1
|
Muñoz AL, Cuéllar AF, Arévalo G, Santamaría BD, Rodríguez AK, Buendia-Atencio C, Reyes Chaparro A, Tenorio Barajas AY, Segura NA, Bello F, Suárez AI, Rangel HR, Losada-Barragán M. Antiviral activity of myricetin glycosylated compounds isolated from Marcetia taxifolia against chikungunya virus. EXCLI JOURNAL 2023; 22:716-731. [PMID: 37662709 PMCID: PMC10471840 DOI: 10.17179/excli2023-6242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/20/2023] [Indexed: 09/05/2023]
Abstract
The chikungunya virus (CHIKV) has produced epidemic outbreaks of significant public health impact. The clinical symptoms of this disease are fever, polyarthralgia, and skin rash, generally self-limiting, although patients may develop a chronic disabling condition or suffer lethal complications. Unfortunately, there is no specific treatment or vaccine available. Thus, the search for effective therapies to control CHIKV infection is an urgent need. This study evaluated the antiviral activity of flavonoids isolated from Marcetia taxifolia by in vitro and in silico analysis. Cytotoxicity of compounds was determined by MTT assay and viral load was assessed in cell substrates supernatants by plaque-forming and RT-qPCR assays. Selected molecules were analyzed by molecular docking assays. Myricetin 3-rhamnoside (MR) and myricetin 3-(6-rhamnosylgalactoside) (MRG) were tested for antiviral assays and analyzed by the TCID50 method and RT-qPCR. MR exhibited dose-dependent antiviral activity, reducing viral titer at concentrations of 150-18.8 μg/mL by at least 1-log. Similarly, MRG showed a significant decrease in viral titer at concentrations of 37.5, 9.4, and 2.3 μg/mL. RT-qPCR analysis also displayed a substantial reduction of CHIKV RNA for both flavonoids. Furthermore, molecular docking of the selected flavonoids proposed the nsP3 macrodomain as a possible target of action. Our study reveals that MR and MRG could be considered promising anti-CHIKV therapeutic agents. Molecular modeling studies showed MR and MRG ligands with a high affinity for the N-terminal region of the nsP3 macrodomain, postulating them as a potential target of action for the CHIKV control.
Collapse
Affiliation(s)
- Ana Luisa Muñoz
- Faculty of Science, Universidad Antonio Nariño (UAN), Bogotá 110231, Colombia
| | | | - Gabriela Arévalo
- Faculty of Science, Universidad Antonio Nariño (UAN), Bogotá 110231, Colombia
| | | | - Anny K. Rodríguez
- Faculty of Science, Universidad Antonio Nariño (UAN), Bogotá 110231, Colombia
| | | | - Andrés Reyes Chaparro
- Escuela Nacional de Ciencias Biológicas (ENCB), Departamento de Morfología, del Instituto Politécnico Nacional (IPN), Mexico
| | - Aldo Yair Tenorio Barajas
- Facultad de Ciencias Físicomatemáticas, Benemérita Universidad Autónoma de Puebla C.U. Puebla, Puebla, Mexico
| | - Nidya Alexandra Segura
- Faculty of Science, Universidad Pedagógica y Tecnológica de Colombia, Tunja 150003, Colombia
| | - Felio Bello
- Faculty of Agricultural and Livestock Sciences, Program of Veterinary Medicine, Universidad de La Salle, Bogotá 110141, Colombia
| | - Alírica I. Suárez
- Natural Products Laboratory, Faculty of Pharmacy, Universidad Central de Venezuela, Caracas, Venezuela
| | - Héctor R. Rangel
- Molecular Virology Laboratory, Instituto Venezolano de Investigaciones Científicas, Caracas, Venezuela
| | | |
Collapse
|
2
|
Geng Y, Xie Y, Li W, Mou Y, Chen F, Xiao J, Liao X, Hu X, Ji J, Ma L. Toward the bioactive potential of myricitrin in food production: state-of-the-art green extraction and trends in biosynthesis. Crit Rev Food Sci Nutr 2023; 64:10668-10694. [PMID: 37395263 DOI: 10.1080/10408398.2023.2227262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Myricitrin is a member of flavonols, natural phenolic compounds extracted from plant resources. It has gained great attention for various biological activities, such as anti-inflammatory, anti-cancer, anti-diabetic, as well as cardio-/neuro-/hepatoprotective activities. These effects have been demonstrated in both in vitro and in vivo models, making myricitrin a favorable candidate for the exploitation of novel functional foods with potential protective or preventive effects against diseases. This review summarized the health benefits of myricitrin and attempted to uncover its action mechanism, expecting to provide a theoretical basis for their application. Despite enormous bioactive potential of myricitrin, low production, high cost, and environmental damage caused by extracting it from plant resources greatly constrain its practical application. Fortunately, innovative, green, and sustainable extraction techniques are emerging to extract myricitrin, which function as alternatives to conventional techniques. Additionally, biosynthesis based on synthetic biology plays an essential role in industrial-scale manufacturing, which has not been reported for myricitrin exclusively. The construction of microbial cell factories is absolutely an appealing and competitive option to produce myricitrin in large-scale manufacturing. Consequently, state-of-the-art green extraction techniques and trends in biosynthesis were reviewed and discussed to endow an innovative perspective for the large-scale production of myricitrin.
Collapse
Affiliation(s)
- Yaqian Geng
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, China
| | - Yingfeng Xie
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, China
| | - Wei Li
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, China
| | - Yao Mou
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, China
| | - Fang Chen
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, China
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, Ourense, Spain
| | - Xiaojun Liao
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, China
| | - Xiaosong Hu
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, China
| | - Junfu Ji
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, China
| | - Lingjun Ma
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, China
| |
Collapse
|
3
|
Behl T, Rana T, Sehgal A, Sharma N, Albarrati A, Albratty M, Makeen HA, Najmi A, Verma R, Bungau SG. Exploring the multifocal role of phytoconstituents as antidepressants. Prog Neuropsychopharmacol Biol Psychiatry 2023; 123:110693. [PMID: 36509251 DOI: 10.1016/j.pnpbp.2022.110693] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
Depression is the most prevalent and devastating neuropsychiatric disorder. There are several conventional antidepressants used for the treatment of depression. But due to their undesired adverse effects, patient compliance is very poor. Thus, developing novel medications for the treatment of depression is a critical strategic priority for meeting therapeutic demands. Current research is looking for alternatives to traditional antidepressants to reduce undesired side effects and increase efficacy. Phytoconstituents provide a wide research range in antidepressant treatments. In the present article, we have conducted a comprehensive assessment of neurological evidence, which supports the usefulness of phytoconstituents in the treatment of the depressive disorder. Secondary plant metabolites including alkaloids, polyphenols, glycosides, saponins, and terpenoids were found to exhibit antidepressant action. Most of the phytoconstituents were found to mediate their antidepressant effect through the upregulation of brain-derived neurotrophic factor (BDNF), serotonin, noradrenaline, and dopamine. Some were also found to exert antidepressant effects by inhibiting the monoamine oxidase (MAO) activity and hypothalamic-pituitary-adrenal (HPA) axis overactivity.
