1
|
Maddox SA, Ponomareva OY, Zaleski CE, Chen MX, Vella KR, Hollenberg AN, Klengel C, Ressler KJ. Evidence for thyroid hormone regulation of amygdala-dependent fear-relevant memory and plasticity. Mol Psychiatry 2025; 30:201-212. [PMID: 39039155 DOI: 10.1038/s41380-024-02679-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 07/08/2024] [Accepted: 07/16/2024] [Indexed: 07/24/2024]
Abstract
The amygdala is an established site for fear memory formation, and clinical studies suggest involvement of hormone signaling cascades in development of trauma-related disorders. While an association of thyroid hormone (TH) status and mood disorders is established, the related brain-based mechanisms and the role of TH in anxiety disorders are unknown. Here we examine the role that TH receptor (TR, a nuclear transcriptional repressor when unbound and a transcriptional activator when bound to TH) may have in mediating the initial formation of fear memories in the amygdala. We identified mRNA levels of TR and other TH pathway regulatory genes, including thyrotropin-releasing hormone (Trh), transthyretin (Ttr), thyrotropin-releasing hormone receptor (Trhr), type 2 iodothyronine deiodinase (Dio2), mediator complex subunit 12 (Med12/Trap230) and retinoid X receptor gamma (Rxrg) to be altered in the amygdala following Pavlovian fear conditioning. Using TH agonist and antagonist infusion into the amygdala, we demonstrated that this pathway is both necessary and sufficient for fear memory consolidation. Inhibition of TH signaling with the TR antagonist 1-850 decreased fear memory consolidation; while activation of TR with T3 (triiodothyronine) resulted in increased memory formation. Using a systemic hypothyroid mouse model, we found that intra-amygdala infusions of T3 were sufficient to rescue deficits in fear memory. Finally, we demonstrated that T3 was sufficient to activate TR-specific gene pathways in the amygdala. These findings on the role of activity-dependent TR modulation support a model in which local TH is a critical regulator of fear memory-related plasticity in the amygdala.
Collapse
Affiliation(s)
- Stephanie A Maddox
- Neurobiology of Fear Laboratory, Basic Neuroscience Division, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Olga Y Ponomareva
- Neurobiology of Fear Laboratory, Basic Neuroscience Division, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Cole E Zaleski
- Neurobiology of Fear Laboratory, Basic Neuroscience Division, McLean Hospital, Belmont, MA, USA
- Northeastern University, Boston, MA, USA
| | - Michelle X Chen
- Neurobiology of Fear Laboratory, Basic Neuroscience Division, McLean Hospital, Belmont, MA, USA
- University of Iowa, Iowa City, IA, USA
| | - Kristen R Vella
- Joan and Sanford I. Weill Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Weill Cornell Medicine, New York, NY, USA
- Weill Center for Metabolic Health, Weill Cornell Medicine, New York, NY, USA
| | - Anthony N Hollenberg
- Joan and Sanford I. Weill Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Weill Cornell Medicine, New York, NY, USA
- Weill Center for Metabolic Health, Weill Cornell Medicine, New York, NY, USA
| | - Claudia Klengel
- Neurobiology of Fear Laboratory, Basic Neuroscience Division, McLean Hospital, Belmont, MA, USA
| | - Kerry J Ressler
- Neurobiology of Fear Laboratory, Basic Neuroscience Division, McLean Hospital, Belmont, MA, USA.
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Hönes GS, Geist D, Wenzek C, Pfluger PT, Müller TD, Aguilar-Pimentel JA, Amarie OV, Becker L, Dragano N, Garrett L, Hölter SM, Rathkolb B, Rozman J, Spielmann N, Treise I, Wolf E, Wurst W, Fuchs H, Gailus-Durner V, Hrabe de Angelis M, Führer D, Moeller LC. Comparative Phenotyping of Mice Reveals Canonical and Noncanonical Physiological Functions of TRα and TRβ. Endocrinology 2024; 165:bqae067. [PMID: 38889231 DOI: 10.1210/endocr/bqae067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 05/14/2024] [Accepted: 06/07/2024] [Indexed: 06/20/2024]
Abstract
Thyroid hormone (TH) effects are mediated through TH receptors (TRs), TRα1, TRβ1, and TRβ2. The TRs bind to the DNA and regulate expression of TH target genes (canonical signaling). In addition, they mediate activation of signaling pathways (noncanonical signaling). Whether noncanonical TR action contributes to the spectrum of TH effects is largely unknown. The aim of this study was to attribute physiological effects to the TR isoforms and their canonical and noncanonical signaling. We conducted multiparameter phenotyping in male and female TR knockout mice (TRαKO, TRβKO), mice with disrupted canonical signaling due to mutations in the TR DNA binding domain (TRαGS, TRβGS), and their wild-type littermates. Perturbations in senses, especially hearing (mainly TRβ with a lesser impact of TRα), visual acuity, retinal thickness (TRα and TRβ), and in muscle metabolism (TRα) highlighted the role of canonical TR action. Strikingly, selective abrogation of canonical TR action often had little phenotypic consequence, suggesting that noncanonical TR action sufficed to maintain the wild-type phenotype for specific effects. For instance, macrocytic anemia, reduced retinal vascularization, or increased anxiety-related behavior were only observed in TRαKO but not TRαGS mice. Noncanonical TRα action improved energy utilization and prevented hyperphagia observed in female TRαKO mice. In summary, by examining the phenotypes of TRα and TRβ knockout models alongside their DNA binding-deficient mutants and wild-type counterparts, we could establish that the noncanonical actions of TRα and TRβ play a crucial role in modulating sensory, behavioral, and metabolic functions and, thus, contribute to the spectrum of physiological TH effects.
Collapse
Affiliation(s)
- Georg Sebastian Hönes
- Department of Endocrinology, Diabetes and Metabolism and Division of Laboratory Research, University Hospital Essen, University of Duisburg-Essen, Essen 45147, Germany
| | - Daniela Geist
- Department of Endocrinology, Diabetes and Metabolism and Division of Laboratory Research, University Hospital Essen, University of Duisburg-Essen, Essen 45147, Germany
| | - Christina Wenzek
- Department of Endocrinology, Diabetes and Metabolism and Division of Laboratory Research, University Hospital Essen, University of Duisburg-Essen, Essen 45147, Germany
| | - Paul Thomas Pfluger
- Research Unit NeuroBiology of Diabetes, Helmholtz Zentrum München, Neuherberg 85764, Germany
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg 85764, Germany
- German Center for Diabetes Research, Neuherberg 85764, Germany
- Division of Neurobiology of Diabetes, TUM School of Medicine, Technical University of Munich, Munich 80333, Germany
| | - Timo Dirk Müller
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg 85764, Germany
- German Center for Diabetes Research, Neuherberg 85764, Germany
- Walther-Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-University (LMU) Munich, Munich 80336, Germany
| | - Juan Antonio Aguilar-Pimentel
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg 85764, Germany
| | - Oana Veronica Amarie
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg 85764, Germany
| | - Lore Becker
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg 85764, Germany
| | - Natalia Dragano
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg 85764, Germany
| | - Lillian Garrett
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg 85764, Germany
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg 85764, Germany
| | - Sabine Maria Hölter
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg 85764, Germany
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg 85764, Germany
| | - Birgit Rathkolb
- German Center for Diabetes Research, Neuherberg 85764, Germany
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg 85764, Germany
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians University (LMU) Munich, Munich 81377, Germany
| | - Jan Rozman
- German Center for Diabetes Research, Neuherberg 85764, Germany
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg 85764, Germany
| | - Nadine Spielmann
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg 85764, Germany
| | - Irina Treise
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg 85764, Germany
| | - Eckhard Wolf
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians University (LMU) Munich, Munich 81377, Germany
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg 85764, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich 80336, Germany
- Chair of Developmental Genetics, TUM School of Life Sciences, Technical University of Munich, Freising 85354, Germany
| | - Helmut Fuchs
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg 85764, Germany
| | - Valerie Gailus-Durner
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg 85764, Germany
| | - Martin Hrabe de Angelis
- German Center for Diabetes Research, Neuherberg 85764, Germany
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg 85764, Germany
- Chair of Experimental Genetics, TUM School of Life Science Weihenstephan, Technical University of Munich, Freising 85354, Germany
| | - Dagmar Führer
- Department of Endocrinology, Diabetes and Metabolism and Division of Laboratory Research, University Hospital Essen, University of Duisburg-Essen, Essen 45147, Germany
| | - Lars Christian Moeller
- Department of Endocrinology, Diabetes and Metabolism and Division of Laboratory Research, University Hospital Essen, University of Duisburg-Essen, Essen 45147, Germany
| |
Collapse
|
3
|
Bennett SN, Chang AB, Rogers FD, Jones P, Peña CJ. Thyroid hormones mediate the impact of early-life stress on ventral tegmental area gene expression and behavior. Horm Behav 2024; 159:105472. [PMID: 38141539 PMCID: PMC10922504 DOI: 10.1016/j.yhbeh.2023.105472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/17/2023] [Accepted: 12/12/2023] [Indexed: 12/25/2023]
Abstract
Proper thyroid function is essential to the developing brain, including dopamine neuron differentiation, growth, and maintenance. Stress across the lifespan impacts thyroid hormone signaling and anxiety disorders and depression have been associated with thyroid dysfunction (both hypo- and hyper-active). However, less is known about how stress during postnatal development impacts thyroid function and related brain development. Our previous work in mice demonstrated that early-life stress (ELS) transiently impinged on expression of a transcription factor in dopamine neurons, Otx2, shown to be regulated by thyroid hormones. We hypothesized that thyroid hormone signaling may link experience of ELS with transcriptional dysregulation within the dopaminergic midbrain, and ultimately behavior. Here, we find that ELS transiently increases thyroid-stimulating hormone levels (inversely related to thyroid signaling) in both male and female mice at P21, an effect which recovers by adolescence. We next tested whether transient treatment of ELS mice with synthetic thyroid hormone (levothyroxine, LT4) could ameliorate the impact of ELS on sensitivity to future stress, and on expression of genes related to dopamine neuron development and maintenance, thyroid signaling, and plasticity within the ventral tegmental area. Among male mice, but not females, juvenile LT4 treatment prevented hypersensitivity to adult stress. We also found that rescuing developmental deficits in thyroid hormone signaling after ELS restored levels of some genes altered directly by ELS, and prevented alterations in expression of other genes sensitive to the second hit of adult stress. These findings suggest that thyroid signaling mediates the deleterious impact of ELS on VTA development, and that temporary treatment of hypothyroidism after ELS may be sufficient to prevent future stress hypersensitivity.
Collapse
Affiliation(s)
| | - Austin B Chang
- Princeton Neuroscience Institute, Princeton University, USA
| | - Forrest D Rogers
- Princeton Neuroscience Institute, Princeton University, USA; Department of Molecular Biology, Princeton University, USA
| | - Parker Jones
- Princeton Neuroscience Institute, Princeton University, USA
| | | |
Collapse
|
4
|
Sabatino L, Lapi D, Del Seppia C. Factors and Mechanisms of Thyroid Hormone Activity in the Brain: Possible Role in Recovery and Protection. Biomolecules 2024; 14:198. [PMID: 38397435 PMCID: PMC10886502 DOI: 10.3390/biom14020198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/29/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
Thyroid hormones (THs) are essential in normal brain development, and cognitive and emotional functions. THs act through a cascade of events including uptake by the target cells by specific cell membrane transporters, activation or inactivation by deiodinase enzymes, and interaction with nuclear thyroid hormone receptors. Several thyroid responsive genes have been described in the developing and in the adult brain and many studies have demonstrated a systemic or local reduction in TH availability in neurologic disease and after brain injury. In this review, the main factors and mechanisms associated with the THs in the normal and damaged brain will be evaluated in different regions and cellular contexts. Furthermore, the most common animal models used to study the role of THs in brain damage and cognitive impairment will be described and the use of THs as a potential recovery strategy from neuropathological conditions will be evaluated. Finally, particular attention will be given to the link observed between TH alterations and increased risk of Alzheimer's Disease (AD), the most prevalent neurodegenerative and dementing condition worldwide.
