1
|
Wang M, Xie Z, Wang T, Dong S, Ma Z, Zhang X, Li X, Yuan Y. Low-intensity transcranial ultrasound stimulation improves memory behavior in an ADHD rat model by modulating cortical functional network connectivity. Neuroimage 2024; 299:120841. [PMID: 39244077 DOI: 10.1016/j.neuroimage.2024.120841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/09/2024] Open
Abstract
Working memory in attention deficit hyperactivity disorder (ADHD) is closely related to cortical functional network connectivity (CFNC), such as abnormal connections between the frontal, temporal, occipital cortices and with other brain regions. Low-intensity transcranial ultrasound stimulation (TUS) has the advantages of non-invasiveness, high spatial resolution, and high penetration depth and can improve ADHD memory behavior. However, how it modulates CFNC in ADHD and the CFNC mechanism that improves working memory behavior in ADHD remain unclear. In this study, we observed working memory impairment in ADHD rats, establishing a corresponding relationship between changes in CFNCs and the behavioral state during the working memory task. Specifically, we noted abnormalities in the information transmission and processing capabilities of CFNC in ADHD rats while performing working memory tasks. These abnormalities manifested in the network integration ability of specific areas, as well as the information flow and functional differentiation of CFNC. Furthermore, our findings indicate that TUS effectively enhances the working memory ability of ADHD rats by modulating information transmission, processing, and integration capabilities, along with adjusting the information flow and functional differentiation of CFNC. Additionally, we explain the CFNC mechanism through which TUS improves working memory in ADHD. In summary, these findings suggest that CFNCs are important in working memory behaviors in ADHD.
Collapse
Affiliation(s)
- Mengran Wang
- School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China; Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, Yanshan University, Qinhuangdao 066004, China
| | - Zhenyu Xie
- School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China; Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, Yanshan University, Qinhuangdao 066004, China
| | - Teng Wang
- School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China; Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, Yanshan University, Qinhuangdao 066004, China
| | - Shuxun Dong
- School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China; Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, Yanshan University, Qinhuangdao 066004, China
| | - Zhenfang Ma
- Department of Rehabilitation, Hebei General Hospital, Shijiazhuang 050000, China
| | - Xiangjian Zhang
- Department of Neurology, Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Xin Li
- School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China; Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, Yanshan University, Qinhuangdao 066004, China.
| | - Yi Yuan
- School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China; Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, Yanshan University, Qinhuangdao 066004, China.
| |
Collapse
|
2
|
Kim D, Yadav D, Song M. An updated review on animal models to study attention-deficit hyperactivity disorder. Transl Psychiatry 2024; 14:187. [PMID: 38605002 PMCID: PMC11009407 DOI: 10.1038/s41398-024-02893-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/18/2024] [Accepted: 03/25/2024] [Indexed: 04/13/2024] Open
Abstract
Attention-deficit hyperactivity disorder (ADHD) is a neuropsychiatric disorder affecting both children and adolescents. Individuals with ADHD experience heterogeneous problems, such as difficulty in attention, behavioral hyperactivity, and impulsivity. Recent studies have shown that complex genetic factors play a role in attention-deficit hyperactivity disorders. Animal models with clear hereditary traits are crucial for studying the molecular, biological, and brain circuit mechanisms underlying ADHD. Owing to their well-managed genetic origins and the relative simplicity with which the function of neuronal circuits is clearly established, models of mice can help learn the mechanisms involved in ADHD. Therefore, in this review, we highlighting the important genetic animal models that can be used to study ADHD.
Collapse
Affiliation(s)
- Daegeon Kim
- Department of Life Science, Yeungnam University, Gyeongsan-si, South Korea
| | - Dhananjay Yadav
- Department of Life Science, Yeungnam University, Gyeongsan-si, South Korea
| | - Minseok Song
- Department of Life Science, Yeungnam University, Gyeongsan-si, South Korea.
| |
Collapse
|
3
|
Sweat SC, Cheetham CEJ. Deficits in olfactory system neurogenesis in neurodevelopmental disorders. Genesis 2024; 62:e23590. [PMID: 38490949 PMCID: PMC10990073 DOI: 10.1002/dvg.23590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/07/2024] [Accepted: 02/26/2024] [Indexed: 03/17/2024]
Abstract
The role of neurogenesis in neurodevelopmental disorders (NDDs) merits much attention. The complex process by which stem cells produce daughter cells that in turn differentiate into neurons, migrate various distances, and form synaptic connections that are then refined by neuronal activity or experience is integral to the development of the nervous system. Given the continued postnatal neurogenesis that occurs in the mammalian olfactory system, it provides an ideal model for understanding how disruptions in distinct stages of neurogenesis contribute to the pathophysiology of various NDDs. This review summarizes and discusses what is currently known about the disruption of neurogenesis within the olfactory system as it pertains to attention-deficit/hyperactivity disorder, autism spectrum disorder, Down syndrome, Fragile X syndrome, and Rett syndrome. Studies included in this review used either human subjects, mouse models, or Drosophila models, and lay a compelling foundation for continued investigation of NDDs by utilizing the olfactory system.
Collapse
Affiliation(s)
- Sean C Sweat
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Claire E J Cheetham
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
4
|
Gungor Aydin A, Adiguzel E. The mesocortical dopaminergic system cannot explain hyperactivity in an animal model of attention deficit hyperactivity disorder (ADHD)- Spontaneously hypertensive rats (SHR). Lab Anim Res 2023; 39:20. [PMID: 37710339 PMCID: PMC10500870 DOI: 10.1186/s42826-023-00172-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/24/2023] [Accepted: 09/02/2023] [Indexed: 09/16/2023] Open
Abstract
BACKGROUND Attention deficit hyperactivity disorder (ADHD) is one of the most prevalent neuropsychiatric disorders with morphological brain abnormalities. There is a growing body of evidence that abnormalities in the dopaminergic system may account for ADHD pathogenesis. However, it is not clear whether the dopaminergic system is hyper or hypoactive. To determine whether the DA neurons and/or axons deficiency might be the cause of the postulated dopaminergic hypofunction in spontaneously hypertensive rats (SHR, animal model of ADHD), this study examined the dopaminergic neurons and fibers in the brain tissues of SHRs and Wistar Kyoto rats (WKY, control animals). Here, we performed immunohistochemical tyrosine hydroxylase (TH) and dopamine-beta-hydroxylase (DBH) staining on brain sections collected on juveniles from SHR and WKY. Moreover, behavioral testing to examine the hyperactivity in the open field area was also elucidated. RESULTS The mesocortical dopaminergic system appears to be normal in juvenile SHR, as suggested by (i) no alteration in the area density of TH-immunoreactive (TH-ir) dopaminergic neurons in the ventral tegmental area (VTA), (ii) no alterations in the volume density of TH-ir fibers in layer I of the prelimbic (PrL) subregion of medial PFC (mPFC), (iii) no alteration in the percentage of TH-ir dopaminergic fibers in layer I of the PrL subregion of mPFC as revealed by TH and/or DBH immunoreactivity. Furthermore, the SHR showed increased locomotor activity than WKY in the open field test. CONCLUSIONS The demonstration of no alteration in mesocortical dopaminergic neurons and fiber in SHR raises some concern about the position of SHR as an animal model of the inattentive subtype of ADHD. However, these results strengthen this strain as an animal model of hyperactive/impulsive subtype ADHD for future studies that may elucidate the underlying mechanism mediating hyperactivity and test various treatment strategies.