Collapse
Affiliation(s)
- Tapan Behl
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Bidholi, Uttarakhand, India.
| | - Tarapati Rana
- Chitkara College of Pharmacy, Chitkara University, Punjab, India; Government Pharmacy College, Seraj, Mandi, Himachal Pradesh, India
| | - Aayush Sehgal
- GHG Khalsa College of Pharmacy, Gurusar Sadhar, Ludhiana, Punjab, India
| | - Neelam Sharma
- Department of Pharmaceutics, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, India
| | - Ali Albarrati
- Rehabilitation Health Sciences, College of Applied Medical Sciences, King Saud University, Saudi Arabia
| | - Mohammed Albratty
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Hafiz A Makeen
- Pharmacy Practice Research Unit, Clinical Pharmacy Department, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Asim Najmi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Raman Verma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Simona Gabriela Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania; Doctoral School of Biomedical Sciences, University of Oradea, Oradea, Romania
| |
Collapse
|
4
|
Jazvinšćak Jembrek M, Oršolić N, Karlović D, Peitl V. Flavonols in Action: Targeting Oxidative Stress and Neuroinflammation in Major Depressive Disorder. Int J Mol Sci 2023; 24:ijms24086888. [PMID: 37108052 PMCID: PMC10138550 DOI: 10.3390/ijms24086888] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
Major depressive disorder is one of the most common mental illnesses that highly impairs quality of life. Pharmacological interventions are mainly focused on altered monoamine neurotransmission, which is considered the primary event underlying the disease's etiology. However, many other neuropathological mechanisms that contribute to the disease's progression and clinical symptoms have been identified. These include oxidative stress, neuroinflammation, hippocampal atrophy, reduced synaptic plasticity and neurogenesis, the depletion of neurotrophic factors, and the dysfunction of the hypothalamic-pituitary-adrenal (HPA) axis. Current therapeutic options are often unsatisfactory and associated with adverse effects. This review highlights the most relevant findings concerning the role of flavonols, a ubiquitous class of flavonoids in the human diet, as potential antidepressant agents. In general, flavonols are considered to be both an effective and safe therapeutic option in the management of depression, which is largely based on their prominent antioxidative and anti-inflammatory effects. Moreover, preclinical studies have provided evidence that they are capable of restoring the neuroendocrine control of the HPA axis, promoting neurogenesis, and alleviating depressive-like behavior. Although these findings are promising, they are still far from being implemented in clinical practice. Hence, further studies are needed to more comprehensively evaluate the potential of flavonols with respect to the improvement of clinical signs of depression.
Collapse
Affiliation(s)
- Maja Jazvinšćak Jembrek
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
- School of Medicine, Catholic University of Croatia, Ilica 242, 10000 Zagreb, Croatia
| | - Nada Oršolić
- Division of Animal Physiology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10000 Zagreb, Croatia
| | - Dalibor Karlović
- School of Medicine, Catholic University of Croatia, Ilica 242, 10000 Zagreb, Croatia
- Department of Psychiatry, Sestre Milosrdnice University Hospital Center, 10000 Zagreb, Croatia
| | - Vjekoslav Peitl
- School of Medicine, Catholic University of Croatia, Ilica 242, 10000 Zagreb, Croatia
- Department of Psychiatry, Sestre Milosrdnice University Hospital Center, 10000 Zagreb, Croatia
| |
Collapse
|
5
|
Cui JJ, Huang ZY, Xie YH, Wu JB, Xu GH, Li CF, Zhang MM, Yi LT. Gut microbiota mediated inflammation, neuroendocrine and neurotrophic functions involved in the antidepressant-like effects of diosgenin in chronic restraint stress. J Affect Disord 2023; 321:242-252. [PMID: 36349650 DOI: 10.1016/j.jad.2022.10.045] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 10/20/2022] [Accepted: 10/22/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Diosgenin is a well-known steroid saponin possessing neuroprotective activities. However, it is unknown whether diosgenin could alleviate depression-like symptoms. METHODS The antidepressant-like effect of diosgenin was investigated in mice induced by chronic restraint stress. The effects of diosgenin on behaviors, inflammation, neuroendocrine, neurotrophic function, and gut microbiota were evaluated. RESULTS The results showed that diosgenin alleviated the depressive-like behaviors in mice. In addition, diosgenin was found to reduce serum concentrations of proinflammatory cytokines and the activity of the hypothalamic-pituitary-adrenal (HPA) axis. Besides, diosgenin could activate hippocampal brain-derived neurotrophic factor (BDNF)/TrkB/ERK/CREB signaling pathway and improve the expression of postsynaptic protein PSD95. Meanwhile, the neurogenesis which was inhibited by chronic restraint stress, was totally reversed by diosgenin. Moreover, diosgenin increased the abundance of phylum Firmicutes and the genus Lactobacillus in stressed mice. The results further showed that diosgenin caused a strong correlation between gut microbiota composition and inflammation, the HPA axis activity, or hippocampus neurotrophic function. LIMITATIONS Only male mice were used for evaluation in the present study, which limits the understanding of effects of diosgenin on the both sexes. In addition, the results only indicate microbiota at the phylum or genus mediate the regulation of neuroinflammation, neuroendocrine, and neurotrophic function, but does not elucidate how microbiota modulate the systems via their primary or secondary metabolites. CONCLUSIONS The present study shows that diosgenin exerts the antidepressant activity, which is associated with the enhancement of neurotrophic function and the inhibition of inflammatory and neuroendocrine activities via the regulation of gut microbiota.