Collapse
Affiliation(s)
- Laura Sabatino
- Institute of Clinical Physiology, National Council of Research, Via Moruzzi 1, 56124 Pisa, Italy;
| | - Dominga Lapi
- Department of Biology, University of Pisa, 56127 Pisa, Italy;
| | - Cristina Del Seppia
- Institute of Clinical Physiology, National Council of Research, Via Moruzzi 1, 56124 Pisa, Italy;
| |
Collapse
|
5
|
Bennett SN, Chang AB, Rogers FD, Jones P, Peña CJ. Thyroid hormones mediate the impact of early-life stress on ventral tegmental area gene expression and behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.25.554785. [PMID: 37662236 PMCID: PMC10473690 DOI: 10.1101/2023.08.25.554785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Proper thyroid function is essential to the developing brain, including dopamine neuron differentiation, growth, and maintenance. Stress across the lifespan impacts thyroid hormone signaling and anxiety disorders and depression have been associated with thyroid dysfunction (both hypo- and hyper-active). However, less is known about how stress during postnatal development impacts thyroid function and related brain development. Our previous work in mice demonstrated that early-life stress (ELS) transiently impinged on expression of a transcription factor in dopamine neurons shown to be regulated by thyroid hormones. We hypothesized that thyroid hormone signaling may link experience of ELS with transcriptional dysregulation within the dopaminergic midbrain, and ultimately behavior. Here, we find that ELS transiently increases thyroid-stimulating hormone levels (inversely related to thyroid signaling) in both male and female mice at P21, an effect which recovers by adolescence. We next tested whether transient treatment of ELS mice with synthetic thyroid hormone (levothyroxine, LT4) could ameliorate the impact of ELS on sensitivity to future stress, and on expression of genes related to dopamine neuron development and maintenance, thyroid signaling, and plasticity within the ventral tegmental area. Among male mice, but not females, juvenile LT4 treatment prevented hypersensitivity to adult stress. We also found that rescuing developmental deficits in thyroid hormone signaling after ELS restored levels of some genes altered directly by ELS, and prevented alterations in expression of other genes sensitive to the second hit of adult stress. These findings suggest that thyroid signaling mediates the deleterious impact of ELS on VTA development, and that temporary treatment of hypothyroidism after ELS may be sufficient to prevent future stress hypersensitivity.
Collapse
|
6
|
Niedowicz DM, Wang WX, Price DA, Xie K, Patel E, Nelson PT. Impact of thyroid hormone perturbations in adult mice: brain weight and blood vessel changes, gene expression variation, and neurobehavioral outcomes. Neurobiol Aging 2023; 128:74-84. [PMID: 37229849 PMCID: PMC10247485 DOI: 10.1016/j.neurobiolaging.2023.04.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/24/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023]
Abstract
Mouse models of hyper- and hypothyroidism were used to examine the effects of thyroid hormone (TH) dyshomeostasis on the aging mammalian brain. 13-14 month-old mice were treated for 4months with either levothyroxine (hyperthyroid) or a propylthiouracil and methimazole combination (PTU/Met; hypothyroid). Hyperthyroid mice performed better on Morris Water Maze than control mice, while hypothyroid mice performed worse. Brain weight was increased in thyroxine-treated, and decreased in PTU/Met-treated animals. The brain weight change was strongly correlated with circulating and tissue T4. Quantitative measurements of microvessels were compared using digital neuropathologic methods. There was an increase in microvessel area in hyperthyroid mice. Hypothyroid mice showed a trend for elevated glial fibrillary acidic protein-immunoreactive astrocytes, indicating an increase in neuroinflammation. Gene expression alterations were associated with TH perturbation and astrocyte-expressed transcripts were particularly affected. For example, expression of Gli2 and Gli3, mediators in the Sonic Hedgehog signaling pathway, were strongly impacted by both treatments. We conclude that TH perturbations produce robust neurobehavioral, pathological, and brain gene expression changes in aging mouse models.
Collapse
Affiliation(s)
- Dana M Niedowicz
- Sanders Brown Center on Aging, University of Kentucky, Lexington, KY, USA.
| | - Wang-Xia Wang
- Sanders Brown Center on Aging, University of Kentucky, Lexington, KY, USA; Department of Pathology, Division of Neuropathology, University of Kentucky, Lexington, KY, USA
| | - Douglas A Price
- Sanders Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Kevin Xie
- Department of Biostatistics, University of Kentucky, Lexington, KY, USA
| | - Ela Patel
- Sanders Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Peter T Nelson
- Sanders Brown Center on Aging, University of Kentucky, Lexington, KY, USA; Department of Pathology, Division of Neuropathology, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
7
|
Attenuation of Hypothyroidism-Induced Cognitive Impairment by Modulating Serotonin Mediation. Vet Sci 2023; 10:vetsci10020122. [PMID: 36851426 PMCID: PMC9966518 DOI: 10.3390/vetsci10020122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/29/2022] [Accepted: 02/04/2023] [Indexed: 02/08/2023] Open
Abstract
Thyroid hormones play an important role in the modeling of neural networks in the brain. Besides its metabolic effects, thyroid dysfunction, and hypothyroidism in particular, is frequently associated with cognitive decline and depressive-like behavior. The current study aimed to examine the changes in behavior, cognition, and memory in rats with propylthiouracil-induced overt hypothyroidism. The behavior and cognition were assessed using the open field test, T-maze, and novel object recognition test. We found significant differences in the behavioral patterns of the hypothyroid animals showing a reduction in locomotor activity, frequency of rearing, and impaired memory function compared to the euthyroid controls. As serotonin is an essential biomarker regulating cognition and mood, we tried to modulate the serotonin mediation in hypothyroid animals through tryptophan administration. Treatment with 5-hydroxy-tryptophan (5-OH-TRP) intraperitoneally for 10 days or directly into the hippocampus as a single injection led to attenuation of the hypothyroidism-induced cognitive and memory decline. A staggering amount of research is suggesting that the common denominators in the pathophysiology of depression and the behavior changes in hypothyroidism are the hippocampal complex and the distorted serotonin metabolism. In our study, it was observed a significant alleviation of cognitive impairment and an improvement of memory performance in hypothyroid rats after 5-OH-TRP administration. Current results are promising and may serve as groundwork for further investigation of functional and structural changes in the hippocampus during a hypothyroid state, and in particular, the effects of serotonin mediation in hypothyroid-associated depressive-like behavior.
Collapse
|
8
|
Hashimoto Encephalopathy—Still More Questions than Answers. Cells 2022; 11:cells11182873. [PMID: 36139446 PMCID: PMC9496753 DOI: 10.3390/cells11182873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/05/2022] [Accepted: 09/12/2022] [Indexed: 12/03/2022] Open
Abstract
The normal function of the nervous system is conditioned by the undisturbed function of the thyroid gland and its hormones. Comprehensive clinical manifestations, including neurological disorders in Hashimoto’s thyroiditis, have long been understood and, in recent years, attention has been paid to neurological symptoms in euthyroid patients. Hashimoto encephalopathy is a controversial and poorly understood disease entity and the pathogenesis of the condition remains unclear. We still derive our understanding of this condition from case reports, but on the basis of these, a clear clinical picture of this entity can be proposed. Based on a review of the recent literature, the authors present the current view on the subject, discuss controversies and questions that still remain unanswered, as well as ongoing research in this area and the results of our own work in patients with Hashimoto’s thyroiditis.
Collapse
|
9
|
Alhowail A, Alsikhan R, Alsaud M, Aldubayan M, Rabbani SI. Protective Effects of Pioglitazone on Cognitive Impairment and the Underlying Mechanisms: A Review of Literature. Drug Des Devel Ther 2022; 16:2919-2931. [PMID: 36068789 PMCID: PMC9441149 DOI: 10.2147/dddt.s367229] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 08/23/2022] [Indexed: 11/23/2022] Open
Affiliation(s)
- Ahmad Alhowail
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah, Al Qassim, 52452, Kingdom of Saudi Arabia
- Correspondence: Ahmad Alhowail, Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah, Al Qassim, 52452, Kingdom of Saudi Arabia, Tel +9665672025858, Email
| | - Rawan Alsikhan
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah, Al Qassim, 52452, Kingdom of Saudi Arabia
- Department of Pharmacology and Toxicology, Unaizah College of Pharmacy, Qassim University, Unaizah, Al Qassim, 51911, Kingdom of Saudi Arabia
| | - May Alsaud
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah, Al Qassim, 52452, Kingdom of Saudi Arabia
| | - Maha Aldubayan
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah, Al Qassim, 52452, Kingdom of Saudi Arabia
| | - Syed Imam Rabbani
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah, Al Qassim, 52452, Kingdom of Saudi Arabia
| |
Collapse
|
10
|
Khaleghzadeh-Ahangar H, Talebi A, Mohseni-Moghaddam P. Thyroid Disorders and Development of Cognitive Impairment: A Review Study. Neuroendocrinology 2022; 112:835-844. [PMID: 34963121 DOI: 10.1159/000521650] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 12/22/2021] [Indexed: 11/19/2022]
Abstract
Dementia is a neurological disorder that is spreading with increasing human lifespan. In this neurological disorder, memory and cognition are declined and eventually impaired. Various factors can be considered as the background of this disorder, one of which is endocrine disorders. Thyroid hormones are involved in various physiological processes in the body; one of the most important of them is neuromodulation. Thyroid disorders, including hyperthyroidism or hypothyroidism, can affect the nervous system and play a role in the development of dementia. Despite decades of investigation, the nature of the association between thyroid disorders and cognition remains a mystery. Given the enhancing global burden of dementia, the principal purpose of this study was to elucidate the association between thyroid disturbances as a potentially modifiable risk factor of cognitive dysfunction. In this review study, we have tried to collect almost all of the reported mechanisms demonstrating the role of hypothyroidism and hyperthyroidism in the pathogenesis of dementia.
Collapse
Affiliation(s)
- Hossein Khaleghzadeh-Ahangar
- Department of Physiology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
- Immunoregulation Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Anis Talebi
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Parvaneh Mohseni-Moghaddam
- Department of Physiology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
11
|
Ge F, Dong L, Zhu D, Lin X, Shi J, Xiao M. Comparison of Serum Triiodothyronine with Biomarkers for Alzheimer's Disease Continuum in Euthyroid Subjects. J Alzheimers Dis 2021; 85:605-614. [PMID: 34864671 DOI: 10.3233/jad-215092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Accumulating studies have implicated thyroid dysfunction in the pathogenesis of Alzheimer's disease (AD). OBJECTIVE This study aimed to explore the association between thyroid hormone (TH) levels and cerebrospinal fluid (CSF) biomarkers for AD continuum among euthyroid subjects. METHODS In all, 93 clinically euthyroid subjects with a cognitive decline were included in this prospective cross-sectional study and were divided into groups with abnormal AD biomarkers (belonging to the "Alzheimer's continuum"; A+ patients) and those with "normal AD biomarkers" or "non-AD pathological changes" (A-patients), according to the ATN research framework classification for AD. A partial correlation analysis of serum thyroid-stimulating hormone (TSH) or TH levels with CSF biomarkers was conducted. The predictor for A+ patients was analyzed via binary logistic regressions. Finally, the diagnostic significance of individual biochemical predictors for A+ patients was estimated via receiver operating characteristic curve analysis. RESULTS Serum total triiodothyronine (TT3) and free triiodothyronine (FT3) levels were found to affect the levels of CSF amyloid-β (Aβ)42 and the ratios of Aβ 42/40. Further, FT3 was found to be a significant predictor for A+ via binary logistic regression modeling. Moreover, FT3 showed a high diagnostic value for A+ in euthyroid subjects. CONCLUSION Even in a clinical euthyroid state, low serum FT3 and TT3 levels appear to be differentially associated with AD-specific CSF changes. These data indicate that serum FT3 is a strong candidate for differential diagnosis between AD continuum and non-AD dementia, which benefits the early diagnosis and effective management of preclinical and clinical AD patients.
Collapse
Affiliation(s)
- Feifei Ge
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Lin Dong
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Donglin Zhu
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Xingjian Lin
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Jingping Shi
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Ming Xiao
- Jiangsu Province, Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
| |
Collapse
|
12
|
Ge F, Zhu D, Tian M, Shi J. The Role of Thyroid Function in Alzheimer's Disease. J Alzheimers Dis 2021; 83:1553-1562. [PMID: 34420955 DOI: 10.3233/jad-210339] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The thyroid gland is crucial for the regulation of metabolism, growth, and development of various tissues, organs, systems, including the central nervous system. Recent studies have implicated the role of thyroid dysfunction in the etiology of Alzheimer's disease (AD), while AD leads to a significant increase in the prevalence of thyroid dysfunction. In this review, we have analyzed the role of thyroid function in the pathophysiology of AD as well as its biomarkers. The present review aims to provide encouraging targets for early screening of AD risk factors and intervention strategies.
