1
|
Roca M, Íbias J, Mohamedi-Ahmed Y, Ruiz-Gayo M, Ambrosio E, Sanz-Martos AB, Del Olmo N. Saturated and unsaturated high-fat diets induce addictive-like behavior in an animal model of operant self-administration. Prog Neuropsychopharmacol Biol Psychiatry 2025; 137:111295. [PMID: 39988255 DOI: 10.1016/j.pnpbp.2025.111295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 01/27/2025] [Accepted: 02/19/2025] [Indexed: 02/25/2025]
Abstract
In recent years, obesity has become a significant public health concern worldwide. The rapid increase in prevalence is often attributed to the overconsumption of highly palatable, calorically dense foods that are rich in sugars and fats. These dietary habits have been shown to modulate specific brain circuits, notably the mesolimbic dopaminergic reward system. Despite extensive research into their effects, the potential reinforcing properties of these diets are still unknown. We conducted a study using two high-fat diets devoid of added sugar (SOLF, which is high in saturated fats and UOLF, high in unsaturated fats). We utilized an operant self-administration model with Skinner boxes, following a three-criteria protocol: 1) reward-seeking behavior, 2) motivation to obtain the reward, and 3) compulsivity. Juvenile C57BL/6J mice, both male and female, were subjected to an incremental reinforcement schedule followed by a progressive ratio session aimed at finding the breaking point, and finally, two cue-induced reinstatement sessions following the extinction of the food seeking behavior. Our results show that both diets induce potent seeking behavior for the high-fat food, characterized by high levels of compulsivity and great motivation to obtain the reward. These findings suggest that sugar-free high-fat diets function as potent reinforcers, capable of inducing addictive-like behaviors. Notably, differences between SOLF and UOLF are primarily observed in the breaking point and following the extinction of the seeking behavior, with higher values observed for UOLF.
Collapse
Affiliation(s)
- María Roca
- Department of Psychobiology, School of Psychology, National University for Distance Education (UNED), Madrid, Spain
| | - Javier Íbias
- Department of Methodology, School of Psychology, National University for Distance Education (UNED), Madrid, Spain
| | - Yunes Mohamedi-Ahmed
- Department of Psychobiology, School of Psychology, National University for Distance Education (UNED), Madrid, Spain
| | - Mariano Ruiz-Gayo
- Department of Health and Pharmaceutical Sciences, School of Pharmacy, Universidad CEU-San Pablo, CEU Universities, Madrid, Spain
| | - Emilio Ambrosio
- Department of Psychobiology, School of Psychology, National University for Distance Education (UNED), Madrid, Spain
| | - Ana Belén Sanz-Martos
- Department of Psychobiology, School of Psychology, National University for Distance Education (UNED), Madrid, Spain
| | - Nuria Del Olmo
- Department of Psychobiology, School of Psychology, National University for Distance Education (UNED), Madrid, Spain.
| |
Collapse
|
2
|
Sanz-Martos AB, Roca M, Plaza A, Merino B, Ruiz-Gayo M, Olmo ND. Long-term saturated fat-enriched diets impair hippocampal learning and memory processes in a sex-dependent manner. Neuropharmacology 2024; 259:110108. [PMID: 39128582 DOI: 10.1016/j.neuropharm.2024.110108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/29/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
Consumption of saturated fat-enriched diets during adolescence has been closely associated with the reduction of hippocampal synaptic plasticity and the impairment of cognitive function. Nevertheless, the effect of long-term intake of these foods has not yet been studied. In the present study, we have investigated the effect of a treatment, lasting for 40 weeks, with a diet enriched in saturated fat (SOLF) on i) spatial learning and memory, ii) hippocampal synaptic transmission and plasticity, and iii) hippocampal gene expression levels in aged male and female mice. Our findings reveal that SOLF has a detrimental impact on spatial memory and synaptic plasticity mechanisms, such as long-term potentiation (LTP), and downregulates Gria1 expression specifically in males. In females, SOLF downregulates the gene expression of Gria1/2/3 and Grin1/2A/2B glutamate receptor subunits as well as some proinflammatory interleukins. These findings highlight the importance of considering sex-specific factors when assessing the long-term effects of high-fat diets on cognition and brain plasticity.
Collapse
Affiliation(s)
- Ana Belén Sanz-Martos
- Department of Psychobiology, School of Psychology, UNED, C/ Juan del Rosal 10, 28040, Madrid, Spain.
| | - María Roca
- Department of Psychobiology, School of Psychology, UNED, C/ Juan del Rosal 10, 28040, Madrid, Spain
| | - Adrián Plaza
- Department of Health and Pharmaceutical Sciences, School of Pharmacy, Universidad CEU-San Pablo, CEU Universities, 28668, Madrid, Spain
| | - Beatriz Merino
- Department of Health and Pharmaceutical Sciences, School of Pharmacy, Universidad CEU-San Pablo, CEU Universities, 28668, Madrid, Spain
| | - Mariano Ruiz-Gayo
- Department of Health and Pharmaceutical Sciences, School of Pharmacy, Universidad CEU-San Pablo, CEU Universities, 28668, Madrid, Spain
| | - Nuria Del Olmo
- Department of Psychobiology, School of Psychology, UNED, C/ Juan del Rosal 10, 28040, Madrid, Spain
| |
Collapse
|
3
|
Paiva IHRD, Maciel LM, Silva RSD, Mendonça IP, Souza JRBD, Peixoto CA. Prebiotics modulate the microbiota-gut-brain axis and ameliorate anxiety and depression-like behavior in HFD-fed mice. Food Res Int 2024; 182:114153. [PMID: 38519181 DOI: 10.1016/j.foodres.2024.114153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/05/2024] [Accepted: 02/17/2024] [Indexed: 03/24/2024]
Abstract
Previous research has demonstrated that Prebiotics can influence the composition of the gut microbiota, consequently impacting mood regulation. This study aimed to assess the effects of Prebiotics, specifically Fructooligosaccharides (FOS) and Galactooligosaccharides (GOS) on neuroinflammation, depression, and anxiety-like behavior in a mouse model fed a high-fat diet (HFD). Initially, mice were divided into two groups: a control group on a standard diet (n = 15) and a group on an HFD for 18 weeks (n = 45). By the 13th week, the HFD group was further divided into experimental groups: Control (n = 15), HFD (n = 15), HFD receiving Prebiotics (n = 15), and HFD receiving Fluoxetine (n = 15). From the 13th week onward, the HFD + Prebiotics group received both the high-fat diet and a combination of FOS and GOS, while the HFD + Fluoxetine group received Fluoxetine in their drinking water. In the 18th week, all mice underwent tests to evaluate behavior, including the Tail Suspension Test (TST), Forced Swimming Test (FST), Sucrose Preference Test (SPT), and the Plus Maze Test (PMT), after which they were euthanized. Mice on the HFD exhibited increased body weight, abdominal size, blood glucose, triglyceride levels, cholesterol, insulin, HOMA index, and higher serum IL-1β. These obese mice also displayed an increased number of microglia and astrocytes, activation of the TLR4 pathway, and elevated levels of neuroinflammatory markers like TNF-α, IL-1β, and COX-2. Moreover, obese mice showed increased activation of the IDO pathway and decreased levels of NMDA receptors. Additionally, markers of neurogenesis and synaptic plasticity, such as PSD, SAP 102, CREB-p, and BDNF, were lower. Treatment with FOS and GOS reversed symptoms of depression and anxiety in mice subjected to HD. This improvement in behavior resulted from a reduction in dysbiosis with an increase in acetate-producing bacteria (B. acidifaciens and B. dorei) and intestinal permeability, leading to a decrease in chronic peripheral and central inflammation. Furthermore, the modulation of the gut-brain axis by FOS and GOS promoted elevated acetate and GPR43 levels in the brain and a reduction in the levels of pro-inflammatory cytokines, positively impacting signaling pathways of neuronal proliferation and survival in the hippocampus and prefrontal cortex.
Collapse
Affiliation(s)
- Igor Henrique Rodrigues de Paiva
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), PE, Brazil; Postgraduate Program in Biological Sciences/Center of Biosciences, Federal University of Pernambuco (UFPE), Recife, PE, Brazil.
| | - Laís Macedo Maciel
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), PE, Brazil
| | - Rodrigo Soares da Silva
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), PE, Brazil; Postgraduate Program in Biological Sciences/Center of Biosciences, Federal University of Pernambuco (UFPE), Recife, PE, Brazil
| | - Ingrid Prata Mendonça
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), PE, Brazil; Postgraduate Program in Biological Sciences/Center of Biosciences, Federal University of Pernambuco (UFPE), Recife, PE, Brazil
| | | | - Christina Alves Peixoto
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), PE, Brazil; Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Brazil.
| |
Collapse
|
4
|
Neurobiological Mechanisms Modulating Emotionality, Cognition and Reward-Related Behaviour in High-Fat Diet-Fed Rodents. Int J Mol Sci 2022; 23:ijms23147952. [PMID: 35887310 PMCID: PMC9317076 DOI: 10.3390/ijms23147952] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/15/2022] [Accepted: 07/16/2022] [Indexed: 01/27/2023] Open
Abstract
Affective and substance-use disorders are associated with overweight and obesity-related complications, which are often due to the overconsumption of palatable food. Both high-fat diets (HFDs) and psychostimulant drugs modulate the neuro-circuitry regulating emotional processing and metabolic functions. However, it is not known how they interact at the behavioural level, and whether they lead to overlapping changes in neurobiological endpoints. In this literature review, we describe the impact of HFDs on emotionality, cognition, and reward-related behaviour in rodents. We also outline the effects of HFD on brain metabolism and plasticity involving mitochondria. Moreover, the possible overlap of the neurobiological mechanisms produced by HFDs and psychostimulants is discussed. Our in-depth analysis of published results revealed that HFDs have a clear impact on behaviour and underlying brain processes, which are largely dependent on the developmental period. However, apart from the studies investigating maternal exposure to HFDs, most of the published results involve only male rodents. Future research should also examine the biological impact of HFDs in female rodents. Further knowledge about the molecular mechanisms linking stress and obesity is a crucial requirement of translational research and using rodent models can significantly advance the important search for risk-related biomarkers and the development of clinical intervention strategies.