Collapse
Affiliation(s)
- Jun-Ji Cui
- Department of Chemical and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, Fujian province, PR China
| | - Ze-Yun Huang
- Department of Chemical and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, Fujian province, PR China
| | - Yi-Hang Xie
- Department of Chemical and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, Fujian province, PR China
| | - Jun-Bin Wu
- Department of Chemical and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, Fujian province, PR China
| | - Guang-Hui Xu
- Xiamen Medicine Research Institute, Xiamen 361008, Fujian province, PR China
| | - Cheng-Fu Li
- Xiamen Hospital of Traditional Chinese Medicine, Xiamen 361009, Fujian province, PR China.
| | - Man-Man Zhang
- Department of Chemical and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, Fujian province, PR China
| | - Li-Tao Yi
- Department of Chemical and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, Fujian province, PR China; Institute of Pharmaceutical Engineering, Huaqiao University, Xiamen 361021, PR China; Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen 361021, PR China.
| |
Collapse
|
6
|
Mhalhel K, Sicari M, Pansera L, Chen J, Levanti M, Diotel N, Rastegar S, Germanà A, Montalbano G. Zebrafish: A Model Deciphering the Impact of Flavonoids on Neurodegenerative Disorders. Cells 2023; 12:252. [PMID: 36672187 PMCID: PMC9856690 DOI: 10.3390/cells12020252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/17/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Over the past century, advances in biotechnology, biochemistry, and pharmacognosy have spotlighted flavonoids, polyphenolic secondary metabolites that have the ability to modulate many pathways involved in various biological mechanisms, including those involved in neuronal plasticity, learning, and memory. Moreover, flavonoids are known to impact the biological processes involved in developing neurodegenerative diseases, namely oxidative stress, neuroinflammation, and mitochondrial dysfunction. Thus, several flavonoids could be used as adjuvants to prevent and counteract neurodegenerative disorders such as Alzheimer's and Parkinson's diseases. Zebrafish is an interesting model organism that can offer new opportunities to study the beneficial effects of flavonoids on neurodegenerative diseases. Indeed, the high genome homology of 70% to humans, the brain organization largely similar to the human brain as well as the similar neuroanatomical and neurochemical processes, and the high neurogenic activity maintained in the adult brain makes zebrafish a valuable model for the study of human neurodegenerative diseases and deciphering the impact of flavonoids on those disorders.
Collapse
Affiliation(s)
- Kamel Mhalhel
- Zebrafish Neuromorphology Lab., Department of Veterinary Sciences, University of Messina, Via Giovanni Palatucci snc, 98168 Messina, Italy
| | - Mirea Sicari
- Zebrafish Neuromorphology Lab., Department of Veterinary Sciences, University of Messina, Via Giovanni Palatucci snc, 98168 Messina, Italy
| | - Lidia Pansera
- Zebrafish Neuromorphology Lab., Department of Veterinary Sciences, University of Messina, Via Giovanni Palatucci snc, 98168 Messina, Italy
| | - Jincan Chen
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Campus North, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Maria Levanti
- Zebrafish Neuromorphology Lab., Department of Veterinary Sciences, University of Messina, Via Giovanni Palatucci snc, 98168 Messina, Italy
| | - Nicolas Diotel
- Université de la Réunion, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Plateforme CYROI, F-97490 Sainte-Clotilde, France
| | - Sepand Rastegar
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Campus North, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Antonino Germanà
- Zebrafish Neuromorphology Lab., Department of Veterinary Sciences, University of Messina, Via Giovanni Palatucci snc, 98168 Messina, Italy
| | - Giuseppe Montalbano
- Zebrafish Neuromorphology Lab., Department of Veterinary Sciences, University of Messina, Via Giovanni Palatucci snc, 98168 Messina, Italy
| |
Collapse
|
7
|
Muratori L, Fregnan F, Maurina M, Haastert-Talini K, Ronchi G. The Potential Benefits of Dietary Polyphenols for Peripheral Nerve Regeneration. Int J Mol Sci 2022; 23:ijms23095177. [PMID: 35563568 PMCID: PMC9102183 DOI: 10.3390/ijms23095177] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/29/2022] [Accepted: 05/03/2022] [Indexed: 12/04/2022] Open
Abstract
Peripheral nerves are frequently affected by lesions caused by trauma (work accidents, car incidents, combat injuries) and following surgical procedures (for instance cancer resection), resulting in loss of motor and sensory function with lifelong impairments. Irrespective of the intrinsic capability of the peripheral nervous system for regeneration, spontaneous or surgically supported regeneration is often unsatisfactory with the limited functional success of nerve repair. For this reason, many efforts have been made to improve the regeneration process. Beyond innovative microsurgical methods that, in certain cases, are necessary to repair nerve injuries, different nonsurgical treatment approaches and adjunctive therapies have been investigated to enhance nerve regeneration. One possibility could be taking advantage of a healthy diet or lifestyle and their relation with proper body functions. Over the years, scientific evidence has been obtained on the benefits of the intake of polyphenols or polyphenol-rich foods in humans, highlighting the neuroprotective effects of these compounds in many neurodegenerative diseases. In order to improve the available knowledge about the potential beneficial role of polyphenols in the process of peripheral nerve regeneration, this review assessed the biological effects of polyphenol administration in supporting and promoting the regenerative process after peripheral nerve injury.
Collapse
Affiliation(s)
- Luisa Muratori
- Department of Clinical and Biological Sciences, University of Torino, 10043 Orbassano, (Torino), Italy; (L.M.); (F.F.); (M.M.)
- Neuroscience Institute Cavalieri Ottolenghi (NICO), 10043 Orbassano, (Torino), Italy
| | - Federica Fregnan
- Department of Clinical and Biological Sciences, University of Torino, 10043 Orbassano, (Torino), Italy; (L.M.); (F.F.); (M.M.)
- Neuroscience Institute Cavalieri Ottolenghi (NICO), 10043 Orbassano, (Torino), Italy
| | - Monica Maurina
- Department of Clinical and Biological Sciences, University of Torino, 10043 Orbassano, (Torino), Italy; (L.M.); (F.F.); (M.M.)
| | - Kirsten Haastert-Talini
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, 30625 Hannover, Germany;
- Center for Systems Neuroscience (ZSN), 30559 Hannover, Germany
| | - Giulia Ronchi
- Department of Clinical and Biological Sciences, University of Torino, 10043 Orbassano, (Torino), Italy; (L.M.); (F.F.); (M.M.)
