1
|
Toyoda S, Kikuchi M, Abe Y, Tashiro K, Handa T, Katayama S, Motokawa Y, Tanaka KF, Takahashi H, Shiwaku H. Schizophrenia-related Xpo7 haploinsufficiency leads to behavioral and nuclear transport pathologies. EMBO Rep 2025:10.1038/s44319-024-00362-9. [PMID: 39774335 DOI: 10.1038/s44319-024-00362-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 12/09/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
Recent genetic studies by the Schizophrenia Exome Sequencing Meta-Analysis (SCHEMA) consortium have identified that protein-truncating variants of exportin 7 (XPO7) can increase the risk of schizophrenia (odds ratio, 28.1). Here we show that mice with Xpo7 haploinsufficiency (Xpo7+/- mice) present with cognitive and social behavioral impairments. Through proteome analysis using immunoprecipitation and frontal cortex nuclear isolation of Xpo7+/- mice, we identify 45 molecules interacting with Xpo7, including CutC, Rbfox3, and Gria3. Through single-nucleus RNA sequencing of the frontal cortex and striatum of Xpo7+/- mice differentiating between the onset and progressive stages, we also identify 284 gene expression changes that correlate with these stages. These genes encompass high-odds risk genes of schizophrenia identified by SCHEMA, including Gria3, Grin2A, Herc1, and Trio. Furthermore, our approach reveals 15 gene expression changes in the frontal cortex that correlate with the progressive stages. Our findings indicate the importance of investigating whether the interactions among the high-risk genes identified by SCHEMA contribute to a common schizophrenia pathology and underscore the significance of stage-dependent analysis.
Collapse
Affiliation(s)
- Saori Toyoda
- Department of Psychiatry and Behavioral Sciences, Institute of Science Tokyo, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Masataka Kikuchi
- Department of Molecular Genetics, Brain Research Institute, Niigata University, 1-757 Asahimachidori, Chuo-ku, Niigata, 951-8585, Japan
| | - Yoshifumi Abe
- Division of Brain Sciences, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Kyosei Tashiro
- Division of Brain Sciences, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Takehisa Handa
- Department of Psychiatry and Behavioral Sciences, Institute of Science Tokyo, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Shingo Katayama
- Department of Psychiatry and Behavioral Sciences, Institute of Science Tokyo, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Yukiko Motokawa
- Department of Psychiatry and Behavioral Sciences, Institute of Science Tokyo, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Kenji F Tanaka
- Division of Brain Sciences, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Hidehiko Takahashi
- Department of Psychiatry and Behavioral Sciences, Institute of Science Tokyo, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Hiroki Shiwaku
- Department of Psychiatry and Behavioral Sciences, Institute of Science Tokyo, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.
| |
Collapse
|
2
|
Cowen MH, Haskell D, Zoga K, Reddy KC, Chalasani SH, Hart MP. Conserved autism-associated genes tune social feeding behavior in C. elegans. Nat Commun 2024; 15:9301. [PMID: 39468047 PMCID: PMC11519495 DOI: 10.1038/s41467-024-53590-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 10/14/2024] [Indexed: 10/30/2024] Open
Abstract
Animal foraging is an essential and evolutionarily conserved behavior that occurs in social and solitary contexts, but the underlying molecular pathways are not well defined. We discover that conserved autism-associated genes (NRXN1(nrx-1), NLGN3(nlg-1), GRIA1,2,3(glr-1), GRIA2(glr-2), and GLRA2,GABRA3(avr-15)) regulate aggregate feeding in C. elegans, a simple social behavior. NRX-1 functions in chemosensory neurons (ADL and ASH) independently of its postsynaptic partner NLG-1 to regulate social feeding. Glutamate from these neurons is also crucial for aggregate feeding, acting independently of NRX-1 and NLG-1. Compared to solitary counterparts, social animals show faster presynaptic release and more presynaptic release sites in ASH neurons, with only the latter requiring nrx-1. Disruption of these distinct signaling components additively converts behavior from social to solitary. Collectively, we find that aggregate feeding is tuned by conserved autism-associated genes through complementary synaptic mechanisms, revealing molecular principles driving social feeding.
Collapse
Affiliation(s)
- Mara H Cowen
- Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Autism Spectrum Program of Excellence, Perelman School of Medicine, Philadelphia, PA, USA
| | - Dustin Haskell
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kristi Zoga
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kirthi C Reddy
- Molecular Neurobiology Laboratory, Salk Institute, La Jolla, CA, USA
| | | | - Michael P Hart
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Autism Spectrum Program of Excellence, Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
3
|
Clarin JD, Bouras NN, Gao WJ. Genetic Diversity in Schizophrenia: Developmental Implications of Ultra-Rare, Protein-Truncating Mutations. Genes (Basel) 2024; 15:1214. [PMID: 39336805 PMCID: PMC11431303 DOI: 10.3390/genes15091214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/06/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
The genetic basis of schizophrenia (SZ) remains elusive despite its characterization as a highly heritable disorder. This incomplete understanding has led to stagnation in therapeutics and treatment, leaving many suffering with insufficient relief from symptoms. However, recent large-cohort genome- and exome-wide association studies have provided insights into the underlying genetic machinery. The scale of these studies allows for the identification of ultra-rare mutations that confer substantial disease risk, guiding clinicians and researchers toward general classes of genes that are central to SZ etiology. One such large-scale collaboration effort by the Schizophrenia Exome Sequencing Meta-Analysis consortium identified ten, high-risk, ultra-rare, protein-truncating variants, providing the clearest picture to date of the dysfunctional gene products that substantially increase risk for SZ. While genetic studies of SZ provide valuable information regarding "what" genes are linked with the disorder, it is an open question as to "when" during brain development these genetic mutations impose deleterious effects. To shed light on this unresolved aspect of SZ etiology, we queried the BrainSpan developmental mRNA expression database for these ten high-risk genes and discovered three general expression trajectories throughout pre- and postnatal brain development. The elusiveness of SZ etiology, we infer, is not only borne out of the genetic heterogeneity across clinical cases, but also in our incomplete understanding of how genetic mutations perturb neurodevelopment during multiple critical periods. We contextualize this notion within the National Institute of Mental Health's Research Domain Criteria framework and emphasize the utility of considering both genetic variables and developmental context in future studies.
Collapse
Affiliation(s)
- Jacob D Clarin
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Nadia N Bouras
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Wen-Jun Gao
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| |
Collapse
|
4
|
Xu QW, Larosa A, Wong TP. Roles of AMPA receptors in social behaviors. Front Synaptic Neurosci 2024; 16:1405510. [PMID: 39056071 PMCID: PMC11269240 DOI: 10.3389/fnsyn.2024.1405510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
As a crucial player in excitatory synaptic transmission, AMPA receptors (AMPARs) contribute to the formation, regulation, and expression of social behaviors. AMPAR modifications have been associated with naturalistic social behaviors, such as aggression, sociability, and social memory, but are also noted in brain diseases featuring impaired social behavior. Understanding the role of AMPARs in social behaviors is timely to reveal therapeutic targets for treating social impairment in disorders, such as autism spectrum disorder and schizophrenia. In this review, we will discuss the contribution of the molecular composition, function, and plasticity of AMPARs to social behaviors. The impact of targeting AMPARs in treating brain disorders will also be discussed.
Collapse
Affiliation(s)
- Qi Wei Xu
- Douglas Hospital Research Centre, Montreal, QC, Canada
| | - Amanda Larosa
- Douglas Hospital Research Centre, Montreal, QC, Canada
| | - Tak Pan Wong
- Douglas Hospital Research Centre, Montreal, QC, Canada
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| |
Collapse
|
5
|
Italia M, Salvadè M, La Greca F, Zianni E, Pelucchi S, Spinola A, Ferrari E, Archetti S, Alberici A, Benussi A, Solje E, Haapasalo A, Hoffmann D, Katisko K, Krüger J, Facchinetti R, Scuderi C, Padovani A, DiLuca M, Scheggia D, Borroni B, Gardoni F. Anti-GluA3 autoantibodies define a new sub-population of frontotemporal lobar degeneration patients with distinct neuropathological features. Brain Behav Immun 2024; 118:380-397. [PMID: 38485064 DOI: 10.1016/j.bbi.2024.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 03/07/2024] [Accepted: 03/11/2024] [Indexed: 03/19/2024] Open
Abstract
Autoantibodies directed against the GluA3 subunit (anti-GluA3 hIgGs) of AMPA receptors have been identified in 20%-25% of patients with frontotemporal lobar degeneration (FTLD). Data from patients and in vitro/ex vivo pre-clinical studies indicate that anti-GluA3 hIgGs negatively affect glutamatergic neurotransmission. However, whether and how the chronic presence of anti-GluA3 hIgGs triggers synaptic dysfunctions and the appearance of FTLD-related neuropathological and behavioural signature has not been clarified yet. To address this question, we developed and characterized a pre-clinical mouse model of passive immunization with anti-GluA3 hIgGs purified from patients. In parallel, we clinically compared FTLD patients who were positive for anti-GluA3 hIgGs to negative ones. Clinical data showed that the presence of anti-GluA3 hIgGs defined a subgroup of patients with distinct clinical features. In the preclinical model, anti-GluA3 hIgGs administration led to accumulation of phospho-tau in the postsynaptic fraction and dendritic spine loss in the prefrontal cortex. Remarkably, the preclinical model exhibited behavioural disturbances that mostly reflected the deficits proper of patients positive for anti-GluA3 hIgGs. Of note, anti-GluA3 hIgGs-mediated alterations were rescued in the animal model by enhancing glutamatergic neurotransmission with a positive allosteric modulator of AMPA receptors. Overall, our study clarified the contribution of anti-GluA3 autoantibodies to central nervous system symptoms and pathology and identified a specific subgroup of FTLD patients. Our findings will be instrumental in the development of a therapeutic personalised medicine strategy for patients positive for anti-GluA3 hIgGs.
Collapse
Affiliation(s)
- Maria Italia
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), University of Milan, Milan, Italy
| | - Michela Salvadè
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), University of Milan, Milan, Italy
| | - Filippo La Greca
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), University of Milan, Milan, Italy
| | - Elisa Zianni
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), University of Milan, Milan, Italy
| | - Silvia Pelucchi
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), University of Milan, Milan, Italy
| | - Alessio Spinola
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), University of Milan, Milan, Italy
| | - Elena Ferrari
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), University of Milan, Milan, Italy
| | - Silvana Archetti
- Department of Laboratories, Central Laboratory of Clinical Chemistry Analysis. ASST Spedali Civili, Brescia, Italy
| | - Antonella Alberici
- Neurology Unit, Centre for Neurodegenerative Disorders, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Alberto Benussi
- Neurology Unit, Centre for Neurodegenerative Disorders, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Eino Solje
- Institute of Clinical Medicine - Neurology, University of Eastern Finland, Kuopio, Finland; Neuro Center, Neurology, Kuopio University Hospital, Kuopio, Finland
| | - Annakaisa Haapasalo
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Dorit Hoffmann
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Kasper Katisko
- Institute of Clinical Medicine - Neurology, University of Eastern Finland, Kuopio, Finland; Neuro Center, Neurology, Kuopio University Hospital, Kuopio, Finland
| | - Johanna Krüger
- Research Unit of Clinical Medicine, Neurology, University of Oulu, Oulu, Finland; Neurocenter, Neurology, Oulu University Hospital, Oulu, Finland; Medical Research Center, Oulu University Hospital, Oulu, Finland
| | - Roberta Facchinetti
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | - Caterina Scuderi
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | - Alessandro Padovani
- Neurology Unit, Centre for Neurodegenerative Disorders, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Monica DiLuca
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), University of Milan, Milan, Italy
| | - Diego Scheggia
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), University of Milan, Milan, Italy
| | - Barbara Borroni
- Neurology Unit, Centre for Neurodegenerative Disorders, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Fabrizio Gardoni
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), University of Milan, Milan, Italy.
| |
Collapse
|
6
|
Veerappa A, Guda C. Coordination among frequent genetic variants imparts substance use susceptibility and pathogenesis. Front Neurosci 2024; 18:1332419. [PMID: 38660223 PMCID: PMC11041639 DOI: 10.3389/fnins.2024.1332419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 04/02/2024] [Indexed: 04/26/2024] Open
Abstract
Determining the key genetic variants is a crucial step to comprehensively understand substance use disorders (SUDs). In this study, utilizing whole exome sequences of five multi-generational pedigrees with SUDs, we used an integrative omics-based approach to uncover candidate genetic variants that impart susceptibility to SUDs and influence addition traits. We identified several SNPs and rare, protein-function altering variants in genes, GRIA3, NCOR1, and SHANK1; compound heterozygous variants in LNPEP, LRP1, and TBX2, that play a significant role in the neurotransmitter-neuropeptide axis, specifically in the dopaminergic circuits. We also noted a greater frequency of heterozygous and recessive variants in genes involved in the structural and functional integrity of synapse receptors, CHRNA4, CNR2, GABBR1, DRD4, NPAS4, ADH1B, ADH1C, OPRM1, and GABBR2. Variant analysis in upstream promoter regions revealed regulatory variants in NEK9, PRRX1, PRPF4B, CELA2A, RABGEF1, and CRBN, crucial for dopamine regulation. Using family-and pedigree-based data, we identified heterozygous recessive alleles in LNPEP, LRP1 (4 frameshift deletions), and TBX2 (2 frameshift deletions) linked to SUDs. GWAS overlap identified several SNPs associated with SUD susceptibility, including rs324420 and rs1229984. Furthermore, miRNA variant analysis revealed notable variants in mir-548 U and mir-532. Pathway studies identified the presence of extensive coordination among these genetic variants to impart substance use susceptibility and pathogenesis. This study identified variants that were found to be overrepresented among genes of dopaminergic circuits participating in the neurotransmitter-neuropeptide axis, suggesting pleiotropic influences in the development and sustenance of chronic substance use. The presence of a diverse set of haploinsufficient variants in varying frequencies demonstrates the existence of extraordinary coordination among them in attributing risk and modulating severity to SUDs.
Collapse
Affiliation(s)
- Avinash Veerappa
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, United States
| | - Chittibabu Guda
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, United States
- Center for Biomedical Informatics Research and Innovation, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
7
|
Zhang T, Dolga AM, Eisel ULM, Schmidt M. Novel crosstalk mechanisms between GluA3 and Epac2 in synaptic plasticity and memory in Alzheimer's disease. Neurobiol Dis 2024; 191:106389. [PMID: 38142840 DOI: 10.1016/j.nbd.2023.106389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/19/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease which accounts for the most cases of dementia worldwide. Impaired memory, including acquisition, consolidation, and retrieval, is one of the hallmarks in AD. At the cellular level, dysregulated synaptic plasticity partly due to reduced long-term potentiation (LTP) and enhanced long-term depression (LTD) underlies the memory deficits in AD. GluA3 containing α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) are one of key receptors involved in rapid neurotransmission and synaptic plasticity. Recent studies revealed a novel form of GluA3 involved in neuronal plasticity that is dependent on cyclic adenosine monophosphate (cAMP), rather than N-methyl-d-aspartate (NMDA). However, this cAMP-dependent GluA3 pathway is specifically and significantly impaired by amyloid beta (Aβ), a pathological marker of AD. cAMP is a key second messenger that plays an important role in modulating memory and synaptic plasticity. We previously reported that exchange protein directly activated by cAMP 2 (Epac2), acting as a main cAMP effector, plays a specific and time-limited role in memory retrieval. From electrophysiological perspective, Epac2 facilities the maintenance of LTP, a cellular event closely associated with memory retrieval. Additionally, Epac2 was found to be involved in the GluA3-mediated plasticity. In this review, we comprehensively summarize current knowledge regarding the specific roles of GluA3 and Epac2 in synaptic plasticity and memory, and their potential association with AD.