Collapse
|
5
|
Wang W, Yang J, Xu J, Yu H, Liu Y, Wang R, Ho RCM, Ho CSH, Pan F. Effects of High-fat Diet and Chronic Mild Stress on Depression-like Behaviors and Levels of Inflammatory Cytokines in the Hippocampus and Prefrontal Cortex of Rats. Neuroscience 2022; 480:178-193. [PMID: 34798182 DOI: 10.1016/j.neuroscience.2021.11.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 11/02/2021] [Accepted: 11/06/2021] [Indexed: 12/11/2022]
Abstract
Obesity and depression tend to co-occur, and obese patients with chronic low-grade inflammation have a higher risk of developing depression. However, mechanisms explaining these connections have not been fully elucidated. Here, an animal model of comorbid obesity and depression induced by high-fat diet (HFD) combined with chronic unpredictable mild stress (CUMS) was used, and sucrose preference, open field, elevated plus maze and Morris water maze tests were used to detected depression-and anxiety-like behaviors and spatial memory. The levels of inflammatory cytokines and NF-κB and microglial activation in the hippocampus and prefrontal cortex were examined in the study. Our results revealed that the comorbidity group exhibited the most severe depression-like behavior. Obesity but unstressed rats had the highest serum lipid levels among groups. The HFD and CUMS alone and combination of them increased levels of IL-1β, IL-6 and TNF-α in the hippocampus and prefrontal cortex, which was significantly related to depression-like behaviors. Further, NF-κB protein and mRNA levels and microglial activation in the hippocampus and prefrontal cortex significantly increased in stressed, obese and comorbid groups, with animals in comorbid group having the highest NF-κB mRNA levels in the hippocampus and level of NF-κB proteins in the prefrontal cortex, and the highest microglial activation in both brain areas. The study concluded that HFD and CUMS alone and combination induce depression-like symptoms, abnormal serum lipid levels, microglial activation and increased inflammatory cytokines in the brain, effects that are possibly mediated by TLR4-NF-κB signaling.
Collapse
Affiliation(s)
- Wei Wang
- Department of Medical Psychology and Ethics, School of Basic Medicine Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Jinling Yang
- Department of Medical Psychology and Ethics, School of Basic Medicine Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Jingjing Xu
- Department of Medical Psychology and Ethics, School of Basic Medicine Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Huihui Yu
- Department of Medical Psychology and Ethics, School of Basic Medicine Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yuan Liu
- Department of Medical Psychology and Ethics, School of Basic Medicine Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Rui Wang
- Department of Medical Psychology and Ethics, School of Basic Medicine Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Roger C M Ho
- Department of Psychological Medicine, National University of Singapore, 119228, Singapore
| | - Cyrus S H Ho
- Department of Psychological Medicine, National University of Singapore, 119228, Singapore
| | - Fang Pan
- Department of Medical Psychology and Ethics, School of Basic Medicine Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
6
|
Saturated and unsaturated fat diets impair hippocampal glutamatergic transmission in adolescent mice. Psychoneuroendocrinology 2021; 133:105429. [PMID: 34624673 DOI: 10.1016/j.psyneuen.2021.105429] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/10/2021] [Accepted: 09/20/2021] [Indexed: 11/22/2022]
Abstract
Consumption of high-fat diets (HFD) has been associated with neuronal plasticity deficits and cognitive disorders linked to the alteration of glutamatergic disorders in the hippocampus. As young individuals are especially vulnerable to the effects of nutrients and xenobiotics on cognition, we studied the effect of chronic consumption of saturated (SOLF) and unsaturated oil-enriched foods (UOLF) on: i) spatial memory; ii) hippocampal synaptic transmission and plasticity; and iii) gene expression of glutamatergic receptors and hormone receptors in the hippocampus of adolescent and adult mice. Our results show that both SOLF and UOLF impair spatial short-term memory. Accordingly, hippocampal synaptic plasticity mechanisms underlying memory, and gene expression of NMDA receptor subunits are modulated by both diets. On the other hand, PPARγ gene expression is specifically down-regulated in adolescent SOLF individuals and up-regulated in adult UOLF mice.
Collapse
|
7
|
Haleem DJ, Mahmood K. Brain serotonin in high-fat diet-induced weight gain, anxiety and spatial memory in rats. Nutr Neurosci 2021; 24:226-235. [PMID: 31116091 DOI: 10.1080/1028415x.2019.1619983] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Objectives: Effects of high-fat diet (HFD) consumption on body weight gain and its consequences on anxiety, learning and memory, and serotonin metabolism (5-hydroxytryptamine; 5-HT) in the hypothalamus and hippocampus are determined in rats. Methods: Male Wister rats treated with HFD or normal diet (ND) for 12 weeks to monitor food intakes, body weight changes, activity in an open field, anxiety in an elevated plus maze and learning/memory in Morris water maze. Animals decapitated to collect serum for determining leptin by an ELISA kit. The hippocampus and hypothalamus dissected out for determining 5-HT, its metabolite 5-hydroxyindoleacetic acid (5-HIAA) and its precursor tryptophan by HPLC-EC. Results: Despite a significant decrease in the cumulative weekly food intake, gain in body weight was greater in HFD than ND treated rats. Total caloric intakes were not different in the two groups. The consumption of HFD resulted in an enhancement of exploratory activity and reduction in anxiety. It improved learning acquisition and memory retention but impaired reference memory. There was an attenuation of 5-HT in the hypothalamus, and an enhancement of 5-HT and 5-HIAA in the hippocampus, but no effect occurred on tryptophan levels in the hypothalamus or the hippocampus. Serum leptin levels increased in HFD treated animals. Conclusion: Serotonin acting via the hypothalamus and hippocampus is involved in HFD-induced weight gain, anxiety reduction and modulation of cognitive performance.
Collapse
Affiliation(s)
- Darakhshan Jabeen Haleem
- Neuroscience Research Laboratory, Dr Panjwani Center for Molecular Medicine & Drug Research (PCMD), International Center for Chemical and Biological Science (ICCBS), University of Karachi, Karachi, Pakistan
| | - Khalid Mahmood
- Neuroscience Research Laboratory, Dr Panjwani Center for Molecular Medicine & Drug Research (PCMD), International Center for Chemical and Biological Science (ICCBS), University of Karachi, Karachi, Pakistan
| |
Collapse
|
8
|
Abstract
Neuropsychiatric disorders are major causes of the global burden of diseases, frequently co-occurring with multiple co-morbidities, especially obesity, type 2 diabetes mellitus, non-alcoholic fatty liver disease and its various risk factors in the metabolic syndrome. While the determining factors of neuropsychiatric disorders are complex, recent studies have shown that there is a strong link between diet, metabolic state and neuropsychiatric disorders, including anxiety and depression. There is no doubt that rodent models are of great value for preclinical research. Therefore, this article focuses on a rodent model of chronic consumption of high-fat diet (HFD), and/or the addition of a certain amount of cholesterol or sugar, meanwhile, summarising the pattern of diet that induces anxiety/depressive-like behaviour and the underlying mechanism. We highlight how dietary and metabolic risk influence neuropsychiatric behaviour in animals. Changes in dietary patterns, especially HFD, can induce anxiety- or depression-like behaviours, which may vary by diet exposure period, sex, age, species and genetic background of the animals used. Furthermore, dietary patterns significantly aggravate anxiety/depression-like behaviour in animal models of neuropsychiatric disorders. The mechanisms by which diet induces anxiety/depressive-like behaviour may involve neuroinflammation, neurotransmitters/neuromodulators, neurotrophins and the gut-brain axis. Future research should be focused on elucidating the mechanism and identifying the contribution of diet and diet-induced metabolic risk to neuropsychiatric disorders, which can form the basis for future clinical dietary intervention strategies for neuropsychiatric disorders.
Collapse
|
9
|
Chronic Mild Unpredictable Stress and High-Fat Diet Given during Adolescence Impact Both Cognitive and Noncognitive Behaviors in Young Adult Mice. Brain Sci 2021; 11:brainsci11020260. [PMID: 33669543 PMCID: PMC7923206 DOI: 10.3390/brainsci11020260] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/12/2021] [Accepted: 02/14/2021] [Indexed: 12/24/2022] Open
Abstract
Stress and diet are intricately linked, and they often interact in a negative fashion. Increases in stress can lead to poor food choices; adolescence is a period that is often accompanied by increased levels of stress. Stress and poor dietary choices can affect learning and memory; it is important to understand their combined effects when occurring during crucial developmental periods. Here, we present evidence that chronic mild unpredictable stress (CMUS) and high-fat diet (HFD) impact both cognitive and noncognitive behaviors when assessed after four weeks of manipulation in four-week old mice. CMUS mice had increased anxiety in the open field test (OFT) (p = 0.01) and spent more time in the open arms of the elevated zero maze (EZM) (p < 0.01). HFD administration was shown to interact with CMUS to impair spatial memory in the Morris Water Maze (MWM) (p < 0.05). Stress and diet also led to disturbances in non-cognitive behaviors: CMUS led to significantly more burrowing (p < 0.05) and HFD administration led to the poorer nest construction (p < 0.05). These findings allow for researchers to assess how modifying lifestyle factors (including diet and stress) during adolescence can serve as a potential strategy to improve cognition in young adulthood.