Collapse
Affiliation(s)
- Feifei Ge
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Donglin Zhu
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Minjie Tian
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Jingping Shi
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
13
|
Martinez ME, Hernandez A. The Type 3 Deiodinase Is a Critical Modulator of Thyroid Hormone Sensitivity in the Fetal Brain. Front Neurosci 2021; 15:703730. [PMID: 34248495 PMCID: PMC8265566 DOI: 10.3389/fnins.2021.703730] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/01/2021] [Indexed: 11/13/2022] Open
Abstract
Thyroid hormones (TH) are critical for the development and function of the central nervous system (CNS). Although their effects on the rodent brain peak within 2-3 weeks postnatally, the fetal brain has been found largely insensitive to exogenously administrated TH. To address this issue, here we examined gene expression in brains from mouse fetuses deficient in the type 3 deiodinase (DIO3), the selenoenzyme responsible for clearing TH. At embryonic day E18.5 qPCR determinations indicated a marked increase in the mRNA expression of T3-responsive genes Klf9 and Nrgn. The increased expression of these genes was confirmed by in situ hydridization in multiple areas of the cortex and in the striatum. RNA sequencing revealed 246 genes differentially expressed (70% up-regulated) in the brain of E18.5 Dio3-/- male fetuses. Differential expression of 13 of these genes was confirmed in an extended set of samples that included females. Pathway analyses of differentially expressed genes indicated enrichment in glycolysis and signaling related to axonal guidance, synaptogenesis and hypoxia inducible factor alpha. Additional RNA sequencing identified 588 genes differentially expressed (35% up-regulated) in the brain of E13.5 Dio3-/- male fetuses. Differential expression of 13 of these genes, including Klf9, Hr, and Mgp, was confirmed in an extended set of samples including females. Although pathway analyses of differentially expressed genes at E13.5 also revealed significant enrichment in axonal guidance and synaptogenesis signaling, top enrichment was found for functions related to the cell cycle, aryl hydrocarbon receptor signaling, PCP and kinetochore metaphase signaling pathways and mitotic roles of polo-like kinase. Differential expression at E13.5 was confirmed by qPCR for additional genes related to collagen and extracellular matrix and for selected transcription factors. Overall, our results demonstrate that the rodent fetal brain is sensitive to TH as early as E13.5 of gestational age, and suggest that TH distinctly affects brain developmental programs in early and late gestation. We conclude that DIO3 function is critical to ensure an adequate timing for TH action in the developing brain and is probably the main factor underlying the lack of effects on the fetal brain observed in previous studies after TH administration.
Collapse
Affiliation(s)
- Maria Elena Martinez
- Center for Molecular Medicine, Maine Medical Center Research Institute, MaineHealth, Scarborough, ME, United States
| | - Arturo Hernandez
- Center for Molecular Medicine, Maine Medical Center Research Institute, MaineHealth, Scarborough, ME, United States.,Graduate School for Biomedical Science and Engineering, University of Maine, Orono, ME, United States.,Department of Medicine, Tufts University School of Medicine, Boston, MA, United States
| |
Collapse
|
14
|
Serotonin 2A receptor function and depression-like behavior in rats model of hypothyroidism. Exp Brain Res 2021; 239:2435-2444. [PMID: 34106297 DOI: 10.1007/s00221-021-06129-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/29/2021] [Indexed: 10/21/2022]
Abstract
Hypothyroidism causes somatic, psychosocial and affective psychosis, including depression-like behaviors. In this study, (hypothyroidism group; HP group) adult male Sprague Dawley (SD) rats were induced to hypothyroidism after 5 weeks of exposure to 0.05% propylthiouracil (PTU) in potable water, control animals (CON group) were given the same amount of water. The following behavioral experiments were conducted, respectively: open-field test (OFT), forced swimming test (FST), tail suspension test (TST). TT[Formula: see text] and TT[Formula: see text] levels were measured after the behavior tests and the expression levels of 5-HT[Formula: see text] receptor and 5-HT[Formula: see text] receptor proteins were analyzed in the hippocampus and prefrontal cortex. The level of TT[Formula: see text] and TT[Formula: see text] in the HP group rats was much lower than that in the CON group. The hypothyroid rats also showed weight loss, much longer immobility time in tail suspension test and forced swimming test. Besides, 5 weeks of PTU administration was associated with significantly decreased expression levels of 5-HT[Formula: see text] receptor and 5-HT[Formula: see text] receptor proteins compared with control group, which were significantly negatively correlated with immobility time in FST and TST. In conclusion, our results suggest that hypothyroidism induces depressive behaviors through the influence of the serotonin system, and the decreased expression of the 5-HT[Formula: see text] receptor is an important cause of the depressive behaviors in hypothyroidism.
Collapse
|
15
|
Butruille L, Vancamp P, Demeneix BA, Remaud S. Thyroid hormone regulation of adult neural stem cell fate: A comparative analysis between rodents and primates. VITAMINS AND HORMONES 2021; 116:133-192. [PMID: 33752817 DOI: 10.1016/bs.vh.2021.02.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Thyroid hormone (TH) signaling, a highly conserved pathway across vertebrates, is crucial for brain development and function throughout life. In the adult mammalian brain, including that of humans, multipotent neural stem cells (NSCs) proliferate and generate neuronal and glial progenitors. The role of TH has been intensively investigated in the two main neurogenic niches of the adult mouse brain, the subventricular and the subgranular zone. A key finding is that T3, the biologically active form of THs, promotes NSC commitment toward a neuronal fate. In this review, we first discuss the roles of THs in the regulation of adult rodent neurogenesis, as well as how it relates to functional behavior, notably olfaction and cognition. Most research uncovering these roles of TH in adult neurogenesis was conducted in rodents, whose genetic background, brain structure and rate of neurogenesis are considerably different from that of humans. To bridge the phylogenetic gap, we also explore the similarities and divergences of TH-dependent adult neurogenesis in non-human primate models. Lastly, we examine how photoperiodic length changes TH homeostasis, and how that might affect adult neurogenesis in seasonal species to increase fitness. Several aspects by which TH acts on adult NSCs seem to be conserved among mammals, while we only start to uncover the molecular pathways, as well as how other in- and extrinsic factors are intertwined. A multispecies approach delivering more insights in the matter will pave the way for novel NSC-based therapies to combat neurological disorders.
Collapse
Affiliation(s)
- Lucile Butruille
- UMR 7221 Phyma, CNRS/Muséum National d'Histoire Naturelle, Paris, France
| | - Pieter Vancamp
- UMR 7221 Phyma, CNRS/Muséum National d'Histoire Naturelle, Paris, France
| | - Barbara A Demeneix
- UMR 7221 Phyma, CNRS/Muséum National d'Histoire Naturelle, Paris, France
| | - Sylvie Remaud
- UMR 7221 Phyma, CNRS/Muséum National d'Histoire Naturelle, Paris, France.
| |
Collapse
|
16
|
Abstract
Resistance to thyroid hormone alpha occurs due to pathogenic, heterozygous variants in THRA. The entity was first described in 2012 and to date only a small number of patients with varying severity have been reported. In this review, we summarize and interpret the heterogeneous clinical and laboratory features of all published cases, including ours. Many symptoms and findings are similar to those seen in primary hypothyroidism. However, thyroid-stimulating hormone levels are normal. Free triiodothyronine (T3) levels are in the upper half of normal range or frankly high and free thyroxine (T4) levels are low or in the lower half of normal range. Alterations in free T3 and free T4 may not be remarkable, particularly in adults, possibly contributing to underdiagnosis. In such patients, low reverse T3 levels, normo- or macrocytic anemia or, particularly in children, mildly elevated creatine kinase levels would warrant THRA sequencing. Treatment with L-thyroxine results in improvement of some clinical findings.
Collapse
Affiliation(s)
- İbrahim Mert Erbaş
- Dokuz Eylül University Faculty of Medicine, Department of Pediatric Endocrinology, İzmir, Turkey
| | - Korcan Demir
- Dokuz Eylül University Faculty of Medicine, Department of Pediatric Endocrinology, İzmir, Turkey,* Address for Correspondence: Dokuz Eylül University Faculty of Medicine, Department of Pediatric Endocrinology, İzmir, Turkey Phone: +90 232 412 60 77 E-mail:
| |
Collapse
|
17
|
Maternal L-thyroxine treatment during lactation affects learning and anxiety-like behaviors but not spatial memory in adult rat progeny. Pharmacol Rep 2021; 73:454-463. [PMID: 33481209 DOI: 10.1007/s43440-020-00214-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 12/22/2020] [Accepted: 12/29/2020] [Indexed: 10/22/2022]
Abstract
BACKGROUND The present study compared behavioral and molecular indicators of hippocampal function in L-thyroxine treated rats to determine whether thyroid hormone excessiveness produces relatively stable lifelong changes. METHODS Hyperthyroidism was induced in rats by daily injections of L-thyroxine (0.2 mg/kg) to their dams for lactation period (MOH: maternal-onset hyperthyroidism) or to the rats itself during the young adult period (AOH: adult-onset hyperthyroidism; between the day 39-60). Spatial learning was assessed in the Morris Water Maze (MWM). Levels of type 2 and type 3 deiodinases, Erk1/2, JNK and P38MAPK were assessed via western blotting in the hippocampus of trained rats. Measurements were all done in rats aged 60-66 days. RESULTS In MWM, maternally treated rats with L-thyroxine swam more away from the hidden platform, with showing more anxiety-like behavior, as compared to the rats treated or no treated with L-thyroxine in young adulthood. In spite of impaired acquisition, MOH group was not significantly different from the other groups in probe trial. In Western blot of the hippocampus, a decreased the expression of P38MAPK was found in rats treated with L-thyroxine in young adulthood period. However, maternal treatment with L-thyroxine resulted in an increased expression of Type 2 deiodinase and a tendency toward decreased expression of total and phosphorylated ERK1/2. No detectable band for type 3 deiodinase, p-JNK and p-P38MAPK was observed in all three groups. CONCLUSION These results suggest that perinatal excessiveness of thyroid hormone has longstanding effects on hippocampal function and may account for memory problems experienced by adolescents with lactational hyperthyroidism.
Collapse
|
18
|
O'Shaughnessy KL, Gilbert ME. Thyroid disrupting chemicals and developmental neurotoxicity - New tools and approaches to evaluate hormone action. Mol Cell Endocrinol 2020; 518:110663. [PMID: 31760043 PMCID: PMC8270644 DOI: 10.1016/j.mce.2019.110663] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 11/20/2019] [Accepted: 11/20/2019] [Indexed: 12/25/2022]
Abstract
It is well documented that thyroid hormone (TH) action is critical for normal brain development and is mediated by both nuclear and extranuclear pathways. Given this dependence, the impact of environmental endocrine disrupting chemicals that interfere with thyroid signaling is a major concern with direct implications for children's health. However, identifying thyroid disrupting chemicals in vivo is primarily reliant on serum thyroxine (T4) measurements within greater developmental and reproductive toxicity assessments. These studies do not examine known TH-dependent phenotypes in parallel, which complicates chemical evaluation. Additionally, there exist no recommendations regarding what degree of serum T4 dysfunction is adverse, and little consideration is given to quantifying TH action within the developing brain. This review summarizes current testing strategies in rodent models and discusses new approaches for evaluating the developmental neurotoxicity of thyroid disrupting chemicals. This includes assays to identify adverse cellular effects of the brain by both immunohistochemistry and gene expression, which would compliment serum T4 measures. While additional experiments are needed to test the full utility of these approaches, incorporation of these cellular and molecular assays could enhance chemical evaluation in the regulatory arena.
