1
|
Kunz Godói A, Canever L, Pacheco Rico E, Mastella G, Tonello M, Veadrigo N, de Bem Tomé B, da Silva Lemos I, Luiz Streck E, Zugno AL. The relationship between alcohol bingeing in the gestational period of wistar rats and the development of schizophrenia in the offspring adult life. Brain Res 2024; 1845:149270. [PMID: 39389527 DOI: 10.1016/j.brainres.2024.149270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 09/05/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
The incidence of schizophrenia in young adulthood may be associated with intrauterine factors, such as gestational alcohol consumption. This study investigated the relationship between a single high dose of alcohol during pregnancy in Wistar rats and the development of schizophrenia in the adult life of the offspring. On the 11th day of gestation, pregnant rats received either water or alcohol via intragastric gavage. Male and female offspring were subjected to behavioral tests at 30 days of age according to the maternal group. At 60 days of age, offspring received intraperitoneal injections of ketamine (ket) or saline (SAL). After the final ketamine administration, the adult offspring underwent behavioral tests, and their brain structures were removed for biochemical analysis. Alcohol binge drinking during pregnancy induces hyperlocomotion in both young female and male offspring, with males of alcohol-exposed mothers showing reduced social interactions. In adult offspring, ketamine induced hyperlocomotion; however, only females in the alcohol + ket group exhibited increased locomotor activity, and a decrease in the time to first contact was observed in the alcohol group. Cognitive impairment was exclusively observed in male animals in the alcohol group. Increased serotonin and dopamine levels were observed in male rats in the alcohol + ket group. Biochemical alterations indicate the effects of intrauterine alcohol exposure associated with ketamine in adult animals. These behavioral and biochemical changes suggest that the impact of prenatal stressors such as alcohol persists throughout the animals' lives and may be exacerbated by a second stressor in adulthood, such as ketamine.
Collapse
Affiliation(s)
- Amanda Kunz Godói
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, Brazil
| | - Lara Canever
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, Brazil
| | - Eduardo Pacheco Rico
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, Brazil
| | - Gustavo Mastella
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, Brazil
| | - Marina Tonello
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, Brazil
| | - Natália Veadrigo
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, Brazil
| | - Beatriz de Bem Tomé
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, Brazil
| | - Isabela da Silva Lemos
- Neurometabolic Diseases Laboratory, Graduate Program in Health Sciences, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, Brazil
| | - Emílio Luiz Streck
- Neurometabolic Diseases Laboratory, Graduate Program in Health Sciences, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, Brazil
| | - Alexandra L Zugno
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, Brazil.
| |
Collapse
|
2
|
Alexander JP, Mooney SM. Neonatal paw pricking alters adolescent behavior in a sex-dependent manner and sucrose partially remediates the effects. Physiol Behav 2024:114695. [PMID: 39288866 DOI: 10.1016/j.physbeh.2024.114695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/29/2024] [Accepted: 09/10/2024] [Indexed: 09/19/2024]
Abstract
Neonatal exposure to noxious stimuli such as repeated heel lances can cause behavior changes. In the NICU sucrose given prior to procedures attenuates the immediate behavioral response to noxious stimuli but may not ameliorate the long-term consequences, and treatment with 24% sucrose can brain structure and behavior in adult rodents. We used a rat model to determine whether paw pricks during the neonatal period alter social interaction and/or paw withdrawal thresholds (PWT) in adolescence, and if 7% sucrose mitigates these effects. One male and one female pup per litter was assigned to each of six experimental groups (no paw prick (control), 1 paw prick (1PP), or 2PP, ± sucrose). Hind paws were pricked once or twice each day between postnatal day (P)3 and P10. Social behavior and PWT were tested in adolescence using the modified social interaction test and von Frey filaments, respectively. Social behavior was altered in the 2PP group; total time interacting was lower in 2PP rats, primarily due to less time sniffing a play partner. Sucrose did not mitigate effects of paw prick but trended to alter social behaviors in males; it decreased time in contact but increased social motivation (movement toward a play partner). PWTs were higher in 2PP animals, this was not altered by sucrose. Thus, rat pups exposed to paw pricks in the neonatal period have some altered behaviors in adolescence. The nature of the behavioral changes is sex-dependent, but sucrose did not mitigate these changes.
Collapse
Affiliation(s)
- Jennifer P Alexander
- Department of Pediatrics, University of Maryland School of Medicine, 655 W. Baltimore St, Baltimore MD
| | - Sandra M Mooney
- Department of Pediatrics, University of Maryland School of Medicine, 655 W. Baltimore St, Baltimore MD.
| |
Collapse
|
3
|
Nutor C, Dickerson AS, Hsu T, Al-Jadiri A, Camargo CA, Schweitzer JB, Shuster CL, Karagas MR, Madan JC, Restrepo B, Schmidt RJ, Lugo-Candelas C, Neiderhiser J, Sathyanarayana S, Dunlop AL, Brennan PA. Examining the association between prenatal cannabis exposure and child autism traits: A multi-cohort investigation in the environmental influences on child health outcome program. Autism Res 2024; 17:1651-1664. [PMID: 38953698 PMCID: PMC11341247 DOI: 10.1002/aur.3185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 05/29/2024] [Indexed: 07/04/2024]
Abstract
This study examined the association between prenatal cannabis exposure and autism spectrum disorder (ASD) diagnoses and traits. A total sample of 11,570 children (ages 1-18; 53% male; 25% Hispanic; 60% White) from 34 cohorts of the National Institutes of Health-funded environmental influences on child health outcomes consortium were included in analyses. Results from generalized linear mixed models replicated previous studies showing that associations between prenatal cannabis exposure and ASD traits in children are not significant when controlling for relevant covariates, particularly tobacco exposure. Child biological sex did not moderate the association between prenatal cannabis exposure and ASD. In a large sample and measuring ASD traits continuously, there was no evidence that prenatal cannabis exposure increases the risk for ASD. This work helps to clarify previous mixed findings by addressing concerns about statistical power and ASD measurement.
Collapse
Affiliation(s)
- Chaela Nutor
- Department of Psychology, Emory University, Atlanta, Georgia, USA
| | - Aisha S Dickerson
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Tingju Hsu
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Aseel Al-Jadiri
- Institute for Child Development, Hackensack University Medical Center, Hackensack, New Jersey, USA
| | - Carlos A Camargo
- Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Julie B Schweitzer
- School of Medicine, University of California, Sacramento, California, USA
| | - Coral L Shuster
- Women and Infants Hospital of Rhode Island, Providence, Rhode Island, USA
| | | | - Juliette C Madan
- Department of Pediatrics, Psychiatry & Epidemiology, Children's Hospital at Dartmouth, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Bibiana Restrepo
- Department of Pediatrics, University of California Davis School of Medicine, MIND Institute, Sacramento, California, USA
| | - Rebecca J Schmidt
- Department of Public Health Sciences and the MIND Institute, University of California Davis School of Medicine, Davis, California, USA
| | | | - Jenae Neiderhiser
- Department of Psychology, Pennsylvania State University, University Park, Pennsylvania, USA
| | | | - Anne L Dunlop
- Department of Gynecology and Obstetrics, Emory University, Atlanta, Georgia, USA
| | | |
Collapse
|
4
|
Nutor C, Dunlop A, Sadler O, Brennan PA. Prenatal Cannabis Use and Offspring Autism-Related Behaviors: Examining Maternal Stress as a Moderator in a Black American Cohort. J Autism Dev Disord 2024; 54:2355-2367. [PMID: 37097527 PMCID: PMC10127191 DOI: 10.1007/s10803-023-05982-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2023] [Indexed: 04/26/2023]
Abstract
Prenatal cannabis use and maternal stress have been proposed as risk factors for autism spectrum disorder (ASD). Black mothers and mothers of lower socioeconomic status (SES) may be especially likely to experience high levels of stress. This study examined the impact of prenatal cannabis use and maternal stress (i.e., prenatal distress, racial discrimination, and lower SES) on child ASD-related behaviors in a sample of 172 Black mother-child pairs. We found that prenatal stress was significantly associated with ASD-related behaviors. Prenatal cannabis use did not predict ASD-related behaviors and did not interact with maternal stress to predict ASD-related behaviors. These findings replicate previous work on prenatal stress-ASD associations and add to the limited literature on prenatal cannabis-ASD associations in Black samples.
Collapse
Affiliation(s)
- C Nutor
- Department of Psychology, Emory University, 36 Eagle Row, Atlanta, GA, 30322, USA.
| | - A Dunlop
- Department of Gynecology and Obstetrics, Emory University, 1365 E Clifton Rd NE, Atlanta, GA, 30322, USA
| | - O Sadler
- Department of Psychology, Emory University, 36 Eagle Row, Atlanta, GA, 30322, USA
| | - P A Brennan
- Department of Psychology, Emory University, 36 Eagle Row, Atlanta, GA, 30322, USA
| |
Collapse
|
5
|
Imamura F. Effects of prenatal alcohol exposure on the olfactory system development. Front Neural Circuits 2024; 18:1408187. [PMID: 38818309 PMCID: PMC11138157 DOI: 10.3389/fncir.2024.1408187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/02/2024] [Indexed: 06/01/2024] Open
Abstract
Fetal Alcohol Spectrum Disorders (FASD), resulting from maternal alcohol consumption during pregnancy, are a prominent non-genetic cause of physical disabilities and brain damage in children. Alongside common symptoms like distinct facial features and neurocognitive deficits, sensory anomalies, including olfactory dysfunction, are frequently noted in FASD-afflicted children. However, the precise mechanisms underpinning the olfactory abnormalities induced by prenatal alcohol exposure (PAE) remain elusive. Utilizing rodents as a model organism with varying timing, duration, dosage, and administration routes of alcohol exposure, prior studies have documented impairments in olfactory system development caused by PAE. Many reported a reduction in the olfactory bulb (OB) volume accompanied by reduced OB neuron counts, suggesting the OB is a brain region vulnerable to PAE. In contrast, no significant olfactory system defects were observed in some studies, though subtle alterations might exist. These findings suggest that the timing, duration, and extent of fetal alcohol exposure can yield diverse effects on olfactory system development. To enhance comprehension of PAE-induced olfactory dysfunctions, this review summarizes key findings from previous research on the olfactory systems of offspring prenatally exposed to alcohol.
Collapse
Affiliation(s)
- Fumiaki Imamura
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, United States
| |
Collapse
|
6
|
Wilson DA, Sullivan RM, Smiley JF, Saito M, Raineki C. Developmental alcohol exposure is exhausting: Sleep and the enduring consequences of alcohol exposure during development. Neurosci Biobehav Rev 2024; 158:105567. [PMID: 38309498 PMCID: PMC10923002 DOI: 10.1016/j.neubiorev.2024.105567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 02/05/2024]
Abstract
Prenatal alcohol exposure is the leading nongenetic cause of human intellectual impairment. The long-term impacts of prenatal alcohol exposure on health and well-being are diverse, including neuropathology leading to behavioral, cognitive, and emotional impairments. Additionally negative effects also occur on the physiological level, such as the endocrine, cardiovascular, and immune systems. Among these diverse impacts is sleep disruption. In this review, we describe how prenatal alcohol exposure affects sleep, and potential mechanisms of those effects. Furthermore, we outline the evidence that sleep disruption across the lifespan may be a mediator of some cognitive and behavioral impacts of developmental alcohol exposure, and thus may represent a promising target for treatment.
Collapse
Affiliation(s)
- Donald A Wilson
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA; Department of Child and Adolescent Psychiatry, NYU School of Medicine, New York, NY, USA.
| | - Regina M Sullivan
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA; Department of Child and Adolescent Psychiatry, NYU School of Medicine, New York, NY, USA
| | - John F Smiley
- Division of Neurochemistry, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA; Department of Psychiatry, New York University Medical Center, New York, NY, USA
| | - Mariko Saito
- Division of Neurochemistry, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA; Department of Psychiatry, New York University Medical Center, New York, NY, USA
| | - Charlis Raineki
- Department of Psychology, Brock University, St. Catharines, ON, Canada; Centre for Neuroscience, Brock University, St. Catharines, ON, Canada
| |
Collapse
|
7
|
Socha J, Grochecki P, Smaga I, Jastrzębska J, Wronikowska-Denysiuk O, Marszalek-Grabska M, Slowik T, Kotlinski R, Filip M, Lubec G, Kotlinska JH. Social Interaction in Adolescent Rats with Neonatal Ethanol Exposure: Impact of Sex and CE-123, a Selective Dopamine Reuptake Inhibitor. Int J Mol Sci 2024; 25:1041. [PMID: 38256113 PMCID: PMC10816180 DOI: 10.3390/ijms25021041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Children with fetal alcohol spectrum disorders (FASDs) demonstrate deficits in social functioning that contribute to early withdrawal from school and delinquency, as well as the development of anxiety and depression. Dopamine is involved in reward, motivation, and social behavior. Thus, we evaluated whether neonatal ethanol exposure (in an animal model of FASDs) has an impact on social recognition memory using the three-chamber social novelty discrimination test during early and middle adolescence in male and female rats, and whether the modafinil analog, the novel atypical dopamine reuptake inhibitor CE-123, can modify this effect. Our study shows that male and female rats neonatally exposed to ethanol exhibited sex- and age-dependent deficits in social novelty discrimination in early (male) and middle (female) adolescence. These deficits were specific to the social domain and not simply due to more general deficits in learning and memory because these animals did not exhibit changes in short-term recognition memory in the novel object recognition task. Furthermore, early-adolescent male rats that were neonatally exposed to ethanol did not show changes in the anxiety index but demonstrated an increase in locomotor activity. Chronic treatment with CE-123, however, prevented the appearance of these social deficits. In the hippocampus of adolescent rats, CE-123 increased BDNF and decreased its signal transduction TrkB receptor expression level in ethanol-exposed animals during development, suggesting an increase in neuroplasticity. Thus, selective dopamine reuptake inhibitors, such as CE-123, represent interesting drug candidates for the treatment of deficits in social behavior in adolescent individuals with FASDs.