Collapse
Affiliation(s)
- Tong Zhang
- Department of Molecular Pharmacology, University of Groningen, the Netherlands; Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen 9747 AG, Netherlands
| | - Amalia M Dolga
- Department of Molecular Pharmacology, University of Groningen, the Netherlands; Groningen Research Institute for Asthma and COPD, GRIAC, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Ulrich L M Eisel
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen 9747 AG, Netherlands
| | - Martina Schmidt
- Department of Molecular Pharmacology, University of Groningen, the Netherlands; Groningen Research Institute for Asthma and COPD, GRIAC, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
8
|
Cowen MH, Reddy KC, Chalasani SH, Hart MP. Conserved autism-associated genes tune social feeding behavior in C. elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.05.570116. [PMID: 38106124 PMCID: PMC10723370 DOI: 10.1101/2023.12.05.570116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Animal foraging is an essential and evolutionarily conserved behavior that occurs in social and solitary contexts, but the underlying molecular pathways are not well defined. We discover that conserved autism-associated genes (NRXN1(nrx-1), NLGN3(nlg-1), GRIA1,2,3(glr-1), GRIA2(glr-2), and GLRA2,GABRA3(avr-15)) regulate aggregate feeding in C. elegans, a simple social behavior. NRX-1 functions in chemosensory neurons (ADL and ASH) independently of its postsynaptic partner NLG-1 to regulate social feeding. Glutamate from these neurons is also crucial for aggregate feeding, acting independently of NRX-1 and NLG-1. Compared to solitary counterparts, social animals show faster presynaptic release and more presynaptic release sites in ASH neurons, with only the latter requiring nrx-1. Disruption of these distinct signaling components additively converts behavior from social to solitary. Aggregation induced by circuit activation is also dependent on nrx-1. Collectively, we find that aggregate feeding is tuned by conserved autism-associated genes through complementary synaptic mechanisms, revealing molecular principles driving social feeding.
Collapse
Affiliation(s)
- Mara H. Cowen
- Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, PA
- Department of Genetics, University of Pennsylvania, Philadelphia, PA
- Autism Spectrum Program of Excellence, Perelman School of Medicine, Philadelphia, PA
| | - Kirthi C. Reddy
- Molecular Neurobiology Laboratory, Salk Institute, La Jolla, CA
| | | | - Michael P. Hart
- Department of Genetics, University of Pennsylvania, Philadelphia, PA
- Autism Spectrum Program of Excellence, Perelman School of Medicine, Philadelphia, PA
| |
Collapse
|
9
|
Eltokhi A, Bertocchi I, Rozov A, Jensen V, Borchardt T, Taylor A, Proenca CC, Rawlins JNP, Bannerman DM, Sprengel R. Distinct effects of AMPAR subunit depletion on spatial memory. iScience 2023; 26:108116. [PMID: 37876813 PMCID: PMC10590979 DOI: 10.1016/j.isci.2023.108116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 07/01/2023] [Accepted: 09/29/2023] [Indexed: 10/26/2023] Open
Abstract
Pharmacological studies established a role for AMPARs in the mammalian forebrain in spatial memory performance. Here we generated global GluA1/3 double knockout mice (Gria1/3-/-) and conditional knockouts lacking GluA1 and GluA3 AMPAR subunits specifically from principal cells across the forebrain (Gria1/3ΔFb). In both models, loss of GluA1 and GluA3 resulted in reduced hippocampal GluA2 and increased levels of the NMDAR subunit GluN2A. Electrically-evoked AMPAR-mediated EPSPs were greatly diminished, and there was an absence of tetanus-induced LTP. Gria1/3-/- mice showed premature mortality. Gria1/3ΔFb mice were viable, and their memory performance could be analyzed. In the Morris water maze (MWM), Gria1/3ΔFb mice showed profound long-term memory deficits, in marked contrast to the normal MWM learning previously seen in single Gria1-/- and Gria3-/- knockout mice. Our results suggest a redundancy of function within the pool of available ionotropic glutamate receptors for long-term spatial memory performance.
Collapse
Affiliation(s)
- Ahmed Eltokhi
- Departments of Molecular Neurobiology and Physiology, Max Planck Institute for Medical Research, Heidelberg, Germany
- Department of Pharmacolog, University of Washington, Seattle, WA, USA
| | - Ilaria Bertocchi
- Departments of Molecular Neurobiology and Physiology, Max Planck Institute for Medical Research, Heidelberg, Germany
- Department of Neuroscience Rita Levi Montalcini, University of Turin, 10126 Turin, Italy
- Neuroscience Institute - Cavalieri-Ottolenghi Foundation (NICO), Laboratory of Neuropsychopharmacology, Regione Gonzole 10, Orbassano, 10043 Torino, Italy
| | - Andrei Rozov
- Departments of Molecular Neurobiology and Physiology, Max Planck Institute for Medical Research, Heidelberg, Germany
- Institute of Neuroscience, Lobachevsky State University of Nizhniy, 603022 Novgorod, Russia
- Federal Center of Brain Research and Neurotechnology, 117997 Moscow, Russia
| | - Vidar Jensen
- Department of Molecular Medicine, Division of Physiology, Institute of Basic Medical Sciences, University of Oslo, 0372 Oslo, Norway
| | - Thilo Borchardt
- Departments of Molecular Neurobiology and Physiology, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Amy Taylor
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Catia C. Proenca
- Departments of Molecular Neurobiology and Physiology, Max Planck Institute for Medical Research, Heidelberg, Germany
| | | | | | - Rolf Sprengel
- Departments of Molecular Neurobiology and Physiology, Max Planck Institute for Medical Research, Heidelberg, Germany
| |
Collapse
|
10
|
Farsi Z, Sheng M. Molecular mechanisms of schizophrenia: Insights from human genetics. Curr Opin Neurobiol 2023; 81:102731. [PMID: 37245257 DOI: 10.1016/j.conb.2023.102731] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/28/2023] [Accepted: 05/01/2023] [Indexed: 05/30/2023]
Abstract
Schizophrenia is a debilitating psychiatric disorder that affects millions of people worldwide; however, its etiology is poorly understood at the molecular and neurobiological levels. A particularly important advance in recent years is the discovery of rare genetic variants associated with a greatly increased risk of developing schizophrenia. These primarily loss-of-function variants are found in genes that overlap with those implicated by common variants and are involved in the regulation of glutamate signaling, synaptic function, DNA transcription, and chromatin remodeling. Animal models harboring mutations in these large-effect schizophrenia risk genes show promise in providing additional insights into the molecular mechanisms of the disease.
Collapse
Affiliation(s)
- Zohreh Farsi
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Morgan Sheng
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
11
|
Furukawa M, Tada H, Raju R, Wang J, Yokoi H, Yamada M, Shikama Y, Matsushita K. Long-Term Soft-Food Rearing in Young Mice Alters Brain Function and Mood-Related Behavior. Nutrients 2023; 15:2397. [PMID: 37242280 PMCID: PMC10222696 DOI: 10.3390/nu15102397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/15/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
The relationship between caloric and nutrient intake and overall health has been extensively studied. However, little research has focused on the impact of the hardness of staple foods on health. In this study, we investigated the effects of a soft diet on brain function and behavior in mice from an early age. Mice fed a soft diet for six months exhibited increased body weight and total cholesterol levels, along with impaired cognitive and motor function, heightened nocturnal activity, and increased aggression. Interestingly, when these mice were switched back to a solid diet for three months, their weight gain ceased, total cholesterol levels stabilized, cognitive function improved, and aggression decreased, while their nocturnal activity remained high. These findings suggest that long-term consumption of a soft diet during early development can influence various behaviors associated with anxiety and mood regulation, including weight gain, cognitive decline, impaired motor coordination, increased nocturnal activity, and heightened aggression. Therefore, the hardness of food can impact brain function, mental well-being, and motor skills during the developmental stage. Early consumption of hard foods may be crucial for promoting and maintaining healthy brain function.
Collapse
Affiliation(s)
- Masae Furukawa
- Department of Oral Disease Research, Geroscience Research Center, National Center for Geriatrics and Gerontology, Obu 474-8511, Japan; (R.R.); (J.W.); (H.Y.); (M.Y.); (Y.S.)
| | - Hirobumi Tada
- Department of Nutrition, Faculty of Wellness, Shigakkan University, Obu 474-8651, Japan;
- Department of Integrative Physiology, Geroscience Research Center, National Center for Geriatrics and Gerontology, Obu 474-8511, Japan
| | - Resmi Raju
- Department of Oral Disease Research, Geroscience Research Center, National Center for Geriatrics and Gerontology, Obu 474-8511, Japan; (R.R.); (J.W.); (H.Y.); (M.Y.); (Y.S.)
| | - Jingshu Wang
- Department of Oral Disease Research, Geroscience Research Center, National Center for Geriatrics and Gerontology, Obu 474-8511, Japan; (R.R.); (J.W.); (H.Y.); (M.Y.); (Y.S.)
| | - Haruna Yokoi
- Department of Oral Disease Research, Geroscience Research Center, National Center for Geriatrics and Gerontology, Obu 474-8511, Japan; (R.R.); (J.W.); (H.Y.); (M.Y.); (Y.S.)
| | - Mitsuyoshi Yamada
- Department of Oral Disease Research, Geroscience Research Center, National Center for Geriatrics and Gerontology, Obu 474-8511, Japan; (R.R.); (J.W.); (H.Y.); (M.Y.); (Y.S.)
- Department of Operative Dentistry, School of Dentistry, Aichi Gakuin University, Nagoya 464-8651, Japan
| | - Yosuke Shikama
- Department of Oral Disease Research, Geroscience Research Center, National Center for Geriatrics and Gerontology, Obu 474-8511, Japan; (R.R.); (J.W.); (H.Y.); (M.Y.); (Y.S.)
| | - Kenji Matsushita
- Department of Oral Disease Research, Geroscience Research Center, National Center for Geriatrics and Gerontology, Obu 474-8511, Japan; (R.R.); (J.W.); (H.Y.); (M.Y.); (Y.S.)
| |
Collapse
|
12
|
Nakamura T, Takata A. The molecular pathology of schizophrenia: an overview of existing knowledge and new directions for future research. Mol Psychiatry 2023; 28:1868-1889. [PMID: 36878965 PMCID: PMC10575785 DOI: 10.1038/s41380-023-02005-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 02/15/2023] [Accepted: 02/15/2023] [Indexed: 03/08/2023]
Abstract
Despite enormous efforts employing various approaches, the molecular pathology in the schizophrenia brain remains elusive. On the other hand, the knowledge of the association between the disease risk and changes in the DNA sequences, in other words, our understanding of the genetic pathology of schizophrenia, has dramatically improved over the past two decades. As the consequence, now we can explain more than 20% of the liability to schizophrenia by considering all analyzable common genetic variants including those with weak or no statistically significant association. Also, a large-scale exome sequencing study identified single genes whose rare mutations substantially increase the risk for schizophrenia, of which six genes (SETD1A, CUL1, XPO7, GRIA3, GRIN2A, and RB1CC1) showed odds ratios larger than ten. Based on these findings together with the preceding discovery of copy number variants (CNVs) with similarly large effect sizes, multiple disease models with high etiological validity have been generated and analyzed. Studies of the brains of these models, as well as transcriptomic and epigenomic analyses of patient postmortem tissues, have provided new insights into the molecular pathology of schizophrenia. In this review, we overview the current knowledge acquired from these studies, their limitations, and directions for future research that may redefine schizophrenia based on biological alterations in the responsible organ rather than operationalized criteria.
Collapse
Affiliation(s)
- Takumi Nakamura
- Laboratory for Molecular Pathology of Psychiatric Disorders, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Atsushi Takata
- Laboratory for Molecular Pathology of Psychiatric Disorders, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
- Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan.
| |
Collapse
|
13
|
Medina-Vera D, Enache D, Tambaro S, Abuhashish E, Rosell-Valle C, Winblad B, Rodríguez de Fonseca F, Bereczki E, Nilsson P. Translational potential of synaptic alterations in Alzheimer's disease patients and amyloid precursor protein knock-in mice. Brain Commun 2023; 5:fcad001. [PMID: 36687391 PMCID: PMC9851419 DOI: 10.1093/braincomms/fcad001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 09/19/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023] Open
Abstract
Synaptic dysfunction is an early event in Alzheimer's disease. Post-mortem studies suggest that alterations in synaptic proteins are associated with cognitive decline in Alzheimer's disease. We measured the concentration of three synaptic proteins, zinc transporter protein 3, dynamin1 and AMPA glutamate receptor 3 in cerebrospinal fluid of subjects with mild cognitive impairment (n = 18) and Alzheimer's disease (n = 18) and compared the levels to cognitively and neurologically healthy controls (n = 18) by using ELISA assay. In addition, we aimed to assess the translational potential of these synaptic proteins in two established amyloid precursor protein knock-in Alzheimer's disease mouse models by assessing the cerebrospinal fluid, hippocampal and cortical synaptic protein concentrations. Using ELISA, we measured in parallel these three proteins in cerebrospinal fluid and/or brain of 12- and 24-month-old AppNL-F and AppNL-G-F knock-in mice and AppWt control mice. The regional distribution and expression of these proteins were explored upon aging of the App knock-in models by quantitative immunofluorescence microscopy. Notably, we found a significant increase in concentrations of zinc transporter protein 3 and AMPA glutamate receptor 3 in cerebrospinal fluid of both patient groups compared with cognitively healthy controls. Dynamin1 concentration was significantly higher in Alzheimer's disease patients. Remarkably, patients with mild cognitive impairment who converted to Alzheimer's disease (n = 7) within 2 years exhibited elevated baseline cerebrospinal fluid zinc transporter protein 3 concentrations compared with mild cognitive impairment patients who did not convert (n = 11). Interestingly, similar to the alterations in Alzheimer's disease subjects, cerebrospinal fluid AMPA glutamate receptor 3 concentration was significantly higher in AppNL-G-F knock-in mice when compared with wild-type controls. Furthermore, we have detected age and brain regional specific changes of the three synaptic proteins in the hippocampus and prefrontal cortex of both AppNL-F and AppNL-G-F knock-in mice. Notably, all the three cerebrospinal fluid synaptic protein concentrations correlated negatively with concentrations in hippocampal lysates. The elevated zinc transporter protein 3 concentrations in the cerebrospinal fluid of converter versus non-converter mild cognitive impairment patients suggests a prospective role of zinc transporter 3 in differentiating dementia patients of the biological continuum of Alzheimer's disease. The increased cerebrospinal fluid concentrations of synaptic proteins in both patient groups, potentially reflecting synaptic alterations in the brain, were similarly observed in the amyloid precursor protein knock-in mouse models highlighting the translational potential of these proteins as markers for synaptic alterations. These synaptic markers could potentially help reduce the current disparities between human and animal model-based studies aiding the translation of preclinical discoveries of pathophysiological changes into clinical research.