Collapse
Affiliation(s)
- Katherine L O'Shaughnessy
- United States Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Toxicity Assessment Division, Endocrine Toxicology Branch, Research Triangle Park, NC, 27711, USA.
| | - Mary E Gilbert
- United States Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Toxicity Assessment Division, Endocrine Toxicology Branch, Research Triangle Park, NC, 27711, USA.
| |
Collapse
|
19
|
Skippen P, Fulham WR, Michie PT, Matzke D, Heathcote A, Karayanidis F. Reconsidering electrophysiological markers of response inhibition in light of trigger failures in the stop‐signal task. Psychophysiology 2020; 57:e13619. [DOI: 10.1111/psyp.13619] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 04/27/2020] [Accepted: 05/10/2020] [Indexed: 12/31/2022]
Affiliation(s)
- P. Skippen
- Functional Neuroimaging Laboratory School of Psychology University of Newcastle Newcastle NSW Australia
- Priority Research Centre for Brain and Mental Health University of Newcastle Newcastle NSW Australia
| | - W. R. Fulham
- Functional Neuroimaging Laboratory School of Psychology University of Newcastle Newcastle NSW Australia
- Priority Research Centre for Brain and Mental Health University of Newcastle Newcastle NSW Australia
| | - P. T. Michie
- Functional Neuroimaging Laboratory School of Psychology University of Newcastle Newcastle NSW Australia
- Priority Research Centre for Brain and Mental Health University of Newcastle Newcastle NSW Australia
| | - D. Matzke
- Psychological Methods Department of Psychology University of Amsterdam Amsterdam The Netherlands
| | - A. Heathcote
- School of Psychology University of Tasmania Hobart TAS Australia
| | - F. Karayanidis
- Functional Neuroimaging Laboratory School of Psychology University of Newcastle Newcastle NSW Australia
- Priority Research Centre for Brain and Mental Health University of Newcastle Newcastle NSW Australia
- Priority Research Centre for Stroke and Brain Injury University of Newcastle Newcastle NSW Australia
| |
Collapse
|
20
|
Tomczyk T, Urbańska EM. Experimental hypothyroidism raises brain kynurenic acid - Novel aspect of thyroid dysfunction. Eur J Pharmacol 2020; 883:173363. [PMID: 32663543 DOI: 10.1016/j.ejphar.2020.173363] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/06/2020] [Accepted: 07/09/2020] [Indexed: 01/09/2023]
Abstract
Hypothyroidism frequently manifests with altered mood and disturbed cognition. Kynurenic acid may influence cognition through antagonism of N-methyl-d-aspartate receptors (NMDA) and α7 nicotinic receptors. In here, thyroid hormones effects on kynurenic acid synthesis in rat cortical slices and on kynurenine aminotransferases (KATs) activity in semi-purified cortical homogenates were studied. Furthermore, brain kynurenic acid levels and KATs activities were evaluated in experimental model of hypothyroidism, induced by chronic administration of 0.05% propylthiouracil in drinking water. In vitro, L-thyroxine (T4) and 3,3,5-triiodothyronine (T3), reduced kynurenic acid synthesis and KATs activities (IC50 ~ 50-150 μM). In vivo, propylthiouracil increased cortical, hippocampal and striatal, but not cerebellar kynurenic acid content (192%, 142% and 124% of control, respectively), despite uniformly decreased KAT II activity and lower cortical and striatal KAT I activity. T4 application to hypothyroid animals restored kynurenic acid levels to control values and reversed enzymatic changes. T4 alone did not change brain kynurenic acid levels, despite increased activities of brain KATs. Hence, thyroid hormones modulate kynurenic acid levels by two opposing mechanisms, stimulation of KATs activity, most probably transcriptional, and direct, post-translational inhibition of KATs. Lack of correlation between KATs activity and kynurenic acid level may reflect the influence of T4 on organic anion transporter and result from impaired removal of kynurenic acid from the brain during hypothyroidism. Our data reveal novel mechanism linked with thyroid hormones deficiency and imply the potential involvement of increased brain kynurenic acid in the hypothyroidism-related cognitive disturbance.
Collapse
Affiliation(s)
- Tomasz Tomczyk
- Department of Experimental and Clinical Pharmacology, Medical University in Lublin, Poland
| | - Ewa M Urbańska
- Laboratory of Cellular and Molecular Pharmacology, Department of Experimental and Clinical Pharmacology, Medical University in Lublin, Poland.
| |
Collapse
|
21
|
Salas-Lucia F, Pacheco-Torres J, González-Granero S, García-Verdugo JM, Berbel P. Transient Hypothyroidism During Lactation Alters the Development of the Corpus Callosum in Rats. An in vivo Magnetic Resonance Image and Electron Microscopy Study. Front Neuroanat 2020; 14:33. [PMID: 32676012 PMCID: PMC7333461 DOI: 10.3389/fnana.2020.00033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 05/28/2020] [Indexed: 12/20/2022] Open
Abstract
Magnetic resonance imaging (MRI) data of children with late diagnosed congenital hypothyroidism and cognitive alterations such as abnormal verbal memory processing suggest altered telencephalic commissural connections. The corpus callosum (CC) is the major inter-hemispheric commissure that contra-laterally connects neocortical areas. However, in late diagnosed neonates with congenital hypothyroidism, the possible effect of early transient and chronic postnatal hypothyroidism still remains unknown. We have studied the development of the anterior, middle and posterior CC, using in vivo MRI and electron microscopy in hypothyroid and control male rats. Four groups of methimazole (MMI) treated rats were studied. One group, as a model for early transient hypothyroidism, was MMI-treated from postnatal day (P) 0 to P21; some of these rats were also treated with L-thyroxine (T4) from P15 to 21. Another group modeling chronic hypothyroid, were treated with MMI from P0 to 150 and from embryonic day 10 to P170. The results obtained from these groups were compared with same age control rats. The normalized T2 signal obtained using MRI was higher in MMI-treated rats and correlated with a low number and percentage of myelinated axons. The number and density of myelinated axons decreased in transient and chronic hypothyroid rats at P150. The g-ratio (inner to outer diameter ratio) and the estimated conduction velocity of myelinated axons were similar between MMI-treated and controls, but the conduction delay decreased in the posterior CC of MMI-treated rats compared to controls. These data show that early postnatal transient and chronic hypothyroidism alters CC maturation in a way that may affect the callosal transfer of information. These alterations cannot be reversed after delayed T4-treatment. Our data support the findings of neurocognitive delay in late T4-treated children with congenital hypothyroidism.
Collapse
Affiliation(s)
- Federico Salas-Lucia
- Departamento de Histología y Anatomía, Facultad de Medicina, Universidad Miguel Hernández (UMH), Sant Joan d’Alacant, Spain
| | - Jesús Pacheco-Torres
- Instituto de Neurociencias de Alicante, UMH – Consejo Superior de Investigaciones Científicas, Sant Joan d’Alacant, Spain
| | - Susana González-Granero
- Laboratorio de Neurobiología Comparada, Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Universitat de València - Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Valencia, Spain
| | - José Manuel García-Verdugo
- Laboratorio de Neurobiología Comparada, Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Universitat de València - Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Valencia, Spain
| | - Pere Berbel
- Departamento de Histología y Anatomía, Facultad de Medicina, Universidad Miguel Hernández (UMH), Sant Joan d’Alacant, Spain
| |
Collapse
|
22
|
Bortolotto VC, Araujo SM, Pinheiro FC, Poetini MR, de Paula MT, Meichtry LB, de Almeida FP, Musachio EAS, Guerra GP, Prigol M. Modulation of glutamate levels and Na +,K +-ATPase activity contributes to the chrysin memory recovery in hypothyroidism mice. Physiol Behav 2020; 222:112892. [PMID: 32302609 DOI: 10.1016/j.physbeh.2020.112892] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 02/27/2020] [Accepted: 03/23/2020] [Indexed: 12/13/2022]
Abstract
Abnormalities in the thyroid hormones, like in hypothyroidism, are closely related to dementia and Alzheimer's disease demonstrating the main symptom of these disorders: memory deficit. In this study we evaluated the effect of chrysin on deficit spatial and aversive memories and the contribution of glutamatergic, cholinergic pathways and Na+, K+-ATPase activity on hippocampus and prefrontal cortex in hypothyroid adult female mice C57BL/6. Hypothyroidism was induced by the continuous exposure to 0.1% methimazole (MTZ) in drinking water for 31 days. The exposure to MTZ was associated to low plasma levels of thyroid hormones (TH) compared to the control group on the 32nd. Subsequently, euthyroid and MTZ-induced hypothyroid mice received (intragastrically) either vehicle or chrysin (20 mg/kg) once a day for 28 consecutive days. After treatments mice performed the following behavioral assessments: open-field test (OFT), morris water maze (MWM) and passive avoidance test. Additionally, plasma TH levels were measured again, as well as glutamate levels, Na+,K+-ATPase and acetylcholinesterase (AChE) activities were analyzed in the hippocampus and prefrontal cortex of mice. Mice with hypothyroidism showed a deficit of spatial and aversive memory and chrysin treatment reversed these deficits. It also reduced the levels of glutamate and decreased Na+,K+-ATPase activity in both cerebral structures in the hypothyroid mice compared with the euthyroid ones, with the exception of glutamate in the hippocampus, which was a partial reversal. AChE activity was not altered by treatments. Together, our results demonstrate that chrysin normalized hippocampal glutamate levels and Na+,K+-ATPase activity, which could be involved in the reversal of memory deficit.
Collapse
Affiliation(s)
- Vandreza Cardoso Bortolotto
- Laboratório de Avaliações Farmacológicas e Toxicológicas aplicadas às Moléculas Bioativas - Unipampa, Universidade Federal do Pampa - Campus Itaqui, Itaqui 97650-000, RS, Brazil
| | - Stífani Machado Araujo
- Laboratório de Avaliações Farmacológicas e Toxicológicas aplicadas às Moléculas Bioativas - Unipampa, Universidade Federal do Pampa - Campus Itaqui, Itaqui 97650-000, RS, Brazil
| | - Franciane Cabral Pinheiro
- Laboratório de Avaliações Farmacológicas e Toxicológicas aplicadas às Moléculas Bioativas - Unipampa, Universidade Federal do Pampa - Campus Itaqui, Itaqui 97650-000, RS, Brazil
| | - Márcia Rósula Poetini
- Laboratório de Avaliações Farmacológicas e Toxicológicas aplicadas às Moléculas Bioativas - Unipampa, Universidade Federal do Pampa - Campus Itaqui, Itaqui 97650-000, RS, Brazil
| | - Mariane Trindade de Paula
- Laboratório de Avaliações Farmacológicas e Toxicológicas aplicadas às Moléculas Bioativas - Unipampa, Universidade Federal do Pampa - Campus Itaqui, Itaqui 97650-000, RS, Brazil
| | - Luana Barreto Meichtry
- Laboratório de Avaliações Farmacológicas e Toxicológicas aplicadas às Moléculas Bioativas - Unipampa, Universidade Federal do Pampa - Campus Itaqui, Itaqui 97650-000, RS, Brazil
| | - Francielli Polet de Almeida
- Laboratório de Avaliações Farmacológicas e Toxicológicas aplicadas às Moléculas Bioativas - Unipampa, Universidade Federal do Pampa - Campus Itaqui, Itaqui 97650-000, RS, Brazil
| | - Elize Aparecida Santos Musachio
- Laboratório de Avaliações Farmacológicas e Toxicológicas aplicadas às Moléculas Bioativas - Unipampa, Universidade Federal do Pampa - Campus Itaqui, Itaqui 97650-000, RS, Brazil
| | - Gustavo Petri Guerra
- Laboratório de Avaliações Farmacológicas e Toxicológicas aplicadas às Moléculas Bioativas - Unipampa, Universidade Federal do Pampa - Campus Itaqui, Itaqui 97650-000, RS, Brazil
| | - Marina Prigol
- Laboratório de Avaliações Farmacológicas e Toxicológicas aplicadas às Moléculas Bioativas - Unipampa, Universidade Federal do Pampa - Campus Itaqui, Itaqui 97650-000, RS, Brazil.
| |
Collapse
|
23
|
Rahman MM, Chakraborti RR, Potol MA, Abir AH, Sharmin O, Alam M, Khan MFR, Afrin R, Jannat H, Wadud R, Habib ZF. Epalrestat improves motor symptoms by reducing oxidative stress and inflammation in the reserpine induced mouse model of Parkinson's disease. Animal Model Exp Med 2020; 3:9-21. [PMID: 32318655 PMCID: PMC7167235 DOI: 10.1002/ame2.12097] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 11/12/2019] [Accepted: 12/06/2019] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Parkinson's disease (PD) is a progressive neurodegenerative disorder affecting a large number of elderly people worldwide. The current therapies for PD are symptom-based; they do not provide a cure but improve the quality of life. Muscular dysfunction is the hallmark clinical feature of PD and oxidative stress and inflammation play a critical role in its pathogenesis. Epalrestat is used for the treatment of diabetic neuropathy and is known to improve antioxidative defense mechanisms in the CNS. Therefore, in this study, we investigated the role of Epalrestat in the reserpine induced mouse model of PD. METHOD We used Swiss Albino mice for the PD model and tested for akinesia/bradykinesia, muscular rigidity, palpebral ptosis, and tremor, as well as conducting swim and open field tests. Brain samples were used to determine oxidative stress parameters and infiltration of immune cells. RESULTS Epalrestat treatment significantly improved akinesia and bradykinesia, muscular dysfunctions, tremor level, and gait functions compared to the reserpine group. It also improved the latency in the swim test. Eplarestat significantly reduced lipid peroxidation and NO concentration in different brain tissues and increased the activity of antioxidative enzymes, glutathione, catalase, and superoxide dismutase. Furthermore, Epalrestat reduced neuroinflammation by reducing the number of infiltrating immune cells. CONCLUSION Eplarestat improves muscular dysfunction in PD by reducing oxidative stress and inflammation.
