EDCs act via several classes of receptors with the best documented mechanisms being reported for nuclear steroid and xenobiotic receptors. Low doses of EDCs have been postulated to cause incomplete methylation of specific gene regions in the young brain and to impair neural development and brain functions across generations. Efforts are needed to develop systematic epidemiological studies and to investigate the mechanisms of action of EDCs in order to fully understand their effects on wildlife and humans.
Collapse
|
20
|
Lynch JF, Dejanovic D, Winiecki P, Mulvany J, Ortiz S, Riccio DC, Jasnow AM. Activation of ERβ modulates fear generalization through an effect on memory retrieval. Horm Behav 2014; 66:421-9. [PMID: 25007980 DOI: 10.1016/j.yhbeh.2014.06.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 06/10/2014] [Accepted: 06/27/2014] [Indexed: 11/24/2022]
Abstract
Women are 60% more likely to suffer from an anxiety disorder than men. One hypothesis for this difference may be that females exhibit increased rates of fear generalization. Females generalize fear to a neutral context faster than males, a process driven, in part, by estrogens. In the current study, ovariectomized adult female Long-Evans rats were given acute injections of estradiol benzoate (15μg/0.1mL sesame oil) or sesame oil during a passive avoidance procedure to determine if estrogens increase fear generalization through an effect on fear memory acquisition/consolidation or through fear memory retrieval. Animals injected 1h prior to training generalized to the neutral context 24h later but not 7days after training. Generalization was also seen when injections occurred 24h before testing, but not when tested at immediate (1h) or intermediate (6h) time points. In Experiment 3, animals were injected with estrogen receptor (ER) agonists, PPT or DPN, to determine which ER subtype(s) increased fear generalization. Only the ERβ agonist, DPN, increased fear generalization when testing occurred 24h after injection. Our results indicate that estradiol increases fear generalization through an effect on fear memory retrieval mechanisms by activation of ERβ.
Collapse
Affiliation(s)
- Joseph F Lynch
- Department of Psychological Sciences, Kent State University, Kent, OH 44242, USA.
| | - Dina Dejanovic
- Department of Psychological Sciences, Kent State University, Kent, OH 44242, USA
| | - Patrick Winiecki
- Department of Psychological Sciences, Kent State University, Kent, OH 44242, USA
| | - Jessica Mulvany
- Department of Psychological Sciences, Kent State University, Kent, OH 44242, USA
| | - Samantha Ortiz
- Department of Psychological Sciences, Kent State University, Kent, OH 44242, USA
| | - David C Riccio
- Department of Psychological Sciences, Kent State University, Kent, OH 44242, USA
| | - Aaron M Jasnow
- Department of Psychological Sciences, Kent State University, Kent, OH 44242, USA
| |
Collapse
|
21
|
Sex and estrogen receptor expression influence opioid peptide levels in the mouse hippocampal mossy fiber pathway. Neurosci Lett 2013; 552:66-70. [PMID: 23933204 DOI: 10.1016/j.neulet.2013.07.048] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 07/23/2013] [Accepted: 07/29/2013] [Indexed: 11/21/2022]
Abstract
The opioid peptides, dynorphin (DYN) and enkephalin (L-ENK) are contained in the hippocampal mossy fiber pathway where they modulate synaptic plasticity. In rats, the levels of DYN and L-ENK immunoreactivity (-ir) are increased when estrogen levels are elevated (Torres-Reveron et al., 2008, 2009). Here, we used quantitative immunocytochemistry to examine whether opioid levels are similarly regulated in wildtype (WT) mice over the estrous cycle, and how these compared to males. Moreover, using estrogen receptor (ER) alpha and beta knock-out mice (AERKO and BERKO, respectively), the present study examined the role of ERs in rapid, membrane-initiated (6 h), or slower, nucleus-initiated (48 h) estradiol effects on mossy fiber opioid levels. Unlike rats, the levels of DYN and L-ENK-ir did not change over the estrous cycle. However, compared to males, females had higher levels of DYN-ir in CA3a and L-ENK-ir in CA3b. In WT and BERKO ovariectomized (OVX) mice, neither DYN- nor L-ENK-ir changed following 6 or 48 h estradiol benzoate (EB) administration. However, DYN-ir significantly increased 48 h after EB in the dentate gyrus (DG) and CA3b of AERKO mice only. These findings suggest that cyclic hormone levels regulate neither DYN nor L-ENK levels in the mouse mossy fiber pathway as they do in the rat. This may be due to species-specific differences in the mossy fiber pathway. However, in the mouse, DYN levels are regulated by exogenous EB in the absence of ERα possibly via an ERβ-mediated pathway requiring new gene transcription.
Collapse
|
22
|
Mott NN, Pak TR. Estrogen signaling and the aging brain: context-dependent considerations for postmenopausal hormone therapy. ISRN ENDOCRINOLOGY 2013; 2013:814690. [PMID: 23936665 PMCID: PMC3725729 DOI: 10.1155/2013/814690] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 05/21/2013] [Indexed: 02/08/2023]
Abstract
Recent clinical studies have spurred rigorous debate about the benefits of hormone therapy (HT) for postmenopausal women. Controversy first emerged based on a sharp increase in the risk of cardiovascular disease in participants of the Women's Health Initiative (WHI) studies, suggesting that decades of empirical research in animal models was not necessarily applicable to humans. However, a reexamination of the data from the WHI studies suggests that the timing of HT might be a critical factor and that advanced age and/or length of estrogen deprivation might alter the body's ability to respond to estrogens. Dichotomous estrogenic effects are mediated primarily by the actions of two high-affinity estrogen receptors alpha and beta (ER α & ER β ). The expression of the ERs can be overlapping or distinct, dependent upon brain region, sex, age, and exposure to hormone, and, during the time of menopause, there may be changes in receptor expression profiles, post-translational modifications, and protein:protein interactions that could lead to a completely different environment for E2 to exert its effects. In this review, factors affecting estrogen-signaling processes will be discussed with particular attention paid to the expression and transcriptional actions of ER β in brain regions that regulate cognition and affect.
