1
|
Song J, Lei T, Li Y, Zhou L, Yan W, Li H, Chen L. Dynamic alterations in the amplitude of low-frequency fluctuation in patients with cerebral small vessel disease. Front Mol Neurosci 2023; 16:1200756. [PMID: 37808469 PMCID: PMC10556663 DOI: 10.3389/fnmol.2023.1200756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 09/01/2023] [Indexed: 10/10/2023] Open
Abstract
Background and purpose Previous studies have focused on the changes of dynamic and static functional connections in cerebral small vessel disease (CSVD). However, the dynamic characteristics of local brain activity are poorly understood. The purpose of this study was to investigate the dynamic cerebral activity changes in patients with CSVD using the dynamic amplitude of low-frequency fluctuation (d-ALFF). Methods A total of 104 CSVD patients with cognitive impairment (CSVD-CI, n = 52) or normal cognition (CSVD-NC, n = 52) and 63 matched healthy controls (HCs) were included in this study. Every participant underwent magnetic resonance imaging scans and a battery of neuropsychological examinations. The dynamics of spontaneous brain activity were assessed using dynamic changes in the amplitude of low-frequency fluctuation (ALFF) with the sliding-window method. We used voxel-wise one-way analysis of variance (ANOVA) to compare dynamic ALFF variability among the three groups. Post-hoc t-tests were used to evaluate differences between each group pair. Finally, the brain regions with d-ALFF values with differences between CSVD subgroups were taken as regions of interest (ROI), and the d-ALFF values corresponding to the ROI were extracted for partial correlation analysis with memory. Results (1) There was no significant difference in age (p = 0.120), sex (p = 0.673) and education (p = 0.067) among CSVD-CI, CSVD-NC and HC groups, but there were significant differences Prevalence of hypertension and diabetes mellitus among the three groups (p < 10-3). There were significant differences in scores of several neuropsychological scales among the three groups (p < 10-3). (2) ANOVA and post-hoc t-test showed that there were dynamic abnormalities of spontaneous activity in several brain regions in three groups, mainly located in bilateral parahippocampal gyrus and bilateral hippocampus, bilateral insular and frontal lobes, and the static activity abnormalities in bilateral parahippocampal gyrus and bilateral hippocampal regions were observed at the same time, suggesting that bilateral parahippocampal gyrus and bilateral hippocampus may be the key brain regions for cognitive impairment caused by CSVD. (3) The correlation showed that d-ALFF in the bilateral insular was slightly correlated with the Mini-Mental State Examination (MMSE) score and disease progression rate. The d-ALFF value of the left postcentral gyrus was negatively correlated with the Clock Drawing Test (CDT) score (r = -0.416, p = 0.004), and the d-ALFF value of the right postcentral gyrus was negatively correlated with the Rey's Auditory Verbal Learning Test (RAVLT) word recognition (r = -0.320, p = 0.028). Conclusion There is a wide range of dynamic abnormalities of spontaneous brain activity in patients with CSVD, in which the abnormalities of this activity in specific brain regions are related to memory and execution or emotion.
Collapse
Affiliation(s)
- Jiarui Song
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Department of Nuclear Medicine, Chongqing Liangjiang New District people’s Hospital, Chongqing, China
| | - Ting Lei
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Yajun Li
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Lijing Zhou
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Wei Yan
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Haiqing Li
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Li Chen
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| |
Collapse
|
2
|
Thomas J, Jezzard P, Webb AJS. Low-frequency oscillations in the brain show differential regional associations with severity of cerebral small vessel disease: a systematic review. Front Neurosci 2023; 17:1254209. [PMID: 37719157 PMCID: PMC10501452 DOI: 10.3389/fnins.2023.1254209] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/15/2023] [Indexed: 09/19/2023] Open
Abstract
Background Cerebral small vessel disease (cSVD) is associated with endothelial dysfunction but the pathophysiology is poorly understood. Low-frequency oscillations (LFOs) in the BOLD signal partly reflect cerebrovascular function and have the potential to identify endothelial dysfunction in cSVD. A systematic review was performed to assess the reported relationships between imaging markers of cSVD and LFOs. Methods Medline and EMBASE were searched for original studies reporting an association between LFOs and STRIVE-defined imaging markers of cSVD, including: white matter hyperintensities (WMH), enlarged perivascular spaces, lacunes, CADASIL, and cerebral microbleeds, from inception to September 1, 2022. Variations in LFOs were extracted, where available, on a global, tissue-specific, or regional level, in addition to participant demographics, data acquisition, methods of analysis, and study quality. Where a formal meta-analysis was not possible, differences in the number of studies reporting LFO magnitude by presence or severity of cSVD were determined by sign test. Results 15 studies were included from 841 titles. Studies varied in quality, acquisition parameters, and in method of analysis. Amplitude of low-frequency fluctuation (ALFF) in resting state fMRI was most commonly assessed (12 studies). Across 15 studies with differing markers of cSVD (9 with WMH; 1 with cerebral microbleeds; 1 with lacunar infarcts; 1 with CADASIL; 3 with multiple markers), LFOs in patients with cSVD were decreased in the posterior cortex (22 of 32 occurrences across all studies, p = 0.05), increased in the deep grey nuclei (7 of 7 occurrences across all studies, p = 0.016), and potentially increased in the temporal lobes (9 of 11 occurrences across all studies, p = 0.065). Conclusion Despite limited consensus on the optimal acquisition and analysis methods, there was reasonably consistent regional variation in LFO magnitude by severity of cSVD markers, supporting its potential as a novel index of endothelial dysfunction. We propose a consistent approach to measuring LFOs to characterise targetable mechanisms underlying cSVD.
Collapse
Affiliation(s)
- James Thomas
- Nuffield Department of Clinical Neurosciences, Wolfson Centre for Prevention of Stroke and Dementia, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Peter Jezzard
- FMRIB Division, Nuffield Department of Clinical Neurosciences, Wellcome Centre for Integrative Neuroimaging, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Alastair J. S. Webb
- Nuffield Department of Clinical Neurosciences, Wolfson Centre for Prevention of Stroke and Dementia, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
3
|
Song Z, Wu Z, Zhou Z, Feng M, Liu Y, Ma M, Chang Y, Xing H, Shen L, Wang Y, Dai H. Altered static and dynamic indices of intrinsic brain activity in patients with subcortical ischemic vascular disease: a resting-state functional magnetic resonance imaging analysis. Neuroradiology 2023; 65:923-931. [PMID: 36892613 DOI: 10.1007/s00234-023-03135-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/17/2023] [Indexed: 03/10/2023]
Abstract
PURPOSE To explore the static and dynamic characteristics of intrinsic brain activity (IBA) in subcortical ischemic vascular disease (SIVD) patients with or without cognitive impairment. METHODS In total, 90 participants were recruited, including 32 SIVD patients with cognitive impairment (SIVD-CI, N = 32), 26 SIVD patients with no cognitive impairment (SIVD-NCI, N = 26), and 32 healthy controls (HC, N = 32) matched for age, gender, and education. All subjects underwent resting-state functional magnetic resonance imaging (rs-fMRI) scanning and neuropsychological tests. Amplitude of low-frequency fluctuation (ALFF) was calculated to reflect static alterations of regional IBA. Sliding window analysis was conducted in order to explore the dynamic characteristics. RESULTS Both SIVD-CI and SIVD-NCI group showed significantly decreased ALFF in left angular gyrus (ANG), whereas SIVD-CI group showed increased ALFF in right superior frontal gyrus (SFG), compared with HCs. Furthermore, SIVD-CI group showed significantly decreased ALFF dynamics (dALFF) in right precuneus (PreCu) and left dorsal anterior cingulate cortex (dACC), compared with HC and SIVD-NCI groups (Gaussian random field-corrected, voxel-level P < 0.001, cluster-level P < 0.05). No dynamic changes were detected between SIVD-NCI group and HC group. The mean ALFF value in left ANG of SIVD-CI group was correlated with the score of delayed memory scale. CONCLUSION ANG may be a vulnerable brain region in SIVD patients. Temporal dynamic analysis could serve as a sensitive and promising method to investigate IBA alterations in SIVD patients.
Collapse
Affiliation(s)
- Ziyang Song
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhiwei Wu
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zheping Zhou
- Department of Geratology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Mengmeng Feng
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yuanqing Liu
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Mengya Ma
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yue Chang
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hanqi Xing
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Lan Shen
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China.
| | - Yueju Wang
- Department of Geratology, The First Affiliated Hospital of Soochow University, Suzhou, China.
| | - Hui Dai
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China.
- Institute of Medical Imaging, Soochow University, Suzhou, China.