Collapse
Affiliation(s)
- Dina Medina-Vera
- Instituto de Investigación Biomédica de Málaga-IBIMA, Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Málaga 29010, Spain,Facultad de Ciencias, Universidad de Málaga, Málaga 29010, Spain,Facultad de Medicina, Universidad de Málaga, Málaga 29010, Spain
| | - Daniela Enache
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, 17164 Solna, Sweden
| | - Simone Tambaro
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, 17164 Solna, Sweden
| | - Ethar Abuhashish
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, 17164 Solna, Sweden
| | - Cristina Rosell-Valle
- Instituto de Investigación Biomédica de Málaga-IBIMA, Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Málaga 29010, Spain
| | - Bengt Winblad
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, 17164 Solna, Sweden,Theme Inflammation and Aging, Karolinska University Hospital, 17164 Solna, Sweden
| | - Fernando Rodríguez de Fonseca
- Instituto de Investigación Biomédica de Málaga-IBIMA, Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Málaga 29010, Spain
| | - Erika Bereczki
- Correspondence to: Erika Bereczki Department of NVS, Center for Alzheimer Research Division of Neurogeriatrics, Karolinska Institutet BioClinicum J10:30, 17 164, Stockholm, Sweden E-mail:
| | | |
Collapse
|
14
|
Peng SX, Pei J, Rinaldi B, Chen J, Ge YH, Jia M, Wang J, Delahaye-Duriez A, Sun JH, Zang YY, Shi YY, Zhang N, Gao X, Milani D, Xu X, Sheng N, Gerard B, Zhang C, Bayat A, Liu N, Yang JJ, Shi YS. Dysfunction of AMPA receptor GluA3 is associated with aggressive behavior in human. Mol Psychiatry 2022; 27:4092-4102. [PMID: 35697757 DOI: 10.1038/s41380-022-01659-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 05/17/2022] [Accepted: 06/01/2022] [Indexed: 02/07/2023]
Abstract
Inappropriate aggression in humans hurts the society, families and individuals. The genetic basis for aggressive behavior, however, remains largely elusive. In this study, we identified two rare missense variants in X-linked GRIA3 from male patients who showed syndromes featuring aggressive outbursts. Both G630R and E787G mutations in AMPA receptor GluA3 completely lost their ion channel functions. Furthermore, a guanine-repeat single nucleotide polymorphism (SNP, rs3216834) located in the first intron of human GRIA3 gene was found to regulate GluA3 expression with longer guanine repeats (rs3216834-10G/-11G) suppressing transcription compared to the shorter ones (-7G/-8G/-9G). Importantly, the distribution of rs3216834-10G/-11G was elevated in a male violent criminal sample from Chinese Han population. Using GluA3 knockout mice, we showed that the excitatory neurotransmission and neuronal activity in the medial prefrontal cortex (mPFC) was impaired. Expressing GluA3 back into the mPFC alleviated the aggressive behavior of GluA3 knockout mice, suggesting that the defects in mPFC explained, at least partially, the neural mechanisms underlying the aggressive behavior. Therefore, our study provides compelling evidence that dysfunction of AMPA receptor GluA3 promotes aggressive behavior.
Collapse
Affiliation(s)
- Shi-Xiao Peng
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, Department of Neurology, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210032, China.,Department of Anesthesiology and Perioperative Medicine, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.,Ministry of Education Key Laboratory of Model Animal for Disease Study, National Resource Center for Mutant Mice, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, 210032, China
| | - Jingwen Pei
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, Department of Neurology, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210032, China.,Ministry of Education Key Laboratory of Model Animal for Disease Study, National Resource Center for Mutant Mice, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, 210032, China
| | - Berardo Rinaldi
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, 20122, Italy
| | - Jiang Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, Department of Neurology, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210032, China
| | - Yu-Han Ge
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, Department of Neurology, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210032, China.,Ministry of Education Key Laboratory of Model Animal for Disease Study, National Resource Center for Mutant Mice, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, 210032, China
| | - Min Jia
- Department of Anesthesiology and Perioperative Medicine, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jun Wang
- Minister of Education Key Laboratory of Modern Toxicology, Department of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Andrée Delahaye-Duriez
- Consultations de génétique, Hôpital Jean Verdier, Assistance Publique des Hôpitaux de Paris, Bondy, 93140, France.,NeuroDiderot, UMR 1141, Inserm, Université de Paris, Paris, 75019, France.,UFR SMBH, Université Sorbonne Paris Nord, Bobigny, 93000, France
| | - Jia-Hui Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, Department of Neurology, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210032, China.,Ministry of Education Key Laboratory of Model Animal for Disease Study, National Resource Center for Mutant Mice, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, 210032, China
| | - Yan-Yu Zang
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, Department of Neurology, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210032, China.,Ministry of Education Key Laboratory of Model Animal for Disease Study, National Resource Center for Mutant Mice, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, 210032, China
| | - Yong-Yun Shi
- Department of Orthopaedics, Luhe People's Hospital Affiliated to Yangzhou University, Nanjing, 211500, China
| | - Ning Zhang
- Department of Medical Psychology, Nanjing Medical University affiliated Nanjing Brain Hospital, Nanjing, 210029, China
| | - Xiang Gao
- Ministry of Education Key Laboratory of Model Animal for Disease Study, National Resource Center for Mutant Mice, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, 210032, China
| | - Donatella Milani
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, 20122, Italy
| | - Xijia Xu
- Department of Medical Psychology, Nanjing Medical University affiliated Nanjing Brain Hospital, Nanjing, 210029, China
| | - Nengyin Sheng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
| | - Benedicte Gerard
- Laboratoires de diagnostic genetique, Institut de genetique Medicale d'Alsace, Hopitaux Universitaires de Strasbourg, Strasbourg, 67000, France
| | - Chen Zhang
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China
| | - Allan Bayat
- Danish Epilepsy Centre, Department of Genetics and Personalized Medicine, Dianalund, 4293, Denmark.,Institute for Regional Health Services Research, University of Southern Denmark, Odense, 5000, Denmark
| | - Na Liu
- Department of Medical Psychology, Nanjing Medical University affiliated Nanjing Brain Hospital, Nanjing, 210029, China.
| | - Jian-Jun Yang
- Department of Anesthesiology and Perioperative Medicine, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Yun Stone Shi
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, Department of Neurology, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210032, China. .,Ministry of Education Key Laboratory of Model Animal for Disease Study, National Resource Center for Mutant Mice, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, 210032, China. .,Guangdong Institute of Intelligence Science and Technology, Zhuhai, 519031, China.
| |
Collapse
|
15
|
Yang W, Ma L, Hai DM, Liu N, Yang JM, Lan XB, Du J, Yang LS, Sun T, Yu JQ. Hippocampal Proteomic Analysis in Male Mice Following Aggressive Behavior Induced by Long-Term Administration of Perampanel. ACS OMEGA 2022; 7:19388-19400. [PMID: 35721950 PMCID: PMC9202264 DOI: 10.1021/acsomega.2c01008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/11/2022] [Indexed: 05/03/2023]
Abstract
Antiepileptic drugs have been shown to be associated with inducing or exacerbating adverse psychotropic reaction, including aggressive behavior. Perampanel, the first pharmacological compound approved by the FDA in 2012, is an effective antiepileptic drug for intractable epilepsy but induces severe aggression. So far, the underlying molecular mechanisms of aggression induced by perampanel remain incompletely understood. In the present study, a model of aggressive behavior based on the clinical use of perampanel was established and resident-intruder test and open field test were performed. Changes in hippocampal protein profiles were detected by tandem mass tag (TMT) proteomics. The behavioral results indicated that long-term use of perampanel increased the aggressive behavior of C57BL/6J mice. Proteomic analysis revealed that 93 proteins were significantly altered in the hippocampus of the perampanel-treated group (corrected p < 0.05), which were divided into multiple functional groups, mainly related to synaptic function, synaptogenesis, postsynaptic density protein, neurite outgrowth, AMPA-type glutamate receptor immobilization, and others. Bioinformatic analysis showed that differentially expressed proteins were involved in synaptic plasticity and the Ras signaling pathway. Furthermore, validation results by western blot demonstrated that glutamate receptor 1 (GluA1) and phosphorylation of mitogen-activated protein kinase (ERK1/2) were notably up-regulated, and synaptophysin (Syn) and postsynaptic density 95 (PSD95) were down-regulated in perampanel-treated mice. Therefore, our results provide valuable insight into the molecular mechanisms of aggressive behavior induced by perampanel, as well as potential options for safety treatment of perampanel in the future.
Collapse
Affiliation(s)
- Wu Yang
- Department of Pharmacology, Ningxia Medical University, Yinchuan 750004, Ningxia, PR China
- Department
of Emergency, General Hospital of Ningxia
Medical University, Yinchuan 750004, Ningxia, PR China
| | - Lin Ma
- Department of Pharmacology, Ningxia Medical University, Yinchuan 750004, Ningxia, PR China
| | - Dong-Mei Hai
- Department of Pharmacology, Ningxia Medical University, Yinchuan 750004, Ningxia, PR China
| | - Ning Liu
- Department of Pharmacology, Ningxia Medical University, Yinchuan 750004, Ningxia, PR China
| | - Jia-Mei Yang
- Department of Pharmacology, Ningxia Medical University, Yinchuan 750004, Ningxia, PR China
| | - Xiao-Bing Lan
- Department of Pharmacology, Ningxia Medical University, Yinchuan 750004, Ningxia, PR China
| | - Juan Du
- Department of Pharmacology, Ningxia Medical University, Yinchuan 750004, Ningxia, PR China
| | - Li-Shan Yang
- Department
of Emergency, General Hospital of Ningxia
Medical University, Yinchuan 750004, Ningxia, PR China
| | - Tao Sun
- Department of Pharmacology, Ningxia Medical University, Yinchuan 750004, Ningxia, PR China
- Ningxia Key Laboratory of Cerebrocranial
Disease, The Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan 750004, Ningxia, PR China
| | - Jian Qiang Yu
- Department of Pharmacology, Ningxia Medical University, Yinchuan 750004, Ningxia, PR China
- Ningxia
Hui Medicine Modern Engineering Research Center and Collaborative
Innovation Center, Ningxia Medical University, Yinchuan 750004, Ningxia, PR China
| |
Collapse
|
16
|
Plekanchuk VS, Prokudina OI, Ryazanova MA. Social behavior and spatial orientation in rat strains with genetic predisposition to catatonia (GC) and stereotypes (PM). Vavilovskii Zhurnal Genet Selektsii 2022; 26:281-289. [PMID: 35733816 PMCID: PMC9164122 DOI: 10.18699/vjgb-22-35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/13/2021] [Accepted: 12/01/2021] [Indexed: 11/19/2022] Open
Abstract
Various psychopathologies, including schizophrenia, bipolar disorder and major depression, are associated with abnormalities in social behavior and learning. One of the syndromes that may also take place in these disorders is catatonia. Catatonia is a psychomotor syndrome in which motor excitement, stereotypy, stuporous state, including the phenomenon of “waxy flexibility” (catalepsy), can be observed. Rats with genetic catatonia (GC) and pendulum-like movements (PM) of the anterior half of the body have physiological and behavioral changes similar to those observed in schizophrenia and depression in humans and can be considered as incomplete experimental models of these pathologies. The social behavior of the GC and PM rats has not been previously studied, and the cognitive abilities of animals of these strains are also insufficiently studied. To determine whether the GC and PM rats have changes in social behavior and spatial learning, behavioral phenotyping was performed in the residentintruder test, three-chamber test, Barnes maze test. Some deviations in social behavior, such as increased offensive aggression in PM rats in the resident-intruder test, increased or decreased social interactions depending on the environment in different tests in GC, were shown. In addition, principal component analysis revealed a negative association between catatonic freezing and the socialization index in the three-chamber test. Decreased locomotor activity of GС rats can adversely affect the performance of tasks on spatial memory. It has been shown that PM rats do not use a spatial strategy in the Barnes maze, which may indicate impairment of learning and spatial memory.
Collapse
Affiliation(s)
- V. S. Plekanchuk
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University
| | - O. I. Prokudina
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
| | - M. A. Ryazanova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
| |
Collapse
|
17
|
Peng H, Yu S, Zhang Y, Yin Y, Zhou J. Intestinal Dopamine Receptor D2 is Required for Neuroprotection Against 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Dopaminergic Neurodegeneration. Neurosci Bull 2022; 38:871-886. [PMID: 35399136 PMCID: PMC9352842 DOI: 10.1007/s12264-022-00848-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 12/26/2021] [Indexed: 02/07/2023] Open
Abstract
A wealth of evidence has suggested that gastrointestinal dysfunction is associated with the onset and progression of Parkinson's disease (PD). However, the mechanisms underlying these links remain to be defined. Here, we investigated the impact of deregulation of intestinal dopamine D2 receptor (DRD2) signaling in response to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced dopaminergic neurodegeneration. Dopamine/dopamine signaling in the mouse colon decreased with ageing. Selective ablation of Drd2, but not Drd4, in the intestinal epithelium, caused a more severe loss of dopaminergic neurons in the substantia nigra following MPTP challenge, and this was accompanied by a reduced abundance of succinate-producing Alleoprevotella in the gut microbiota. Administration of succinate markedly attenuated dopaminergic neuronal loss in MPTP-treated mice by elevating the mitochondrial membrane potential. This study suggests that intestinal epithelial DRD2 activity and succinate from the gut microbiome contribute to the maintenance of nigral DA neuron survival. These findings provide a potential strategy targeting neuroinflammation-related neurological disorders such as PD.
Collapse
|
18
|
Martinez-Esteve Melnikova A, Pijuan J, Aparicio J, Ramírez A, Altisent-Huguet A, Vilanova-Adell A, Arzimanoglou A, Armstrong J, Palau F, Hoenicka J, San Antonio-Arce V. The p.Glu787Lys variant in the GRIA3 gene causes developmental and epileptic encephalopathy mimicking structural epilepsy in a female patient. Eur J Med Genet 2022; 65:104442. [DOI: 10.1016/j.ejmg.2022.104442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/28/2021] [Accepted: 01/22/2022] [Indexed: 11/03/2022]
|
19
|
Huber N, Korhonen S, Hoffmann D, Leskelä S, Rostalski H, Remes AM, Honkakoski P, Solje E, Haapasalo A. Deficient neurotransmitter systems and synaptic function in frontotemporal lobar degeneration-Insights into disease mechanisms and current therapeutic approaches. Mol Psychiatry 2022; 27:1300-1309. [PMID: 34799692 PMCID: PMC9095474 DOI: 10.1038/s41380-021-01384-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 12/15/2022]
Abstract
Frontotemporal lobar degeneration (FTLD) comprises a heterogenous group of fatal neurodegenerative diseases and, to date, no validated diagnostic or prognostic biomarkers or effective disease-modifying therapies exist for the different clinical or genetic subtypes of FTLD. Current treatment strategies rely on the off-label use of medications for symptomatic treatment. Changes in several neurotransmitter systems including the glutamatergic, GABAergic, dopaminergic, and serotonergic systems have been reported in FTLD spectrum disease patients. Many FTLD-related clinical and neuropsychiatric symptoms such as aggressive and compulsive behaviour, agitation, as well as altered eating habits and hyperorality can be explained by disturbances in these neurotransmitter systems, suggesting that their targeting might possibly offer new therapeutic options for treating patients with FTLD. This review summarizes the present knowledge on neurotransmitter system deficits and synaptic dysfunction in model systems and patients harbouring the most common genetic causes of FTLD, the hexanucleotide repeat expansion in C9orf72 and mutations in the granulin (GRN) and microtubule-associated protein tau (MAPT) genes. We also describe the current pharmacological treatment options for FLTD that target different neurotransmitter systems.