Collapse
Affiliation(s)
- Md. Mahbubur Rahman
- Laboratory of PharmacologyDepartment of Pharmaceutical SciencesSchool of Health & Life SciencesNorth South UniversityDhakaBangladesh
| | - Rupali Rani Chakraborti
- Laboratory of PharmacologyDepartment of Pharmaceutical SciencesSchool of Health & Life SciencesNorth South UniversityDhakaBangladesh
| | - Md. Abdullah Potol
- Laboratory of PharmacologyDepartment of Pharmaceutical SciencesSchool of Health & Life SciencesNorth South UniversityDhakaBangladesh
| | - Ariful Haque Abir
- Laboratory of PharmacologyDepartment of Pharmaceutical SciencesSchool of Health & Life SciencesNorth South UniversityDhakaBangladesh
| | - Ozayra Sharmin
- Laboratory of PharmacologyDepartment of Pharmaceutical SciencesSchool of Health & Life SciencesNorth South UniversityDhakaBangladesh
| | - Mahabub Alam
- Laboratory of PharmacologyDepartment of Pharmaceutical SciencesSchool of Health & Life SciencesNorth South UniversityDhakaBangladesh
| | - Md. Fazlur Rahman Khan
- Laboratory of PharmacologyDepartment of Pharmaceutical SciencesSchool of Health & Life SciencesNorth South UniversityDhakaBangladesh
| | - Rownock Afrin
- Laboratory of PharmacologyDepartment of Pharmaceutical SciencesSchool of Health & Life SciencesNorth South UniversityDhakaBangladesh
| | - Humayra Jannat
- Laboratory of PharmacologyDepartment of Pharmaceutical SciencesSchool of Health & Life SciencesNorth South UniversityDhakaBangladesh
| | - Rasiqh Wadud
- Laboratory of PharmacologyDepartment of Pharmaceutical SciencesSchool of Health & Life SciencesNorth South UniversityDhakaBangladesh
| | - Zaki Farhad Habib
- Laboratory of PharmacologyDepartment of Pharmaceutical SciencesSchool of Health & Life SciencesNorth South UniversityDhakaBangladesh
| |
Collapse
|
24
|
Baghcheghi Y, Mansouri S, Beheshti F, Shafei MN, Salmani H, Reisi P, Anaeigoudari A, Bideskan AE, Hosseini M. Neuroprotective and long term potentiation improving effects of vitamin E in juvenile hypothyroid rats. INT J VITAM NUTR RES 2020; 90:156-168. [DOI: 10.1024/0300-9831/a000533] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abstract. Protective effects of vitamin E (Vit E) on long term potentiation (LTP) impairment, neuronal apoptosis and increase of nitric oxide (NO) metabolites in the hippocampus of juvenile rats were examined. The rats were grouped (n=13) as: (1) control; (2) hypothyroid (Hypo) and (3) Hypo-Vit E. Propylthiouracil (PTU) was given in drinking water (0.05%) during 6 weeks. Vit E (20 mg/ kg) was daily injected (IP). To evaluate synaptic plasticity, LTP from the CA1 area of the hippocampus followed by high frequency stimulation to the ipsilateral Schafer collateral pathway was carried out. The cortical and hippocampal tissues were then removed to measure NO metabolites. The brains of 5 animals in each group were removed for apoptosis study. The hypothyroidism status decreased the slope, 10–90% slope and amplitude of field excitatory post synaptic potential (fEPSP) compared to the control group (P<0.01–P<0.001). Injection of Vit E increased the slope, 10–90% slope and amplitude of the fEPSP in the Hypo-Vit E group in comparison to the Hypo group (P<0.05–P<0.01). TUNEL positive neurons and NO metabolites were higher in the hippocampus of the Hypo rats, as compared to those in the hippocampus of the control ones (P<0.001). Treatment of the Hypo rats by Vit E decreased apoptotic neurons (P<0.01–P<0.001) and NO metabolites (P<0.001) in the hippocampus compared to the Hypo rats. The results of the present study showed that Vit E prevented the LTP impairment and neuronal apoptosis in the hippocampus of juvenile hypothyroid rats.
Collapse
Affiliation(s)
- Yousef Baghcheghi
- Student Research Committee, Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Somaieh Mansouri
- Department of Anatomy and Cell Biology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farimah Beheshti
- Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Naser Shafei
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossien Salmani
- Student Research Committee, Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Parham Reisi
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Akbar Anaeigoudari
- Department of Physiology, School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran
| | | | - Mahmoud Hosseini
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
25
|
Effect of rutin on anxiety-like behavior and activity of acetylcholinesterase isoforms in specific brain regions of pentylenetetrazol-treated mice. Epilepsy Behav 2020; 102:106632. [PMID: 31747631 DOI: 10.1016/j.yebeh.2019.106632] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/24/2019] [Accepted: 09/25/2019] [Indexed: 11/20/2022]
Abstract
The aim of the present study was to investigate the effect of rutin administration (100 mg/kg/day) to pentylenetetrazol (PTZ)-treated Balb-c mice (60 mg/kg/day), with respect to anxiety-like behavior using both open-field and elevated plus-maze (EPM) tests, and acetylcholinesterase (AChE) activity in salt-soluble (SS) fraction and detergent-soluble (DS) fraction of the cerebral cortex, hippocampus, striatum, midbrain, and diencephalon. Our results demonstrated that the administration of PTZ in 3 doses and the induction of seizures increased significantly anxiety behavior of mice and reduced significantly DS-AChE activity in all brain regions examined, while the reduction in the SS fraction was brain region-specific. Rutin administration to normal mice did not affect their behavior, while it induced a brain region-specific reduction in SS-AChE and a significant decrease in DS-AChE in all brain regions. We demonstrated for the first time that pretreatment of PTZ-mice with rutin (PTZ + Rutin group) prevented the manifestation of anxiety and induced interestingly a further significant reduction on the SS- and DS-AChE activities only in the cerebral cortex and striatum, in comparison with PTZ group. Our results show that rutin exhibits an important anxiolytic effect and an anticholinesterase activity in specific brain areas in the seizure model of PTZ.
Collapse
|
26
|
Umezu T, Kita T, Morita M. Hyperactive behavioral phenotypes and an altered brain monoaminergic state in male offspring mice with perinatal hypothyroidism. Toxicol Rep 2019; 6:1031-1039. [PMID: 31673505 PMCID: PMC6816216 DOI: 10.1016/j.toxrep.2019.10.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 09/20/2019] [Accepted: 10/04/2019] [Indexed: 11/19/2022] Open
Abstract
Thyroid hormone (TH) is essential for normal brain development. TH insufficiency during early stages of development may increase the risk for attention deficit/hyperactivity disorder, in which malfunction of brain monoaminergic systems is likely involved. However, little is known about the effects of perinatal hypothyroidism on behaviors and brain monoaminergic systems in offspring mice. The present study examined in mice (1) whether perinatal hypothyroidism causes hyperactive behavioral phenotypes, (2) how perinatal hypothyroidism influences brain monoaminergic systems, and (3) whether hyperactive behavioral phenotypes are associated with the state of brain monoaminergic systems. When dams were exposed to propylthiouracil, offspring mice developed hypothyroidism during the perinatal period. Offspring mice with perinatal hypothyroidism exhibited hyperactive behavioral phenotypes such as hyper-ambulatory activity and an increased response rate in the two-way active avoidance test in a male-specific manner. Significant decreases in dopamine (DA) and serotonin turnover were observed in the striatum (ST), nucleus accumbens, hypothalamus, and hippocampus in male mice with perinatal hypothyroidism. A significant correlation between ambulatory activity and DA turnover in the ST and an augmented ambulatory response to the DA reuptake inhibitor bupropion suggested that DA in the ST was involved in the hyper-ambulatory activity in mice with perinatal hypothyroidism.
Collapse
Affiliation(s)
- Toyoshi Umezu
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Tsukuba, Ibaraki 305-8506, Japan
- Corresponding author at: Health Effect Assessment Section, Center for Health and Environmental Risk Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki, 305-8506, Japan.
| | - Taizo Kita
- Graduate School of Food and Nutrition, Kyushu Nutrition Welfare University, Kitakyushu, Fukuoka 803-8511, Japan
| | - Masatoshi Morita
- Graduate School of Agriculture, Ehime University, Matsuyama, Ehime 790-8577, Japan
| |
Collapse
|
27
|
Deficiency of the palmitoyl acyltransferase ZDHHC7 impacts brain and behavior of mice in a sex-specific manner. Brain Struct Funct 2019; 224:2213-2230. [PMID: 31183559 DOI: 10.1007/s00429-019-01898-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 05/31/2019] [Indexed: 02/05/2023]
Abstract
The palmitoyl acyltransferase ZDHHC7 belongs to the DHHC family responsible for the covalent attachment of palmitic acid (palmitoylation) to target proteins. Among synaptic proteins, its main targets are sex steroid receptors such as the estrogen receptors. When palmitoylated, these couple to membrane microdomains and elicit non-genomic rapid responses. Such coupling is found particularly in cortico-limbic brain areas which impact structure, function, and behavioral outcomes. Thus far, the functional role of ZDHHC7 has not been investigated in this context. To directly analyze an impact of ZDHHC7 on brain anatomy, microstructure, connectivity, function, and behavior, we generated a mutant mouse in which the Zdhhc7 gene is constitutively inactivated. Male and female Zdhhc7-/- mice were phenotypically compared with wild-type mice using behavioral tests, electrophysiology, protein analyses, and neuroimaging with diffusion tensor-based fiber tractography. Zdhhc7-deficiency impaired excitatory transmission, synaptic plasticity at hippocampal Schaffer collateral CA1 synapses, and hippocampal structural connectivity in both sexes in similar manners. Effects on both sexes but in different manners appeared in medial prefrontal cortical synaptic transmission and in hippocampal microstructures. Finally, Zdhhc7-deficiency affected anxiety-related behaviors exclusively in females. Our data demonstrated the importance of Zdhhc7 for assembling proper brain structure, function, and behavior on a system level in mice in a sex-related manner. Given the prominent role of sex-specificity also in humans and associated mental disorders, Zdhhc7-/- mice might provide a promising model for in-depth investigation of potentially underlying sex-specifically altered mechanisms.
Collapse
|
28
|
Baghcheghi Y, Beheshti F, Shafei MN, Salmani H, Sadeghnia HR, Soukhtanloo M, Anaeigoudari A, Hosseini M. The effects of vitamin E on brain derived neurotrophic factor, tissues oxidative damage and learning and memory of juvenile hypothyroid rats. Metab Brain Dis 2018; 33:713-724. [PMID: 29290043 DOI: 10.1007/s11011-017-0176-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 12/25/2017] [Indexed: 12/21/2022]
Abstract
The effects of vitamin E (Vit E) on brain derived neurotrophic factor (BDNF) and brain tissues oxidative damage as well as on learning and memory impairments in juvenile hypothyroid rats were examined. The rats were grouped as: (1) Control; (2) Propylthiouracil (PTU); (3) PTU-Vit E and (4) Vit E. PTU was added to their drinking water (0.05%) during 6 weeks. Vit E (20 mg/kg) was daily injected (IP). Morris water maze (MWM) and passive avoidance (PA) were carried out. The animals were deeply anesthetized and the brain tissues were removed for biochemical measurements. PTU increased the escape latency and traveled path in MWM (P < 0.001). It also shortened the latency to enter the dark compartment of PA as well as the time spent in the target quadrant in probe trial of MWM (P < 0.01-P < 0.001). All the effects of PTU were reversed by Vit E (P < 0.01-P < 0.001). PTU administration attenuated thiol and BDNF content as well as the activities of superoxide dismutase (SOD) and catalase (CAT) in the brain tissues while increased molondialdehyde (MDA). Moreover, Vit E improved BDNF, thiol, SOD and CAT while diminished MDA. The results of the present study showed that Vit E improved BDNF and prevented from brain tissues oxidative damage as well as learning and memory impairments in juvenile hypothyroid rats.