Collapse
|
10
|
Tsan L, Décarie-Spain L, Noble EE, Kanoski SE. Western Diet Consumption During Development: Setting the Stage for Neurocognitive Dysfunction. Front Neurosci 2021; 15:632312. [PMID: 33642988 PMCID: PMC7902933 DOI: 10.3389/fnins.2021.632312] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/19/2021] [Indexed: 01/18/2023] Open
Abstract
The dietary pattern in industrialized countries has changed substantially over the past century due to technological advances in agriculture, food processing, storage, marketing, and distribution practices. The availability of highly palatable, calorically dense foods that are shelf-stable has facilitated a food environment where overconsumption of foods that have a high percentage of calories derived from fat (particularly saturated fat) and sugar is extremely common in modern Westernized societies. In addition to being a predictor of obesity and metabolic dysfunction, consumption of a Western diet (WD) is related to poorer cognitive performance across the lifespan. In particular, WD consumption during critical early life stages of development has negative consequences on various cognitive abilities later in adulthood. This review highlights rodent model research identifying dietary, metabolic, and neurobiological mechanisms linking consumption of a WD during early life periods of development (gestation, lactation, juvenile and adolescence) with behavioral impairments in multiple cognitive domains, including anxiety-like behavior, learning and memory function, reward-motivated behavior, and social behavior. The literature supports a model in which early life WD consumption leads to long-lasting neurocognitive impairments that are largely dissociable from WD effects on obesity and metabolic dysfunction.
Collapse
Affiliation(s)
- Linda Tsan
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, United States.,Department of Biological Sciences, Human and Evolutionary Biology Section, University of Southern California, Los Angeles, CA, United States
| | - Léa Décarie-Spain
- Department of Biological Sciences, Human and Evolutionary Biology Section, University of Southern California, Los Angeles, CA, United States
| | - Emily E Noble
- Department of Foods and Nutrition, University of Georgia, Athens, GA, United States
| | - Scott E Kanoski
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, United States.,Department of Biological Sciences, Human and Evolutionary Biology Section, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
11
|
Müller SG, Jardim NS, Trindade MA, Nogueira CW. Opioid System Contributes to the Trifluoromethyl-Substituted Diselenide Effectiveness in a Lifestyle-Induced Depression Mouse Model. Mol Neurobiol 2021; 58:2231-2241. [PMID: 33417225 DOI: 10.1007/s12035-020-02255-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 12/08/2020] [Indexed: 12/17/2022]
Abstract
Energy-dense foods and ethanol consumption are associated with mood disorders. m-Trifluoromethyl-diphenyl diselenide [(m-CF3-PhSe)2] has been a prominent pharmacological target due to its antidepressant-like effects. This study investigated if the modulation of opioid and glucocorticoid receptors and its well-known antioxidant property contribute to the (m-CF3-PhSe)2 antidepressant-like effect in young mice subjected to an energy-dense diet and ethanol intake. Swiss male mice [postnatal day (PND) 25] were exposed to an energy-dense diet (containing 20% fat and 20% carbohydrate) or standard chow until the PND 67. Mice received ethanol (2 g/kg) or water administration (3 times a week, intragastrically [i.g.]) from PND 45 to PND 60. After that, mice received (m-CF3-PhSe)2 (5 mg/kg/day; i.g) or vegetal oil administration from PND 60 to 66. Mice performed the behavioral tests to evaluate the depressive-like phenotype. The results showed that individually neither an energy-dense diet nor ethanol group induced a depressive-like phenotype, but the association of both induced this phenotype in young mice. Oxidative stress was characterized by the increase of malondialdehyde, the decrease in the superoxide dismutase activity, and non-protein sulfhydryl levels in the cerebral cortex of depressive-like mice. Depressive-like mice showed an increase in the protein levels of opioid receptors and depletion in those of glucocorticoid. (m-CF3-PhSe)2 abolished depressive-like phenotype and oxidative stress as well as modulated the levels of glucocorticoid and opioid receptors. In conclusion, the modulation of opioid and glucocorticoid receptors and the antioxidant property contributed to the (m-CF3-PhSe)2 antidepressant-like effect in young mice exposed to an energy-dense diet and ethanol intake.
Collapse
Affiliation(s)
- Sabrina Grendene Müller
- Laboratory of Synthesis, Reactivity, Pharmacological and Toxicological Evaluation of Organochalcogen Compounds, Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - Natália Silva Jardim
- Laboratory of Synthesis, Reactivity, Pharmacological and Toxicological Evaluation of Organochalcogen Compounds, Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - Milene Arrial Trindade
- Laboratory of Synthesis, Reactivity, Pharmacological and Toxicological Evaluation of Organochalcogen Compounds, Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - Cristina Wayne Nogueira
- Laboratory of Synthesis, Reactivity, Pharmacological and Toxicological Evaluation of Organochalcogen Compounds, Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil.
| |
Collapse
|
12
|
Glushchak K, Ficarro A, Schoenfeld TJ. High-fat diet and acute stress have different effects on object preference tests in rats during adolescence and adulthood. Behav Brain Res 2020; 399:112993. [PMID: 33152318 DOI: 10.1016/j.bbr.2020.112993] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/30/2020] [Accepted: 10/28/2020] [Indexed: 12/16/2022]
Abstract
Meals of high-fat diet (HFD) during adolescence produce stronger impairments to memory during adolescence than adulthood, however recovery of memory from adolescent HFD is underexplored. In addition, many tests of rodent memory are confounded by aversive or food-based stimuli, making it difficult to determine baseline memory processing affected by HFD. Thus, we utilized three cohorts of rats (adolescent HFD, adult HFD, and adolescent HFD with recovery) to explore the effects of HFD at different ages on two traditional tests of memory based strictly on object exploration, novel object recognition and novel object location tests. To isolate stress as a variable, rats were tested either at baseline or with cold water swim occurring directly after object acquisition. Results show that preference for novel objects is impaired by stress across all groups, but HFD alone only impairs preference for novel objects during adolescence, although this recovers after switching to a control diet. Additionally, preference for an object in a new location is impaired by HFD in all age groups and fails to recover following diet change. Together the data suggest that stress and HFD differentially affect object preference, based on test type, except during the adolescent period. Because these tests are traditionally interpreted as memory processes dependent on two distinct brain regions, the hippocampus and perirhinal cortex, these results support that stress and HFD affect the hippocampus and perirhinal cortex differently. The data affirm that while perirhinal cortex-dependent behavior recovers, the adolescent period is susceptible to long-lasting dysfunctions of hippocampal behavior by HFD.
Collapse
Affiliation(s)
- Karina Glushchak
- Department of Psychological Science and Neuroscience, Belmont University, Nashville, TN, 37212, USA
| | - Alexandria Ficarro
- Department of Psychological Science and Neuroscience, Belmont University, Nashville, TN, 37212, USA
| | - Timothy J Schoenfeld
- Department of Psychological Science and Neuroscience, Belmont University, Nashville, TN, 37212, USA.
| |
Collapse
|
13
|
Treading water: mixed effects of high fat diet on mouse behavior in the forced swim test. Physiol Behav 2020; 223:112965. [DOI: 10.1016/j.physbeh.2020.112965] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 05/02/2020] [Accepted: 05/10/2020] [Indexed: 12/27/2022]
|
14
|
Zarantoniello M, Randazzo B, Gioacchini G, Truzzi C, Giorgini E, Riolo P, Gioia G, Bertolucci C, Osimani A, Cardinaletti G, Lucon-Xiccato T, Milanović V, Annibaldi A, Tulli F, Notarstefano V, Ruschioni S, Clementi F, Olivotto I. Zebrafish (Danio rerio) physiological and behavioural responses to insect-based diets: a multidisciplinary approach. Sci Rep 2020; 10:10648. [PMID: 32606335 PMCID: PMC7326965 DOI: 10.1038/s41598-020-67740-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 06/15/2020] [Indexed: 12/16/2022] Open
Abstract
Black Soldier Fly (BSF) meal is considered as an alternative, emerging and sustainable ingredient for aquafeed production. However, results on fish physiological responses are still fragmentary and often controversial, while no studies are available on fish behavior in response to these new diets. The present work represents the first comprehensive multidisciplinary study aimed to investigate zebrafish physiological and behavioural responses to BSF-based diets. Five experimental diets characterized by increasing inclusion levels (0, 25, 50, 75 and 100% respect to fish meal) of full fat BSF prepupae meal were tested during a 2-months feeding trial. Prepupae were cultured on coffee silverskin growth substrate enriched with a 10% Schizochytrium sp. to improve insects’ fatty acids profile. The responses of zebrafish were assayed through biometric, histological, gas chromatographic, microbiological, spectroscopic, molecular and behavioural analyses. Results evidenced that BSF-based diets affected fish fatty acid composition, while behavioural tests did not show differences among groups. Specifically, a 50% BSF inclusion level diet represented the best compromise between ingredient sustainability and proper fish growth and welfare. Fish fed with higher BSF inclusions (75 and 100%) showed hepatic steatosis, microbiota modification, higher lipid content, fatty acid modification and higher expression of immune response markers.