Collapse
Affiliation(s)
- Aysegul Gungor Aydin
- Department of Psychology, Rutgers University-New Brunswick, Piscataway, NJ, 08854, USA.
| | - Esat Adiguzel
- Department of Anatomy, Faculty of Medicine, Pamukkale University, 20070, Denizli, Turkey
- Department of Neuroscience, Institute of Health Sciences, Pamukkale University, 20070, Denizli, Turkey
| |
Collapse
|
5
|
Kohe SE, Gowing EK, Seo S, Oorschot DE. A Novel Rat Model of ADHD-like Hyperactivity/Impulsivity after Delayed Reward Has Selective Loss of Dopaminergic Neurons in the Right Ventral Tegmental Area. Int J Mol Sci 2023; 24:11252. [PMID: 37511013 PMCID: PMC10379272 DOI: 10.3390/ijms241411252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/01/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
In attention deficit hyperactivity disorder (ADHD), hyperactivity and impulsivity occur in response to delayed reward. Herein we report a novel animal model in which male Sprague-Dawley rats exposed to repeated hypoxic brain injury during the equivalent of extreme prematurity were ADHD-like hyperactive/impulsive in response to delayed reward and attentive at 3 months of age. Thus, a unique animal model of one of the presentations/subtypes of ADHD was discovered. An additional finding is that the repeated hypoxia rats were not hyperactive in the widely used open field test, which is not ADHD specific. Hence, it is recommended that ADHD-like hyperactivity and ADHD-like impulsivity, specifically in response to delayed reward, be a primary component in the design of future experiments that characterize potential animal models of ADHD, replacing open field testing of hyperactivity. Unknown is whether death and/or activity of midbrain dopaminergic neurons contributed to the ADHD-like hyperactivity/impulsivity detected after delayed reward. Hence, we stereologically measured the absolute number of dopaminergic neurons in four midbrain subregions and the average somal/nuclear volume of those neurons. Repeated hypoxia rats had a significant specific loss of dopaminergic neurons in the right ventral tegmental area (VTA) at 2 weeks of age and 18 months of age, providing new evidence of a site of pathology. No dopaminergic neuronal loss occurred in three other midbrain regions. Fewer VTA dopaminergic neurons correlated with increased ADHD-like hyperactivity and impulsivity. Novel early intervention therapies to rescue VTA dopaminergic neurons and potentially prevent ADHD-like hyperactivity/impulsivity can now be investigated.
Collapse
Affiliation(s)
- Sarah E Kohe
- Department of Anatomy, School of Biomedical Sciences, Brain Health Research Centre, University of Otago, Dunedin 9016, New Zealand
| | - Emma K Gowing
- Department of Anatomy, School of Biomedical Sciences, Brain Health Research Centre, University of Otago, Dunedin 9016, New Zealand
| | - Steve Seo
- Department of Anatomy, School of Biomedical Sciences, Brain Health Research Centre, University of Otago, Dunedin 9016, New Zealand
| | - Dorothy E Oorschot
- Department of Anatomy, School of Biomedical Sciences, Brain Health Research Centre, University of Otago, Dunedin 9016, New Zealand
| |
Collapse
|
6
|
Li X, Xiao Z, Pu W, Jiang Z, Wang S, Zhang Y. Network pharmacology, molecular docking, and experimental validation to explore the potential mechanism of Long Mu Qing Xin mixture for the treatment of attention deficit hyperactivity disorder. Front Pharmacol 2023; 14:1144907. [PMID: 37007045 PMCID: PMC10063801 DOI: 10.3389/fphar.2023.1144907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 03/01/2023] [Indexed: 03/19/2023] Open
Abstract
Background: Long Mu Qing Xin Mixture (LMQXM) has shown potentially positive effects in alleviating attention deficit hyperactivity disorder (ADHD); however, the action mechanism is still not fully understood. This study aimed to predict the potential mechanism of LMQXM for ADHD using network pharmacology and molecular docking, which were then validated using animal experiments.Methods: Network pharmacology and molecular docking techniques were used to predict the core targets and potential pathways of LMQXMQ for ADHD, and KEGG pathway enrichment analysis revealed the potential significance of dopamine (DA) and cyclic adenosine monophosphate (cAMP) signaling pathways. To verify the hypothesis, we conducted an animal experiment. In the animal experiment, the young spontaneously hypertensive rats (SHRs) were randomly divided into the model group (SHR), the methylphenidate hydrochloride group (MPH, 4.22 mg/kg), and 3 LMQXM groups (low-dose (LD) group, 5.28 ml/kg; medium-dose (MD) group, 10.56 ml/kg; and high-dose (HD) group, 21.12 ml/kg), and administered by gavage for 4 weeks; the WKY rats were set as the control group. The open field test and Morris water maze test were used to evaluate the behavioral performance of rats, high performance liquid chromatography mass spectrometry (LC-MS) was used to analyze DA levels in the prefrontal cortex (PFC) and striatum of rats, ELISA was used to detect cAMP concentrations in the PFC and striatum, and immunohistochemistry and qPCR were used to analyze positive cell expression and mRNA expression for indicators related to DA and cAMP pathways.Results: The results showed that beta-sitosterol, stigmasterol, rhynchophylline, baicalein, and formononetin might be key components of LMQXM for ADHD and that these components bind well to the core targets, DA receptors (DRD1 and DRD2). Furthermore, LMQXM might act through the DA and cAMP signaling pathways. In the animal experiment, we found that MPH and LMQXM-MD controlled hyperactivity and improved learning and memory in SHRs, while LMQXM-HD only controlled hyperactivity in SHRs; meanwhile, MPH and LMQXM-MD upregulated DA and cAMP levels, mean optical density (MOD) of cAMP, and MOD and mRNA expression of DRD1 and PKA in the prefrontal cortex (PFC) and striatum of SHRs, while LMQXM-LD and LMQXM-HD upregulated DA and cAMP levels in the striatum, MOD of cAMP in the PFC, and mRNA expression of PKA in the PFC. However, we did not find a significant regulatory effect of LMQXM on DRD2.Conclusion: To sum up, this study demonstrated that LMQXM may increase DA levels mainly by activating the cAMP/PKA signaling pathway through DRD1, thereby controlling the behavioral disorders of SHRs, which is most effective at moderate doses, and this may be a key mechanism for LMQXM in the treatment of ADHD.
Collapse
Affiliation(s)
- Xuejun Li
- Pediatrics, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Longhua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhen Xiao
- Pediatrics, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Zhen Xiao, ; Zhiyan Jiang,
| | - Wenyan Pu
- Pediatrics, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Longhua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhiyan Jiang
- Pediatrics, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Zhen Xiao, ; Zhiyan Jiang,
| | - Shumin Wang
- Pediatrics, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Longhua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yixing Zhang
- Pediatrics, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Longhua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
7
|
Teal LB, Ingram SM, Bubser M, McClure E, Jones CK. The Evolving Role of Animal Models in the Discovery and Development of Novel Treatments for Psychiatric Disorders. ADVANCES IN NEUROBIOLOGY 2023; 30:37-99. [PMID: 36928846 DOI: 10.1007/978-3-031-21054-9_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Historically, animal models have been routinely used in the characterization of novel chemical entities (NCEs) for various psychiatric disorders. Animal models have been essential in the in vivo validation of novel drug targets, establishment of lead compound pharmacokinetic to pharmacodynamic relationships, optimization of lead compounds through preclinical candidate selection, and development of translational measures of target occupancy and functional target engagement. Yet, with decades of multiple NCE failures in Phase II and III efficacy trials for different psychiatric disorders, the utility and value of animal models in the drug discovery process have come under intense scrutiny along with the widespread withdrawal of the pharmaceutical industry from psychiatric drug discovery. More recently, the development and utilization of animal models for the discovery of psychiatric NCEs has undergone a dynamic evolution with the application of the Research Domain Criteria (RDoC) framework for better design of preclinical to clinical translational studies combined with innovative genetic, neural circuitry-based, and automated testing technologies. In this chapter, the authors will discuss this evolving role of animal models for improving the different stages of the discovery and development in the identification of next generation treatments for psychiatric disorders.
Collapse
Affiliation(s)
- Laura B Teal
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, USA
| | - Shalonda M Ingram
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, USA
| | - Michael Bubser
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, USA
| | - Elliott McClure
- College of Pharmacy and Health Sciences, Lipscomb University, Nashville, TN, USA
| | - Carrie K Jones
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA.