Collapse
Affiliation(s)
- Nadine Huber
- grid.9668.10000 0001 0726 2490A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Sonja Korhonen
- grid.9668.10000 0001 0726 2490A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Dorit Hoffmann
- grid.9668.10000 0001 0726 2490A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Stina Leskelä
- grid.9668.10000 0001 0726 2490A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Hannah Rostalski
- grid.9668.10000 0001 0726 2490A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Anne M. Remes
- grid.10858.340000 0001 0941 4873Unit of Clinical Neuroscience, Neurology, University of Oulu, P. O. Box 8000, University of Oulu, FI-90014 Oulu, Finland ,grid.412326.00000 0004 4685 4917MRC Oulu, Oulu University Hospital, P. O. Box 8000, University of Oulu, FI-90014 Oulu, Finland
| | - Paavo Honkakoski
- grid.9668.10000 0001 0726 2490School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70210 Kuopio, Finland ,grid.10698.360000000122483208Department of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Eino Solje
- grid.9668.10000 0001 0726 2490Institute of Clinical Medicine—Neurology, University of Eastern Finland, P.O. Box 1627, FI-70210 Kuopio, Finland ,grid.410705.70000 0004 0628 207XNeuro Center, Neurology, Kuopio University Hospital, P.O. Box 100, KYS, FI-70029 Kuopio, Finland
| | - Annakaisa Haapasalo
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland.
| |
Collapse
|
20
|
Italia M, Ferrari E, Di Luca M, Gardoni F. GluA3-containing AMPA receptors: From physiology to synaptic dysfunction in brain disorders. Neurobiol Dis 2021; 161:105539. [PMID: 34743951 DOI: 10.1016/j.nbd.2021.105539] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/01/2021] [Accepted: 10/27/2021] [Indexed: 01/03/2023] Open
Abstract
In the mammalian brain, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate receptors (AMPARs) play a fundamental role in the activation of excitatory synaptic transmission and the induction of different forms of synaptic plasticity. The modulation of the AMPAR tetramer subunit composition at synapses defines the functional properties of the receptor. During the last twenty years, several studies have evaluated the roles played by each subunit, from GluA1 to GluA4, in both physiological and pathological conditions. Here, we have focused our attention on GluA3-containing AMPARs, addressing their functional role in synaptic transmission and synaptic plasticity and their involvement in a variety of brain disorders. Although several aspects remain to be fully understood, GluA3 is a widely expressed and functionally relevant subunit in AMPARs involved in several brain circuits, and its pharmacological modulation could represent a novel approach for the rescue of altered glutamatergic synapses associated with neurodegenerative and neurodevelopmental disorders.
Collapse
Affiliation(s)
- Maria Italia
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), University of Milan, 20133 Milan, Italy
| | - Elena Ferrari
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), University of Milan, 20133 Milan, Italy
| | - Monica Di Luca
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), University of Milan, 20133 Milan, Italy
| | - Fabrizio Gardoni
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), University of Milan, 20133 Milan, Italy.
| |
Collapse
|
21
|
GluA3 autoantibodies induce alterations in dendritic spine and behavior in mice. Brain Behav Immun 2021; 97:89-101. [PMID: 34246733 DOI: 10.1016/j.bbi.2021.07.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/08/2021] [Accepted: 07/03/2021] [Indexed: 12/22/2022] Open
Abstract
Autoantibodies targeting the GluA3 subunit of AMPA receptors (AMPARs) have been found in patients with Rasmussen's encephalitis and different types of epilepsy and were associated with the presence of learning and attention deficits. Our group recently identified the presence of anti-GluA3 immunoglobulin G (IgG) in about 25% of patients with frontotemporal dementia (FTD), thus suggesting a novel pathogenetic role also in chronic neurodegenerative diseases. However, the in vivo behavioral, molecular and morphological effects induced these antibodies are still unexplored. We injected anti-GluA3 IgG purified from the serum of FTD patients, or control IgG, in mice by intracerebroventricular infusion. Biochemical analyses showed a reduction of synaptic levels of GluA3-containing AMPARs in the prefrontal cortex (PFC), and not in the hippocampus. Accordingly, animals injected with anti-GluA3 IgG showed significant changes in recognition memory and impairments in social behavior and in social cognitive functions. As visualized by confocal imaging, functional outcomes were paralleled by profound alterations of dendritic spine morphology in the PFC. All observed behavioral, molecular and morphological alterations were transient and not detected 10-14 days from anti-GluA3 IgG injection. Overall, our in vivo preclinical data provide novel insights into autoimmune encephalitis associated with anti-GluA3 IgG and indicate an additional pathological mechanism affecting the excitatory synapses in FTD patients carrying anti-GluA3 IgG that could contribute to clinical symptoms.
Collapse
|
22
|
Enache D, Pereira JB, Jelic V, Winblad B, Nilsson P, Aarsland D, Bereczki E. Increased Cerebrospinal Fluid Concentration of ZnT3 Is Associated with Cognitive Impairment in Alzheimer's Disease. J Alzheimers Dis 2021; 77:1143-1155. [PMID: 32925049 DOI: 10.3233/jad-200498] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Cognitive deficits arising in the course of Alzheimer's disease (AD), dementia with Lewy bodies (DLB), and Parkinson's disease with dementia (PDD) are directly linked to synaptic loss. Postmortem studies suggest that zinc transporter protein 3 (ZnT3), AMPA glutamate receptor 3 (GluA3), and Dynamin1 are associated with cognitive decline in AD and Lewy body dementia patients. OBJECTIVE We aimed to evaluate the diagnostic value of ZnT3, GluA3, and Dynamin 1 in the cerebrospinal fluid (CSF) of patients with dementia due to AD, DLB, and PDD compared to cognitively normal subjective cognitive decline (SCD) patients in a retrospective study. In addition, we assessed the relationship between synaptic markers and age, sex, cognitive impairment, and depressive symptoms as well as CSF amyloid, phosphorylated tau (p-tau), and total tau (T-tau). METHODS Commercially available ELISA immunoassay was used to measure the levels of proteins in a total of 97 CSF samples from AD (N = 24), PDD (N = 18), DLB (N = 27), and SCD (N = 28) patients. Cognitive impairment was assessed using the Mini-Mental State Examination (MMSE). RESULTS We found a significant increase in the concentrations of ZnT3, GluA3, and Dynamin1 in AD (p = 0.002) and of ZnT3 and Dynamin 1 in DLB (p = 0.001, p = 0.002) when compared to SCD patients. Changes in ZnT3 concentrations correlated with MMSE scores in AD (p = 0.011), and with depressive symptoms in SCD (p = 0.041). CONCLUSION We found alteration of CSF levels of synaptic proteins in AD, PDD, and DLB. Our results reveal distinct changes in CSF concentrations of ZnT3 that could reflect cognitive impairment in AD with implications for future prognostic and diagnostic marker development.
Collapse
Affiliation(s)
- Daniela Enache
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, Stockholm, Sweden
| | - Joana B Pereira
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Clinical Geriatrics, Karolinska Institutet, Stockholm, Sweden
| | - Vesna Jelic
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Clinical Geriatrics, Karolinska Institutet, Stockholm, Sweden
| | - Bengt Winblad
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, Stockholm, Sweden
| | - Per Nilsson
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, Stockholm, Sweden
| | - Dag Aarsland
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, Stockholm, Sweden.,Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,Centre for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway
| | - Erika Bereczki
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
23
|
Altered behaviour, dopamine and norepinephrine regulation in stressed mice heterozygous in TPH2 gene. Prog Neuropsychopharmacol Biol Psychiatry 2021; 108:110155. [PMID: 33127424 DOI: 10.1016/j.pnpbp.2020.110155] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 10/21/2020] [Accepted: 10/24/2020] [Indexed: 12/28/2022]
Abstract
Gene-environment interaction (GxE) determines the vulnerability of an individual to a spectrum of stress-related neuropsychiatric disorders. Increased impulsivity, excessive aggression, and other behavioural characteristics are associated with variants within the tryptophan hydroxylase-2 (Tph2) gene, a key enzyme in brain serotonin synthesis. This phenotype is recapitulated in naïve mice with complete, but not with partial Tph2 inactivation. Tph2 haploinsufficiency in animals reflects allelic variation of Tph2 facilitating the elucidation of respective GxE mechanisms. Recently, we showed excessive aggression and altered serotonin brain metabolism in heterozygous Tph2-deficient male mice (Tph2+/-) after predator stress exposure. Here, we sought to extend these studies by investigating aggressive and anxiety-like behaviours, sociability, and the brain metabolism of dopamine and noradrenaline. Separately, Tph2+/- mice were examined for exploration activity in a novel environment and for the potentiation of helplessness in the modified swim test (ModFST). Predation stress procedure increased measures of aggression, dominancy, and suppressed sociability in Tph2+/- mice, which was the opposite of that observed in control mice. Anxiety-like behaviour was unaltered in the mutants and elevated in controls. Tph2+/- mice exposed to environmental novelty or to the ModFST exhibited increased novelty exploration and no increase in floating behaviour compared to controls, which is suggestive of resilience to stress and despair. High-performance liquid chromatography (HPLC) revealed significant genotype-dependent differences in the metabolism of dopamine, and norepinephrine within the brain tissue. In conclusion, environmentally challenged Tph2+/- mice exhibit behaviours that resemble the behaviour of non-stressed null mutants, which reveals how GxE interaction studies can unmask latent genetically determined predispositions.
Collapse
|
24
|
Gugustea R, Jia Z. Genetic manipulations of AMPA glutamate receptors in hippocampal synaptic plasticity. Neuropharmacology 2021; 194:108630. [PMID: 34089730 DOI: 10.1016/j.neuropharm.2021.108630] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 05/06/2021] [Accepted: 05/18/2021] [Indexed: 01/17/2023]
Abstract
Alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) are the principal mediators of fast excitatory synaptic transmission and they are required for various forms of synaptic plasticity, including long-term potentiation (LTP) and depression (LTD), which are key mechanisms of learning and memory. AMPARs are tetrameric complexes assembled from four subunits (GluA1-4), however, the lack of subunit-specific pharmacological tools has made the assessment of individual subunits difficult. The application of genetic techniques, particularly gene targeting, allows for precise manipulation and dissection of each subunit in the regulation of neuronal function and behaviour. In this review, we summarize studies using various mouse models with genetically altered AMPARs and focus on their roles in basal synaptic transmission, LTP, and LTD at the hippocampal CA1 synapse. These studies provide strong evidence that there are multiple forms of LTP and LTD at this synapse which can be induced by various induction protocols, and they are differentially regulated by different AMPAR subunits and domains. We conclude that it is necessary to delineate the mechanism of each of these forms of plasticity and their contribution to memory and brain disorders.
Collapse
Affiliation(s)
- Radu Gugustea
- The Hospital for Sick Children, Neurosciences and Mental Health Program, Peter Gilgan Centre for Research and Learning, Toronto, ON, Canada; Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Zhengping Jia
- The Hospital for Sick Children, Neurosciences and Mental Health Program, Peter Gilgan Centre for Research and Learning, Toronto, ON, Canada; Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
25
|
Okino E, Morita S, Hoshikawa Y, Tsukahara S. The glutamatergic system in the preoptic area is involved in the retention of maternal behavior in maternally experienced female rats. Psychoneuroendocrinology 2020; 120:104792. [PMID: 32653768 DOI: 10.1016/j.psyneuen.2020.104792] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 06/23/2020] [Accepted: 06/25/2020] [Indexed: 12/27/2022]
Abstract
Maternally experienced female rats show high maternal behavior performance for a long time after acquisition of maternal experience, although the mechanisms responsible for the retention of maternal behavior are not well understood. The medial preoptic area (MPOA) plays an important role in the onset and maintenance of maternal behavior in female rats. We aimed to determine whether maternal experience affects the glutamatergic system in the MPOA for the retention of maternal behavior in female rats. First, to determine the effects of maternal experience in the postpartum period on dendritic spines, which are the postsynaptic component of excitatory glutamatergic neurotransmission, we examined the number of dendritic spines on MPOA neurons of primiparous mothers that had experienced mothering until weaning (sufficiently experienced mothers) and of primiparous mothers that were separated from their pups on the day of parturition (insufficiently experienced mothers). The number of mushroom spines, but not other types of spine, was significantly greater in the sufficiently experienced mothers compared with that in the insufficiently experienced mothers. Next, to determine the effects of maternal experience in the postpartum period on the expression of ionotropic glutamate receptors, we measured the mRNA levels of AMPA receptor subunits (GluA1-A4) and NMDA receptor subunits (GluN1, GluN2A-2D) in the MPOA of primiparous female rats that were kept with pups until brain sampling. As a result, we found that the mRNA levels of GluA3 and GluN2B were significantly higher in primiparous females on the day of weaning compared with those in primiparous females on the day of parturition. Additionally, we examined the effects of CNQX, an AMPA receptor antagonist, and MK-801, an NMDA receptor antagonist, injected into the MPOA on maternal behavior in maternally experienced primiparous female rats. Maternal behavioral activity was significantly reduced when CNQX or MK-801 was injected into the MPOA. These findings indicate that long-term maternal experience in the postpartum period up-regulates glutamatergic neurotransmission by increasing the number of mushroom spines and glutamate receptor expression, which may be involved in the retention of maternal behavior in maternally experienced female rats.
Collapse
Affiliation(s)
- Eri Okino
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama, 338-8570, Japan
| | - Sayaka Morita
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama, 338-8570, Japan
| | - Yumi Hoshikawa
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama, 338-8570, Japan
| | - Shinji Tsukahara
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama, 338-8570, Japan.
| |
Collapse
|
26
|
Lei G, Liu F, Liu P, Jiao T, Yang L, Chu Z, Deng LS, Li Y, Dang YH. Does genetic mouse model of constitutive Hint1 deficiency exhibit schizophrenia-like behaviors? Schizophr Res 2020; 222:304-318. [PMID: 32439293 DOI: 10.1016/j.schres.2020.05.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 05/03/2020] [Accepted: 05/06/2020] [Indexed: 01/13/2023]
Abstract
The histidine triad nucleotide binding protein 1 (HINT1) is closely related to many neuropsychiatric disorders. Clinical studies supported that mutations in the Hint1 gene correlated potentially with schizophrenia. In addition, Hint1 gene knockout (KO) mice exhibited hyperactivity induced by amphetamine and apomorphine. However, it is still unclear whether this animal model exhibits schizophrenia-like behaviors and, if so, their underlying mechanisms remain to be elucidated. Thus, our study sought to evaluate schizophrenia-like behaviors in Hint1-KO mice, and explore the associated changes in neuronal structural plasticity and schizophrenia-related molecules. A series of behavioral tests were used to compare Hint1-KO and their wild-type (WT) littermates, alongside a number of morphological and molecular biological methods. Relative to WT mice, Hint1-KO mice exhibited reduced social interaction behaviors, aggressive behavior, sensorimotor gating deficits, apathetic and self-neglect behaviors, and increased MK-801-induced hyperactivity. Hint1-KO mice also showed partly increased dendritic complexity in the hippocampus (Hip) relative to WT mice. Total glutamate was decreased in the medial prefrontal cortex, nucleus accumbens (NAc), and Hip of KO mice. Expression of NR1, NR2A, and D4R was decreased whereas that of D1R was increased in the NAc of KO relative to WT mice. The expression level of NR2B was increased whereas that of D1R was decreased in the Hip of KO mice. Hint1-KO mice exhibited schizophrenia-like behaviors. Partly increased dendritic complexity and dysfunction in both the dopaminergic and glutamatergic systems may be involved in the abnormalities in Hint1-KO mice.