- Neuroscience Institute Cavalieri Ottolenghi (NICO), 10043 Orbassano, (Torino), Italy
- Correspondence: ; Tel.: +39-011-6705-433; Fax: +39-011-9038-639
| |
Collapse
|
8
|
Pereira M, Siba IP, Acco A, Correia D, Lapa FR, Santos ARS, Ruani AP, Pizzolatti MG, Andreatini R. Myricitrin exhibits antidepressant-like effects and reduces IL-6 hippocampal levels in the chronic mild stress model. Behav Brain Res 2022; 429:113905. [PMID: 35490774 DOI: 10.1016/j.bbr.2022.113905] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/14/2022] [Accepted: 04/22/2022] [Indexed: 11/02/2022]
Abstract
The flavonoid myricitrin showed an antidepressant-like effect in the tail suspension test and increased hippocampal neurogenesis, as well as demonstrating anti-inflammatory effects. Interestingly, inflammation has been linked to depression, and anti-inflammatory drugs showed promising results as antidepressant-like drugs. Thus, the present study evaluated the effects of myricitrin in the chronic mild stress (CMS) model, a translational and valid animal model of depression, using the mini-experiment design to improve the reproducibility of the findings. The sucrose preference test (SPT), forced swim test (FST), and tail suspension test (TST) were the readouts of depressive-like phenotypes induced by CMS. Relative adrenal weight was employed as an index of the hypothalamus-pituitary-adrenal (HPA) axis activation. Interleukin (IL)-6 and tumor necrosis factor (TNF)-alpha levels were measured in the hippocampus. Myricitrin (10 mg/kg, intraperitoneally, for 14 days) reversed depressive-like behaviors induced by CMS (increased immobility in the FST, the TST and anhedonia), as well as decreased adrenal hypertrophy and hippocampal levels of IL-6 in stressed mice. Similar results were observed by imipramine (20 mg/kg, intraperitoneally, for 14 days), a serotonin and norepinephrine reuptake inhibitor (positive control). A significant correlation was observed between immobility time in the TST, and hippocampal IL-6 levels. Hippocampal TNF-α levels were not affected by CMS or drug treatment. In conclusion, myricitrin exhibited an antidepressant-like profile in CMS, and this effect may be associated with its anti-inflammatory activity.
Collapse
Affiliation(s)
- Marcela Pereira
- Federal University of Paraná, Pharmacology Department, Curitiba, Brazil
| | - Isadora P Siba
- Federal University of Paraná, Pharmacology Department, Curitiba, Brazil
| | - Alexandra Acco
- Federal University of Paraná, Pharmacology Department, Curitiba, Brazil
| | - Diego Correia
- Federal University of Paraná, Pharmacology Department, Curitiba, Brazil
| | - Fernanda R Lapa
- Federal University of Santa Catarina, Laboratory of Neurobiology of Pain and Inflammation, Physiological Sciences Department, Santa Catarina, Brazil
| | - Adair R S Santos
- Federal University of Santa Catarina, Laboratory of Neurobiology of Pain and Inflammation, Physiological Sciences Department, Santa Catarina, Brazil
| | - Ana P Ruani
- Federal University of Santa Catarina, Chemistry Department, Santa Catarina, Brazil
| | - Moacir G Pizzolatti
- Federal University of Santa Catarina, Chemistry Department, Santa Catarina, Brazil
| | - Roberto Andreatini
- Federal University of Paraná, Pharmacology Department, Curitiba, Brazil.
| |
Collapse
|
9
|
Pannu A, Sharma PC, Thakur VK, Goyal RK. Emerging Role of Flavonoids as the Treatment of Depression. Biomolecules 2021; 11:biom11121825. [PMID: 34944471 PMCID: PMC8698856 DOI: 10.3390/biom11121825] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/21/2021] [Accepted: 11/26/2021] [Indexed: 12/28/2022] Open
Abstract
Depression is one of the most frequently observed psychological disorders, affecting thoughts, feelings, behavior and a sense of well-being in person. As per the WHO, it is projected to be the primitive cause of various other diseases by 2030. Clinically, depression is treated by various types of synthetic medicines that have several limitations such as side-effects, slow-onset action, poor remission and response rates due to complicated pathophysiology involved with depression. Further, clinically, patients cannot be given the treatment unless it affects adversely the job or family. In addition, synthetic drugs are usually single targeted drugs. Unlike synthetic medicaments, there are many plants that have flavonoids and producing action on multiple molecular targets and exhibit anti-depressant action by affecting multiple neuronal transmissions or pathways such as noradrenergic, serotonergic, GABAnergic and dopaminergic; inhibition of monoamine oxidase and tropomyosin receptor kinase B; simultaneous increase in nerve growth and brain-derived neurotrophic factors. Such herbal drugs with flavonoids are likely to be useful in patients with sub-clinical depression. This review is an attempt to analyze pre-clinical studies, structural activity relationship and characteristics of reported isolated flavonoids, which may be considered for clinical trials for the development of therapeutically useful antidepressant.
Collapse
Affiliation(s)
- Arzoo Pannu
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 110017, India;
| | - Prabodh Chander Sharma
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 110017, India;
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Centre, Edinburgh EH9 3JG, UK
- School of Engineering, University of Petroleum & Energy Studies (UPES), Dehradun 248007, India
- Correspondence: (V.K.T.); (R.K.G.); Tel.: +91-9825719111 (V.K.T.)
| | - Ramesh K. Goyal
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 110017, India;
- Correspondence: (V.K.T.); (R.K.G.); Tel.: +91-9825719111 (V.K.T.)
| |
Collapse
|
10
|
Li E, Wang T, Zhou R, Zhou Z, Zhang C, Wu W, He K. Myricetin and myricetrin alleviate liver and colon damage in a chronic colitis mice model: Effects on tight junction and intestinal microbiota. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
11
|
Wang XL, Feng ST, Wang YT, Chen NH, Wang ZZ, Zhang Y. Paeoniflorin: A neuroprotective monoterpenoid glycoside with promising anti-depressive properties. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 90:153669. [PMID: 34334273 DOI: 10.1016/j.phymed.2021.153669] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/07/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Depression, as a prevalent and debilitating psychiatric disease, severely decreases the life quality of individuals and brings heavy burdens to the whole society. Currently, some antidepressants are applied in the treatment of severe depressive symptoms, while there are still some undesirable drawbacks. Paeoniflorin is a monoterpenoid glycoside that was firstly extracted from Paeonia lactiflora Pall, a traditional Chinese herb that is widely used in the Chinese herbal formulas for treating depression. PURPOSE This review summarized the previous pre-clinical studies of paeoniflorin in treating depression and further discussed the potential anti-depressive mechanisms for that paeoniflorin to be further explored and utilized in the treatment of depression clinically. METHODS Some electronic databases, e.g., PubMed and China National Knowledge Infrastructure, were searched from inception until April 2021. RESULTS This review summarized the effective anti-depressive properties of paeoniflorin, which is related to its functions in the upregulation of the levels of monoaminergic neurotransmitters, inhibition of the hypothalamic-pituitary-adrenal axis hyperfunction, promotion of neuroprotection, promotion of hippocampus neurogenesis, and upregulation of brain-derived neurotrophic factor level, inhibition of inflammatory reaction, downregulation of nitric oxide level, etc. CONCLUSION: This review focused on the pre-clinical studies of paeoniflorin in depression and summarized the recent development of the anti-depressive mechanisms of paeoniflorin, which approves the role of paeoniflorin plays in anti-depression. However, more high-quality pre-clinical and clinical studies are expected to be conducted in the future.