Collapse
Affiliation(s)
- Natasha N. Mott
- Department of Cell and Molecular Physiology, Loyola University Chicago Stritch School of Medicine, 2160 S First Avenue, Maywood, IL 60153, USA
| | - Toni R. Pak
- Department of Cell and Molecular Physiology, Loyola University Chicago Stritch School of Medicine, 2160 S First Avenue, Maywood, IL 60153, USA
| |
Collapse
|
23
|
Wang H, Meyer K, Korz V. Stress induced hippocampal mineralocorticoid and estrogen receptor β gene expression and long-term potentiation in male adult rats is sensitive to early-life stress experience. Psychoneuroendocrinology 2013; 38:250-62. [PMID: 22776422 DOI: 10.1016/j.psyneuen.2012.06.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 06/11/2012] [Accepted: 06/12/2012] [Indexed: 01/06/2023]
Abstract
Glucocorticoid hormones and their receptors have been identified to be involved in emotional and cognitive disorders in early stressed subjects during adulthood. However, the impact of other steroid hormones and receptors has been considered less. Especially, functional roles of estrogen and estrogen receptors in male subjects are largely unknown. Therefore, we measured hippocampal concentrations of 17β-estradiol, corticosterone and testosterone, as well as the gene expression of estrogen receptor α and β (ERα, β), androgen receptor (AR), glucocorticoid (GR) and mineralocorticoid (MR) receptors after stress in adulthood in maternally separated (MS+; at postnatal days 14-16 for 6h each day) and control (MS-) male rats. In vivo hippocampal long-term potentiation (LTP) serves as a cellular model of learning and memory formation. Population spike- (PSA) and the fEPSP-LTP within the dentate gyrus (DG) were reinforced by elevated-platform-stress (EP-stress) in MS- but not in MS+ rats. MR- and ERβ-mRNA were upregulated 1h after EP-stress in MS- but not in MS+ rats as compared to non-stressed littermates. Infusion of an MR antagonist before LTP induction blocked early- and late-PSA- and -fEPSP-LTP, whereas blockade of ERβ impaired only the late PSA-LTP. Application of a DNA methyltransferase (DNMT) inhibitor partly restored the LTP-reinforcement in MS+ rats, accompanied by a retrieval of ERβ- but not MR-mRNA upregulation. Basal ERβ gene promoter methylation was similar between groups, whereas MS+ and MS- rats showed different methylation patterns across CpG sites after EP-stress. These findings indicate a key role of ERβ in early-stress mediated emotionality and emotion-induced late-LTP in adult male rats via DNA methylation mechanisms.
Collapse
Affiliation(s)
- Han Wang
- Leibniz Institute for Neurobiology, Brenneckestrasse 6, D-39118 Magdeburg, Germany
| | | | | |
Collapse
|
24
|
Meyer K, Korz V. Age dependent differences in the regulation of hippocampal steroid hormones and receptor genes: relations to motivation and cognition in male rats. Horm Behav 2013; 63:376-84. [PMID: 23238103 DOI: 10.1016/j.yhbeh.2012.12.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 11/28/2012] [Accepted: 12/03/2012] [Indexed: 11/16/2022]
Abstract
Estrogen and estrogenic functions are age-dependently involved in the modulation of learning, memory and mood in female humans and animals. However, the investigation of estrogenic effects in males has been largely neglected. Therefore, we investigated the hippocampal gene expression of estrogen receptors α and β (ERα, β) in 8-week-old, 12-week-old and 24-week-old male rats. To control for possible interactions between the expression of the estrogen receptor genes and other learning-related steroid receptors, androgen receptors (AR), corticosterone-binding glucocorticoid receptors (GR) and mineralocorticoid receptors (MR) were also measured. Furthermore, the concentrations of the ligands 17β-estradiol, testosterone and corticosterone were measured. The spatial training was conducted in a hole-board. The 8-week-old rats exhibited higher levels of general activity and exploration during the training and performed best with respect to spatial learning and memory, whereas no difference was found between the 12-week-old and 24-week-old rats. The trained 8-week-old rats exhibited increased gene expression of ERα compared with the untrained rats in this age group as well as the trained 12-week-old and 24-week-old rats. The concentrations of estradiol and testosterone, however, were generally higher in the 24-week-old rats than in the 8-week-old and 12-week-old rats. The ERα mRNA concentrations correlated positively with behavior that indicate general learning motivation. These results suggest a specific role of ERα in the age-related differences in motivation and subsequent success in the task. Thus, estrogen and estrogenic functions may play a more prominent role in young male behavior and development than has been previously assumed.
Collapse
Affiliation(s)
- K Meyer
- Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118 Magdeburg, Germany.
| | | |
Collapse
|
25
|
Buwalda B, Schagen SB. Is basic research providing answers if adjuvant anti-estrogen treatment of breast cancer can induce cognitive impairment? Life Sci 2013; 93:581-8. [PMID: 23353876 DOI: 10.1016/j.lfs.2012.12.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 11/27/2012] [Accepted: 12/21/2012] [Indexed: 12/23/2022]
Abstract
Adjuvant treatment of cancer by chemotherapy is associated with cognitive impairment in some cancer survivors. Breast cancer patients are frequently also receiving endocrine therapy with selective estrogen receptor modulators (SERMs) and/or aromatase inhibitors (AIs) to suppress the growth of estradiol sensitive breast tumors. Estrogens are well-known, however, to target brain areas involved in the regulation of cognitive behavior. In this review clinical and basic preclinical research is reviewed on the actions of estradiol, SERMs and AIs on brain and cognitive functioning to see if endocrine therapy potentially induces cognitive impairment and in that respect may contribute to the detrimental effects of chemotherapy on cognitive performance in breast cancer patients. Although many clinical studies may be underpowered to detect changes in cognitive function, current basic and clinical reports suggest that there is little evidence that AIs may have a lasting detrimental effect on cognitive performance in breast cancer patients. The clinical data on SERMs are not conclusive, but some studies do suggest that tamoxifen administration may form a risk for cognitive functioning particularly in older women. An explanation may come from basic preclinical research which indicates that tamoxifen often acts agonistic in the absence of estradiol but antagonistic in the presence of endogenous estradiol. It could be hypothesized that the negative effects of tamoxifen in older women is related to the so-called window of opportunity for estrogen. Administration of SERMs beyond this so-called window of opportunity may not be effective or might even have detrimental effects similar to estradiol.