Collapse
Affiliation(s)
- Yousef Baghcheghi
- Student Research Committee, Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farimah Beheshti
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Naser Shafei
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Salmani
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Reza Sadeghnia
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Soukhtanloo
- Department of Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Akbar Anaeigoudari
- Department of Physiology, School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Mahmoud Hosseini
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
29
|
Teng X, Liu YY, Teng W, Brent GA. COUP-TF1 Modulates Thyroid Hormone Action in an Embryonic Stem-Cell Model of Cortical Pyramidal Neuronal Differentiation. Thyroid 2018; 28:667-678. [PMID: 29205104 PMCID: PMC5952340 DOI: 10.1089/thy.2017.0256] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Thyroid hormone is critical for normal brain development and acts in a spatial and temporal specific pattern. Thyroid hormone excess, or deficiency, can lead to irreversible impairment of brain and sensory development. Chicken ovalbumin upstream-transcription factor 1 (COUP-TF1), expressed early in neuronal development, is essential to achieve normal brain structure. Thyroid hormone stimulation of gene expression is inversely correlated with the level of COUP-TF1 expression. METHODS An in vitro method of differentiating mouse embryonic stem (mES) cells into cortical neurons was utilized to study the influence of COUP-TF1 on thyroid hormone signaling in brain development. mES cells were cultured and differentiated in specific conditioned media, and a high percentage of nestin-positive progenitor neurons in the first stage, and cortical neurons in the second stage, was obtained with characteristic neuronal firing. RESULTS The number of nestin-positive progenitors, as determined by fluorescence-activated cell sorting analysis, was significantly greater with triiodothyronine (T3) treatment compared to control (p < 0.05). T3 enhanced the expression of cortical neuron marker (Tbr1 and Rc3) mRNAs. After COUP-TF1 knockdown, the number of nestin-positive progenitors was reduced compared to control (p < 0.05), but the number increased with T3 treatment. The mRNA of cortical neuronal gene markers was measured after COUP-TF1 knockdown. In the presence of T3, the peak expression of neuron markers Emx1, Tbr1, Camkiv, and Rc3 mRNA was earlier, at day 18 of differentiation, compared to control cells, at day 22. Furthermore, after COUP-TF1 knockdown, T3 induction of Rc3 and Tbr1 mRNA was significantly enhanced compared to cells expressing COUP-TF1. CONCLUSION These results indicate that COUP-TF1 plays an important role in modulating the timing and magnitude of T3-stimulated gene expression required for normal corticogenesis.
Collapse
Affiliation(s)
- Xiaochun Teng
- Molecular Endocrinology Laboratory, VA Greater Los Angeles Healthcare System, Departments of Medicine and Physiology, David Geffen School of Medicine at UCLA, Los Angeles, California
- Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Affiliated Hospital of China Medical University, Shenyang, P. R. China
| | - Yan-Yun Liu
- Molecular Endocrinology Laboratory, VA Greater Los Angeles Healthcare System, Departments of Medicine and Physiology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Weiping Teng
- Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Affiliated Hospital of China Medical University, Shenyang, P. R. China
| | - Gregory A. Brent
- Molecular Endocrinology Laboratory, VA Greater Los Angeles Healthcare System, Departments of Medicine and Physiology, David Geffen School of Medicine at UCLA, Los Angeles, California
| |
Collapse
|
30
|
Yu D, Zhou H, Zou L, Jiang Y, Wu X, Jiang L, Zhou Q, Yang Y, Xu L, Mao R. Hippocampal Administration of Levothyroxine Impairs Contextual Fear Memory Consolidation in Rats. Front Cell Neurosci 2017; 11:223. [PMID: 28824379 PMCID: PMC5534464 DOI: 10.3389/fncel.2017.00223] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 07/13/2017] [Indexed: 12/17/2022] Open
Abstract
Thyroid hormone (TH) receptors are highly distributed in the hippocampus, which plays a vital role in memory processes. However, how THs are involved in the different stages of memory process is little known. Herein, we used hippocampus dependent contextual fear conditioning to address the effects of hippocampal THs on the different stages of fear memory. First, we found that a single systemic levothyroxine (LT4) administration increased the level of free triiodothyronine (FT3) and free tetraiodothyroxine (FT4) not only in serum but also in hippocampus. In addition, a single systemic LT4 administration immediately after fear conditioning significantly impaired fear memory. These results indicated the important role of hippocampal THs in fear memory process. To further confirm the effects of hippocampal THs on the different stages of fear memory, LT4 (0.4 μg/μl, 1 μl/side) was injected bilaterally into hippocampus. Rats given LT4 into hippocampus before training or tests had no effect on the acquisition or retrieval of fear memory, however rats given LT4 into hippocampus either immediately or 2 h after training showed being significantly impaired fear memory, which demonstrated LT4 administration into hippocampus impairs the consolidation but has no effect on the acquisition and retrieval of fear memory. Furthermore, hippocampal injection of LT4 did not affect rats’ locomotor activity, thigmotaxis and THs level in prefrontal cortex (PFC) and serum. These findings may have important implications for understanding mechanisms underlying contribution of THs to memory disorders.
Collapse
Affiliation(s)
- Dafu Yu
- Department of Nuclear Medicine, First People's Hospital of Yunnan ProvinceKunming, China.,Laboratory of Learning and Memory, Kunming Institute of Zoology, Chinese Academy of SciencesKunming, China
| | - Heng Zhou
- Laboratory of Learning and Memory, Kunming Institute of Zoology, Chinese Academy of SciencesKunming, China.,School of Life Sciences, University of Science and Technology of ChinaHefei, China
| | - Lin Zou
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical UniversityChongqing, China
| | - Yong Jiang
- Department of Nuclear Medicine, First People's Hospital of Yunnan ProvinceKunming, China
| | - Xiaoqun Wu
- Respiratory Department, First People's Hospital of Yunnan ProvinceKunming, China
| | - Lizhu Jiang
- Laboratory of Learning and Memory, Kunming Institute of Zoology, Chinese Academy of SciencesKunming, China.,Department of Neuropsychopathy, Clinical Medical School, Dali UniversityDali, China
| | - Qixin Zhou
- Laboratory of Learning and Memory, Kunming Institute of Zoology, Chinese Academy of SciencesKunming, China
| | - Yuexiong Yang
- Laboratory of Learning and Memory, Kunming Institute of Zoology, Chinese Academy of SciencesKunming, China
| | - Lin Xu
- Laboratory of Learning and Memory, Kunming Institute of Zoology, Chinese Academy of SciencesKunming, China
| | - Rongrong Mao
- Laboratory of Learning and Memory, Kunming Institute of Zoology, Chinese Academy of SciencesKunming, China
| |
Collapse
|
31
|
Raymaekers SR, Darras VM. Thyroid hormones and learning-associated neuroplasticity. Gen Comp Endocrinol 2017; 247:26-33. [PMID: 28390960 DOI: 10.1016/j.ygcen.2017.04.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 03/30/2017] [Accepted: 04/03/2017] [Indexed: 12/11/2022]
Abstract
Thyroid hormones (THs) are crucial for brain development and maturation in all vertebrates. Especially during pre- and perinatal development, disruption of TH signaling leads to a multitude of neurological deficits. Many animal models provided insight in the role of THs in brain development, but specific data on how they affect the brain's ability to learn and adapt depending on environmental stimuli are rather limited. In this review, we focus on a number of learning processes like spatial learning, fear conditioning, vocal learning and imprinting behavior and on how abnormal TH signaling during development shapes subsequent performance. It is clear from multiple studies that TH deprivation leads to defects in learning on all fronts, and interestingly, changes in local expression of the TH activator deiodinase type 2 seem to have an important role. Taking into account that THs are regulated in a very space-specific manner, there is thus increasing pressure to investigate more local TH regulators as potential factors involved in neuroplasticity. As these learning processes are also important for proper adult human functioning, further elucidating the role of THs in developmental neuroplasticity in various animal models is an important field for advancing both fundamental and applied knowledge on human brain function.
Collapse
Affiliation(s)
- Sander R Raymaekers
- Laboratory of Comparative Endocrinology, Biology Department, KU Leuven, Naamsestraat 61, 3000 Leuven, Belgium
| | - Veerle M Darras
- Laboratory of Comparative Endocrinology, Biology Department, KU Leuven, Naamsestraat 61, 3000 Leuven, Belgium.
| |
Collapse
|
32
|
Flamant F, Gauthier K, Richard S. Genetic Investigation of Thyroid Hormone Receptor Function in the Developing and Adult Brain. Curr Top Dev Biol 2017; 125:303-335. [PMID: 28527576 DOI: 10.1016/bs.ctdb.2017.01.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Thyroid hormones exert a broad influence on brain development and function, which has been extensively studied over the years. Mouse genetics has brought an important contribution, allowing precise analysis of the interplay between TRα1 and TRβ1 nuclear receptors in neural cells. However, the exact contribution of each receptor, the possible intervention of nongenomic signaling, and the nature of the genetic program that is controlled by the receptors remain poorly understood.
Collapse
Affiliation(s)
- Frédéric Flamant
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS UMR 5242, INRA USC 1370, Ecole Normale Supérieure de Lyon, Lyon cedex, France.
| | - Karine Gauthier
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS UMR 5242, INRA USC 1370, Ecole Normale Supérieure de Lyon, Lyon cedex, France
| | - Sabine Richard
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS UMR 5242, INRA USC 1370, Ecole Normale Supérieure de Lyon, Lyon cedex, France
| |
Collapse
|
33
|
Vasilopoulou CG, Constantinou C, Giannakopoulou D, Giompres P, Margarity M. Effect of adult onset hypothyroidism on behavioral parameters and acetylcholinesterase isoforms activity in specific brain regions of male mice. Physiol Behav 2016; 164:284-91. [DOI: 10.1016/j.physbeh.2016.06.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 06/13/2016] [Accepted: 06/14/2016] [Indexed: 01/02/2023]
|
34
|
Engels K, Rakov H, Zwanziger D, Hönes GS, Rehders M, Brix K, Köhrle J, Möller LC, Führer D. Efficacy of protocols for induction of chronic hyperthyroidism in male and female mice. Endocrine 2016; 54:47-54. [PMID: 27473100 DOI: 10.1007/s12020-016-1020-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 06/13/2016] [Indexed: 10/21/2022]
Abstract
Protocols for induction of hyperthyroidism in mice are highly variable and mostly involve short-term thyroid hormone (TH) treatment. In addition, little is known about a possible influence of sex on experimental TH manipulation. Here we analyzed the efficacy of intraperitoneal vs. oral levothyroxine (T4) administration to induce chronic hyperthyroidism in male and female mice and asked which T4 dosing intervals are required to achieve stable organ thyrotoxicosis. T4 was administered intraperitoneally or orally over a period of 6/7 weeks. Assessment included monitoring of body weight, TH serum concentrations, and serial quantitative TH target gene expression analysis in liver and heart. Our results show that both intraperitoneal and oral T4 treatment are reliable methods for induction of chronic hyperthyroidism in mice. Thereby T4 injection intervals should not exceed 48 h and oral levothyroxine should be administered continuously during experiments and up to sacrifice to ensure a hyperthyroid organ state. Furthermore, we found a sex-dependent variation in levothyroxine-induced TH serum state, with significantly higher T4 concentrations in female mice, while expression of investigated classical TH responsive genes in liver and heart did not vary with animal's sex. In summary, our study shows that common approaches for rendering rodents thyrotoxic can also be used for induction of chronic hyperthyroidism in male and female mice. Thereby T4 dosing intervals are critical as are read-out parameters to verify a chronic thyrotoxic organ state.