- Suzhou Key Laboratory of Intelligent Medicine and Equipment, Suzhou, China.
| |
Collapse
|
4
|
Ma J, Liu F, Wang Y, Ma L, Niu Y, Wang J, Ye Z, Zhang J. Frequency-dependent white-matter functional network changes associated with cognitive deficits in subcortical vascular cognitive impairment. Neuroimage Clin 2022; 36:103245. [PMID: 36451351 PMCID: PMC9668649 DOI: 10.1016/j.nicl.2022.103245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 10/07/2022] [Accepted: 10/21/2022] [Indexed: 11/11/2022]
Abstract
Vascular cognitive impairment (VCI) refers to all forms of cognitive decline associated with cerebrovascular diseases, in which white matter (WM) is highly vulnerable. Although previous studies have shown that blood oxygen level-dependent (BOLD) signals inside WM can effectively reflect neural activities, whether WM BOLD signal alterations are present and their roles underlying cognitive impairment in VCI remain largely unknown. In this study, 36 subcortical VCI (SVCI) patients and 36 healthy controls were enrolled to evaluate WM dysfunction. Specifically, fourteen distinct WM networks were identified from resting-state functional MRI using K-means clustering analysis. Subsequently, between-network functional connectivity (FC) and within-network BOLD signal amplitude of WM networks were calculated in three frequency bands (band A: 0.01-0.15 Hz, band B: 0.08-0.15 Hz, and band C: 0.01-0.08 Hz). Patients with SVCI manifested decreased FC mainly in bilateral parietal WM regions, forceps major, superior and inferior longitudinal fasciculi. These connections extensively linked with distinct WM networks and with gray-matter networks such as frontoparietal control, dorsal and ventral attention networks, which exhibited frequency-specific alterations in SVCI. Additionally, extensive amplitude reductions were found in SVCI, showing frequency-dependent properties in parietal, anterior corona radiate, pre/post central, superior and inferior longitudinal fasciculus networks. Furthermore, these decreased FC and amplitudes showed significant positive correlations with cognitive performances in SVCI, and high diagnostic performances for SVCI especially combining all bands. Our study indicated that VCI-related cognitive deficits were characterized by frequency-dependent WM functional abnormalities, which offered novel applicable neuromarkers for VCI.
Collapse
Affiliation(s)
- Juanwei Ma
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China; National Clinical Research Center for Cancer, Tianjin, China; Key Laboratory of Cancer Prevention and Therapy, Tianjin, China; Tianjin's Clinical Research Center for Cancer, Tianjin, China; Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Feng Liu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Yang Wang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Lin Ma
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Yali Niu
- Department of Rehabilitation, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Jing Wang
- Department of Rehabilitation, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Zhaoxiang Ye
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China; National Clinical Research Center for Cancer, Tianjin, China; Key Laboratory of Cancer Prevention and Therapy, Tianjin, China; Tianjin's Clinical Research Center for Cancer, Tianjin, China.
| | - Jing Zhang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China.
| |
Collapse
|
5
|
van Lutterveld R, Varkevisser T, Kouwer K, van Rooij SJH, Kennis M, Hueting M, van Montfort S, van Dellen E, Geuze E. Spontaneous brain activity, graph metrics, and head motion related to prospective post-traumatic stress disorder trauma-focused therapy response. Front Hum Neurosci 2022; 16:730745. [PMID: 36034114 PMCID: PMC9413840 DOI: 10.3389/fnhum.2022.730745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 07/21/2022] [Indexed: 11/29/2022] Open
Abstract
Introduction Trauma-focused psychotherapy for post-traumatic stress disorder (PTSD) is effective in about half of all patients. Investigating biological systems related to prospective treatment response is important to gain insight in mechanisms predisposing patients for successful intervention. We studied if spontaneous brain activity, brain network characteristics and head motion during the resting state are associated with future treatment success. Methods Functional magnetic resonance imaging scans were acquired from 46 veterans with PTSD around the start of treatment. Psychotherapy consisted of trauma-focused cognitive behavioral therapy (tf-CBT), eye movement desensitization and reprocessing (EMDR), or a combination thereof. After intervention, 24 patients were classified as treatment responders and 22 as treatment resistant. Differences between groups in spontaneous brain activity were evaluated using amplitude of low-frequency fluctuations (ALFF), while global and regional brain network characteristics were assessed using a minimum spanning tree (MST) approach. In addition, in-scanner head motion was assessed. Results No differences in spontaneous brain activity and global network characteristics were observed between the responder and non-responder group. The right inferior parietal lobule, right putamen and left superior parietal lobule had a more central position in the network in the responder group compared to the non-responder group, while the right dorsolateral prefrontal cortex (DLPFC), right inferior frontal gyrus and left inferior temporal gyrus had a less central position. In addition, responders showed less head motion. Discussion These results show that areas involved in executive functioning, attentional and action processes, learning, and visual-object processing, are related to prospective PTSD treatment response in veterans. In addition, these findings suggest that involuntary micromovements may be related to future treatment success.
Collapse
Affiliation(s)
- Remko van Lutterveld
- Brain Research and Innovation Centre, Ministry of Defence, Utrecht, Netherlands
- Department of Psychiatry, University Medical Centre, Utrecht, Netherlands
- *Correspondence: Remko van Lutterveld,
| | - Tim Varkevisser
- Brain Research and Innovation Centre, Ministry of Defence, Utrecht, Netherlands
- Department of Psychiatry, University Medical Centre, Utrecht, Netherlands
| | - Karlijn Kouwer
- Brain Research and Innovation Centre, Ministry of Defence, Utrecht, Netherlands
- Department of Psychiatry, University Medical Centre, Utrecht, Netherlands
| | - Sanne J. H. van Rooij
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States
| | - Mitzy Kennis
- ARQ National Psychotrauma Centre, ARQ Centre of Expertise for the Impact of Disasters and Crises, Diemen, Netherlands
| | - Martine Hueting
- Brain Research and Innovation Centre, Ministry of Defence, Utrecht, Netherlands
| | - Simone van Montfort
- Department of Intensive Care Medicine, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Edwin van Dellen
- Department of Psychiatry, University Medical Centre, Utrecht, Netherlands
- Department of Intensive Care Medicine, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Elbert Geuze
- Brain Research and Innovation Centre, Ministry of Defence, Utrecht, Netherlands
- Department of Psychiatry, University Medical Centre, Utrecht, Netherlands
| |
Collapse
|
6
|
Deng S, Franklin CG, O'Boyle M, Zhang W, Heyl BL, Jerabek PA, Lu H, Fox PT. Hemodynamic and metabolic correspondence of resting-state voxel-based physiological metrics in healthy adults. Neuroimage 2022; 250:118923. [PMID: 35066157 PMCID: PMC9201851 DOI: 10.1016/j.neuroimage.2022.118923] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 12/18/2022] Open
Abstract
Voxel-based physiological (VBP) variables derived from blood oxygen level dependent (BOLD) fMRI time-course variations include: amplitude of low frequency fluctuations (ALFF), fractional amplitude of low frequency fluctuations (fALFF) and regional homogeneity (ReHo). Although these BOLD-derived variables can detect between-group (e.g. disease vs control) spatial pattern differences, physiological interpretations are not well established. The primary objective of this study was to quantify spatial correspondences between BOLD VBP variables and PET measurements of cerebral metabolic rate and hemodynamics, being well-validated physiological standards. To this end, quantitative, whole-brain PET images of metabolic rate of glucose (MRGlu; 18FDG) and oxygen (MRO2; 15OO), blood flow (BF; H215O) and blood volume (BV; C15O) were obtained in 16 healthy controls. In the same subjects, BOLD time-courses were obtained for computation of ALFF, fALFF and ReHo images. PET variables were compared pair-wise with BOLD variables. In group-averaged, across-region analyses, ALFF corresponded significantly only with BV (R = 0.64; p < 0.0001). fALFF corresponded most strongly with MRGlu (R = 0.79; p < 0.0001), but also significantly (p < 0.0001) with MRO2 (R = 0.68), BF (R = 0.68) and BV (R=0.68). ReHo performed similarly to fALFF, with significant strong correspondence (p < 0.0001) with MRGlu (R = 0.78), MRO2 (R = 0.54), and, but less strongly with BF (R = 0.50) and BV (R=0.50). Mutual information analyses further clarified these physiological interpretations. When conditioned by BV, ALFF retained no significant MRGlu, MRO2 or BF information. When conditioned by MRGlu, fALFF and ReHo retained no significant MRO2, BF or BV information. Of concern, however, the strength of PET-BOLD correspondences varied markedly by brain region, which calls for future investigation on physiological interpretations at a regional and per-subject basis.
Collapse
Affiliation(s)
- Shengwen Deng
- Research Imaging Institute, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA; Department of Radiology, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Crystal G Franklin
- Research Imaging Institute, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Michael O'Boyle
- Research Imaging Institute, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Wei Zhang
- Research Imaging Institute, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Betty L Heyl
- Research Imaging Institute, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Paul A Jerabek
- Research Imaging Institute, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Hanzhang Lu
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
| | - Peter T Fox
- Research Imaging Institute, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA; Glenn Biggs Institute for Alzheimer's & Neurodegenerative Disorders, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA; Department of Radiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA; South Texas Veterans Health Care System, San Antonio, TX, USA.
| |
Collapse
|
7
|
Xu Y, Shang H, Lu H, Zhang J, Yao L, Long Z. Altered Dynamic Functional Connectivity in Subcortical Ischemic Vascular Disease With Cognitive Impairment. Front Aging Neurosci 2021; 13:758137. [PMID: 34955812 PMCID: PMC8704998 DOI: 10.3389/fnagi.2021.758137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 11/17/2021] [Indexed: 11/25/2022] Open
Abstract
Subcortical ischemic vascular disease (SIVD) can cause cognitive impairment and affect the static functional connectivity of resting functional magnetic resonance imaging (fMRI). Numerous previous studies have demonstrated that functional connectivities (FCs) fluctuate dynamically over time. However, little is known about the impact of cognitive impairment on brain dynamic functional connectivity (DFC) in SIVD patients with MCI. In the present study, the DFC analysis method was applied to the resting functional magnetic resonance imaging (fMRI) data of 37 SIVD controls (SIVD-Control) without cognitive impairment, 34 SIVD patients with amnestic MCI (SIVD-aMCI) and 30 SIVD patients with nonamnestic MCI (SIVD-naMCI). The results indicated that the cognitive impairment of SIVD mainly reduced the mean dwell time of State 3 with overall strong positive connections. The reduction degree of SIVD-aMCI was larger than that of SIVD-naMCI. The memory/execution function impairment of SIVD also changed the relationship between the mean dwell time of State 3 and the behavioral performance of the memory/execution task from significant to non-significant correlation. Moreover, SIVD-aMCI showed significantly lower system segregation of FC states than SIVD-Control and SIVD-naMCI. The system segregation of State 5 with overall weak connections was significantly positive correlated with the memory performance. The results may suggest that the mean dwell time of State 3 and the system segregation of State 5 may be used as important neural measures of cognitive impairments of SIVD.