Collapse
Affiliation(s)
- Xiao-Le Wang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Sunshine Southern Avenue, Fang-Shan District, Beijing 102488, China
| | - Si-Tong Feng
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Sunshine Southern Avenue, Fang-Shan District, Beijing 102488, China
| | - Ya-Ting Wang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Sunshine Southern Avenue, Fang-Shan District, Beijing 102488, China
| | - Nai-Hong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian-Nong-Tan Street, Xi-Cheng District, Beijing 100050, China
| | - Zhen-Zhen Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian-Nong-Tan Street, Xi-Cheng District, Beijing 100050, China.
| | - Yi Zhang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Sunshine Southern Avenue, Fang-Shan District, Beijing 102488, China.
| |
Collapse
|
12
|
Raupp-Barcaro IFM, da Silva Dias IC, Meyer E, Vieira JCF, da Silva Pereira G, Petkowicz AR, de Oliveira RMW, Andreatini R. Involvement of dopamine D 2 and glutamate NMDA receptors in the antidepressant-like effect of amantadine in mice. Behav Brain Res 2021; 413:113443. [PMID: 34216648 DOI: 10.1016/j.bbr.2021.113443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/24/2021] [Accepted: 06/28/2021] [Indexed: 02/06/2023]
Abstract
The present study investigated the pharmacological mechanisms of the antidepressant-like effects of amantadine in mice and their influence on hippocampal neurogenesis. To improve the translational validity of preclinical results, reproducibility across laboratories and replication in other animal models and species are crucial. Single amantadine administration at doses of 50 and 75 mg/kg resulted in antidepressant-like effects in mice in the tail suspension test (TST), reflected by an increase in immobility time. The effects of amantadine were seen at doses that did not alter locomotor activity. The tyrosine hydroxylase inhibitor α-methyl-ρ-tyrosine did not influence the anti-immobility effect of amantadine in the TST. Pretreatment with the α1 adrenergic receptor antagonist prazosin, β adrenergic receptor antagonist propranolol, α2 adrenergic receptor antagonist yohimbine, and α2 adrenergic receptor agonist clonidine did not alter the antidepressant-like effect of amantadine. However, amantadine's effect was blocked by the dopamine D2 receptor antagonist haloperidol and glutamate receptor agonist N-methyl-D-aspartate (NMDA). Repeated amantadine administration (50 mg/kg) also exerted an antidepressant-like effect, paralleled by an increase in hippocampal neurogenesis. The present results demonstrate that the antidepressant-like effects of amantadine may be mediated by its actions on D2 and NMDA receptors and likely involve hippocampal neurogenesis.
Collapse
Affiliation(s)
- Inara Fernanda Misiuta Raupp-Barcaro
- Department of Pharmacology, Setor de Ciências Biológicas, Universidade Federal do Paraná, Centro Politécnico, C.P. 19031, Curitiba, Paraná, 81540-990, Brazil
| | - Isabella Caroline da Silva Dias
- Department of Pharmacology, Setor de Ciências Biológicas, Universidade Federal do Paraná, Centro Politécnico, C.P. 19031, Curitiba, Paraná, 81540-990, Brazil
| | - Erika Meyer
- Department of Pharmacology and Therapeutics, State University of Maringá, Av. Colombo, 5790, Maringá, Paraná, 87020-900, Brazil
| | - Jeane Cristina Fonseca Vieira
- Department of Pharmacology, Setor de Ciências Biológicas, Universidade Federal do Paraná, Centro Politécnico, C.P. 19031, Curitiba, Paraná, 81540-990, Brazil
| | - Giovana da Silva Pereira
- Department of Pharmacology, Setor de Ciências Biológicas, Universidade Federal do Paraná, Centro Politécnico, C.P. 19031, Curitiba, Paraná, 81540-990, Brazil
| | - Arthur Ribeiro Petkowicz
- Department of Pharmacology, Setor de Ciências Biológicas, Universidade Federal do Paraná, Centro Politécnico, C.P. 19031, Curitiba, Paraná, 81540-990, Brazil
| | - Rúbia Maria Weffort de Oliveira
- Department of Pharmacology and Therapeutics, State University of Maringá, Av. Colombo, 5790, Maringá, Paraná, 87020-900, Brazil
| | - Roberto Andreatini
- Department of Pharmacology, Setor de Ciências Biológicas, Universidade Federal do Paraná, Centro Politécnico, C.P. 19031, Curitiba, Paraná, 81540-990, Brazil.
| |
Collapse
|
13
|
Myricetin: A review of the most recent research. Biomed Pharmacother 2020; 134:111017. [PMID: 33338751 DOI: 10.1016/j.biopha.2020.111017] [Citation(s) in RCA: 148] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 12/13/2022] Open
Abstract
Myricetin(MYR) is a flavonoid compound widely found in many natural plants including bayberry. So far, MYR has been proven to have multiple biological functions and it is a natural compound with promising research and development prospects. This review comprehensively retrieved and collected the latest pharmacological abstracts on MYR, and discussed the potential molecular mechanisms of its effects. The results of our review indicated that MYR has a therapeutic effect on many diseases, including tumors of different types, inflammatory diseases, atherosclerosis, thrombosis, cerebral ischemia, diabetes, Alzheimer's disease and pathogenic microbial infections. Furthermore, it regulates the expression of Hippo, MAPK, GSK-3β, PI3K/AKT/mTOR, STAT3, TLR, IκB/NF-κB, Nrf2/HO-1, ACE, eNOS / NO, AChE and BrdU/NeuN. MYR also enhances the immunomodulatory functions, suppresses cytokine storms, improves cardiac dysfunction, possesses an antiviral potential, can be used as an adjuvant treatment against cancer, cardiovascular injury and nervous system diseases, and it may be a potential drug against COVID-19 and other viral infections. Generally, this article provides a theoretical basis for the clinical application of MYR and a reference for its further use.
Collapse
|
14
|
Zhang X, Zhang K, Wang Y, Ma R. Effects of Myricitrin and Relevant Molecular Mechanisms. Curr Stem Cell Res Ther 2020; 15:11-17. [PMID: 30474534 DOI: 10.2174/1574888x14666181126103338] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 10/21/2018] [Accepted: 10/25/2018] [Indexed: 11/22/2022]
Abstract
In humans, oxidative stress is thought to be involved in the development of Parkinson's disease, Alzheimer's disease, atherosclerosis, heart failure, myocardial infarction and depression. Myricitrin, a botanical flavone, is abundantly distributed in the root bark of Myrica cerifera, Myrica esculenta, Ampelopsis grossedentata, Nymphaea lotus, Chrysobalanus icaco, and other plants. Considering the abundance of its natural sources, myricitrin is relatively easy to extract and purify. Myricitrin reportedly possesses effective anti-oxidative, anti-inflammatory, and anti-nociceptive activities, and can protect a variety of cells from in vitro and in vivo injuries. Therefore, our current review summarizes the research progress of myricitrin in cardiovascular diseases, nerve injury and anti-inflammatory, and provides new ideas for the development of myricitrin.