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
8
|
Kantak KM. Rodent models of attention-deficit hyperactivity disorder: An updated framework for model validation and therapeutic drug discovery. Pharmacol Biochem Behav 2022; 216:173378. [DOI: 10.1016/j.pbb.2022.173378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/22/2022] [Accepted: 03/28/2022] [Indexed: 01/21/2023]
|
9
|
Non-human contributions to personality neuroscience – from fish through primates. An introduction to the special issue. PERSONALITY NEUROSCIENCE 2022; 5:e11. [PMID: 36258777 PMCID: PMC9549393 DOI: 10.1017/pen.2022.4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/18/2022] [Accepted: 08/24/2022] [Indexed: 11/10/2022]
Abstract
The most fundamental emotional systems that show trait control are evolutionarily old and extensively conserved. Psychology in general has benefited from non-human neuroscience and from the analytical simplicity of behaviour in those with simpler nervous systems. It has been argued that integration between personality, psychopathology, and neuroscience is particularly promising if we are to understand the neurobiology of human experience. Here, we provide some general arguments for a non-human approach being at least as productive in relation to personality, psychopathology, and their interface. Some early personality theories were directly linked to psychopathology (e.g., Eysenck, Panksepp, and Cloninger). They shared a common interest in brain systems that naturally led to the use of non-human data; behavioural, neural, and pharmacological. In Eysenck’s case, this also led to the selective breeding, at the Maudsley Institute, of emotionally reactive and non-reactive strains of rat as models of trait neuroticism or trait emotionality. Dimensional personality research and categorical approaches to clinical disorder then drifted apart from each other, from neuropsychology, and from non-human data. Recently, the conceptualizations of both healthy personality and psychopathology have moved towards a common hierarchical trait perspective. Indeed, the proposed two sets of trait dimensions appear similar and may even be eventually the same. We provide, here, an introduction to this special issue of Personality Neuroscience, where the authors provide overviews of detailed areas where non-human data inform human personality and its psychopathology or provide explicit models for translation to human neuroscience. Once all the papers in the issue have appeared, we will also provide a concluding summary of them.
Collapse
|
10
|
Stanford SC. Animal Models of ADHD? Curr Top Behav Neurosci 2022; 57:363-393. [PMID: 35604570 DOI: 10.1007/7854_2022_342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
To describe animals that express abnormal behaviors as a model of Attention-Deficit Hyperactivity Disorder (ADHD) implies that the abnormalities are analogous to those expressed by ADHD patients. The diagnostic features of ADHD comprise inattentiveness, impulsivity, and hyperactivity and so these behaviors are fundamental for validation of any animal model of this disorder. Several experimental interventions such as neurotoxic lesion of neonatal rats with 6-hydroxydopamine (6-OHDA), genetic alterations, or selective inbreeding of rodents have produced animals that express each of these impairments to some extent. This article appraises the validity of claims that these procedures have produced a model of ADHD, which is essential if they are to be used to investigate the underlying cause(s) of ADHD and its abnormal neurobiology.
Collapse
Affiliation(s)
- S Clare Stanford
- Department of Neuroscience Physiology and Pharmacology, University College London, London, UK.
| |
Collapse
|
11
|
Kantak KM, Stots C, Mathieson E, Bryant CD. Spontaneously Hypertensive Rat substrains show differences in model traits for addiction risk and cocaine self-administration: Implications for a novel rat reduced complexity cross. Behav Brain Res 2021; 411:113406. [PMID: 34097899 PMCID: PMC8265396 DOI: 10.1016/j.bbr.2021.113406] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/28/2021] [Accepted: 06/03/2021] [Indexed: 12/17/2022]
Abstract
Forward genetic mapping of F2 crosses between closely related substrains of inbred rodents - referred to as a reduced complexity cross (RCC) - is a relatively new strategy for accelerating the pace of gene discovery for complex traits, such as drug addiction. RCCs to date were generated in mice, but rats are thought to be optimal for addiction genetic studies. Based on past literature, one inbred Spontaneously Hypertensive Rat substrain, SHR/NCrl, is predicted to exhibit a distinct behavioral profile as it relates to cocaine self-administration traits relative to another substrain, SHR/NHsd. Direct substrain comparisons are a necessary first step before implementing an RCC. We evaluated model traits for cocaine addiction risk and cocaine self-administration behaviors using a longitudinal within-subjects design. Impulsive-like and compulsive-like traits were greater in SHR/NCrl than SHR/NHsd, as were reactivity to sucrose reward, sensitivity to acute psychostimulant effects of cocaine, and cocaine use studied under fixed-ratio and tandem schedules of cocaine self-administration. Compulsive-like behavior correlated with the acute psychostimulant effects of cocaine, which in turn correlated with cocaine taking under the tandem schedule. Compulsive-like behavior also was the best predictor of cocaine seeking responses. Heritability estimates indicated that 22 %-40 % of the variances for the above phenotypes can be explained by additive genetic factors, providing sufficient genetic variance to conduct genetic mapping in F2 crosses of SHR/NCrl and SHR/NHsd. These results provide compelling support for using an RCC approach in SHR substrains to uncover candidate genes and variants that are of relevance to cocaine use disorders.
Collapse
Affiliation(s)
- Kathleen M Kantak
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, USA; Center for Systems Neuroscience, Boston University, Boston, MA, USA.
| | - Carissa Stots
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, USA
| | - Elon Mathieson
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, USA
| | - Camron D Bryant
- Departments of Pharmacology and Experimental Therapeutics and Psychiatry, Boston University School of Medicine, Boston, MA, USA; Center for Systems Neuroscience, Boston University, Boston, MA, USA
| |
Collapse
|
12
|
Dupuy C, Castelnau P, Mavel S, Lefevre A, Nadal-Desbarats L, Bodard S, Busson J, Dufour-Rainfray D, Blasco H, Emond P, Galineau L. SHR/NCrl rats as a model of ADHD can be discriminated from controls based on their brain, blood, or urine metabolomes. Transl Psychiatry 2021; 11:235. [PMID: 33888684 PMCID: PMC8062531 DOI: 10.1038/s41398-021-01344-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 03/18/2021] [Accepted: 03/30/2021] [Indexed: 02/02/2023] Open
Abstract
Attention-Deficit Hyperactivity Disorder (ADHD) is one of the most common neurodevelopmental disorder characterized by inattention, impulsivity, and hyperactivity. The neurobiological mechanisms underlying ADHD are still poorly understood, and its diagnosis remains difficult due to its heterogeneity. Metabolomics is a recent strategy for the holistic exploration of metabolism and is well suited for investigating the pathophysiology of diseases and finding molecular biomarkers. A few clinical metabolomic studies have been performed on peripheral samples from ADHD patients but are limited by their access to the brain. Here, we investigated the brain, blood, and urine metabolomes of SHR/NCrl vs WKY/NHsd rats to better understand the neurobiology and to find potential peripheral biomarkers underlying the ADHD-like phenotype of this animal model. We showed that SHR/NCrl rats can be differentiated from controls based on their brain, blood, and urine metabolomes. In the brain, SHR/NCrl rats displayed modifications in metabolic pathways related to energy metabolism and oxidative stress further supporting their importance in the pathophysiology of ADHD bringing news arguments in favor of the Neuroenergetic theory of ADHD. Besides, the peripheral metabolome of SHR/NCrl rats also shared more than half of these differences further supporting the importance of looking at multiple matrices to characterize a pathophysiological condition of an individual. This also stresses out the importance of investigating the peripheral energy and oxidative stress metabolic pathways in the search of biomarkers of ADHD.