Collapse
Affiliation(s)
- Yuanhang Xu
- The State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Huajie Shang
- The State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.,BABRI Centre, Beijing Normal University, Beijing, China
| | - Hui Lu
- The State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.,BABRI Centre, Beijing Normal University, Beijing, China
| | - Junying Zhang
- BABRI Centre, Beijing Normal University, Beijing, China.,Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Li Yao
- The State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.,School of Artificial Intelligence, Beijing Normal University, Beijing, China
| | - Zhiying Long
- The State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| |
Collapse
|
8
|
Li MT, Zhang SX, Li X, Antwi CO, Sun JW, Wang C, Sun XH, Jia XZ, Ren J. Amplitude of Low-Frequency Fluctuation in Multiple Frequency Bands in Tension-Type Headache Patients: A Resting-State Functional Magnetic Resonance Imaging Study. Front Neurosci 2021; 15:742973. [PMID: 34759792 PMCID: PMC8573136 DOI: 10.3389/fnins.2021.742973] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 09/15/2021] [Indexed: 11/13/2022] Open
Abstract
Purpose: Tension-type headache (TTH), the most prevalent primary headache disorder, imposes an enormous burden on the people of the world. The quest to ease suffering from this neurological disorder has sustained research interest. The present study aimed at evaluating the amplitude of low-frequency oscillations (LFOs) of the brain in multiple frequency bands in patients with TTH. Methods: To address this question, 63 participants were enrolled in the study, including 32 TTH patients and 31 healthy controls (HCs). For all the participants, amplitude of low-frequency fluctuation (ALFF) was measured in six frequency bands (conventional frequency bands, 0.01-0.08 Hz; slow-2, 0.198-0.25 Hz; slow-3, 0.073-0.198 Hz; slow-4, 0.027-0.073 Hz; slow-5, 0.01-0.027 Hz; and slow-6, 0-0.01 Hz), and the differences between TTH patients and HCs were examined. To explore the relationship between the altered ALFF brain regions in the six frequency bands and the Visual Analog Scale (VAS) score in the TTH patients, Pearson's correlation analysis was performed. Results: In all the six frequency bands, a decreased ALFF value was detected, and regions showing reduced ALFF values were mostly located in the middle frontal gyrus and superior gyrus. A frequency-dependent alternating characterization of intrinsic brain activity was found in the left caudate nucleus in the slow-2 band of 0.198-0.25 Hz and in the right inferior frontal orbital gyrus in the slow-5 band of 0.01-0.027 Hz. For the correlation results, both the left anterior cingulate and paracingulate gyri and right superior parietal gyrus showed a positive correlation with the VAS score in the slow-4 frequency band of 0.027-0.073 Hz. Conclusion: The ALFF alterations in the brain regions of TTH patients are involved in pain processing. The altered LFOs in the multiple regions may help promote the understanding of the pathophysiology of TTH. These observations could also allow the future treatment of TTH to be more directional and targeted and could promote the development of TTH treatment.
Collapse
Affiliation(s)
- Meng-Ting Li
- School of Teacher Education, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, jinhua, China
| | - Shu-Xian Zhang
- Department of Medical Imaging, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Xue Li
- School of Information and Electronics Technology, Jiamusi University, Jiamusi, China
| | - Collins Opoku Antwi
- Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, jinhua, China
| | - Jia-Wei Sun
- School of Information and Electronics Technology, Jiamusi University, Jiamusi, China
| | - Chao Wang
- Department of Medical Imaging, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Xi-He Sun
- Department of Medical Imaging, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Xi-Ze Jia
- School of Teacher Education, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, jinhua, China
| | - Jun Ren
- School of Teacher Education, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, jinhua, China
| |
Collapse
|
9
|
Xu W, Song Y, Chen S, Xue C, Hu G, Qi W, Ma W, Lin X, Chen J. An ALE Meta-Analysis of Specific Functional MRI Studies on Subcortical Vascular Cognitive Impairment. Front Neurol 2021; 12:649233. [PMID: 34630270 PMCID: PMC8492914 DOI: 10.3389/fneur.2021.649233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 07/28/2021] [Indexed: 11/23/2022] Open
Abstract
Background: Subcortical vascular cognitive impairment (sVCI), caused by cerebral small vessel disease, accounts for the majority of vascular cognitive impairment, and is characterized by an insidious onset and impaired memory and executive function. If not recognized early, it inevitably develops into vascular dementia. Several quantitative studies have reported the consistent results of brain regions in sVCI patients that can be used to predict dementia conversion. The purpose of the study was to explore the exact abnormalities within the brain in sVCI patients by combining the coordinates reported in previous studies. Methods: The PubMed, Embase, and Web of Science databases were thoroughly searched to obtain neuroimaging articles on the amplitude of low-frequency fluctuation, regional homogeneity, and functional connectivity in sVCI patients. According to the activation likelihood estimation (ALE) algorithm, a meta-analysis based on coordinate and functional connectivity modeling was conducted. Results: The quantitative meta-analysis included 20 functional imaging studies on sVCI patients. Alterations in specific brain regions were mainly concentrated in the frontal lobes including the middle frontal gyrus, superior frontal gyrus, medial frontal gyrus, and precentral gyrus; parietal lobes including the precuneus, angular gyrus, postcentral gyrus, and inferior parietal lobule; occipital lobes including the lingual gyrus and cuneus; temporal lobes including the fusiform gyrus and middle temporal gyrus; and the limbic system including the cingulate gyrus. These specific brain regions belonged to important networks known as the default mode network, the executive control network, and the visual network. Conclusion: The present study determined specific abnormal brain regions in sVCI patients, and these brain regions with specific changes were found to belong to important brain functional networks. The findings objectively present the exact abnormalities within the brain, which help further understand the pathogenesis of sVCI and identify them as potential imaging biomarkers. The results may also provide a basis for new approaches to treatment.
Collapse
Affiliation(s)
- Wenwen Xu
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Yu Song
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Shanshan Chen
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Chen Xue
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Guanjie Hu
- Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing, China
| | - Wenzhang Qi
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Wenying Ma
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Xingjian Lin
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Jiu Chen
- Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing, China.,Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
10
|
Liu X, Cheng R, Chen L, Gong J, Luo T, Lv F. Altered Neurovascular Coupling in Subcortical Ischemic Vascular Disease. Front Aging Neurosci 2021; 13:598365. [PMID: 34054499 PMCID: PMC8149589 DOI: 10.3389/fnagi.2021.598365] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 03/18/2021] [Indexed: 11/18/2022] Open
Abstract
Patients with subcortical ischemic vascular disease (SIVD) exhibit a high risk of cognitive impairment that might be caused by neurologic deficits and vascular injuries. However, the mechanism remains unknown. In current study, 24 normal controls (NC) and 54 SIVD patients, including 26 SIVD patients with no cognitive impairment (SIVD-NCI) and 28 SIVD patients with mild cognitive impairment (SIVD-MCI) underwent the resting-state functional MRI (rs-fMRI) and neuropsychological assessments. We combined regional homogeneity (ReHo) and cerebral blood flow (CBF) by using the global ReHo-CBF correlations coefficient and the ReHo/CBF ratio to detect the inner link between neuronal activity and vascular responses. Correlations between the ReHo/CBF ratio and neuropsychological assessments were explored in patients with SIVD. As a result, we identified significantly decreased global ReHo-CBF coupling in the SIVD-NCI group and SIVD- MCI group with respect to the NC. The SIVD-MCI group showed more serious decoupling of the global ReHo-CBF correlation. We also found a significantly abnormal ReHo/CBF ratio predominantly located in cognitive-related brain regions, including the left insula, right middle temporal gyrus, right precuneus, left precentral gyrus, and left inferior parietal lobule but not the supramarginal and angular gyri. The SIVD-MCI group showed more severe disorders of neurovascular coupling than the other two groups. Moreover, the ReHo/CBF ratio in the left precentral gyrus of the SIVD-NCI group exhibited a positive correlation with the MMSE scores. These findings suggested that patients with SIVD show abnormal neurovascular coupling at the early stage of the disease and during disease development. It might be associated with disease severity and cognitive impairment. Neurovascular decoupling in brain may be a possible neuropathological mechanism of SIVD.
