1
|
Gutiérrez MC, Perondi MC, Tortoni GL, Cragnolini AB, Cuadra GR, Valdomero A. Early protein restriction in rats induces anhedonia in adult offspring: A key role of BDNF-TrkB signaling in the nucleus accumbens shell. Neuropharmacology 2024; 258:110099. [PMID: 39098656 DOI: 10.1016/j.neuropharm.2024.110099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024]
Abstract
Clinical evidence suggests that early malnutrition promotes symptoms related to psychiatric disorders later in life. Nevertheless, the molecular mechanisms underpinning nutritional injury induce depression remains unknown. The purpose of the present study was to evaluate whether perinatal protein restriction increases vulnerability to developing depressive-like behavior in adulthood by focusing on anhedonia, a core symptom of depression. To this, male adult Wistar rats submitted to a protein restriction schedule at perinatal age (PR-rats), were subjected to the sucrose preference test (SPT), the novel object recognition test (NORT), the forced swim test (FST), and the elevated plus maze (EPM), and compared to animals fed with a normoprotein diet. To investigate neurobiological substrates linked to early protein undernutrition-facilitated depressive-like behavior, we assessed the levels of brain-derived neurotrophic factor (BDNF) and its receptor TrkB in the nucleus accumbens (NAc), and evaluated the reversal of anhedonic-like behavior by infusing ANA-12. We found that early malnutrition decreased sucrose preference, impaired performance in the NORT and increased immobility time in the FST. Furthermore, perinatal protein-restriction-induced anhedonia correlated with increased BDNF and p-TrkB protein levels in the NAc, a core structure in the reward circuit linked with anhedonia. Finally, bilateral infusion of the TrkB antagonist ANA-12 into the NAc shell ameliorated a reduced sucrose preference in the PR-rats. Altogether, these findings revealed that protein restriction during pregnancy and lactation facilitates depressive-like behavior later in life and may increase the risk of developing anhedonia by altering BDNF-TrkB in the NAc shell.
Collapse
Affiliation(s)
- María C Gutiérrez
- Departamento de Farmacología Otto Orsingher, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (UNC), Córdoba, Argentina; Instituto de Farmacología Experimental Córdoba (IFEC - CONICET), Córdoba, Argentina
| | - María C Perondi
- Departamento de Farmacología Otto Orsingher, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (UNC), Córdoba, Argentina
| | - Gisella L Tortoni
- Departamento de Farmacología Otto Orsingher, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (UNC), Córdoba, Argentina
| | - Andrea B Cragnolini
- Instituto de Investigaciones Biológicas y Tecnológicas (IIByT - CONICET), Córdoba, Argentina
| | - Gabriel R Cuadra
- Departamento de Farmacología Otto Orsingher, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (UNC), Córdoba, Argentina; Instituto de Farmacología Experimental Córdoba (IFEC - CONICET), Córdoba, Argentina
| | - Analía Valdomero
- Departamento de Farmacología Otto Orsingher, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (UNC), Córdoba, Argentina; Instituto de Farmacología Experimental Córdoba (IFEC - CONICET), Córdoba, Argentina.
| |
Collapse
|
2
|
Vancamp P, Frapin M, Parnet P, Amarger V. Unraveling the Molecular Mechanisms of the Neurodevelopmental Consequences of Fetal Protein Deficiency: Insights From Rodent Models and Public Health Implications. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:100339. [PMID: 39040432 PMCID: PMC11262180 DOI: 10.1016/j.bpsgos.2024.100339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 05/03/2024] [Accepted: 05/19/2024] [Indexed: 07/24/2024] Open
Abstract
Fetal brain development requires increased maternal protein intake to ensure that offspring reach their optimal cognitive potential in infancy and adulthood. While protein deficiency remains a prevalent issue in developing countries, it is also reemerging in Western societies due to the growing adoption of plant-based diets, some of which are monotonous and may fail to provide sufficient amino acids crucial for the brain's critical developmental phase. Confounding variables in human nutritional research have impeded our understanding of the precise impact of protein deficiency on fetal neurodevelopment, as well as its implications for childhood neurocognitive performance. Moreover, it remains unclear whether such deficiency could predispose to mental health problems in adulthood, mirroring observations in individuals exposed to prenatal famine. In this review, we sought to evaluate mechanistic data derived from rodent models, placing special emphasis on the involvement of neuroendocrine axes, the influence of sex and timing, epigenetic modifications, and cellular metabolism. Despite notable progress, critical knowledge gaps remain, including understanding the long-term reversibility of effects due to fetal protein restriction and the interplay between genetic predisposition and environmental factors. Enhancing our understanding of the precise mechanisms that connect prenatal nutrition to brain development in future research endeavors can be significantly advanced by integrating multiomics approaches and utilizing additional alternative models such as nonhuman primates. Furthermore, it is crucial to investigate potential interventions aimed at alleviating adverse outcomes. Ultimately, this research has profound implications for guiding public health strategies aimed at raising awareness about the crucial role of optimal maternal nutrition in supporting fetal neurodevelopment.
Collapse
Affiliation(s)
- Pieter Vancamp
- Nantes Université, Institut National de Recherche pour l'Agriculture, l'alimentation et l'Environnement, UMR1280, Physiopathologie des Adaptations Nutritionnelles, l'Institut des Maladies de l'Appareil Digestif, Nantes, France
| | - Morgane Frapin
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Patricia Parnet
- Nantes Université, Institut National de Recherche pour l'Agriculture, l'alimentation et l'Environnement, UMR1280, Physiopathologie des Adaptations Nutritionnelles, l'Institut des Maladies de l'Appareil Digestif, Nantes, France
| | - Valérie Amarger
- Nantes Université, Institut National de Recherche pour l'Agriculture, l'alimentation et l'Environnement, UMR1280, Physiopathologie des Adaptations Nutritionnelles, l'Institut des Maladies de l'Appareil Digestif, Nantes, France
| |
Collapse
|
3
|
Minaya DM, Kim JS, Kirkland R, Allen J, Cullinan S, Maclang N, de Lartigue G, de La Serre CB. Transfer with microbiota from lean donors prevents excessive weight gain and restores gut-brain vagal signaling in obese rats maintained on a high fat diet. RESEARCH SQUARE 2024:rs.3.rs-4438240. [PMID: 38853960 PMCID: PMC11160927 DOI: 10.21203/rs.3.rs-4438240/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Background The collection of microorganisms, mainly bacteria, which live in the gastrointestinal (GI) tract are collectible known as the gut microbiota. GI bacteria play an active role in regulation of the host's immune system and metabolism, as well as certain pathophysiological processes. Diet is the main factor modulating GI microbiota composition and recent studies have shown that high fat (HF) diets induce detrimental changes, known as dysbiosis, in the GI bacterial makeup. HF diet induced microbiota dysbiosis has been associated with structural and functional changes in gut-brain vagally mediated signaling system, associated with overeating and obesity. Although HF-driven changes in microbiota composition are sufficient to alter vagal signaling, it is unknown if restoring normal microbiota in obesity can improve gut-brain signaling and metabolic outcomes. In this study, we evaluated the effect of lean gut microbiota transfer in obese, vagally compromised, rats on gut-brain communication, food intake, and body weight. Male Sprague-Dawley rats were maintained on regular chow, or 45% HF diet for nine weeks followed by three weeks of microbiota depletion using an antibiotic cocktail. The animals were then divided into four groups (n=10 each): LF - control group on regular chow, LF-LF - chow fed animals that received antibiotics and microbiota from chow fed animals, HF-LF - HF fed animals that received microbiota from chow fed animals, and HF-HF - HF fed animals that received microbiota from HF fed animals. Animals were gavaged with donor microbiota for three consecutive days on week one and once a week thereafter for three more weeks. HF-LF animals received inulin as a prebiotic to aid the establishment of the lean microbiome. Results We found that transferring a LF microbiota to HF fed animals (HF-LF) reduced caloric intake during the light phase when compared with HF-HF rats and prevented additional excessive weight gain. We did not observe significant changes in the density of vagal afferents terminating in the brainstem among the groups, however, HF-LF animals displayed an increase in postprandial activation of both primary sensory neurons innervating the GI tract and brainstem secondary neurons. Conclusions We concluded from these data that normalizing microbiota composition in obese rats improves gut-brain communication and restores normal feeding patterns which was associated with a reduction in weight gain.
Collapse
Affiliation(s)
- Dulce M. Minaya
- Department of Nutritional Science, University of Georgia, Athens, GA
| | | | - Rebecca Kirkland
- Department of Nutritional Science, University of Georgia, Athens, GA
| | - Jillian Allen
- Department of Nutritional Science, University of Georgia, Athens, GA
| | - Sitara Cullinan
- Department of Nutritional Science, University of Georgia, Athens, GA
| | - Neil Maclang
- Department of Nutritional Science, University of Georgia, Athens, GA
| | | | | |
Collapse
|
4
|
Cánepa ET, Berardino BG. Epigenetic mechanisms linking early-life adversities and mental health. Biochem J 2024; 481:615-642. [PMID: 38722301 DOI: 10.1042/bcj20230306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/15/2024]
Abstract
Early-life adversities, whether prenatal or postnatal exposure, have been linked to adverse mental health outcomes later in life increasing the risk of several psychiatric disorders. Research on its neurobiological consequences demonstrated an association between exposure to adversities and persistent alterations in the structure, function, and connectivity of the brain. Consistent evidence supports the idea that regulation of gene expression through epigenetic mechanisms are involved in embedding the impact of early-life experiences in the genome and mediate between social environments and later behavioral phenotypes. In addition, studies from rodent models and humans suggest that these experiences and the acquired risk factors can be transmitted through epigenetic mechanisms to offspring and the following generations potentially contributing to a cycle of disease or disease risk. However, one of the important aspects of epigenetic mechanisms, unlike genetic sequences that are fixed and unchangeable, is that although the epigenetic markings are long-lasting, they are nevertheless potentially reversible. In this review, we summarize our current understanding of the epigenetic mechanisms involved in the mental health consequences derived from early-life exposure to malnutrition, maltreatment and poverty, adversities with huge and pervasive impact on mental health. We also discuss the evidence about transgenerational epigenetic inheritance in mammals and experimental data suggesting that suitable social and pharmacological interventions could reverse adverse epigenetic modifications induced by early-life negative social experiences. In this regard, these studies must be accompanied by efforts to determine the causes that promote these adversities and that result in health inequity in the population.