Collapse
Affiliation(s)
- Bauke Buwalda
- Behavioral Physiology, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands.
| | | |
Collapse
|
26
|
|
27
|
Chamniansawat S, Chongthammakun S. A priming role of local estrogen on exogenous estrogen-mediated synaptic plasticity and neuroprotection. Exp Mol Med 2012; 44:403-11. [PMID: 22510730 PMCID: PMC3389079 DOI: 10.3858/emm.2012.44.6.046] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The localization of estrogen (E2) has been clearly shown in hippocampus, called local hippocampal E2. It enhanced neuronal synaptic plasticity and protected neuron form cerebral ischemia, similar to those effects of exogenous E2. However, the interactive function of hippocampal and exogenous E2 on synaptic plasticity activation and neuroprotection is still elusive. By using hippocampal H19-7 cells, we demonstrated the local hippocampal E2 that totally suppressed by aromatase inhibitor anastrozole. Anastrozole also suppressed estrogen receptor (ER)β, but not ERα, expression. Specific agonist of ERα (PPT) and ERβ (DPN) restored ERβ expression in anastrozole-treated cells. In combinatorial treatment with anastrozole and phosphoinositide kinase-3 (PI-3K) signaling inhibitor wortmannin, PPT could not improve hippocampal ERβ expression. On the other hand, DPN induced basal ERβ translocalization into nucleus of anastrozole-treated cells. Exogenous E2 increased synaptic plasticity markers expression in H19-7 cells. However, exogenous E2 could not enhance synaptic plasticity in anastrozole-treated group. Exogenous E2 also increased cell viability and B-cell lymphoma 2 (Bcl2) expression in H2O2-treated cells. In combined treatment of anastrozole and H2O2, exogenous E2 failed to enhance cell viability and Bcl2 expression in hippocampal H19-7 cells. Our results provided the evidence of the priming role of local hippocampal E2 on exogenous E2-enhanced synaptic plasticity and viability of hippocampal neurons.
Collapse
|
28
|
Al-Sweidi S, Morissette M, Di Paolo T. Effect of oestrogen receptors on brain NMDA receptors of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mice. J Neuroendocrinol 2012; 24:1375-85. [PMID: 22672467 DOI: 10.1111/j.1365-2826.2012.02349.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Parkinson's disease (PD) is characterised by the loss of nigrostriatal dopamine (DA) neurones and glutamate overactivity. There is substantial evidence to suggest that oestrogens prevent or delay the disease. 17β-oestradiol has neuroprotective effects in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD and modulates brain NMDA receptors. In MPTP-lesioned mice, oestrogen receptor (ER)α and ERβ are important in 17β-oestradiol-induced neuroprotection. To evaluate the role of ERs in the response of NMDA receptors to lesion, we compared wild-type (WT) with ER knockout (KO) C57Bl/6 male mice that received 7, 9 or 11 mg/kg of MPTP. These mice were also treated with MPTP (9 mg/kg) and 17β-oestradiol. [(3) H]Ro 25-6981 specific binding autoradiography was used to label NMDA receptors containing NR2B subunits. In the frontal and cingulate cortex and striatum, vehicle-treated WT mice had higher [(3) H]Ro 25-6981 specific binding compared to ERKO mice. Cortical [(3) H]Ro 25-6981 specific binding decreased with increasing doses of MPTP in WT and ERKOα but not ERKOβ mice, whereas a dose-related decrease was only observed in the striatum of WT mice remaining low in ERKOα and ERKOβ mice. No effect of 17β-oestradiol treatment in intact or MPTP-lesioned mice of all three genotypes was observed in the cortex, whereas it increased striatal specific binding of intact ERKOβ and MPTP-lesioned WT mice. Striatal [(3) H]Ro 25-6981 specific binding positively correlated with striatal DA concentrations only in WT mice. MPTP and 17β-oestradiol treatments had more limited effects in the hippocampus. Only in the CA3 and dentate gyrus did vehicle and 17β-oestradiol-treated ERKOα mice have higher [(3) H]Ro 25-6981 specific binding than WT and ERKOβ mice, whereas MPTP decreased this specific binding only in the CA1, CA2 and CA3 of ERKOα mice. Hence, brain NMDA receptors were affected by the deletion of ERs, which affect the response to MPTP and 17β-oestradiol treatments with brain region specificity.
Collapse
MESH Headings
- 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine
- Animals
- Brain/drug effects
- Brain/metabolism
- Brain/pathology
- CA1 Region, Hippocampal/drug effects
- CA1 Region, Hippocampal/metabolism
- CA1 Region, Hippocampal/pathology
- Dose-Response Relationship, Drug
- Estradiol/blood
- Estradiol/pharmacology
- Gene Expression Regulation/drug effects
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Parkinsonian Disorders/chemically induced
- Parkinsonian Disorders/genetics
- Parkinsonian Disorders/metabolism
- Parkinsonian Disorders/pathology
- Phenols/pharmacology
- Piperidines/pharmacology
- Receptors, Estrogen/genetics
- Receptors, Estrogen/metabolism
- Receptors, Estrogen/physiology
- Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors
- Receptors, N-Methyl-D-Aspartate/genetics
- Receptors, N-Methyl-D-Aspartate/metabolism
Collapse
Affiliation(s)
- S Al-Sweidi
- Endocrinology and Genomics Research Axis of the CHUQ, CHUL, Quebec City, Quebec, Canada
| | | | | |
Collapse
|
29
|
Hawk JD, Bookout AL, Poplawski SG, Bridi M, Rao AJ, Sulewski ME, Kroener BT, Manglesdorf DJ, Abel T. NR4A nuclear receptors support memory enhancement by histone deacetylase inhibitors. J Clin Invest 2012; 122:3593-602. [PMID: 22996661 DOI: 10.1172/jci64145] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 07/26/2012] [Indexed: 02/06/2023] Open
Abstract
The formation of a long-lasting memory requires a transcription-dependent consolidation period that converts a short-term memory into a long-term memory. Nuclear receptors compose a class of transcription factors that regulate diverse biological processes, and several nuclear receptors have been implicated in memory formation. Here, we examined the potential contribution of nuclear receptors to memory consolidation by measuring the expression of all 49 murine nuclear receptors after learning. We identified 13 nuclear receptors with increased expression after learning, including all 3 members of the Nr4a subfamily. These CREB-regulated Nr4a genes encode ligand-independent "orphan" nuclear receptors. We found that blocking NR4A activity in memory-supporting brain regions impaired long-term memory but did not impact short-term memory in mice. Further, expression of Nr4a genes increased following the memory-enhancing effects of histone deacetylase (HDAC) inhibitors. Blocking NR4A signaling interfered with the ability of HDAC inhibitors to enhance memory. These results demonstrate that the Nr4a gene family contributes to memory formation and is a promising target for improving cognitive function.