Collapse
Affiliation(s)
- Xiaoshuang Liu
- Department of Radiology, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Runtian Cheng
- Department of Radiology, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Li Chen
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Sichuan, China
| | - Junwei Gong
- Department of Radiology, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tianyou Luo
- Department of Radiology, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Fajin Lv
- Department of Radiology, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
11
|
Yang L, Yan Y, Li Y, Hu X, Lu J, Chan P, Yan T, Han Y. Frequency-dependent changes in fractional amplitude of low-frequency oscillations in Alzheimer's disease: a resting-state fMRI study. Brain Imaging Behav 2021; 14:2187-2201. [PMID: 31478145 DOI: 10.1007/s11682-019-00169-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease in elderly individuals. We conducted this study to examine whether alterations in the fractional amplitudes of low-frequency fluctuations (fALFF) in the AD spectrum were frequency-dependent and symptom-relevant. A total of 43 patients with subjective cognitive decline (SCD), 52 with amnestic mild cognitive impairment (aMCI), 44 with Alzheimer's dementia (d-AD) and 55 well-matched controls participated in resting-state functional magnetic resonance imaging (rs-fMRI) scans. The amplitudes were measured using fALFF within the slow-4 (0.027-0.073 Hz) and slow-5 (0.01-0.027 Hz) bands. Repeated-measures analysis of variance was performed on fALFF within two bands and correlated with neuropsychological test scores. The significant main effects of frequency and group on fALFF differed widely across brain regions. There were more varied areas in the slow-5 band than the slow-4 band. The fALFF associated with primary disease effects was mainly distributed in the parietal lobe. Obvious frequency band and group interaction effects were observed in the left angular gyrus, left calcarine fissure and surrounding cortex, left superior cerebellum, left cuneus and right lingual gyrus. Neuropsychological tests scores were significantly correlated with the fALFF magnitude of the left cuneus and right lingual in the slow-5 band. Our results suggested that the AD continuum had abnormal amplitudes in intrinsic brain activity, and these abnormalities were frequency-dependent and mainly associated with the slow-5 band rather than the slow-4 band. This may guide the frequency choice of future rs-fMRI studies and provide new insights into the neuropathophysiology of AD.
Collapse
Affiliation(s)
- Liu Yang
- Department of Neurology, Xuanwu Hospital of Capital Medical University, No.45 Street Changchun, District Xichen, Beijing, 100053, China
| | - Yan Yan
- School of Life Science, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing, 100081, China
| | - Yuxia Li
- Department of Neurology, Xuanwu Hospital of Capital Medical University, No.45 Street Changchun, District Xichen, Beijing, 100053, China
| | - Xiaochen Hu
- Department of Psychiatry and Psychotherapy, Medical Faculty, University of Cologne, Cologne, Germany
| | - Jie Lu
- Department of Radiology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Piu Chan
- Department of Neurology, Xuanwu Hospital of Capital Medical University, No.45 Street Changchun, District Xichen, Beijing, 100053, China.,Beijing Institute of Geriatrics, Beijing, China.,National Clinical Research Center for Geriatric Disorders, Beijing, China
| | - Tianyi Yan
- School of Life Science, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing, 100081, China.
| | - Ying Han
- Department of Neurology, Xuanwu Hospital of Capital Medical University, No.45 Street Changchun, District Xichen, Beijing, 100053, China. .,Beijing Institute of Geriatrics, Beijing, China. .,National Clinical Research Center for Geriatric Disorders, Beijing, China. .,Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing, China.
| |
Collapse
|
12
|
Yu J, Wang W, Peng D, Luo J, Xin H, Yu H, Zhang J, Li L, Li H. Intrinsic low-frequency oscillation changes in multiple-frequency bands in stable patients with chronic obstructive pulmonary disease. Brain Imaging Behav 2020; 15:1922-1933. [PMID: 32880076 DOI: 10.1007/s11682-020-00385-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Abnormal local spontaneous brain activity during the resting state has been observed in chronic obstructive pulmonary disease (COPD). However, it is still largely unclear whether the abnormalities are related to specific frequency bands. Our purpose was to explore intrinsic neural activity changes in different frequency bands by using the amplitude of low-frequency fluctuation (ALFF) method in stable COPD patients. Nineteen stable COPD patients and twenty gender-, age- and education-matched normal controls (NCs) underwent functional magnetic resonance imaging scans, cognitive function tests and lung function tests. Two different frequency bands (slow-4: 0.027-0.073 Hz; slow-5: 0.01-0.027 Hz) were calculated and analyzed for frequency-dependent intrinsic neural activity by using the ALFF method. A two-way analysis of variance test was used to compare the main effects of the groups and the frequency bands in the ALFF method. Further post-hoc t-tests were used to compare the differences between COPD patients and NCs in terms of the different frequency bands. A Pearson's correlation analysis was performed to explore the relationship between the altered ALFF brain areas in the different frequency bands and the clinical evaluations in the COPD patients. There were main effects of the groups including significantly higher ALFF values in the right superior temporal gyrus (STG), the bilateral cerebellum posterior lobe (CPL), the right lingual gyrus (LG) and the right brainstem, and as well as significantly decreased ALFF values in the right inferior parietal lobule (IPL) and the angular. The main effect of frequency was demonstrated in the CPL, the STG, the prefrontal cortex and the middle cingulate gyrus. Furthermore, COPD patients exhibited more widespread alterations in intrinsic brain activity in the slow-5 band than in the slow-4 band. Moreover, the abnormal intrinsic brain activity in the slow-4 and slow-5 bands were associated with PaCO2 in COPD patients. These current results indicated that COPD patients showed abnormal intrinsic brain activity in two different frequency bands, and abnormal intrinsic neuronal activity in different brain regions could be better detected by slow-5 band. These observations may provide a neoteric view into understanding the local neural psychopathology in stable COPD patients.
Collapse
Affiliation(s)
- Jingjing Yu
- Department of Respiratory, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wenjing Wang
- Department of Respiratory, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Dechang Peng
- Department of Radiology, Jiangxi Province Medical Imaging Research Institute, the First Affiliated Hospital of Nanchang University, No.17, Yongwai Zheng Street, Donghu District, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Juan Luo
- Department of Respiratory, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Huizhen Xin
- Department of Radiology, Jiangxi Province Medical Imaging Research Institute, the First Affiliated Hospital of Nanchang University, No.17, Yongwai Zheng Street, Donghu District, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Honghui Yu
- Department of Radiology, Jiangxi Province Medical Imaging Research Institute, the First Affiliated Hospital of Nanchang University, No.17, Yongwai Zheng Street, Donghu District, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Juan Zhang
- Department of Radiology, Jiangxi Province Medical Imaging Research Institute, the First Affiliated Hospital of Nanchang University, No.17, Yongwai Zheng Street, Donghu District, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Lan Li
- Jiangxi Provincial Institute of Parasitic Diseases Control, No.239, Gaoxin two road, Qingshanhu District, Nanchang, 330096, Jiangxi Province, People's Republic of China.
| | - Haijun Li
- Department of Radiology, Jiangxi Province Medical Imaging Research Institute, the First Affiliated Hospital of Nanchang University, No.17, Yongwai Zheng Street, Donghu District, Nanchang, 330006, Jiangxi Province, People's Republic of China.
| |
Collapse
|
13
|
Reduced resting-state brain functional network connectivity and poor regional homogeneity in patients with CADASIL. J Headache Pain 2019; 20:103. [PMID: 31711415 PMCID: PMC6849263 DOI: 10.1186/s10194-019-1052-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/10/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) manifests principally as a suite of cognitive impairments, particularly in the executive domain. Executive functioning requires the dynamic coordination of neural activity over large-scale networks. It remains unclear whether changes in resting-state brain functional network connectivity and regional homogeneities (ReHos) underly the mechanisms of executive dysfunction evident in CADASIL patients. METHODS In this study, 22 CADASIL patients and 44 matched healthy controls underwent resting-state functional magnetic resonance imaging (fMRI). Independent component analysis (ICA) was used to measure functional brain network connectivity, and ReHos were calculated to evaluate local brain activities. We used seed-based functional connectivity (FC) analyses to determine whether dysfunctional areas (as defined by ReHos) exhibited abnormal FC with other brain areas. Relationships among the mean intra-network connectivity z-scores of dysfunctional areas within functional networks, and cognitive scores were evaluated using Pearson correlation analyses. RESULTS Compared to the controls, CADASIL patients exhibited decreased intra-network connectivity within the bilateral lingual gyrus (LG) and the right cuneus (CU) (thus within the visual network [VIN)], and within the right precuneus (Pcu), inferior frontal gyrus (IFG), and precentral gyrus (thus within the frontal network [FRN]). Compared to the controls, patients also exhibited significantly lower ReHos in the right precuneus and cuneus (Pcu/CU), visual association cortex, calcarine gyri, posterior cingulate, limbic lobe, and weaker FC between the right Pcu/CU and the bilateral parahippocampal gyrus (PHG), and between the right Pcu/CU and the right postcentral gyrus. Notably, the mean connectivity z-scores of the bilateral LG and the right CU within the VIN were positively associated with compromised attention, calculation and delayed recall as revealed by tests of the various cognitive domains explored by the Mini-Mental State Examination. CONCLUSIONS The decreases in intra-network connectivity within the VIN and FRN and reduced local brain activity in the posterior parietal area suggest that patients with CADASIL may exhibit dysfunctional visuomotor behaviors (a hallmark of executive function), and that all visual information processing, visuomotor planning, and movement execution may be affected.