Collapse
Affiliation(s)
- Eduardo T Cánepa
- Laboratorio de Neuroepigenética y Adversidades Tempranas, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and IQUIBICEN, CONICET, Buenos Aires, Argentina
| | - Bruno G Berardino
- Laboratorio de Neuroepigenética y Adversidades Tempranas, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and IQUIBICEN, CONICET, Buenos Aires, Argentina
| |
Collapse
|
5
|
Minaya DM, Kim JS, Kirkland R, Allen J, Cullinan S, Maclang N, de Lartigue G, de La Serre C. Transfer of microbiota from lean donors in combination with prebiotics prevents excessive weight gain and improves gut-brain vagal signaling in obese rats. Gut Microbes 2024; 16:2421581. [PMID: 39485288 PMCID: PMC11540078 DOI: 10.1080/19490976.2024.2421581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/03/2024] [Accepted: 10/21/2024] [Indexed: 11/03/2024] Open
Abstract
Gastrointestinal (GI) microbiota plays an active role in regulating the host's immune system and metabolism, as well as certain pathophysiological processes. Diet is the main factor modulating GI microbiota composition and studies have shown that high fat (HF) diets induce detrimental changes (dysbiosis) in the GI bacterial makeup. HF diet induced dysbiosis has been associated with structural and functional changes in gut-brain vagally mediated signaling system, associated with overeating and obesity. Although HF-driven changes in microbiota composition are sufficient to alter vagal signaling, it is unknown if improving microbiota composition after diet-induced obesity has been established can ameliorate gut-brain signaling and metabolic outcomes. In this study, we evaluated the effect of lean gut microbiota transfer in obese, vagally compromised, rats on gut-brain communication, food intake, and body weight. Male rats were maintained on regular chow or 45% HF diet for nine weeks followed by three weeks of microbiota depletion using antibiotics. The animals were then divided into four groups (n = 10 each): LF - control fed regular chow, LF-LF - chow fed animals that received microbiota from chow fed donors, HF-LF - HF fed animals that received microbiota from chow fed donors, and HF-HF - HF fed animals that received microbiota from HF fed donors. HF-LF animals received inulin as a prebiotic to aid the establishment of the lean microbiome. We found that transferring a LF microbiota to HF fed animals (HF-LF) reduced caloric intake during the light phase when compared with HF-HF rats and prevented additional excessive weight gain. HF-LF animals displayed an increase in postprandial activation of both primary sensory neurons innervating the GI tract and brainstem secondary neurons. We concluded from these data that improving microbiota composition in obese rats is sufficient to ameliorate gut-brain communication and restore normal feeding patterns which was associated with a reduction in weight gain.
Collapse
Affiliation(s)
- Dulce M. Minaya
- Department of Nutritional Science, University of Georgia, Athens, GA, USA
| | - Jiyoung S Kim
- Emory University School of Medicine, Atlanta, GA, USA
| | - Rebecca Kirkland
- Department of Nutritional Science, University of Georgia, Athens, GA, USA
| | - Jillian Allen
- Department of Nutritional Science, University of Georgia, Athens, GA, USA
| | - Sitara Cullinan
- Department of Nutritional Science, University of Georgia, Athens, GA, USA
| | - Neil Maclang
- Department of Nutritional Science, University of Georgia, Athens, GA, USA
| | | | - Claire de La Serre
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
6
|
Kim JS, Williams KC, Kirkland RA, Schade R, Freeman KG, Cawthon CR, Rautmann AW, Smith JM, Edwards GL, Glenn TC, Holmes PV, de Lartigue G, de La Serre CB. The gut-brain axis mediates bacterial driven modulation of reward signaling. Mol Metab 2023; 75:101764. [PMID: 37380023 PMCID: PMC10372379 DOI: 10.1016/j.molmet.2023.101764] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/18/2023] [Accepted: 06/23/2023] [Indexed: 06/30/2023] Open
Abstract
OBJECTIVE Our goal is to investigate if microbiota composition modulates reward signaling and assess the role of the vagus in mediating microbiota to brain communication. METHODS Male germ-free Fisher rats were colonized with gastrointestinal contents from chow (low fat (LF) ConvLF) or HF (ConvHF) fed rats. RESULTS Following colonization, ConvHF rats consumed significantly more food than ConvLF animals. ConvHF rats displayed lower feeding-induced extracellular DOPAC levels (a metabolite of dopamine) in the Nucleus Accumbens (NAc) as well as reduced motivation for HF foods compared to ConvLF rats. Dopamine receptor 2 (DDR2) expression levels in the NAc were also significantly lower in ConvHF animals. Similar deficits were observed in conventionally raised HF fed rats, showing that diet-driven alteration in reward can be initiated via microbiota. Selective gut to brain deafferentation restored DOPAC levels, DRD2 expression, and motivational drive in ConvHF rats. CONCLUSIONS We concluded from these data that a HF-type microbiota is sufficient to alter appetitive feeding behavior and that bacteria to reward communication is mediated by the vagus nerve.
Collapse
Affiliation(s)
- Jiyoung S Kim
- Department of Nutritional Sciences, University of Georgia, USA
| | | | | | - Ruth Schade
- Department of Nutritional Sciences, University of Georgia, USA
| | | | | | | | | | - Gaylen L Edwards
- Department of Physiology and Pharmacology, University of Georgia, USA
| | - Travis C Glenn
- Department of Environmental Health Science, University of Georgia, USA
| | | | - Guillaume de Lartigue
- Monell Chemical Senses Center and Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, USA
| | | |
Collapse
|
7
|
de Oliveira-Silva J, Lisboa PC, Lotufo-Denucci B, Fraga M, de Moura EG, Nunes FC, Ribeiro-Carvalho A, Filgueiras CC, Abreu-Villaça Y, Manhães AC. Maternal protein restriction during the lactation period disrupts the ontogenetic development of behavioral traits in male Wistar rat offspring. J Dev Orig Health Dis 2023:1-12. [PMID: 37185045 DOI: 10.1017/s2040174423000107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Neonatal undernutrition in rats results in short- and long-term behavioral and hormonal alterations in the offspring. It is not clear, however, whether these effects are present since the original insult or if they develop at some specific age later in life. Here, we assessed the ontogenetic profile of behavioral parameters associated with anxiety, exploration and memory/learning of Wistar rat offspring that were subjected to protein malnutrition during lactation. Dams and respective litters were separated into two groups: (1) protein-restricted (PR), which received a hypoproteic chow (8% protein) from birth to weaning [postnatal day (PN) 21]; (2) control (C), which received normoproteic chow. Offspring's behaviors, corticosterone, catecholamines, T3 and T4 levels were assessed at PN21 (weaning), PN45 (adolescence), PN90 (young adulthood) or PN180 (adulthood). PR offspring showed an age-independent reduction in the levels of anxiety-like behaviors in the Elevated Plus Maze and better memory performance in the Radial Arm Water Maze. PR offspring showed peak exploratory activity in the Open Field earlier in life, at PN45, than C, which showed theirs at PN90. Corticosterone was reduced in PR offspring, particularly at young adulthood, while catecholamines were increased at weaning and adulthood. The current study shows that considerable age-dependent variations in the expression of the observed behaviors and hormonal levels exist from weaning to adulthood in rats, and that protein restriction during lactation has complex variable-dependent effects on the ontogenesis of the assessed parameters.
Collapse
Affiliation(s)
- Juliana de Oliveira-Silva
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Centro Biomédico, Universidade do Estado do Rio de Janeiro, Av. Prof. Manoel de Abreu 444, 5 andar - Vila Isabel, Rio de Janeiro, RJ, 20550-170, Brazil
| | - Patrícia C Lisboa
- Laboratório de Fisiologia Endócrina, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Centro Biomédico, Universidade do Estado do Rio de Janeiro, Av. Prof. Manoel de Abreu 444, 5 andar - Vila Isabel, Rio de Janeiro, RJ, 20550-170, Brazil
| | - Bruna Lotufo-Denucci
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Centro Biomédico, Universidade do Estado do Rio de Janeiro, Av. Prof. Manoel de Abreu 444, 5 andar - Vila Isabel, Rio de Janeiro, RJ, 20550-170, Brazil
| | - Mabel Fraga
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Centro Biomédico, Universidade do Estado do Rio de Janeiro, Av. Prof. Manoel de Abreu 444, 5 andar - Vila Isabel, Rio de Janeiro, RJ, 20550-170, Brazil
| | - Egberto G de Moura
- Laboratório de Fisiologia Endócrina, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Centro Biomédico, Universidade do Estado do Rio de Janeiro, Av. Prof. Manoel de Abreu 444, 5 andar - Vila Isabel, Rio de Janeiro, RJ, 20550-170, Brazil
| | - Fernanda C Nunes
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Centro Biomédico, Universidade do Estado do Rio de Janeiro, Av. Prof. Manoel de Abreu 444, 5 andar - Vila Isabel, Rio de Janeiro, RJ, 20550-170, Brazil
| | - Anderson Ribeiro-Carvalho
- Departamento de Ciências, Faculdade de Formação de Professores da Universidade do Estado do Rio de Janeiro, Rua Dr. Francisco Portela 1470 - Patronato, São Gonçalo, RJ, 24435-005, Brazil
| | - Cláudio C Filgueiras
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Centro Biomédico, Universidade do Estado do Rio de Janeiro, Av. Prof. Manoel de Abreu 444, 5 andar - Vila Isabel, Rio de Janeiro, RJ, 20550-170, Brazil
| | - Yael Abreu-Villaça
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Centro Biomédico, Universidade do Estado do Rio de Janeiro, Av. Prof. Manoel de Abreu 444, 5 andar - Vila Isabel, Rio de Janeiro, RJ, 20550-170, Brazil
| | - Alex C Manhães
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Centro Biomédico, Universidade do Estado do Rio de Janeiro, Av. Prof. Manoel de Abreu 444, 5 andar - Vila Isabel, Rio de Janeiro, RJ, 20550-170, Brazil
| |
Collapse
|
8
|
Zambrano E, Reyes-Castro LA, Rodríguez-González GL, Chavira R, Lomas-Soria C, Gerow KG, Nathanielsz PW. Developmental Programming-Aging Interactions Have Sex-Specific and Developmental Stage of Exposure Outcomes on Life Course Circulating Corticosterone and Dehydroepiandrosterone (DHEA) Concentrations in Rats Exposed to Maternal Protein-Restricted Diets. Nutrients 2023; 15:nu15051239. [PMID: 36904238 PMCID: PMC10005360 DOI: 10.3390/nu15051239] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/23/2023] [Accepted: 02/25/2023] [Indexed: 03/05/2023] Open
Abstract
The steroids corticosterone and dehydroepiandrosterone (DHEA) perform multiple life course functions. Rodent life-course circulating corticosterone and DHEA trajectories are unknown. We studied life course basal corticosterone and DHEA in offspring of rats fed protein-restricted (10% protein, R) or control (20% protein, C), pregnancy diet first letter, and/or lactation second letter, producing four offspring groups-CC, RR, CR, and RC. We hypothesize that 1. maternal diet programs are sexually dimorphic, offspring life course steroid concentrations, and 2. an aging-related steroid will fall. Both changes differ with the plastic developmental period offspring experienced R, fetal life or postnatally, pre-weaning. Corticosterone was measured by radioimmunoassay and DHEA by ELISA. Steroid trajectories were evaluated by quadratic analysis. Female corticosterone was higher than male in all groups. Male and female corticosterone were highest in RR, peaked at 450 days, and fell thereafter. DHEA declined with aging in all-male groups. DHEA: corticosterone fell in three male groups but increased in all-female groups with age. In conclusion, life course and sexually dimorphic steroid developmental programming-aging interactions may explain differences in steroid studies at different life stages and between colonies experiencing different early-life programming. These data support our hypotheses of sex and programming influences and aging-related fall in rat life course serum steroids. Life course studies should address developmental programming-aging interactions.