Collapse
Affiliation(s)
- Kathrin Engels
- Department of Endocrinology and Metabolism, University Hospital Essen, University Duisburg-Essen, 45122, Essen, Germany
| | - Helena Rakov
- Department of Endocrinology and Metabolism, University Hospital Essen, University Duisburg-Essen, 45122, Essen, Germany
| | - Denise Zwanziger
- Department of Endocrinology and Metabolism, University Hospital Essen, University Duisburg-Essen, 45122, Essen, Germany
| | - Georg Sebastian Hönes
- Department of Endocrinology and Metabolism, University Hospital Essen, University Duisburg-Essen, 45122, Essen, Germany
| | - Maren Rehders
- Department of Life Sciences and Chemistry, Jacobs University Bremen, 28759, Bremen, Germany
| | - Klaudia Brix
- Department of Life Sciences and Chemistry, Jacobs University Bremen, 28759, Bremen, Germany
| | - Josef Köhrle
- Institut für Experimentelle Endokrinologie, Charité-Universitätsmedizin Berlin, 13353, Berlin, Germany
| | - Lars Christian Möller
- Department of Endocrinology and Metabolism, University Hospital Essen, University Duisburg-Essen, 45122, Essen, Germany
| | - Dagmar Führer
- Department of Endocrinology and Metabolism, University Hospital Essen, University Duisburg-Essen, 45122, Essen, Germany.
| |
Collapse
|
35
|
Tunc-Ozcan E, Harper KM, Graf EN, Redei EE. Thyroxine administration prevents matrilineal intergenerational consequences of in utero ethanol exposure in rats. Horm Behav 2016; 82:1-10. [PMID: 27090562 PMCID: PMC4902747 DOI: 10.1016/j.yhbeh.2016.04.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 03/23/2016] [Accepted: 04/14/2016] [Indexed: 01/15/2023]
Abstract
The neurodevelopmental fetal alcohol spectrum disorder (FASD) is characterized by cognitive and behavioral deficits in the offspring. Conferring the deficits to the next generation would increase overall FASD disease burden and prevention of this transmission could be highly significant. Prior studies showed the reversal of these behavioral deficits by low dose thyroxine (T4) supplementation to the ethanol-consuming mothers. Here we aim to identify whether prenatal ethanol (PE) exposure impairs hippocampus-dependent learning and memory in the second-generation (F2) progeny, and whether T4 administration to the ethanol-consuming dam can prevent it. Sprague-Dawley (S) dams received control diets (ad libitum and nutritional control) or ethanol containing liquid diet with and without simultaneous T4 (0.3mg/L diet) administration. Their offspring (SS F1) were mated with naive Brown Norway (B) males and females generating the SB F2 and BS F2 progeny. Hippocampus-dependent contextual fear memory and hippocampal expression of the thyroid hormone-regulated type 3 deiodinase, (Dio3) and neurogranin (Nrgn) were assessed. SS F1 PE-exposed females and their SB F2 progeny exhibited fear memory deficits. T4 administration to the mothers of F1 females reversed these deficits. Although SS F1 PE-exposed males also experienced fear memory deficit, this was neither transmitted to their BS F2 offspring nor reversed by prenatal T4 treatment. Hippocampal Dio3 and Nrgn expression showed similar pattern of changes. Grandmaternal ethanol consumption during pregnancy affects fear memory of the matrilineal second-generation progeny. Low dose T4 supplementation prevents this process likely via altering allele-specific and total expression of Dio3 in the hippocampus.
Collapse
Affiliation(s)
- Elif Tunc-Ozcan
- The Asher Center, Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
| | - Kathryn M Harper
- The Asher Center, Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
| | - Evan N Graf
- The Asher Center, Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
| | - Eva E Redei
- The Asher Center, Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States.
| |
Collapse
|
36
|
Leach PT, Gould TJ. Thyroid hormone signaling: Contribution to neural function, cognition, and relationship to nicotine. Neurosci Biobehav Rev 2015; 57:252-63. [PMID: 26344666 DOI: 10.1016/j.neubiorev.2015.09.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 08/25/2015] [Accepted: 09/02/2015] [Indexed: 01/11/2023]
Abstract
Cigarette smoking is common despite its adverse effects on health, such as cardiovascular disease and stroke. Understanding the mechanisms that contribute to the addictive properties of nicotine makes it possible to target them to prevent the initiation of smoking behavior and/or increase the chance of successful quit attempts. While highly addictive, nicotine is not generally considered to be as reinforcing as other drugs of abuse. There are likely other mechanisms at work that contribute to the addictive liability of nicotine. Nicotine modulates aspects of the endocrine system, including the thyroid, which is critical for normal cognitive functioning. It is possible that nicotine's effects on thyroid function may alter learning and memory, and this may underlie some of its addictive potential. Here, we review the literature on thyroid function and cognition, with a focus on how nicotine alters thyroid hormone signaling and the potential impact on cognition. Changes in cognition are a major symptom of nicotine addiction. Current anti-smoking therapies have modest success at best. If some of the cognitive effects of nicotine are mediated through the thyroid hormone system, then thyroid hormone agonists may be novel treatments for smoking cessation therapies. The content of this review is important because it clarifies the relationship between smoking and thyroid function, which has been ill-defined in the past. This review is timely because the reduction in smoking rates we have seen in recent decades, due to public awareness campaigns and public smoking bans, has leveled off in recent years. Therefore, novel treatment approaches are needed to help reduce smoking rates further.
Collapse
Affiliation(s)
- Prescott T Leach
- Temple University Department of Psychology, Neuroscience Program, Temple University, Philadelphia, PA 19122, United States
| | - Thomas J Gould
- Temple University Department of Psychology, Neuroscience Program, Temple University, Philadelphia, PA 19122, United States.
| |
Collapse
|
37
|
Han X, Shao W, Liu Z, Fan S, Yu J, Chen J, Qiao R, Zhou J, Xie P. iTRAQ-based quantitative analysis of hippocampal postsynaptic density-associated proteins in a rat chronic mild stress model of depression. Neuroscience 2015; 298:220-92. [DOI: 10.1016/j.neuroscience.2015.04.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Revised: 03/20/2015] [Accepted: 04/02/2015] [Indexed: 01/26/2023]
|
38
|
Ookubo M, Sadamatsu M, Yoshimura A, Suzuki S, Kato N, Kojima H, Yamada N, Kanai H. Aberrant Monoaminergic System in Thyroid Hormone Receptor-β Deficient Mice as a Model of Attention-Deficit/Hyperactivity Disorder. Int J Neuropsychopharmacol 2015; 18:pyv004. [PMID: 25612897 PMCID: PMC4540106 DOI: 10.1093/ijnp/pyv004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Thyroid hormone receptors are divided into 2 functional types: TRα and TRβ. Thyroid hormone receptors play pivotal roles in the developing brain, and disruption of thyroid hormone receptors can produce permanent behavioral abnormality in animal models and humans. METHODS Here we examined behavioralchanges, regional monoamine metabolism, and expression of epigenetic modulatory proteins, including acetylated histone H3 and histone deacetylase, in the developing brain of TRα-disrupted (TRα (0/0) ) and TRβ-deficient (TRβ (-/-) ) mice. Tissue concentrations of dopamine, serotonin (5-hydroxytryptamine) and their metabolites in the mesocorticolimbic pathway were measured. RESULTS TRβ (-/-) mice, a model of attention-deficit/hyperactivity disorder, showed significantly high exploratory activity and reduced habituation, whereas TRα (0/0) mice showed normal exploratory activity. The biochemical profiles of dopamine and 5-hydroxytryptamine showed significantly low dopamine metabolic rates in the caudate putamen and nucleus accumbens and overall low 5-hydroxytryptamine metabolic rates in TRβ (-/-) mice, but not in TRα (0/0) mice. Furthermore, the expression of acetylated histone H3 was low in the dorsal raphe of TRβ (-/-) mice, and histone deacetylase 2/3 proteins were widely increased in the mesolimbic system. CONCLUSIONS These findings suggest that TRβ deficiency causes dysfunction of the monoaminergic system, accompanied by epigenetic disruption during the brain maturation process.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Hirohiko Kanai
- Department of Psychiatry, Shiga University of Medical Science, Shiga, Japan (Drs Ookubo, Yoshimura, Yamada, and Kanai); Department of Psychiatry, Minakuchi Hospital, Shiga, Japan (Dr Ookubo); Department of Psychology and Psychiatry, Human Sciences, Kinjo Gakuin University, Aich, Japan (Dr Sadamatsu); Department of Thyroid and Endocrinology, Fukushima Medical University, Fukushima, Japan (Dr Suzuki); Department of Psychiatry, Showa University School of Medicine, Tokyo, Japan (Dr Kato); Department of Molecular Genetics in Medicine, Shiga University of Medical Science, Shiga, Japan (Dr. Kojima); Department of Psychiatry, Japanese Red Cross Society Nagahama Hospital, Shiga, Japan (Dr. Kanai).
| |
Collapse
|
39
|
Silva VC, Giusti-Paiva A. Sickness behavior is delayed in hypothyroid mice. Brain Behav Immun 2015; 45:109-17. [PMID: 25524131 DOI: 10.1016/j.bbi.2014.12.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 12/09/2014] [Accepted: 12/09/2014] [Indexed: 01/23/2023] Open
Abstract
Sickness behavior is an expression of a motivational state triggered by activation of the peripheral innate immune system, whereby an organism reprioritizes its functions to fight infection. The relationship between thyroid hormone and immune cells is complex, and additional insights are needed about the involvement of the cross-talk between thyroid hormone, the central nervous system and immune function, as demonstrated by the consequences to sickness behavior. The aim of this work was to evaluate sickness behavior in hypothyroid mice. Control mice and mice treated with propylthiouracil (PTU) for 30days (0.05%; added to drinking water) received a single dose of LPS (200μg/kg; i.p.) or saline, and the behavioral response was assessed for 24h. We provide evidence that thyroid status acts a modulator for the development of depressive-like and exploratory behaviors in mice that are subjected to an immunological challenge because the PTU pretreatment delayed the LPS-induced behavioral changes observed in an open field test and in a forced swimming test. This response was observed concomitantly with a lower thermal index until 4h after the LPS administration. This result demonstrates that thyroid status modifies behavioral responses to immune challenge and suggests that thyroid hormones are essential for the manifestation of sickness behavior during endotoxemia.
Collapse
Affiliation(s)
- Vanessa Cardoso Silva
- Programa Multicêntrico de Pós-Graduação em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia (SBFis), Brazil; Universidade Federal de Juiz de Fora, Campus Governador Valadares, Minas Gerais, Brazil
| | - Alexandre Giusti-Paiva
- Programa Multicêntrico de Pós-Graduação em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia (SBFis), Brazil; Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Minas Gerais, Brazil.
| |
Collapse
|
40
|
Navarro D, Alvarado M, Navarrete F, Giner M, Obregon MJ, Manzanares J, Berbel P. Gestational and early postnatal hypothyroidism alters VGluT1 and VGAT bouton distribution in the neocortex and hippocampus, and behavior in rats. Front Neuroanat 2015; 9:9. [PMID: 25741243 PMCID: PMC4330898 DOI: 10.3389/fnana.2015.00009] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 01/17/2015] [Indexed: 12/20/2022] Open
Abstract
Thyroid hormones are fundamental for the expression of genes involved in the development of the CNS and their deficiency is associated with a wide spectrum of neurological diseases including mental retardation, attention deficit-hyperactivity disorder and autism spectrum disorders. We examined in rat whether developmental and early postnatal hypothyroidism affects the distribution of vesicular glutamate transporter-1 (VGluT1; glutamatergic) and vesicular inhibitory amino acid transporter (VGAT; GABAergic) immunoreactive (ir) boutons in the hippocampus and somatosensory cortex, and the behavior of the pups. Hypothyroidism was induced by adding 0.02% methimazole (MMI) and 1% KClO4 to the drinking water starting at embryonic day 10 (E10; developmental hypothyroidism) and E21 (early postnatal hypothyroidism) until day of sacrifice at postnatal day 50. Behavior was studied using the acoustic prepulse inhibition (somatosensory attention) and the elevated plus-maze (anxiety-like assessment) tests. The distribution, density and size of VGluT1-ir and VGAT-ir boutons in the hippocampus and somatosensory cortex was abnormal in MMI pups and these changes correlate with behavioral changes, as prepulse inhibition of the startle response amplitude was reduced, and the percentage of time spent in open arms increased. In conclusion, both developmental and early postnatal hypothyroidism significantly decreases the ratio of GABAergic to glutamatergic boutons in dentate gyrus leading to an abnormal flow of information to the hippocampus and infragranular layers of the somatosensory cortex, and alter behavior in rats. Our data show cytoarchitectonic alterations in the basic excitatory hippocampal loop, and in local inhibitory circuits of the somatosensory cortex and hippocampus that might contribute to the delayed neurocognitive outcome observed in thyroid hormone deficient children born in iodine deficient areas, or suffering from congenital hypothyroidism.