Collapse
|
14
|
Su J, Wang M, Ban S, Wang L, Cheng X, Hua F, Tang Y, Zhou H, Zhai Y, Du X, Liu J. Relationship between changes in resting-state spontaneous brain activity and cognitive impairment in patients with CADASIL. J Headache Pain 2019; 20:36. [PMID: 30995925 PMCID: PMC6734224 DOI: 10.1186/s10194-019-0982-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 03/14/2019] [Indexed: 01/15/2023] Open
Abstract
Background Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) mainly manifests with cognitive impairment. Cognitive deficits in patients with CADASIL are correlated with structural brain changes such as lacunar lesion burden, normalized brain volume, and anterior thalamic radiation lesions, but changes in resting-state functional brain activity in patients with CADASIL have not been reported. Methods This study used resting-state functional magnetic resonance imaging (fMRI) to measure the amplitude of low-frequency fluctuation (ALFF) in 22 patients with CADASIL and 44 healthy matched controls. A seed-based functional connectivity (FC) analysis was used to investigate whether the dysfunctional areas identified by ALFF analysis exhibited abnormal FC with other brain areas. Pearson’s correlation analysis was used to detect correlations between the ALFF z-score of abnormal brain areas and clinical scores in patients with CADASIL. Results Patients with CADASIL exhibited significantly lower ALFF values in the right precuneus and cuneus (Pcu/CU) and higher ALFF values in the bilateral superior frontal gyrus (SFG) and left cerebellar anterior and posterior lobes compared with controls. Patients with CADASIL showed weaker FC between the areas with abnormal ALFF (using peaks in the left and right SFG and the right Pcu/CU) and other brain areas. Importantly, the ALFF z-scores for the left and right SFG were negatively associated with cognitive performance, including Mini-Mental State Examination (MMSE) and Montreal Cognitive Assessment scores (MoCA), respectively, whereas those of the right Pcu/CU were positively correlated with the MMSE score. Conclusions This preliminary study provides evidence for changes in ALFF of the right Pcu/CU, bilateral SFG and left cerebellar anterior and posterior lobes, and associations between ALFF values for abnormal brain areas and cognitive performance in patients with CADASIL. Therefore, spontaneous brain activity may be a novel imaging biomarker of cognitive impairment in this population.
Collapse
Affiliation(s)
- Jingjing Su
- Department of Neurology and Jiuyuan Municipal Stroke Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China
| | - Mengxing Wang
- Shanghai Key Laboratory of Magnetic Resonance and Department of Physics, School of Physics and Materials Science, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, People's Republic of China.,College of Medical Imaging, Shanghai University of Medicine & Health Sciences, 279 Zhouzhu Highway, Shanghai, 201318, People's Republic of China
| | - Shiyu Ban
- Shanghai Key Laboratory of Magnetic Resonance and Department of Physics, School of Physics and Materials Science, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, People's Republic of China
| | - Liang Wang
- Department of Neurology, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai, 200040, People's Republic of China
| | - Xin Cheng
- Department of Neurology, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai, 200040, People's Republic of China
| | - Fengchun Hua
- PET Center, Huashan Hospital, Fudan University, 518 East Wuzhong Road, Shanghai, 200235, People's Republic of China
| | - Yuping Tang
- Department of Neurology, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai, 200040, People's Republic of China
| | - Houguang Zhou
- Department of Geriatrics Neurology, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai, 200040, People's Republic of China
| | - Yu Zhai
- Department of Neurology and Jiuyuan Municipal Stroke Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China.
| | - Xiaoxia Du
- Shanghai Key Laboratory of Magnetic Resonance and Department of Physics, School of Physics and Materials Science, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, People's Republic of China.
| | - Jianren Liu
- Department of Neurology and Jiuyuan Municipal Stroke Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China.
| |
Collapse
|
15
|
Risacher SL, Saykin AJ. Neuroimaging in aging and neurologic diseases. HANDBOOK OF CLINICAL NEUROLOGY 2019; 167:191-227. [PMID: 31753134 DOI: 10.1016/b978-0-12-804766-8.00012-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neuroimaging biomarkers for neurologic diseases are important tools, both for understanding pathology associated with cognitive and clinical symptoms and for differential diagnosis. This chapter explores neuroimaging measures, including structural and functional measures from magnetic resonance imaging (MRI) and molecular measures primarily from positron emission tomography (PET), in healthy aging adults and in a number of neurologic diseases. The spectrum covers neuroimaging measures from normal aging to a variety of dementias: late-onset Alzheimer's disease [AD; including mild cognitive impairment (MCI)], familial and nonfamilial early-onset AD, atypical AD syndromes, posterior cortical atrophy (PCA), logopenic aphasia (lvPPA), cerebral amyloid angiopathy (CAA), vascular dementia (VaD), sporadic and familial behavioral-variant frontotemporal dementia (bvFTD), semantic dementia (SD), progressive nonfluent aphasia (PNFA), frontotemporal dementia with motor neuron disease (FTD-MND), frontotemporal dementia with amyotrophic lateral sclerosis (FTD-ALS), corticobasal degeneration (CBD), progressive supranuclear palsy (PSP), dementia with Lewy bodies (DLB), Parkinson's disease (PD) with and without dementia, and multiple systems atrophy (MSA). We also include a discussion of the appropriate use criteria (AUC) for amyloid imaging and conclude with a discussion of differential diagnosis of neurologic dementia disorders in the context of neuroimaging.
Collapse
Affiliation(s)
- Shannon L Risacher
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Andrew J Saykin
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, United States.
| |
Collapse
|
16
|
Zhao Z, Tang C, Yin D, Wu J, Gong J, Sun L, Jia J, Xu D, Fan M. Frequency-specific alterations of regional homogeneity in subcortical stroke patients with different outcomes in hand function. Hum Brain Mapp 2018; 39:4373-4384. [PMID: 29972261 DOI: 10.1002/hbm.24277] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 05/10/2018] [Accepted: 06/15/2018] [Indexed: 12/24/2022] Open
Abstract
Emerging evidence has suggested that abnormalities in regional spontaneous brain activity following stroke may be detected by intrinsic low-frequency oscillations (LFO) in resting-state functional MRI (R-fMRI). However, the relationship between hand function outcomes following stroke and local LFO synchronization in different frequency bands is poorly understood. In this study, we performed R-fMRI to examine the regional homogeneity (ReHo) at three different frequency bands (slow-5: .01-.027 Hz; slow-4: .027-.08 Hz; and typical band: .01-.1 Hz) in 26 stroke patients with completely paralyzed hands (CPH) and 26 matched patients with partially paralyzed hands (PPH). Compared to the PPH group, decreased ReHo in the bilateral cerebellum posterior lobes and the contralesional cerebellum anterior lobe was observed in the slow-5 band and the slow-4 band in the CPH group, respectively. The mean ReHo values in these regions were positively correlated with the Fugl-Meyer assessment (FMA) scores. In contrast, increased ReHo in the contralesional supplementary motor area and the contralesional superior temporal gyrus was observed in the slow-4 band and the slow-5 band, respectively. The mean ReHo values in these regions were negatively correlated with the FMA scores. Importantly, significant interactions were identified between the frequency bands and the subgroups of patients in the contralesional precentral gyrus and middle frontal gyrus. These findings indicate that frequency-dependent R-fMRI patterns may serve as potential biomarkers of the neural substrates associated with hand function outcomes following stroke.
Collapse
Affiliation(s)
- Zhiyong Zhao
- Department of Physics, Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai, China
| | - Chaozheng Tang
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Dazhi Yin
- State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jie Wu
- Department of Physics, Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai, China
| | - Jiayu Gong
- Department of Physics, Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai, China
| | - Limin Sun
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jie Jia
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Dongrong Xu
- Department of psychiatry, New York State Psychiatric Institute and Columbia University, New York, New York
| | - Mingxia Fan
- Department of Physics, Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai, China
| |
Collapse
|
17
|
Xiao F, Wang T, Gao L, Fang J, Sun Z, Xu H, Zhang J. Frequency-Dependent Changes of the Resting BOLD Signals Predicts Cognitive Deficits in Asymptomatic Carotid Artery Stenosis. Front Neurosci 2018; 12:416. [PMID: 29977187 PMCID: PMC6021536 DOI: 10.3389/fnins.2018.00416] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 05/31/2018] [Indexed: 11/16/2022] Open
Abstract
“Asymptomatic” carotid artery stenosis (aCAS) patients usually have cognitive impairment in the domains of executive, psychomotor speed, and memory function. However, the pathophysiology of this impairment in aCAS patients is still unclear. In this study, amplitude of low-frequency fluctuation (ALFF) method was used based on resting-state blood oxygenation level dependent (BOLD) signals, to investigate local brain activity in 19 aCAS patients and 24 healthy controls, aimed to explore this pathophysiology mechanism. We analyzed this intrinsic activity in four individual frequency bands: Slow-2 (0.198–0.25 Hz), Slow-3 (0.073–0.198 Hz), Slow-4 (0.027–0.073 Hz), and Slow-5 (0.01–0.027 Hz). The aCAS-related ALFF changes were mainly distributed in (1) cortical midline structure, including bilateral dorsomedial prefrontal (dmPFC), cingulate cortex (CC) and precuneus (PCu); (2) hippocampus and its adjacent structures, including bilateral hippocampus, thalamus and medial temporal regions. We found these spatial patterns were frequency-dependent. Significant interaction between frequency and group was found distributed in left putamen, triangle part of inferior temporal and bilateral precentral/postcentral gyrus when Slow-4 and Slow-5 were considered. The delay recall ability of aCAS patient was significantly positive correlated to the mean ALFF in dmPFC within Slow-4 band and the mean ALFF in the bilateral hippocampus within Slow-3 band, respectively. We also found the Montreal Cognitive Assessme score of aCAS patient was significantly positive correlated to the mean ALFF in right fusiform and parahippocampus within Slow-3 band. Furthermore, we built the automatic diagnosis and prediction models based on support vector machine (SVM) and back propagation neural network (BPNN), respectively. Both two types of models could achieve relatively competent performance, which meant the frequency-dependent changes in ALFF could not only reveal the pathophysiology mechanism of cognitive impairment of aCAS, but also could be used as neuroimaging marker in the analysis of cognition impairment for aCAS patients.