Collapse
Affiliation(s)
- Camille Dupuy
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
| | - Pierre Castelnau
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
- CHRU Tours, Tours, France
| | - Sylvie Mavel
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
| | - Antoine Lefevre
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
| | | | - Sylvie Bodard
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
| | - Julie Busson
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
| | - Diane Dufour-Rainfray
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
- CHRU Tours, Tours, France
| | - Helene Blasco
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
- CHRU Tours, Tours, France
| | - Patrick Emond
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
- CHRU Tours, Tours, France
| | | |
Collapse
|
13
|
Rahi V, Kumar P. Animal models of attention-deficit hyperactivity disorder (ADHD). Int J Dev Neurosci 2021; 81:107-124. [PMID: 33428802 DOI: 10.1002/jdn.10089] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 12/14/2020] [Accepted: 01/06/2021] [Indexed: 12/15/2022] Open
Abstract
Attention-deficit hyperactivity disorder (ADHD) is a heterogeneous neuropsychiatric disorder characterized by three primary symptoms hyperactivity, attention deficit, and impulsiveness, observed in both children and adults. In childhood, this disorder is more common in boys than in girls, and at least 75% will continue to suffer from the disorder until adulthood. Individuals with ADHD generally have poor academic, occupational, and social functioning resulting from developmentally inappropriate levels of hyperactivity and impulsivity, as well as impaired ability to maintain attention on motivationally relevant tasks. Very few drugs available in clinical practice altogether abolish the symptoms of ADHD, therefore, to find new drugs and target it is essential to understand the neuropathological, neurochemical, and genetic alterations that lead to the progression of ADHD. With this contrast, an animal study is the best approach because animal models provide relatively fast invasive manipulation, rigorous hypothesis testing, as well as it provides a better angle to understand the pathological mechanisms involved in disease progression. Moreover, animal models, especially for ADHD, serve with good predictive validity would allow the assessment and development of new therapeutic interventions, with this aim, the present review collect the various animal models on a single platform so that the research can select an appropriate model to pursue his study.
Collapse
Affiliation(s)
- Vikrant Rahi
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, India
| | - Puneet Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, India
- Department of Pharmacology, Central University of Punjab, Bathinda, India
| |
Collapse
|
14
|
Martín Giménez VM, Mocayar Marón FJ, García S, Mazzei L, Guevara M, Yunes R, Manucha W. Central nervous system, peripheral and hemodynamic effects of nanoformulated anandamide in hypertension. Adv Med Sci 2021; 66:72-80. [PMID: 33388673 DOI: 10.1016/j.advms.2020.12.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/09/2020] [Accepted: 12/17/2020] [Indexed: 12/13/2022]
Abstract
PURPOSE Hypertensive lesions induce alterations at hemodynamic, peripheral, and central levels. Anandamide (N-arachidonoylethanolamine; AEA) protects neurons from inflammatory damage, but its free administration may cause central adverse effects. AEA controlled release by nanoformulations could reduce/eliminate its side effects. The present study aimed to evaluate the effects of nanoformulated AEA (nf-AEA) on systolic blood pressure (SBP), behavior, and central/peripheral inflammatory, oxidative, and apoptotic state in spontaneously hypertensive rats (SHR). MATERIALS/METHODS Male rats were used, both Wistar Kyoto (WKY) and SHR (n = 10 per group), with/without treatment with nf-AEA (obtained by electrospraying) at a weekly dose of 5 mg/kg IP for 4 weeks. SBP was measured and behavioral tests were performed. Inflammatory/oxidative markers were quantified at the central (brain cortex) and peripheral (serum) level. RESULTS SHR showed hyperactivity, low anxiety, and high concentrations of central/peripheral inflammatory/oxidative markers, also higher apoptosis of brain cortical cells compared to WKY. As opposed to this group, treatment with nf-AEA in SHR significantly reduced SBP, peripheral/central inflammatory/oxidative makers, and central apoptosis. Nf-AEA also increased neuroprotective mechanisms mediated by intracellular heat shock protein 70 (Hsp70), which were attenuated in untreated SHR. Additionally, nf-AEA reversed the abnormal behaviors observed in SHR without producing central adverse effects. CONCLUSIONS Our results suggest protective properties of nf-AEA, both peripherally and centrally, through a signaling pathway that would involve the type I angiotensin II receptor, Wilms tumor transcription factor 1, Hsp70, and iNOS. Considering non-nf-AEA limitations, this nanoformulation could contribute to the development of new antihypertensive and behavioral disorder treatments associated with neuroinflammation.
Collapse
Affiliation(s)
- Virna Margarita Martín Giménez
- Research Institute in Chemical Sciences, Faculty of Chemical and Technological Sciences, Catholic Cuyo University, San Juan, Argentina
| | - Feres José Mocayar Marón
- Laboratory of Basic and Translational Experimental Pharmacology, Department of Pathology, Faculty of Medical Sciences, National University of Cuyo (IMBECU-CONICET), Mendoza, Argentina
| | - Sebastián García
- Cuyo Institute of Experimental Medicine and Biology, National Council for Scientific and Technological Research (IMBECU-CONICET), Argentina
| | - Luciana Mazzei
- Laboratory of Basic and Translational Experimental Pharmacology, Department of Pathology, Faculty of Medical Sciences, National University of Cuyo (IMBECU-CONICET), Mendoza, Argentina; Cuyo Institute of Experimental Medicine and Biology, National Council for Scientific and Technological Research (IMBECU-CONICET), Argentina
| | - Manuel Guevara
- Laboratory of Basic and Translational Experimental Pharmacology, Department of Pathology, Faculty of Medical Sciences, National University of Cuyo (IMBECU-CONICET), Mendoza, Argentina
| | - Roberto Yunes
- Cuyo Institute of Experimental Medicine and Biology, National Council for Scientific and Technological Research (IMBECU-CONICET), Argentina; Institute of Biomedical Research (INBIOMED)-IMBECU-CONICET, Mendoza University, Mendoza, Argentina
| | - Walter Manucha
- Laboratory of Basic and Translational Experimental Pharmacology, Department of Pathology, Faculty of Medical Sciences, National University of Cuyo (IMBECU-CONICET), Mendoza, Argentina; Cuyo Institute of Experimental Medicine and Biology, National Council for Scientific and Technological Research (IMBECU-CONICET), Argentina.
| |
Collapse
|
15
|
Early Adolescence Prefrontal Cortex Alterations in Female Rats Lacking Dopamine Transporter. Biomedicines 2021; 9:biomedicines9020157. [PMID: 33562738 PMCID: PMC7914429 DOI: 10.3390/biomedicines9020157] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 01/29/2021] [Accepted: 02/02/2021] [Indexed: 12/30/2022] Open
Abstract
Monoamine dysfunctions in the prefrontal cortex (PFC) can contribute to diverse neuropsychiatric disorders, including ADHD, bipolar disorder, PTSD and depression. Disrupted dopamine (DA) homeostasis, and more specifically dopamine transporter (DAT) alterations, have been reported in a variety of psychiatric and neurodegenerative disorders. Recent studies using female adult rats heterozygous (DAT+/-) and homozygous (DAT-/-) for DAT gene, showed the utility of those rats in the study of PTSD and ADHD. Currently, a gap in the knowledge of these disorders affecting adolescent females still represents a major limit for the development of appropriate treatments. The present work focuses on the characterization of the PFC function under conditions of heterozygous and homozygous ablation of DAT during early adolescence based on the known implication of DAT and PFC DA in psychopathology during adolescence. We report herein that genetic ablation of DAT in the early adolescent PFC of female rats leads to changes in neuronal and glial cell homeostasis. In brief, we observed a concurrent hyperactive phenotype, accompanied by PFC alterations in glutamatergic neurotransmission, signs of neurodegeneration and glial activation in DAT-ablated rats. The present study provides further understanding of underlying neuroinflammatory pathological processes that occur in DAT-ablated female rats, what can provide novel investigational approaches in human diseases.