Collapse
Affiliation(s)
- Elena Zambrano
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Luis A. Reyes-Castro
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Guadalupe L. Rodríguez-González
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Roberto Chavira
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Consuelo Lomas-Soria
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
- CONACyT-Cátedras, Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición SZ, Mexico City 14080, Mexico
| | - Kenneth G. Gerow
- Department of Statistics, University of Wyoming, Laramie, WY 82071, USA
| | - Peter W. Nathanielsz
- Wyoming Center for Pregnancy and Life Course Health Research, Department of Animal Science, University of Wyoming, Laramie, WY 82071, USA
- Correspondence:
| |
Collapse
|
9
|
Chen Y, Li Q, Li X, Liu H, Li P, Hai R, Guo Y, Wang S, Wang K, Du C. Amylin regulates testosterone levels via steroidogenesis-related enzymes in the central nervous system of male mice. Neuropeptides 2022; 96:102288. [PMID: 36279616 DOI: 10.1016/j.npep.2022.102288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 10/14/2022]
Abstract
Amylin is a peripheral satiation signal polypeptide co-secreted with insulin by pancreatic β-cells in response to nutrient ingestion. Amylin participates in the eating-inhibitory effect and regulates energy metabolism by acting on the central nervous system (CNS). However, the role of amylin in regulating the biosynthesis of steroid hormones, such as testosterone, through the hypothalamic-pituitary-gonadal axis (HPG) remains unexplored. However, only limited evidence is available on the involvement of amylin in steroid synthesis, we hypothesize that amylin regulates testosterone levels via steroidogenesis-related enzymes in the CNS. In this study, we elucidated the effect of intraperitoneal injection of amylin on the protein expression of steroidogenesis-related enzymes, including 3β-hydroxysteroid dehydrogenase (3β-HSD), cytochrome P450 17A1 (CYP17A1), and steroidogenic acute regulatory protein (StAR), and phospho-extracellular signal-regulated kinase (pERK). Additionally, the effect of amylin on testosterone levels in male mice was examined. Our results suggested that 3β-HSD and CYP17A1 neurons were widely expressed in the CNS of male mice, whereas StAR neurons were mainly expressed in the zona incerta (ZI) and locus coeruleus (LC) regions. Intraperitoneal injection of amylin significantly reduced (p < 0.01) the expression of 3β-HSD, CYP17A1, and StAR in ZI and other areas near the third ventricle (3 V) but increased (p < 0.01) pERK expression, brain testosterone levels, serum FSH, serum LH, and decreased (p < 0.01) serum testosterone levels in mice. In conclusion, amylin regulates testosterone levels via steroidogenesis-related enzymes in the central nervous system of male mice.
Collapse
Affiliation(s)
- Yujie Chen
- Vocational and Technical College, Inner Mongolia Agricultural University, Baotou 014109, China
| | - Qiang Li
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Xiaojing Li
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Haodong Liu
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Penghui Li
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Rihan Hai
- Vocational and Technical College, Inner Mongolia Agricultural University, Baotou 014109, China
| | - Yongqing Guo
- Vocational and Technical College, Inner Mongolia Agricultural University, Baotou 014109, China
| | - Siwei Wang
- Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang 050000, China; Key Laboratory of Crop Cultivation Physiology and Green Production in Hebei Province, Shijiazhuang 050000, China
| | - Kun Wang
- Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang 050000, China; Key Laboratory of Crop Cultivation Physiology and Green Production in Hebei Province, Shijiazhuang 050000, China
| | - Chenguang Du
- Vocational and Technical College, Inner Mongolia Agricultural University, Baotou 014109, China; College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China.
| |
Collapse
|
10
|
Zambrano E, Rodríguez-González GL, Reyes-Castro LA, Bautista CJ, Castro-Rodríguez DC, Juárez-Pilares G, Ibáñez CA, Hernández-Rojas A, Nathanielsz PW, Montaño S, Arredondo A, Huang F, Bolaños-Jiménez F. DHA Supplementation of Obese Rats throughout Pregnancy and Lactation Modifies Milk Composition and Anxiety Behavior of Offspring. Nutrients 2021; 13:nu13124243. [PMID: 34959795 PMCID: PMC8706754 DOI: 10.3390/nu13124243] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/18/2021] [Accepted: 11/20/2021] [Indexed: 01/07/2023] Open
Abstract
We investigated if supplementing obese mothers (MO) with docosahexaenoic acid (DHA) improves milk long-chain polyunsaturated fatty acid (LCPUFA) composition and offspring anxiety behavior. From weaning throughout pregnancy and lactation, female Wistar rats ate chow (C) or a high-fat diet (MO). One month before mating and through lactation, half the mothers received 400 mg DHA kg−1 d−1 orally (C+DHA or MO+DHA). Offspring ate C after weaning. Maternal weight, total body fat, milk hormones, and milk nutrient composition were determined. Pups’ milk nutrient intake was evaluated, and behavioral anxiety tests were conducted. MO exhibited increased weight and total fat, and higher milk corticosterone, leptin, linoleic, and arachidonic acid (AA) concentrations, and less DHA content. MO male and female offspring had higher ω-6/ ω-3 milk consumption ratios. In the elevated plus maze, female but not male MO offspring exhibited more anxiety. MO+DHA mothers exhibited lower weight, total fat, milk leptin, and AA concentrations, and enhanced milk DHA. MO+DHA offspring had a lower ω-6/ω-3 milk intake ratio and reduced anxiety vs. MO. DHA content was greater in C+DHA milk vs. C. Supplementing MO mothers with DHA improves milk composition, especially LCPUFA content and ω-6/ω-3 ratio reducing offspring anxiety in a sex-dependent manner.
Collapse
Affiliation(s)
- Elena Zambrano
- Reproductive Biology Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico; (G.L.R.-G.); (L.A.R.-C.); (C.J.B.); (D.C.C.-R.); (G.J.-P.); (C.A.I.); (A.H.-R.)
- Correspondence: ; Tel.: +52-55-5487-0900 (ext. 2417)
| | - Guadalupe L. Rodríguez-González
- Reproductive Biology Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico; (G.L.R.-G.); (L.A.R.-C.); (C.J.B.); (D.C.C.-R.); (G.J.-P.); (C.A.I.); (A.H.-R.)
| | - Luis A. Reyes-Castro
- Reproductive Biology Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico; (G.L.R.-G.); (L.A.R.-C.); (C.J.B.); (D.C.C.-R.); (G.J.-P.); (C.A.I.); (A.H.-R.)
| | - Claudia J. Bautista
- Reproductive Biology Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico; (G.L.R.-G.); (L.A.R.-C.); (C.J.B.); (D.C.C.-R.); (G.J.-P.); (C.A.I.); (A.H.-R.)
| | - Diana C. Castro-Rodríguez
- Reproductive Biology Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico; (G.L.R.-G.); (L.A.R.-C.); (C.J.B.); (D.C.C.-R.); (G.J.-P.); (C.A.I.); (A.H.-R.)
- CONACyT-Cátedras, Reproductive Biology Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Gimena Juárez-Pilares
- Reproductive Biology Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico; (G.L.R.-G.); (L.A.R.-C.); (C.J.B.); (D.C.C.-R.); (G.J.-P.); (C.A.I.); (A.H.-R.)
| | - Carlos A. Ibáñez
- Reproductive Biology Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico; (G.L.R.-G.); (L.A.R.-C.); (C.J.B.); (D.C.C.-R.); (G.J.-P.); (C.A.I.); (A.H.-R.)
| | - Alejandra Hernández-Rojas
- Reproductive Biology Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico; (G.L.R.-G.); (L.A.R.-C.); (C.J.B.); (D.C.C.-R.); (G.J.-P.); (C.A.I.); (A.H.-R.)
| | | | - Sara Montaño
- Department of Animal Nutrition, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico;
| | - Armando Arredondo
- Center for Health Systems Research, Instituto Nacional de Salud Pública, Cuernavaca 62100, Mexico;
| | - Fengyang Huang
- Laboratory of Pharmacology and Toxicology, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico;
| | - Francisco Bolaños-Jiménez
- INRAE, UMR1280 Physiologie des Adaptations Nutritionnelles, Université de Nantes, Nantes Atlantique Université, 44096 Nantes, France;
| |
Collapse
|
11
|
Zambrano E, Nathanielsz PW, Rodríguez-González GL. Developmental programming and ageing of male reproductive function. Eur J Clin Invest 2021; 51:e13637. [PMID: 34107063 DOI: 10.1111/eci.13637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/25/2021] [Accepted: 06/08/2021] [Indexed: 12/22/2022]
Abstract
Developmental programming predisposes offspring to metabolic, behavioural and reproductive dysfunction in adult life. Evidence is accumulating that ageing phenotype and longevity are in part developmentally programmed in each individual. Unfortunately, there are few studies addressing the effects of developmental programming by maternal nutrition on the rate of ageing of the male reproductive system. This review will discuss effects of foetal exposure to maternal environmental challenges on male offspring fertility and normal ageing of the male reproductive system. We focus on several key factors involved in reproductive ageing such as decreased hormone production, DNA fragmentation, oxidative stress, telomere shortening, epigenetics, maternal lifestyle and nutrition. There is compelling evidence that ageing of the male reproductive system is developmentally programmed. Both maternal over- or undernutrition accelerate ageing of male offspring reproductive function through similar mechanisms such as decreased serum testosterone levels, increase in oxidative stress biomarkers in both the testes and sperm and changes in sperm quality. Importantly, even in adult life, exercise in male offspring of obese mothers improves adverse effects of programming on reproductive function. Maternal consumption of a low-protein diet causes transgenerational effects in progeny via the paternal line. The seminal fluid has effects on the intrauterine environment. Programming by male factors may involve more than just the sperm. Improving knowledge on developmental programming ageing interactions will improve not only male health and life span but also the health of future generations by reducing programming via the paternal line.
Collapse
Affiliation(s)
- Elena Zambrano
- Reproductive Biology Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, México
| | | | - Guadalupe L Rodríguez-González
- Reproductive Biology Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, México
| |
Collapse
|
12
|
Coley EJL, Hsiao EY. Malnutrition and the microbiome as modifiers of early neurodevelopment. Trends Neurosci 2021; 44:753-764. [PMID: 34303552 DOI: 10.1016/j.tins.2021.06.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/23/2021] [Accepted: 06/11/2021] [Indexed: 01/16/2023]
Abstract
Malnutrition refers to a dearth, excess, or altered differential ratios of calories, macronutrients, or micronutrients. Malnutrition, particularly during early life, is a pressing global health and socioeconomic burden that is increasingly associated with neurodevelopmental impairments. Understanding how perinatal malnutrition influences brain development is crucial to uncovering fundamental mechanisms for establishing behavioral neurocircuits, with the potential to inform public policy and clinical interventions for neurodevelopmental conditions. Recent studies reveal that the gut microbiome can mediate dietary effects on host physiology and that the microbiome modulates the development and function of the nervous system. This review discusses evidence that perinatal malnutrition alters brain development and examines the maternal and neonatal microbiome as a potential contributing factor.