Collapse
Affiliation(s)
- Feng Xiao
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Tao Wang
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Department of Neurology, The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
| | - Lei Gao
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jian Fang
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhenmeng Sun
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Haibo Xu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Junjian Zhang
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
18
|
Gupta L, Jansen JF, Hofman PA, Besseling RM, de Louw AJ, Aldenkamp AP, Backes WH. Wavelet entropy of BOLD time series: An application to Rolandic epilepsy. J Magn Reson Imaging 2017; 46:1728-1737. [DOI: 10.1002/jmri.25700] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 02/24/2017] [Indexed: 12/23/2022] Open
Affiliation(s)
- Lalit Gupta
- Departments of Radiology and Nuclear Medicine; Maastricht University Medical Center; Maastricht Netherlands
| | - Jacobus F.A. Jansen
- Departments of Radiology and Nuclear Medicine; Maastricht University Medical Center; Maastricht Netherlands
- School for Mental Health & Neuroscience; Maastricht University Medical Center; Maastricht Netherlands
| | - Paul A.M. Hofman
- Departments of Radiology and Nuclear Medicine; Maastricht University Medical Center; Maastricht Netherlands
- School for Mental Health & Neuroscience; Maastricht University Medical Center; Maastricht Netherlands
| | - René M.H. Besseling
- Departments of Radiology and Nuclear Medicine; Maastricht University Medical Center; Maastricht Netherlands
- Department of Electrical Engineering; Eindhoven University of Technology; Eindhoven Netherlands
| | - Anton J.A. de Louw
- Department of Electrical Engineering; Eindhoven University of Technology; Eindhoven Netherlands
- Epilepsy Center Kempenhaeghe; Heeze Netherlands
| | - Albert P. Aldenkamp
- School for Mental Health & Neuroscience; Maastricht University Medical Center; Maastricht Netherlands
- Department of Electrical Engineering; Eindhoven University of Technology; Eindhoven Netherlands
- Epilepsy Center Kempenhaeghe; Heeze Netherlands
| | - Walter H Backes
- Departments of Radiology and Nuclear Medicine; Maastricht University Medical Center; Maastricht Netherlands
- School for Mental Health & Neuroscience; Maastricht University Medical Center; Maastricht Netherlands
| |
Collapse
|
19
|
Kim HJ, Cha J, Lee JM, Shin JS, Jung NY, Kim YJ, Choe YS, Lee KH, Kim ST, Kim JS, Lee JH, Na DL, Seo SW. Distinctive Resting State Network Disruptions Among Alzheimer's Disease, Subcortical Vascular Dementia, and Mixed Dementia Patients. J Alzheimers Dis 2016; 50:709-18. [PMID: 26757039 DOI: 10.3233/jad-150637] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Recent advances in resting-state functional MRI have revealed altered functional networks in Alzheimer's disease (AD), especially those of the default mode network (DMN) and central executive network (CEN). However, few studies have evaluated whether small vessel disease (SVD) or combined amyloid and SVD burdens affect the DMN or CEN. OBJECTIVE The aim of this study was to evaluate whether SVD or combined amyloid and SVD burdens affect the DMN or CEN. METHODS In this cross-sectional study, we investigated the resting-state functional connectivity within DMN and CEN in 37 Pittsburgh compound-B (PiB)(+) AD, 37 PiB(-) subcortical vascular dementia (SVaD), 13 mixed dementia patients, and 65 normal controls. RESULTS When the resting-state DMN of PiB(+) AD and PiB(-) SVaD patients were compared, the PiB(+) AD patients displayed lower functional connectivity in the inferior parietal lobule while the PiB(-) SVaD patients displayed lower functional connectivity in the medial frontal and superior frontal gyri. Compared to the PiB(-) SVaD or PiB(+) AD, the mixed dementia patients displayed lower functional connectivity within the DMN in the posterior cingulate gyrus. When the resting-state CEN connectivity of PiB(+) AD and PiB(-) SVaD patients were compared, the PiB(-) SVaD patients displayed lower functional connectivity in the anterior insular region. Compared to the PiB(-) SVaD or PiB(+) AD, the mixed dementia patients displayed lower functional connectivity within the CEN in the inferior frontal gyrus. CONCLUSIONS Our findings suggest that in PiB(+) AD and PiB(-) SVaD, there is divergent disruptions in resting-state DMN and CEN. Furthermore, patients with combined amyloid and SVD burdens exhibited more disrupted resting-state DMN and CEN than patients with only amyloid or SVD burden.
Collapse
Affiliation(s)
- Hee Jin Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Neuroscience Center, Samsung Medical Center, Seoul, Korea
| | - Jungho Cha
- Department of Biomedical Engineering, Hanyang University, Seoul, Korea
| | - Jong-Min Lee
- Department of Biomedical Engineering, Hanyang University, Seoul, Korea
| | - Ji Soo Shin
- Pfizer Pharmaceuticals Korea Ltd., Seoul, Republic of Korea
| | - Na-Yeon Jung
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Neuroscience Center, Samsung Medical Center, Seoul, Korea.,Department of Neurology, Pusan National University Hospital, Pusan National University, Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Yeo Jin Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Neuroscience Center, Samsung Medical Center, Seoul, Korea
| | - Yearn Seong Choe
- Department of Biomedical Engineering, Hanyang University, Seoul, Korea
| | - Kyung Han Lee
- Department of Neurology, Pusan National University Hospital, Pusan National University, Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sung Tae Kim
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jae Seung Kim
- Department of Nuclear Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Jae Hong Lee
- Department of Neurology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Duk L Na
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Neuroscience Center, Samsung Medical Center, Seoul, Korea.,Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Korea
| | - Sang Won Seo
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Neuroscience Center, Samsung Medical Center, Seoul, Korea.,Department of Clinical Research Design and Evaluation, SAIHST, Sungkyunkwan University, Seoul, Korea
| |
Collapse
|
20
|
Ying H, Jianping C, Jianqing Y, Shanquan Z. Cognitive variations among vascular dementia subtypes caused by small-, large-, or mixed-vessel disease. Arch Med Sci 2016; 12:747-53. [PMID: 27478455 PMCID: PMC4947622 DOI: 10.5114/aoms.2016.60962] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Accepted: 10/20/2014] [Indexed: 11/29/2022] Open
Abstract
INTRODUCTION Vascular dementia (VaD) is a heterogeneous disease that can vary in clinical presentation and cognitive profile. The cognitive profiles of different VaD subtypes depend on the anatomical distribution of the vascular insults that have been documented. MATERIAL AND METHODS We reviewed demographic, cognitive, and imaging data in 402 patients who were clinically diagnosed with VaD between January 2002 and June 2012 at the First Affiliated Hospital of Gan Nan Medical College in Ganzhou, China. RESULTS Based on magnetic resonance imaging (MRI) results, patients were classified as having large- (24.1%), small- (70.4%), or mixed-vessel VaD (5.5%). Hypertension was the most prevalent risk factor (81%), followed by smoking (37%), hyperlipidemia (35%), and diabetes (27%). Hyperlipidemia, cardiac risk factors (history of cardiovascular disease, heart valve disorder) and carotid stenosis were more frequent in patients with large-vessel disease compared to those with small-vessel or mixed-vessel disease (p < 0.001). A median of 4 (maximum 11) cognitive domains were impaired in each VaD patient. After memory dysfunction, executive defects were the most prevalent (68.9%), and neurobehavioral dysfunction was the most rare (13.2%). Patients with small-vessel VaD showed more executive dysfunction than patients with large-vessel and mixed-vessel VaD (p < 0.05), whereas patients with large-vessel VaD had a higher prevalence of visuospatial or language dysfunction (p < 0.05). CONCLUSIONS The results indicate that specific subtypes and underlying vascular mechanisms will help predict clinical courses and produce more focused treatment and prevention of VaD.