Collapse
Affiliation(s)
- Justyna Socha
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodzki 4a, 20-093 Lublin, Poland; (J.S.); (P.G.)
| | - Pawel Grochecki
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodzki 4a, 20-093 Lublin, Poland; (J.S.); (P.G.)
| | - Irena Smaga
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland; (I.S.); (J.J.); (M.F.)
| | - Joanna Jastrzębska
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland; (I.S.); (J.J.); (M.F.)
| | - Olga Wronikowska-Denysiuk
- Independent Laboratory of Behavioral Studies, Chair of Biomedical Sciences, Medical University of Lublin, Chodzki 4a, 20-093 Lublin, Poland;
| | - Marta Marszalek-Grabska
- Department of Experimental and Clinical Pharmacology, Medical University, Jaczewskiego 8b, 20-090 Lublin, Poland;
| | - Tymoteusz Slowik
- Experimental Medicine Center, Medical University, Jaczewskiego 8, 20-090 Lublin, Poland;
| | - Robert Kotlinski
- Clinical Department of Cardiac Surgery, University of Rzeszow, 35-601 Rzeszow, Poland;
| | - Małgorzata Filip
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland; (I.S.); (J.J.); (M.F.)
| | - Gert Lubec
- Department of Neuroproteomics, Paracelsus Medical University, 5020 Salzburg, Austria;
| | - Jolanta H. Kotlinska
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodzki 4a, 20-093 Lublin, Poland; (J.S.); (P.G.)
| |
Collapse
|
8
|
Boschen KE, Dragicevich CJ, Fish EW, Hepperla AJ, Simon JM, Parnell SE. Gastrulation-stage alcohol exposure induces similar rates of craniofacial malformations in male and female C57BL/6J mice. Birth Defects Res 2024; 116:e2292. [PMID: 38116840 PMCID: PMC10872400 DOI: 10.1002/bdr2.2292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/18/2023] [Accepted: 12/06/2023] [Indexed: 12/21/2023]
Abstract
BACKGROUND Prenatal alcohol exposure during gastrulation (embryonic day [E] 7 in mice, ~3rd week of human pregnancy) impairs eye, facial, and cortical development, recapitulating birth defects characteristic of Fetal Alcohol Syndrome (FAS). However, it is not known whether the prevalence or severity of craniofacial features associated with FAS is affected by biological sex. METHODS The current study administered either alcohol (2.9 g/kg, two i.p. doses, 4 hr apart) or vehicle to pregnant C57BL/6J females on E7, prior to gonadal sex differentiation, and assessed fetal morphology at E17. RESULTS Whereas sex did not affect fetal size in controls, alcohol-exposed females were smaller than both control females and alcohol-treated males. Alcohol exposure increased the incidence of eye defects to a similar degree in males and females. Together, these data suggest that females might be more sensitive to the general developmental effects of alcohol, but not effects specific to the craniofacies. Whole transcriptomic analysis of untreated E7 embryos found 214 differentially expressed genes in females vs. males, including those in pathways related to cilia and mitochondria, histone demethylase activity, and pluripotency. CONCLUSION Gastrulation-stage alcohol induces craniofacial malformations in male and female mouse fetuses at similar rates and severity, though growth deficits are more prevalent females. These findings support the investigation of biological sex as a contributing factor in prenatal alcohol studies.
Collapse
Affiliation(s)
- Karen E. Boschen
- Bowles Center for Alcohol Studies, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Constance J. Dragicevich
- Bowles Center for Alcohol Studies, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Eric W. Fish
- Bowles Center for Alcohol Studies, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Austin J. Hepperla
- Carolina Institute for Developmental Disabilities, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jeremy M. Simon
- Carolina Institute for Developmental Disabilities, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Scott E. Parnell
- Bowles Center for Alcohol Studies, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
9
|
Bake S, Rouzer SK, Mavuri S, Miranda RC, Mahnke AH. The interaction of genetic sex and prenatal alcohol exposure on health across the lifespan. Front Neuroendocrinol 2023; 71:101103. [PMID: 37802472 PMCID: PMC10922031 DOI: 10.1016/j.yfrne.2023.101103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 09/22/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023]
Abstract
Prenatal alcohol exposure (PAE) can reprogram the development of cells and tissues, resulting in a spectrum of physical and neurobehavioral teratology. PAE immediately impacts fetal growth, but its effects carry forward post-parturition, into adolescence and adulthood, and can result in a cluster of disabilities, collectively termed Fetal Alcohol Spectrum Disorders. Emerging preclinical and clinical research investigating neurological and behavioral outcomes in exposed offspring point to genetic sex as an important modifier of the effects of PAE. In this review, we discuss the literature on sex differences following PAE, with studies spanning the fetal period through adulthood, and highlight gaps in research where sex differences are likely, but currently under-investigated. Understanding how sex and PAE interact to affect offspring health outcomes across the lifespan is critical for identifying the full complement of PAE-associated secondary conditions, and for refining targeted interventions to improve the quality of life for individuals with PAE.
Collapse
Affiliation(s)
- Shameena Bake
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University School of Medicine, Medical Research and Education Building I, 8447 Riverside Parkway, Bryan, TX 77807-3620, United States
| | - Siara K Rouzer
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University School of Medicine, Medical Research and Education Building I, 8447 Riverside Parkway, Bryan, TX 77807-3620, United States
| | - Shruti Mavuri
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University School of Medicine, Medical Research and Education Building I, 8447 Riverside Parkway, Bryan, TX 77807-3620, United States
| | - Rajesh C Miranda
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University School of Medicine, Medical Research and Education Building I, 8447 Riverside Parkway, Bryan, TX 77807-3620, United States
| | - Amanda H Mahnke
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University School of Medicine, Medical Research and Education Building I, 8447 Riverside Parkway, Bryan, TX 77807-3620, United States.
| |
Collapse
|
10
|
Przybysz KR, Spodnick MB, Johnson JM, Varlinskaya EI, Diaz MR. Moderate prenatal alcohol exposure produces sex-specific social impairments and attenuates prelimbic excitability and amygdala-cortex modulation of adult social behaviour. Addict Biol 2023; 28:e13252. [PMID: 36577734 PMCID: PMC10509785 DOI: 10.1111/adb.13252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/23/2022] [Accepted: 10/21/2022] [Indexed: 11/19/2022]
Abstract
Lifelong social impairments are common in individuals with prenatal alcohol exposure (PAE), and preclinical studies have identified gestational day (G)12 as a vulnerable timepoint for producing social deficits following binge-level PAE. While moderate (m)PAE also produces social impairments, the long-term neuroadaptations underlying them are poorly understood. Activity of the projection from the basolateral amygdala to the prelimbic cortex (BLA → PL) leads to social avoidance, and the PL is implicated in negative social behaviours, making each of these potential candidates for the neuroadaptations underlying mPAE-induced social impairments. To examine this, we first established that G12 mPAE produced sex-specific social impairments lasting into adulthood in Sprague-Dawley rats. We then chemogenetically inhibited the BLA → PL using clozapine N-oxide (CNO) during adult social testing. This revealed that CNO reduced social investigation in control males but had no effect on mPAE males or females of either exposure, indicating that mPAE attenuated the role of this projection in regulating male social behaviour and highlighting one potential mechanism by which mPAE affects male social behaviour more severely. Using whole-cell electrophysiology, we also examined mPAE-induced changes to PL pyramidal cell physiology and determined that mPAE reduced cell excitability, likely due to increased suppression by inhibitory interneurons. Overall, this work identified two mPAE-induced neuroadaptations that last into adulthood and that may underlie the sex-specific vulnerability to mPAE-induced social impairments. Future research is necessary to expand upon how these circuits modulate both normal and pathological social behaviours and to identify sex-specific mechanisms, leading to differential vulnerability in males and females.
Collapse
Affiliation(s)
- Kathryn R. Przybysz
- Developmental Exposure Alcohol Research Center, Binghamton University, Binghamton, NY, 13902, USA
- Department of Psychology, Center for Development and Behavioral Neuroscience, Binghamton University, Binghamton, NY, 13902, USA
| | - Mary B. Spodnick
- Developmental Exposure Alcohol Research Center, Binghamton University, Binghamton, NY, 13902, USA
- Department of Psychology, Center for Development and Behavioral Neuroscience, Binghamton University, Binghamton, NY, 13902, USA
| | - Julia M. Johnson
- Developmental Exposure Alcohol Research Center, Binghamton University, Binghamton, NY, 13902, USA
- Department of Psychology, Center for Development and Behavioral Neuroscience, Binghamton University, Binghamton, NY, 13902, USA
| | - Elena I. Varlinskaya
- Developmental Exposure Alcohol Research Center, Binghamton University, Binghamton, NY, 13902, USA
- Department of Psychology, Center for Development and Behavioral Neuroscience, Binghamton University, Binghamton, NY, 13902, USA
| | - Marvin R. Diaz
- Developmental Exposure Alcohol Research Center, Binghamton University, Binghamton, NY, 13902, USA
- Department of Psychology, Center for Development and Behavioral Neuroscience, Binghamton University, Binghamton, NY, 13902, USA
| |
Collapse
|
11
|
Gamble ME, Marfatia R, Diaz MR. Prenatal methadone exposure leads to long‐term memory impairments and disruptions of dentate granule cell function in a sex‐dependent manner. Addict Biol 2022; 27:e13215. [DOI: 10.1111/adb.13215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 12/16/2022]
Affiliation(s)
- Meredith E. Gamble
- Psychology Department Binghamton University 4000 Vestal Parkway E Binghamton NY 13902 USA
| | - Rhea Marfatia
- Psychology Department Binghamton University 4000 Vestal Parkway E Binghamton NY 13902 USA
| | - Marvin R. Diaz
- Psychology Department Binghamton University 4000 Vestal Parkway E Binghamton NY 13902 USA
| |
Collapse
|
12
|
Binge-like Prenatal Ethanol Exposure Causes Impaired Cellular Differentiation in the Embryonic Forebrain and Synaptic and Behavioral Defects in Adult Mice. Brain Sci 2022; 12:brainsci12060793. [PMID: 35741678 PMCID: PMC9220802 DOI: 10.3390/brainsci12060793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/10/2022] [Accepted: 06/15/2022] [Indexed: 11/30/2022] Open
Abstract
An embryo’s in-utero exposure to ethanol due to a mother’s alcohol drinking results in a range of deficits in the child that are collectively termed fetal alcohol spectrum disorders (FASDs). Prenatal ethanol exposure is one of the leading causes of preventable intellectual disability. Its neurobehavioral underpinnings warrant systematic research. We investigated the immediate effects on embryos of acute prenatal ethanol exposure during gestational days (GDs) and the influence of such exposure on persistent neurobehavioral deficits in adult offspring. We administered pregnant C57BL/6J mice with ethanol (1.75 g/kg) (GDE) or saline (GDS) intraperitoneally (i.p.) at 0 h and again at 2 h intervals on GD 8 and GD 12. Subsequently, we assessed apoptosis, differentiation, and signaling events in embryo forebrains (E13.5; GD13.5). Long-lasting effects of GDE were evaluated via a behavioral test battery. We also determined the long-term potentiation and synaptic plasticity-related protein expression in adult hippocampal tissue. GDE caused apoptosis, inhibited differentiation, and reduced pERK and pCREB signaling and the expression of transcription factors Pax6 and Lhx2. GDE caused persistent spatial and social investigation memory deficits compared with saline controls, regardless of sex. Interestingly, GDE adult mice exhibited enhanced repetitive and anxiety-like behavior, irrespective of sex. GDE reduced synaptic plasticity-related protein expression and caused hippocampal synaptic plasticity (LTP and LTD) deficits in adult offspring. These findings demonstrate that binge-like ethanol exposure at the GD8 and GD12 developmental stages causes defects in pERK–pCREB signaling and reduces the expression of Pax6 and Lhx2, leading to impaired cellular differentiation during the embryonic stage. In the adult stage, binge-like ethanol exposure caused persistent synaptic and behavioral abnormalities in adult mice. Furthermore, the findings suggest that combining ethanol exposure at two sensitive stages (GD8 and GD12) causes deficits in synaptic plasticity-associated proteins (Arc, Egr1, Fgf1, GluR1, and GluN1), leading to persistent FASD-like neurobehavioral deficits in mice.
Collapse
|
13
|
Osterlund Oltmanns JR, Schaeffer EA, Goncalves Garcia M, Donaldson TN, Acosta G, Sanchez LM, Davies S, Savage DD, Wallace DG, Clark BJ. Sexually dimorphic organization of open field behavior following moderate prenatal alcohol exposure. Alcohol Clin Exp Res 2022; 46:861-875. [PMID: 35315075 PMCID: PMC9117438 DOI: 10.1111/acer.14813] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/03/2022] [Accepted: 03/16/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Prenatal alcohol exposure (PAE) can produce deficits in a wide range of cognitive functions but is especially detrimental to behaviors requiring accurate spatial information processing. In open field environments, spatial behavior is organized such that animals establish "home bases" marked by long stops focused around one location. Progressions away from the home base are circuitous and slow, while progressions directed toward the home base are non-circuitous and fast. The impact of PAE on the organization of open field behavior has not been experimentally investigated. METHODS In the present study, adult female and male rats with moderate PAE or saccharin exposure locomoted a circular high walled open field for 30 minutes under lighted conditions. RESULTS The findings indicate that PAE and sex influence the organization of open field behavior. Consistent with previous literature, PAE rats exhibited greater locomotion in the open field. Novel findings from the current study indicate that PAE and sex also impact open field measures specific to spatial orientation. While all rats established a home base on the periphery of the open field, PAE rats, particularly males, exhibited significantly less clustered home base stopping with smaller changes in heading between stops. PAE also impaired progression measures specific to distance estimation, while sex alone impacted progression measures specific to direction estimation. CONCLUSIONS These findings support the conclusion that adult male rats have an increased susceptibility to the effects of PAE on the organization of open field behavior.