Collapse
Affiliation(s)
- Matteo Zarantoniello
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, via Brecce Bianche, 60131, Ancona, Italy
| | - Basilio Randazzo
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, via Brecce Bianche, 60131, Ancona, Italy
| | - Giorgia Gioacchini
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, via Brecce Bianche, 60131, Ancona, Italy
| | - Cristina Truzzi
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, via Brecce Bianche, 60131, Ancona, Italy
| | - Elisabetta Giorgini
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, via Brecce Bianche, 60131, Ancona, Italy
| | - Paola Riolo
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131, Ancona, Italy
| | - Giorgia Gioia
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, via Brecce Bianche, 60131, Ancona, Italy
| | - Cristiano Bertolucci
- Dipartimento di Scienze della Vita e Biotecnologie, Università di Ferrara, via L. Borsari 46, 44121, Ferrara, Italy
| | - Andrea Osimani
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131, Ancona, Italy
| | - Gloriana Cardinaletti
- Dipartimento di Scienze Agro-Alimentari, Ambientali e Animali (Di4A), Università di Udine, via Sondrio 2/A, 33100, Udine, Italy
| | - Tyrone Lucon-Xiccato
- Dipartimento di Scienze della Vita e Biotecnologie, Università di Ferrara, via L. Borsari 46, 44121, Ferrara, Italy
| | - Vesna Milanović
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131, Ancona, Italy
| | - Anna Annibaldi
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, via Brecce Bianche, 60131, Ancona, Italy
| | - Francesca Tulli
- Dipartimento di Scienze Agro-Alimentari, Ambientali e Animali (Di4A), Università di Udine, via Sondrio 2/A, 33100, Udine, Italy
| | - Valentina Notarstefano
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, via Brecce Bianche, 60131, Ancona, Italy
| | - Sara Ruschioni
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131, Ancona, Italy
| | - Francesca Clementi
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131, Ancona, Italy
| | - Ike Olivotto
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, via Brecce Bianche, 60131, Ancona, Italy.
| |
Collapse
|
15
|
Lama A, Pirozzi C, Annunziata C, Morgese MG, Senzacqua M, Severi I, Calignano A, Trabace L, Giordano A, Meli R, Mattace Raso G. Palmitoylethanolamide counteracts brain fog improving depressive-like behaviour in obese mice: Possible role of synaptic plasticity and neurogenesis. Br J Pharmacol 2020; 178:845-859. [PMID: 32346865 DOI: 10.1111/bph.15071] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/28/2020] [Accepted: 04/17/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND AND PURPOSE High-fat diet (HFD)-induced obesity is accompanied by metabolic and neurochemical changes that have been associated with depression. Recent studies indicate that palmitoylethanolamide (PEA) exerts metabolic effects and holds neuroprotective potential. However, studies on HFD exposure in mice which investigate the effects of PEA on monoamine system and synaptic plasticity are limited. EXPERIMENTAL APPROACH In C57Bl/6J male mice, obesity was established by HFD feeding for 12 weeks. Then, mice were treated with ultra-micronized PEA (30 mg·kg-1 daily p.o.) or vehicle for 7 weeks along with HFD. Mice receiving chow diet and vehicle served as controls. Thereafter, depressive-, anhedonic-like behaviour and cognitive performance were measured. Monoamine analyses were performed on brain areas (nucleus accumbens, Nac; prefrontal cortex, PFC; hippocampus), and markers of synaptic plasticity and neurogenesis were evaluated in hippocampus. KEY RESULTS PEA limited depressive- and anhedonic-like behaviour, and cognitive deficits induced by HFD. PEA induced an increase in 5-HT levels in PFC, and a reduction of dopamine and 5-HT turnover in Nac and PFC, respectively. Moreover, PEA increased dopamine levels in the hippocampus and PFC. At a molecular level, PEA restored brain-derived neurotrophic factor signalling pathway in hippocampus and PFC, indicating an improvement of synaptic plasticity. In particular, PEA counteracted the reduction of glutamatergic synaptic density induced by HFD in the stratum radiatum of the CA1 of the hippocampus, where it also exhibited neurogenesis-promoting abilities. CONCLUSION AND IMPLICATIONS PEA may represent an adjuvant therapy to limit depressive-like behaviours and memory deficit, affecting monoamine homeostasis, synaptic plasticity and neurogenesis. LINKED ARTICLES This article is part of a themed issue on Neurochemistry in Japan. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.4/issuetoc.
Collapse
Affiliation(s)
- Adriano Lama
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Claudio Pirozzi
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Chiara Annunziata
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Maria Grazia Morgese
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Martina Senzacqua
- Department of Experimental and Clinical Medicine, Marche Polytechnic University, Ancona, Italy
| | - Ilenia Severi
- Department of Experimental and Clinical Medicine, Marche Polytechnic University, Ancona, Italy
| | - Antonio Calignano
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Luigia Trabace
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Antonio Giordano
- Department of Experimental and Clinical Medicine, Marche Polytechnic University, Ancona, Italy
| | - Rosaria Meli
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | | |
Collapse
|
16
|
Ruiz-Gayo M, Olmo ND. Interaction Between Circadian Rhythms, Energy Metabolism, and Cognitive Function. Curr Pharm Des 2020; 26:2416-2425. [PMID: 32156228 DOI: 10.2174/1381612826666200310145006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 02/11/2020] [Indexed: 11/22/2022]
Abstract
The interaction between meal timing and light regulates circadian rhythms in mammals and not only determines the sleep-wake pattern but also the activity of the endocrine system. Related with that, the necessity to fulfill energy needs is a driving force that requires the participation of cognitive skills whose performance has been shown to undergo circadian variations. These facts have led to the concept that cognition and feeding behaviour can be analysed from a chronobiological perspective. In this context, research carried out during the last two decades has evidenced the link between feeding behaviour/nutritional habits and cognitive processes, and has highlighted the impact of circadian disorders on cognitive decline. All that has allowed hypothesizing a tight relationship between nutritional factors, chronobiology, and cognition. In this connection, experimental diets containing elevated amounts of fat and sugar (high-fat diets; HFDs) have been shown to alter in rodents the circadian distribution of meals, and to have a negative impact on cognition and motivational aspects of behaviour that disappear when animals are forced to adhere to a standard temporal eating pattern. In this review, we will present relevant studies focussing on the effect of HFDs on cognitive aspects of behaviour, paying particular attention to the influence that chronobiological alterations caused by these diets may have on hippocampaldependent cognition.
Collapse
Affiliation(s)
- Mariano Ruiz-Gayo
- Department of Health and Pharmaceutical Sciences, School of Pharmacy, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Nuria D Olmo
- Department of Health and Pharmaceutical Sciences, School of Pharmacy, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| |
Collapse
|
17
|
Souto TDS, Nakao FSN, Giriko CÁ, Dias CT, Cheberle AIDP, Lambertucci RH, Mendes-da-Silva C. Lard-rich and canola oil-rich high-fat diets during pregnancy promote rats’ offspring neurodevelopmental delay and behavioral disorders. Physiol Behav 2020; 213:112722. [DOI: 10.1016/j.physbeh.2019.112722] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 12/26/2022]
|
18
|
Abstract
ABSTRACT Objective To evaluate the effects of macronutrients (protein, carbohydrate and/or lipid) in the diet of young adult (72 days) and adult (182 days) Wistar rats treated ad libitum and with 30% restriction from birth on anxiety in the elevated plus-maze. Methods We used 238 rats treated from birth, composing the groups: Control, Protein, Carbohydrate, Lipid, Carbohydrate and Lipid, Control Restriction, Protein Restriction, Carbohydrate Restriction, Lipid Restriction and Carbohydrate and Lipid Restriction. The animals were weighed at the beginning and at the end of the experiment and tested in the elevated plus-maze. Data were submitted to analysis of variance, followed by the Newman-Keuls Test (p<0.05). Results Among the animals treated ad libitum, the Control, Carbohydrate plus Lipid and Lipid gained more weight than the Carbohydrate and Protein; ad libitum animals gained more weight than those on restriction; among the restrictions, Carbohydrate Restriction rats were the ones that gained less weight. Diet-restricted animals exhibited reduced first-entry latency, greater percentage of entries and time spent, frequency of open arm extremity visits, head dipping (protected and unprotected), and length of stay in the central area of the elevated plus-maze. The animals with 182 days presented greater latency for first entry, reduced frequency of false entries and visits to the ends of the open arms and protected head dipping. Conclusion Food restricted animals, regardless of the macronutrient present in the diet, were less anxious and/or increased their impulsivity and those at 182 days were more anxious and/or with reduced impulsivity.
Collapse
|
19
|
Pierre A, Regin Y, Van Schuerbeek A, Fritz EM, Muylle K, Beckers T, Smolders IJ, Singewald N, De Bundel D. Effects of disrupted ghrelin receptor function on fear processing, anxiety and saccharin preference in mice. Psychoneuroendocrinology 2019; 110:104430. [PMID: 31542636 DOI: 10.1016/j.psyneuen.2019.104430] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/26/2019] [Accepted: 09/03/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Obesity is a risk factor for stress-related mental disorders such as post-traumatic stress disorder. The underlying mechanism through which obesity affects mental health remains poorly understood but dysregulation of the ghrelin system may be involved. Stress increases plasma ghrelin levels, which stimulates food intake as a potential stress-coping mechanism. However, diet-induced obesity induces ghrelin resistance which in turn may have deleterious effects on stress-coping. In our study, we explored whether disruption of ghrelin receptor function though high-fat diet or genetic ablation affects fear processing, anxiety-like behavior and saccharin preference in mice. METHODS Adult male C57BL6/J mice were placed on a standard diet or high-fat diet for a total period of 8 weeks. We first established that high-fat diet exposure for 4 weeks elicits ghrelin resistance, evidenced by a blunted hyperphagic response following administration of a ghrelin receptor agonist. We then carried out an experiment in which we subjected mice to auditory fear conditioning after 4 weeks of diet exposure and evaluated effects on fear extinction, anxiety-like behavior and saccharin preference. To explore whether fear conditioning as such may influence the effect of diet exposure, we also subjected mice to auditory fear conditioning prior to diet onset and 4 weeks later we investigated auditory fear extinction, anxiety-like behavior and saccharin preference. In a final experiment, we further assessed lack of ghrelin receptor function by investigating auditory fear processing, anxiety-like behavior and saccharin preference in ghrelin receptor knockout mice and their wild-type littermates. RESULTS High-fat diet exposure had no significant effect on auditory fear conditioning and its subsequent extinction or on anxiety-like behavior but significantly lowered saccharin preference. Similarly, ghrelin receptor knockout mice did not differ significantly from their wild-type littermates for auditory fear processing or anxiety-like behavior but showed significantly lower saccharin preference compared to wild-type littermates. CONCLUSION Taken together, our data suggest that disruption of ghrelin receptor function per se does not affect fear or anxiety-like behavior but may decrease saccharin preference in mice.