Collapse
Affiliation(s)
- Huang Ying
- Department of Neurology, the First Affiliated Hospital, Gan Nan Medical College, Jiangxi, China
| | - Chen Jianping
- Department of Neurology, the First Affiliated Hospital, Gan Nan Medical College, Jiangxi, China
| | - Yuan Jianqing
- Department of Neurology, the First Affiliated Hospital, Gan Nan Medical College, Jiangxi, China
| | - Zhong Shanquan
- Department of Neurology, the First Affiliated Hospital, Gan Nan Medical College, Jiangxi, China
| |
Collapse
|
21
|
Zhou F, Huang S, Zhuang Y, Gao L, Gong H. Frequency-dependent changes in local intrinsic oscillations in chronic primary insomnia: A study of the amplitude of low-frequency fluctuations in the resting state. NEUROIMAGE-CLINICAL 2016. [PMID: 28649490 PMCID: PMC5470569 DOI: 10.1016/j.nicl.2016.05.011] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
New neuroimaging techniques have led to significant advancements in our understanding of cerebral mechanisms of primary insomnia. However, the neuronal low-frequency oscillation remains largely uncharacterized in chronic primary insomnia (CPI). In this study, the amplitude of low-frequency fluctuation (ALFF), a data-driven method based on resting-state functional MRI, was used to examine local intrinsic activity in 27 patients with CPI and 27 age-, sex-, and education-matched healthy controls. We examined neural activity in two frequency bands, slow-4 (between 0.027 and 0.073 Hz) and slow-5 (0.010–0.027 Hz), because blood-oxygen level dependent (BOLD) fluctuations in different low-frequency bands may present different neurophysiological manifestations that pertain to a spatiotemporal organization. The ALFF associated with the primary disease effect was widely distributed in the cerebellum posterior lobe (CPL), dorsal and ventral prefrontal cortex, anterior cingulate cortex, precuneus, somatosensory cortex, and several default-mode sub-regions. Several brain regions (i.e., the right cerebellum, anterior lobe, and left putamen) exhibited an interaction between the frequency band and patient group. In the slow-5 band, increased ALFF of the right postcentral gyrus/inferior parietal lobule (PoCG/IPL) was enhanced in association with the sleep quality (ρ = 0.414, P = 0.044) and anxiety index (ρ = 0.406, P = 0.049) of the CPI patients. These findings suggest that during chronic insomnia, the intrinsic functional plasticity primarily responds to the hyperarousal state, which is the loss of inhibition in sensory-informational processing. Our findings regarding an abnormal sensory input and intrinsic processing mechanism might provide novel insight into the pathophysiology of CPI. Furthermore, the frequency factor should be taken into consideration when exploring ALFF-related clinical manifestations. Primary disease effect was widely distributed in several cerebral areas in patients with chronic primary insomnia (CPI). Several brain regions (i.e., right cerebellum, anterior lobe, and left putamen) exhibited interactions between the frequency band and patient group. In the slow-5 band, increased ALFF associated with the sleep quality or the anxiety index in the CPI patients. Our findings regarding an abnormal sensory input and intrinsic processing mechanism might provide novel insight into the pathophysiology of CPI. Furthermore, the frequency factor should be taken into consideration when exploring ALFF-related clinical manifestations.
Collapse
Key Words
- ACC, anterior cingulate cortex
- ALFF, amplitude of low-frequency fluctuation
- ANOVA, analysis of variance
- Amplitude of low-frequency fluctuations
- CPI, chronic primary insomnia
- CPL, cerebellum posterior lobe
- Chronic primary insomnia
- FC, functional connectivity
- Functional magnetic resonance imaging, resting state
- Functional plasticity
- Fus/CAL, fusiform gyrus/cerebellum anterior lobe
- HC, healthy control
- MFG/SFG, middle/superior frontal gyrus
- MOG, middle occipital gyrus
- MRI, magnetic resonance imaging
- PCC, posterior cingulate cortex
- PCUN, precuneus
- PSQI, Pittsburgh Sleep Quality Index
- PoCG/IPL, postcentral gyrus/inferior parietal lobule
- SPECT, single-photon emission computed tomography
- SPM, statistical parametric mapping
- STAI-s, State Trait Anxiety Inventory-state
- STAI-t, State Trait Anxiety Inventory-trait
- STG, superior temporal gyrus
- fMRI, functional MRI
- fO/AI, frontal operculum/anterior insula
- mPFC, medial prefrontal gyrus
- mTL, medial temporal lobe
- rs-fMRI, resting-state fMRI
Collapse
Affiliation(s)
- Fuqing Zhou
- Department of Radiology, The First Affiliated Hospital, Nanchang University, Nanchang 330006, China; Jiangxi Province Medical Imaging Research Institute, Nanchang, 330006, China.
| | - Suhua Huang
- Department of Radiology, Jiangxi Province Children's Hospital, Nanchang 330006, China
| | - Ying Zhuang
- Department of Oncology, The Second Hospital of Nanchang, Nanchang 330003, China
| | - Lei Gao
- Department of Radiology, The First Affiliated Hospital, Nanchang University, Nanchang 330006, China
| | - Honghan Gong
- Department of Radiology, The First Affiliated Hospital, Nanchang University, Nanchang 330006, China; Jiangxi Province Medical Imaging Research Institute, Nanchang, 330006, China.
| |
Collapse
|
22
|
Sacco K, Gabbatore I, Geda E, Duca S, Cauda F, Bara BG, Bosco FM. Rehabilitation of Communicative Abilities in Patients with a History of TBI: Behavioral Improvements and Cerebral Changes in Resting-State Activity. Front Behav Neurosci 2016; 10:48. [PMID: 27047353 PMCID: PMC4801860 DOI: 10.3389/fnbeh.2016.00048] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 02/29/2016] [Indexed: 11/13/2022] Open
Abstract
A targeted training program for the rehabilitation of communicative abilities—Cognitive Pragmatic Treatment (CPT)—has been developed and previously tested on a sample of patients with traumatic brain injury (TBI), whose performance was found to have improved. Since cortical plasticity has been recognized as the main mechanism of functional recovery, we investigated whether and how behavioral improvements following the training program are accompanied by brain modifications. Eight TBI patients took part in the training program and were behaviorally assessed pre- and post-treatment; six of these patients were also evaluated with pre- and post-treatment resting state (rs) functional magnetic resonance imaging (fMRI). At the end of the rehabilitation program patients showed improvement in overall communicative performance, in both comprehension and production tasks. A follow-up retest revealed the stability of these results 3 months after completing the training program. At the brain level, we found significant increases in the amplitude of low frequency fluctuation (ALFF) index in the bilateral precentral gyrus, in the right middle and superior temporal gyri, in the right cingulate gyrus, and in the left inferior parietal lobule. We discuss these differences of brain activity in terms of their possible contribution to promoting recovery.
Collapse
Affiliation(s)
- Katiuscia Sacco
- Imaging and Cerebral Plasticity Research Group, Department of Psychology, University of TurinTurin, Italy; Center for Cognitive Science, Department of Psychology, University of TurinTurin, Italy; Neuroscience Institute of Turin, University of TurinTurin, Italy
| | - Ilaria Gabbatore
- Faculty of Humanities, Research Unit of Logopedics, Child Language Research Center, University of Oulu Oulu, Finland
| | - Elisabetta Geda
- Imaging and Cerebral Plasticity Research Group, Department of Psychology, University of Turin Turin, Italy
| | - Sergio Duca
- Neuroscience Institute of Turin, University of TurinTurin, Italy; GCS-fMRI, Koelliker Hospital, Department of Psychology, University of TurinTurin, Italy
| | - Franco Cauda
- Neuroscience Institute of Turin, University of TurinTurin, Italy; GCS-fMRI, Koelliker Hospital, Department of Psychology, University of TurinTurin, Italy
| | - Bruno G Bara
- Center for Cognitive Science, Department of Psychology, University of TurinTurin, Italy; Neuroscience Institute of Turin, University of TurinTurin, Italy
| | - Francesca M Bosco
- Center for Cognitive Science, Department of Psychology, University of TurinTurin, Italy; Neuroscience Institute of Turin, University of TurinTurin, Italy
| |
Collapse
|
23
|
Banerjee G, Wilson D, Jäger HR, Werring DJ. Novel imaging techniques in cerebral small vessel diseases and vascular cognitive impairment. Biochim Biophys Acta Mol Basis Dis 2015; 1862:926-38. [PMID: 26687324 DOI: 10.1016/j.bbadis.2015.12.010] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 12/07/2015] [Accepted: 12/08/2015] [Indexed: 11/27/2022]
Abstract
Dementia is a global growing concern, affecting over 35 million people with a global economic impact of over $604 billion US. With an ageing population the number of people affected is expected double over the next two decades. Vascular cognitive impairment can be caused by various types of cerebrovascular disease, including cortical and subcortical infarcts, and the more diffuse white matter injury due to cerebral small vessel disease. Although this type of cognitive impairment is usually considered the second most common form of dementia after Alzheimer's disease, there is increasing recognition of the vascular contribution to neurodegeneration, with both pathologies frequently coexisting. The aim of this review is to highlight the recent advances in the understanding of vascular cognitive impairment, with a focus on small vessel diseases of the brain. We discuss recently identified small vessel imaging markers that have been associated with cognitive impairment, namely cerebral microbleeds, enlarged perivascular spaces, cortical superficial siderosis, and microinfarcts. We will also consider quantitative techniques including diffusion tensor imaging, magnetic resonance perfusion imaging with arterial spin labelling, functional magnetic resonance imaging and positron emission tomography. As well as potentially shedding light on the mechanism by which cerebral small vessel diseases cause dementia, these novel imaging biomarkers are also of increasing relevance given their ability to guide diagnosis and reflect disease progression, which may in the future be useful for therapeutic interventions. This article is part of a Special Issue entitled: Vascular Contributions to Cognitive Impairment and Dementia edited by M. Paul Murphy, Roderick A. Corriveau and Donna M. Wilcock.