Collapse
Affiliation(s)
| | - Ericka A Schaeffer
- Department of Psychology, Northern Illinois University, Dekalb, Illinois, USA
| | | | - Tia N Donaldson
- Department of Psychology, The University of New Mexico, Albuquerque, New Mexico, USA
| | - Gabriela Acosta
- Department of Psychology, The University of New Mexico, Albuquerque, New Mexico, USA
| | - Lilliana M Sanchez
- Department of Psychology, The University of New Mexico, Albuquerque, New Mexico, USA
| | - Suzy Davies
- Department of Neurosciences, The University of New Mexico, Albuquerque, New Mexico, USA
| | - Daniel D Savage
- Department of Psychology, The University of New Mexico, Albuquerque, New Mexico, USA.,Department of Neurosciences, The University of New Mexico, Albuquerque, New Mexico, USA
| | - Douglas G Wallace
- Department of Psychology, Northern Illinois University, Dekalb, Illinois, USA
| | - Benjamin J Clark
- Department of Psychology, The University of New Mexico, Albuquerque, New Mexico, USA.,Department of Neurosciences, The University of New Mexico, Albuquerque, New Mexico, USA
| |
Collapse
|
14
|
Rodriguez CI, Vergara VM, Davies S, Calhoun VD, Savage DD, Hamilton DA. Detection of prenatal alcohol exposure using machine learning classification of resting-state functional network connectivity data. Alcohol 2021; 93:25-34. [PMID: 33716098 DOI: 10.1016/j.alcohol.2021.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/28/2021] [Accepted: 03/01/2021] [Indexed: 01/07/2023]
Abstract
Fetal Alcohol Spectrum Disorder (FASD), a wide range of physical and neurobehavioral abnormalities associated with prenatal alcohol exposure (PAE), is recognized as a significant public health concern. Advancements in the diagnosis of FASD have been hindered by a lack of consensus in diagnostic criteria and limited use of objective biomarkers. Previous research from our group utilized resting-state functional magnetic resonance imaging (fMRI) to measure functional network connectivity (FNC), which revealed several sex- and region-dependent alterations in FNC as a result of moderate PAE relative to controls. Considering that FNC is sensitive to moderate PAE, this study explored the use of FNC data and machine learning methods to detect PAE among a sample of rodents exposed to alcohol prenatally and controls. We utilized previously acquired resting state fMRI data collected from adult rats exposed to moderate levels of prenatal alcohol (PAE) or a saccharin control solution (SAC) to assess FNC of resting state networks extracted by spatial group independent component analysis (GICA). FNC data were subjected to binary classification using support vector machine (SVM) -based algorithms and leave-one-out-cross validation (LOOCV) in an aggregated sample of males and females (n = 48; 12 male PAE, 12 female PAE, 12 male SAC, 12 female SAC), a males-only sample (n = 24; 12 PAE, 12 SAC), and a females-only sample (n = 24; 12 PAE, 12 SAC). Results revealed that a quadratic SVM (QSVM) kernel was significantly effective for PAE detection in females. QSVM kernel-based classification resulted in accuracy rates of 62.5% for all animals, 58.3% for males, and 79.2% for females. Additionally, qualitative evaluation of QSVM weights implicates an overarching theme of several hippocampal and cortical networks in contributing to the formation of correct classification decisions by QSVM. Our results suggest that binary classification using QSVM and adult female FNC data is a potential candidate for the translational development of novel and non-invasive techniques for the identification of FASD.
Collapse
|
15
|
Bianco CD, Hübner IC, Bennemann B, de Carvalho CR, Brocardo PS. Effects of postnatal ethanol exposure and maternal separation on mood, cognition and hippocampal arborization in adolescent rats. Behav Brain Res 2021; 411:113372. [PMID: 34022294 DOI: 10.1016/j.bbr.2021.113372] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 04/24/2021] [Accepted: 05/17/2021] [Indexed: 11/25/2022]
Abstract
Ethanol exposure and early life stress during brain development are associated with an increased risk of developing psychiatric disorders. We used a third-trimester equivalent model of fetal alcohol spectrum disorders combined with a maternal separation (MS) protocol to evaluate whether these stressors cause sexually dimorphic behavioral and hippocampal dendritic arborization responses in adolescent rats. Wistar rat pups were divided into four experimental groups: 1) Control; 2) MS (MS, for 3 h/day from postnatal (PND) 2 to PND14); 3) EtOH (EtOH, 5 g/kg/day, i.p., PND2, 4, 6, 8, and 10); 4) EtOH + MS. All animals were divided into two cohorts and subjected to a battery of behavioral tests when they reached adolescence (PND37-44). Animals from cohort 1 were submitted to: 1) the open field test; 2) self-cleaning behavior (PND38); and 3) the motivation test (PND39-41). Animals from cohort 2 were submitted to: 1) the novel object recognition (PND37-39); 2) social investigation test (PND40); and 3) Morris water maze test (PND41-44). At PND45, the animals were euthanized, and the brains were collected for subsequent dendritic analysis. Postnatal ethanol exposure (PEE) caused anxiety-like behavior in females and reduced motivation, and increased hippocampal dendritic arborization in both sexes. MS reduced body weight, increased locomotor activity in females, and increased motivation, and hippocampal dendritic arborization in both sexes. We found that males from the EtOH + MS groups are more socially engaged than females, who were more interested in sweets than males. Altogether, these data suggest that early life adverse conditions may alter behavior in a sex-dependent manner in adolescent rats.
Collapse
Affiliation(s)
- Claudia Daniele Bianco
- Neuroscience Graduate Program, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Ian Carlos Hübner
- Neuroscience Graduate Program, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Bianca Bennemann
- Department of Morphological Sciences, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Cristiane Ribeiro de Carvalho
- Neuroscience Graduate Program, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Patricia S Brocardo
- Neuroscience Graduate Program, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, SC, Brazil; Department of Morphological Sciences, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, SC, Brazil.
| |
Collapse
|
16
|
Gursky ZH, Savage LM, Klintsova AY. Executive functioning-specific behavioral impairments in a rat model of human third trimester binge drinking implicate prefrontal-thalamo-hippocampal circuitry in Fetal Alcohol Spectrum Disorders. Behav Brain Res 2021; 405:113208. [PMID: 33640395 PMCID: PMC8005484 DOI: 10.1016/j.bbr.2021.113208] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 02/16/2021] [Accepted: 02/21/2021] [Indexed: 12/28/2022]
Abstract
Individuals diagnosed with Fetal Alcohol Spectrum Disorders (FASD) often display behavioral impairments in executive functioning (EF). Specifically, the domains of working memory, inhibition, and set shifting are frequently impacted by prenatal alcohol exposure. Coordination between prefrontal cortex and hippocampus appear to be essential for these domains of executive functioning. The current study uses a rodent model of human third-trimester binge drinking to identify the extent of persistent executive functioning deficits following developmental alcohol by using a behavioral battery of hippocampus- and prefrontal cortex-dependent behavioral assays in adulthood. Alcohol added to milk formula was administered to Long Evans rat pups on postnatal days 4-9 (5.25 g/kg/day of ethanol; intragastric intubation), a period when rodent brain development undergoes comparable processes to human third-trimester neurodevelopment. Procedural control animals underwent sham intubation, without administration of any liquids (i.e., alcohol, milk solution). In adulthood, male rats were run on a battery of behavioral assays: novel object recognition, object-in-place associative memory, spontaneous alternation, and behavioral flexibility tasks. Alcohol-exposed rats demonstrated behavioral impairment in object-in-place preference and performed worse when the rule was switched on a plus maze task. All rats showed similar levels of novel object recognition, spontaneous alternation, discrimination learning, and reversal learning, suggesting alcohol-induced behavioral alterations are selective to executive functioning domains of spatial working memory and set-shifting in this widely-utilized rodent model. These specific behavioral alterations support the hypothesis that behavioral impairments in EF following prenatal alcohol exposure are caused by distributed damage to the prefrontal-thalamo-hippocampal circuit consisting of the medial prefrontal cortex, thalamic nucleus reuniens, and CA1 of hippocampus.
Collapse
Affiliation(s)
- Z H Gursky
- Department of Psychological & Brain Sciences, University of Delaware, Newark, DE 19716, USA
| | - L M Savage
- Department of Psychology, Binghamton University (State University of New York), Binghamton, NY 13902, USA
| | - A Y Klintsova
- Department of Psychological & Brain Sciences, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
17
|
Primary cilia safeguard cortical neurons in neonatal mouse forebrain from environmental stress-induced dendritic degeneration. Proc Natl Acad Sci U S A 2020; 118:2012482118. [PMID: 33443207 DOI: 10.1073/pnas.2012482118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The developing brain is under the risk of exposure to a multitude of environmental stressors. While perinatal exposure to excessive levels of environmental stress is responsible for a wide spectrum of neurological and psychiatric conditions, the developing brain is equipped with intrinsic cell protection, the mechanisms of which remain unknown. Here we show, using neonatal mouse as a model system, that primary cilia, hair-like protrusions from the neuronal cell body, play an essential role in protecting immature neurons from the negative impacts of exposure to environmental stress. More specifically, we found that primary cilia prevent the degeneration of dendritic arbors upon exposure to alcohol and ketamine, two major cell stressors, by activating cilia-localized insulin-like growth factor 1 receptor and downstream Akt signaling. We also found that activation of this pathway inhibits Caspase-3 activation and caspase-mediated cleavage/fragmentation of cytoskeletal proteins in stress-exposed neurons. These results indicate that primary cilia play an integral role in mitigating adverse impacts of environmental stressors such as drugs on perinatal brain development.
Collapse
|
18
|
Burgess DJ, Lucia D, Cuffe JSM, Moritz KM. Periconceptional ethanol exposure alters hypothalamic-pituitary-adrenal axis function, signalling elements and associated behaviours in a rodent model. Psychoneuroendocrinology 2020; 122:104901. [PMID: 33070024 DOI: 10.1016/j.psyneuen.2020.104901] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 09/22/2020] [Accepted: 09/22/2020] [Indexed: 10/23/2022]
Abstract
Alcohol consumption throughout pregnancy has been associated with mental illness, hyperactivity and social difficulties in offspring. This may be due in part to programmed disruption of the hypothalamic-pituitary-adrenal axis (HPA) activity and responsiveness. However, it is unknown if the HPA is affected and similar behavioural outcomes occur following alcohol exposure limited to the time around conception, the periconceptional (PC) period. Female Sprague-Dawley rats were treated with PC:EtOH (12.5 % v/v EtOH liquid diet) or a control diet from four days before conception, until embryonic day 4. Offspring at 3-months of age underwent the forced swim test (FST) and social interaction test. HPA reactivity tests (combined dexamethasone suppression test (DST) and corticotropin-releasing hormone test (CST), 30-minute restraint stress) were performed at 5 months of age and then pituitary and adrenal glands were collected for expression of genes involved in HPA regulation. PC:EtOH exposure significantly increased immobility (p < 0.05) in both sexes in the FST. PC:EtOH also increased the duration of affiliative behaviour (p < 0.05) within the social interaction test in female offspring. PC:EtOH programmed HPA hyperactivity in both sexes during the DST/CST test (p < 0.05); however, there was no impact of PC:EtOH on plasma corticosterone concentration in response to restraint stress. There was no significant impact of PC:EtOH on mRNA expression in glucocorticoid signalling genes in the pituitary gland or the steroidogenic pathway in the adrenal gland. This study suggests that alcohol exposure, even when limited to a short period around conception, can program mental illness-like phenotypes, and this was associated with alterations in HPA responsiveness. This study further highlights that consumption of alcohol even prior to implantation may impact the long-term health of offspring.
Collapse
Affiliation(s)
- Danielle J Burgess
- School of Biomedical Sciences, The University of Queensland, 4072, Australia; Torrens University, 4000, Australia
| | - Diana Lucia
- School of Biomedical Sciences, The University of Queensland, 4072, Australia
| | - James S M Cuffe
- School of Biomedical Sciences, The University of Queensland, 4072, Australia
| | - Karen M Moritz
- School of Biomedical Sciences, The University of Queensland, 4072, Australia; The Child Health Research Centre, The University of Queensland, 4072, Australia.
| |
Collapse
|
19
|
Demarque KC, Krahe TE, de Oliveira GM, Abreu-Villaça Y, Manhães AC, Filgueiras CC, Ribeiro-Carvalho A. Ethanol exposure during the brain growth spurt period increases ethanol-induced aggressive behavior in adolescent male mice. Int J Dev Neurosci 2020; 80:657-666. [PMID: 32920848 DOI: 10.1002/jdn.10062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 08/25/2020] [Accepted: 09/03/2020] [Indexed: 11/09/2022] Open
Abstract
Ethanol exposure during development is associated with deficient social behavior, such as aggressive behavior, and ethanol consumption is associated with violent crimes, thus raising the possibility that individuals with fetal alcohol spectrum disorder may exhibit exacerbated social deficits in response to ethanol exposure. The present study evaluated the effects of ethanol exposure during the brain growth spurt period (i.e., a critical time period during which ethanol's effects are augmented) on aggressive behavior and ethanol-induced aggression during adolescence. From postnatal Day 2 (PD2) to PD8, Swiss mice received either ethanol (5 g/kg, i.p.) or saline on alternate days. On PD39, aggressive behavior was assessed using the resident-intruder paradigm in male mice, and social dominance was investigated using the tube dominance test in both males and females. Testis structure and testosterone levels were evaluated in male mice. Early ethanol exposure increased the gonadosomatic index and the number of Leydig cells. The thickness of the seminiferous tube decreased. No difference in testosterone levels was found. The ethanol-exposed resident mice exhibited increased number and duration of aggressive episodes only when challenged with a low ethanol dose (1 g/kg) before confrontation. Female mice early-exposed to ethanol won more confrontations in the tube dominance test. The present findings suggest a critical brain growth spurt period that is susceptible to ethanol-induced alterations of social dominance behavior in females. Although basal levels of aggression were unaffected, early ethanol exposure resulted in greater susceptibility to ethanol-induced aggression in adolescent male mice.