Collapse
|
16
|
A new approach to identifying hypertension-associated genes in the mesenteric artery of spontaneously hypertensive rats and stroke-prone spontaneously hypertensive rats. J Hypertens 2020; 37:1644-1656. [PMID: 30882592 PMCID: PMC6615961 DOI: 10.1097/hjh.0000000000002083] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Supplemental Digital Content is available in the text Objective: Hypertension is one of the most prevalent diseases in humans who live a modern lifestyle. Alongside more effective care, clarification of the genetic background of hypertension is urgently required. Gene expression in mesenteric resistance arteries of spontaneously hypertensive rats (SHR), stroke-prone SHR (SHRSP) and two types of renal hypertensive Wistar Kyoto rats (WKY), two kidneys and one clip renal hypertensive rat (2K1C) and one kidney and one clip renal hypertensive rat (1K1C), was compared using DNA microarrays. Methods: We used a simultaneous equation and comparative selection method to identify genes associated with hypertension using the Reactome analysis tool and GenBank database. Results: The expression of 298 genes was altered between SHR and WKY (44 upregulated and 254 downregulated), while the expression of 290 genes was altered between SHRSP and WKY (83 upregulated and 207 downregulated). For SHRSP versus SHR, the expression of 60 genes was altered (36 upregulated and 24 downregulated). Several genes expressed in SHR and SHRSP were also expressed in the renovascular hypertensive 2K1C and 1K1C rats, indicative of the existence of hyper-renin and/or hypervolemic pathophysiological changes in SHR and SHRSP. Conclusion: The overexpression of Kcnq1, Crlf1, Alb and Xirp1 and the inhibition of Galr2, Kcnh1, Ache, Chrm2 and Slc5a7 expression may indicate that a relationship exists between these genes and the cause and/or worsening of hypertension in SHR and SHRSP.
Collapse
|
17
|
Shaw JC, Crombie GK, Zakar T, Palliser HK, Hirst JJ. Perinatal compromise contributes to programming of GABAergic and glutamatergic systems leading to long-term effects on offspring behaviour. J Neuroendocrinol 2020; 32:e12814. [PMID: 31758712 DOI: 10.1111/jne.12814] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 10/30/2019] [Accepted: 11/20/2019] [Indexed: 01/01/2023]
Abstract
Extensive evidence now shows that adversity during the perinatal period is a significant risk factor for the development of neurodevelopmental disorders long after the causative event. Despite stemming from a variety of causes, perinatal compromise appears to have similar effects on the developing brain, thereby resulting in behavioural disorders of a similar nature. These behavioural disorders occur in a sex-dependent manner, with males affected more by externalising behaviours such as attention deficit hyperactivity disorder (ADHD) and females by internalising behaviours such as anxiety. Regardless of the causative event or the sex of the offspring, these disorders may begin in childhood or adolescence but extend into adulthood. A mechanism by which adverse events in the perinatal period impact later in life behaviour has been shown to be the changing epigenetic landscape. Methylation of the GAD1/GAD67 gene, which encodes the key glutamate-to-GABA-synthesising enzyme glutamate decarboxylase 1, resulting in increased levels of glutamate, is one epigenetic mechanism that may account for a tendency towards excitation in disorders such as ADHD. Exposure of the fetus or the neonate to high levels of cortisol may be the mediator between perinatal compromise and poor behavioural outcomes because evidence suggests that increased glucocorticoid exposure triggers widespread changes in the epigenetic landscape. This review summarises the current evidence and recent literature about the impact of various perinatal insults on the epigenome and the common mechanisms that may explain the similarity of behavioural outcomes occurring following diverse perinatal compromise.
Collapse
Affiliation(s)
- Julia C Shaw
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
- Mothers and Babies Research Centre, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Gabrielle K Crombie
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
- Mothers and Babies Research Centre, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Tamas Zakar
- Mothers and Babies Research Centre, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- School of Medicine and Public Health, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
| | - Hannah K Palliser
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
- Mothers and Babies Research Centre, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Jonathan J Hirst
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
- Mothers and Babies Research Centre, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| |
Collapse
|
18
|
Response-inhibition capacity in spontaneously hypertensive and Wistar rats: acquisition of fixed minimum interval performance and responsiveness to D-amphetamine. Behav Pharmacol 2019; 29:668-675. [PMID: 29877871 DOI: 10.1097/fbp.0000000000000411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Reduced response-inhibition capacity is a defining feature of attention-deficit hyperactivity disorder. The fixed minimum interval (FMI) schedule has been systematically validated to assess such capacity in rats. On each FMI trial, the first lever press initiates an inter-response time (IRT); a potentially consummatory response terminates the IRT; only IRTs longer than a target interval result in access to food. Despite task validity, steady-state FMI performance in the most common animal model of attention-deficit hyperactivity disorder, the spontaneously hypertensive rat (SHR), is similar to normotensive control performance, even though SHR performs at lower levels, especially during acquisition, in similar response-withholding tasks. To determine whether such limitations of the model are specific to stable-state performance, this experiment compared FMI 6-s performance in SHR and Wistar rats during acquisition and in steady state, and assessed the effect of acute D-amphetamine (AMP) administration (0.1, 0.5, and 1.0 mg/kg) on steady-state performance. Median latencies to first lever press were consistently shorter in SHR than in Wistar rats; IRTs were shorter for SHR than for Wistar rats during acquisition, but substantially less so during asymptotic performance. AMP dose-dependently reduced latencies, shortened IRTs, and, at the highest dose, increased the proportion of IRTs under schedule control. These results suggest that, relative to Wistar rats, SHR have a reduced capacity to learn to withhold a reinforced response; once the FMI is acquired, high doses of D-AMP disrupt withholding performance in both strains, but they also enhance the responsiveness of both strains to reinforcement contingencies.
Collapse
|
19
|
Leffa DT, Panzenhagen AC, Salvi AA, Bau CHD, Pires GN, Torres ILS, Rohde LA, Rovaris DL, Grevet EH. Systematic review and meta-analysis of the behavioral effects of methylphenidate in the spontaneously hypertensive rat model of attention-deficit/hyperactivity disorder. Neurosci Biobehav Rev 2019; 100:166-179. [PMID: 30826386 DOI: 10.1016/j.neubiorev.2019.02.019] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 02/27/2019] [Accepted: 02/27/2019] [Indexed: 12/19/2022]
Abstract
The spontaneously hypertensive rats (SHR) are the most widely used model for ADHD. While face and construct validity are consolidated, questions remain about the predictive validity of the SHR model. We aim at summarizing the evidence for the predictive validity of SHR by evaluating its ability to respond to methylphenidate (MPH), the most well documented treatment for ADHD. A systematic review was carried out to identify studies evaluating MPH effects on SHR behavior. Studies (n=36) were grouped into locomotion, attention, impulsivity or memory, and a meta-analysis was performed. Meta-regression, sensitivity, heterogeneity, and publication bias analyses were also conducted. MPH increased attentional and mnemonic performances in the SHR model and decreased impulsivity in a dose-dependent manner. However, MPH did not reduce hyperactivity in low and medium doses, while increased locomotor activity in high doses. Thus, since the paradoxical effect of stimulant in reducing hyperactivity was not observed in the SHR model, our study does not fully support the predictive validity of SHR, questioning their validity as an animal model for ADHD.