Collapse
Affiliation(s)
- Gang Lei
- College of Medicine & Forensics, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, PR China
| | - Fei Liu
- College of Medicine & Forensics, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, PR China; Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Peng Liu
- College of Medicine & Forensics, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, PR China
| | - Tong Jiao
- The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Liu Yang
- College of Medicine & Forensics, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, PR China
| | - Zheng Chu
- College of Medicine & Forensics, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, PR China
| | - Li-Sha Deng
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Yan Li
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Yong-Hui Dang
- College of Medicine & Forensics, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, PR China; Key Laboratory of the Health Ministry for Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, PR China; Key Laboratory of Shaanxi Province for Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, PR China; State Key Laboratory for Manufacturing Systems Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China.
| |
Collapse
|
27
|
Costa-Nunes JP, Gorlova A, Pavlov D, Cespuglio R, Gorovaya A, Proshin A, Umriukhin A, Ponomarev ED, Kalueff AV, Strekalova T, Schroeter CA. Ultrasound stress compromises the correlates of emotional-like states and brain AMPAR expression in mice: effects of antioxidant and anti-inflammatory herbal treatment. Stress 2020; 23:481-495. [PMID: 31900023 DOI: 10.1080/10253890.2019.1709435] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The modern lifestyle is associated with exposure to "psychological" or "emotional" stress. A growing portion of the population is exposed to emotional stress that results in a high incidence of anxiety disorders, a serious social problem. With this rise, there is a need for understanding the neurobiological causes of stress-induced anxiety and to offer safe remedies for this condition. Side effects of existing pharmaceuticals necessitate the search for alternatives. Having fewer adverse effects than classic remedies, natural extract-based therapies can be a promising solution. Here, we applied a model of emotional stress in BALB/c mice using ultrasound exposure to evoke the signs of anxiety-like behavior. We examined the behavioral and molecular impact of ultrasound and administration of herbal antioxidant/anti-inflammatory treatment (HAT) on AMPA receptor expression, markers of plasticity, inflammation and oxidative stress. A 3-week ultrasound exposure increased scores of anxiety-like behaviors in the standard tests and altered hippocampal expression as well as internalization of AMPA receptor subunits GluA1-A3. Concomitant treatment with HAT has prevented increases of anxiety-like behaviors and other behavioral changes, normalized hippocampal malondialdehyde content, GSK3β and pro-inflammatory cytokines Il-1β and Il-6, and the number of Ki67-positive cells. Levels of malondialdehyde, a common measure of oxidative stress, significantly correlated with the investigated end-points in stressed, but not in non-stressed animals. Our results emphasize the role of oxidative stress in neurobiological abnormalities associated with experimentally induced condition mimicking emotional stress in rodents and highlight the potential therapeutic use of anti-oxidants like herbal compositions for management of stress-related emotional disturbances within the community.
Collapse
Affiliation(s)
- João Pedro Costa-Nunes
- Faculdade de Medicina da Universidade de Lisboa, Instituto de Medicina Molecular João Lobo Antunes, Lisboa, Portugal
- Institute of Molecular Medicine, Laboratory of Psychiatric Neurobiology and Department of Normal Physiology, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
- School for Mental Health and Neuroscience, Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, The Netherlands
| | - Anna Gorlova
- Institute of Molecular Medicine, Laboratory of Psychiatric Neurobiology and Department of Normal Physiology, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
- School for Mental Health and Neuroscience, Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, The Netherlands
| | - Dmitrii Pavlov
- Institute of Molecular Medicine, Laboratory of Psychiatric Neurobiology and Department of Normal Physiology, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
- School for Mental Health and Neuroscience, Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, The Netherlands
- Laboratory of Cognitive Dysfunctions, Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Raymond Cespuglio
- Institute of Molecular Medicine, Laboratory of Psychiatric Neurobiology and Department of Normal Physiology, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
- Neuroscience Research Center of Lyon, C. Bernard University of Lyon, Bron, France
| | - Anna Gorovaya
- Institute of Molecular Medicine, Laboratory of Psychiatric Neurobiology and Department of Normal Physiology, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Andrei Proshin
- Laboratory of Emotional Stress, Federal State Budgetary Scientific Institution "P.K. Anokhin Research Institute of Normal Physiology", Moscow, Russia
| | - Aleksei Umriukhin
- Institute of Molecular Medicine, Laboratory of Psychiatric Neurobiology and Department of Normal Physiology, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
- Laboratory of Emotional Stress, Federal State Budgetary Scientific Institution "P.K. Anokhin Research Institute of Normal Physiology", Moscow, Russia
| | - Eugene D Ponomarev
- Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Alan V Kalueff
- School of Pharmacy, Southwest University, Chongqing, China
- Institute of Translational Biomedicine, St.Petersburg State University, St.-Petersburg, Russia
| | - Tatyana Strekalova
- Institute of Molecular Medicine, Laboratory of Psychiatric Neurobiology and Department of Normal Physiology, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
- School for Mental Health and Neuroscience, Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, The Netherlands
- Laboratory of Cognitive Dysfunctions, Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Careen A Schroeter
- Department of Preventive Medicine, Maastricht Medical Center Annadal, Maastricht, The Netherlands
| |
Collapse
|
28
|
Jure I, De Nicola AF, Encinas JM, Labombarda F. Spinal Cord Injury Leads to Hippocampal Glial Alterations and Neural Stem Cell Inactivation. Cell Mol Neurobiol 2020; 42:197-215. [PMID: 32537668 DOI: 10.1007/s10571-020-00900-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 06/06/2020] [Indexed: 12/12/2022]
Abstract
The hippocampus encodes spatial and contextual information involved in memory and learning. The incorporation of new neurons into hippocampal networks increases neuroplasticity and enhances hippocampal-dependent learning performances. Only few studies have described hippocampal abnormalities after spinal cord injury (SCI) although cognitive deficits related to hippocampal function have been reported in rodents and even humans. The aim of this study was to characterize in further detail hippocampal changes in the acute and chronic SCI. Our data suggested that neurogenesis reduction in the acute phase after SCI could be due to enhanced death of amplifying neural progenitors (ANPs). In addition, astrocytes became reactive and microglial cells increased their number in almost all hippocampal regions studied. Glial changes resulted in a non-inflammatory response as the mRNAs of the major pro-inflammatory cytokines (IL-1β, TNFα, IL-18) remained unaltered, but CD200R mRNA levels were downregulated. Long-term after SCI, astrocytes remained reactive but on the other hand, microglial cell density decreased. Also, glial cells induced a neuroinflammatory environment with the upregulation of IL-1β, TNFα and IL-18 mRNA expression and the decrease of CD200R mRNA. Neurogenesis reduction may be ascribed at later time points to inactivation of neural stem cells (NSCs) and inhibition of ANP proliferation. The number of granular cells and CA1 pyramidal neurons decreased only in the chronic phase. The release of pro-inflammatory cytokines at the chronic phase might involve neurogenesis reduction and neurodegeneration of hippocampal neurons. Therefore, SCI led to hippocampal changes that could be implicated in cognitive deficits observed in rodents and humans.
Collapse
Affiliation(s)
- Ignacio Jure
- Laboratory of Neuroendocrine Biochemistry, IBYME-CONICET., Instituto de Biologia Y Medicina Experimental, Vuelta de Obligado 2490, 1428, Buenos Aires, Argentina
| | - Alejandro F De Nicola
- Laboratory of Neuroendocrine Biochemistry, IBYME-CONICET., Instituto de Biologia Y Medicina Experimental, Vuelta de Obligado 2490, 1428, Buenos Aires, Argentina.,Department of Human Biochemistry, School of Medicine, Buenos Aires University, Paraguay 2155, C1121A6B, Buenos Aires, Argentina
| | - Juan Manuel Encinas
- Laboratory of Neural Stem Cells and Neurogenesis, Achucarro Basque Center for Neuroscience. Sede Bldg. Campus, UPV/EHU, Barrio Sarriena S/N, 48940, Leioa, Spain
| | - Florencia Labombarda
- Laboratory of Neuroendocrine Biochemistry, IBYME-CONICET., Instituto de Biologia Y Medicina Experimental, Vuelta de Obligado 2490, 1428, Buenos Aires, Argentina. .,Department of Human Biochemistry, School of Medicine, Buenos Aires University, Paraguay 2155, C1121A6B, Buenos Aires, Argentina.
| |
Collapse
|
29
|
Fu Y, Depue RA. A novel neurobehavioral framework of the effects of positive early postnatal experience on incentive and consummatory reward sensitivity. Neurosci Biobehav Rev 2019; 107:615-640. [DOI: 10.1016/j.neubiorev.2019.09.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 09/08/2019] [Accepted: 09/17/2019] [Indexed: 12/22/2022]
|
30
|
Palese F, Bonomi E, Nuzzo T, Benussi A, Mellone M, Zianni E, Cisani F, Casamassa A, Alberici A, Scheggia D, Padovani A, Marcello E, Di Luca M, Pittaluga A, Usiello A, Borroni B, Gardoni F. Anti-GluA3 antibodies in frontotemporal dementia: effects on glutamatergic neurotransmission and synaptic failure. Neurobiol Aging 2019; 86:143-155. [PMID: 31784278 DOI: 10.1016/j.neurobiolaging.2019.10.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/10/2019] [Accepted: 10/26/2019] [Indexed: 11/19/2022]
Abstract
Despite the great effort of the scientific community in the field, the pathogenesis of frontotemporal dementia (FTD) remains elusive. Recently, a role for autoimmunity and altered glutamatergic neurotransmission in triggering disease onset has been put forward. We reported the presence of autoantibodies recognizing the GluA3 subunit of α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors in about 25% of FTD cases. In this study, we evaluated the mechanisms involved in anti-GluA3 autoimmunity, through molecular/neurochemical analyses conducted on patients' brain specimens with frontotemporal lobar degeneration-tau neuropathology. We then corroborated these results in vivo in FTD patients with transcranial magnetic stimulation and glutamate, D-serine, and L-serine dosages in the cerebrospinal fluid and serum. We observed that GluA3 autoantibodies affect glutamatergic neurotransmission, decreasing glutamate release and altering GluA3-containing α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor levels. These alterations were accompanied by changes of scaffolding proteins involved in receptor synaptic retention/internalization. The above results were confirmed by transcranial magnetic stimulation, suggesting a significant impairment of indirect measures of glutamatergic neurotransmission in FTD patients compared with controls, with further add-on harmful effect in those FTD patients with anti-GluA3 antibodies. Finally, FTD patients showed a significant increase of glutamate, D-serine, and L-serine levels in the cerebrospinal fluid.
Collapse
Affiliation(s)
- Francesca Palese
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Elisa Bonomi
- Department of Clinical and Experimental Sciences, Neurology Unit, Centre for Neurodegenerative Disorders, University of Brescia, Brescia, Italy
| | - Tommaso Nuzzo
- Translational Neuroscience Unit, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Alberto Benussi
- Department of Clinical and Experimental Sciences, Neurology Unit, Centre for Neurodegenerative Disorders, University of Brescia, Brescia, Italy
| | - Manuela Mellone
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Elisa Zianni
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Francesca Cisani
- Department of Pharmacy, DiFAR, School of Medical and Pharmaceutical Sciences, University of Genoa, Genoa, Italy
| | - Alessia Casamassa
- Translational Neuroscience Unit, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Antonella Alberici
- Department of Clinical and Experimental Sciences, Neurology Unit, Centre for Neurodegenerative Disorders, University of Brescia, Brescia, Italy
| | - Diego Scheggia
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Alessandro Padovani
- Department of Clinical and Experimental Sciences, Neurology Unit, Centre for Neurodegenerative Disorders, University of Brescia, Brescia, Italy
| | - Elena Marcello
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Monica Di Luca
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Anna Pittaluga
- Department of Pharmacy, DiFAR, School of Medical and Pharmaceutical Sciences, University of Genoa, Genoa, Italy
| | - Alessandro Usiello
- Translational Neuroscience Unit, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy; Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, Caserta, Italy
| | - Barbara Borroni
- Department of Clinical and Experimental Sciences, Neurology Unit, Centre for Neurodegenerative Disorders, University of Brescia, Brescia, Italy
| | - Fabrizio Gardoni
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy.
| |
Collapse
|
31
|
Manchia M, Comai S, Pinna M, Pinna F, Fanos V, Denovan-Wright E, Carpiniello B. Biomarkers in aggression. Adv Clin Chem 2019; 93:169-237. [PMID: 31655730 DOI: 10.1016/bs.acc.2019.07.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Aggressive behavior exerts an enormous impact on society remaining among the main causes of worldwide premature death. Effective primary interventions, relying on predictive models of aggression that show adequate sensitivity and specificity are currently lacking. One strategy to increase the accuracy and precision of prediction would be to include biological data in the predictive models. Clearly, to be included in such models, biological markers should be reliably associated with the specific trait under study (i.e., diagnostic biomarkers). Aggression, however, is phenotypically highly heterogeneous, an element that has hindered the identification of reliable biomarkers. However, current research is trying to overcome these challenges by focusing on more homogenous aggression subtypes and/or by studying large sample size of aggressive individuals. Further advance is coming by bioinformatics approaches that are allowing the integration of inter-species biological data as well as the development of predictive algorithms able to discriminate subjects on the basis of the propensity toward aggressive behavior. In this review we first present a brief summary of the available evidence on neuroimaging of aggression. We will then treat extensively the data on genetic determinants, including those from hypothesis-free genome-wide association studies (GWAS) and candidate gene studies. Transcriptomic and neurochemical biomarkers will then be reviewed, and we will dedicate a section on the role of metabolomics in aggression. Finally, we will discuss how biomarkers can inform the development of new pharmacological tools as well as increase the efficacy of preventive strategies.
Collapse
Affiliation(s)
- Mirko Manchia
- Section of Psychiatry, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy; Department of Pharmacology, Dalhousie University, Halifax, NS, Canada.
| | - Stefano Comai
- San Raffaele Scientific Institute and Vita Salute University, Milano, Italy; Department of Psychiatry, McGill University, Montreal, QC, Canada.
| | - Martina Pinna
- Forensic Psychiatry Unit, Sardinia Health Agency, Cagliari, Italy
| | - Federica Pinna
- Section of Psychiatry, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Vassilios Fanos
- Department of Surgical Sciences, University of Cagliari, Cagliari, Italy; Puericulture Institute and Neonatal Section, University Hospital Agency of Cagliari, Cagliari, Italy
| | | | - Bernardo Carpiniello
- Section of Psychiatry, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| |
Collapse
|
32
|
Mejias R, Chiu SL, Han M, Rose R, Gil-Infante A, Zhao Y, Huganir RL, Wang T. Purkinje cell-specific Grip1/2 knockout mice show increased repetitive self-grooming and enhanced mGluR5 signaling in cerebellum. Neurobiol Dis 2019; 132:104602. [PMID: 31476380 DOI: 10.1016/j.nbd.2019.104602] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 07/30/2019] [Accepted: 08/30/2019] [Indexed: 01/16/2023] Open
Abstract
Cerebellar Purkinje cell (PC) loss is a consistent pathological finding in autism. However, neural mechanisms of PC-dysfunction in autism remain poorly characterized. Glutamate receptor interacting proteins 1/2 (Grip1/2) regulate AMPA receptor (AMPAR) trafficking and synaptic strength. To evaluate role of PC-AMPAR signaling in autism, we produced PC-specific Grip1/2 knockout mice by crossing Grip2 conventional and Grip1 conditional KO with L7-Cre driver mice. PCs in the mutant mice showed normal morphology and number, and a lack of Grip1/2 expression. Rodent behavioral testing identified normal ambulation, anxiety, social interaction, and an increase in repetitive self-grooming. Electrophysiology studies revealed normal mEPSCs but an impaired mGluR-LTD at the Parallel Fiber-PC synapses. Immunoblots showed increased expression of mGluR5 and Arc, and enhanced phosphorylation of P38 and AKT in cerebellum of PC-specific Grip1/2 knockout mice. Results indicate that loss of Grip1/2 in PCs contributes to increased repetitive self-grooming, a core autism behavior in mice. Results support a role of AMPAR trafficking defects in PCs and disturbances of mGluR5 signaling in cerebellum in the pathogenesis of repetitive behaviors.