Collapse
Affiliation(s)
- Joshua D Hawk
- Neuroscience Graduate Group and Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Spencer-Segal JL, Tsuda MC, Mattei L, Waters EM, Romeo RD, Milner TA, McEwen BS, Ogawa S. Estradiol acts via estrogen receptors alpha and beta on pathways important for synaptic plasticity in the mouse hippocampal formation. Neuroscience 2011; 202:131-46. [PMID: 22133892 DOI: 10.1016/j.neuroscience.2011.11.035] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 10/25/2011] [Accepted: 11/15/2011] [Indexed: 01/07/2023]
Abstract
Estradiol affects hippocampal-dependent spatial memory and underlying structural and electrical synaptic plasticity in female mice and rats. Using estrogen receptor (ER) alpha and beta knockout mice and wild-type littermates, we investigated the role of ERs in estradiol effects on multiple pathways important for hippocampal plasticity and learning. Six hours of estradiol administration increased immunoreactivity for phosphorylated Akt throughout the hippocampal formation, whereas 48 h of estradiol increased immunoreactivity for phosphorylated TrkB receptor. Estradiol effects on phosphorylated Akt and TrkB immunoreactivities were abolished in ER alpha and ER beta knockout mice. Estradiol also had distinct effects on immunoreactivity for post-synaptic density 95 (PSD-95) and brain derived-neurotrophic factor (BDNF) mRNA in ER alpha and beta knockout mice. Thus, estradiol acts through both ERs alpha and beta in several subregions of the hippocampal formation. The different effects of estradiol at 6 and 48 h indicate that several mechanisms of estrogen receptor signaling contribute to this female hormone's influence on hippocampal synaptic plasticity. By further delineating these mechanisms, we will better understand and predict the effects of endogenous and exogenous ovarian steroids on mood, cognition, and other hippocampal-dependent behaviors.
Collapse
Affiliation(s)
- J L Spencer-Segal
- Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY, USA.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
|
32
|
Mendoza-Garcés L, Mendoza-Rodríguez CA, Jiménez-Trejo F, Picazo O, Rodríguez MC, Cerbón M. Differential expression of estrogen receptors in two hippocampal regions during the estrous cycle of the rat. Anat Rec (Hoboken) 2011; 294:1913-9. [PMID: 21972199 DOI: 10.1002/ar.21247] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Accepted: 06/28/2010] [Indexed: 12/29/2022]
Abstract
In the hippocampus, estrogens increase dendritic arborization, long-term potentiation, neuroprotection, and participate in many functions related with learning, memory, and affective behaviors. The presence of both estrogen receptors alpha (ERα) and beta (ERβ) isoforms has been described in the hippocampus where they play different physiological roles. The aim of this study was to investigate, by using both techniques immunohistochemistry and Western Blot, the expression pattern of ERα and ERβ in the hippocampus of the rat along the estrous cycle. Western blot analysis was used to confirm the specificity of the antibodies used against ERα and ERβ and its relative content in the hippocampus. Results from immunohistochemical studies indicate that ERβ expression increased more than the ERα in CA1 and CA3 regions during all phases of the estrous cycle. ERβ immunoreactivity was mainly located in the nucleus and predominantly expressed in CA1 during estrous and metestrus, and in CA3 during diestrus. ERα was more abundant during estrous in comparison to other phases of the cycle in CA1 region, while it was more abundant during metestrus in CA3. Interestingly, the immunolocalization of ERα subtype was both cytoplasmic and nuclear. The overall results indicate that there is a differential expression, cellular localization, and distribution of both ER subtypes in CA1 and CA3 regions, suggesting different roles for these two receptors in the hippocampus along the estrous cycle.
Collapse
Affiliation(s)
- Luciano Mendoza-Garcés
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, México, Distrito Federal, México
| | | | | | | | | | | |
Collapse
|
33
|
|
34
|
Walf AA, Paris JJ, Rhodes ME, Simpkins JW, Frye CA. Divergent mechanisms for trophic actions of estrogens in the brain and peripheral tissues. Brain Res 2010; 1379:119-36. [PMID: 21130078 DOI: 10.1016/j.brainres.2010.11.081] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Revised: 11/23/2010] [Accepted: 11/23/2010] [Indexed: 01/08/2023]
Abstract
17β-estradiol (E(2)) can enhance reproductive, cognitive, and affective functions; however, the mechanisms by which E(2) has these effects need to be better understood. Pleiotrophic effects of E(2) can occur via traditional and novel actions at various forms of estrogen receptors (ERs). In the central nervous system, trophic effects of E(2) may be related to beneficial effects of hormone replacement therapy (HRT). However, in peripheral reproductive tissues, E(2)'s capacity to evoke growth can increase risk of cancers. This review focuses on investigations aimed at elucidating divergent mechanisms of steroids to promote trophic effects in the brain, independent of effects on peripheral reproductive tissues. First, actions of estrogens via ERα or ERβ for peripheral growth (carcinogen-induced tumors, uterine growth) and hippocampus-dependent behaviors (affect, cognition) are described. Second, factors that influence these effects of estrogens are described (e.g. experience, timing/critical windows, non-ER mechanisms). Third, effects of estrogens at ERβ related to actions of progestogens, such as 5α-pregnan-3α-ol-20-one (3α,5α-THP) are described. In summary, effects of E(2) may occur via multiple mechanisms, which may underlie favorable effects in the brain with minimal peripheral trophic effects.
Collapse
Affiliation(s)
- Alicia A Walf
- Life Sciences Research, University at Albany, Albany, NY 12222, USA
| | | | | | | | | |
Collapse
|
35
|
Paris JJ, Walf AA, Frye CA. II. Cognitive performance of middle-aged female rats is influenced by capacity to metabolize progesterone in the prefrontal cortex and hippocampus. Brain Res 2010; 1379:149-63. [PMID: 21044614 DOI: 10.1016/j.brainres.2010.10.099] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Revised: 10/20/2010] [Accepted: 10/26/2010] [Indexed: 01/14/2023]
Abstract
Cognitive decline can occur with aging; however, some individuals experience less cognitive decline than do others. Secretion of ovarian hormones is reduced post-menopause and may contribute to cognitive function. The extent to which hormonal effects may be parsed out from other age-related factors to influence cognition is of interest. Middle-aged (12-month-old) female rats that were retired breeders were categorized as maintaining or declining reproductive function based upon their estrous cyclicity (regular 4-5 day cycles), fertility (> 60 % successful pregnancy), and fecundity (>10 pups/litter). Performance in object recognition, Y-maze, water maze, inhibitory avoidance, and contextual-cued fear conditioning was evaluated. Estradiol, progesterone (P(4)), dihydroprogesterone, and 5α-pregnan-3α-ol-20-one (3α,5α-THP) were assessed in medial prefrontal cortex (mPFC) and hippocampus; corticosterone was assessed in plasma. Rats maintaining reproductive function performed significantly better on the object recognition, Y-maze, water maze, inhibitory avoidance, and cued fear conditioning tasks than did rats with declining reproductive function. Steroid concentrations varied greatly within groups. Higher levels of P(4) in mPFC and hippocampus were associated with better Y-maze performance. In mPFC, higher levels of P(4) were associated with poorer inhibitory avoidance performance; greater levels of 3α,5α-THP were associated with better object memory. Neither estradiol nor corticosterone levels significantly contributed to cognitive performance. Thus, the capacity for cortico-limbic P(4) utilization may influence cognitive performance in aging.