Collapse
Affiliation(s)
- Gargi Banerjee
- UCL Stroke Research Centre, Department of Brain Repair & Rehabilitation, UCL Institute of Neurology, 10-12 Russell Square, London WC1B 3EE, UK
| | - Duncan Wilson
- UCL Stroke Research Centre, Department of Brain Repair & Rehabilitation, UCL Institute of Neurology, 10-12 Russell Square, London WC1B 3EE, UK
| | - Hans R Jäger
- Neuroradiological Academic Unit, Department of Brain Repair and Rehabilitation, UCL Institute of Neurology and the National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK
| | - David J Werring
- UCL Stroke Research Centre, Department of Brain Repair & Rehabilitation, UCL Institute of Neurology, 10-12 Russell Square, London WC1B 3EE, UK
| |
Collapse
|
24
|
Gallea C, Popa T, García-Lorenzo D, Valabregue R, Legrand AP, Marais L, Degos B, Hubsch C, Fernández-Vidal S, Bardinet E, Roze E, Lehéricy S, Vidailhet M, Meunier S. Intrinsic signature of essential tremor in the cerebello-frontal network. Brain 2015; 138:2920-33. [PMID: 26115677 DOI: 10.1093/brain/awv171] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 04/24/2015] [Indexed: 11/12/2022] Open
Abstract
Essential tremor is a movement disorder characterized by tremor during voluntary movements, mainly affecting the upper limbs. The cerebellum and its connections to the cortex are known to be involved in essential tremor, but no task-free intrinsic signatures of tremor related to structural cerebellar defects have so far been found in the cortical motor network. Here we used voxel-based morphometry, tractography and resting-state functional MRI at 3 T to compare structural and functional features in 19 patients with essential tremor and homogeneous symptoms in the upper limbs, and 19 age- and gender-matched healthy volunteers. Both structural and functional abnormalities were found in the patients' cerebellum and supplementary motor area. Relative to the healthy controls, the essential tremor patients' cerebellum exhibited less grey matter in lobule VIII and less effective connectivity between each cerebellar cortex and the ipsilateral dentate nucleus. The patient's supplementary motor area exhibited (i) more grey matter; (ii) a lower amplitude of low-frequency fluctuation of the blood oxygenation level-dependent signal; (iii) less effective connectivity between each supplementary motor area and the ipsilateral primary motor hand area, and (iv) a higher probability of connection between supplementary motor area fibres and the spinal cord. Structural and functional changes in the supplementary motor area, but not in the cerebellum, correlated with clinical severity. In addition, changes in the cerebellum and supplementary motor area were interrelated, as shown by a correlation between the lower amplitude of low-frequency fluctuation in the supplementary motor area and grey matter loss in the cerebellum. The structural and functional changes observed in the supplementary motor area might thus be a direct consequence of cerebellar defects: the supplementary motor area would attempt to reduce tremor in the motor output by reducing its communication with M1 hand areas and by directly modulating motor output via its corticospinal projections.See Raethjen and Muthuraman (doi:10.1093/brain/awv238) for a scientific commentary on this article.
Collapse
Affiliation(s)
- Cécile Gallea
- 1 Centre de NeuroImagerie de Recherche - Institut du Cerveau et de la Moelle épinière, ICM, Paris, France 2 Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, Paris, France 3 CNRS, UMR 7225, Paris, France 4 Inserm, U 1127, Paris, France
| | - Traian Popa
- 1 Centre de NeuroImagerie de Recherche - Institut du Cerveau et de la Moelle épinière, ICM, Paris, France 2 Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, Paris, France 3 CNRS, UMR 7225, Paris, France 4 Inserm, U 1127, Paris, France
| | - Daniel García-Lorenzo
- 1 Centre de NeuroImagerie de Recherche - Institut du Cerveau et de la Moelle épinière, ICM, Paris, France 2 Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, Paris, France 3 CNRS, UMR 7225, Paris, France 4 Inserm, U 1127, Paris, France
| | - Romain Valabregue
- 1 Centre de NeuroImagerie de Recherche - Institut du Cerveau et de la Moelle épinière, ICM, Paris, France 2 Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, Paris, France 3 CNRS, UMR 7225, Paris, France 4 Inserm, U 1127, Paris, France
| | | | - Lea Marais
- 1 Centre de NeuroImagerie de Recherche - Institut du Cerveau et de la Moelle épinière, ICM, Paris, France 2 Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, Paris, France 3 CNRS, UMR 7225, Paris, France 4 Inserm, U 1127, Paris, France
| | - Bertrand Degos
- 2 Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, Paris, France 3 CNRS, UMR 7225, Paris, France 4 Inserm, U 1127, Paris, France 6 AP-HP, Hôpital de la Pitié Salpêtrière, Département de Neurologie, Paris, France
| | - Cecile Hubsch
- 2 Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, Paris, France 3 CNRS, UMR 7225, Paris, France 4 Inserm, U 1127, Paris, France 6 AP-HP, Hôpital de la Pitié Salpêtrière, Département de Neurologie, Paris, France
| | - Sara Fernández-Vidal
- 1 Centre de NeuroImagerie de Recherche - Institut du Cerveau et de la Moelle épinière, ICM, Paris, France 2 Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, Paris, France 3 CNRS, UMR 7225, Paris, France 4 Inserm, U 1127, Paris, France
| | - Eric Bardinet
- 1 Centre de NeuroImagerie de Recherche - Institut du Cerveau et de la Moelle épinière, ICM, Paris, France 2 Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, Paris, France 3 CNRS, UMR 7225, Paris, France 4 Inserm, U 1127, Paris, France
| | - Emmanuel Roze
- 2 Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, Paris, France 3 CNRS, UMR 7225, Paris, France 4 Inserm, U 1127, Paris, France 6 AP-HP, Hôpital de la Pitié Salpêtrière, Département de Neurologie, Paris, France
| | - Stéphane Lehéricy
- 1 Centre de NeuroImagerie de Recherche - Institut du Cerveau et de la Moelle épinière, ICM, Paris, France 2 Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, Paris, France 3 CNRS, UMR 7225, Paris, France 4 Inserm, U 1127, Paris, France 7 AP-HP, Hôpital de la Pitié Salpêtrière, Département de Neuroradiologie, Paris, France
| | - Marie Vidailhet
- 2 Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, Paris, France 3 CNRS, UMR 7225, Paris, France 4 Inserm, U 1127, Paris, France 6 AP-HP, Hôpital de la Pitié Salpêtrière, Département de Neurologie, Paris, France
| | - Sabine Meunier
- 2 Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, Paris, France 3 CNRS, UMR 7225, Paris, France 4 Inserm, U 1127, Paris, France
| |
Collapse
|
25
|
Zhang Y, Zhu C, Chen H, Duan X, Lu F, Li M, Liu F, Ma X, Wang Y, Zeng L, Zhang W, Chen H. Frequency-dependent alterations in the amplitude of low-frequency fluctuations in social anxiety disorder. J Affect Disord 2015; 174:329-35. [PMID: 25536452 DOI: 10.1016/j.jad.2014.12.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 11/29/2014] [Accepted: 12/02/2014] [Indexed: 10/24/2022]
Abstract
BACKGROUND Recent studies on resting-state functional magnetic resonance imaging (fMRI) have found an abnormal temporal correlation between low-frequency oscillations (LFO) in social anxiety disorder (SAD). However, alterations in the amplitudes of these LFO remain unclear. METHODS This study included 20 SAD patients and 20 age-, gender-, and education-matched healthy controls. Resting-state fMRI data were acquired using a gradient-echo echo-planar imaging sequence, and the amplitudes of LFO were investigated using the amplitude of low-frequency fluctuation (ALFF) approach. Two frequency bands (slow-5: 0.01-0.027Hz; slow-4: 0.027-0.073Hz) were analyzed. RESULTS Significant differences in ALFF were observed between the two bands in widespread regions including the postcentral gyrus, precentral gyrus, medial prefrontal cortex (MPFC), orbitofrontal cortex, hippocampus, thalamus, caudate, putamen, and insula. Compared with the healthy controls, the SAD patients showed lower ALFF in the dorsolateral prefrontal cortex (DLPFC), MPFC, superior temporal gyrus, and insula but higher ALFF in the middle occipital gyrus. Furthermore, we found that the SAD patients had reduced ALFF in the MPFC in the slow-5 band. LIMITATION The small sample size may decrease the statistical power of the results. CONCLUSIONS SAD patients had frequency-dependent alteration in intrinsic brain activity. This finding may provide insights into the understanding of the pathophysiology of SAD.
Collapse
Affiliation(s)
- Youxue Zhang
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611054, Sichuan, PR China
| | - Chunyan Zhu
- Department of Psychiatry, West China School of Medicine, West China Hospital of Sichuan University, Chengdu 610041, PR China
| | - Heng Chen
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611054, Sichuan, PR China
| | - Xujun Duan
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611054, Sichuan, PR China
| | - Fengmei Lu
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611054, Sichuan, PR China
| | - Meiling Li
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611054, Sichuan, PR China
| | - Feng Liu
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611054, Sichuan, PR China
| | - Xujing Ma
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611054, Sichuan, PR China
| | - Yifeng Wang
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611054, Sichuan, PR China
| | - Ling Zeng
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611054, Sichuan, PR China
| | - Wei Zhang
- Department of Psychiatry, West China School of Medicine, West China Hospital of Sichuan University, Chengdu 610041, PR China.
| | - Huafu Chen
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611054, Sichuan, PR China.
| |
Collapse
|