Collapse
Affiliation(s)
- Rebeca Mejias
- McKusick-Nathans Department of Genetic Medicine and Department of Pediatrics, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Physiology, University of Seville, 41012 Seville, Spain.
| | - Shu-Ling Chiu
- Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Mei Han
- McKusick-Nathans Department of Genetic Medicine and Department of Pediatrics, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Rebecca Rose
- McKusick-Nathans Department of Genetic Medicine and Department of Pediatrics, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Ana Gil-Infante
- Department of Physiology, University of Seville, 41012 Seville, Spain
| | - Yifan Zhao
- McKusick-Nathans Department of Genetic Medicine and Department of Pediatrics, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Richard L Huganir
- Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Tao Wang
- McKusick-Nathans Department of Genetic Medicine and Department of Pediatrics, Johns Hopkins University, Baltimore, MD 21205, USA.
| |
Collapse
|
33
|
Gley K, Murani E, Haack F, Trakooljul N, Zebunke M, Puppe B, Wimmers K, Ponsuksili S. Haplotypes of coping behavior associated QTL regions reveal distinct transcript profiles in amygdala and hippocampus. Behav Brain Res 2019; 372:112038. [PMID: 31202863 DOI: 10.1016/j.bbr.2019.112038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 06/06/2019] [Accepted: 06/12/2019] [Indexed: 12/15/2022]
Abstract
Stress response and coping behavior in pigs are largely shaped by hypothalamic-pituitary-adrenal axis and sympatho-adrenomedullary system action. However, the dynamic interaction between amygdala and hippocampus crucially modulates the behavioral response towards significant emotional events. While this functional relationship is well documented, the molecular underpinnings still remain insufficiently understood. Our study used transcriptome profiling of porcine amygdala and hippocampus to identify molecular pathways that are differentially activated depending on the haplotype of a significantly coping behavior-associated region on pig chromosome 12 (SSC12). The pigs were classified into two groups based on the haplotype information of this QTL-region discovered in our previous genome-wide association study. Ten each of high- (HR) and low- (LR) reactive pigs (n = 20) were selected for differential gene expression analysis and weighted gene co-expression analysis with subsequent pathway analysis. Differentially expressed genes identified in the amygdala include SELL, CXCR7 and NTS, while TRAF3, PTGS2 and CFI were detected in the hippocampus indicating a role of neuroinflammation and immunological processes. Pathway analysis revealed IL-8 signaling, NF-κB signaling, glutamate and GABA metabolism, glucocorticoid receptor signaling and chemokine signaling in the amygdala and ephrin receptor signaling, as well as NF-κB signaling in the hippocampus. We discovered candidate genes in regions detected by genome-wide association study including ARRB2, ADRBK2, THRB, NEK7 and ACVR2B, which relate to dopaminergic and other monoaminergic neurotransmitter systems, neuroimmunomodulation, neuroinflammation and GABA-ergic neurotransmission. These findings provide insights into the molecular underpinning of divergent coping behavior and associated haplotypes in limbic forebrain system in pig.
Collapse
Affiliation(s)
- Kevin Gley
- Leibniz Institute of Farm Animal Biology (FBN), Institute for Genome Biology, Wilhelm-Stahl-Allee 2, D-18196 Dummerstorf, Germany
| | - Eduard Murani
- Leibniz Institute of Farm Animal Biology (FBN), Institute for Genome Biology, Wilhelm-Stahl-Allee 2, D-18196 Dummerstorf, Germany
| | - Fiete Haack
- Leibniz Institute of Farm Animal Biology (FBN), Institute for Genome Biology, Wilhelm-Stahl-Allee 2, D-18196 Dummerstorf, Germany
| | - Nares Trakooljul
- Leibniz Institute of Farm Animal Biology (FBN), Institute for Genome Biology, Wilhelm-Stahl-Allee 2, D-18196 Dummerstorf, Germany
| | - Manuela Zebunke
- Leibniz Institute of Farm Animal Biology (FBN), Institute of Genetics and Biometry, Wilhelm-Stahl-Allee 2, D-18196 Dummerstorf, Germany; Leibniz Institute of Farm Animal Biology (FBN), Institute for Behavioral Physiology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Birger Puppe
- Leibniz Institute of Farm Animal Biology (FBN), Institute for Behavioral Physiology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Klaus Wimmers
- Leibniz Institute of Farm Animal Biology (FBN), Institute for Genome Biology, Wilhelm-Stahl-Allee 2, D-18196 Dummerstorf, Germany
| | - Siriluck Ponsuksili
- Leibniz Institute of Farm Animal Biology (FBN), Institute for Genome Biology, Wilhelm-Stahl-Allee 2, D-18196 Dummerstorf, Germany.
| |
Collapse
|
34
|
Huang X, Wang M, Zhang Q, Chen X, Wu J. The role of glutamate receptors in attention-deficit/hyperactivity disorder: From physiology to disease. Am J Med Genet B Neuropsychiatr Genet 2019; 180:272-286. [PMID: 30953404 DOI: 10.1002/ajmg.b.32726] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 02/12/2019] [Accepted: 03/19/2019] [Indexed: 12/15/2022]
Abstract
Attention-deficit hyperactivity disorder (ADHD) is the most common psychiatric disorder in children and adolescents, which is characterized by behavioral problems such as attention deficit, hyperactivity, and impulsivity. As the receptors of the major excitatory neurotransmitter in the mammalian central nervous system (CNS), glutamate receptors (GluRs) are strongly linked to normal brain functioning and pathological processes. Extensive investigations have been made about the structure, function, and regulation of GluR family, describing evidences that support the disruption of these mechanisms in mental disorders, including ADHD. In this review, we briefly described the family and function of GluRs in the CNS, and discussed what is recently known about the role of GluRs in ADHD, that including GluR genes, animal models, and the treatment, which would help us further elucidate the etiology of ADHD.
Collapse
Affiliation(s)
- Xin Huang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Wang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi Zhang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinzhen Chen
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Wu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
35
|
Benussi A, Alberici A, Buratti E, Ghidoni R, Gardoni F, Di Luca M, Padovani A, Borroni B. Toward a Glutamate Hypothesis of Frontotemporal Dementia. Front Neurosci 2019; 13:304. [PMID: 30983965 PMCID: PMC6449454 DOI: 10.3389/fnins.2019.00304] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 03/18/2019] [Indexed: 12/12/2022] Open
Abstract
Frontotemporal dementia (FTD) is a heterogenous neurodegenerative disorder, characterized by diverse clinical presentations, neuropathological characteristics and underlying genetic causes. Emerging evidence has shown that FTD is characterized by a series of changes in several neurotransmitter systems, including serotonin, dopamine, GABA and, above all, glutamate. Indeed, several studies have now provided preclinical and clinical evidence that glutamate is key in the pathogenesis of FTD. Animal models of FTD have shown a selective hypofunction in N-methyl D-aspartate (NMDA) and α-amino-3-hydroxyl-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, while in patients, glutamatergic pyramidal neurons are depleted in several areas, including the frontal and temporal cortices. Recently, a selective involvement of the AMPA GluA3 subunit has been observed in patients with autoimmune anti-GluA3 antibodies, which accounted for nearly 25% of FTD patients, leading to a decrease of the GluA3 subunit synaptic localization of the AMPA receptor and loss of dendritic spines. Other in vivo evidence of the involvement of the glutamatergic system in FTD derives from non-invasive brain stimulation studies using transcranial magnetic stimulation, in which specific stimulation protocols have indirectly identified a selective and prominent impairment in glutamatergic circuits in patients with both sporadic and genetic FTD. In view of limited disease modifying therapies to slow or revert disease progression in FTD, an important approach could consist in targeting the neurotransmitter deficits, similarly to what has been achieved in Parkinson’s disease with dopaminergic therapy or Alzheimer’s disease with cholinergic therapy. In this review, we summarize the current evidence concerning the involvement of the glutamatergic system in FTD, suggesting the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Alberto Benussi
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Antonella Alberici
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Emanuele Buratti
- International Centre for Genetic Engineering and Biotechnology, ICGEB, Trieste, Italy
| | - Roberta Ghidoni
- IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Fabrizio Gardoni
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Monica Di Luca
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Alessandro Padovani
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Barbara Borroni
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| |
Collapse
|
36
|
Gorlova A, Pavlov D, Anthony DC, Ponomarev ED, Sambon M, Proshin A, Shafarevich I, Babaevskaya D, Lesсh KP, Bettendorff L, Strekalova T. Thiamine and benfotiamine counteract ultrasound-induced aggression, normalize AMPA receptor expression and plasticity markers, and reduce oxidative stress in mice. Neuropharmacology 2019; 156:107543. [PMID: 30817932 DOI: 10.1016/j.neuropharm.2019.02.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 02/08/2019] [Accepted: 02/18/2019] [Indexed: 12/11/2022]
Abstract
The negative societal impacts associated with the increasing prevalence of violence and aggression is increasing, and, with this rise, is the need to understand the molecular and cellular changes that underpin ultrasound-induced aggressive behavior. In mice, stress-induced aggression is known to alter AMPA receptor subunit expression, plasticity markers, and oxidative stress within the brain. Here, we induced aggression in BALB/c mice using chronic ultrasound exposure and examined the impact of the psychoactive anti-oxidant compounds thiamine (vitamin B1), and its derivative benfotiamine, on AMPA receptor subunit expression, established plasticity markers, and oxidative stress. The administration of thiamine or benfotiamine (200 mg/kg/day) in drinking water decreased aggressive behavior following 3-weeks of ultrasound exposure and benfotiamine, reduced floating behavior in the swim test. The vehicle-treated ultrasound-exposed mice exhibited increases in protein carbonyl and total glutathione, altered AMPA receptor subunits expression, and decreased expression of plasticity markers. These ultrasound-induced effects were ameliorated by thiamine and benfotiamine treatment; in particular both antioxidants were able to reverse ultrasound-induced changes in GluA1 and GluA2 subunit expression, and, within the prefrontal cortex, significantly reversed the changes in protein carbonyl and polysialylated form of neural cell adhesion molecule (PSA-NCAM) expression levels. Benfotiamine was usually more efficacious than thiamine. Thus, the thiamine compounds were able to counteract ultrasound-induced aggression, which was accompanied by the normalization of markers that have been showed to be associated with ultrasound-induced aggression. These commonly used, orally-active compounds may have considerable potential for use in the control of aggression within the community. This article is part of the Special Issue entitled 'Current status of the neurobiology of aggression and impulsivity'.
Collapse
Affiliation(s)
- Anna Gorlova
- Department of Neuroscience, Maastricht University, Universiteitssingel 40, NL, 6229ER, Maastricht, Netherlands; Laboratory of Neurophysiology, GIGA-Neurosciences, University of Liège, Av. Hippocrate 15, 4000 Liège, Belgium; Laboratory of Psychiatric Neurobiology and Department of Normal Physiology, Institute of Molecular Medicine, Sechenov First Moscow State Medical University Trubetskaya Street 8-2, 119991, Moscow, Russia; Department of Biology, Lomonosov Moscow State University, Leninskie Gory1-12, 119991, Moscow, Russia
| | - Dmitrii Pavlov
- Department of Neuroscience, Maastricht University, Universiteitssingel 40, NL, 6229ER, Maastricht, Netherlands; Laboratory of Neurophysiology, GIGA-Neurosciences, University of Liège, Av. Hippocrate 15, 4000 Liège, Belgium; Department of Biology, Lomonosov Moscow State University, Leninskie Gory1-12, 119991, Moscow, Russia; Institute of General Pathology and Pathophysiology, Baltiiskaya Str, 8, 125315, Moscow, Russia
| | - Daniel C Anthony
- Department of Pharmacology, Oxford University, Mansfield Road, OX1 3QT, Oxford, United Kingdom
| | - Eugene D Ponomarev
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Margaux Sambon
- Laboratory of Neurophysiology, GIGA-Neurosciences, University of Liège, Av. Hippocrate 15, 4000 Liège, Belgium
| | - Andrey Proshin
- Research Institute of Normal Physiology, Baltiiskaya Str, 8, 125315, Moscow, Russia
| | - Igor Shafarevich
- Department of Neuroscience, Maastricht University, Universiteitssingel 40, NL, 6229ER, Maastricht, Netherlands; Laboratory of Psychiatric Neurobiology and Department of Normal Physiology, Institute of Molecular Medicine, Sechenov First Moscow State Medical University Trubetskaya Street 8-2, 119991, Moscow, Russia
| | - Diana Babaevskaya
- Laboratory of Psychiatric Neurobiology and Department of Normal Physiology, Institute of Molecular Medicine, Sechenov First Moscow State Medical University Trubetskaya Street 8-2, 119991, Moscow, Russia
| | - Klaus-Peter Lesсh
- Department of Neuroscience, Maastricht University, Universiteitssingel 40, NL, 6229ER, Maastricht, Netherlands; Laboratory of Psychiatric Neurobiology and Department of Normal Physiology, Institute of Molecular Medicine, Sechenov First Moscow State Medical University Trubetskaya Street 8-2, 119991, Moscow, Russia; Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Josef-Schneider-Straße 2, 97080, Wuerzburg, Germany
| | - Lucien Bettendorff
- Laboratory of Neurophysiology, GIGA-Neurosciences, University of Liège, Av. Hippocrate 15, 4000 Liège, Belgium.
| | - Tatyana Strekalova
- Department of Neuroscience, Maastricht University, Universiteitssingel 40, NL, 6229ER, Maastricht, Netherlands; Laboratory of Psychiatric Neurobiology and Department of Normal Physiology, Institute of Molecular Medicine, Sechenov First Moscow State Medical University Trubetskaya Street 8-2, 119991, Moscow, Russia; Institute of General Pathology and Pathophysiology, Baltiiskaya Str, 8, 125315, Moscow, Russia.
| |
Collapse
|
37
|
Blázquez G, Castañé A, Saavedra A, Masana M, Alberch J, Pérez-Navarro E. Social Memory and Social Patterns Alterations in the Absence of STriatal-Enriched Protein Tyrosine Phosphatase. Front Behav Neurosci 2019; 12:317. [PMID: 30760987 PMCID: PMC6362413 DOI: 10.3389/fnbeh.2018.00317] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 12/04/2018] [Indexed: 01/23/2023] Open
Abstract
STriatal-Enriched protein tyrosine Phosphatase (STEP) is a neural-specific protein that opposes the development of synaptic strengthening and whose levels are altered in several neurodegenerative and psychiatric disorders. Since STEP is expressed in brain regions implicated in social behavior, namely the striatum, the CA2 region of the hippocampus, cortex and amygdala, here we investigated whether social memory and social patterns were altered in STEP knockout (KO) mice. Our data robustly demonstrated that STEP KO mice presented specific social memory impairment as indicated by the three-chamber sociability test, the social discrimination test, the 11-trial habituation/dishabituation social recognition test, and the novel object recognition test (NORT). This affectation was not related to deficiencies in the detection of social olfactory cues, altered sociability or anxiety levels. However, STEP KO mice showed lower exploratory activity, reduced interaction time with an intruder, less dominant behavior and higher immobility time in the tail suspension test than controls, suggesting alterations in motivation. Moreover, the extracellular levels of dopamine (DA), but not serotonin (5-HT), were increased in the dorsal striatum of STEP KO mice. Overall, our results indicate that STEP deficiency disrupts social memory and other social behaviors as well as DA homeostasis in the dorsal striatum.