Collapse
Affiliation(s)
- Jason J Paris
- Department of Psychology, The University at Albany-SUNY, Albany, New York 12222, USA
| | | | | |
Collapse
|
36
|
Schnackenberg B, Saini U, Robinson B, Ali S, Patterson T. An acute dose of gamma-hydroxybutyric acid alters gene expression in multiple mouse brain regions. Neuroscience 2010; 170:523-41. [DOI: 10.1016/j.neuroscience.2010.06.049] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Revised: 06/04/2010] [Accepted: 06/21/2010] [Indexed: 10/19/2022]
|
37
|
Daniel JM, Bohacek J. The critical period hypothesis of estrogen effects on cognition: Insights from basic research. Biochim Biophys Acta Gen Subj 2010; 1800:1068-76. [DOI: 10.1016/j.bbagen.2010.01.007] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Revised: 01/09/2010] [Accepted: 01/16/2010] [Indexed: 02/07/2023]
|
38
|
Mitterling KL, Spencer JL, Dziedzic N, Shenoy S, McCarthy K, Waters EM, McEwen BS, Milner TA. Cellular and subcellular localization of estrogen and progestin receptor immunoreactivities in the mouse hippocampus. J Comp Neurol 2010; 518:2729-43. [PMID: 20506473 DOI: 10.1002/cne.22361] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Estrogen receptor-alpha (ERalpha), estrogen receptor-beta (ERbeta), and progestin receptor (PR) immunoreactivities are localized to extranuclear sites in the rat hippocampal formation. Because rats and mice respond differently to estradiol treatment at a cellular level, the present study examined the distribution of ovarian hormone receptors in the dorsal hippocampal formation of mice. For this, antibodies to ERalpha, ERbeta, and PR were localized by light and electron immunomicroscopy in male and female mice across the estrous cycle. Light microscopic examination of the mouse hippocampal formation showed sparse nuclear ERalpha and PR immunoreactivity (-ir) most prominently in the CA1 region and diffuse ERbeta-ir primarily in the CA1 pyramidal cell layer as well as in a few interneurons. Ultrastructural analysis additionally revealed discrete extranuclear ERalpha-, ERbeta-, and PR-ir in neuronal and glial profiles throughout the hippocampal formation. Although extranuclear profiles were detected in all animal groups examined, the amount and types of profiles varied with sex and estrous cycle phase. ERalpha-ir was highest in diestrus females, particularly in dendritic spines, axons, and glia. Similarly, ERbeta-ir was highest in estrus and diestrus females, mainly in dendritic spines and glia. Conversely, PR-ir was highest during proestrus, mostly in axons. Except for very low levels of extranuclear ERbeta-ir in mossy fiber terminals in mice, the labeling patterns in the mice for all three antibodies were similar to the ultrastructural labeling found previously in rats, suggesting that regulation of these receptors is well conserved across the two species.
Collapse
Affiliation(s)
- Katherine L Mitterling
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, New York 10065, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Xu XH, Zhang J, Wang YM, Ye YP, Luo QQ. Perinatal exposure to bisphenol-A impairs learning-memory by concomitant down-regulation of N-methyl-D-aspartate receptors of hippocampus in male offspring mice. Horm Behav 2010; 58:326-33. [PMID: 20206181 DOI: 10.1016/j.yhbeh.2010.02.012] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Revised: 02/19/2010] [Accepted: 02/23/2010] [Indexed: 11/28/2022]
Abstract
Bisphenol-A (BPA) has been shown to influence development of the brain and behaviors. The purpose of the present report was to investigate the effects of perinatal exposure to BPA on learning/memory and its mechanism of action, especially focusing on N-methyl-d-aspartate receptor (NMDAR). Perinatal maternal exposure to BPA at 0.5, 5, and 50mg/kg/d significantly extended the escape length to find the hidden platform in Morris water maze, and BPA at 0.5 or 5mg/kg/d markedly decreased the percentage of time spent in the quadrant where the platform had been during training both in postnatal day (PND) 21 and PND 56 mice. The results of passive avoidance test showed that the error frequency to step down from a platform after received footshock was significantly increased, and the latency of the step-down response onto the grid floor 24h after received footshock was obviously reduced by exposure to BPA at 5 and 50mg/kg/d (P<0.01) in the PND 21 offspring or at 50mg/kg/d in the PND 56 offspring (P<0.01). Furthermore, perinatal exposure to BPA significantly inhibited the expressions of NMDAR subunits NR1, NR2A, and 2B in the hippocampus during the development stage, especially in PND 56 mice. The expressions of estrogen receptor beta (ERbeta) in both PND 21 and PND 56 mice were markedly down-regulated by BPA at 0.5, 5, and 50mg/kg/d. These results indicate that perinatal exposure to BPA affects normal behavioral development in both spatial memory and avoidance memory, and also permanently influences the behavior of offspring in adulthood. The inhibition of expressions of NMDAR subunits and ERbeta in hippocampus during postnatal development stage may be involved.