Collapse
Affiliation(s)
- Douglas T Leffa
- Post-Graduate Program in Medicine: Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Laboratory of Pain Pharmacology and Neuromodulation: Pre-clinical studies - Pharmacology Department, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Alana C Panzenhagen
- Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; ADHD Outpatient Program, Hospital de Clínicas de Porto Alegre, Brazil
| | - Artur A Salvi
- Laboratory of Pain Pharmacology and Neuromodulation: Pre-clinical studies - Pharmacology Department, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Claiton H D Bau
- Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; ADHD Outpatient Program, Hospital de Clínicas de Porto Alegre, Brazil; Department of Psychiatry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Gabriel N Pires
- Departamento de Psicobiologia, Universidade Federal de São Paulo, São Paulo, Brazil; Department of Physiological Sciences, Santa Casa de São Paulo School of Medical Sciences, São Paulo, Brazil
| | - Iraci L S Torres
- Laboratory of Pain Pharmacology and Neuromodulation: Pre-clinical studies - Pharmacology Department, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Animal Experimentation Unit - GPPG - Hospital de Clínicas de Porto Alegre - Porto, Alegre, Brazil
| | - Luis A Rohde
- ADHD Outpatient Program, Hospital de Clínicas de Porto Alegre, Brazil; Department of Psychiatry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; National Institute of Developmental Psychiatry for Children and Adolescents, Brazil
| | - Diego L Rovaris
- Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; ADHD Outpatient Program, Hospital de Clínicas de Porto Alegre, Brazil; Department of Psychiatry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| | - Eugenio H Grevet
- ADHD Outpatient Program, Hospital de Clínicas de Porto Alegre, Brazil; Department of Psychiatry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
20
|
How early media exposure may affect cognitive function: A review of results from observations in humans and experiments in mice. Proc Natl Acad Sci U S A 2018; 115:9851-9858. [PMID: 30275319 DOI: 10.1073/pnas.1711548115] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Attention deficit hyperactivity disorder (ADHD) is now among the most commonly diagnosed chronic psychological dysfunctions of childhood. By varying estimates, it has increased by 30% in the past 20 years. Environmental factors that might explain this increase have been explored. One such factor may be audiovisual media exposure during early childhood. Observational studies in humans have linked exposure to fast-paced television in the first 3 years of life with subsequent attentional deficits in later childhood. Although longitudinal and well controlled, the observational nature of these studies precludes definitive conclusions regarding a causal relationship. As experimental studies in humans are neither ethical nor practical, mouse models of excessive sensory stimulation (ESS) during childhood, akin to the enrichment studies that have previously shown benefits of stimulation in rodents, have been developed. Experimental studies using this model have corroborated that ESS leads to cognitive and behavioral deficits, some of which may be potentially detrimental. Given the ubiquity of media during childhood, these findings in humansand rodents perhaps have important implications for public health.
Collapse
|
21
|
Stuebing SL, Marshall AT, Triplett A, Kirkpatrick K. Females in the forefront: time-based intervention effects on impulsive choice and interval timing in female rats. Anim Cogn 2018; 21:759-772. [PMID: 30109539 DOI: 10.1007/s10071-018-1208-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 08/02/2018] [Accepted: 08/07/2018] [Indexed: 12/31/2022]
Abstract
Impulsive choice has been implicated in substance abuse, gambling, obesity, and other maladaptive behaviors. Deficits in interval timing may increase impulsive choices, and therefore, could serve as an avenue through which suboptimal impulsive choices can be moderated. Temporal interventions have successfully attenuated impulsive choices in male rats, but the efficacy of a temporal intervention has yet to be assessed in female rats. As such, this experiment examined timing and choice behavior in female rats, and evaluated the ability of a temporal intervention to mitigate impulsive choice behavior. The temporal intervention administered in this study was successful in reducing impulsive choices compared to a control group. Results of a temporal bisection task indicated that the temporal intervention increased long responses at the shorter durations. Further, results from the peak trials within the choice task combined with the progressive interval task suggest that the intervention increased sensitivity to delay and enhanced timing confidence. Overall, these results indicate that a temporal intervention can be a successful avenue for reducing impulsive choice behavior in female rats, and could contribute to the development of behavioral interventions to prevent impulsive choice and maladaptive behaviors that can be applied to both sexes.
Collapse
Affiliation(s)
- Sarah L Stuebing
- Department of Psychological Sciences, Kansas State University, 492 Bluemont Hall, Manhattan, KS, 66506, USA.
| | - Andrew T Marshall
- Department of Psychological Sciences, Kansas State University, 492 Bluemont Hall, Manhattan, KS, 66506, USA.,Department of Pediatrics, Keck School of Medicine, University of Southern California, and Children's Hospital Los Angeles, Los Angeles, CA, 90027, USA
| | - Ashton Triplett
- Department of Psychological Sciences, Kansas State University, 492 Bluemont Hall, Manhattan, KS, 66506, USA.,Department of Counseling and Psychological Services, State University of New York-Oswego, Oswego, NY, 13126, USA
| | - Kimberly Kirkpatrick
- Department of Psychological Sciences, Kansas State University, 492 Bluemont Hall, Manhattan, KS, 66506, USA
| |
Collapse
|
22
|
Hyperactive behavior in female rats in utero-exposed to group B Streptococcus-induced inflammation. Int J Dev Neurosci 2018; 69:17-22. [PMID: 29920305 DOI: 10.1016/j.ijdevneu.2018.06.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 06/13/2018] [Accepted: 06/15/2018] [Indexed: 11/20/2022] Open
Abstract
Group B Streptococcus (GBS) is one the most common bacterium responsible of maternal infections during pregnancy. Offspring in utero-exposed to GBS-induced placental inflammation displayed sex-specific forebrain injuries. Sex differences have been reported in several neuropsychiatric disorders. Hence, we hypothesized that female rats in utero-exposed to GBS may present sex-specific neurobehavioral impairments. Lewis rats were injected intraperitoneally every 12 h from gestational day (G) 19 to G22 with either saline (controls) or inactivated serotype Ia GBS (109 CFU). Before puberty, no difference in terms of spontaneous motor activity, exploratory or anxiety-related behaviors was noticed between experimental conditions. During puberty, GBS-exposed females - but not males - performed worse than same-sex controls in a forced motor task. During adulthood, GBS-exposed females - but not males - displayed increased spontaneous locomotor activity and decreased inhibition. In conclusion, our findings show for the first time that adult females - but not males - in utero-exposed to GBS-induced inflammation presented a hyperactive and disinhibited phenotype emerging after puberty.
Collapse
|
23
|
Wickens MM, Bangasser DA, Briand LA. Sex Differences in Psychiatric Disease: A Focus on the Glutamate System. Front Mol Neurosci 2018; 11:197. [PMID: 29922129 PMCID: PMC5996114 DOI: 10.3389/fnmol.2018.00197] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 05/18/2018] [Indexed: 12/21/2022] Open
Abstract
Alterations in glutamate, the primary excitatory neurotransmitter in the brain, are implicated in several psychiatric diseases. Many of these psychiatric diseases display epidemiological sex differences, with either males or females exhibiting different symptoms or disease prevalence. However, little work has considered the interaction of disrupted glutamatergic transmission and sex on disease states. This review describes the clinical and preclinical evidence for these sex differences with a focus on two conditions that are more prevalent in women: Alzheimer's disease and major depressive disorder, and three conditions that are more prevalent in men: schizophrenia, autism spectrum disorder, and attention deficit hyperactivity disorder. These studies reveal sex differences at multiple levels in the glutamate system including metabolic markers, receptor levels, genetic interactions, and therapeutic responses to glutamatergic drugs. Our survey of the current literature revealed a considerable need for more evaluations of sex differences in future studies examining the role of the glutamate system in psychiatric disease. Gaining a more thorough understanding of how sex differences in the glutamate system contribute to psychiatric disease could provide novel avenues for the development of sex-specific pharmacotherapies.
Collapse
Affiliation(s)
- Megan M Wickens
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA, United States
| | - Debra A Bangasser
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA, United States.,Neuroscience Program, Temple University, Philadelphia, PA, United States
| | - Lisa A Briand
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA, United States.,Neuroscience Program, Temple University, Philadelphia, PA, United States
| |
Collapse
|
24
|
Nunes F, Pochmann D, Almeida AS, Marques DM, Porciúncula LDO. Differential Behavioral and Biochemical Responses to Caffeine in Male and Female Rats from a Validated Model of Attention Deficit and Hyperactivity Disorder. Mol Neurobiol 2018; 55:8486-8498. [PMID: 29557061 DOI: 10.1007/s12035-018-1000-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 03/07/2018] [Indexed: 01/01/2023]
Abstract
Epidemiological studies suggest sex differences in attention deficit and hyperactivity disorder (ADHD) symptomatology. The potential benefits of caffeine have been reported in the management of ADHD, but its effects were not properly addressed with respect to sex differences. The present study examined the effects of caffeine (0.3 g/L) administered since childhood in the behavior and brain-derived neurotrophic factor (BDNF) and its related proteins in both sexes of a rat model of ADHD (spontaneously hypertensive rats-SHR). Hyperlocomotion, recognition, and spatial memory disturbances were observed in adolescent SHR rats from both sexes. However, females showed lack of habituation and worsened spatial memory. Although caffeine was effective against recognition memory impairment in both sexes, spatial memory was recovered only in female SHR rats. Besides, female SHR rats showed exacerbated hyperlocomotion after caffeine treatment. SHR rats from both sexes presented increases in the BDNF, truncated and phospho-TrkB receptors and also phospho-CREB levels in the hippocampus. Caffeine normalized BDNF in males and truncated TrkB receptor at both sexes. These findings provide insight into the potential of caffeine against fully cognitive impairment displayed by females in the ADHD model. Besides, our data revealed that caffeine intake since childhood attenuated behavioral alterations in the ADHD model associated with changes in BDNF and TrkB receptors in the hippocampus.