Collapse
Affiliation(s)
- A Pierre
- Department of Pharmaceutical Sciences, Research Group Experimental Pharmacology, Center for Neurosciences (C4N), Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Y Regin
- Department of Pharmaceutical Sciences, Research Group Experimental Pharmacology, Center for Neurosciences (C4N), Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - A Van Schuerbeek
- Department of Pharmaceutical Sciences, Research Group Experimental Pharmacology, Center for Neurosciences (C4N), Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - E M Fritz
- Department of Pharmacology and Toxicology, Institute of Pharmacy and CMBI, University of Innsbruck, Innrain 80/82, Innsbruck, Austria
| | - K Muylle
- Department of Pharmaceutical Sciences, Research Group Experimental Pharmacology, Center for Neurosciences (C4N), Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - T Beckers
- Departement of Psychology and Leuven Brain Institute, KU Leuven, Tiensestraat 102 box 3712, 3000, Leuven, Belgium
| | - I J Smolders
- Department of Pharmaceutical Sciences, Research Group Experimental Pharmacology, Center for Neurosciences (C4N), Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - N Singewald
- Department of Pharmacology and Toxicology, Institute of Pharmacy and CMBI, University of Innsbruck, Innrain 80/82, Innsbruck, Austria
| | - D De Bundel
- Department of Pharmaceutical Sciences, Research Group Experimental Pharmacology, Center for Neurosciences (C4N), Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium.
| |
Collapse
|
20
|
Nasrallah P, Haidar EA, Stephan JS, El Hayek L, Karnib N, Khalifeh M, Barmo N, Jabre V, Houbeika R, Ghanem A, Nasser J, Zeeni N, Bassil M, Sleiman SF. Branched-chain amino acids mediate resilience to chronic social defeat stress by activating BDNF/TRKB signaling. Neurobiol Stress 2019; 11:100170. [PMID: 31193350 PMCID: PMC6526306 DOI: 10.1016/j.ynstr.2019.100170] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 05/10/2019] [Accepted: 05/11/2019] [Indexed: 02/07/2023] Open
Abstract
How individuals respond to chronic stress varies. Susceptible individuals ultimately develop depression; whereas resilient individuals live normally. In this study, our objective was to examine the effect of branched-chain amino acids (BCAA), commonly used by athletes, on susceptibility to stress. Male C57BL/6 mice were subjected to daily defeat sessions by a CD1 aggressor, for 10 days. On day11, the behavior of mice was assessed using the social interaction test, elevated plus maze and open field. Mice received the BCAA leucine, isoleucine or valine before each defeat session. Furthermore, we examined whether BCAA regulate brain derived neurotrophic factor (BDNF) signaling by using a brain-permeable tropomyosin receptor kinase B (TRKB) inhibitor, ANA-12. We also tested the effect of voluntary exercise and high protein diets on susceptibility to stress. Mice exposed to chronic stress displayed increased susceptibility and social avoidance. BCAA promoted resilience to chronic stress, rescued social avoidance behaviors and increased hippocampal BDNF levels and TRKB activation. Inhibition of TRKB signaling abolished the ability of BCAA to promote resilience to stress and to rescue social avoidance. Interestingly, we found that BCAA activate the exercise-regulated PGC1a/FNDC5 pathway known to induce hippocampal BDNF signaling. Although both voluntary exercise and BCAA promoted resilience to stress, combining them did not yield synergistic effects confirming that they affect similar pathways. We also discovered that high protein diets mimic the effect of BCAA by rescuing social deficits induced by chronic stress and increase Bdnf expression in the hippocampus. Our data indicate that BCAA, exercise and high protein diets rescue susceptibility to stress by activating the hippocampal BDNF/TRKB signaling.
Collapse
Affiliation(s)
- Patrick Nasrallah
- Biology Program, Department of Natural Sciences, Lebanese American University, PO Box 36, Byblos, Lebanon
| | - Edwina Abou Haidar
- Molecular Biology Program, Department of Natural Sciences, Lebanese American University, PO Box 36, Byblos, Lebanon
| | - Joseph S. Stephan
- School of Medicine, Lebanese American University, PO Box 36, Byblos, Lebanon
| | - Lauretta El Hayek
- Molecular Biology Program, Department of Natural Sciences, Lebanese American University, PO Box 36, Byblos, Lebanon
| | - Nabil Karnib
- Molecular Biology Program, Department of Natural Sciences, Lebanese American University, PO Box 36, Byblos, Lebanon
| | - Mohamad Khalifeh
- Molecular Biology Program, Department of Natural Sciences, Lebanese American University, PO Box 36, Byblos, Lebanon
| | - Nour Barmo
- Molecular Biology Program, Department of Natural Sciences, Lebanese American University, PO Box 36, Byblos, Lebanon
| | - Vanessa Jabre
- Molecular Biology Program, Department of Natural Sciences, Lebanese American University, PO Box 36, Byblos, Lebanon
| | - Rouba Houbeika
- Biology Program, Department of Natural Sciences, Lebanese American University, PO Box 36, Byblos, Lebanon
| | - Anthony Ghanem
- Biology Program, Department of Natural Sciences, Lebanese American University, PO Box 36, Byblos, Lebanon
| | - Jason Nasser
- Biology Program, Department of Natural Sciences, Lebanese American University, PO Box 36, Byblos, Lebanon
| | - Nadine Zeeni
- Nutrition Program, Department of Natural Sciences, Lebanese American University, PO Box 36, Byblos, Lebanon
| | - Maya Bassil
- Nutrition Program, Department of Natural Sciences, Lebanese American University, PO Box 36, Byblos, Lebanon
| | - Sama F. Sleiman
- Biology Program, Department of Natural Sciences, Lebanese American University, PO Box 36, Byblos, Lebanon
- Molecular Biology Program, Department of Natural Sciences, Lebanese American University, PO Box 36, Byblos, Lebanon
| |
Collapse
|
21
|
Del Olmo N, Blanco-Gandía MC, Mateos-García A, Del Rio D, Miñarro J, Ruiz-Gayo M, Rodríguez-Arias M. Differential Impact of Ad Libitum or Intermittent High-Fat Diets on Bingeing Ethanol-Mediated Behaviors. Nutrients 2019; 11:nu11092253. [PMID: 31546853 PMCID: PMC6769939 DOI: 10.3390/nu11092253] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/13/2019] [Accepted: 09/15/2019] [Indexed: 01/27/2023] Open
Abstract
Background: Dietary factors have significant effects on the brain, modulating mood, anxiety, motivation and cognition. To date, no attention has been paid to the consequences that the combination of ethanol (EtOH) and a high-fat diet (HFD) have on learning and mood disorders during adolescence. The aim of the present work was to evaluate the biochemical and behavioral consequences of ethanol binge drinking and an HFD consumption in adolescent mice. Methods: Animals received either a standard diet or an HFD (ad libitum vs. binge pattern) in combination with ethanol binge drinking and were evaluated in anxiety and memory. The metabolic profile and gene expression of leptin receptors and clock genes were also evaluated. Results: Excessive white adipose tissue and an increase in plasma insulin and leptin levels were mainly observed in ad libitum HFD + EtOH mice. An upregulation of the Lepr gene expression in the prefrontal cortex and the hippocampus was also observed in ad libitum HFD groups. EtOH-induced impairment on spatial memory retrieval was absent in mice exposed to an HFD, although the aversive memory deficits persisted. Mice bingeing on an HFD only showed an anxiolytic profile, without other alterations. We also observed a mismatch between Clock and Bmal1 expression in ad libitum HFD animals, which were mostly independent of EtOH bingeing. Conclusions: Our results confirm the bidirectional influence that occurs between the composition and intake pattern of a HFD and ethanol consumption during adolescence, even when the metabolic, behavioral and chronobiological effects of this interaction are dissociated.
Collapse
Affiliation(s)
- Nuria Del Olmo
- Department of Health & Pharmaceutical Sciences, Facultad de Farmacia, Universidad CEU-San Pablo, Campus de Montepríncipe, 28668 Madrid, Spain.
| | - M Carmen Blanco-Gandía
- Department of Psychology and Sociology, University of Zaragoza, C/Ciudad Escolar s/n, 44003 Teruel, Spain.
| | - Ana Mateos-García
- Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Avda. Blasco Ibáñez, 21, 46010 Valencia, Spain.
| | - Danila Del Rio
- Department of Health & Pharmaceutical Sciences, Facultad de Farmacia, Universidad CEU-San Pablo, Campus de Montepríncipe, 28668 Madrid, Spain.
| | - José Miñarro
- Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Avda. Blasco Ibáñez, 21, 46010 Valencia, Spain.
| | - Mariano Ruiz-Gayo
- Department of Health & Pharmaceutical Sciences, Facultad de Farmacia, Universidad CEU-San Pablo, Campus de Montepríncipe, 28668 Madrid, Spain.
| | - Marta Rodríguez-Arias
- Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Avda. Blasco Ibáñez, 21, 46010 Valencia, Spain.