Collapse
Affiliation(s)
- Xinliang Zhang
- Department of Spine Surgery, Honghui Hospital Affiliated to Xi'an Jiaotong University, Xi'an, China
| | - Ke Zhang
- Department of Spine Surgery, Honghui Hospital Affiliated to Xi'an Jiaotong University, Xi'an, China.,Yan'an University Medical School, Yan'an, China
| | - Youhan Wang
- Shaanxi University of Chinese Medicine, Xian Yang, China
| | - Rui Ma
- Department of Anesthesiology, Xi'an Children's Hospital, Xi'an, China
| |
Collapse
|
15
|
Shen Y, Shen X, Cheng Y, Liu Y. Myricitrin pretreatment ameliorates mouse liver ischemia reperfusion injury. Int Immunopharmacol 2020; 89:107005. [PMID: 33045574 DOI: 10.1016/j.intimp.2020.107005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 08/27/2020] [Accepted: 09/10/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Myricitrin has been reported to exert protective effects on liver diseases, but the protective effects of myricitrin against liver ischemia reperfusion (I/R) injury and the underlying mechanisms remain unexplored. This study aimed to investigate the effects of myricitrin on liver I/R injury and elucidate the underlying mechanisms. METHODS Mice were pretreated with myricitrin before liver I/R injury modeling. The mice were pretreated with either myricitrin or vehicle prior to liver ischemia. Some mice were further pretreated with the PI3K inhibitor LY294002. Liver tissues and blood samples were collected after 6 h of reperfusion. The degree of liver damage was determined by the serum levels of alanine aminotransferase (ALT), aspartate transaminase (AST), and lactic dehydrogenase (LDH) and histological examinations. The tumour necrosis factor-α (TNF-α), interleukin--1β (IL-1β), IL-4 and IL-10 expression levels were assessed by qRT-PCR and enzyme-linked immunosorbent assays (ELISAs). Serum superoxide dismutase (SOD) activity, catalase (CAT) activity, and contents of malondialdehyde (MDA), glutathione (GSH) and nitric oxide (NO) contents were measured. Western blotting and caspase-3 activity were conducted to determine the effect of myricitrin on apoptosis. The expression levels of proliferation related genes (Cyclin D1 and Cyclin E1) were determined by qRT-PCR and western-blotting. The expression of p-Akt, p-mTOR and p-eNOS in liver tissue were investigated by western-blotting. RESULTS Myricitrin not only significantly decreased the ALT, AST and LDH levels but also reduced the necrotic areas in the liver tissue compared with liver I/R injury group. In addition, myricitrin pretreatment alleviated liver injury by inhibiting the inflammatory response and suppressing oxidative stress. Western blotting and caspase-3 activity revealed that myricitrin inhibited liver I/R induced-apoptosis. Myricitrin promoted hepatocyte proliferation following liver I/R injury by upregulating the expression levels of Cyclin D1 and Cyclin E1. Further experiments indicated that the myricitrin pretreatment increased nitric oxide (NO) production by activating the PI3K/Akt signaling pathway. However, myricitrin triggered the hepatocyte proliferation and NO synthase activation was blocked by LY294002. CONCLUSION These results demonstrate that myricitrin alleviates liver I/R injury by suppressing oxidative stress, the inflammatory response, and apoptosis, improving liver proliferation and upregulating p-eNOS expression.
Collapse
Affiliation(s)
- Yuntai Shen
- School of Clinical Medicine, Weifang Medical University, Weifang 266003, China
| | - Xiangrong Shen
- Department of Chinese Medicine, Zhucheng Shiqiaozi Hospital, Weifang 262208, China; Department of Chinese Medicine, The Affiliated Hospital of Qingdao University, Qingdao 260153, China
| | - Yao Cheng
- Department of Anesthesiology, Zhucheng People's Hospital, Weifang 262200, China
| | - Yulan Liu
- Department of Nursing, Zhucheng People's Hospital, Weifang 262200, China.
| |
Collapse
|
16
|
Ultrasound-Assisted Extraction of Bioactive Compounds and Antioxidant Capacity for the Valorization of Elaeocarpus serratus L. Leaves. Processes (Basel) 2020. [DOI: 10.3390/pr8101218] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Elaeocarpus serratus L. leaves contain significant polyphenols, flavonoids, and myricitrin with medicinal property, which are byproducts after harvest and can be recovered for potential food applications. In this study, the effective extraction method for bioactive compounds and myricitrin from Elaeocarpus serratus L. leaves was investigated by comparing ultrasound-assisted extraction (UAE) and shaking-assisted extraction (SAE) for total phenolic content (TPC), total flavonoid content (TFC), myricitrin, and antioxidant capacity (as ferric reducing antioxidant power, FRAP). A first-order kinetic model of extraction was also proposed to correlate the observed extraction rate coefficient and limiting concentration of myricitrin in various solvents. Using defatted leaves (DL) as the substrate at the UAE condition of 95% ethanol with 1/10 (g/mL) of DL to solvent ratio under 40 kHz/300 W of ultrasound, 26.63% of yield of extract, and 199.75 mg-ferrous-sulfate-heptahydrate-equivalent/g-DL of FRAP were obtained. Further, the bioactive compounds extracted were 92.35 mg-gallic-acid-equivalent/g-DL of TPC, 53.14 mg-rutin-equivalent/g-DL of TFC, and 4.41 mg/g-DL of myricitrin, which were 1.53, 1.44, and 1.4 folds using SAE at 120 rpm, respectively. This showed that UAE was more efficient than SAE in bioactive compounds recovery for valorization of Elaeocarpus serratus L. leaves.
Collapse
|
17
|
Keikhaei F, Mirshekar MA, Shahraki MR, Dashipour A. Antiepileptogenic effect of myricitrin on spatial memory and learning in a kainate-induced model of temporal lobe epilepsy. LEARNING AND MOTIVATION 2020. [DOI: 10.1016/j.lmot.2019.101610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
18
|
Man N, Wang Q, Li H, Adu-Frimpong M, Sun C, Zhang K, Yang Q, Wei Q, Ji H, Toreniyazov E, Yu J, Xu X. Improved oral bioavailability of myricitrin by liquid self-microemulsifying drug delivery systems. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.05.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
19
|
Ghasemi M. Nitric oxide: Antidepressant mechanisms and inflammation. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2019; 86:121-152. [PMID: 31378250 DOI: 10.1016/bs.apha.2019.04.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Millions of individuals worldwide suffers from mood disorders, especially major depressive disorder (MDD), which has a high rate of disease burden in society. Although targeting the biogenic amines including serotonin, and norepinephrine have provided invaluable links with the pharmacological treatment of MDD over the last four decades, a growing body of evidence suggest that other biologic systems could contribute to the pathophysiology and treatment of MDD. In this chapter, we highlight the potential role of nitric oxide (NO) signaling in the pathophysiology and thereby treatment of MDD. This has been investigated over the last four decades by showing that (i) levels of NO are altered in patients with major depression; (ii) modulators of NO signaling exert antidepressant effects in patients with MDD or in the animal studies; (iii) NO signaling could be targeted by a variety of antidepressants in animal models of depression; and (iv) NO signaling can potentially modulate the inflammatory pathways that underlie the pathophysiology of MDD. These findings, which hypothesize an NO involvement in MDD, can provide a new insight into novel therapeutic approaches for patients with MDD in the future.