Collapse
Affiliation(s)
- Elena J L Coley
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Elaine Y Hsiao
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
13
|
Berardino BG, Ballarini F, Chertoff M, Igaz LM, Cánepa ET. Nutritional stress timing differentially programs cognitive abilities in young adult male mice. Nutr Neurosci 2020; 25:286-298. [PMID: 32308155 DOI: 10.1080/1028415x.2020.1751507] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Objectives: The impact of chronic exposure to environmental adversities on brain regions involved in cognition and mental health depends on whether it occurs during the perinatal period, childhood, adolescence or adulthood. The effects of these adversities on the brain and behavior arise as a function of the timing of the exposure and their co-occurrence with the development of specific regions. Here we aimed to explore the behavioral phenotypes derived from two nutritional stress paradigms which differed in the timing of exposure: a low-protein perinatal diet during gestation and lactation and a low-protein diet during adolescence.Methods: Locomotor and exploratory activity, recognition memory and aversive memory were measured in CF-1 8-week-old male mice subjected to perinatal malnutrition (LP-P) or adolescent malnutrition (LP-A), and their respective controls with normal protein diet (NP-P and NP-A).Results: By using the open field test, we found that LP-P and LP-A mice showed reduced exploratory activity compared to controls, but no alterations in their locomotor activity. Recognition memory was impaired only in LP-P mice. Interestingly, aversive memory was not altered in LP-P mice but was enhanced in LP-A mice. Considering the stress-inoculation theory, we hypothesized that protein malnutrition during adolescence represents a challenging but still moderate stressful environment, which promotes active coping in face of later adversity.Conclusion: Our results indicate that while perinatal malnutrition impairs recognition memory, adolescent malnutrition enhances aversive memory, showing dissimilar adaptive responses.
Collapse
Affiliation(s)
- Bruno G Berardino
- Laboratorio de Neuroepigenética, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, and Instituto de Química Biológica de Ciencias Exactas y Naturales, CONICET, Ciudad de Buenos Aires, Argentina
| | - Fabricio Ballarini
- Facultad de Medicina, Universidad de Buenos Aires - IBCN "Eduardo De Robertis" (CONICET), Ciudad de Buenos Aires, Argentina
| | - Mariela Chertoff
- Laboratorio de Neuroepigenética, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, and Instituto de Química Biológica de Ciencias Exactas y Naturales, CONICET, Ciudad de Buenos Aires, Argentina
| | - Lionel M Igaz
- IFIBIO Bernardo Houssay, Grupo de Neurociencia de Sistemas, Facultad de Medicina, Universidad de Buenos Aires - CONICET, Buenos Aires, Argentina
| | - Eduardo T Cánepa
- Laboratorio de Neuroepigenética, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, and Instituto de Química Biológica de Ciencias Exactas y Naturales, CONICET, Ciudad de Buenos Aires, Argentina
| |
Collapse
|
14
|
Perinatal Nutrition and Programmed Risk for Neuropsychiatric Disorders: A Focus on Animal Models. Biol Psychiatry 2019; 85:122-134. [PMID: 30293647 PMCID: PMC6309477 DOI: 10.1016/j.biopsych.2018.08.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 08/07/2018] [Accepted: 08/08/2018] [Indexed: 01/02/2023]
Abstract
Maternal nutrition is critically important for fetal development. Recent human studies demonstrate a strong connection between diet during pregnancy and offspring risk for neuropsychiatric disorders including depression, anxiety, and attention-deficit/hyperactivity disorder. Animal models have emerged as a crucial tool for understanding maternal nutrition's contribution to prenatal programming and the later development of neuropsychiatric disorders. This review highlights preclinical studies examining how maternal consumption of the three macronutrients (protein, fats, and carbohydrates) influence offspring negative-valence behaviors relevant to neuropsychiatric disorders. We highlight the translational aspects of animal models and so examine exposure periods that mirror the neurodevelopmental stages of human gestation. Because of our emphasis on programmed changes in neurobehavioral development, studies that continue diet exposure until assessment in adulthood are not discussed. The presented research provides a strong foundation of preclinical evidence of nutritional programming of neurobehavioral impairments. Alterations in risk assessment and response were observed alongside neurodevelopmental impairments related to neurogenesis, synaptogenesis, and synaptic plasticity. To date, the large majority of studies utilized rodent models, and the field could benefit from additional study of large-animal models. Additional future directions are discussed, including the need for further studies examining how sex as a biological variable affects the contribution of maternal nutrition to prenatal programming.
Collapse
|
15
|
Ye W, Pitlock MD, Javors MA, Thompson BJ, Lechleiter JD, Hensler JG. The long-term effect of maternal dietary protein restriction on 5-HT 1A receptor function and behavioral responses to stress in adulthood. Behav Brain Res 2018; 349:116-124. [PMID: 29660440 DOI: 10.1016/j.bbr.2018.03.038] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 03/06/2018] [Accepted: 03/23/2018] [Indexed: 01/22/2023]
Abstract
Maternal nutrition impacts fetal development, and may play a role in determining resilience to stress and vulnerability to stress-precipitated psychiatric disorders, such as anxiety and depression. In this study, we examined the effect of a reduction in maternal dietary protein during pregnancy on the brain neurochemistry and behavior of offspring. We focused specifically on the serotonin system, the 5-HT1A receptor and the responsivity of offspring as adults to stress. Dams were fed either a low protein diet (10% protein by weight) or isocaloric control diet (20% protein by weight). The low protein diet did not alter maternal food intake and body weight, or litter size and the average birth weight of male or female littermates. 5-HT1A receptor function, as measured by quantitative autoradiography of 8-OH-DPAT (1 μM)-stimulated [35S]GTPγS binding, was markedly reduced in hippocampus of weanling female, but not male offspring (postnatal day, PND 21) of dams fed the low protein diet. The number of serotonergic cell bodies in the rostral raphe, and 5-HT metabolism in the limbic system of weanling offspring was not altered by maternal low protein diet. The deficit in hippocampal 5-HT1A receptor function observed in weanling female offspring persisted into adulthood (PND 112), and was accompanied by an increased sensitivity to stress, specifically increased immobility during a 15-minute forced swim challenge and increased anorexia following 30-minute restraint (PND 97-100). The present work begins to uncover important future directions for understanding the early developmental origins of resilience to stress, and factors that may put individuals at greater risk for stress-related psychiatric disorders.
Collapse
Affiliation(s)
- Wenrui Ye
- Department of Cell Systems and Anatomy, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Michael Duffy Pitlock
- Department of Pharmacology, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Martin A Javors
- Department of Psychiatry, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; Department of Pharmacology, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Brent J Thompson
- Department of Cell Systems and Anatomy, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - James D Lechleiter
- Department of Cell Systems and Anatomy, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Julie G Hensler
- Department of Pharmacology, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
| |
Collapse
|
16
|
de Oliveira JC, de Moura EG, Miranda RA, de Moraes AMP, Barella LF, da Conceição EPS, Gomes RM, Ribeiro TA, Malta A, Martins IP, Franco CCDS, Lisboa PC, Mathias PCDF. Low-protein diet in puberty impairs testosterone output and energy metabolism in male rats. J Endocrinol 2018; 237:243-254. [PMID: 29599416 DOI: 10.1530/joe-17-0606] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 03/28/2018] [Indexed: 11/08/2022]
Abstract
We examined the long-term effects of protein restriction during puberty on the function of hypothalamic-pituitary-adrenal (HPA) and hypothalamic-pituitary-gonadal (HPG) axes in male rats. Male Wistar rats from the age of 30 to 60 days were fed a low-protein diet (4%, LP). A normal-protein diet (20.5%) was reintroduced to rats from the age of 60 to 120 days. Control rats were fed a normal-protein diet throughout life (NP). Rats of 60 or 120 days old were killed. Food consumption, body weight, visceral fat deposits, lipid profile, glycemia, insulinemia, corticosteronemia, adrenocorticotropic hormone (ACTH), testosteronemia and leptinemia were evaluated. Glucose-insulin homeostasis, pancreatic-islet insulinotropic response, testosterone production and hypothalamic protein expression of the androgen receptor (AR), glucocorticoid receptor (GR) and leptin signaling pathway were also determined. LP rats were hypophagic, leaner, hypoglycemic, hypoinsulinemic and hypoleptinemic at the age of 60 days (P < 0.05). These rats exhibited hyperactivity of the HPA axis, hypoactivity of the HPG axis and a weak insulinotropic response (P < 0.01). LP rats at the age of 120 days were hyperphagic and exhibited higher visceral fat accumulation, hyperleptinemia and dyslipidemia; lower blood ACTH, testosterone and testosterone release; and reduced hypothalamic expression of AR, GR and SOCS3, with a higher pSTAT3/STAT3 ratio (P < 0.05). Glucose-insulin homeostasis was disrupted and associated with hyperglycemia, hyperinsulinemia and increased insulinotropic response of the pancreatic islets. The cholinergic and glucose pancreatic-islet responses were small in 60-day-old LP rats but increased in 120-day-old LP rats. The hyperactivity of the HPA axis and the suppression of the HPG axis caused by protein restriction at puberty contributed to energy and metabolic disorders as long-term consequences.