| |
Collapse
|
22
|
Slomp M, Belegri E, Blancas‐Velazquez AS, Diepenbroek C, Eggels L, Gumbs MC, Joshi A, Koekkoek LL, Lamuadni K, Ugur M, Unmehopa UA, la Fleur SE, Mul JD. Stressing the importance of choice: Validity of a preclinical free-choice high-caloric diet paradigm to model behavioural, physiological and molecular adaptations during human diet-induced obesity and metabolic dysfunction. J Neuroendocrinol 2019; 31:e12718. [PMID: 30958590 PMCID: PMC6593820 DOI: 10.1111/jne.12718] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 03/06/2019] [Accepted: 03/28/2019] [Indexed: 12/23/2022]
Abstract
Humans have engineered a dietary environment that has driven the global prevalence of obesity and several other chronic metabolic diseases to pandemic levels. To prevent or treat obesity and associated comorbidities, it is crucial that we understand how our dietary environment, especially in combination with a sedentary lifestyle and/or daily-life stress, can dysregulate energy balance and promote the development of an obese state. Substantial mechanistic insight into the maladaptive adaptations underlying caloric overconsumption and excessive weight gain has been gained by analysing brains from rodents that were eating prefabricated nutritionally-complete pellets of high-fat diet (HFD). Although long-term consumption of HFDs induces chronic metabolic diseases, including obesity, they do not model several important characteristics of the modern-day human diet. For example, prefabricated HFDs ignore the (effects of) caloric consumption from a fluid source, do not appear to model the complex interplay in humans between stress and preference for palatable foods, and, importantly, lack any aspect of choice. Therefore, our laboratory uses an obesogenic free-choice high-fat high-sucrose (fc-HFHS) diet paradigm that provides rodents with the opportunity to choose from several diet components, varying in palatability, fluidity, texture, form and nutritive content. Here, we review recent advances in our understanding how the fc-HFHS diet disrupts peripheral metabolic processes and produces adaptations in brain circuitries that govern homeostatic and hedonic components of energy balance. Current insight suggests that the fc-HFHS diet has good construct and face validity to model human diet-induced chronic metabolic diseases, including obesity, because it combines the effects of food palatability and energy density with the stimulating effects of variety and choice. We also highlight how behavioural, physiological and molecular adaptations might differ from those induced by prefabricated HFDs that lack an element of choice. Finally, the advantages and disadvantages of using the fc-HFHS diet for preclinical studies are discussed.
Collapse
Affiliation(s)
- Margo Slomp
- Department of Endocrinology and Metabolism, Laboratory of EndocrinologyDepartment of Clinical ChemistryAmsterdam Neuroscience, Amsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
- Metabolism and Reward GroupNetherlands Institute for NeuroscienceRoyal Netherlands Academy of Arts and Sciences (KNAW)AmsterdamThe Netherlands
| | - Evita Belegri
- Department of Endocrinology and Metabolism, Laboratory of EndocrinologyDepartment of Clinical ChemistryAmsterdam Neuroscience, Amsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
- Metabolism and Reward GroupNetherlands Institute for NeuroscienceRoyal Netherlands Academy of Arts and Sciences (KNAW)AmsterdamThe Netherlands
| | - Aurea S. Blancas‐Velazquez
- Department of Endocrinology and Metabolism, Laboratory of EndocrinologyDepartment of Clinical ChemistryAmsterdam Neuroscience, Amsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
- Metabolism and Reward GroupNetherlands Institute for NeuroscienceRoyal Netherlands Academy of Arts and Sciences (KNAW)AmsterdamThe Netherlands
| | - Charlene Diepenbroek
- Department of Endocrinology and Metabolism, Laboratory of EndocrinologyDepartment of Clinical ChemistryAmsterdam Neuroscience, Amsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
- Metabolism and Reward GroupNetherlands Institute for NeuroscienceRoyal Netherlands Academy of Arts and Sciences (KNAW)AmsterdamThe Netherlands
| | - Leslie Eggels
- Department of Endocrinology and Metabolism, Laboratory of EndocrinologyDepartment of Clinical ChemistryAmsterdam Neuroscience, Amsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
- Metabolism and Reward GroupNetherlands Institute for NeuroscienceRoyal Netherlands Academy of Arts and Sciences (KNAW)AmsterdamThe Netherlands
| | - Myrtille C.R. Gumbs
- Department of Endocrinology and Metabolism, Laboratory of EndocrinologyDepartment of Clinical ChemistryAmsterdam Neuroscience, Amsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
- Metabolism and Reward GroupNetherlands Institute for NeuroscienceRoyal Netherlands Academy of Arts and Sciences (KNAW)AmsterdamThe Netherlands
| | - Anil Joshi
- Department of Endocrinology and Metabolism, Laboratory of EndocrinologyDepartment of Clinical ChemistryAmsterdam Neuroscience, Amsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
- Metabolism and Reward GroupNetherlands Institute for NeuroscienceRoyal Netherlands Academy of Arts and Sciences (KNAW)AmsterdamThe Netherlands
| | - Laura L. Koekkoek
- Department of Endocrinology and Metabolism, Laboratory of EndocrinologyDepartment of Clinical ChemistryAmsterdam Neuroscience, Amsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
- Metabolism and Reward GroupNetherlands Institute for NeuroscienceRoyal Netherlands Academy of Arts and Sciences (KNAW)AmsterdamThe Netherlands
| | - Khalid Lamuadni
- Department of Endocrinology and Metabolism, Laboratory of EndocrinologyDepartment of Clinical ChemistryAmsterdam Neuroscience, Amsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
- Metabolism and Reward GroupNetherlands Institute for NeuroscienceRoyal Netherlands Academy of Arts and Sciences (KNAW)AmsterdamThe Netherlands
| | - Muzeyyen Ugur
- Department of Endocrinology and Metabolism, Laboratory of EndocrinologyDepartment of Clinical ChemistryAmsterdam Neuroscience, Amsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
- Metabolism and Reward GroupNetherlands Institute for NeuroscienceRoyal Netherlands Academy of Arts and Sciences (KNAW)AmsterdamThe Netherlands
| | - Unga A. Unmehopa
- Department of Endocrinology and Metabolism, Laboratory of EndocrinologyDepartment of Clinical ChemistryAmsterdam Neuroscience, Amsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
- Metabolism and Reward GroupNetherlands Institute for NeuroscienceRoyal Netherlands Academy of Arts and Sciences (KNAW)AmsterdamThe Netherlands
| | - Susanne E. la Fleur
- Department of Endocrinology and Metabolism, Laboratory of EndocrinologyDepartment of Clinical ChemistryAmsterdam Neuroscience, Amsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
- Metabolism and Reward GroupNetherlands Institute for NeuroscienceRoyal Netherlands Academy of Arts and Sciences (KNAW)AmsterdamThe Netherlands
| | - Joram D. Mul
- Department of Endocrinology and Metabolism, Laboratory of EndocrinologyDepartment of Clinical ChemistryAmsterdam Neuroscience, Amsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
- Metabolism and Reward GroupNetherlands Institute for NeuroscienceRoyal Netherlands Academy of Arts and Sciences (KNAW)AmsterdamThe Netherlands
| |
Collapse
|
23
|
Panchenko PE, Lacroix MC, Jouin M, Voisin S, Badonnel K, Lemaire M, Meunier N, Safi-Stibler S, Persuy MA, Jouneau L, Durieux D, Lecoutre S, Jammes H, Rousseau-Ralliard D, Breton C, Junien C, Baly C, Gabory A. Effect of Maternal Obesity and Preconceptional Weight Loss on Male and Female Offspring Metabolism and Olfactory Performance in Mice. Nutrients 2019; 11:nu11050948. [PMID: 31035463 PMCID: PMC6566604 DOI: 10.3390/nu11050948] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/19/2019] [Accepted: 04/24/2019] [Indexed: 01/12/2023] Open
Abstract
According to the “developmental origins of health and disease” (DOHaD) concept, maternal obesity predisposes the offspring to non-communicable diseases in adulthood. While a preconceptional weight loss (WL) is recommended for obese women, its benefits on the offspring have been poorly addressed. We evaluated whether preconceptional WL was able to reverse the adverse effects of maternal obesity in a mouse model, exhibiting a modification of foetal growth and of the expression of genes encoding epigenetic modifiers in liver and placenta. We tracked metabolic and olfactory behavioural trajectories of offspring born to control, obese or WL mothers. After weaning, the offspring were either put on a control diet (CD) or a high-fat (HFD). After only few weeks of HFD, the offspring developed obesity, metabolic alterations and olfactory impairments, independently of maternal context. However, male offspring born to obese mother gained even more weight under HFD than their counterparts born to lean mothers. Preconceptional WL normalized the offspring metabolic phenotypes but had unexpected effects on olfactory performance: a reduction in olfactory sensitivity, along with a lack of fasting-induced, olfactory-based motivation. Our results confirm the benefits of maternal preconceptional WL for male offspring metabolic health but highlight some possible adverse outcomes on olfactory-based behaviours.
Collapse
Affiliation(s)
- Polina E Panchenko
- UMR BDR, INRA, ENVA, Université Paris-Saclay, 78350 Jouy-en-Josas, France.
| | | | - Mélanie Jouin
- UMR BDR, INRA, ENVA, Université Paris-Saclay, 78350 Jouy-en-Josas, France.
| | - Sarah Voisin
- UMR BDR, INRA, ENVA, Université Paris-Saclay, 78350 Jouy-en-Josas, France.
| | - Karine Badonnel
- NBO, INRA, Université Paris-Saclay, 78350 Jouy-en-Josas, France.
| | - Marion Lemaire
- UMR BDR, INRA, ENVA, Université Paris-Saclay, 78350 Jouy-en-Josas, France.
| | - Nicolas Meunier
- NBO, INRA, Université Paris-Saclay, 78350 Jouy-en-Josas, France.
| | | | | | - Luc Jouneau
- UMR BDR, INRA, ENVA, Université Paris-Saclay, 78350 Jouy-en-Josas, France.
| | - Didier Durieux
- NBO, INRA, Université Paris-Saclay, 78350 Jouy-en-Josas, France.
| | - Simon Lecoutre
- Équipe Malnutrition Maternelle et Programmation des Maladies Métaboliques, EA4489, Université de Lille, 59000 Lille, France.
| | - Hélène Jammes
- UMR BDR, INRA, ENVA, Université Paris-Saclay, 78350 Jouy-en-Josas, France.
| | | | - Christophe Breton
- Équipe Malnutrition Maternelle et Programmation des Maladies Métaboliques, EA4489, Université de Lille, 59000 Lille, France.