Collapse
Affiliation(s)
- Kelly C Demarque
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Thomas E Krahe
- Department of Psychology, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gabriel Melo de Oliveira
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Yael Abreu-Villaça
- Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alex C Manhães
- Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cláudio C Filgueiras
- Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Anderson Ribeiro-Carvalho
- Departamento de Ciências, Faculdade de Formação de Professores da, Universidade do Estado do Rio de Janeiro, São Gonçalo, Brazil
| |
Collapse
|
20
|
Prenatal exposure to alcohol impairs social play behavior in adolescent male mice. Neurotoxicology 2020; 79:142-149. [DOI: 10.1016/j.neuro.2020.05.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 03/14/2020] [Accepted: 05/26/2020] [Indexed: 12/12/2022]
|
21
|
Madarnas C, Villalba NM, Soriano D, Brusco A. Anxious Behavior of Adult CD1 Mice Perinatally Exposed to Low Concentrations of Ethanol Correlates With Morphological Changes in Cingulate Cortex and Amygdala. Front Behav Neurosci 2020; 14:92. [PMID: 32636737 PMCID: PMC7319189 DOI: 10.3389/fnbeh.2020.00092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 05/14/2020] [Indexed: 01/12/2023] Open
Abstract
Perinatal ethanol (EtOH) exposure is associated with high incidence of behavioral disorders such as depression and anxiety. The cerebral areas related with these consequences involve the corticolimbic system, in particular the prefrontal cortex, hippocampus, amygdala, and cingulate cortex, although the latter has not been thoroughly studied yet. Different animal models of prenatal or perinatal EtOH exposure have reported morphofunctional alterations in the central nervous system, which could explain behavioral disorders along life; these results focus on youth and adolescents and are still controversial. In the light of these inconclusive results, the aim of this work was to analyze adult behavior in CD1 mice perinatally exposed to low concentrations of EtOH (PEE) during gestation and lactation, and describe the morphology of the cingulate cortex and amygdala with a view to establishing structure/function/behavior correlations. Primiparous CD1 female mice were exposed to EtOH 6% v/v for 20 days prior to mating and continued drinking EtOH 6% v/v during pregnancy and lactation. After weaning, male pups were fed food and water ad libitum until 77 days of age, when behavioral and morphological studies were performed. Mouse behavior was analyzed through light–dark box and open field tests. Parameters related to anxious behavior and locomotor activity revealed anxiogenic behavior in PEE mice. After behavioral studies, mice were perfused and neurons, axons, serotonin transporter, 5HT, CB1 receptor (CB1R) and 5HT1A receptor (5HT1AR) were studied by immunofluorescence and immunohistochemistry in brain sections containing cingulate cortex and amygdala. Cingulate cortex and amygdala cytoarchitecture were preserved in adult PEE mice, although a smaller number of neurons was detected in the amygdala. Cingulate cortex axons demonstrated disorganized radial distribution and reduced area. Serotonergic and endocannabinoid systems, both involved in anxious behavior, showed differential expression. Serotonergic afferents were lower in both brain areas of PEE animals, while 5HT1AR expression was lower in the cingulate cortex and higher in the amygdala. The expression of CB1R was lower only in the amygdala. In sum, EtOH exposure during early brain development induces morphological changes in structures of the limbic system and its neuromodulation, which persist into adulthood and may be responsible for anxious behavior.
Collapse
Affiliation(s)
- Catalina Madarnas
- Instituto de Biología Celular y Neurociencia (IBCN), Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
| | - Nerina Mariel Villalba
- Instituto de Biología Celular y Neurociencia (IBCN), Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
| | - Delia Soriano
- Instituto de Biología Celular y Neurociencia (IBCN), Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina.,Facultad de Medicina, Departamento de Biología Celular, Histología, Embriología y Genética, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alicia Brusco
- Instituto de Biología Celular y Neurociencia (IBCN), Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina.,Facultad de Medicina, Departamento de Biología Celular, Histología, Embriología y Genética, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
22
|
Diaz MR, Johnson JM, Varlinskaya EI. Increased ethanol intake is associated with social anxiety in offspring exposed to ethanol on gestational day 12. Behav Brain Res 2020; 393:112766. [PMID: 32535179 DOI: 10.1016/j.bbr.2020.112766] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 06/05/2020] [Accepted: 06/07/2020] [Indexed: 01/21/2023]
Abstract
Prenatal alcohol exposure (PAE) can result in physical, cognitive, and neurological deficits termed Fetal Alcohol Spectrum Disorder (FASD). Deficits in social functioning associated with PAE are frequently observed and persist throughout the lifespan. Social impairments, such as social anxiety, are associated with increased alcohol abuse, which is also highly pervasive following PAE. Yet, the relationship between PAE-induced social alterations and alcohol intake later in life is not well understood. In order to test this relationship, we exposed pregnant female Sprague Dawley rats to a single instance of PAE on gestational day 12, a period of substantial neural development, and tested offspring in adulthood (postnatal day 63) in a modified social interaction test followed by alternating alone and social ethanol intake sessions. Consistent with our previous findings, we found that, in general, PAE reduced social preference (measure of social anxiety-like behavior) in female but not male adults. However, ethanol intake was significantly higher in the PAE group regardless of sex. When dividing subjects according to level of social anxiety-like behavior (low, medium, or high), PAE males (under both drinking contexts) and control females (under the social drinking context) with a high social anxiety phenotype showed the highest level of ethanol intake. Taken together, these data indicate that PAE differentially affects the interactions between social anxiety, ethanol intake, and drinking context in males and females. These findings extend our understanding of the complexity and persistence of PAE's sex-dependent effects into adulthood.
Collapse
Affiliation(s)
- Marvin R Diaz
- Department of Psychology, Center for Development and Behavioral Neuroscience Binghamton University, Binghamton, NY13902, United States; Developmental Exposure Alcohol Research Center, Baltimore MD21201, Binghamton NY 13902, Syracuse NY13210, United States.
| | - Julia M Johnson
- Developmental Exposure Alcohol Research Center, Baltimore MD21201, Binghamton NY 13902, Syracuse NY13210, United States
| | - Elena I Varlinskaya
- Department of Psychology, Center for Development and Behavioral Neuroscience Binghamton University, Binghamton, NY13902, United States; Developmental Exposure Alcohol Research Center, Baltimore MD21201, Binghamton NY 13902, Syracuse NY13210, United States
| |
Collapse
|
23
|
Nucleus reuniens of the midline thalamus of a rat is specifically damaged after early postnatal alcohol exposure. Neuroreport 2020; 30:748-752. [PMID: 31095109 DOI: 10.1097/wnr.0000000000001270] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Individuals diagnosed with fetal alcohol spectrum disorders often show behavioral impairments in executive functioning. Mechanistic studies have implicated coordination between the prefrontal cortex and the hippocampus (through thalamic nucleus reuniens) as essential for such executive functions. This study is the first to report the long-term neuroanatomical alterations to the ventral midline thalamus after alcohol exposure on postnatal days 4-9 (a rodent model of binge drinking during the third-trimester of human pregnancy). Alcohol added to a milk formula was administered to female Long-Evans rat pups on postnatal days 4-9 (5.25 g/kg/day of ethanol, intragastric intubation). Control animals were intubated without the administration of liquid. In adulthood, brains were immunohistochemically labeled for a neuronal marker (NeuN) conjugated with Cy3 fluorophore and stained with Hoechst33342 to visualize nuclei. Total non-neuronal cell number (NeuN/Hoechst) and neuron number (NeuN/Hoechst), and total volume were estimated using unbiased stereology in two neighboring midline thalamic nuclei: reuniens and rhomboid. Estimates were analyzed using linear mixed modeling to account for animal and litter as clustering variables. A 21% reduction in the total neuron number (resulting in altered neuron-to-non-neuron ratio) and an 18% reduction in total volume were found exclusively in thalamic nucleus reuniens in rats exposed to ethanol. Non-neuronal cell number was not changed in reuniens. No ethanol-induced changes on any measures were observed in rhomboid nucleus. These specific neuroanatomical alterations provide a necessary foundation for further examination of circuit-level alterations that occur in fetal alcohol spectrum disorder.
Collapse
|
24
|
Shahrier MA, Wada H. Effects of prenatal ethanol exposure on acoustic characteristics of play fighting-induced ultrasonic vocalizations in juvenile rats. Neurotoxicology 2020; 79:25-39. [PMID: 32294486 DOI: 10.1016/j.neuro.2020.03.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 03/30/2020] [Indexed: 10/24/2022]
Abstract
Juvenile rats display rough-and-tumble playing with conspecifics (play fighting behavior) and produce 22 and 50 kHz ultrasonic vocalizations (USVs). The 22 kHz USV is considered to reflect negative emotionality such as anxiety, fear, and distress, whereas the 50 kHz USV is considered to reflect positive emotionality such as joy, happiness, and satisfaction. USV is a sensitive tool for measuring emotionality in socially interactive situations. However, effects of prenatal ethanol-exposure on the acoustic characteristics of play fighting-induced USVs have remained unclear. In Experiment I, we recorded USVs produced by prenatally ethanol-exposed rats during play fighting on postnatal days (PNDs) 40-42 and examined the acoustic characteristics of negative and positive emotion-induced USVs. In Experiment II, we examined the anxiety levels through elevated plus maze testing on PNDs 37-39 and frequencies of playful attacks on PNDs 43-45 in ethanol-exposed rats. Ethanol was administered to pregnant rats in three gradually increased concentrations between gestational days (GDs) 8 and 20. From GDs 14 to 20, ethanol-containing tap water at concentrations of 30% and 15% (v/v) was administered to the high- and low-ethanol groups, respectively. Tap water without added ethanol was given to the control group. On PNDs 40-42, three rats from the same sex and same ethanol concentration group but from different litters were placed together into a playing cage for play fighting. The high-ethanol male triads displayed elevations of 20-35 kHz USVs reflecting negative emotionality and reductions of 45-70 kHz USVs reflecting positive emotionality compared with both the low-ethanol and control male triads. The high-ethanol male triads had prominent elevations of 20-35 kHz USVs with durations longer than 200 ms, whereas the control male triads did not produce such 20-35 kHz USVs at all. There was no difference in USV acoustic characteristics among the female triads. In addition, the high-ethanol male rats exhibited greater anxiety levels and less frequencies of play fighting than the control male rats. Altogether, we conclude that prenatal exposure to ethanol enhances negative emotionality such as anxiety and, accordingly, 20-35 kHz USVs reflecting negative emotionality are produced with a marked decrease in play fighting, suggesting difficulties in social interactions with conspecifics.
Collapse
Affiliation(s)
- Mohd Ashik Shahrier
- Department of Psychology, Graduate School of Letters, Hokkaido University, Japan.
| | - Hiromi Wada
- Department of Psychology, Faculty of Humanities and Human Sciences, Hokkaido University, Kita 10 Nishi 7 Kita-Ku, Sapporo 060-0810, Japan
| |
Collapse
|
25
|
Demarque KC, Dutra-Tavares AC, Nunes-Freitas AL, Araújo UC, Manhães AC, Abreu-Villaça Y, Filgueiras CC, Ribeiro-Carvalho A. Ethanol exposure during the brain growth spurt affects social behavior and increases susceptibility to acute ethanol effects during adolescence in male mice. Int J Dev Neurosci 2020; 80:197-207. [PMID: 32077124 DOI: 10.1002/jdn.10017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/02/2020] [Accepted: 02/13/2020] [Indexed: 02/06/2023] Open
Abstract
The brain is particularly vulnerable to ethanol effects during its growth spurt. Outcomes of early ethanol exposure such as hyperactivity have been extensively investigated; however, persons with fetal alcohol spectrum disorder frequently have social impairments and are heavy drinkers. Despite that, scant information is available regarding the neurobiological basis of these latter behavioral issues. Here, Swiss mice exposed to ethanol (Etoh, 5 g/kg i.p., alternate days) or saline during the brain growth spurt [postnatal day (PN) 2 to 8] were used to assess social behavior after an ethanol challenging during adolescence. At PN39, animals were administered with a single ethanol dose (1 g/Kg) or water by gavage and were then evaluated in the three-chamber sociability test. We also evaluated corticosterone serum levels and the frontal cerebral cortex serotoninergic system. Etoh males showed reductions in sociability. Ethanol challenging reverted these alterations in social behavior, reduced corticosterone levels, and increased the 5-HT2 receptor binding of male Etoh mice. No alterations were observed in 5-HT and 5-HIAA contents. These data support the idea that ethanol exposure during the brain growth spurt impacts social abilities during adolescence, alters ethanol reexposure effects, and suggests that stress response and serotoninergic system play roles in this phenomenon.