Collapse
Affiliation(s)
- Júlio Cezar de Oliveira
- Laboratório de Biologia Celular da Secreção, Departamento de Biotecnologia, Genética e Biologia Celular, Universidade Estadual de Maringá, Maringá, Brazil
- Departamento de Ciências Fisiológicas, Laboratório de Fisiologia Endócrina, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto de Ciências da Saúde, Universidade Federal de Mato Grosso, Sinop, Brazil
| | - Egberto Gaspar de Moura
- Departamento de Ciências Fisiológicas, Laboratório de Fisiologia Endócrina, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rosiane Aparecida Miranda
- Laboratório de Biologia Celular da Secreção, Departamento de Biotecnologia, Genética e Biologia Celular, Universidade Estadual de Maringá, Maringá, Brazil
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Maria Praxedes de Moraes
- Laboratório de Biologia Celular da Secreção, Departamento de Biotecnologia, Genética e Biologia Celular, Universidade Estadual de Maringá, Maringá, Brazil
| | - Luiz Felipe Barella
- Laboratório de Biologia Celular da Secreção, Departamento de Biotecnologia, Genética e Biologia Celular, Universidade Estadual de Maringá, Maringá, Brazil
| | - Ellen Paula Santos da Conceição
- Departamento de Ciências Fisiológicas, Laboratório de Fisiologia Endócrina, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rodrigo Mello Gomes
- Departamento de Ciências Fisiológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Tatiane Aparecida Ribeiro
- Laboratório de Biologia Celular da Secreção, Departamento de Biotecnologia, Genética e Biologia Celular, Universidade Estadual de Maringá, Maringá, Brazil
| | - Ananda Malta
- Laboratório de Biologia Celular da Secreção, Departamento de Biotecnologia, Genética e Biologia Celular, Universidade Estadual de Maringá, Maringá, Brazil
| | - Isabela Peixoto Martins
- Laboratório de Biologia Celular da Secreção, Departamento de Biotecnologia, Genética e Biologia Celular, Universidade Estadual de Maringá, Maringá, Brazil
| | - Claudinéia Conationi da Silva Franco
- Laboratório de Biologia Celular da Secreção, Departamento de Biotecnologia, Genética e Biologia Celular, Universidade Estadual de Maringá, Maringá, Brazil
| | - Patrícia Cristina Lisboa
- Departamento de Ciências Fisiológicas, Laboratório de Fisiologia Endócrina, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paulo Cezar de Freitas Mathias
- Laboratório de Biologia Celular da Secreção, Departamento de Biotecnologia, Genética e Biologia Celular, Universidade Estadual de Maringá, Maringá, Brazil
| |
Collapse
|
17
|
Batista TH, Giusti-Paiva A, Vilela FC. Maternal protein malnutrition induces autism-like symptoms in rat offspring. Nutr Neurosci 2018; 22:655-663. [DOI: 10.1080/1028415x.2018.1427660] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Tatiane Helena Batista
- Departamento de Ciências Fisiológicas, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas (Unifal-MG), Alfenas, Brazil
| | - Alexandre Giusti-Paiva
- Departamento de Ciências Fisiológicas, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas (Unifal-MG), Alfenas, Brazil
- Programa de Pós-Graduação em Biociências Aplicadas à Saúde, Universidade Federal de Alfenas (Unifal-MG), Alfenas, Brazil
| | - Fabiana Cardoso Vilela
- Departamento de Ciências Fisiológicas, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas (Unifal-MG), Alfenas, Brazil
- Programa de Pós-Graduação em Biociências Aplicadas à Saúde, Universidade Federal de Alfenas (Unifal-MG), Alfenas, Brazil
| |
Collapse
|
18
|
Schoenrock SA, Oreper D, Farrington J, McMullan RC, Ervin R, Miller DR, Pardo-Manuel de Villena F, Valdar W, Tarantino LM. Perinatal nutrition interacts with genetic background to alter behavior in a parent-of-origin-dependent manner in adult Collaborative Cross mice. GENES BRAIN AND BEHAVIOR 2017; 17:e12438. [PMID: 29125223 DOI: 10.1111/gbb.12438] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 10/27/2017] [Accepted: 11/04/2017] [Indexed: 12/11/2022]
Abstract
Previous studies in animal models and humans have shown that exposure to nutritional deficiencies in the perinatal period increases the risk of psychiatric disease. Less well understood is how such effects are modulated by the combination of genetic background and parent-of-origin (PO). To explore this, we exposed female mice from 20 Collaborative Cross (CC) strains to protein deficient, vitamin D deficient, methyl donor enriched or standard diet during the perinatal period. These CC females were then crossed to a male from a different CC strain to produce reciprocal F1 hybrid females comprising 10 distinct genetic backgrounds. The adult F1 females were then tested in the open field, light/dark, stress-induced hyperthermia, forced swim and restraint stress assays. Our experimental design allowed us to estimate effects of genetic background, perinatal diet, PO and their interactions on behavior. Genetic background significantly affected all assessed phenotypes. Perinatal diet exposure interacted with genetic background to affect body weight, basal body temperature, anxiety-like behavior and stress response. In 8 of 9 genetic backgrounds, PO effects were observed on multiple phenotypes. Additionally, we identified a small number of diet-by-PO effects on body weight, stress response, anxiety- and depressive-like behavior. Our data show that rodent behaviors that model psychiatric disorders are affected by genetic background, PO and perinatal diet, as well as interactions among these factors.
Collapse
Affiliation(s)
- S A Schoenrock
- Department of Genetics, School of Medicine, University of North Carolina, Chapel Hill, North Carolina.,Neuroscience Curriculum, School of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - D Oreper
- Department of Genetics, School of Medicine, University of North Carolina, Chapel Hill, North Carolina.,Bioinformatics and Computational Biology Curriculum, School of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - J Farrington
- Department of Genetics, School of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - R C McMullan
- Department of Genetics, School of Medicine, University of North Carolina, Chapel Hill, North Carolina.,Curriculum in Genetics and Molecular Biology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - R Ervin
- Department of Genetics, School of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - D R Miller
- Department of Genetics, School of Medicine, University of North Carolina, Chapel Hill, North Carolina.,Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - F Pardo-Manuel de Villena
- Department of Genetics, School of Medicine, University of North Carolina, Chapel Hill, North Carolina.,Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - W Valdar
- Department of Genetics, School of Medicine, University of North Carolina, Chapel Hill, North Carolina.,Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - L M Tarantino
- Department of Genetics, School of Medicine, University of North Carolina, Chapel Hill, North Carolina.,Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
19
|
Dutra‐Tavares AC, Silva JO, Nunes‐Freitas AL, Guimarães VM, Araújo UC, Conceição EP, Moura EG, Lisboa PC, Filgueiras CC, Manhães AC, Abreu‐Villaça Y, Ribeiro‐Carvalho A. Maternal undernutrition during lactation alters nicotine reward and DOPAC/dopamine ratio in cerebral cortex in adolescent mice, but does not affect nicotine‐induced nAChRs upregulation. Int J Dev Neurosci 2017; 65:45-53. [DOI: 10.1016/j.ijdevneu.2017.10.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 10/15/2017] [Accepted: 10/16/2017] [Indexed: 12/19/2022] Open
Affiliation(s)
- Ana C. Dutra‐Tavares
- Departamento de Ciências FisiológicasInstituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de JaneiroAv. Prof. Manoel de Abreu 444, 5 andar – Vila IsabelRio de JaneiroRJ20550‐170Brazil
| | - Juliana O. Silva
- Departamento de Ciências FisiológicasInstituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de JaneiroAv. Prof. Manoel de Abreu 444, 5 andar – Vila IsabelRio de JaneiroRJ20550‐170Brazil
| | - André L. Nunes‐Freitas
- Departamento de Ciências FisiológicasInstituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de JaneiroAv. Prof. Manoel de Abreu 444, 5 andar – Vila IsabelRio de JaneiroRJ20550‐170Brazil
| | - Vinícius M.S. Guimarães
- Departamento de Ciências FisiológicasInstituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de JaneiroAv. Prof. Manoel de Abreu 444, 5 andar – Vila IsabelRio de JaneiroRJ20550‐170Brazil
| | - Ulisses C. Araújo
- Departamento de Ciências FisiológicasInstituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de JaneiroAv. Prof. Manoel de Abreu 444, 5 andar – Vila IsabelRio de JaneiroRJ20550‐170Brazil
| | - Ellen P.S. Conceição
- Departamento de Ciências FisiológicasInstituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de JaneiroAv. Prof. Manoel de Abreu 444, 5 andar – Vila IsabelRio de JaneiroRJ20550‐170Brazil
| | - Egberto G. Moura
- Departamento de Ciências FisiológicasInstituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de JaneiroAv. Prof. Manoel de Abreu 444, 5 andar – Vila IsabelRio de JaneiroRJ20550‐170Brazil
| | - Patrícia C. Lisboa
- Departamento de Ciências FisiológicasInstituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de JaneiroAv. Prof. Manoel de Abreu 444, 5 andar – Vila IsabelRio de JaneiroRJ20550‐170Brazil
| | - Cláudio C. Filgueiras
- Departamento de Ciências FisiológicasInstituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de JaneiroAv. Prof. Manoel de Abreu 444, 5 andar – Vila IsabelRio de JaneiroRJ20550‐170Brazil
| | - Alex C. Manhães
- Departamento de Ciências FisiológicasInstituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de JaneiroAv. Prof. Manoel de Abreu 444, 5 andar – Vila IsabelRio de JaneiroRJ20550‐170Brazil
| | - Yael Abreu‐Villaça
- Departamento de Ciências FisiológicasInstituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de JaneiroAv. Prof. Manoel de Abreu 444, 5 andar – Vila IsabelRio de JaneiroRJ20550‐170Brazil
| | - Anderson Ribeiro‐Carvalho
- Departamento de Ciências, Faculdade de Formação de Professores da Universidade do Estado do Rio de JaneiroRua Dr. Francisco Portela 1470 – PatronatoSão GonçaloRJ24435‐005Brazil
| |
Collapse
|
20
|
Reyes-Castro LA, Padilla-Gómez E, Parga-Martínez NJ, Castro-Rodríguez DC, Quirarte GL, Díaz-Cintra S, Nathanielsz PW, Zambrano E. Hippocampal mechanisms in impaired spatial learning and memory in male offspring of rats fed a low-protein isocaloric diet in pregnancy and/or lactation. Hippocampus 2017; 28:18-30. [PMID: 28843045 DOI: 10.1002/hipo.22798] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 08/15/2017] [Accepted: 08/22/2017] [Indexed: 01/08/2023]
Abstract
Maternal nutritional challenges during fetal and neonatal development result in developmental programming of multiple offspring organ systems including brain maturation and function. A maternal low-protein diet during pregnancy and lactation impairs associative learning and motivation. We evaluated effects of a maternal low-protein diet during gestation and/or lactation on male offspring spatial learning and hippocampal neural structure. Control mothers (C) ate 20% casein and restricted mothers (R) 10% casein, providing four groups: CC, RR, CR, and RC (first letter pregnancy, second lactation diet). We evaluated the behavior of young adult male offspring around postnatal day 110. Corticosterone and ACTH were measured. Males were tested for 2 days in the Morris water maze (MWM). Stratum lucidum mossy fiber (MF) area, total and spine type in basal dendrites of stratum oriens in the hippocampal CA3 field were measured. Corticosterone and ACTH were higher in RR vs. CC. In the MWM acquisition test CC offspring required two, RC three, and CR seven sessions to learn the maze. RR did not learn in eight trials. In a retention test 24 h later, RR, CR, and RC spent more time locating the platform and performed fewer target zone entries than CC. RR and RC offspring spent less time in the target zone than CC. MF area, total, and thin spines were lower in RR, CR, and RC than CC. Mushroom spines were lower in RR and RC than CC. Stubby spines were higher in RR, CR, and RC than CC. We conclude that maternal low-protein diet impairs spatial acquisition and memory retention in male offspring, and that alterations in hippocampal presynaptic (MF), postsynaptic (spines) elements and higher glucocorticoid levels are potential mechanisms to explain these learning and memory deficits.