Collapse
Affiliation(s)
- Mehdi Ghasemi
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, United States; Department of Neurology, Massachusetts and General Hospital, Boston, MA, United States.
| |
Collapse
|
20
|
Bakoyiannis I, Daskalopoulou A, Pergialiotis V, Perrea D. Phytochemicals and cognitive health: Are flavonoids doing the trick? Biomed Pharmacother 2018; 109:1488-1497. [PMID: 30551400 DOI: 10.1016/j.biopha.2018.10.086] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 10/13/2018] [Accepted: 10/14/2018] [Indexed: 12/27/2022] Open
Abstract
Flavonoids constitute a large group of polyphenolic compounds with numerous effects on behaviour and cognition. These effects vary from learning and memory enhancement to an improvement of general cognition. Furthermore, flavonoids have been implicated in a) neuronal proliferation and survival, by acting on a variety of cellular signalling cascades, including the ERK/CREB/BDNF and PI3K/Akt pathway, b) oxidative stress reduction and c) relief from Alzheimer's disease-type symptoms. From an electrophysiological aspect, they promote long term potentiation in the hippocampus, supporting the hypothesis of synaptic plasticity mediation. Together, these actions reveal a neuroprotective effect of flavonoid compounds in the brain. Therefore, flavonoid intake could be a potential clinical direction for prevention and/or attenuation of cognitive decline deterioration which accompanies various brain disorders. The purpose of the current review paper was to summarise all these effects on cognition, describe the possible pathways via which they may act on a cellular level and provide a better picture for future research towards this direction.
Collapse
Affiliation(s)
- Ioannis Bakoyiannis
- Laboratory of Experimental Surgery and Surgical Research N.S. Christeas, National and Kapodistrian University of Athens, Medical School, Greece.
| | - Afrodite Daskalopoulou
- Laboratory of Experimental Surgery and Surgical Research N.S. Christeas, National and Kapodistrian University of Athens, Medical School, Greece
| | - Vasilios Pergialiotis
- Laboratory of Experimental Surgery and Surgical Research N.S. Christeas, National and Kapodistrian University of Athens, Medical School, Greece
| | - Despina Perrea
- Laboratory of Experimental Surgery and Surgical Research N.S. Christeas, National and Kapodistrian University of Athens, Medical School, Greece
| |
Collapse
|
21
|
Khan H, Perviz S, Sureda A, Nabavi SM, Tejada S. Current standing of plant derived flavonoids as an antidepressant. Food Chem Toxicol 2018; 119:176-188. [DOI: 10.1016/j.fct.2018.04.052] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 04/20/2018] [Accepted: 04/22/2018] [Indexed: 01/29/2023]
|
22
|
Basavan D, Chalichem NSS, Kumar MKS. Phytoconstituents and their Possible Mechanistic Profile for Alzheimer's Disease - A Literature Review. Curr Drug Targets 2018; 20:263-291. [PMID: 30101703 DOI: 10.2174/1389450119666180813095637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 07/24/2018] [Accepted: 08/08/2018] [Indexed: 11/22/2022]
Abstract
Memory is an associated part of life without which livelihood of a human being becomes miserable. As the global aged population is increasing tremendously, time has come to concentrate on tail end life stage diseases. Alzheimer's disease (AD) is one of such diseases whose origin is enigmatic, having an impact on later stage of life drastically due to irreparable damage of cognition, characterised by the presence of neurotoxic amyloid-beta (Aβ) plaques and hyper phosphorylated Tau protein as fibrillary tangles. Existing therapeutic regimen mainly focuses on symptomatic relief by targeting neurotransmitters that are secondary to AD pathology. Plant derived licensed drugs, Galantamine and Huperzine-A were studied extensively due to their AChE inhibitory action for mild to moderate cases of AD. Although many studies have proved the efficacy of AChEIs as a preferable symptom reliever, they cannot offer long term protection. The future generation drugs of AD is expected to alter various factors that underlie the disease course with a symptomatic benefit promise. As AD involves complex pathology, it is essential to consider several molecular divergent factors apart from the events that result in the production of toxic plaques and neurofibrillary tangles. Even though several herbals have shown neuroprotective actions, we have mentioned about the phytoconstituents that have been tested experimentally against different Alzheimer's pathology models. These phytoconstituents need to be considered by the researchers for further drug development process to make them viable clinically, which is currently a lacuna.
Collapse
Affiliation(s)
- Duraiswamy Basavan
- Department of Pharmacognosy and Phytopharmacy, JSS College of pharmacy (Constituent College of JSS Academy of Higher Education and Research, Mysuru), Ooty-643001, India
| | - Nehru S S Chalichem
- Department of Pharmacognosy and Phytopharmacy, JSS College of pharmacy (Constituent College of JSS Academy of Higher Education and Research, Mysuru), Ooty-643001, India
| | - Mohan K S Kumar
- TIFAC CORE Herbal drugs, Department of Pharmacognosy and Phytopharmacy, JSS College of Pharmacy (Constituent College of JSS Academy of Higher Education and Research, Mysuru), ooty-643001, India
| |
Collapse
|
23
|
Ghasemi M, Claunch J, Niu K. Pathologic role of nitrergic neurotransmission in mood disorders. Prog Neurobiol 2018; 173:54-87. [PMID: 29890213 DOI: 10.1016/j.pneurobio.2018.06.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/30/2018] [Accepted: 06/05/2018] [Indexed: 02/08/2023]
Abstract
Mood disorders are chronic, recurrent mental diseases that affect millions of individuals worldwide. Although over the past 40 years the biogenic amine models have provided meaningful links with the clinical phenomena of, and the pharmacological treatments currently employed in, mood disorders, there is still a need to examine the contribution of other systems to the neurobiology and treatment of mood disorders. This article reviews the current literature describing the potential role of nitric oxide (NO) signaling in the pathophysiology and thereby the treatment of mood disorders. The hypothesis has arisen from several observations including (i) altered NO levels in patients with mood disorders; (ii) antidepressant effects of NO signaling blockers in both clinical and pre-clinical studies; (iii) interaction between conventional antidepressants/mood stabilizers and NO signaling modulators in several biochemical and behavioral studies; (iv) biochemical and physiological evidence of interaction between monoaminergic (serotonin, noradrenaline, and dopamine) system and NO signaling; (v) interaction between neurotrophic factors and NO signaling in mood regulation and neuroprotection; and finally (vi) a crucial role for NO signaling in the inflammatory processes involved in pathophysiology of mood disorders. These accumulating lines of evidence have provided a new insight into novel approaches for the treatment of mood disorders.