Collapse
Affiliation(s)
- Kelly C Demarque
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Ana C Dutra-Tavares
- Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - André L Nunes-Freitas
- Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ulisses C Araújo
- Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alex C Manhães
- Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Yael Abreu-Villaça
- Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cláudio C Filgueiras
- Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Anderson Ribeiro-Carvalho
- Departamento de Ciências, Faculdade de Formação de Professores da Universidade do Estado do Rio de Janeiro, São Gonçalo, Brazil
| |
Collapse
|
26
|
Delatour LC, Yeh PWL, Yeh HH. Prenatal Exposure to Ethanol Alters Synaptic Activity in Layer V/VI Pyramidal Neurons of the Somatosensory Cortex. Cereb Cortex 2020; 30:1735-1751. [PMID: 31647550 PMCID: PMC7132917 DOI: 10.1093/cercor/bhz199] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/04/2019] [Accepted: 08/04/2019] [Indexed: 12/31/2022] Open
Abstract
Fetal alcohol spectrum disorder (FASD) encompasses a range of cognitive and behavioral deficits, with aberrances in the function of cerebral cortical pyramidal neurons implicated in its pathology. However, the mechanisms underlying these aberrances, including whether they persist well beyond ethanol exposure in utero, remain to be explored. We addressed these issues by employing a mouse model of FASD in which pregnant mice were exposed to binge-type ethanol from embryonic day 13.5 through 16.5. In both male and female offspring (postnatal day 28-32), whole-cell patch clamp recording of layer V/VI somatosensory cortex pyramidal neurons revealed increases in the frequency of excitatory and inhibitory postsynaptic currents. Furthermore, expressing channelrhodopsin in either GABAergic interneurons (Nkx2.1Cre-Ai32) or glutamatergic pyramidal neurons (Emx1IRES Cre-Ai32) revealed a shift in optically evoked paired-pulse ratio. These findings are consistent with an excitatory-inhibitory imbalance with prenatal ethanol exposure due to diminished inhibitory but enhanced excitatory synaptic strength. Prenatal ethanol exposure also altered the density and morphology of spines along the apical dendrites of pyramidal neurons. Thus, while both presynaptic and postsynaptic mechanisms are affected following prenatal exposure to ethanol, there is a prominent presynaptic component that contributes to altered inhibitory and excitatory synaptic transmission in the somatosensory cortex.
Collapse
Affiliation(s)
- Laurie C Delatour
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Pamela W L Yeh
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Hermes H Yeh
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| |
Collapse
|
27
|
Abstract
AbstractIt is well established that high-dose alcohol consumption during pregnancy increases the risk for a plethora of adverse offspring outcomes. These include neurodevelopmental, cognitive and social deficits, as well as psychiatric illnesses, such as depression and anxiety. However, much less evidence is available on the effects of low- and early-dose alcohol exposure on mental health outcomes, regardless of the accumulating evidence that mental health outcomes should be considered in the context of the Developmental Origins of Health and Disease hypothesis. This review will discuss the evidence that indicates low-dose and early prenatal alcohol exposure can increase the risk of mental illness in offspring and discuss the mechanistic pathways that may be involved.
Collapse
|
28
|
Holman PJ, Baglot SL, Morgan E, Weinberg J. Effects of prenatal alcohol exposure on social competence: Asymmetry in play partner preference among heterogeneous triads of male and female rats. Dev Psychobiol 2019; 61:513-524. [PMID: 30843198 DOI: 10.1002/dev.21842] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/03/2018] [Accepted: 12/27/2018] [Indexed: 01/05/2023]
Abstract
Social behavior deficits associated with prenatal alcohol exposure (PAE) are frequently described in terms of impaired social competence, which can be defined as the effectiveness in social interaction and the ability to employ social skills successfully within different interpersonal contexts. Play behavior-which peaks during adolescence-is critical for developing social competence, as well as for motor, cognitive, and emotional development. Studies of play behavior typically utilize protocols where animals interact in dyads. However, less is understood about how the social environment may shape PAE-related social behavior deficits, particularly in more complex social contexts. Here, we assess play partner preference utilizing a novel approach in which adolescent male and female animals interact within same-sex triads comprised of animals from mixed prenatal treatments to determine how play partner identity and social group composition interact to shape behavior. When triads included one PAE animal and two control animals (i.e., control animals had the option to play either with a fellow control or a PAE playmate), we observed play target asymmetry whereby controls preferentially played with fellow controls. Notably, these results were consistent for triads of both males and females, with subtle differences in frequency of initiations versus reciprocations. We found no play target asymmetry, however, when triads included two PAE animals and one control animal or different configurations of control and pair-fed animals. Taken together, play target asymmetry resulting from ineffective social interactions, including a failure to engage with, respond to, and/or solicit play from control play partners appropriately, suggests that PAE negatively impacts the development of social competence.
Collapse
Affiliation(s)
- Parker J Holman
- Department of Cellular & Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Samantha L Baglot
- Department of Cellular & Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Erin Morgan
- Department of Cellular & Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Joanne Weinberg
- Department of Cellular & Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
29
|
Ma YY. Striatal morphological and functional alterations induced by prenatal alcohol exposure. Pharmacol Res 2019; 142:262-266. [PMID: 30807864 DOI: 10.1016/j.phrs.2019.02.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 02/20/2019] [Accepted: 02/22/2019] [Indexed: 12/26/2022]
Abstract
Prenatal alcohol exposure (PAE) is an insidious yet preventable cause of developmental disability. The prenatal stage is a critical period for brain development with the concurrence of high vulnerability to the acute and prolonged effects of PAE. There is substantial evidence from both human observations and laboratory experiments that PAE is a common risk factor that predisposes to an array of postnatal mental disorders, including emotional, cognitive, and motor deficits. Although it is well accepted that PAE causes substantial morbidity, available treatments are limited. One reason is the lack of sufficient understanding about the neuroalterations induced by PAE, and how these changes contribute to PAE-induced mental disorders. Among a number of brain structures that have been explored extensively in PAE, the striatum has attracted great attention in the last 20 years in the field of PAE neurobiology. Interestingly, in animal models, the striatum has been considered as a pivotal switch of brain dysfunction induced by PAE, such as addiction, anxiety, depression, and neurodegeneration. In this review, we focus on recent advances in the understanding of morphological and functional changes in brain regions related to alterations after PAE, in particular the striatum. Because this region is central for behavior, emotion and cognition, there is an urgent need for more studies to uncover the PAE-induced alterations at the circuit, neuronal, synaptic and molecular levels, which will not only improve our understanding of the neuroplasticity induced by PAE, but also provide novel biological targets to treat PAE-related mental disorders with translational significance.
Collapse
Affiliation(s)
- Yao-Ying Ma
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, 635 Barnhill Drive, MS A422, Indianapolis, IN 46202, United States.
| |
Collapse
|
30
|
Cutuli D, Berretta E, Laricchiuta D, Caporali P, Gelfo F, Petrosini L. Pre-reproductive Parental Enriching Experiences Influence Progeny's Developmental Trajectories. Front Behav Neurosci 2018; 12:254. [PMID: 30483072 PMCID: PMC6240645 DOI: 10.3389/fnbeh.2018.00254] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 10/10/2018] [Indexed: 01/09/2023] Open
Abstract
While the positive effects of environmental enrichment (EE) applied after weaning, in adulthood, during aging, or even in the presence of brain damage have been widely described, the transgenerational effects of pre-reproductive EE have been less examined. And yet, this issue is remarkable given that parental environmental experience may imprint offspring’s phenotype over generations through many epigenetic processes. Interactions between individual and environment take place lifelong even before conception. In fact, the environment pre-reproductively experienced by the mother and/or the father exerts a substantial impact on neural development and motor and cognitive performances of the offspring, even if not directly exposed to social, cognitive, physical and/or motor enrichment. Furthermore, pre-reproductive parental enrichment exerts a transgenerational impact on coping response to stress as well as on the social behavior of the offspring. Among the effects of pre-reproductive parental EE, a potentiation of the maternal care and a decrease in global methylation levels in the frontal cortex and hippocampus of the progeny have been described. Finally, pre-reproductive EE modifies different pathways of neuromodulation in the brain of the offspring (involving brain-derived neurotrophic factor, oxytocin and glucocorticoid receptors). The present review highlights the importance of pre-reproductive parental enrichment in altering the performances not only of animals directly experiencing it, but also of their progeny, thus opening the way to new hypotheses on the inheritance mechanisms of behavioral traits.
Collapse
Affiliation(s)
- Debora Cutuli
- Department of Psychology, Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy.,Fondazione Santa Lucia, Rome, Italy
| | - Erica Berretta
- Department of Psychology, Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy.,Fondazione Santa Lucia, Rome, Italy
| | - Daniela Laricchiuta
- Department of Psychology, Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy.,Fondazione Santa Lucia, Rome, Italy
| | - Paola Caporali
- Department of Psychology, Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy.,Fondazione Santa Lucia, Rome, Italy
| | - Francesca Gelfo
- Fondazione Santa Lucia, Rome, Italy.,Department of Human Sciences, Guglielmo Marconi University, Rome, Italy
| | - Laura Petrosini
- Department of Psychology, Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy.,Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|
31
|
Caldwell KK, Solomon ER, Smoake JJW, Djatche de Kamgaing CD, Allan AM. Sex-specific deficits in biochemical but not behavioral responses to delay fear conditioning in prenatal alcohol exposure mice. Neurobiol Learn Mem 2018; 156:1-16. [PMID: 30316893 DOI: 10.1016/j.nlm.2018.10.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 09/17/2018] [Accepted: 10/11/2018] [Indexed: 01/29/2023]
Abstract
BACKGROUND Studies in clinical populations and preclinical models have shown that prenatal alcohol exposure (PAE) is associated with impairments in the acquisition, consolidation and recall of information, with deficits in hippocampal formation-dependent learning and memory being a common finding. The glucocorticoid receptor (GR), mineralocorticoid receptor (MR), and extracellular signal-regulated kinase 2 (ERK2) are key regulators of hippocampal formation development, structure and functioning and, thus, are potential mediators of PAE's effects on this brain region. In the present studies, we employed a well-characterized mouse model of PAE to identify biochemical mechanisms that may underlie activity-dependent learning and memory deficits associated with PAE. METHODS Mouse dams consumed either 10% (w/v) ethanol in 0.066% (w/v) saccharin (SAC) or 0.066% (w/v) SAC alone using a limited (4-h) access, drinking-in-the-dark paradigm. Male and female offspring (∼180-days of age) were trained using a delay conditioning procedure and contextual fear responses (freezing behavior) were measured 24 h later. Hippocampal formation tissue and blood were collected from three behavioral groups of animals: 20 min following conditioning (conditioning only group), 20 min following the re-exposure to the context (conditioning plus re-exposure group), and behaviorally naïve (naïve group) mice. Plasma corticosterone levels were measured by enzyme immunoassay. Immunoblotting techniques were used to measure protein levels of the GR, MR, ERK1 and ERK2 in nuclear and membrane fractions prepared from the hippocampal formation. RESULTS Adult SAC control male and female mice displayed similar levels of contextual fear. However, significant sex differences were observed in freezing exhibited during the conditioning session. Compared to same-sex SAC controls, male and female PAE mice demonstrated context fear deficits While plasma corticosterone concentrations were elevated in PAE males and females relative to their respective SAC naïve controls, plasma corticosterone concentrations in the conditioning only and conditioning plus re-exposure groups were similar in SAC and PAE animals. Relative to the respective naïve group, nuclear GR protein levels were increased in SAC, but not PAE, male hippocampal formation in the conditioning only group. In contrast, no difference was observed between nuclear GR levels in the naïve and conditioning plus re-exposure groups. In females, nuclear GR levels were significantly reduced by PAE but there was no effect of behavioral group or interaction between prenatal treatment and behavioral group. In males, nuclear MR levels were significantly elevated in the SAC conditioning plus re-exposure group compared to SAC naïve mice. In PAE females, nuclear MR levels were elevated in both the conditioning only and conditioning plus re-exposure groups relative to the naïve group. Levels of activated ERK2 (phospho-ERK2 expressed relative to total ERK2) protein were elevated in SAC, but not PAE, males following context re-exposure, and a significant interaction between prenatal exposure group and behavioral group was found. No main effects or interactions of behavioral group and prenatal treatment on nuclear ERK2 were found in female mice. These findings suggest a sex difference in which molecular pathways are activated during fear conditioning in mice. CONCLUSIONS In PAE males, the deficits in contextual fear were associated with the loss of responsiveness of hippocampal formation nuclear GR, MR and ERK2 to signals generated by fear conditioning and context re-exposure. In contrast, the contextual fear deficit in PAE female mice does not appear to be associated with activity-dependent changes in GR and MR levels or ERK2 activation during training or memory recall, although an overall reduction in nuclear GR levels may play a role. These studies add to a growing body of literature demonstrating that, at least partially, different mechanisms underlie learning, memory formation and memory recall in males and females and that these pathways are differentially affected by PAE.
Collapse
Affiliation(s)
- Kevin K Caldwell
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA.
| | - Elizabeth R Solomon
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Jane J W Smoake
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Chrys D Djatche de Kamgaing
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Andrea M Allan
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| |
Collapse
|
32
|
Holman PJ, Ellis L, Morgan E, Weinberg J. Prenatal alcohol exposure disrupts male adolescent social behavior and oxytocin receptor binding in rodents. Horm Behav 2018; 105:115-127. [PMID: 30110605 PMCID: PMC6246826 DOI: 10.1016/j.yhbeh.2018.08.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 07/21/2018] [Accepted: 08/08/2018] [Indexed: 12/22/2022]
Abstract
Social behavior deficits resulting from prenatal alcohol exposure (PAE) emerge early in life and become more pronounced across development. Maturational changes associated with adolescence, including pubertal onset, can have significant consequences for social behavior development, making adolescence a unique period of increased vulnerability to social behavior dysfunction. Unfortunately, little is known about the underlying neurobiology supporting PAE-related social behavior impairments, particularly in the context of adolescence, when the transition to a more complex social environment may exacerbate existing deficits in social behavior function. Here we perform a comprehensive evaluation of social behavior development in PAE animals during two different periods in adolescence using three separate but related tests of social behavior in increasingly complex social contexts: the social interaction test, the social recognition memory test (i.e. habituation-dishabituation test), and the social discrimination test. Additionally, we investigated the underlying neurobiology of the oxytocin (OT) and vasopressin (AVP) systems following PAE, given their well-documented role in mediating social behavior. Our results demonstrate that compared to controls, early adolescent PAE animals showed impairments on the social recognition memory test and increased OT receptor binding in limbic networks, while late adolescent PAE animals exhibited impairments on the social discrimination test and increased OTR binding in forebrain reward systems. Taken together, these data indicate that PAE impairs adolescent social behavior - especially with increasing complexity of the social context - and that impairments are associated with altered development of the OT but not the AVP system.