Collapse
Affiliation(s)
- L A Reyes-Castro
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición SZ, México 14080, México
| | - E Padilla-Gómez
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Querétaro 76230, México
| | - N J Parga-Martínez
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Querétaro 76230, México
| | - D C Castro-Rodríguez
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición SZ, México 14080, México
| | - G L Quirarte
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Querétaro 76230, México
| | - S Díaz-Cintra
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Querétaro 76230, México
| | - P W Nathanielsz
- Department of Animal Science, University of Wyoming, Laramie, Wyoming 82071-3684
| | - E Zambrano
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición SZ, México 14080, México
| |
Collapse
|
21
|
Rebolledo-Solleiro D, Roldán-Roldán G, Díaz D, Velasco M, Larqué C, Rico-Rosillo G, Vega-Robledo GB, Zambrano E, Hiriart M, Pérez de la Mora M. Increased anxiety-like behavior is associated with the metabolic syndrome in non-stressed rats. PLoS One 2017; 12:e0176554. [PMID: 28463967 PMCID: PMC5413000 DOI: 10.1371/journal.pone.0176554] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 04/12/2017] [Indexed: 01/08/2023] Open
Abstract
Metabolic syndrome (MS) is a cluster of signs that increases the risk to develop diabetes mellitus type 2 and cardiovascular disease. In the last years, a growing interest to study the relationship between MS and psychiatric disorders, such as depression and anxiety, has emerged obtaining conflicting results. Diet-induced MS rat models have only examined the effects of high-fat or mixed cafeteria diets to a limited extent. We explored whether an anxiety-like behavior was associated with MS in non-stressed rats chronically submitted to a high-sucrose diet (20% sucrose in drinking water) using three different anxiety paradigms: the shock-probe/burying test (SPBT), the elevated plus-maze (EPM) and the open-field test (OFT). Behaviorally, the high-sucrose diet group showed an increase in burying behavior in the SPBT. Also, these animals displayed both avoidance to explore the central part of the arena and a significant increase in freezing behavior in the OFT and lack of effects in the EPM. Also, high-sucrose diet group showed signs of an MS-like condition: significant increases in body weight and body mass index, abdominal obesity, hypertension, hyperglycemia, hyperinsulinemia, and dyslipidemia. Plasma leptin and resistin levels were also increased. No changes in plasma corticosterone levels were found. These results indicate that rats under a 24-weeks high-sucrose diet develop an MS associated with an anxiety-like behavior. Although the mechanisms underlying this behavioral outcome remain to be investigated, the role of leptin is emphasized.
Collapse
Affiliation(s)
- Daniela Rebolledo-Solleiro
- Division of Neuroscience, Instituto de Fisiología Celular, Universidad Nacional, Autónoma de México, Mexico City, Mexico
- * E-mail: (MPM); (DR-S)
| | - Gabriel Roldán-Roldán
- Laboratorio de Neurobiología de la Conducta, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Daniel Díaz
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Myrian Velasco
- Division of Neuroscience, Instituto de Fisiología Celular, Universidad Nacional, Autónoma de México, Mexico City, Mexico
| | - Carlos Larqué
- Division of Neuroscience, Instituto de Fisiología Celular, Universidad Nacional, Autónoma de México, Mexico City, Mexico
| | - Guadalupe Rico-Rosillo
- Laboratorio de Inmunología, Departamento de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Gloria Bertha Vega-Robledo
- Laboratorio de Inmunología, Departamento de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Elena Zambrano
- Departamento de Biología de la Reproducción, Instituto Nacional de la Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Marcia Hiriart
- Division of Neuroscience, Instituto de Fisiología Celular, Universidad Nacional, Autónoma de México, Mexico City, Mexico
| | - Miguel Pérez de la Mora
- Division of Neuroscience, Instituto de Fisiología Celular, Universidad Nacional, Autónoma de México, Mexico City, Mexico
- * E-mail: (MPM); (DR-S)
| |
Collapse
|
22
|
Ramírez-López MT, Vázquez M, Lomazzo E, Hofmann C, Blanco RN, Alén F, Antón M, Decara J, Arco R, Orio L, Suárez J, Lutz B, Gómez de Heras R, Bindila L, Rodríguez de Fonseca F. A moderate diet restriction during pregnancy alters the levels of endocannabinoids and endocannabinoid-related lipids in the hypothalamus, hippocampus and olfactory bulb of rat offspring in a sex-specific manner. PLoS One 2017; 12:e0174307. [PMID: 28346523 PMCID: PMC5367805 DOI: 10.1371/journal.pone.0174307] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 03/07/2017] [Indexed: 01/09/2023] Open
Abstract
Undernutrition during pregnancy has been associated to increased vulnerability to develop metabolic and behavior alterations later in life. The endocannabinoid system might play an important role in these processes. Therefore, we investigated the effects of a moderate maternal calorie-restricted diet on the levels of the endocannabinoid 2-arachidonoyl glycerol (2-AG), arachidonic acid (AA) and the N-acylethanolamines (NAEs) anandamide (AEA), oleoylethanolamide (OEA) and palmitoylethanolamide (PEA) in the brain of newborn rat offspring. We focused on brain structures involved in metabolism, feeding behavior, as well as emotional and cognitive responses. Female Wistar rats were assigned during the entire pregnancy to either control diet (C) or restriction diet (R), consisting of a 20% calorie-restricted diet. Weight gain and caloric intake of rat dams were monitored and birth outcomes were assessed. 2-AG, AA and NAE levels were measured in hypothalamus, hippocampus and olfactory bulb of the offspring. R dams displayed lower gain weight from the middle pregnancy and consumed less calories during the entire pregnancy. Offspring from R dams were underweight at birth, but litter size was unaffected. In hypothalamus, R male offspring displayed decreased levels of AA and OEA, with no change in the levels of the endocannabinoids 2-AG and AEA. R female exhibited decreased 2-AG and PEA levels. The opposite was found in the hippocampus, where R male displayed increased 2-AG and AA levels, and R female exhibited elevated levels of AEA, AA and PEA. In the olfactory bulb, only R female presented decreased levels of AEA, AA and PEA. Therefore, a moderate diet restriction during the entire pregnancy alters differentially the endocannabinoids and/or endocannabinoid-related lipids in hypothalamus and hippocampus of the underweight offspring, similarly in both sexes, whereas sex-specific alterations occur in the olfactory bulb. Consequently, endocannabinoid and endocannabinoid-related lipid signaling alterations might be involved in the long-term and sexual dimorphism effects commonly observed after undernutrition and low birth weight.
Collapse
Affiliation(s)
- María Teresa Ramírez-López
- Departamento de Psicobiología. Facultad de Psicología, Universidad Complutense de Madrid. Campus de Somosaguas s/n, Pozuelo de Alarcón, Madrid, Spain
| | - Mariam Vázquez
- Departamento de Psicobiología. Facultad de Psicología, Universidad Complutense de Madrid. Campus de Somosaguas s/n, Pozuelo de Alarcón, Madrid, Spain
- IBIMA, Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain
| | - Ermelinda Lomazzo
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Clementine Hofmann
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Rosario Noemi Blanco
- Departamento de Psicobiología. Facultad de Psicología, Universidad Complutense de Madrid. Campus de Somosaguas s/n, Pozuelo de Alarcón, Madrid, Spain
| | - Francisco Alén
- Departamento de Psicobiología. Facultad de Psicología, Universidad Complutense de Madrid. Campus de Somosaguas s/n, Pozuelo de Alarcón, Madrid, Spain
| | - María Antón
- Departamento de Psicobiología. Facultad de Psicología, Universidad Complutense de Madrid. Campus de Somosaguas s/n, Pozuelo de Alarcón, Madrid, Spain
| | - Juan Decara
- IBIMA, Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain
| | - Rocío Arco
- IBIMA, Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain
| | - Laura Orio
- Departamento de Psicobiología. Facultad de Psicología, Universidad Complutense de Madrid. Campus de Somosaguas s/n, Pozuelo de Alarcón, Madrid, Spain
| | - Juan Suárez
- IBIMA, Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain
- Departamento de Biología Celular, Genética y Fisiología. IBIMA. Facultad de Ciencias, Universidad de Malaga. Campus de Teatinos s/n, Malaga, Spain
| | - Beat Lutz
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Raquel Gómez de Heras
- Departamento de Psicobiología. Facultad de Psicología, Universidad Complutense de Madrid. Campus de Somosaguas s/n, Pozuelo de Alarcón, Madrid, Spain
- * E-mail: (FRF); (RGH)
| | - Laura Bindila
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Fernando Rodríguez de Fonseca
- Departamento de Psicobiología. Facultad de Psicología, Universidad Complutense de Madrid. Campus de Somosaguas s/n, Pozuelo de Alarcón, Madrid, Spain
- IBIMA, Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain
- * E-mail: (FRF); (RGH)
| |
Collapse
|
23
|
Batista TH, Veronesi VB, Ribeiro ACAF, Giusti-Paiva A, Vilela FC. Protein malnutrition during pregnancy alters maternal behavior and anxiety-like behavior in offspring. Nutr Neurosci 2016; 20:437-442. [DOI: 10.1080/1028415x.2016.1177320] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Tatiane Helena Batista
- Departamento de Ciências Fisiológicas, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas (Unifal-MG), Alfenas, Minas Gerais, Brazil
- Programa de Pós-graduacão em Biociências Aplicadas à Saúde, Brazil
| | - Vanessa Barbosa Veronesi
- Departamento de Ciências Fisiológicas, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas (Unifal-MG), Alfenas, Minas Gerais, Brazil
- Programa de Pós-graduacão em Biociências Aplicadas à Saúde, Brazil
| | - Ana Cláudia Alves Freire Ribeiro
- Departamento de Ciências Fisiológicas, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas (Unifal-MG), Alfenas, Minas Gerais, Brazil
- Programa de Pós-graduacão em Biociências Aplicadas à Saúde, Brazil
| | - Alexandre Giusti-Paiva
- Departamento de Ciências Fisiológicas, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas (Unifal-MG), Alfenas, Minas Gerais, Brazil
- Programa de Pós-graduacão em Biociências Aplicadas à Saúde, Brazil
| | - Fabiana Cardoso Vilela
- Departamento de Ciências Fisiológicas, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas (Unifal-MG), Alfenas, Minas Gerais, Brazil
- Programa de Pós-graduacão em Biociências Aplicadas à Saúde, Brazil
| |
Collapse
|
24
|
Dutra-Tavares AC, Manhães AC, Silva JO, Nunes-Freitas AL, Conceição EPS, Moura EG, Lisboa PC, Filgueiras CC, Abreu-Villaça Y, Ribeiro-Carvalho A. Locomotor response to acute nicotine in adolescent mice is altered by maternal undernutrition during lactation. Int J Dev Neurosci 2015; 47:278-85. [PMID: 26482122 DOI: 10.1016/j.ijdevneu.2015.10.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 09/14/2015] [Accepted: 10/12/2015] [Indexed: 11/25/2022] Open
Abstract
Undernutrition during brain development causes long lasting alterations in different neurotransmitter systems that may alter responses to psychoactive drugs. Despite the recognized effects of early undernutrition on the cholinergic system, no evidence that demonstrates the influence of this insult on nicotine susceptibility has been reported. We investigated the effects of protein/calorie restriction during lactation on the susceptibility to nicotine in adolescent mice. Dams were randomly assigned to one of the following groups: Control (C, 20 litters)--free access to standard laboratory diet (23% protein); Protein Restricted (PR, 12 litters)--free access to a isoenergetic, 8% protein diet; Calorie Restricted (CR, 12 litters)--access to standard laboratory diet in restricted quantities (mean ingestion of PR: pair-fed group). Undernutrition extended from postnatal day 2 (PN2) to weaning (PN21). At PN30, animals either received an i.p. injection of nicotine (0.5mg/Kg) or saline and were immediately placed in open field (OF). After the OF, adrenal glands and serum were collected for the analyses of stress-related endocrine parameters and leptin concentration. PR and CR offspring showed less body mass gain and visceral fat mass. PR offspring presented reduced serum leptin concentration. In the OF, nicotine increased locomotor activity of C and PR, but not of CR. CR and PR offspring showed decreased adrenal catecholamine content, which was not dependent on nicotine exposure. Our results indicate that early undernutrition interferes with nicotine-elicited locomotor effects in adolescent mice and suggest that endocrine parameters alterations in malnourished animals do not influence the behavioral response to nicotine.