| | - Claudine Junien
- UMR BDR, INRA, ENVA, Université Paris-Saclay, 78350 Jouy-en-Josas, France.
| | - Christine Baly
- NBO, INRA, Université Paris-Saclay, 78350 Jouy-en-Josas, France.
| | - Anne Gabory
- UMR BDR, INRA, ENVA, Université Paris-Saclay, 78350 Jouy-en-Josas, France.
| |
Collapse
|
24
|
Behavioral profile of intermittent vs continuous access to a high fat diet during adolescence. Behav Brain Res 2019; 368:111891. [PMID: 31009646 DOI: 10.1016/j.bbr.2019.04.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/13/2019] [Accepted: 04/03/2019] [Indexed: 12/28/2022]
Abstract
Over the past few years, the effects of a high-fat diet (HFD) on cognitive functions have been broadly studied as a model of obesity, although no studies have evaluated whether these effects are maintained after the cessation of this diet. In addition, the behavioral effects of having a limited access to an HFD (binge-eating pattern) are mostly unknown, although they dramatically increase the vulnerability to drug use in contrast to having continuous access. Thus, the aim of the present study was to compare the effects of an intermittent versus a continuous exposure to an HFD during adolescence on cognition and anxiety-like behaviors, as well as to study the changes observed after the interruption of this diet. Adolescent male mice received for 40 days a standard diet, an HFD with continuous access or an HFD with sporadic limited access (2 h, three days a week). Two additional groups were fed with intermittent or continuous access to the HFD and withdrawn from this diet 15 days before the behavioral tests. Only the animals with a continuous access to the HFD showed higher circulating leptin levels, increased bodyweight, marked memory and spatial learning deficits, symptoms that disappeared after 15 days of HFD abstinence. Mice that binged on fat only showed hyperlocomotion, which normalized after 15 days of HFD cessation. However, discontinuation of fat, either in a binge or a continuous pattern, led to an increase in anxiety-like behavior. These results highlight that exposure to a high-fat diet during adolescence induces alterations in brain functions, although the way in which this diet is ingested determines the extent of these behavioral changes.
Collapse
|
25
|
Svenson KL, Paigen B. Recommended housing densities for research mice: filling the gap in data-driven alternatives. FASEB J 2019; 33:3097-3111. [PMID: 30521372 PMCID: PMC6404583 DOI: 10.1096/fj.201801972r] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 11/12/2018] [Indexed: 12/14/2022]
Abstract
Space recommendations for mice made in the Guide for Care and Use of Laboratory Animals have not changed since 1972, despite important improvements in husbandry and caging practices. The 1996 version of the Guide put forth a challenge to investigators to produce new data evaluating the effects of space allocation on the well-being of mice. In this review, we summarize many studies published in response to this challenge. We distinguish between studies using ventilated or nonventilated caging systems and those evaluating reproductive performance or general well-being of adult mice. We discuss how these studies might affect current housing density considerations in both production and research settings and consider gaps in mouse housing density research. Additionally, we discuss reliable methods used to monitor and quantify general well-being of research mice. Collectively, this large body of new data suggests that husbandry practices dictating optimal breeding schemes and space allocation per mouse can be reconsidered. Specifically, these data demonstrate that prewean culling of litters has no benefit, trio breeding is an effective production strategy without adversely affecting pup survival and well-being, and housing of adult mice at densities of up to twice current Guide recommendations does not compromise well-being for most strains.-Svenson, K. L., Paigen, B. Recommended housing densities for research mice: filling the gap in data-driven alternatives.
Collapse
|
26
|
Reichelt AC, Loughman A, Bernard A, Raipuria M, Abbott KN, Dachtler J, Van TTH, Moore RJ. An intermittent hypercaloric diet alters gut microbiota, prefrontal cortical gene expression and social behaviours in rats. Nutr Neurosci 2018; 23:613-627. [DOI: 10.1080/1028415x.2018.1537169] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Amy C. Reichelt
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, 3083, Australia
- Florey Institute of Neuroscience and Mental Health, 30 Royal Parade, Parkville, Victoria 3052, Australia
- BrainsCAN, Western University, 1151 Richmond St, London, Ontario, N6A 3K7, Canada
| | - Amy Loughman
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, 3083, Australia
- Food and Mood Centre, Deakin University, Geelong, 3220, Victoria, Australia
| | - Ashton Bernard
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, 3083, Australia
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Mukesh Raipuria
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, 3083, Australia
- Children’s Cancer Institute, UNSW Sydney, Kensington, New South Wales, 2052, Australia
| | - Kirsten N Abbott
- School of Psychology, UNSW Sydney, Kensington, New South Wales, 2052, Australia
| | - James Dachtler
- Department of Psychology, Durham University, South Road, Durham, DH1 3LE, UK
| | - Thi Thu Hao Van
- School of Applied Science, RMIT University, Bundoora, Victoria, 3083, Australia
| | - Robert J. Moore
- School of Applied Science, RMIT University, Bundoora, Victoria, 3083, Australia
| |
Collapse
|
27
|
Del Olmo N, Ruiz-Gayo M. Influence of High-Fat Diets Consumed During the Juvenile Period on Hippocampal Morphology and Function. Front Cell Neurosci 2018; 12:439. [PMID: 30515083 PMCID: PMC6255817 DOI: 10.3389/fncel.2018.00439] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 11/05/2018] [Indexed: 12/18/2022] Open
Abstract
The negative impact of obesity on neurocognitive functioning is an issue of increasing clinical interest. Over the last decade, a number of studies have analyzed the influence of high-fat diets (HFDs) on cognitive performance, particularly in adolescent individuals. Different approaches, including behavioral, neurochemical, electrophysiological and morphological studies, have been developed to address the effect of HFDs on neural processes interfering with learning and memory skills in rodents. Many of the studies have focused on learning and memory related to the hippocampus and the mechanisms underlying these processes. The goal of the current review article is to highlight the relationship between hippocampal learning/memory deficits and nutritional/endocrine inputs derived from HFDs consumption, with a special emphasis on research showing the effect of HFDs intake during the juvenile period. We have also reviewed recent research regarding the effect of HFDs on hippocampal neurotransmission. An overview of research suggesting the involvement of fatty acid (FA) receptor-mediated signaling pathways in memory deficits triggered by HFDs is also provided. Finally, the role of leptin and HFD-evoked hyperleptinemia is discussed.
Collapse
Affiliation(s)
- Nuria Del Olmo
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad CEU-San Pablo, Madrid, Spain
| | - Mariano Ruiz-Gayo
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad CEU-San Pablo, Madrid, Spain
| |
Collapse
|
28
|
Li F, Liu BB, Cai M, Li JJ, Lou SJ. Excessive endoplasmic reticulum stress and decreased neuroplasticity-associated proteins in prefrontal cortex of obese rats and the regulatory effects of aerobic exercise. Brain Res Bull 2018; 140:52-59. [DOI: 10.1016/j.brainresbull.2018.04.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 04/01/2018] [Accepted: 04/03/2018] [Indexed: 12/15/2022]
|
29
|
Agustí A, García-Pardo MP, López-Almela I, Campillo I, Maes M, Romaní-Pérez M, Sanz Y. Interplay Between the Gut-Brain Axis, Obesity and Cognitive Function. Front Neurosci 2018; 12:155. [PMID: 29615850 PMCID: PMC5864897 DOI: 10.3389/fnins.2018.00155] [Citation(s) in RCA: 181] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 02/26/2018] [Indexed: 12/12/2022] Open
Abstract
Obesity continues to be one of the major public health problems due to its high prevalence and co-morbidities. Common co-morbidities not only include cardiometabolic disorders but also mood and cognitive disorders. Obese subjects often show deficits in memory, learning and executive functions compared to normal weight subjects. Epidemiological studies also indicate that obesity is associated with a higher risk of developing depression and anxiety, and vice versa. These associations between pathologies that presumably have different etiologies suggest shared pathological mechanisms. Gut microbiota is a mediating factor between the environmental pressures (e.g., diet, lifestyle) and host physiology, and its alteration could partly explain the cross-link between those pathologies. Westernized dietary patterns are known to be a major cause of the obesity epidemic, which also promotes a dysbiotic drift in the gut microbiota; this, in turn, seems to contribute to obesity-related complications. Experimental studies in animal models and, to a lesser extent, in humans suggest that the obesity-associated microbiota may contribute to the endocrine, neurochemical and inflammatory alterations underlying obesity and its comorbidities. These include dysregulation of the HPA-axis with overproduction of glucocorticoids, alterations in levels of neuroactive metabolites (e.g., neurotransmitters, short-chain fatty acids) and activation of a pro-inflammatory milieu that can cause neuro-inflammation. This review updates current knowledge about the role and mode of action of the gut microbiota in the cross-link between energy metabolism, mood and cognitive function.