Collapse
Affiliation(s)
- Parker J Holman
- Department of Cellular & Physiological Sciences, University of British Columbia, Vancouver, Canada.
| | - Linda Ellis
- Department of Cellular & Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Erin Morgan
- Department of Cellular & Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Joanne Weinberg
- Department of Cellular & Physiological Sciences, University of British Columbia, Vancouver, Canada
| |
Collapse
|
33
|
Mooney SM, Varlinskaya EI. Enhanced sensitivity to socially facilitating and anxiolytic effects of ethanol in adolescent Sprague Dawley rats following acute prenatal ethanol exposure. Alcohol 2018; 69:25-32. [PMID: 29571047 DOI: 10.1016/j.alcohol.2017.11.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 10/09/2017] [Accepted: 11/01/2017] [Indexed: 12/24/2022]
Abstract
Emerging evidence suggests that deficits in social functioning and social anxiety are associated with adolescent alcohol use. Our previous research has shown that acute exposure to a high dose of ethanol on gestational day (G) 12 produces social alterations in adolescent Sprague Dawley rats. The present study assessed whether these social alterations can affect sensitivity to acute ethanol challenge during adolescence. Pregnant females were exposed intraperitoneally (i.p.) to ethanol (2.5 g/kg followed by 1.25 g/kg in 2 h) or saline on G12, and their male and female offspring were tested on postnatal day (P) 42. Rats were challenged i.p. with one of four ethanol doses (0, 0.5, 0.75, and 1.0 g/kg), and their social behavior was assessed in a modified social interaction test. Social alterations associated with prenatal ethanol exposure and indexed via decreases of social investigation, social preference, and play fighting were evident in males and females challenged with the 0 g/kg ethanol dose. Acute ethanol increased social investigation, social preference, and play fighting in animals prenatally exposed to ethanol. In contrast, rats prenatally exposed to saline, showing no social facilitation, demonstrated significant ethanol-induced (0.75 and 1.0 g/kg) decreases in social behavior. Given that late adolescents demonstrating social alterations induced by prenatal ethanol exposure become sensitive to the socially anxiolytic as well as socially facilitating effects of acute ethanol, it is possible that the attractiveness of ethanol to these adolescents may be based on its ability to alleviate anxiety under social circumstances and facilitate interactions with peers.
Collapse
Affiliation(s)
- Sandra M Mooney
- Developmental Exposure Alcohol Research Center, Baltimore, MD 21201, United States; Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Elena I Varlinskaya
- Department of Psychology, Center for Development and Behavioral Neuroscience, Binghamton University, Binghamton, NY 13902, United States; Developmental Exposure Alcohol Research Center, Binghamton, NY 13902, United States.
| |
Collapse
|
34
|
Lam VYY, Raineki C, Takeuchi LE, Ellis L, Woodward TS, Weinberg J. Chronic Stress Alters Behavior in the Forced Swim Test and Underlying Neural Activity in Animals Exposed to Alcohol Prenatally: Sex- and Time-Dependent Effects. Front Behav Neurosci 2018; 12:42. [PMID: 29593510 PMCID: PMC5855032 DOI: 10.3389/fnbeh.2018.00042] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 02/23/2018] [Indexed: 12/21/2022] Open
Abstract
Dysregulation of the hypothalamic-pituitary-adrenal (HPA) stress response has been suggested to play a role in vulnerability to stress-related disorders, such as depression. Prenatal alcohol exposure (PAE) may result in HPA dysregulation, which in turn may predispose individuals to the effects of stress exposure throughout life, and increase their risk of developing depression compared to unexposed individuals. We examined the immediate and delayed effects of chronic unpredictable stress (CUS) in adulthood on behavior of PAE animals in the forced swim test (FST) and the neurocircuitry underlying behavioral, emotional, and stress regulation. Adult male and female offspring from PAE and control conditions were tested for 2 days in the FST, with testing initiated either 1 day (CUS-1; immediate) or 14 days (CUS-14; delayed) post-CUS. Following testing, c-fos mRNA expression of the medial prefrontal cortex (mPFC), amygdala, hippocampal formation, and the paraventricular nucleus of the hypothalamus was assessed. Our results indicate that PAE and CUS interact to differentially alter FST behaviors and neural activation of several brain areas in males and females, and effects may depend on whether testing is immediate or delayed post-CUS. PAE males showed decreased time immobile (Day 1 of FST) following immediate testing, while PAE females showed increased time immobile (Day 2 of FST) following delayed testing compared to their respective control counterparts. Moreover, in males, PAE decreased c-fos mRNA expression in the lateral and central nuclei of the amygdala in the non-CUS condition, and increased c-fos mRNA expression in the CA1 in the CUS-14 condition. By contrast in females, c-fos mRNA expression in the Cg1 was decreased in PAE animals (independent of CUS) and decreased in all mPFC subregions in CUS-14 animals (independent of prenatal treatment). Constrained principal component analysis, used to identify neural and behavioral networks, revealed that PAE altered the activation of these networks and modulated the effects of CUS on these networks in a sex- and time-dependent manner. This dysregulation of the neurocircuitry underlying behavioral, emotional and stress regulation, may ultimately contribute to an increased vulnerability to psychopathologies, such as depression, that are often observed following PAE.
Collapse
Affiliation(s)
- Vivian Y Y Lam
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Charlis Raineki
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Lily E Takeuchi
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Linda Ellis
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Todd S Woodward
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada.,BC Mental Health and Addictions Research Institute, Vancouver, BC, Canada
| | - Joanne Weinberg
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
35
|
Cutuli D, Berretta E, Caporali P, Sampedro-Piquero P, De Bartolo P, Laricchiuta D, Gelfo F, Pesoli M, Foti F, Farioli Vecchioli S, Petrosini L. Effects of pre-reproductive maternal enrichment on maternal care, offspring's play behavior and oxytocinergic neurons. Neuropharmacology 2018; 145:99-113. [PMID: 29462694 DOI: 10.1016/j.neuropharm.2018.02.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 02/15/2018] [Accepted: 02/17/2018] [Indexed: 01/10/2023]
Abstract
Potentiating social, cognitive, and sensorimotor stimulations the Environmental Enrichment (EE) increases levels of novelty and complexity experienced by individuals. Growing evidence demonstrates that parental EE experience, even occurring in the pre-reproductive phase, affects behavioral and neural developmental trajectories of the offspring. To discover how the accumulation of early maternal complex experiences may inform and shape the social behavior of the following generation, we examined the effects of pre-reproductive enrichment of dams (post-natal days 21-72) on the play performances of their male and female adolescent offspring. Furthermore, we examined the effects of pre-reproductive enrichment on maternal behavior (during post-partum days 1-10) and male intruder aggression (on post-partum day 11). Since oxytocin modulates maternal care, social bonding, and agonistic behavior, the number of oxytocinergic neurons of the paraventricular (PVN) and supraoptic (SON) nuclei was examined in both dams and offspring. Results revealed that enriched females exhibited higher levels of pup-oriented behaviors, especially Crouching, and initiated pup-retrieval more quickly than standard females after the maternal aggression test. Such behavioral peculiarities were accompanied by increased levels of oxytocinergic neurons in PVN and SON. Moreover, pre-reproductive maternal EE cross-generationally influenced the offspring according to sex. Indeed, male pups born to enriched females exhibited a reduced play fighting associated with a higher number of oxytocinergic neurons in SON in comparison to male pups born to standard-housed females. In conclusion, pre-reproductive EE to the mothers affects their maternal care and has a cross-generational impact on the social behavior of their offspring that do not directly experiences EE. This article is part of the Special Issue entitled "Neurobiology of Environmental Enrichment".
Collapse
Affiliation(s)
- Debora Cutuli
- Department of Psychology, Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy; Fondazione Santa Lucia, Rome, Italy.
| | - Erica Berretta
- Department of Psychology, Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy; Fondazione Santa Lucia, Rome, Italy
| | - Paola Caporali
- Department of Psychology, Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
| | - Patricia Sampedro-Piquero
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento. Facultad de Psicología, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Spain
| | - Paola De Bartolo
- Fondazione Santa Lucia, Rome, Italy; Department of TeCoS, Guglielmo Marconi University, Rome, Italy
| | - Daniela Laricchiuta
- Department of Psychology, Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy; Fondazione Santa Lucia, Rome, Italy
| | - Francesca Gelfo
- Fondazione Santa Lucia, Rome, Italy; Department of TeCoS, Guglielmo Marconi University, Rome, Italy
| | - Matteo Pesoli
- Fondazione Santa Lucia, Rome, Italy; Department of Motor Science and Wellness, University Parthenope, Naples, Italy
| | - Francesca Foti
- Fondazione Santa Lucia, Rome, Italy; Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | | | - Laura Petrosini
- Department of Psychology, Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy; Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|
36
|
Boschen KE, Keller SM, Roth TL, Klintsova AY. Epigenetic mechanisms in alcohol- and adversity-induced developmental origins of neurobehavioral functioning. Neurotoxicol Teratol 2018; 66:63-79. [PMID: 29305195 DOI: 10.1016/j.ntt.2017.12.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 12/11/2017] [Accepted: 12/26/2017] [Indexed: 12/13/2022]
Abstract
The long-term effects of developmental alcohol and stress exposure are well documented in both humans and non-human animal models. Damage to the brain and attendant life-long impairments in cognition and increased risk for psychiatric disorders are debilitating consequences of developmental exposure to alcohol and/or psychological stress. Here we discuss evidence for a role of epigenetic mechanisms in mediating these consequences. While we highlight some of the common ways in which stress or alcohol impact the epigenome, we point out that little is understood of the epigenome's response to experiencing both stress and alcohol exposure, though stress is a contributing factor as to why women drink during pregnancy. Advancing our understanding of this relationship is of critical concern not just for the health and well-being of individuals directly exposed to these teratogens, but for generations to come.
Collapse
Affiliation(s)
- K E Boschen
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC 27599, United States
| | - S M Keller
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, United States
| | - T L Roth
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, United States.
| | - A Y Klintsova
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, United States.
| |
Collapse
|
37
|
Fish EW, Wieczorek LA, Rumple A, Suttie M, Moy SS, Hammond P, Parnell SE. The enduring impact of neurulation stage alcohol exposure: A combined behavioral and structural neuroimaging study in adult male and female C57BL/6J mice. Behav Brain Res 2017; 338:173-184. [PMID: 29107713 DOI: 10.1016/j.bbr.2017.10.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 09/18/2017] [Accepted: 10/18/2017] [Indexed: 12/16/2022]
Abstract
Prenatal alcohol exposure (PAE) can cause behavioral and brain alterations over the lifespan. In animal models, these effects can occur following PAE confined to critical developmental periods, equivalent to the third and fourth weeks of human gestation, before pregnancy is usually recognized. The current study focuses on PAE during early neurulation and examines the behavioral and brain structural consequences that appear in adulthood. On gestational day 8 C57BL/6J dams received two alcohol (2.8g/kg, i.p), or vehicle, administrations, four hours apart. Male and female offspring were reared to adulthood and examined for performance on the elevated plus maze, rotarod, open field, Morris water maze, acoustic startle, social preference (i.e. three-chambered social approach test), and the hot plate. A subset of these mice was later evaluated using magnetic resonance imaging to detect changes in regional brain volumes and shapes. In males, PAE increased exploratory behaviors on the elevated plus maze and in the open field; these changes were associated with increased fractional anisotropy in the anterior commissure. In females, PAE reduced social preference and the startle response, and decreased cerebral cortex and brain stem volumes. Vehicle-treated females had larger pituitaries than did vehicle-treated males, but PAE attenuated this sex difference. In males, pituitary size correlated with open field activity, while in females, pituitary size correlated with social activity. These findings indicate that early neurulation PAE causes sex specific behavioral and brain changes in adulthood. Changes in the pituitary suggest that this structure is especially vulnerable to neurulation stage PAE.
Collapse
Affiliation(s)
- E W Fish
- The Bowles Center for Alcohol Studies (EWF, LAW, SEP), Department of Cell Biology and Physiology (SEP), Department of Psychiatry (AR, SSM), and Carolina Institute for Developmental Disabilities (SSM, SEP), University of North Carolina, Chapel Hill, NC 27599, United States.
| | - L A Wieczorek
- The Bowles Center for Alcohol Studies (EWF, LAW, SEP), Department of Cell Biology and Physiology (SEP), Department of Psychiatry (AR, SSM), and Carolina Institute for Developmental Disabilities (SSM, SEP), University of North Carolina, Chapel Hill, NC 27599, United States
| | - A Rumple
- The Bowles Center for Alcohol Studies (EWF, LAW, SEP), Department of Cell Biology and Physiology (SEP), Department of Psychiatry (AR, SSM), and Carolina Institute for Developmental Disabilities (SSM, SEP), University of North Carolina, Chapel Hill, NC 27599, United States
| | - M Suttie
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Oxford, UK
| | - S S Moy
- The Bowles Center for Alcohol Studies (EWF, LAW, SEP), Department of Cell Biology and Physiology (SEP), Department of Psychiatry (AR, SSM), and Carolina Institute for Developmental Disabilities (SSM, SEP), University of North Carolina, Chapel Hill, NC 27599, United States
| | - P Hammond
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Oxford, UK
| | - S E Parnell
- The Bowles Center for Alcohol Studies (EWF, LAW, SEP), Department of Cell Biology and Physiology (SEP), Department of Psychiatry (AR, SSM), and Carolina Institute for Developmental Disabilities (SSM, SEP), University of North Carolina, Chapel Hill, NC 27599, United States
| |
Collapse
|
38
|
Rouzer SK, Cole JM, Johnson JM, Varlinskaya EI, Diaz MR. Moderate Maternal Alcohol Exposure on Gestational Day 12 Impacts Anxiety-Like Behavior in Offspring. Front Behav Neurosci 2017; 11:183. [PMID: 29033803 PMCID: PMC5626811 DOI: 10.3389/fnbeh.2017.00183] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 09/14/2017] [Indexed: 12/29/2022] Open
Abstract
Among the numerous consequences of prenatal alcohol exposure (PAE) is an increase in anxiety-like behavior that can prove debilitating to daily functioning. A significant body of literature has linked gestational day 12 (G12) heavy ethanol exposure with social anxiety, evident in adolescent males and females. However, the association between non-social anxiety-like behavior and moderate alcohol exposure, a more common pattern of drinking in pregnant women, is yet unidentified. To model moderate PAE (mPAE), we exposed pregnant Sprague-Dawley rats to either room air or vaporized ethanol for 6 h on G12. Adolescent offspring were then tested on postnatal days (P) 41-47 in one of the following four anxiety assays: novelty-induced hypophagia (NIH), elevated plus maze (EPM), light-dark box (LDB) and open-field (OF). Our findings revealed significant increases in measures of anxiety-like behavior in male PAE offspring in the NIH, LDB and OF, with no differences observed in females on any test. Additionally, male offspring who demonstrated heightened anxiety-like behavior as adolescents demonstrated decreased anxiety-like behavior in adulthood, as measured by a marble-burying test (MBT), while females continued to be unaffected in adulthood. These results suggest that mPAE leads to dynamic changes in anxiety-like behavior exclusively in male offspring.
