1
|
Martin E, Chowdury A, Kopchick J, Thomas P, Khatib D, Rajan U, Zajac-Benitez C, Haddad L, Amirsadri A, Robison AJ, Thakkar KN, Stanley JA, Diwadkar VA. The mesolimbic system and the loss of higher order network features in schizophrenia when learning without reward. Front Psychiatry 2024; 15:1337882. [PMID: 39355381 PMCID: PMC11443173 DOI: 10.3389/fpsyt.2024.1337882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 08/16/2024] [Indexed: 10/03/2024] Open
Abstract
Introduction Schizophrenia is characterized by a loss of network features between cognition and reward sub-circuits (notably involving the mesolimbic system), and this loss may explain deficits in learning and cognition. Learning in schizophrenia has typically been studied with tasks that include reward related contingencies, but recent theoretical models have argued that a loss of network features should be seen even when learning without reward. We tested this model using a learning paradigm that required participants to learn without reward or feedback. We used a novel method for capturing higher order network features, to demonstrate that the mesolimbic system is heavily implicated in the loss of network features in schizophrenia, even when learning without reward. Methods fMRI data (Siemens Verio 3T) were acquired in a group of schizophrenia patients and controls (n=78; 46 SCZ, 18 ≤ Age ≤ 50) while participants engaged in associative learning without reward-related contingencies. The task was divided into task-active conditions for encoding (of associations) and cued-retrieval (where the cue was to be used to retrieve the associated memoranda). No feedback was provided during retrieval. From the fMRI time series data, network features were defined as follows: First, for each condition of the task, we estimated 2nd order undirected functional connectivity for each participant (uFC, based on zero lag correlations between all pairs of regions). These conventional 2nd order features represent the task/condition evoked synchronization of activity between pairs of brain regions. Next, in each of the patient and control groups, the statistical relationship between all possible pairs of 2nd order features were computed. These higher order features represent the consistency between all possible pairs of 2nd order features in that group and embed within them the contributions of individual regions to such group structure. Results From the identified inter-group differences (SCZ ≠ HC) in higher order features, we quantified the respective contributions of individual brain regions. Two principal effects emerged: 1) SCZ were characterized by a massive loss of higher order features during multiple task conditions (encoding and retrieval of associations). 2) Nodes in the mesolimbic system were over-represented in the loss of higher order features in SCZ, and notably so during retrieval. Discussion Our analytical goals were linked to a recent circuit-based integrative model which argued that synergy between learning and reward circuits is lost in schizophrenia. The model's notable prediction was that such a loss would be observed even when patients learned without reward. Our results provide substantial support for these predictions where we observed a loss of network features between the brain's sub-circuits for a) learning (including the hippocampus and prefrontal cortex) and b) reward processing (specifically constituents of the mesolimbic system that included the ventral tegmental area and the nucleus accumbens. Our findings motivate a renewed appraisal of the relationship between reward and cognition in schizophrenia and we discuss their relevance for putative behavioral interventions.
Collapse
Affiliation(s)
- Elizabeth Martin
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
- Department of Psychiatry, University of Texas Austin, Austin, TX, United States
| | - Asadur Chowdury
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, United States
| | - John Kopchick
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Patricia Thomas
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Dalal Khatib
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Usha Rajan
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Caroline Zajac-Benitez
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Luay Haddad
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Alireza Amirsadri
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Alfred J. Robison
- Department of Physiology, Michigan State University, East Lansing, MI, United States
| | - Katherine N. Thakkar
- Department of Psychology, Michigan State University, East Lansing, MI, United States
| | - Jeffrey A. Stanley
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Vaibhav A. Diwadkar
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
| |
Collapse
|
2
|
Doss MK, de Wit H, Gallo DA. The acute effects of psychoactive drugs on emotional episodic memory encoding, consolidation, and retrieval: A comprehensive review. Neurosci Biobehav Rev 2023; 150:105188. [PMID: 37085021 PMCID: PMC10247427 DOI: 10.1016/j.neubiorev.2023.105188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/13/2023] [Accepted: 04/17/2023] [Indexed: 04/23/2023]
Abstract
Psychoactive drugs modulate learning and emotional processes in ways that could impact their recreational and medical use. Recent work has revealed how drugs impact different stages of processing emotional episodic memories, specifically encoding (forming memories), consolidation (stabilizing memories), and retrieval (accessing memories). Drugs administered before encoding may preferentially impair (e.g., GABAA sedatives including alcohol and benzodiazepines, Δ9-tetrahydrocannabinol or THC, ketamine), enhance (e.g., dextroamphetamine and dextromethamphetamine), or both impair and enhance (i.e., ± 3,4-methylenedioxymethylamphetamine or MDMA) emotionally negative and positive compared to neutral memories. GABAA sedatives administered immediately post-encoding (during consolidation) can preferentially enhance emotional memories, though this selectivity may decline or even reverse (i.e., preferential enhancement of neutral memories) as the delay between encoding and retrieval increases. Finally, retrieving memories under the effects of THC, dextroamphetamine, MDMA, and perhaps GABAA sedatives distorts memory, with potentially greater selectively for emotional (especially positive) memories. We review these effects, propose neural mechanisms, discuss methodological considerations for future work, and speculate how drug effects on emotional episodic memory may contribute to drug use and abuse.