Collapse
Affiliation(s)
- Mehdi Ghasemi
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, 01655, USA.
| | - Joshua Claunch
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, 01655, USA
| | - Kathy Niu
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, 01655, USA
| |
Collapse
|
24
|
Li YJ, Li YJ, Yang LD, Zhang K, Zheng KY, Wei XM, Yang Q, Niu WM, Zhao MG, Wu YM. Silibinin exerts antidepressant effects by improving neurogenesis through BDNF/TrkB pathway. Behav Brain Res 2018; 348:184-191. [PMID: 29680784 DOI: 10.1016/j.bbr.2018.04.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/20/2018] [Accepted: 04/17/2018] [Indexed: 12/22/2022]
Abstract
Classic antidepressants benefit depression patients partially by improving neurogenesis and/or brain-derived neurotrophic factor (BDNF)/TrkB pathway which were impaired in depression. In this study, we demonstrated that Silibinin (SLB), a polyphenolic flavanoid from Silybum marianum, ameliorated reserpinized mouse depressant-like behaviors. The antidepressants of SLB administration was associated with increased neural stem cells (NSCs) proliferation and further confirmed in BDNF/TrkB signaling transduction. SLB treatment reversed the decreased expression levels of BDNF and its receptor TrkB, and the reduced activation of downstream target proteins including phosphorylated extracellular-regulated protein kinase (p-ERK) and phosphorylated cAMP-response element binding protein (p-CREB) in depressived hippocampus. Furthermore, intracerebroventricular injection of GNF5837, a TrkB antagonist, abrogated antidepressant-like effects of SLB in mice along with the improved NSC proliferation, as well as enhanced levels of p-ERK and p-CREB in mice hippocampus. Taken together, these results suggest that SLB may exert antidepressant effects through BDNF/TrkB signaling pathway to improve NSC proliferation in acute depression.
Collapse
Affiliation(s)
- Yan-Jiao Li
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, PR China; Department of Pharmacology, School of Pharmacy, the Fourth Military Medical University, Xi'an, Shaanxi Province, 710032, PR China; Department of Acupuncture-moxibustion-massage, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi Province, 712000, PR China
| | - Yu-Jiao Li
- Department of Pharmacology, School of Pharmacy, the Fourth Military Medical University, Xi'an, Shaanxi Province, 710032, PR China
| | - Liu-Di Yang
- Department of Pharmacology, School of Pharmacy, the Fourth Military Medical University, Xi'an, Shaanxi Province, 710032, PR China; Department of Acupuncture-moxibustion-massage, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi Province, 712000, PR China
| | - Kun Zhang
- Department of Pharmacology, School of Pharmacy, the Fourth Military Medical University, Xi'an, Shaanxi Province, 710032, PR China
| | - Kai-Yin Zheng
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, PR China; Department of Pharmacology, School of Pharmacy, the Fourth Military Medical University, Xi'an, Shaanxi Province, 710032, PR China
| | - Xin-Miao Wei
- Student Brigade, the Fourth Military Medical University, Xi'an, Shaanxi Province, 710032, PR China
| | - Qi Yang
- Department of Pharmacology, School of Pharmacy, the Fourth Military Medical University, Xi'an, Shaanxi Province, 710032, PR China
| | - Wen-Min Niu
- Department of Acupuncture-moxibustion-massage, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi Province, 712000, PR China
| | - Ming-Gao Zhao
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, PR China; Department of Pharmacology, School of Pharmacy, the Fourth Military Medical University, Xi'an, Shaanxi Province, 710032, PR China
| | - Yu-Mei Wu
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, PR China; Department of Pharmacology, School of Pharmacy, the Fourth Military Medical University, Xi'an, Shaanxi Province, 710032, PR China; Department of Acupuncture-moxibustion-massage, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi Province, 712000, PR China.
| |
Collapse
|
25
|
German-Ponciano LJ, Rosas-Sánchez GU, Rivadeneyra-Domínguez E, Rodríguez-Landa JF. Advances in the Preclinical Study of Some Flavonoids as Potential Antidepressant Agents. SCIENTIFICA 2018; 2018:2963565. [PMID: 29623232 PMCID: PMC5829422 DOI: 10.1155/2018/2963565] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 12/11/2017] [Accepted: 12/24/2017] [Indexed: 06/08/2023]
Abstract
Flavonoids are phenolic compounds found commonly in plants that protect them against the negative effects of environmental insults. These secondary metabolites have been widely studied in preclinical research because of their biological effects, particularly as antioxidant agents. Diverse flavonoids have been studied to explore their potential therapeutic effects in the treatment of disorders of the central nervous system, including anxiety and depression. The present review discusses advances in the study of some flavonoids as potential antidepressant agents. We describe their behavioral, physiological, and neurochemical effects and the apparent mechanism of action of their preclinical antidepressant-like effects. Natural flavonoids produce antidepressant-like effects in validated behavioral models of depression. The mechanism of action of these effects includes the activation of serotonergic, dopaminergic, noradrenergic, and γ-aminobutyric acid-ergic neurotransmitter systems and an increase in the production of neural factors, including brain-derived neurotrophic factor and nerve growth factor. Additionally, alterations in the function of tropomyosin receptor kinase B and activity of the enzyme monoamine oxidase A have been reported. In conclusion, preclinical research supports the potential antidepressant effects of some natural flavonoids, which opens new possibilities of evaluating these substances to develop complementary therapeutic alternatives that could ameliorate symptoms of depressive disorders in humans.
Collapse
Affiliation(s)
- León Jesús German-Ponciano
- Programa de Doctorado en Neuroetología, Instituto de Neuroetología, Universidad Veracruzana, Xalapa, VER, Mexico
| | - Gilberto Uriel Rosas-Sánchez
- Programa de Doctorado en Neuroetología, Instituto de Neuroetología, Universidad Veracruzana, Xalapa, VER, Mexico
| | | | - Juan Francisco Rodríguez-Landa
- Facultad de Química Farmacéutica Biológica, Universidad Veracruzana, Xalapa, VER, Mexico
- Laboratorio de Neurofarmacología, Instituto de Neuroetología, Universidad Veracruzana, Xalapa, VER, Mexico
| |
Collapse
|