Collapse
Affiliation(s)
- Siara K Rouzer
- Department of Psychology, Center for Development and Behavioral Neuroscience, Developmental Exposure Alcohol Research Center, Binghamton University, Binghamton, NY, United States
| | - Jesse M Cole
- Department of Psychology, Center for Development and Behavioral Neuroscience, Developmental Exposure Alcohol Research Center, Binghamton University, Binghamton, NY, United States
| | - Julia M Johnson
- Department of Psychology, Center for Development and Behavioral Neuroscience, Developmental Exposure Alcohol Research Center, Binghamton University, Binghamton, NY, United States
| | - Elena I Varlinskaya
- Department of Psychology, Center for Development and Behavioral Neuroscience, Developmental Exposure Alcohol Research Center, Binghamton University, Binghamton, NY, United States
| | - Marvin R Diaz
- Department of Psychology, Center for Development and Behavioral Neuroscience, Developmental Exposure Alcohol Research Center, Binghamton University, Binghamton, NY, United States
| |
Collapse
|
39
|
Houlé K, Abdi M, Clabough EBD. Acute ethanol exposure during late mouse neurodevelopment results in long-term deficits in memory retrieval, but not in social responsiveness. Brain Behav 2017; 7:e00636. [PMID: 28413697 PMCID: PMC5390829 DOI: 10.1002/brb3.636] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 08/30/2016] [Accepted: 11/03/2016] [Indexed: 11/11/2022] Open
Abstract
OBJECTIVE Prenatal alcohol exposure can result in neurological changes in affected individuals and may result in the emergence of a broad spectrum of neurobehavioral abnormalities termed fetal alcohol spectrum disorders (FASD). The effects of ethanol exposure during development are both time and dose dependent. Although many animal models of FASD use more chronic ethanol exposure, acute developmental alcohol exposure may also cause long-lasting neuronal changes. Our research employed behavioral measures to assess the effects of a single early postnatal ethanol intoxication event in mice. MATERIALS AND METHODS Mice were dosed at postnatal day 6 (a 2.5 g/kg dose of ethanol or a saline control administered twice, 2 hr apart) as a model of third trimester binge drinking in humans. This exposure was followed by behavioral assessment in male mice at 1 month (1M) and at 4 months of age (4M), using the Barnes maze (for learning/memory retrieval), exploratory behavior, and a social responsiveness task. RESULTS Ethanol-exposed mice appeared to be less motivated to complete the Barnes maze at 1M, but were able to successfully learn the maze. However, deficits in long-term spatial memory retrieval were observed in ethanol-exposed mice when the Barnes maze recall was measured at 4M. No significant differences were found in open field behavior or social responsiveness at 1M or 4M of age. CONCLUSIONS Acute ethanol exposure at P6 in mice leads to mild but long-lasting deficits in long-term spatial memory. Results suggest that even brief acute exposure to high ethanol levels during the third trimester equivalent of human pregnancy may have a permanent negative impact on the neurological functioning of the offspring.
Collapse
Affiliation(s)
- Katherine Houlé
- Division of Pulmonary and Critical Care Medicine Medical College of South Carolina Charleston SC USA.,Department of Biology Randolph-Macon College Ashland VA USA
| | - Myshake Abdi
- Department of Biology Hampden-Sydney College Farmville VA USA
| | | |
Collapse
|
40
|
Donaldson TN, Barto D, Bird CW, Magcalas CM, Rodriguez CI, Fink BC, Hamilton DA. Social Order: Using The Sequential Structure of Social Interaction to Discriminate Abnormal Social Behavior in the Rat. LEARNING AND MOTIVATION 2017; 61:41-51. [PMID: 30034031 PMCID: PMC6053068 DOI: 10.1016/j.lmot.2017.03.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Social interactions form the basis of a broad range of functions related to survival and mating. The complexity of social behaviors and the flexibility required for normal social interactions make social behavior particularly susceptible to disruption. The consequences of developmental insults in the social domain and the associated neurobiological factors are commonly studied in rodents. Though methods for investigating social interactions in the laboratory are diverse, animals are typically placed together in an apparatus for a brief period (under 30 min) and allowed to interact freely while behavior is recorded for subsequent analysis. A standard approach to the analysis of social behavior involves quantification of the frequency and duration of individual social behaviors. This approach provides information about the allocation of time to particular behaviors within a session, which is typically sufficient for detection of robust alterations in behavior. Virtually all social species, however, display complex sequences of social behavior that are not captured in the quantification of individual behaviors. Sequences of behavior may provide more sensitive indicators of disruptions in social behavior. Sophisticated analysis systems for quantification of behavior sequences have been available for many years; however, the required training and time to complete these analyses represent significant barriers to high-throughput assessments. We present a simple approach to the quantification of behavioral sequences that requires minimal additional analytical steps after individual behaviors are coded. We implement this approach to identify altered social behavior in rats exposed to alcohol during prenatal development, and show that the frequency of several pairwise sequences of behavior discriminate controls from ethanol-exposed rats when the frequency of individual behaviors involved in those sequences does not. Thus, the approach described here may be useful in detecting subtle deficits in the social domain and identifying neural circuits involved in the organization of social behavior.
Collapse
Affiliation(s)
- Tia N. Donaldson
- Department of Psychology, Northern Illinois University, Dekalb, IL
| | - Daniel Barto
- Department of Psychology, University of New Mexico, Albuquerque, NM
| | - Clark W. Bird
- Department of Psychology, University of New Mexico, Albuquerque, NM
- Department of Neurosciences, University of New Mexico, Albuquerque, NM
| | | | | | - Brandi C. Fink
- Department of Psychiatry and Behavioral Sciences, University of New Mexico, Albuquerque, NM
| | - Derek A. Hamilton
- Department of Psychology, University of New Mexico, Albuquerque, NM
- Department of Neurosciences, University of New Mexico, Albuquerque, NM
| |
Collapse
|
41
|
Boschen KE, Klintsova AY. Neurotrophins in the Brain: Interaction With Alcohol Exposure During Development. VITAMINS AND HORMONES 2016; 104:197-242. [PMID: 28215296 PMCID: PMC5997461 DOI: 10.1016/bs.vh.2016.10.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Fetal alcohol spectrum disorders (FASDs) are a result of the teratogenic effects of alcohol on the developing fetus. Decades of research examining both individuals with FASDs and animal models of developmental alcohol exposure have revealed the devastating effects of alcohol on brain structure, function, behavior, and cognition. Neurotrophic factors have an important role in guiding normal brain development and cellular plasticity in the adult brain. This chapter reviews the current literature showing that alcohol exposure during the developmental period impacts neurotrophin production and proposes avenues through which alcohol exposure and neurotrophin action might interact. These areas of overlap include formation of long-term potentiation, oxidative stress processes, neuroinflammation, apoptosis and cell loss, hippocampal adult neurogenesis, dendritic morphology and spine density, vasculogenesis and angiogenesis, and behaviors related to spatial memory, anxiety, and depression. Finally, we discuss how neurotrophins have the potential to act in a compensatory manner as neuroprotective molecules that can combat the deleterious effects of in utero alcohol exposure.
Collapse
Affiliation(s)
- K E Boschen
- University of Delaware, Newark, DE, United States
| | | |
Collapse
|
42
|
Bird CW, Barto D, Magcalas CM, Rodriguez CI, Donaldson T, Davies S, Savage DD, Hamilton DA. Ifenprodil infusion in agranular insular cortex alters social behavior and vocalizations in rats exposed to moderate levels of ethanol during prenatal development. Behav Brain Res 2016; 320:1-11. [PMID: 27888019 DOI: 10.1016/j.bbr.2016.11.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 10/27/2016] [Accepted: 11/21/2016] [Indexed: 01/21/2023]
Abstract
Moderate exposure to alcohol during development leads to subtle neurobiological and behavioral effects classified under the umbrella term fetal alcohol spectrum disorders (FASDs). Alterations in social behaviors are a frequently observed consequence of maternal drinking, as children with FASDs display inappropriate aggressive behaviors and altered responses to social cues. Rodent models of FASDs mimic the behavioral alterations seen in humans, with rats exposed to ethanol during development displaying increased aggressive behaviors, decreased social investigation, and altered play behavior. Work from our laboratory has observed increased wrestling behavior in adult male rats following prenatal alcohol exposure (PAE), and increased expression of GluN2B-containing NMDA receptors in the agranular insular cortex (AIC). This study was undertaken to determine if ifenprodil, a GluN2B preferring negative allosteric modulator, has a significant effect on social behaviors in PAE rats. Using a voluntary ethanol exposure paradigm, rat dams were allowed to drink a saccharin-sweetened solution of either 0% or 5% ethanol throughout gestation. Offspring at 6-8 months of age were implanted with cannulae into AIC. Animals were isolated for 24h before ifenprodil or vehicle was infused into AIC, and after 15min they were recorded in a social interaction chamber. Ifenprodil treatment altered aspects of wrestling, social investigatory behaviors, and ultrasonic vocalizations in rats exposed to ethanol during development that were not observed in control animals. These data indicate that GluN2B-containing NMDA receptors in AIC play a role in social behaviors and may underlie alterations in behavior and vocalizations observed in PAE animals.
Collapse
Affiliation(s)
- Clark W Bird
- Department of Psychology, University of New Mexico, Albuquerque, NM, United States; Department of Neurosciences, University of New Mexico, Albuquerque, NM, United States.
| | - Daniel Barto
- Department of Psychology, University of New Mexico, Albuquerque, NM, United States
| | - Christy M Magcalas
- Department of Psychology, University of New Mexico, Albuquerque, NM, United States
| | - Carlos I Rodriguez
- Department of Psychology, University of New Mexico, Albuquerque, NM, United States
| | - Tia Donaldson
- Department of Psychology, University of New Mexico, Albuquerque, NM, United States
| | - Suzy Davies
- Department of Neurosciences, University of New Mexico, Albuquerque, NM, United States
| | - Daniel D Savage
- Department of Psychology, University of New Mexico, Albuquerque, NM, United States; Department of Neurosciences, University of New Mexico, Albuquerque, NM, United States
| | - Derek A Hamilton
- Department of Psychology, University of New Mexico, Albuquerque, NM, United States; Department of Neurosciences, University of New Mexico, Albuquerque, NM, United States
| |
Collapse
|
43
|
Rodriguez CI, Magcalas CM, Barto D, Fink BC, Rice JP, Bird CW, Davies S, Pentkowski NS, Savage DD, Hamilton DA. Effects of sex and housing on social, spatial, and motor behavior in adult rats exposed to moderate levels of alcohol during prenatal development. Behav Brain Res 2016; 313:233-243. [PMID: 27424779 PMCID: PMC4987176 DOI: 10.1016/j.bbr.2016.07.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 07/07/2016] [Accepted: 07/11/2016] [Indexed: 11/25/2022]
Abstract
Persistent deficits in social behavior, motor behavior, and behavioral flexibility are among the major negative consequences associated with exposure to ethanol during prenatal development. Prior work from our laboratory has linked moderate prenatal alcohol exposure (PAE) in the rat to deficits in these behavioral domains, which depend upon the ventrolateral frontal cortex (Hamilton et al., 2014) [20]. Manipulations of the social environment cause modifications of dendritic morphology and experience-dependent immediate early gene expression in ventrolateral frontal cortex (Hamilton et al., 2010) [19], and may yield positive behavioral outcomes following PAE. In the present study we evaluated the effects of housing PAE rats with non-exposed control rats on adult behavior. Rats of both sexes were either paired with a partner from the same prenatal treatment condition (ethanol or saccharin) or from the opposite condition (mixed housing condition). At four months of age (∼3 months after the housing manipulation commenced), social behavior, tongue protrusion, and behavioral flexibility in the Morris water task were measured as in (Hamilton et al., 2014) [20]. The behavioral effects of moderate PAE were primarily limited to males and were not ameliorated by housing with a non-ethanol exposed partner. Unexpectedly, social behavior, motor behavior, and spatial flexibility were adversely affected in control rats housed with a PAE rat (i.e., in mixed housing), indicating that housing with a PAE rat has broad behavioral consequences beyond the social domain. These observations provide further evidence that moderate PAE negatively affects social behavior, and underscore the importance of considering potential negative effects of housing with PAE animals on the behavior of critical comparison groups.