Collapse
Affiliation(s)
- Fernanda Nunes
- Laboratory of Studies on the Purinergic System, Department of Biochemistry, Health and Basic Sciences Institute, Federal University of Rio Grande do Sul, Porto Alegre, RS, 90035-003, Brazil
| | - Daniela Pochmann
- Laboratory of Studies on the Purinergic System, Department of Biochemistry, Health and Basic Sciences Institute, Federal University of Rio Grande do Sul, Porto Alegre, RS, 90035-003, Brazil
| | - Amanda Staldoni Almeida
- Laboratory of Studies on the Purinergic System, Department of Biochemistry, Health and Basic Sciences Institute, Federal University of Rio Grande do Sul, Porto Alegre, RS, 90035-003, Brazil
| | | | - Lisiane de Oliveira Porciúncula
- Laboratory of Studies on the Purinergic System, Department of Biochemistry, Health and Basic Sciences Institute, Federal University of Rio Grande do Sul, Porto Alegre, RS, 90035-003, Brazil.
| |
Collapse
|
25
|
Jordan CJ, Lemay C, Dwoskin LP, Kantak KM. Adolescent d-amphetamine treatment in a rodent model of attention deficit/hyperactivity disorder: impact on cocaine abuse vulnerability in adulthood. Psychopharmacology (Berl) 2016; 233:3891-3903. [PMID: 27600990 PMCID: PMC5026317 DOI: 10.1007/s00213-016-4419-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 08/24/2016] [Indexed: 12/17/2022]
Abstract
RATIONALE Stimulant medications for attention-deficit/hyperactivity disorder (ADHD) in adolescents remain controversial with respect to later development of cocaine abuse. Past research demonstrated that adolescent methylphenidate treatment increased several aspects of cocaine self-administration during adulthood using the spontaneously hypertensive rat (SHR) model of ADHD. Presently, we determined effects of the alternate stimulant medication, d-amphetamine, on cocaine self-administration. OBJECTIVES We tested the hypothesis that adolescent d-amphetamine would not increase cocaine self-administration in adult SHR, given that d-amphetamine has a different mechanism of action than methylphenidate. METHODS A pharmacologically relevant dose of d-amphetamine (0.5 mg/kg) or vehicle was administered throughout adolescence to SHR and two control strains, Wistar-Kyoto (WKY) and Wistar (WIS). Three aspects of cocaine abuse vulnerability were assessed in adulthood after discontinuing adolescent treatments: acquisition rate and dose-related responding under fixed (FR) and progressive (PR) ratio schedules. RESULTS Adult SHR acquired cocaine self-administration faster and self-administered more cocaine across multiple doses compared to WKY and WIS under FR and PR schedules, indicating that SHR is a reliable animal model of comorbid ADHD and cocaine abuse. Relative to vehicle, SHR and WIS with adolescent d-amphetamine treatment self-administered less cocaine upon reaching acquisition criteria, and WIS additionally acquired cocaine self-administration more slowly and had downward shifts in FR and PR cocaine dose-response curves. WKY with adolescent d-amphetamine treatment acquired cocaine self-administration more quickly relative to vehicle. CONCLUSIONS In contrast to methylphenidate, adolescent d-amphetamine did not augment cocaine self-administration in SHR. Adolescent d-amphetamine treatment actually protected against cocaine abuse vulnerability in adult SHR and WIS.
Collapse
Affiliation(s)
- Chloe J Jordan
- Department of Psychological and Brain Sciences, Boston University, 64 Cummington Mall, Boston, MA, 02215, USA
| | - Carley Lemay
- Department of Psychological and Brain Sciences, Boston University, 64 Cummington Mall, Boston, MA, 02215, USA
| | - Linda P Dwoskin
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, 40536, USA
| | - Kathleen M Kantak
- Department of Psychological and Brain Sciences, Boston University, 64 Cummington Mall, Boston, MA, 02215, USA.
| |
Collapse
|
26
|
Watterson E, Spitzer A, Watterson LR, Brackney RJ, Zavala AR, Olive MF, Sanabria F. Nicotine-induced behavioral sensitization in an adult rat model of attention deficit/hyperactivity disorder (ADHD). Behav Brain Res 2016; 312:333-40. [PMID: 27363925 DOI: 10.1016/j.bbr.2016.06.050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Revised: 06/23/2016] [Accepted: 06/26/2016] [Indexed: 12/23/2022]
Abstract
Attention deficit hyperactivity disorder (ADHD) is associated with increased risk of tobacco dependence. Nicotine, the main psychoactive component of tobacco, appears to be implicated in ADHD-related tobacco dependence. However, the behavioral responsiveness to nicotine of the prevalent animal model of ADHD, the spontaneously hypertensive rat (SHR), is currently underinvestigated. The present study examined the activational effects of acute and chronic nicotine on the behavior of adult male SHRs, relative to Wistar Kyoto (WKY) controls. Experiment 1 verified baseline strain differences in open-field locomotor activity. Experiment 2 tested for baseline strain differences in rotational behavior using a Rotorat apparatus. Adult SHR and WKY rats were then exposed to a 7-day regimen of 0.6mg/kg/d s.c. nicotine, or saline, prior to each assessment. A separate group of SHRs underwent similar training, but was pre-treated with mecamylamine, a cholinergic antagonist. Nicotine sensitization, context conditioning, and mecamylamine effects were then tested. Baseline strain differences were observed in open-field performance and in the number of full rotations in the Rotorat apparatus, but not in the number of 90° rotations or direction changes. In these latter measures, SHRs displayed weaker nicotine-induced rotational suppression than WKYs. Both strains expressed nicotine-induced sensitization of rotational activity, but evidence for strain differences in sensitization was ambiguous; context conditioning was not observed. Mecamylamine reversed the effects of nicotine on SHR performance. These findings are consistent with the hypothesis that a reduced aversion to nicotine (expressed in rats as robust locomotion) may facilitate smoking among adults with ADHD.
Collapse
Affiliation(s)
- Elizabeth Watterson
- Arizona State University, Department of Psychology, P.O. Box 871104, Tempe, AZ 85287, United States
| | - Alexander Spitzer
- Arizona State University, Department of Psychology, P.O. Box 871104, Tempe, AZ 85287, United States
| | - Lucas R Watterson
- Arizona State University, Department of Psychology, P.O. Box 871104, Tempe, AZ 85287, United States; Center for Substance Abuse Research Temple University School of Medicine, 3500N. Broad St., Medical Education and Research Bldg., 8th Floor, Philadelphia, PA 19140, United States
| | - Ryan J Brackney
- Arizona State University, Department of Psychology, P.O. Box 871104, Tempe, AZ 85287, United States
| | - Arturo R Zavala
- California State University, Long Beach, CA 90840, United States
| | - M Foster Olive
- Arizona State University, Department of Psychology, P.O. Box 871104, Tempe, AZ 85287, United States
| | - Federico Sanabria
- Arizona State University, Department of Psychology, P.O. Box 871104, Tempe, AZ 85287, United States.