Collapse
Affiliation(s)
- Daniela Navarro
- Departamento de Histología y Anatomía, Facultad de Medicina, Universidad Miguel HernándezAlicante, Spain
| | - Mayvi Alvarado
- Departamento de Histología y Anatomía, Facultad de Medicina, Universidad Miguel HernándezAlicante, Spain
- Instituto de Neuroetología, Universidad VeracruzanaXalapa, Veracruz, México
| | - Francisco Navarrete
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández and Consejo Superior de Investigaciones CientíficasAlicante, Spain
| | - Manuel Giner
- Departamento de Histología y Anatomía, Facultad de Medicina, Universidad Miguel HernándezAlicante, Spain
| | - Maria Jesus Obregon
- Instituto de investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de MadridMadrid, Spain
| | - Jorge Manzanares
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández and Consejo Superior de Investigaciones CientíficasAlicante, Spain
| | - Pere Berbel
- Departamento de Histología y Anatomía, Facultad de Medicina, Universidad Miguel HernándezAlicante, Spain
| |
Collapse
|
41
|
Soukup T. Effects of long-term thyroid hormone level alterations, n-3 polyunsaturated fatty acid supplementation and statin administration in rats. Physiol Res 2014; 63:S119-31. [PMID: 24564652 DOI: 10.33549/physiolres.932623] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Thyroid hormones (THs) play multiple roles in the organism and alterations of their levels can result in many pathological changes. Currently, we use hyperthyroid and hypothyroid rats as "models of a diseased organism" and analyze whether n-3 polyunsaturated fatty acids (n-3 PUFA) administration can ameliorate TH-induced pathophysiological changes. We investigate myosin heavy chain composition, calsequestrin levels, changes in cardiac tissue remodeling and cell-to-cell communication, expression of protein kinases, mitochondrial functions, oxidative stress markers and cell death, changes in serum lipid levels, activities of key enzymes of thyroid hormone metabolism, activity of acetylcholine esterase and membrane anisotropy, as well as mobile behavior and thermal sensitivity. Additionally we also mention our pilot experiments dealing with the effect of statin administration on skeletal muscles and sensory functions. As THs and n-3 PUFA possess multiple sites of potential action, we hope that our complex research will contribute to a better understanding of their actions, which can be useful in the treatment of different pathophysiological events including cardiac insufficiency in humans.
Collapse
Affiliation(s)
- T Soukup
- Department of Functional Morphology, Institute of Physiology Academy of Sciences of the Czech Republic, Prague, Czech Republic.
| |
Collapse
|
42
|
Yu J, Tang YY, Feng HB, Cheng XX. A behavioral and micro positron emission tomography imaging study in a rat model of hypothyroidism. Behav Brain Res 2014; 271:228-33. [DOI: 10.1016/j.bbr.2014.06.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 06/05/2014] [Accepted: 06/09/2014] [Indexed: 11/28/2022]
|
43
|
Ferlemi AV, Avgoustatos D, Kokkosis AG, Protonotarios V, Constantinou C, Margarity M. Lead-induced effects on learning/memory and fear/anxiety are correlated with disturbances in specific cholinesterase isoform activity and redox imbalance in adult brain. Physiol Behav 2014; 131:115-22. [DOI: 10.1016/j.physbeh.2014.04.033] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 03/09/2014] [Accepted: 04/15/2014] [Indexed: 01/07/2023]
|
44
|
Sittig LJ, Redei EE. Fine-tuning notes in the behavioral symphony: parent-of-origin allelic gene expression in the brain. ADVANCES IN GENETICS 2014; 86:93-106. [PMID: 25172347 DOI: 10.1016/b978-0-12-800222-3.00005-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The gene encoding the thyroid hormone (TH)-metabolizing enzyme, deiodinase type III (Dio3), exhibits a preferential paternal expression in most tissues. Dio3 is part of the Dlk1-Dio3 imprinted locus, so named according to its ancestral genes, Delta-like homolog 1 (Dlk1) and Dio3, which among other important functions control metabolic programming in the developing embryo and fetus. Here, we describe the aspects of the genomic imprinting patterns exhibited by Dio3 across brain regions and development. The corresponding local changes in the dosage of the Dio3 enzyme are inversely related to TH levels that vary from one brain region to another, and affect social and cognitive behaviors. We show that this regional tuning of brain region-specific expression is dependent on parent of origin-specific genetic polymorphisms in the rat, is sexually dimorphic, and is affected by the early environmental challenge of fetal exposure to alcohol, opening the possibility that the potential for variant expression patterns of the Dio3 gene is quite large. The multiple regulatory genomic features within the Dlk1-Dio3 locus, and other imprinted loci, allow mammals to specifically modulate parent-of-origin allelic gene expression brain region. These regulatory structures seem to have evolved as a possible mechanism of adaptation in response to the simultaneous need for highly regulated expression in some tissues during development, but variable expression across specific regions of the brain over the complete life span. Here, we use Dio3 as a single gene example of the epigenetic parent-of-origin allelic expression in specific brain regions and discuss the potential of this general phenomenon to shape evolutionarily relevant social and cognitive behavior in eutherian mammals.
Collapse
Affiliation(s)
- Laura J Sittig
- Department of Human Genetics, The University of Chicago, Chicago, IL, USA
| | - Eva E Redei
- Department of Human Genetics, The University of Chicago, Chicago, IL, USA
| |
Collapse
|
45
|
The reduced serum free triiodothyronine and increased dorsal hippocampal SNAP-25 and Munc18-1 had existed in middle-aged CD-1 mice with mild spatial cognitive impairment. Brain Res 2013; 1540:9-20. [DOI: 10.1016/j.brainres.2013.09.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 09/20/2013] [Accepted: 09/23/2013] [Indexed: 12/11/2022]
|
46
|
Wei W, Wang Y, Wang Y, Dong J, Min H, Song B, Teng W, Xi Q, Chen J. Developmental hypothyroxinaemia induced by maternal mild iodine deficiency delays hippocampal axonal growth in the rat offspring. J Neuroendocrinol 2013; 25:852-62. [PMID: 23763342 DOI: 10.1111/jne.12058] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 05/29/2013] [Accepted: 06/09/2013] [Indexed: 12/27/2022]
Abstract
Iodine is essential for the biosynthesis of thyroid hormones, including triiodothyronine and thyroxine. Thyroid hormones are important for central nervous system development. Mild maternal iodine deficiency (ID)-induced hypothyroxinaemia causes neurological deficits and mental retardation of the foetus. However, the detailed mechanism underlying these deficits is still largely unknown. Given that the growth-associated protein of 43 kDa (GAP-43), semaphorin 3A (Sema3A) and the glycogen synthase kinase 3β (GSK3β)/collapsin response mediator protein 2 (CRMP2) pathway are essential for axonal development, we hypothesise that hippocampal axonal growth-related proteins may be impaired, which may contribute to hippocampal axonal growth delay in rat offspring exposed to maternal hypothyroxinaemia. To test this hypothesis, maternal hypothyroxinaemia models were established in Wistar rats using a mild ID diet. Besides a negative control group, two maternal hypothyroidism models were created with either a severe ID diet or methimazole in the water. Our results showed that maternal hypothyroxinaemia exposure delayed offspring axonal growth on gestational day 19, postnatal day (PN) 7, PN14 and PN21. Consistent with this, the mean intensity of hippocampal CRMP2 and Tau1 immunofluorescence axonal protein was reduced in the mild ID group. Moreover, maternal hypothyroxinaemia disrupted expressions of GAP-43 and Sema3A. Furthermore, the phosphorylation of GSK3β and CRMP2 was also affected in the treated offspring, implying a potential mechanism by which hypothyroxinaemia-exposure affects neurodevelopment. Taken together, our data support the hypothesis that maternal hypothyroxinaemia may impair axonal growth of the offspring.
Collapse
Affiliation(s)
- W Wei
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, China
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Liu W, Dong J, Wang Y, Xi Q, Chen J. Developmental iodine deficiency and hypothyroidism impairedin vivosynaptic plasticity and altered PKC activity and GAP-43 expression in rat hippocampus. Nutr Neurosci 2013. [DOI: 10.1179/147683010x12611460764525] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
48
|
Zhang HM, Lin N, Dong Y, Su Q, Luo M. Protein kinase Cα is involved in impaired perinatal hypothyroid rat brain development. J Neurosci Res 2012; 91:211-9. [PMID: 23152155 DOI: 10.1002/jnr.23125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 06/28/2012] [Accepted: 07/13/2012] [Indexed: 11/07/2022]
Abstract
Protein kinase Cα (PKCα) has been implicated in the regulation of a variety of cellular functions, such as proliferation, differentiation, and apoptosis, in response to a diverse range of stimuli. Activated PKCα mediates oxidative stress, apoptosis, and inflammatory reaction. Thyroid hormone (TH) is essential for the proper development of the mammalian central nervous system. TH deficiency during critical periods of brain development results in permanent cognitive and neurological impairments. In the present study, we attempted to explore whether PKCα is involved in impaired brain function in developing hypothyroid rat brain. Severe perinatal hypothyroidism was obtained by administration of 30 mg/day propylthiouracil to dams. Brain PKC activity in hypothyroid pups was increased significantly in cytosol and membrane fractions. The change of membrane PKC activity was more marked than that of cytosol, and hypothyroidism led to a higher ratio of membrane PKC activity to that in cytosol, which means abnormal activation of PKC in developing hypothyroid rat brain. Thyroxine replacement partially corrected these changes. After being treated with bisindolmaleimide XI, a mainly selective inhibitor for PKCα, the hypothyroid pups showed improved place navigation test results, and further Western blot analysis showed that PKCα expression in cytosol fractions was increased in hypothyroid rat brain with or without bisindolmaleimide XI treatment, but, after treatment with bisindolmaleimide XI, PKCα content in membrane fractions decreased almost to normal. Therefore, we conclude that PKCα appears to be involved in the impaired brain development observed in perinatal hypothyroid rat brain.
Collapse
Affiliation(s)
- Hong-Mei Zhang
- Department of Endocrinology, Xin Hua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | | | | | | | | |
Collapse
|
49
|
Zeng Y, Lv F, Li L, Yu H, Dong M, Fu Q. 7,8-dihydroxyflavone rescues spatial memory and synaptic plasticity in cognitively impaired aged rats. J Neurochem 2012; 122:800-11. [PMID: 22694088 DOI: 10.1111/j.1471-4159.2012.07830.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
7,8-dihydroxyflavone (7,8-DHF) has recently been identified as a potential TrkB agonist that crosses the blood-brain barrier after i.p. administration. We previously demonstrated that 7,8-DHF in vitro rescues long-term synaptic plasticity in the hippocampus of aged rats. This study assessed the rescue effect of 7,8-DHF in vivo on aging-related cognitive impairment in rats, and further determined whether the effect of 7,8-DHF is age dependent. Aged rats at 22 and 30 months of age were pretested for spatial memory in Morris water maze. The aged-impaired rats were retested twice during 7,8-DHF or vehicle treatment, which started 3 weeks after the completion of the pretest. In the 22-month-old rats, daily i.p. administration of 7,8-DHF for 2 weeks improved spatial memory. The improvement in behavioral tests was associated with increases in synapse formation and facilitation of synaptic plasticity in the hippocampus, as well as the activation of several proteins crucial to synaptic plasticity and memory. A more extended treatment paradigm with 7,8-DHF was required to achieve a significant memory improvement in the severely impaired 30-month-old rats. Moreover, 7,8-DHF moderately facilitated the synaptic plasticity, modified the density but not number of spines in the hippocampus of the oldest rats. Taken together, our results suggest that 7,8-DHF can act in vivo to counteract aging-induced declines in spatial memory and synaptic plasticity and morphological changes of hippocampal neurons. The effect of 7,8-DHF is more pronounced in relatively younger impaired rats than in those of more advanced age. These findings demonstrate the reversal of age-dependent memory impairment by in vivo 7,8-DHF application and support the benefit of early treatment for cognitive aging.
Collapse
Affiliation(s)
- Yan Zeng
- Department of Pathophysiology, School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei, China.
| | | | | | | | | | | |
Collapse
|
50
|
Jahagirdar V, McNay EC. Thyroid hormone's role in regulating brain glucose metabolism and potentially modulating hippocampal cognitive processes. Metab Brain Dis 2012; 27:101-11. [PMID: 22437199 PMCID: PMC3348399 DOI: 10.1007/s11011-012-9291-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Accepted: 02/08/2012] [Indexed: 12/25/2022]
Abstract
Cognitive performance is dependent on adequate glucose supply to the brain. Insulin, which regulates systemic glucose metabolism, has been recently shown both to regulate hippocampal metabolism and to be a mandatory component of hippocampally-mediated cognitive performance. Thyroid hormones (TH) regulate systemic glucose metabolism and may also be involved in regulation of brain glucose metabolism. Here we review potential mechanisms for such regulation. Importantly, TH imbalance is often encountered in combination with metabolic disorders such as diabetes, and may cause additional metabolic dysregulation and hence worsening of disease states. TH's potential as a regulator of brain glucose metabolism is heightened by interactions with insulin signaling, but there have been relatively few studies on this topic or on the actions of TH in a mature brain. This review discusses evidence for mechanistic links between TH, insulin, cognitive function, and brain glucose metabolism, and reaches the conclusion that TH may modulate memory processes, likely at least in part by modulation of central insulin signaling and glucose metabolism.
Collapse
Affiliation(s)
- V Jahagirdar
- Office of Outcomes Assessment and Institutional Research, Excelsior College, Albany, NY 12203, USA.
| | | |
Collapse
|