Collapse
Affiliation(s)
- Gloria Blázquez
- Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - Anna Castañé
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Department of Neurochemistry and Neuropharmacology, CSIC-Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain
| | - Ana Saavedra
- Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - Mercè Masana
- Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - Jordi Alberch
- Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - Esther Pérez-Navarro
- Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| |
Collapse
|
38
|
Piard J, Hu JH, Campeau PM, Rzonca S, Van Esch H, Vincent E, Han M, Rossignol E, Castaneda J, Chelly J, Skinner C, Kalscheuer VM, Wang R, Lemyre E, Kosinska J, Stawinski P, Bal J, Hoffman DA, Schwartz CE, Van Maldergem L, Wang T, Worley PF. FRMPD4 mutations cause X-linked intellectual disability and disrupt dendritic spine morphogenesis. Hum Mol Genet 2019; 27:589-600. [PMID: 29267967 DOI: 10.1093/hmg/ddx426] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 12/12/2017] [Indexed: 11/13/2022] Open
Abstract
FRMPD4 (FERM and PDZ Domain Containing 4) is a neural scaffolding protein that interacts with PSD-95 to positively regulate dendritic spine morphogenesis, and with mGluR1/5 and Homer to regulate mGluR1/5 signaling. We report the genetic and functional characterization of 4 FRMPD4 deleterious mutations that cause a new X-linked intellectual disability (ID) syndrome. These mutations were found to be associated with ID in ten affected male patients from four unrelated families, following an apparent X-linked mode of inheritance. Mutations include deletion of an entire coding exon, a nonsense mutation, a frame-shift mutation resulting in premature termination of translation, and a missense mutation involving a highly conserved amino acid residue neighboring FRMPD4-FERM domain. Clinical features of these patients consisted of moderate to severe ID, language delay and seizures alongside with behavioral and/or psychiatric disturbances. In-depth functional studies showed that a frame-shift mutation, FRMPD4p.Cys618ValfsX8, results in a disruption of FRMPD4 binding with PSD-95 and HOMER1, and a failure to increase spine density in transfected hippocampal neurons. Behavioral studies of frmpd4-KO mice identified hippocampus-dependent spatial learning and memory deficits in Morris Water Maze test. These findings point to an important role of FRMPD4 in normal cognitive development and function in humans and mice, and support the hypothesis that FRMPD4 mutations cause ID by disrupting dendritic spine morphogenesis in glutamatergic neurons.
Collapse
Affiliation(s)
- Juliette Piard
- Centre de Génétique Humaine and Integrative and Cognitive Neuroscience Research Unit EA481, Université de Franche-Comté, Besançon, France
| | - Jia-Hua Hu
- Department of Neuroscience, Department of Pediatrics, Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Program in Developmental Neuroscience, Molecular Neurophysiology and Biophysics Section, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | | | | | - Hilde Van Esch
- Department of Human Genetics, University Hospitals Leuven, Belgium
| | - Elizabeth Vincent
- Department of Neuroscience, Department of Pediatrics, Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mei Han
- Department of Neuroscience, Department of Pediatrics, Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Elsa Rossignol
- Department of Neurosciences, University of Montreal, Montreal, QC, Canada
| | | | - Jamel Chelly
- CNRS UMR7104, Institut de Génétique, Biologie Moléculaire et Cellulaire, Illkirch, France
| | | | - Vera M Kalscheuer
- Research Group Development and Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Ruihua Wang
- Department of Neuroscience, Department of Pediatrics, Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Emmanuelle Lemyre
- Department of Pediatrics, University of Montreal, Montreal, QC, Canada
| | | | | | - Jerzy Bal
- Institute of Mother and Child, Warsaw, Poland
| | - Dax A Hoffman
- Program in Developmental Neuroscience, Molecular Neurophysiology and Biophysics Section, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | | | - Lionel Van Maldergem
- Centre de Génétique Humaine and Integrative and Cognitive Neuroscience Research Unit EA481, Université de Franche-Comté, Besançon, France.,Centre of Clinical Investigation 1431, National Institute for Health and Medical Research (INSERM), Université de Franche-Comté, Besançon, France
| | - Tao Wang
- Department of Neuroscience, Department of Pediatrics, Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Paul F Worley
- Department of Neuroscience, Department of Pediatrics, Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
39
|
Mätlik K, Võikar V, Vilenius C, Kulesskaya N, Andressoo JO. Two-fold elevation of endogenous GDNF levels in mice improves motor coordination without causing side-effects. Sci Rep 2018; 8:11861. [PMID: 30089897 PMCID: PMC6082872 DOI: 10.1038/s41598-018-29988-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 07/20/2018] [Indexed: 01/11/2023] Open
Abstract
Glial cell line-derived neurotrophic factor (GDNF) promotes the survival of dopaminergic neurons in vitro and in vivo. For this reason, GDNF is currently in clinical trials for the treatment of Parkinson’s disease (PD). However, how endogenous GDNF influences dopamine system function and animal behavior is not fully understood. We recently generated GDNF hypermorphic mice that express increased levels of endogenous GDNF from the native locus, resulting in augmented function of the nigrostriatal dopamine system. Specifically, Gdnf wt/hyper mice have a mild increase in striatal and midbrain dopamine levels, increased dopamine transporter activity, and 15% increased numbers of midbrain dopamine neurons and striatal dopaminergic varicosities. Since changes in the dopamine system are implicated in several neuropsychiatric diseases, including schizophrenia, attention deficit hyperactivity disorder (ADHD) and depression, and ectopic GDNF delivery associates with side-effects in PD models and clinical trials, we further investigated Gdnf wt/hyper mice using 20 behavioral tests. Despite increased dopamine levels, dopamine release and dopamine transporter activity, there were no differences in psychiatric disease related phenotypes. However, compared to controls, male Gdnf wt/hyper mice performed better in tests measuring motor function. Therefore, a modest elevation of endogenous GDNF levels improves motor function but does not induce adverse behavioral outcomes.
Collapse
Affiliation(s)
- Kärt Mätlik
- Department of Pharmacology, Faculty of Medicine & Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Vootele Võikar
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Carolina Vilenius
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Natalia Kulesskaya
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Jaan-Olle Andressoo
- Department of Pharmacology, Faculty of Medicine & Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland. .,Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society (NVS), Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
40
|
Moretto E, Murru L, Martano G, Sassone J, Passafaro M. Glutamatergic synapses in neurodevelopmental disorders. Prog Neuropsychopharmacol Biol Psychiatry 2018; 84:328-342. [PMID: 28935587 DOI: 10.1016/j.pnpbp.2017.09.014] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 08/28/2017] [Accepted: 09/16/2017] [Indexed: 12/22/2022]
Abstract
Neurodevelopmental disorders (NDDs) are a group of diseases whose symptoms arise during childhood or adolescence and that impact several higher cognitive functions such as learning, sociability and mood. Accruing evidence suggests that a shared pathogenic mechanism underlying these diseases is the dysfunction of glutamatergic synapses. We summarize present knowledge on autism spectrum disorders (ASD), intellectual disability (ID), Down syndrome (DS), Rett syndrome (RS) and attention-deficit hyperactivity disorder (ADHD), highlighting the involvement of glutamatergic synapses and receptors in these disorders. The most commonly shared defects involve α-amino-3-hydroxy-5-methyl- 4-isoxazole propionic acid receptors (AMPARs), N-methyl-d-aspartate receptors (NMDARs) and metabotropic glutamate receptors (mGluRs), whose functions are strongly linked to synaptic plasticity, affecting both cell-autonomous features as well as circuit formation. Moreover, the major scaffolding proteins and, thus, the general structure of the synapse are often deregulated in neurodevelopmental disorders, which is not surprising considering their crucial role in the regulation of glutamate receptor positioning and functioning. This convergence of defects supports the definition of neurodevelopmental disorders as a continuum of pathological manifestations, suggesting that glutamatergic synapses could be a therapeutic target to ameliorate patient symptomatology.
Collapse
Affiliation(s)
- Edoardo Moretto
- CNR, Institute of Neuroscience, Via Vanvitelli 32, 20129 Milan, Italy
| | - Luca Murru
- CNR, Institute of Neuroscience, Via Vanvitelli 32, 20129 Milan, Italy
| | - Giuseppe Martano
- CNR, Institute of Neuroscience, Via Vanvitelli 32, 20129 Milan, Italy
| | - Jenny Sassone
- San Raffaele Scientific Institute, Vita-Salute University, Milan, Italy
| | - Maria Passafaro
- CNR, Institute of Neuroscience, Via Vanvitelli 32, 20129 Milan, Italy.
| |
Collapse
|
41
|
Davies B, Brown LA, Cais O, Watson J, Clayton AJ, Chang VT, Biggs D, Preece C, Hernandez-Pliego P, Krohn J, Bhomra A, Twigg SRF, Rimmer A, Kanapin A, Sen A, Zaiwalla Z, McVean G, Foster R, Donnelly P, Taylor JC, Blair E, Nutt D, Aricescu AR, Greger IH, Peirson SN, Flint J, Martin HC. A point mutation in the ion conduction pore of AMPA receptor GRIA3 causes dramatically perturbed sleep patterns as well as intellectual disability. Hum Mol Genet 2018; 26:3869-3882. [PMID: 29016847 PMCID: PMC5639461 DOI: 10.1093/hmg/ddx270] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 07/06/2017] [Indexed: 01/19/2023] Open
Abstract
The discovery of genetic variants influencing sleep patterns can shed light on the physiological processes underlying sleep. As part of a large clinical sequencing project, WGS500, we sequenced a family in which the two male children had severe developmental delay and a dramatically disturbed sleep-wake cycle, with very long wake and sleep durations, reaching up to 106-h awake and 48-h asleep. The most likely causal variant identified was a novel missense variant in the X-linked GRIA3 gene, which has been implicated in intellectual disability. GRIA3 encodes GluA3, a subunit of AMPA-type ionotropic glutamate receptors (AMPARs). The mutation (A653T) falls within the highly conserved transmembrane domain of the ion channel gate, immediately adjacent to the analogous residue in the Grid2 (glutamate receptor) gene, which is mutated in the mouse neurobehavioral mutant, Lurcher. In vitro, the GRIA3(A653T) mutation stabilizes the channel in a closed conformation, in contrast to Lurcher. We introduced the orthologous mutation into a mouse strain by CRISPR-Cas9 mutagenesis and found that hemizygous mutants displayed significant differences in the structure of their activity and sleep compared to wild-type littermates. Typically, mice are polyphasic, exhibiting multiple sleep bouts of sleep several minutes long within a 24-h period. The Gria3A653T mouse showed significantly fewer brief bouts of activity and sleep than the wild-types. Furthermore, Gria3A653T mice showed enhanced period lengthening under constant light compared to wild-type mice, suggesting an increased sensitivity to light. Our results suggest a role for GluA3 channel activity in the regulation of sleep behavior in both mice and humans.
Collapse
Affiliation(s)
- Benjamin Davies
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, Oxfordshire OX3 7BN, UK
| | - Laurence A Brown
- Nuffield Department of Clinical Neurosciences, Sleep and Circadian Neuroscience Institute, University of Oxford, Oxford, Oxfordshire OX3 9DU, UK
| | - Ondrej Cais
- Medical Research Council (MRC) Laboratory of Molecular Biology, Neurobiology Division, Cambridge, Cambridgeshire CB2 0QH, UK
| | - Jake Watson
- Medical Research Council (MRC) Laboratory of Molecular Biology, Neurobiology Division, Cambridge, Cambridgeshire CB2 0QH, UK
| | - Amber J Clayton
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, Oxfordshire OX3 7BN, UK
| | - Veronica T Chang
- Medical Research Council (MRC) Laboratory of Molecular Biology, Neurobiology Division, Cambridge, Cambridgeshire CB2 0QH, UK
| | - Daniel Biggs
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, Oxfordshire OX3 7BN, UK
| | - Christopher Preece
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, Oxfordshire OX3 7BN, UK
| | | | - Jon Krohn
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, Oxfordshire OX3 7BN, UK
| | - Amarjit Bhomra
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, Oxfordshire OX3 7BN, UK
| | - Stephen R F Twigg
- Clinical Genetics Group, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, Oxfordshire OX3 9DS, UK
| | | | - Alexander Kanapin
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, Oxfordshire OX3 7BN, UK.,Department of Oncology, University of Oxford, Oxford, Oxfordshire OX3 7DQ, UK
| | | | - Arjune Sen
- Oxford Epilepsy Research Group, NIHR Biomedical Research Centre, Nuffield Department of Clinical Neuroscience, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Zenobia Zaiwalla
- Department of Neuroscience, John Radcliffe Hospital, Oxford, Oxfordshire OX3 9DU, UK
| | - Gil McVean
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, Oxfordshire OX3 7BN, UK.,Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, Oxfordshire OX3 7FZ, UK
| | - Russell Foster
- Nuffield Department of Clinical Neurosciences, Sleep and Circadian Neuroscience Institute, University of Oxford, Oxford, Oxfordshire OX3 9DU, UK
| | - Peter Donnelly
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, Oxfordshire OX3 7BN, UK.,Department of Statistics, University of Oxford, Oxford, Oxfordshire OX1 3LB, UK
| | - Jenny C Taylor
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, Oxfordshire OX3 7BN, UK.,National Institute for Health Research Oxford Biomedical Research Centre (NIHR Oxford BRC), Oxford, Oxfordshire OX3 7LE, UK
| | - Edward Blair
- Department of Clinical Genetics, Oxford University Hospitals NHS Trust, Oxford, Oxfordshire OX3 7HE, UK
| | - David Nutt
- Division of Brain Sciences, Department of Medicine, Centre for Neuropsychopharmacology, Imperial College London, London W12 0NN, UK
| | - A Radu Aricescu
- Medical Research Council (MRC) Laboratory of Molecular Biology, Neurobiology Division, Cambridge, Cambridgeshire CB2 0QH, UK
| | - Ingo H Greger
- Medical Research Council (MRC) Laboratory of Molecular Biology, Neurobiology Division, Cambridge, Cambridgeshire CB2 0QH, UK
| | - Stuart N Peirson
- Nuffield Department of Clinical Neurosciences, Sleep and Circadian Neuroscience Institute, University of Oxford, Oxford, Oxfordshire OX3 9DU, UK
| | - Jonathan Flint
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California-Los Angeles, CA 90095, USA
| | - Hilary C Martin
- Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK
| |
Collapse
|
42
|
Cescon M, Chen P, Castagnaro S, Gregorio I, Bonaldo P. Lack of collagen VI promotes neurodegeneration by impairing autophagy and inducing apoptosis during aging. Aging (Albany NY) 2017; 8:1083-101. [PMID: 27060109 PMCID: PMC4931855 DOI: 10.18632/aging.100924] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 02/15/2016] [Indexed: 12/19/2022]
Abstract
Collagen VI is an extracellular matrix (ECM) protein with a broad distribution in different tissues and mostly deposited at the close periphery of the cell surface. Previous studies revealed that collagen VI protects neurons from the toxicity of amyloid-βpeptides and from UV-induced damage. However, the physiological role of this protein in the central nervous system (CNS) remains unknown. Here, we established primary neural cultures from murine cortex and hippocampus, and carried out in vitro and in vivo studies in wild-type and collagen VI null (Col6a1−/−) mice. Col6a1−/− neural cultures displayed an increased incidence of spontaneous apoptosis and higher vulnerability to oxidative stress, accompanied by altered regulation of autophagy with increased p62 protein levels and decreased LC3 lipidation. Analysis of brain sections confirmed increased apoptosis and abnormal regulation of autophagy in the CNS of collagen VI-deficient animals. To investigate the in vivo physiological consequences of these CNS defects, we carried out functional studies and found that motor and memory task performances were impaired in aged Col6a1−/− mice. These findings indicate that lack of collagen VI leads to spontaneous apoptosis and defective autophagy in neural cells, and point at a protective role for this ECM protein in the CNS during physiological aging.