Collapse
Affiliation(s)
- Xiao-hong Xu
- Chemistry and Life Sciences College, Zhejiang Normal University, Jinhua 321004, PR China.
| | | | | | | | | |
Collapse
|
40
|
Abstract
The pros and cons of estrogen therapy for use in postmenopausal women continue to be a major topic of debate in women's health. Much of this debate focuses on the potential benefits vs. harm of estrogen therapy on the brain and the risks for cognitive impairment associated with aging and Alzheimer's disease. Many animal and human studies suggest that estrogens can have significant beneficial effects on brain aging and cognition and reduce the risk of Alzheimer's-related dementia; however, others disagree. Important discoveries have been made, and hypotheses have emerged that may explain some of the inconsistencies. This review focuses on the cholinergic hypothesis, specifically on evidence that beneficial effects of estrogens on brain aging and cognition are related to interactions with cholinergic projections emanating from the basal forebrain. These cholinergic projections play an important role in learning and attentional processes, and their function is known to decline with advanced age and in association with Alzheimer's disease. Evidence suggests that many of the effects of estrogens on neuronal plasticity and function and cognitive performance are related to or rely upon interactions with these cholinergic projections; however, studies also suggest that the effectiveness of estrogen therapy decreases with age and time after loss of ovarian function. We propose a model in which deficits in basal forebrain cholinergic function contribute to age-related changes in the response to estrogen therapy. Based on this model, we propose that cholinergic-enhancing drugs, used in combination with an appropriate estrogen-containing drug regimen, may be a viable therapeutic strategy for use in older postmenopausal women with early evidence of mild cognitive decline.
Collapse
Affiliation(s)
- Robert B Gibbs
- University of Pittsburgh School of Pharmacy, 1004 Salk Hall, Pittsburgh, Pennsylvania 15261, USA.
| |
Collapse
|
41
|
Xu XH, Wang YM, Zhang J, Luo QQ, Ye YP, Ruan Q. Perinatal exposure to bisphenol-A changes N-methyl-D-aspartate receptor expression in the hippocampus of male rat offspring. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2010; 29:176-181. [PMID: 20821433 DOI: 10.1002/etc.18] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Bisphenol-A (BPA) is one of the most common environmental endocrine disrupters with mixed estrogen agonist/antagonist properties. The toxicity of BPA has been extensively evaluated in a variety of tests in rodents, including developmental and reproductive toxicity, and carcinogenicity. The objective of the present study is to evaluate whether or not perinatal maternal exposure to BPA at 0.05, 0.5, 5, 50, and 200 mg/kg/d affects N-methyl-D-aspartate (NMDA) receptor (NMDAR) subunits NR1, NR2A, 2B, estrogen receptor beta (ERbeta), and aromatase cytochrome P450 (P450arom) protein expressions of hippocampus in male rat offspring during postnatal development. Western-blotting analyses showed that perinatal exposure to BPA significantly affected the expression of NMDAR subunits. At the lower doses of 0.05 to 50 mg/kg/d, BPA concentration dependently inhibited the expression of NMDAR subunits. However, at the higher dose (200 mg/kg/d), the effects of BPA on these subunits were different, with a stronger inhibition of NR1 expression and a slighter inhibition of NR2A, 2B expression when compared with those at the lower dosage of BPA. In addition, perinatal exposure to BPA inhibited the expression of ERbeta protein, but increased P450arom protein expression in a concentration-dependent manner, especially during the early postnatal period (the first 1-3 postnatal weeks). No significant influence of BPA on P450arom was observed at postnatal week 8. These data suggest that environmental BPA exposure may affect the development of the brain, enhancing the local biosynthesis of estrogen in the brain, inhibiting ERbeta and NMDAR expressions.
Collapse
Affiliation(s)
- Xiao-Hong Xu
- Chemistry and Life Science College, Zhejiang Normal University, Jinhua 321004, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
42
|
Smith CC, Vedder LC, McMahon LL. Estradiol and the relationship between dendritic spines, NR2B containing NMDA receptors, and the magnitude of long-term potentiation at hippocampal CA3-CA1 synapses. Psychoneuroendocrinology 2009; 34 Suppl 1:S130-42. [PMID: 19596521 PMCID: PMC2796081 DOI: 10.1016/j.psyneuen.2009.06.003] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Revised: 06/03/2009] [Accepted: 06/04/2009] [Indexed: 11/24/2022]
Abstract
When circulating estrogen levels decline as a natural consequence of menopause and aging in women, there is an increased incidence of deficits in working memory. In many cases, these deficits are rescued by estrogen replacement therapy. These clinical data therefore highlight the importance of defining the biological pathways linking estrogen to the cellular substrates of learning and memory. It has been known for nearly two decades that estrogen enhances dendritic spine density on apical dendrites of CA1 pyramidal cells in hippocampus, a brain region required for learning. Interestingly, at synapses between CA3-CA1 pyramidal cells, estrogen has also been shown to enhance synaptic NMDA receptor current and the magnitude of long-term potentiation, a cellular correlate of learning and memory. Given that synapse density, NMDAR function, and long-term potentiation at CA3-CA1 synapses in hippocampus are associated with normal learning, it is likely that modulation of these parameters by estrogen facilitates the improvement in learning observed in rats, primates and humans following estrogen replacement. To facilitate the design of clinical strategies to potentially prevent or reverse the age-related decline in learning and memory during menopause, the relationship between the estrogen-induced morphological and functional changes in hippocampus must be defined and the role these changes play in facilitating learning must be elucidated. The aim of this report is to provide a summary of the proposed mechanisms by which this hormone increases synaptic function and in doing so, it briefly addresses potential mechanisms contributing to the estrogen-induced increase in synaptic morphology and plasticity, as well as important future directions.
Collapse
|
43
|
Hammond R, Mauk R, Ninaci D, Nelson D, Gibbs RB. Chronic treatment with estrogen receptor agonists restores acquisition of a spatial learning task in young ovariectomized rats. Horm Behav 2009; 56:309-14. [PMID: 19560466 PMCID: PMC2772993 DOI: 10.1016/j.yhbeh.2009.06.008] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2009] [Revised: 06/16/2009] [Accepted: 06/18/2009] [Indexed: 11/16/2022]
Abstract
Previous work has shown that continuous estradiol replacement in young ovariectomized rats enhances acquisition of a delayed matching-to-position (DMP) T-maze task over that of ovariectomized controls. The mechanism by which estradiol confers this benefit has not been fully elucidated. This study examined the role of selective estrogen receptor agonists of ERalpha, ERbeta, and GPR30 in the enhancement of spatial learning on a DMP task by comparing continuous estradiol replacement with continuous administration of PPT (an agonist of ERalpha), DPN (an agonist of ERbeta), or G-1 (an agonist of GPR30) relative to gonadally intact and ovariectomized vehicle-treated controls. It was found that ovariectomy impaired acquisition on this task, whereas all ER selective agonists restored the rate of acquisition to that of gonadally intact controls. These data suggest that estradiol can work through any of several estrogen receptors to enhance the rate of acquisition on this task.