| |
Collapse
|
27
|
Nelson LH, Lenz KM. Microglia depletion in early life programs persistent changes in social, mood-related, and locomotor behavior in male and female rats. Behav Brain Res 2016; 316:279-293. [PMID: 27613230 DOI: 10.1016/j.bbr.2016.09.006] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 08/19/2016] [Accepted: 09/02/2016] [Indexed: 01/03/2023]
Abstract
Microglia, the innate immune cells of the central nervous system, regulate brain development by promoting cell genesis, pruning synapses, and removing dying, newly-born or progenitor cells. However, the role of microglia in the early life programming of behavior under normal conditions is not well characterized. We used central infusion of liposomal clodronate to selectively deplete microglia from the neonatal rat brain and subsequently assessed the impact of microglial depletion on programming of juvenile and adult motivated behaviors. Liposomal clodronate treatment on postnatal days one and four led to greater than 70% loss of forebrain microglia by postnatal day 6 that lasted for approximately ten days. Neonatal microglia depletion led to reduced juvenile and adult anxiety behavior on the elevated plus maze and open field test, and increased locomotor activity. On a test of juvenile social play, microglial depletion led to decreased chase behaviors relative to control animals. There was no change in active social behavior in adults on a reciprocal social interaction test, but there was decreased passive interaction time and an increased number of social avoidance behaviors in clodronate treated rats relative to controls. There was an overall decrease in behavioral despair on the forced swim test in adult rats treated neonatally with clodronate. Females, but not males, treated neonatally with clodronate showed a blunted corticosterone response after acute stress in adulthood. These results show that microglia are important for the early life programming of juvenile and adult motivated behavior.
Collapse
Affiliation(s)
- Lars H Nelson
- Department of Neuroscience, The Ohio State University, 333 W. 10th Ave., Columbus, OH 43210, USA; Group in Behavioral Neuroendocrinology, The Ohio State University, Columbus OH, USA.
| | - Kathryn M Lenz
- Department of Neuroscience, The Ohio State University, 333 W. 10th Ave., Columbus, OH 43210, USA; Department of Psychology, The Ohio State University, 1835 Neil Ave., Columbus, OH 43210, USA; Group in Behavioral Neuroendocrinology, The Ohio State University, Columbus OH, USA.
| |
Collapse
|
28
|
Adolescent D-amphetamine treatment in a rodent model of ADHD: Pro-cognitive effects in adolescence without an impact on cocaine cue reactivity in adulthood. Behav Brain Res 2015; 297:165-79. [PMID: 26467602 DOI: 10.1016/j.bbr.2015.10.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 10/02/2015] [Accepted: 10/06/2015] [Indexed: 12/17/2022]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is comorbid with cocaine abuse. Whereas initiating ADHD medication in childhood does not alter later cocaine abuse risk, initiating medication during adolescence may increase risk. Preclinical work in the Spontaneously Hypertensive Rat (SHR) model of ADHD found that adolescent methylphenidate increased cocaine self-administration in adulthood, suggesting a need to identify alternatively efficacious medications for teens with ADHD. We examined effects of adolescent d-amphetamine treatment on strategy set shifting performance during adolescence and on cocaine self-administration and reinstatement of cocaine-seeking behavior (cue reactivity) during adulthood in male SHR, Wistar-Kyoto (inbred control), and Wistar (outbred control) rats. During the set shift phase, adolescent SHR needed more trials and had a longer latency to reach criterion, made more regressive errors and trial omissions, and exhibited slower and more variable lever press reaction times. d-Amphetamine improved performance only in SHR by increasing choice accuracy and decreasing errors and latency to criterion. In adulthood, SHR self-administered more cocaine, made more cocaine-seeking responses, and took longer to extinguish lever responding than control strains. Adolescent d-amphetamine did not alter cocaine self-administration in adult rats of any strain, but reduced cocaine seeking during the first of seven reinstatement test sessions in adult SHR. These findings highlight utility of SHR in modeling cognitive dysfunction and comorbid cocaine abuse in ADHD. Unlike methylphenidate, d-amphetamine improved several aspects of flexible learning in adolescent SHR and did not increase cocaine intake or cue reactivity in adult SHR. Thus, adolescent d-amphetamine was superior to methylphenidate in this ADHD model.
Collapse
|
29
|
Altered visual processing in a rodent model of Attention-Deficit Hyperactivity Disorder. Neuroscience 2015; 303:364-77. [DOI: 10.1016/j.neuroscience.2015.07.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 06/18/2015] [Accepted: 07/01/2015] [Indexed: 11/23/2022]
|
30
|
D-amphetamine improves attention performance in adolescent Wistar, but not in SHR rats, in a two-choice visual discrimination task. Psychopharmacology (Berl) 2015; 232:3269-86. [PMID: 26037943 DOI: 10.1007/s00213-015-3974-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 05/24/2015] [Indexed: 01/30/2023]
Abstract
The validity of spontaneous hypertensive rat (SHR) as a model of attention deficit hyperactivity disorder (ADHD) has been explored by comparing SHR with Wistar rats in a test of attention, the two-choice visual discrimination task (2-CVDT). Animals were 4-5 weeks old during the training phase of the experiment and 6-7 weeks old during the testing phase in which they were tested with D-amphetamine, a stimulant drug used for the treatment of ADHD. As compared to Wistar, SHR showed a slightly better attention performance, a slightly lower impulsivity level, and a lower general activity during the training phase, but these differences disappeared or lessened thereafter, during the testing phase. D-amphetamine (0.5, 1 mg/kg) improved attention performance in Wistar, but not in SHR, and did not modify impulsivity and activity in the two strains. In conclusion, the present study did not demonstrate that SHR represents a valid model of ADHD, since it did not show face validity regarding the behavioral symptoms of ADHD and predictive validity regarding the effect of a compound used for the treatment of ADHD. On the other hand, this study showed that the 2-CVDT may represent a suitable tool for evaluating in adolescent Wistar rats the effect on attention of compounds intended for the treatment of ADHD.
Collapse
|
31
|
Orduña V. Impulsivity and sensitivity to amount and delay of reinforcement in an animal model of ADHD. Behav Brain Res 2015. [PMID: 26225844 DOI: 10.1016/j.bbr.2015.07.046] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Previous research has been inconclusive about the degree of impulsivity displayed by spontaneously hypertensive rats (SHR), an animal model of Attention Deficit Hyperactivity Disorder (ADHD). In the present set of experiments, concurrent-chains schedules were employed in order to explore SHR's impulsivity, sensitivity to delay, and sensitivity to amount of reinforcement; Wistar rats (WIS) were used as comparison group. In the three experiments - performed with different subjects - non-independent variable interval 30s schedules were presented in the initial links; the difference between experiments was in the terminal links. For exploring impulsivity, one of the terminal links (SS) was associated to a short delay (2s) and a small reinforcer (1 pellet), whereas the other terminal link (LL) was associated to a longer delay (28s) and a larger reinforcer (4 pellets). The results indicated a remarkably higher impulsivity in SHR. Because this impulsivity may have as potential mechanisms an increased sensitivity to delay and/or a decreased sensitivity to the amount of reinforcement, in experiments 2 and 3 these possibilities were examined. For assessing sensitivity to delay, the following pairs of fixed interval (FI) schedules were used in the terminal links in five conditions: 2-28, 6-24, 15-15, 24-6, 28-2s; the magnitude of reinforcement was 1 pellet in all conditions for both alternatives. For assessing sensitivity to amount, in five conditions the alternatives were associated with different magnitudes of reinforcement: 1-5 pellets, 2-4, 3-3, 4-2 and 5-1 in left-right alternatives, respectively; the delay to reinforcement was controlled by a FI 15s in all conditions and for both alternatives. The sensitivity to delay and the sensitivity to amount were calculated according to the Generalized Matching Law. The results indicated a higher sensitivity to delay in SHR, and the same sensitivity to amount in SHR and WIS rats. These results suggest that the increased sensitivity to delay influences the high level of impulsivity observed in SHR.
Collapse
Affiliation(s)
- Vladimir Orduña
- Facultad de Psicología, Universidad Nacional Autónoma de México, México, D.F. 04510, Mexico.
| |
Collapse
|