Collapse
Affiliation(s)
- Ana C Dutra-Tavares
- Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Av. Prof. Manoel de Abreu 444, 5 andar - Vila Isabel, Rio de Janeiro, RJ 20550-170, Brazil
| | - Alex C Manhães
- Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Av. Prof. Manoel de Abreu 444, 5 andar - Vila Isabel, Rio de Janeiro, RJ 20550-170, Brazil
| | - Juliana O Silva
- Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Av. Prof. Manoel de Abreu 444, 5 andar - Vila Isabel, Rio de Janeiro, RJ 20550-170, Brazil
| | - André L Nunes-Freitas
- Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Av. Prof. Manoel de Abreu 444, 5 andar - Vila Isabel, Rio de Janeiro, RJ 20550-170, Brazil
| | - Ellen P S Conceição
- Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Av. Prof. Manoel de Abreu 444, 5 andar - Vila Isabel, Rio de Janeiro, RJ 20550-170, Brazil
| | - Egberto G Moura
- Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Av. Prof. Manoel de Abreu 444, 5 andar - Vila Isabel, Rio de Janeiro, RJ 20550-170, Brazil
| | - Patrícia C Lisboa
- Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Av. Prof. Manoel de Abreu 444, 5 andar - Vila Isabel, Rio de Janeiro, RJ 20550-170, Brazil
| | - Cláudio C Filgueiras
- Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Av. Prof. Manoel de Abreu 444, 5 andar - Vila Isabel, Rio de Janeiro, RJ 20550-170, Brazil
| | - Yael Abreu-Villaça
- Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Av. Prof. Manoel de Abreu 444, 5 andar - Vila Isabel, Rio de Janeiro, RJ 20550-170, Brazil
| | - Anderson Ribeiro-Carvalho
- Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Av. Prof. Manoel de Abreu 444, 5 andar - Vila Isabel, Rio de Janeiro, RJ 20550-170, Brazil; Departamento de Ciências, Faculdade de Formação de Professores da Universidade do Estado do Rio de Janeiro, Rua Dr. Francisco Portela 1470-Patronato, São Gonçalo, RJ 24435-005, Brazil.
| |
Collapse
|
25
|
Besson AA, Lagisz M, Senior AM, Hector KL, Nakagawa S. Effect of maternal diet on offspring coping styles in rodents: a systematic review and meta-analysis. Biol Rev Camb Philos Soc 2015; 91:1065-1080. [DOI: 10.1111/brv.12210] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 06/07/2015] [Accepted: 06/18/2015] [Indexed: 11/29/2022]
Affiliation(s)
- Anne A. Besson
- Department of Zoology; University of Otago; PO Box 56 Dunedin 9054 New Zealand
| | - Malgorzata Lagisz
- Department of Zoology; University of Otago; PO Box 56 Dunedin 9054 New Zealand
- Evolution & Ecology Research Centre and School of Biological, Earth and Environmental Sciences, Biological Science Building; University of New South Wales; Sydney 2052 New South Wales Australia
| | - Alistair M. Senior
- Department of Zoology; University of Otago; PO Box 56 Dunedin 9054 New Zealand
- Charles Perkins Centre, The University of Sydney; Johns Hopkins Drive, Sydney 2009 New South Wales Australia
| | - Katie L. Hector
- Department of Zoology; University of Otago; PO Box 56 Dunedin 9054 New Zealand
| | - Shinichi Nakagawa
- Department of Zoology; University of Otago; PO Box 56 Dunedin 9054 New Zealand
- Evolution & Ecology Research Centre and School of Biological, Earth and Environmental Sciences, Biological Science Building; University of New South Wales; Sydney 2052 New South Wales Australia
| |
Collapse
|
26
|
Miller TV, Caldwell HK. Oxytocin during Development: Possible Organizational Effects on Behavior. Front Endocrinol (Lausanne) 2015; 6:76. [PMID: 26042087 PMCID: PMC4437049 DOI: 10.3389/fendo.2015.00076] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 04/27/2015] [Indexed: 11/17/2022] Open
Abstract
Oxytocin (Oxt) is a neurohormone known for its physiological roles associated with lactation and parturition in mammals. Oxt can also profoundly influence mammalian social behaviors such as affiliative, parental, and aggressive behaviors. While the acute effects of Oxt signaling on adult behavior have been heavily researched in many species, including humans, the developmental effects of Oxt on the brain and behavior are just beginning to be explored. There is evidence that Oxt in early postnatal and peripubertal development, and perhaps during prenatal life, affects adult behavior by altering neural structure and function. However, the specific mechanisms by which this occurs remain unknown. Thus, this review will detail what is known about how developmental Oxt impacts behavior as well as explore the specific neurochemicals and neural substrates that are important to these behaviors.
Collapse
Affiliation(s)
- Travis V. Miller
- Laboratory of Neuroendocrinology and Behavior, Department of Biological Sciences, Kent State University, Kent, OH, USA
- School of Biomedical Sciences, Kent State University, Kent, OH, USA
| | - Heather K. Caldwell
- Laboratory of Neuroendocrinology and Behavior, Department of Biological Sciences, Kent State University, Kent, OH, USA
- School of Biomedical Sciences, Kent State University, Kent, OH, USA
- *Correspondence: Heather K. Caldwell, Kent State University, PO Box 5190, 121 Cunningham Hall, Kent, OH 44242, USA,
| |
Collapse
|
27
|
Reyes-Castro LA, Rodríguez-González GL, Chavira R, Ibáñez C, Lomas-Soria C, Rodriguez JS, Nathanielsz PW, Zambrano E. Paternal line multigenerational passage of altered risk assessment behavior in female but not male rat offspring of mothers fed a low protein diet. Physiol Behav 2014; 140:89-95. [PMID: 25496979 DOI: 10.1016/j.physbeh.2014.12.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 12/04/2014] [Accepted: 12/08/2014] [Indexed: 11/26/2022]
Abstract
Maternal low protein (MLP) diets in pregnancy and lactation impair offspring brain development and modify offspring behavior. We hypothesized multigenerational passage of altered behavioral outcomes as has been demonstrated following other developmental programming challenges. We investigated potential multigenerational effects of MLP in rat pregnancy and/or lactation on offspring risk assessment behavior. Founder generation mothers (F0) ate 20% casein (C) or restricted (R) 10% casein diet, providing four groups: CC, RR, CR, and RC (first letter pregnancy, second letter lactation diet) to evaluate offspring (F1) effects influenced by MLP in F0. On postnatal day (PND 250), F1 males were mated to non-colony siblings producing F2. On PND 90, F2 females (in diestrous) and F2 males were tested in the elevated plus maze (EPM) and open field. Corticosterone was measured at PND 110. Female but not male CR and RC F2 made more entries and spent more time in EPM open arms than CC females. Overall activity was unchanged as observed in male F1 fathers. There were no open field differences in F2 of either sex, indicating that multigenerational MLP effects are due to altered risk assessment, not locomotion. MLP in pregnancy reduced F1 male and F2 female corticosterone. We conclude that MLP in pregnancy and/or lactation increases the innate tendency to explore novel environments in F2 females via the paternal linage, suggesting lower levels of caution and/or higher impulsiveness to explore unknown spaces. Further studies will be necessary to identify the epigenetic modifications in the germ line through the paternal linage.
Collapse
Affiliation(s)
- L A Reyes-Castro
- Department of Reproductive Biology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - G L Rodríguez-González
- Department of Reproductive Biology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - R Chavira
- Department of Reproductive Biology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - C Ibáñez
- Department of Reproductive Biology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - C Lomas-Soria
- Department of Reproductive Biology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico; Center for Pregnancy and Newborn Research, Department of Obstetrics and Gynecology, University of Texas Health Science Center at San Antonio, TX 78229, USA
| | - J S Rodriguez
- Center for Pregnancy and Newborn Research, Department of Obstetrics and Gynecology, University of Texas Health Science Center at San Antonio, TX 78229, USA
| | - P W Nathanielsz
- Center for Pregnancy and Newborn Research, Department of Obstetrics and Gynecology, University of Texas Health Science Center at San Antonio, TX 78229, USA
| | - E Zambrano
- Department of Reproductive Biology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico.
| |
Collapse
|
28
|
Modeling combined schizophrenia-related behavioral and metabolic phenotypes in rodents. Behav Brain Res 2014; 276:130-42. [PMID: 24747658 DOI: 10.1016/j.bbr.2014.04.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 04/08/2014] [Accepted: 04/09/2014] [Indexed: 12/11/2022]
Abstract
Schizophrenia is a chronic, debilitating disorder with a complex behavioral and cognitive phenotype underlined by a similarly complex etiology involving an interaction between susceptibility genes and environmental factors during early development. Limited progress has been made in developing novel pharmacotherapy, partly due to a lack of valid animal models. The recent recognition of the potentially causal role of central and peripheral energy metabolism in the pathophysiology of schizophrenia raises the need of research on animal models that combine both behavioral and metabolic phenotypic domains, similar to what have been identified in humans. In this review we focus on selected genetic (DBA/2J mice, leptin receptor mutants, and PSD-93 knockout mice), early neurodevelopmental (maternal protein deprivation) and pharmacological (acute phencyclidine) animal models that capture the combined behavioral and metabolic abnormalities shown by schizophrenic patients. In reviewing behavioral phenotypes relevant to schizophrenia we apply the principles established by the Research Domain Criteria (RDoC) for better translation. We demonstrate that etiologically diverse manipulations such as specific breeding, deletion of genes that are primarily involved in metabolic regulation and in synaptic plasticity, as well as early metabolic deprivation and adult pharmacological challenge of the glutamate system can lead to schizophrenia-related behavioral and metabolic phenotypes, which suggest that these pathways might be interlinked. We propose that using animal models that combine different domains of schizophrenia can be used as a translationally valid approach to capture the system-level complex interplay between peripheral and central processes in the development of psychopathology.