Collapse
Affiliation(s)
- Ana Agustí
- Microbial Ecology and Nutrition Research Unit, Institute of Agrochemistry and Food Technology, National Research Council (IATA-CSIC), Valencia, Spain
| | - Maria P García-Pardo
- Microbial Ecology and Nutrition Research Unit, Institute of Agrochemistry and Food Technology, National Research Council (IATA-CSIC), Valencia, Spain
| | - Inmaculada López-Almela
- Microbial Ecology and Nutrition Research Unit, Institute of Agrochemistry and Food Technology, National Research Council (IATA-CSIC), Valencia, Spain
| | - Isabel Campillo
- Microbial Ecology and Nutrition Research Unit, Institute of Agrochemistry and Food Technology, National Research Council (IATA-CSIC), Valencia, Spain
| | - Michael Maes
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Marina Romaní-Pérez
- Microbial Ecology and Nutrition Research Unit, Institute of Agrochemistry and Food Technology, National Research Council (IATA-CSIC), Valencia, Spain
| | - Yolanda Sanz
- Microbial Ecology and Nutrition Research Unit, Institute of Agrochemistry and Food Technology, National Research Council (IATA-CSIC), Valencia, Spain
| |
Collapse
|
30
|
Abstract
In the past, different types of diet with a generally low-carbohydrate content (< 50–< 20 g/day) have been promoted, for weight loss and diabetes, and the effectiveness of a very low dietary carbohydrate content has always been a matter of debate. A significant reduction in the amount of carbohydrates in the diet is usually accompanied by an increase in the amount of fat and to a lesser extent, also protein. Accordingly, using the term “low carb–high fat” (LCHF) diet is most appropriate. Low/very low intakes of carbohydrate food sources may impact on overall diet quality and long-term effects of such drastic diet changes remain at present unknown. This narrative review highlights recent metabolic and clinical outcomes of studies as well as practical feasibility of low LCHF diets. A few relevant observations are as follows: (1) any diet type resulting in reduced energy intake will result in weight loss and related favorable metabolic and functional changes; (2) short-term LCHF studies show both favorable and less desirable effects; (3) sustained adherence to a ketogenic LCHF diet appears to be difficult. A non-ketogenic diet supplying 100–150 g carbohydrate/day, under good control, may be more practical. (4) There is lack of data supporting long-term efficacy, safety and health benefits of LCHF diets. Any recommendation should be judged in this light. (5) Lifestyle intervention in people at high risk of developing type 2 diabetes, while maintaining a relative carbohydrate-rich diet, results in long-term prevention of progression to type 2 diabetes and is generally seen as safe.
Collapse
|
31
|
Manchishi SM, Cui RJ, Zou XH, Cheng ZQ, Li BJ. Effect of caloric restriction on depression. J Cell Mol Med 2018; 22:2528-2535. [PMID: 29465826 PMCID: PMC5908110 DOI: 10.1111/jcmm.13418] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 09/15/2017] [Indexed: 12/13/2022] Open
Abstract
Recently, most of evidence shows that caloric restriction could induce antidepressant‐like effects in animal model of depression. Based on studies of the brain–gut axis, some signal pathways were common between the control of caloric restriction and depression. However, the specific mechanism of the antidepressant‐like effects induced by caloric restriction remains unclear. Therefore, in this article, we summarized clinical and experimental studies of caloric restriction on depression. This review may provide a new therapeutic strategy for depression.
Collapse
Affiliation(s)
- Stephen Malunga Manchishi
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, Jilin, China.,Department of Physiology, University of Cambridge, Cambridge, UK
| | - Ran Ji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Xiao Han Zou
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Zi Qian Cheng
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Bing Jin Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
32
|
Inhibition of hippocampal long-term potentiation by high-fat diets: is it related to an effect of palmitic acid involving glycogen synthase kinase-3? Neuroreport 2018; 28:354-359. [PMID: 28328738 DOI: 10.1097/wnr.0000000000000774] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
High-fat diets (HFD) impair hippocampal-dependent learning and memory and produce important changes in synaptic transmission by enhancing glutamate uptake, decreasing synaptic efficacy, and inhibiting plasticity mechanisms such as N-methyl-D-aspartate-mediated long-term depression (LTD) within the hippocampus. Adolescent animals seem to be particularly susceptible to the detrimental effect of HFD as dietary treatments carried out between weaning and early adulthood are much more efficient in terms of hippocampal damage that those carried out during the adult period. As palmitic acid is the most abundant saturated fatty acid in HFD, its effect on hippocampal function needs to be studied. However, glycogen synthase kinase-3 (GSK-3), a pleiotropic enzyme highly expressed in the central nervous system, modulates both hippocampal long-term potentiation (LTP) and LTD, and has been implicated in neurological disorders including Alzheimer's disease. In this study, we have characterized in mice hippocampus the effect of (i) a 48 h HFD intervention and (ii) in-vitro palmitic acid, as well as the possible involvement of GSK-3 in the above-mentioned plasticity mechanisms. Our results show that both 48 h HFD and palmitic acid inhibit LTP in hippocampal slices, whereas no effect on LTD was observed. Moreover, tideglusib, an ATP-noncompetitive inhibitor of GSK-3, induced hippocampal LTP and partially reversed the impairment of LTP induced by palmitic acid.
Collapse
|
33
|
Baker KD, Loughman A, Spencer SJ, Reichelt AC. The impact of obesity and hypercaloric diet consumption on anxiety and emotional behavior across the lifespan. Neurosci Biobehav Rev 2017; 83:173-182. [DOI: 10.1016/j.neubiorev.2017.10.014] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 10/14/2017] [Accepted: 10/15/2017] [Indexed: 12/18/2022]
|
34
|
Impaired fear extinction retention and increased anxiety-like behaviours induced by limited daily access to a high-fat/high-sugar diet in male rats: Implications for diet-induced prefrontal cortex dysregulation. Neurobiol Learn Mem 2016; 136:127-138. [DOI: 10.1016/j.nlm.2016.10.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 08/19/2016] [Accepted: 10/04/2016] [Indexed: 12/18/2022]
|
35
|
The Effects of High-fat-diet Combined with Chronic Unpredictable Mild Stress on Depression-like Behavior and Leptin/LepRb in Male Rats. Sci Rep 2016; 6:35239. [PMID: 27739518 PMCID: PMC5064321 DOI: 10.1038/srep35239] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 09/22/2016] [Indexed: 12/27/2022] Open
Abstract
Leptin plays a key role in the pathogenesis of obesity and depression via the long form of leptin receptor (LepRb). An animal model of comorbid obesity and depression induced by high-fat diet (HFD) combined with chronic unpredictable mild stress (CUMS) was developed to study the relationship between depression/anxiety-like behavior, levels of plasma leptin and LepRb in the brains between four groups of rats, the combined obesity and CUMS (Co) group, the obese (Ob) group, the CUMS group and controls. Our results revealed that the Co group exhibited most severe depression-like behavior in the open field test (OFT), anxiety-like behavior in elevated plus maze test (EMT) and cognitive impairment in the Morris water maze (MWM). The Ob group had the highest weight and plasma leptin levels while the Co group had the lowest levels of protein of LepRb in the hypothalamus and hippocampus. Furthermore, depressive and anxiety-like behaviors as well as cognitive impairment were positively correlated with levels of LepRb protein and mRNA in the hippocampus and hypothalamus. The down-regulation of leptin/LepRb signaling might be associated with depressive-like behavior and cognitive impairment in obese rats facing chronic mild stress.
Collapse
|
36
|
Gainey SJ, Kwakwa KA, Bray JK, Pillote MM, Tir VL, Towers AE, Freund GG. Short-Term High-Fat Diet (HFD) Induced Anxiety-Like Behaviors and Cognitive Impairment Are Improved with Treatment by Glyburide. Front Behav Neurosci 2016; 10:156. [PMID: 27563288 PMCID: PMC4980396 DOI: 10.3389/fnbeh.2016.00156] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 07/29/2016] [Indexed: 01/21/2023] Open
Abstract
Obesity-associated comorbidities such as cognitive impairment and anxiety are increasing public health burdens that have gained prevalence in children. To better understand the impact of childhood obesity on brain function, mice were fed with a high-fat diet (HFD) from weaning for 1, 3 or 6 weeks. When compared to low-fat diet (LFD)-fed mice (LFD-mice), HFD-fed mice (HFD-mice) had impaired novel object recognition (NOR) after 1 week. After 3 weeks, HFD-mice had impaired NOR and object location recognition (OLR). Additionally, these mice displayed anxiety-like behavior by measure of both the open-field and elevated zero maze (EZM) testing. At 6 weeks, HFD-mice were comparable to LFD-mice in NOR, open-field and EZM performance but they remained impaired during OLR testing. Glyburide, a second-generation sulfonylurea for the treatment of type 2 diabetes, was chosen as a countermeasure based on previous data exhibiting its potential as an anxiolytic. Interestingly, a single dose of glyburide corrected deficiencies in NOR and mitigated anxiety-like behaviors in mice fed with HFD-diet for 3-weeks. Taken together these results indicate that a HFD negatively impacts a subset of hippocampal-independent behaviors relatively rapidly, but such behaviors normalize with age. In contrast, impairment of hippocampal-sensitive memory takes longer to develop but persists. Since single-dose glyburide restores brain function in 3-week-old HFD-mice, drugs that block ATP-sensitive K(+) (KATP) channels may be of clinical relevance in the treatment of obesity-associated childhood cognitive issues and psychopathologies.
Collapse
Affiliation(s)
- Stephen J Gainey
- Department of Animal Sciences, University of IllinoisUrbana, IL, USA; Department of Pathology, Program in Integrative Immunology and Behavior, University of Illinois College of MedicineUrbana, IL, USA
| | - Kristin A Kwakwa
- Department of Pathology, Program in Integrative Immunology and Behavior, University of Illinois College of Medicine Urbana, IL, USA
| | - Julie K Bray
- Department of Pathology, Program in Integrative Immunology and Behavior, University of Illinois College of Medicine Urbana, IL, USA
| | - Melissa M Pillote
- Department of Pathology, Program in Integrative Immunology and Behavior, University of Illinois College of Medicine Urbana, IL, USA
| | - Vincent L Tir
- Department of Pathology, Program in Integrative Immunology and Behavior, University of Illinois College of Medicine Urbana, IL, USA
| | - Albert E Towers
- Department of Pathology, Program in Integrative Immunology and Behavior, University of Illinois College of MedicineUrbana, IL, USA; Department of Nutritional Sciences, University of IllinoisUrbana, IL, USA
| | - Gregory G Freund
- Department of Animal Sciences, University of IllinoisUrbana, IL, USA; Department of Pathology, Program in Integrative Immunology and Behavior, University of Illinois College of MedicineUrbana, IL, USA; Department of Nutritional Sciences, University of IllinoisUrbana, IL, USA
| |
Collapse
|