Collapse
Affiliation(s)
- R. Hammond
- University of Pittsburgh Department of Pharmaceutical Sciences, 1009 Salk Hall, Pittsburgh, PA 15261, TEL: 412-383-6877,
| | - R. Mauk
- University of Pittsburgh Department of Pharmaceutical Sciences, 1009 Salk Hall, Pittsburgh, PA 15261, TEL: 412-383-6877,
| | - D. Ninaci
- University of Pittsburgh Department of Pharmaceutical Sciences, 1009 Salk Hall, Pittsburgh, PA 15261, TEL: 412-383-6877,
| | - D. Nelson
- University of Pittsburgh Department of Pharmaceutical Sciences, 1009 Salk Hall, Pittsburgh, PA 15261, TEL: 412-383-6877,
| | - RB Gibbs
- University of Pittsburgh Department of Pharmaceutical Sciences, 1009 Salk Hall, Pittsburgh, PA 15261, TEL: 412-383-6877,
| |
Collapse
|
44
|
Waters EM, Mitterling K, Spencer JL, Mazid S, McEwen BS, Milner TA. Estrogen receptor alpha and beta specific agonists regulate expression of synaptic proteins in rat hippocampus. Brain Res 2009; 1290:1-11. [PMID: 19596275 DOI: 10.1016/j.brainres.2009.06.090] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2009] [Revised: 06/29/2009] [Accepted: 06/30/2009] [Indexed: 12/11/2022]
Abstract
Changes in hippocampal CA1 dendritic spine density and synaptic number across the estrous cycle in female rats correlate with increased hippocampal-dependent cognitive performance in a manner that is dependent on estrogen receptors (ERs). Two isoforms of the estrogen receptor, alpha and beta are present in the rat hippocampus and distinct effects on cognitive behavior have been described for each receptor. The present study generated a profile of synaptic proteins altered by administration of estradiol benzoate, the ERalpha selective agonist PPT (1,3,5-tris (4-hydroxyphenyl)-4-propyl-1H-pyrazole) and the ERbeta selective agonist DPN (2,3-bis (4-hydroxyphenyl) propionitrile) alone and in combination in comparison to vehicle in the CA1 region of the dorsal hippocampus. In the stratum radiatum, estradiol, DPN, and PPT increased PSD-95 and AMPA-type glutamate receptor subunit GluR1. Only DPN administration regulated expression of AMPA receptor subunits GluR2 and GluR3, increasing and decreasing levels respectively. DPN also increased GluR2 expression in the other lamina of the CA1. These results support previous reports that estradiol and isoform specific agonists differentially activate ERalpha and ERbeta to regulate protein expression. The distinct effects of DPN and PPT administration on synaptic proteins suggest that the desired therapeutic outcome of estrogen may be accomplished by using specific estrogen receptor agonists. Moreover, the effects of estradiol treatment on PSD-95 expression are consistent with a growing body of evidence that this postsynaptic protein is a key marker of estrogen action related to spine synapse formation.
Collapse
Affiliation(s)
- Elizabeth M Waters
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| | | | | | | | | | | |
Collapse
|
45
|
Zhao L, Mao Z, Brinton RD. A select combination of clinically relevant phytoestrogens enhances estrogen receptor beta-binding selectivity and neuroprotective activities in vitro and in vivo. Endocrinology 2009; 150:770-83. [PMID: 18818291 DOI: 10.1210/en.2008-0715] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We have previously shown that a number of naturally occurring phytoestrogens and derivatives were effective to induce some measures of neuroprotective responses but at a much lower magnitude than those induced by the female gonadal estrogen 17beta-estradiol. In the present study, we sought to investigate whether a combination of select phytoestrogens could enhance neural responses without affecting the reproductive system. We performed a range of comparative analyses of the estrogen receptor (ER) alpha/beta binding profile, and in vitro to in vivo estrogenic activities in neural and uterine tissues induced by clinically relevant phytoestrogens: genistein, daidzein, equol, and IBSO03569, when used alone or in combination. Our analyses revealed that both the ERalpha/beta binding profile and neural activities associated with individual phytoestrogens are modifiable when used in combination. Specifically, the combination of genistein plus daidzein plus equol resulted in the greatest binding selectivity for ERbeta and an overall improved efficacy/safety profile when compared with single or other combined formulations, including: 1) an approximate 30% increase in ERbeta-binding selectivity (83-fold over ERalpha); 2) a greater effect on neuronal survival against toxic insults in primary neurons; 3) an enhanced activity in promoting neural proactive defense mechanisms against neurodegeneration, including mitochondrial function and beta-amyloid degradation; and 4) no effect on uterine growth. These observations suggest that select phytoestrogens in combination have the therapeutic potential of an alternative approach to conventional estrogen therapy for long-term safe use to reduce the increased risk of cognitive decline and neurodegenerative disease associated with menopause in women.
Collapse
Affiliation(s)
- Liqin Zhao
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA.
| | | | | |
Collapse
|
46
|
Lacreuse A, Wilson ME, Herndon JG. No effect of different estrogen receptor ligands on cognition in adult female monkeys. Physiol Behav 2008; 96:448-56. [PMID: 19101578 DOI: 10.1016/j.physbeh.2008.11.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2008] [Revised: 10/30/2008] [Accepted: 11/21/2008] [Indexed: 11/16/2022]
Abstract
Many studies in women and animal models suggest that estrogens affect cognitive function. Yet, the mechanisms by which estrogens may impact cognition remain unclear. The goal of the present study was to assess the effects of different estrogen receptor (ER) ligands on cognitive function in adult ovariectomized female rhesus monkeys. The monkeys were tested for 6 weeks on a battery of memory and attentional tasks administered on a touchscreen: the object, face, and spatial versions of the Delayed Recognition Span Test (DRST) and a Visual Search task. Following a 2-week baseline period with oil vehicle treatment, monkeys were randomly assigned to one of 3 treatment groups: estradiol benzoate (EB), selective ERbeta agonist (diarylpropionitrile DPN) or selective ER modulator tamoxifen (TAM). In each treatment group, monkeys received oil vehicle for 2 weeks and the drug for 2 weeks, in a cross-over design. After a 4-week washout, a subset of monkeys was re-tested on the battery when treated with a selective ERalpha agonist (propyl-pyrazole-triol, PPT) or oil vehicle. Overall, drug treatments had no or negligible effects on cognitive performance. These results support the contention that exogenous estrogens and selective estrogen receptor modulators (SERMS) do not significantly affect cognition in young adult female macaques. Additional studies are needed to determine whether the cognitive effects of estrogens in monkeys of more advanced age are mediated by ERbeta, ERalpha or complex interactions between the two receptors.