Collapse
Affiliation(s)
- Matilde Cescon
- Department of Molecular Medicine, University of Padova, I-35131 Padova, Italy
| | - Peiwen Chen
- Department of Molecular Medicine, University of Padova, I-35131 Padova, Italy
| | - Silvia Castagnaro
- Department of Molecular Medicine, University of Padova, I-35131 Padova, Italy
| | - Ilaria Gregorio
- Department of Molecular Medicine, University of Padova, I-35131 Padova, Italy
| | - Paolo Bonaldo
- Department of Molecular Medicine, University of Padova, I-35131 Padova, Italy
| |
Collapse
|
43
|
Shiihashi G, Ito D, Arai I, Kobayashi Y, Hayashi K, Otsuka S, Nakajima K, Yuzaki M, Itohara S, Suzuki N. Dendritic Homeostasis Disruption in a Novel Frontotemporal Dementia Mouse Model Expressing Cytoplasmic Fused in Sarcoma. EBioMedicine 2017; 24:102-115. [PMID: 28928015 PMCID: PMC5652009 DOI: 10.1016/j.ebiom.2017.09.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 08/17/2017] [Accepted: 09/05/2017] [Indexed: 12/14/2022] Open
Abstract
Cytoplasmic aggregation of fused in sarcoma (FUS) is detected in brain regions affected by amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), which compose the disease spectrum, FUS proteinopathy. To understand the pathomechanism of ALS-FTD-associated FUS, we examined the behavior and cellular properties of an ALS mouse model overexpressing FUS with nuclear localization signal deletion. Mutant FUS transgenic mice showed hyperactivity, social interactional deficits, and impaired fear memory retrieval, all of which are compatible with FTD phenotypes. Histological analyses showed decreased dendritic spine and synaptic density in the frontal cortex before neuronal loss. Examination of cultured cells confirmed that mutant but not wild-type FUS was associated with decreased dendritic growth, mRNA levels, and protein synthesis in dendrites. These data suggest that cytoplasmic FUS aggregates impair dendritic mRNA trafficking and translation, in turn leading to dendritic homeostasis disruption and the development of FTD phenotypes.
Collapse
Affiliation(s)
- Gen Shiihashi
- Department of Neurology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Daisuke Ito
- Department of Neurology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan..
| | - Itaru Arai
- Department of Physiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Yuki Kobayashi
- Laboratory for Behavioral Genetics, RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan
| | - Kanehiro Hayashi
- Department of Anatomy, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Shintaro Otsuka
- Department of Physiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Kazunori Nakajima
- Department of Anatomy, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Michisuke Yuzaki
- Department of Physiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Shigeyoshi Itohara
- Laboratory for Behavioral Genetics, RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan
| | - Norihiro Suzuki
- Department of Neurology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| |
Collapse
|
44
|
Renner MC, Albers EH, Gutierrez-Castellanos N, Reinders NR, van Huijstee AN, Xiong H, Lodder TR, Kessels HW. Synaptic plasticity through activation of GluA3-containing AMPA-receptors. eLife 2017; 6:25462. [PMID: 28762944 PMCID: PMC5578739 DOI: 10.7554/elife.25462] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 07/31/2017] [Indexed: 11/13/2022] Open
Abstract
Excitatory synaptic transmission is mediated by AMPA-type glutamate receptors (AMPARs). In CA1 pyramidal neurons of the hippocampus two types of AMPARs predominate: those that contain subunits GluA1 and GluA2 (GluA1/2), and those that contain GluA2 and GluA3 (GluA2/3). Whereas subunits GluA1 and GluA2 have been extensively studied, the contribution of GluA3 to synapse physiology has remained unclear. Here we show in mice that GluA2/3s are in a low-conductance state under basal conditions, and although present at synapses they contribute little to synaptic currents. When intracellular cyclic AMP (cAMP) levels rise, GluA2/3 channels shift to a high-conductance state, leading to synaptic potentiation. This cAMP-driven synaptic potentiation requires the activation of both protein kinase A (PKA) and the GTPase Ras, and is induced upon the activation of β-adrenergic receptors. Together, these experiments reveal a novel type of plasticity at CA1 hippocampal synapses that is expressed by the activation of GluA3-containing AMPARs.
Collapse
Affiliation(s)
- Maria C Renner
- Synaptic Plasticity and Behavior Group, The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Eva Hh Albers
- Synaptic Plasticity and Behavior Group, The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Nicolas Gutierrez-Castellanos
- Synaptic Plasticity and Behavior Group, The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Niels R Reinders
- Synaptic Plasticity and Behavior Group, The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Aile N van Huijstee
- Synaptic Plasticity and Behavior Group, The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Hui Xiong
- Synaptic Plasticity and Behavior Group, The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Tessa R Lodder
- Synaptic Plasticity and Behavior Group, The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Helmut W Kessels
- Synaptic Plasticity and Behavior Group, The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| |
Collapse
|
45
|
Gutierrez-Castellanos N, Da Silva-Matos CM, Zhou K, Canto CB, Renner MC, Koene LMC, Ozyildirim O, Sprengel R, Kessels HW, De Zeeuw CI. Motor Learning Requires Purkinje Cell Synaptic Potentiation through Activation of AMPA-Receptor Subunit GluA3. Neuron 2017; 93:409-424. [PMID: 28103481 PMCID: PMC5263704 DOI: 10.1016/j.neuron.2016.11.046] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 09/28/2016] [Accepted: 11/17/2016] [Indexed: 12/21/2022]
Abstract
Accumulating evidence indicates that cerebellar long-term potentiation (LTP) is necessary for procedural learning. However, little is known about its underlying molecular mechanisms. Whereas AMPA receptor (AMPAR) subunit rules for synaptic plasticity have been extensively studied in relation to declarative learning, it is unclear whether these rules apply to cerebellum-dependent motor learning. Here we show that LTP at the parallel-fiber-to-Purkinje-cell synapse and adaptation of the vestibulo-ocular reflex depend not on GluA1- but on GluA3-containing AMPARs. In contrast to the classic form of LTP implicated in declarative memory formation, this form of LTP does not require GluA1-AMPAR trafficking but rather requires changes in open-channel probability of GluA3-AMPARs mediated by cAMP signaling and activation of the protein directly activated by cAMP (Epac). We conclude that vestibulo-cerebellar motor learning is the first form of memory acquisition shown to depend on GluA3-dependent synaptic potentiation by increasing single-channel conductance. Cerebellar learning depends on expression of GluA3, but not GluA1, in Purkinje cells GluA3 is required to induce LTP, but not LTD, at PF-PC synapses GluA3-dependent potentiation involves a cAMP-driven change in channel conductance GluA3-mediated LTP and learning are induced via cAMP-mediated Epac activation
Collapse
Affiliation(s)
- Nicolas Gutierrez-Castellanos
- Synaptic Plasticity and Behavior Group, The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, the Netherlands; Cerebellar Coordination and Cognition Group, The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, the Netherlands; Department of Neuroscience, Erasmus MC Rotterdam, 3015 GE Rotterdam, the Netherlands
| | - Carla M Da Silva-Matos
- Synaptic Plasticity and Behavior Group, The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, the Netherlands; Cerebellar Coordination and Cognition Group, The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, the Netherlands
| | - Kuikui Zhou
- Department of Neuroscience, Erasmus MC Rotterdam, 3015 GE Rotterdam, the Netherlands
| | - Cathrin B Canto
- Cerebellar Coordination and Cognition Group, The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, the Netherlands
| | - Maria C Renner
- Synaptic Plasticity and Behavior Group, The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, the Netherlands
| | - Linda M C Koene
- Synaptic Plasticity and Behavior Group, The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, the Netherlands
| | - Ozgecan Ozyildirim
- Cerebellar Coordination and Cognition Group, The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, the Netherlands
| | - Rolf Sprengel
- Max Planck Institute for Medical Research, 69120 Heidelberg, Germany
| | - Helmut W Kessels
- Synaptic Plasticity and Behavior Group, The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, the Netherlands.
| | - Chris I De Zeeuw
- Cerebellar Coordination and Cognition Group, The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, the Netherlands; Department of Neuroscience, Erasmus MC Rotterdam, 3015 GE Rotterdam, the Netherlands
| |
Collapse
|
46
|
Jure I, Pietranera L, De Nicola AF, Labombarda F. Spinal Cord Injury Impairs Neurogenesis and Induces Glial Reactivity in the Hippocampus. Neurochem Res 2017; 42:2178-2190. [DOI: 10.1007/s11064-017-2225-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 03/02/2017] [Accepted: 03/06/2017] [Indexed: 11/29/2022]
|
47
|
Putative transmembrane transporter modulates higher-level aggression in Drosophila. Proc Natl Acad Sci U S A 2017; 114:2373-2378. [PMID: 28193893 DOI: 10.1073/pnas.1618354114] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
By selection of winners of dyadic fights for 35 generations, we have generated a hyperaggressive Bully line of flies that almost always win fights against the parental wild-type Canton-S stock. Maintenance of the Bully phenotype is temperature dependent during development, with the phenotype lost when flies are reared at 19 °C. No similar effect is seen with the parent line. This difference allowed us to carry out RNA-seq experiments and identify a limited number of genes that are differentially expressed by twofold or greater in the Bullies; one of these was a putative transmembrane transporter, CG13646, which showed consistent and reproducible twofold down-regulation in Bullies. We examined the causal effect of this gene on the phenotype with a mutant line for CG13646, and with an RNAi approach. In all cases, reduction in expression of CG13646 by approximately half led to a hyperaggressive phenotype partially resembling that seen in the Bully flies. This gene is a member of a very interesting family of solute carrier proteins (SLCs), some of which have been suggested as being involved in glutamine/glutamate and GABA cycles of metabolism in excitatory and inhibitory nerve terminals in mammalian systems.
Collapse
|
48
|
Han M, Mejias R, Chiu SL, Rose R, Adamczyk A, Huganir R, Wang T. Mice lacking GRIP1/2 show increased social interactions and enhanced phosphorylation at GluA2-S880. Behav Brain Res 2017; 321:176-184. [PMID: 28063882 DOI: 10.1016/j.bbr.2016.12.042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 12/26/2016] [Accepted: 12/29/2016] [Indexed: 01/01/2023]
Abstract
Glutamate receptor interacting proteins 1 and 2 (GRIP1/2) play an important role in regulating synaptic trafficking of AMPA receptor 2/3 (GluA2/3) and synaptic strength. Gain-of-function GRIP1 mutations are implicated in social behavioral deficits in autism. To study mechanisms of Grip1/2-mediated AMPA signaling in the regulation of social behaviors, we performed social behavioral testing on neuron-specific Grip1/2-double knockout (DKO) and wild type (WT) mice that are matched for age, sex, and strain background. We determined the expression profile of key signaling proteins in AMPAR, mGluR, mTOR, and GABA pathways in frontal cortex, striatum, and cerebellum of DKO mice. Compared to WT mice, DKO mice show increased sociability in a modified three-chamber social behavioral test [mean±sem for interaction time in seconds; WT: 44.0±5.0; n=10; DKO: 81.0±9.0; n=9; two factor repeated measures ANOVA: F(1,37)=14.45; p<0.01 and planned t-test; p<0.01] and in a dyadic male-male social interaction test (mean±sem for total time in seconds: sniffing, WT-WT, 18.9±1.1; WT-DKO, 42.5±2.1; t-test: p<0.001; following, WT-WT, 7.7±0.72; WT-DKO,14.4±1.8; t-test: p<0.001). Immunoblot studies identified an increase in phosphorylation at GluA2-Serine 880 (GluA2-pS880) in frontal cortex (mean±sem; WT: 0.69±0.06, n=5; DKO: 0.96±0.06, n=6; t-test; p<0.05) and reduced GABAβ3 expression in striatum (mean±sem; WT: 1.16±0.04, n=4; DKO: 0.95±0.06, n=4; t-test; p<0.05) in DKO mice. GluA2-S880 phosphorylation is known to regulate GluA2synaptic recycling, AMPA signaling strength and plasticity. GABAβ3 has been implicated in the etiology and pathogenesis in autism. These data support an important role of Grip1/2-mediated AMPA signaling in regulating social behaviors and disturbance of glutamate- and GABA-signaling in specialized brain regions in autism-related social behavioral deficits.
Collapse
Affiliation(s)
- Mei Han
- McKusick-Nathans Institute of Genetic Medicine and Department of Pediatrics, Johns Hopkins University, School of Medicine, Baltimore, MD, 21205, USA
| | - Rebeca Mejias
- McKusick-Nathans Institute of Genetic Medicine and Department of Pediatrics, Johns Hopkins University, School of Medicine, Baltimore, MD, 21205, USA
| | - Shu-Ling Chiu
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, MD, 21205, USA
| | - Rebecca Rose
- McKusick-Nathans Institute of Genetic Medicine and Department of Pediatrics, Johns Hopkins University, School of Medicine, Baltimore, MD, 21205, USA
| | - Abby Adamczyk
- McKusick-Nathans Institute of Genetic Medicine and Department of Pediatrics, Johns Hopkins University, School of Medicine, Baltimore, MD, 21205, USA
| | - Richard Huganir
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, MD, 21205, USA
| | - Tao Wang
- McKusick-Nathans Institute of Genetic Medicine and Department of Pediatrics, Johns Hopkins University, School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
49
|
Amyloid-β effects on synapses and memory require AMPA receptor subunit GluA3. Proc Natl Acad Sci U S A 2016; 113:E6526-E6534. [PMID: 27708157 DOI: 10.1073/pnas.1614249113] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Amyloid-β (Aβ) is a prime suspect for causing cognitive deficits during the early phases of Alzheimer's disease (AD). Experiments in AD mouse models have shown that soluble oligomeric clusters of Aβ degrade synapses and impair memory formation. We show that all Aβ-driven effects measured in these mice depend on AMPA receptor (AMPAR) subunit GluA3. Hippocampal neurons that lack GluA3 were resistant against Aβ-mediated synaptic depression and spine loss. In addition, Aβ oligomers blocked long-term synaptic potentiation only in neurons that expressed GluA3. Furthermore, although Aβ-overproducing mice showed significant memory impairment, memories in GluA3-deficient congenics remained unaffected. These experiments indicate that the presence of GluA3-containing AMPARs is critical for Aβ-mediated synaptic and cognitive deficits.
Collapse
|
50
|
Zhang-James Y, Faraone SV. Genetic architecture for human aggression: A study of gene-phenotype relationship in OMIM. Am J Med Genet B Neuropsychiatr Genet 2016; 171:641-9. [PMID: 26288127 DOI: 10.1002/ajmg.b.32363] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 08/05/2015] [Indexed: 01/02/2023]
Abstract
Genetic studies of human aggression have mainly focused on known candidate genes and pathways regulating serotonin and dopamine signaling and hormonal functions. These studies have taught us much about the genetics of human aggression, but no genetic locus has yet achieved genome-significance. We here present a review based on a paradoxical hypothesis that studies of rare, functional genetic variations can lead to a better understanding of the molecular mechanisms underlying complex multifactorial disorders such as aggression. We examined all aggression phenotypes catalogued in Online Mendelian Inheritance in Man (OMIM), an Online Catalog of Human Genes and Genetic Disorders. We identified 95 human disorders that have documented aggressive symptoms in at least one individual with a well-defined genetic variant. Altogether, we retrieved 86 causal genes. Although most of these genes had not been implicated in human aggression by previous studies, the most significantly enriched canonical pathways had been previously implicated in aggression (e.g., serotonin and dopamine signaling). Our findings provide strong evidence to support the causal role of these pathways in the pathogenesis of aggression. In addition, the novel genes and pathways we identified suggest additional mechanisms underlying the origins of human aggression. Genome-wide association studies with very large samples will be needed to determine if common variants in these genes are risk factors for aggression. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yanli Zhang-James
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, New York
| | - Stephen V Faraone
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, New York.,Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, New York.,K.G. Jebsen Centre for Research on Neuropsychiatric Disorders, University of Bergen, Bergen, Norway
| |
Collapse
|