Collapse
Affiliation(s)
- Carlos I Rodriguez
- Department of Psychology, University of New Mexico, Albuquerque, NM, United States
| | - Christy M Magcalas
- Department of Psychology, University of New Mexico, Albuquerque, NM, United States
| | - Daniel Barto
- Department of Psychology, University of New Mexico, Albuquerque, NM, United States
| | - Brandi C Fink
- Department of Psychiatry and Behavioral Sciences, University of New Mexico, Albuquerque, NM, United States
| | - James P Rice
- Department of Psychology, University of New Mexico, Albuquerque, NM, United States
| | - Clark W Bird
- Department of Psychology, University of New Mexico, Albuquerque, NM, United States
| | - Suzy Davies
- Department of Neurosciences, University of New Mexico, Albuquerque, NM, United States
| | - Nathan S Pentkowski
- Department of Psychology, University of New Mexico, Albuquerque, NM, United States
| | - Daniel D Savage
- Department of Psychology, University of New Mexico, Albuquerque, NM, United States; Department of Neurosciences, University of New Mexico, Albuquerque, NM, United States
| | - Derek A Hamilton
- Department of Psychology, University of New Mexico, Albuquerque, NM, United States; Department of Neurosciences, University of New Mexico, Albuquerque, NM, United States.
| |
Collapse
|
44
|
Diaz MR, Mooney SM, Varlinskaya EI. Acute prenatal exposure to ethanol on gestational day 12 elicits opposing deficits in social behaviors and anxiety-like behaviors in Sprague Dawley rats. Behav Brain Res 2016; 310:11-9. [PMID: 27154534 DOI: 10.1016/j.bbr.2016.05.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 04/08/2016] [Accepted: 05/02/2016] [Indexed: 01/17/2023]
Abstract
Our previous research has shown that in Long Evans rats acute prenatal exposure to a high dose of ethanol on gestational day (G) 12 produces social deficits in male offspring and elicits substantial decreases in social preference relative to controls, in late adolescents and adults regardless of sex. In order to generalize the observed detrimental effects of ethanol exposure on G12, pregnant female Sprague Dawley rats were exposed to ethanol or saline and their offspring were assessed in a modified social interaction (SI) test as early adolescents, late adolescents, or young adults. Anxiety-like behavior was also assessed in adults using the elevated plus maze (EPM) or the light/dark box (LDB) test. Age- and sex-dependent social alterations were evident in ethanol-exposed animals. Ethanol-exposed males showed deficits in social investigation at all ages and age-dependent alterations in social preference. Play fighting was not affected in males. In contrast, ethanol-exposed early adolescent females showed no changes in social interactions, whereas older females demonstrated social deficits and social indifference. In adulthood, anxiety-like behavior was decreased in males and females prenatally exposed to ethanol in the EPM, but not the LDB. These findings suggest that social alterations associated with acute exposure to ethanol on G12 are not strain-specific, although they are more pronounced in Long Evans males and Sprague Dawley females. Furthermore, given that anxiety-like behaviors were attenuated in a test-specific manner, this study indicates that early ethanol exposure can have differential effects on different forms of anxiety.
Collapse
Affiliation(s)
- Marvin R Diaz
- Department of Psychology, Center for Development and Behavioral Neuroscience, Binghamton University, Binghamton, NY 13902, United States; Developmental Exposure Alcohol Research Center, Binghamton, NY 13902, United States.
| | - Sandra M Mooney
- Developmental Exposure Alcohol Research Center, Baltimore, MD 21201, United States; Department of Pediatrics, University of Maryland, Baltimore, MD 21201, United States
| | - Elena I Varlinskaya
- Department of Psychology, Center for Development and Behavioral Neuroscience, Binghamton University, Binghamton, NY 13902, United States; Developmental Exposure Alcohol Research Center, Binghamton, NY 13902, United States
| |
Collapse
|
45
|
Marquardt K, Brigman JL. The impact of prenatal alcohol exposure on social, cognitive and affective behavioral domains: Insights from rodent models. Alcohol 2016; 51:1-15. [PMID: 26992695 DOI: 10.1016/j.alcohol.2015.12.002] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 12/11/2015] [Accepted: 12/11/2015] [Indexed: 10/22/2022]
Abstract
Fetal Alcohol Spectrum Disorders (FASD) are characterized by deficits in working memory, response inhibition, and behavioral flexibility. However, the combination and severity of impairments are highly dependent upon maternal ethanol consumption patterns, which creates a complex variety of manifestations. Rodent models have been essential in identifying behavioral endpoints of prenatal alcohol exposure (PAE). However, experimental model outcomes are extremely diverse based on level, pattern, timing, and method of ethanol exposure, as well as the behavioral domain assayed and paradigm used. Therefore, comparisons across studies are difficult and there is currently no clear comprehensive behavioral phenotype of PAE. This lack of defined cognitive and behavioral phenotype is a contributing factor to the difficulty in identifying FASD individuals. The current review aims to critically examine preclinical behavioral outcomes in the social, cognitive, and affective domains in terms of the PAE paradigm, with a special emphasis on dose, timing, and delivery, to establish a working model of behavioral impairment. In addition, this review identifies gaps in our current knowledge and proposes future areas of research that will advance knowledge in the field of PAE outcomes. Understanding the complex behavioral phenotype, which results from diverse ethanol consumption will allow for development of better diagnostic tools and more critical evaluation of potential treatments for FASD.
Collapse
|
46
|
Terasaki LS, Gomez J, Schwarz JM. An examination of sex differences in the effects of early-life opiate and alcohol exposure. Philos Trans R Soc Lond B Biol Sci 2016; 371:20150123. [PMID: 26833841 DOI: 10.1098/rstb.2015.0123] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2015] [Indexed: 11/12/2022] Open
Abstract
Early-life exposure to drugs and alcohol is one of the most preventable causes of developmental, behavioural and learning disorders in children. Thus a significant amount of basic, animal and human research has focused on understanding the behavioural consequences and the associated neural effects of exposure to drugs and alcohol during early brain development. Despite this, much of the previous research that has been done on this topic has used predominantly male subjects or rodents. While many of the findings from these male-specific studies may ultimately apply to females, the purpose of this review is to highlight the research that has also examined sex as a factor and found striking differences between the sexes in their response to early-life opiate and alcohol exposure. Finally, we will also provide a framework for scientists interested in examining sex as a factor in future experiments that specifically examine the consequences of early-life drug and alcohol exposure.
Collapse
Affiliation(s)
- Laurne S Terasaki
- Department of Psychological and Brain Sciences, University of Delaware, 108 Wolf Hall, Newark, DE 19716, USA
| | - Julie Gomez
- Department of Psychological and Brain Sciences, University of Delaware, 108 Wolf Hall, Newark, DE 19716, USA
| | - Jaclyn M Schwarz
- Department of Psychological and Brain Sciences, University of Delaware, 108 Wolf Hall, Newark, DE 19716, USA
| |
Collapse
|
47
|
Blanco-Gandía MC, Mateos-García A, García-Pardo MP, Montagud-Romero S, Rodríguez-Arias M, Miñarro J, Aguilar MA. Effect of drugs of abuse on social behaviour. Behav Pharmacol 2015. [DOI: 10.1097/fbp.0000000000000162] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
48
|
Ishii S, Hashimoto-Torii K. Impact of prenatal environmental stress on cortical development. Front Cell Neurosci 2015; 9:207. [PMID: 26074774 PMCID: PMC4444817 DOI: 10.3389/fncel.2015.00207] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Accepted: 05/13/2015] [Indexed: 12/31/2022] Open
Abstract
Prenatal exposure of the developing brain to various types of environmental stress increases susceptibility to neuropsychiatric disorders such as autism, attention deficit hyperactivity disorder and schizophrenia. Given that even subtle perturbations by prenatal environmental stress in the cerebral cortex impair the cognitive and memory functions, this review focuses on underlying molecular mechanisms of pathological cortical development. We especially highlight recent works that utilized animal exposure models, human specimens or/and induced Pluripotent Stem (iPS) cells to demonstrate: (1) molecular mechanisms shared by various types of environmental stressors, (2) the mechanisms by which the affected extracortical tissues indirectly impact the cortical development and function, and (3) interaction between prenatal environmental stress and the genetic predisposition of neuropsychiatric disorders. Finally, we discuss current challenges for achieving a comprehensive understanding of the role of environmentally disturbed molecular expressions in cortical maldevelopment, knowledge of which may eventually facilitate discovery of interventions for prenatal environment-linked neuropsychiatric disorders.
Collapse
Affiliation(s)
- Seiji Ishii
- Center for Neuroscience Research, Children's National Medical Center, Children's Research Institute Washington, DC, USA
| | - Kazue Hashimoto-Torii
- Center for Neuroscience Research, Children's National Medical Center, Children's Research Institute Washington, DC, USA ; Department of Pediatrics, Pharmacology and Physiology, School of Medicine and Health Sciences, The George Washington University Washington, DC, USA ; Department of Neurobiology, School of Medicine, Kavli Institute for Neuroscience, Yale University New Haven, CT, USA
| |
Collapse
|
49
|
Bird CW, Candelaria-Cook FT, Magcalas CM, Davies S, Valenzuela CF, Savage DD, Hamilton DA. Moderate prenatal alcohol exposure enhances GluN2B containing NMDA receptor binding and ifenprodil sensitivity in rat agranular insular cortex. PLoS One 2015; 10:e0118721. [PMID: 25747876 PMCID: PMC4351952 DOI: 10.1371/journal.pone.0118721] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 01/06/2015] [Indexed: 12/31/2022] Open
Abstract
Prenatal exposure to alcohol affects the expression and function of glutamatergic neurotransmitter receptors in diverse brain regions. The present study was undertaken to fill a current gap in knowledge regarding the regional specificity of ethanol-related alterations in glutamatergic receptors in the frontal cortex. We quantified subregional expression and function of glutamatergic neurotransmitter receptors (AMPARs, NMDARs, GluN2B-containing NMDARs, mGluR1s, and mGluR5s) by radioligand binding in the agranular insular cortex (AID), lateral orbital area (LO), prelimbic cortex (PrL) and primary motor cortex (M1) of adult rats exposed to moderate levels of ethanol during prenatal development. Increased expression of GluN2B-containing NMDARs was observed in AID of ethanol-exposed rats compared to modest reductions in other regions. We subsequently performed slice electrophysiology measurements in a whole-cell patch-clamp preparation to quantify the sensitivity of evoked NMDAR-mediated excitatory postsynaptic currents (EPSCs) in layer II/III pyramidal neurons of AID to the GluN2B negative allosteric modulator ifenprodil. Consistent with increased GluN2B expression, ifenprodil caused a greater reduction in NMDAR-mediated EPSCs from prenatal alcohol-exposed rats than saccharin-exposed control animals. No alterations in AMPAR-mediated EPSCs or the ratio of AMPARs/NMDARs were observed. Together, these data indicate that moderate prenatal alcohol exposure has a significant and lasting impact on GluN2B-containing receptors in AID, which could help to explain ethanol-related alterations in learning and behaviors that depend on this region.
Collapse
Affiliation(s)
- Clark W. Bird
- Department of Psychology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | | | - Christy M. Magcalas
- Department of Psychology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Suzy Davies
- Department of Neurosciences, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - C. Fernando Valenzuela
- Department of Neurosciences, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Daniel D. Savage
- Department of Neurosciences, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Derek A. Hamilton
- Department of Psychology, University of New Mexico, Albuquerque, New Mexico, United States of America
- Department of Neurosciences, University of New Mexico, Albuquerque, New Mexico, United States of America
- * E-mail:
| |
Collapse
|
50
|
Wellmann KA, George F, Brnouti F, Mooney SM. Docosahexaenoic acid partially ameliorates deficits in social behavior and ultrasonic vocalizations caused by prenatal ethanol exposure. Behav Brain Res 2015; 286:201-11. [PMID: 25746516 DOI: 10.1016/j.bbr.2015.02.048] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 02/23/2015] [Accepted: 02/24/2015] [Indexed: 01/17/2023]
Abstract
Prenatal ethanol exposure disrupts social behavior in humans and rodents. One system particularly important for social behavior is the somatosensory system. Prenatal ethanol exposure alters the structure and function of this area. Docosahexaenoic acid (DHA), an omega 3 polyunsaturated fatty acid, is necessary for normal brain development and brains from ethanol-exposed animals are DHA deficient. Thus, we determined whether postnatal DHA supplementation ameliorated behavioral deficits induced by prenatal ethanol exposure. Timed pregnant Long-Evans rats were assigned to one of three groups: ad libitum access to an ethanol-containing liquid diet, pair fed an isocaloric isonutritive non-alcohol liquid diet, or ad libitum access to chow and water. Pups were assigned to one of two postnatal treatment groups; gavaged intragastrically once per day between postnatal day (P)11 and P20 with DHA (10 mg/kg in artificial rat milk) or artificial rat milk. A third group was left untreated. Isolation-induced ultrasonic vocalizations (iUSVs) were recorded on P14. Social behavior and play-induced USVs were tested on P28 or P42. Somatosensory performance was tested with a gap crossing test around P33 or on P42. Anxiety was tested on elevated plus maze around P35. Animals exposed to ethanol prenatally vocalized less, play fought less, and crossed a significantly shorter gap than control-treated animals. Administration of DHA ameliorated these ethanol-induced deficits such that the ethanol-exposed animals given DHA were no longer significantly different to control-treated animals. Thus, DHA administration may have therapeutic value to reverse some of ethanol's damaging effects.
Collapse
Affiliation(s)
- Kristen A Wellmann
- Department of Pediatrics, University of Maryland, Baltimore, MD 21201, United States.
| | - Finney George
- Department of Pediatrics, University of Maryland, Baltimore, MD 21201, United States
| | - Fares Brnouti
- Department of Pediatrics, University of Maryland, Baltimore, MD 21201, United States
| | - Sandra M Mooney
- Department of Pediatrics, University of Maryland, Baltimore, MD 21201, United States.
| |
Collapse
|