Collapse
Affiliation(s)
- Agnès Lacreuse
- Department of Psychology, University of Massachusetts, Amherst, MA 01003, United States.
| | | | | |
Collapse
|
47
|
Hughes ZA, Liu F, Platt BJ, Dwyer JM, Pulicicchio CM, Zhang G, Schechter LE, Rosenzweig-Lipson S, Day M. WAY-200070, a selective agonist of estrogen receptor beta as a potential novel anxiolytic/antidepressant agent. Neuropharmacology 2008; 54:1136-42. [DOI: 10.1016/j.neuropharm.2008.03.004] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Revised: 02/29/2008] [Accepted: 03/12/2008] [Indexed: 11/25/2022]
|
48
|
O'Neill EE, Blewett AR, Loria PM, Greene GL. Modulation of alphaCaMKII signaling by rapid ERalpha action. Brain Res 2008; 1222:1-17. [PMID: 18572149 DOI: 10.1016/j.brainres.2008.05.036] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2008] [Revised: 04/19/2008] [Accepted: 05/04/2008] [Indexed: 10/22/2022]
Abstract
The estrogen receptor (ER) subtypes, ERalpha and ERbeta, modulate numerous signaling cascades in the brain to result in a variety of cell fates including neuronal differentiation. We report here that 17beta-estradiol (E2) rapidly stimulates the autophosphorylation of alpha-Ca(2+)/calmodulin-dependent kinase II (alphaCaMKII) in immortalized NLT GnRH neurons, primary hippocampal neurons, and Cos7 cells co-transfected with ERalpha and alphaCaMKII. The E2-induced alphaCaMKII autophosphorylation is ERalpha- and Ca(2+)/calmodulin (CaM)-dependent. Interestingly, the hormone-dependent association of ERalpha with alphaCaMKII attenuates the positive effect of E2 on alphaCaMKII autophosphorylation, suggesting that ERalpha plays a complex role in modulating alphaCaMKII activity and may function to fine-tune alphaCaMKII-triggered signaling events. However, it appears as though the activating signal of E2 dominates the negative effect of ER since there is a clear, positive downstream response to E2-activated alphaCaMKII; pharmacological inhibitors and RNAi technology show that targets of ERalpha-mediated alphaCaMKII signaling include extracellular signal-regulated kinase 1/2 (ERK1/2), cAMP response element-binding protein (CREB), and microtubule associated protein 2 (MAP2). These findings suggest a novel model for the modulation of alphaCaMKII signaling by ERalpha, which provides a molecular link as to how E2 might influence brain function.
Collapse
Affiliation(s)
- Erin E O'Neill
- The Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637, USA
| | | | | | | |
Collapse
|
49
|
Spencer JL, Waters EM, Romeo RD, Wood GE, Milner TA, McEwen BS. Uncovering the mechanisms of estrogen effects on hippocampal function. Front Neuroendocrinol 2008; 29:219-37. [PMID: 18078984 PMCID: PMC2440702 DOI: 10.1016/j.yfrne.2007.08.006] [Citation(s) in RCA: 308] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2007] [Accepted: 08/14/2007] [Indexed: 01/06/2023]
Abstract
Estrogens have direct effects on the brain areas controlling cognition. One of the most studied of these regions is the dorsal hippocampal formation, which governs the formation of spatial and episodic memories. In laboratory animals, most investigators report that estrogen enhances synaptic plasticity and improves performance on hippocampal-dependent cognitive behaviors. This review summarizes work conducted in our laboratory and others toward identifying estrogen's actions in the hippocampal formation, and the mechanisms for these actions. Physiologic and pharmacologic estrogen affects cognitive behavior in mammals, which may be applicable to human health and disease. The effects of estrogen in the hippocampal formation that lead to modulation of hippocampal function include effects on cell morphology, synapse formation, signaling, and excitability that have been studied in laboratory mice, rats, and primates. Finally, estrogen may signal through both nuclear and extranuclear hippocampal estrogen receptors to achieve its downstream effects.
Collapse
Affiliation(s)
- Joanna L Spencer
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1300 York Avenue, New York, NY 10065, USA
| | | | | | | | | | | |
Collapse
|
50
|
Li AA, Baum MJ, McIntosh LJ, Day M, Liu F, Gray LE. Building a scientific framework for studying hormonal effects on behavior and on the development of the sexually dimorphic nervous system. Neurotoxicology 2008; 29:504-19. [PMID: 18502513 DOI: 10.1016/j.neuro.2008.02.015] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2008] [Revised: 02/12/2008] [Accepted: 02/12/2008] [Indexed: 11/19/2022]
Abstract
There has been increasing concern that low-dose exposure to hormonally active chemicals disrupts sexual differentiation of the brain and peripheral nervous system. There also has been active drug development research on the therapeutic potential of hormone therapy on behaviors. These different research goals have in common the need to develop reliable animal models to study the effect of hormones on brain function and behaviors that are predictive of effects in humans. This paper summarizes presentations given at the June 2007 11th International Neurotoxicology Association (INA-11) meeting, which addressed these issues. Using a few examples from the bisphenol A neurobehavioral literature for illustrative purposes, Dr. Abby Li discussed some of the methodological issues that should be considered in designing developmental neurobehavioral animal studies so they can be useful for human health risk assessment. Dr. Earl Gray provided an overview of research on the role of androgens and estrogens in the development of the brain and peripheral nervous system and behavior. Based on this scientific foundation, Dr. Gray proposed a rational framework for the study of the effects of developmental exposures to chemicals on the organization of the sexually dimorphic nervous system, including specific recommendations for experimental design and statistical analyses that can increase the utility of the research for regulatory decision-making. Dr. Michael Baum and by Dr. Feng Liu presented basic research on the hormonal mechanisms underlying sexual preference and estrogenic effects of cognition, respectively. These behaviors are among those studied in adult animals following in utero exposure to hormonally active chemicals, to evaluate their potential effects on sexual differentiation of the brain. Understanding of the hormonal mechanisms of these behaviors, and of relevance to humans, is needed to develop biologically plausible hypotheses regarding the potential effects of hormonally active chemicals in humans.
Collapse
Affiliation(s)
- Abby A Li
- Exponent Health Sciences, San Francisco, CA 94114, USA.
| | | | | | | | | | | |
Collapse
|