Collapse
|
29
|
Belluscio LM, Berardino BG, Ferroni NM, Ceruti JM, Cánepa ET. Early protein malnutrition negatively impacts physical growth and neurological reflexes and evokes anxiety and depressive-like behaviors. Physiol Behav 2014; 129:237-54. [PMID: 24607933 DOI: 10.1016/j.physbeh.2014.02.051] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 02/27/2014] [Indexed: 11/30/2022]
Abstract
Malnutrition is a worldwide problem affecting millions of unborn and young children during the most vulnerable stages of their development. In humans, poor maternal nutrition is a major cause of intrauterine growth restriction which is associated with an increased risk of perinatal mortality and long-term morbidity. In addition, intrauterine growth restriction correlates with neurodevelopmental delays and alterations of brain structure and neurochemistry. While there is no doubt that maternal malnutrition is a principal cause of perturbed development of the fetal brain and that all nutrients have certain influence on brain maturation, proteins appear to be the most critical for the development of neurological functions. In the present study we assessed male and female mouse offspring, born to dams protein restricted during pregnancy and lactation, in physical growth and neurobehavioral development and also in social interaction, motivation, anxiety and depressive behaviors. Moreover, we evaluate the impact of the low protein diet on dams in relation to their maternal care and anxiety-related behavior given that these clearly affect pups development. We observed that maternal protein restriction during pregnancy and lactation delayed the physical growth and neurodevelopment of the offspring in a sex-independent manner. In addition, maternal undernutrition negatively affected offspring's juvenile social play, motivation, exploratory activity and risk assessment behaviors. These findings show that protein restriction during critical periods of development detrimentally program progeny behavior.
Collapse
Affiliation(s)
- Laura M Belluscio
- Laboratorio de Biología Molecular, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria Pabellón II, 1428 Ciudad de Buenos Aires, Argentina
| | - Bruno G Berardino
- Laboratorio de Biología Molecular, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria Pabellón II, 1428 Ciudad de Buenos Aires, Argentina
| | - Nadina M Ferroni
- Laboratorio de Biología Molecular, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria Pabellón II, 1428 Ciudad de Buenos Aires, Argentina
| | - Julieta M Ceruti
- Laboratorio de Biología Molecular, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria Pabellón II, 1428 Ciudad de Buenos Aires, Argentina
| | - Eduardo T Cánepa
- Laboratorio de Biología Molecular, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria Pabellón II, 1428 Ciudad de Buenos Aires, Argentina.
| |
Collapse
|
30
|
Zambrano E, Guzmán C, Rodríguez-González GL, Durand-Carbajal M, Nathanielsz PW. Fetal programming of sexual development and reproductive function. Mol Cell Endocrinol 2014; 382:538-549. [PMID: 24045010 DOI: 10.1016/j.mce.2013.09.008] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 09/03/2013] [Accepted: 09/05/2013] [Indexed: 11/15/2022]
Abstract
The recent growth of interest in developmental programming of physiological systems has generally focused on the cardiovascular system (especially hypertension) and predisposition to metabolic dysfunction (mainly obesity and diabetes). However, it is now clear that the full range of altered offspring phenotypes includes impaired reproductive function. In rats, sheep and nonhuman primates, reproductive capacity is altered by challenges experienced during critical periods of development. This review will examine available experimental evidence across commonly studied experimental species for developmental programming of female and male reproductive function throughout an individual's life-course. It is necessary to consider events that occur during fetal development, early neonatal life and prior to and during puberty, during active reproductive life and aging as reproductive performance declines.
Collapse
Affiliation(s)
- Elena Zambrano
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México.
| | - Carolina Guzmán
- HIPAM, Unidad de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM)/Hospital General de México, México
| | - Guadalupe L Rodríguez-González
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México
| | - Marta Durand-Carbajal
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México
| | - Peter W Nathanielsz
- Center for Pregnancy and Newborn Research, Department of Obstetrics, University of Texas Health Sciences Center San Antonio, TX, United States
| |
Collapse
|
31
|
Bautista CJ, Rodríguez-González GL, Torres N, Hernández-Pando R, Ramírez V, Rodríguez-Cruz M, Nathanielsz PW, Zambrano E. Protein restriction in the rat negatively impacts long-chain polyunsaturated fatty acid composition and mammary gland development at the end of gestation. Arch Med Res 2013; 44:429-36. [PMID: 24051037 DOI: 10.1016/j.arcmed.2013.08.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 08/14/2013] [Indexed: 11/26/2022]
Abstract
BACKGROUND AND AIMS Maternal nutrition during gestation is critical for mammary gland cell proliferation and differentiation and development of optimal delta-6 (Δ6D) and delta-5 (Δ5D) desaturase and elongase 2 and 5 (Elovl 2 and 5) activity for synthesis of the long chain polyunsaturated fatty acids (LC-PUFAs), arachidonic (AA), eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids, important for normal fetal and neonatal brain development. We hypothesized that maternal low protein diet (LPD) impairs mammary gland preparation for lactation and PUFA synthesis. The aim of the study was to evaluate consequences of maternal LPD on mammary gland structure and development and expression of enzymes responsible for LC-PUFA production. METHODS Pregnant rats were assigned to control or protein restricted, isocaloric diet (R). At 19 days gestation, mammary gland tissue was removed for histological analysis and lipid, AA, EPA and DHA determination by gas chromatography. Gene transcription was quantified by RT-PCR and protein by Western blot. RESULTS In R mothers, mammary gland lobuloalveolar development was decreased and showed fat cell infiltration. Δ6D, Δ5D, and Elovl 5 mRNA were lower in R, whereas protein levels measured by Western blot were unchanged. This is the first report that detects mammary gland desaturase and elongase protein. Although Elovl 2 mRNA was not detectable by RT-PCR, Elovl 2 protein was not different between groups. AA and DHA were lower and EPA undetectable in the mammary gland of R mothers. CONCLUSIONS Maternal LPD decreased late gestation mammary gland lobuloalveolar development and LC-PUFAs. Protein restriction negatively impacts maternal mammary gland development prior to lactation.
Collapse
Affiliation(s)
- Claudia J Bautista
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán," Mexico City, Mexico; Posgrado en Ciencias Biomédicas, Facultad de Medicina, UNAM, Mexico City, Mexico
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Ohishi T, Wang L, Akane H, Shiraki A, Sato A, Uematsu M, Suzuki K, Mitsumori K, Shibutani M. Adolescent hyperactivity of offspring after maternal protein restriction during the second half of gestation and lactation periods in rats. J Toxicol Sci 2012; 37:345-52. [PMID: 22467025 DOI: 10.2131/jts.37.345] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
To clarify the effect of systemic growth retardation on behavior, pregnant rats were fed a synthetic diet with either a normal (20% casein) or low (10% casein) protein concentration from gestational day 10 to postnatal day (PND) 21 at weaning. Offspring were examined for sensory and reflex functions, detailed clinical observations, manipulative test, grip strength, motor activity and water-filled multiple T-maze test. Lowering trend in the air righting reflex index during lactation period and a decrease in grip strength on PND 72 were observed in the low protein diet group showing suppression of systemic growth. However, they were simply the reflection of delayed systemic growth, because parameters on impaired reflex function, disturbance of motor function and paralysis were unaffected. On the other hand, low protein diet resulted in increased motor activity in female offspring. Thus, malnutrition due to maternal protein restriction may cause adolescent hyperactivity.
Collapse
Affiliation(s)
- Takumi Ohishi
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Rosenfeld CS. Effects of Maternal Diet and Exposure to Bisphenol A on Sexually Dimorphic Responses in Conceptuses and Offspring. Reprod Domest Anim 2012; 47 Suppl 4:23-30. [DOI: 10.1111/j.1439-0531.2012.02051.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
34
|
Rodriguez JS, Bartlett TQ, Keenan KE, Nathanielsz PW, Nijland MJ. Sex-dependent cognitive performance in baboon offspring following maternal caloric restriction in pregnancy and lactation. Reprod Sci 2012; 19:493-504. [PMID: 22344725 DOI: 10.1177/1933719111424439] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In humans a suboptimal diet during development has negative outcomes in offspring. We investigated the behavioral outcomes in baboons born to mothers undergoing moderate maternal nutrient restriction (MNR). Maternal nutrient restriction mothers (n = 7) were fed 70% of food eaten by controls (CTR, n = 12) fed ad libitum throughout gestation and lactation. At 3.3 ± 0.2 (mean ± standard error of the mean [SEM]) years of age offspring (controls: female [FC, n = 8], male [MC, n = 4]; nutrient restricted: female [FR, n = 3] and male [MR, n = 4]) were administered progressive ratio, simple discrimination, intra-/extra-dimension set shift and delayed matching to sample tasks to assess motivation, learning, attention, and working memory, respectively. A treatment effect was observed in MNR offspring who demonstrated less motivation and impaired working memory. Nutrient-restricted female offspring showed improved learning, while MR offspring showed impaired learning and attentional set shifting and increased impulsivity. In summary, 30% restriction in maternal caloric intake has long lasting neurobehavioral outcomes in adolescent male baboon offspring.
Collapse
Affiliation(s)
- Jesse S Rodriguez
- Center for Pregnancy and Newborn Research, Department of Obstetrics and Gynecology, University of Texas Health Science Center, San Antonio, TX 78229, USA.
| | | | | | | | | |
Collapse
|
35
|
Rodriguez J, Rodríguez‐González G, Reyes‐Castro L, Ibáñez C, Ramírez A, Chavira R, Larrea F, Nathanielsz P, Zambrano E. Maternal obesity in the rat programs male offspring exploratory, learning and motivation behavior: prevention by dietary intervention pre‐gestation or in gestation. Int J Dev Neurosci 2012; 30:75-81. [DOI: 10.1016/j.ijdevneu.2011.12.012] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 12/16/2011] [Accepted: 12/28/2011] [Indexed: 01/19/2023] Open
Affiliation(s)
- J.S. Rodriguez
- Center for Pregnancy and Newborn ResearchDepartment of Obstetrics and GynecologyUniversity of Texas Health Sciences CenterSan AntonioTX78229USA
| | - G.L. Rodríguez‐González
- Department of Reproductive BiologyInstituto Nacional de Ciencias Médicas y Nutrición Salvador ZubiránMéxico City14000Mexico
| | - L.A. Reyes‐Castro
- Department of Reproductive BiologyInstituto Nacional de Ciencias Médicas y Nutrición Salvador ZubiránMéxico City14000Mexico
| | - C. Ibáñez
- Department of Reproductive BiologyInstituto Nacional de Ciencias Médicas y Nutrición Salvador ZubiránMéxico City14000Mexico
| | - A. Ramírez
- Department of Reproductive BiologyInstituto Nacional de Ciencias Médicas y Nutrición Salvador ZubiránMéxico City14000Mexico
| | - R. Chavira
- Department of Reproductive BiologyInstituto Nacional de Ciencias Médicas y Nutrición Salvador ZubiránMéxico City14000Mexico
| | - F. Larrea
- Department of Reproductive BiologyInstituto Nacional de Ciencias Médicas y Nutrición Salvador ZubiránMéxico City14000Mexico
| | - P.W. Nathanielsz
- Center for Pregnancy and Newborn ResearchDepartment of Obstetrics and GynecologyUniversity of Texas Health Sciences CenterSan AntonioTX78229USA
| | - E. Zambrano
- Department of Reproductive BiologyInstituto Nacional de Ciencias Médicas y Nutrición Salvador ZubiránMéxico City14000Mexico
| |
Collapse
|