Collapse
Affiliation(s)
- Manoj K Doss
- Department of Psychiatry and Behavioral Sciences, Center for Psychedelic & Consciousness Research, USA.
| | - Harriet de Wit
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, USA
| | - David A Gallo
- Department of Psychology, University of Chicago, USA
| |
Collapse
|
3
|
Hill PF, de Chastelaine M, Rugg MD. Patterns of retrieval-related cortico-striatal connectivity are stable across the adult lifespan. Cereb Cortex 2023; 33:4542-4552. [PMID: 36124666 PMCID: PMC10110447 DOI: 10.1093/cercor/bhac360] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 11/14/2022] Open
Abstract
Memory retrieval effects in the striatum are well documented and robust across experimental paradigms. However, the functional significance of these effects, and whether they are moderated by age, remains unclear. We used functional magnetic resonance imaging paired with an associative recognition task to examine retrieval effects in the striatum in a sample of healthy young, middle-aged, and older adults. We identified anatomically segregated patterns of enhanced striatal blood oxygen level-dependent (BOLD) activity during recollection- and familiarity-based memory judgments. Successful recollection was associated with enhanced BOLD activity in bilateral putamen and nucleus accumbens, and neither of these effects were reliably moderated by age. Familiarity effects were evident in the head of the caudate nucleus bilaterally, and these effects were attenuated in middle-aged and older adults. Using psychophysiological interaction analyses, we observed a monitoring-related increase in functional connectivity between the caudate and regions of the frontoparietal control network, and between the putamen and bilateral retrosplenial cortex and intraparietal sulcus. In all instances, monitoring-related increases in cortico-striatal connectivity were unmoderated by age. These results suggest that the striatum, and the caudate in particular, couples with the frontoparietal control network to support top-down retrieval-monitoring operations, and that the strength of these inter-regional interactions is preserved in later life.
Collapse
Affiliation(s)
- Paul F Hill
- Psychology Department, University of Arizona, Tucson, AZ 85721, United States
| | | | - Michael D Rugg
- Center for Vital Longevity, University of Texas at Dallas, Dallas, TX 75235, United States
- School of Psychology, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| |
Collapse
|
4
|
Schaeffer JD, Newell C, Spann C, Siemens G, Liegey Dougall A. Inflammation, depression, and anxiety related to recognition memory in young adults. THE JOURNAL OF GENERAL PSYCHOLOGY 2023; 150:1-25. [PMID: 33729100 DOI: 10.1080/00221309.2021.1893638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Previous research suggests that common modifiable health risk factors (e.g., depression, anxiety, metabolic illness, inflammation) may have an impact on memory. In the present study, we sought to investigate relationships between a number of these health risk factors and two components of recognition memory (recollection and familiarity). Data were analyzed for 96 healthy young adults between 17 and 25 years old. Recollection and familiarity were measured using an associative recognition procedure involving unitized and unrelated word pairs, and regression analyses were used to relate recognition memory performance to physical health (inflammation via plasma IL-6 levels, central obesity via waste-to-hip ratio, and heart rate variability) and mental health (depression via CESD-R, stress via PSS, and state and personality trait anxiety via STAI) measures of modifiable risk factors. Together, these health variables predicted an additional 19% of the variance in recollection beyond what was accounted for by familiarity, and 15% of the variance in familiarity beyond what was accounted for by recollection. These effects were primarily driven by inflammation, depression, and trait anxiety, which were each significant (p < .05) independent predictors of recognition. Higher levels of depression and inflammation were related to worse recollection yet better familiarity. Higher levels of trait anxiety were related to better recollection but were not related to familiarity. These findings demonstrate complex relationships between these modifiable health risk factors and recognition memory. Future longitudinal and cross-sectional research is needed to further explore these relationships and determine whether or not poor health causes these changes in recognition.
Collapse
Affiliation(s)
- James D Schaeffer
- Department of Psychology, Stephen F. Austin State University, Nacogdoches, TX, USA
| | - Cory Newell
- Department of Psychology, University of Texas at Arlington, Arlington, TX, USA.,LINK Research Lab, University of Texas at Arlington, Arlington, TX, USA
| | - Catherine Spann
- Institute of Cognitive Science, University of Colorado Boulder, Boulder, CO, USA
| | - George Siemens
- Department of Psychology, University of Texas at Arlington, Arlington, TX, USA.,LINK Research Lab, University of Texas at Arlington, Arlington, TX, USA
| | - Angela Liegey Dougall
- Department of Psychology, University of Texas at Arlington, Arlington, TX, USA.,LINK Research Lab, University of Texas at Arlington, Arlington, TX, USA
| |
Collapse
|
5
|
Schaeffer JD, Chek CJW. Recollection, familiarity, and behavioural pattern separation: A correlational study. Memory 2022; 30:1248-1257. [DOI: 10.1080/09658211.2022.2101665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- James D. Schaeffer
- Department of Psychology, Stephen F. Austin State University, Nacogdoches, TX, USA
| | - Carmen Jia-Wen Chek
- Department of Psychology and Counseling, University of Texas at Tyler, Tyler, TX, USA
| |
Collapse
|
6
|
Liu T, Xing M, Bai X. Part-List Cues Hinder Familiarity but Not Recollection in Item Recognition: Behavioral and Event-Related Potential Evidence. Front Psychol 2020; 11:561899. [PMID: 33132967 PMCID: PMC7564720 DOI: 10.3389/fpsyg.2020.561899] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 08/31/2020] [Indexed: 11/13/2022] Open
Abstract
Participants' memory performance is normally poorer when a subset of previously learned items is provided as retrieval cues than none of the retrieval cues is provided. This phenomenon is called the part-list cuing effect, which has been discovered in numerous behavioral studies. However, there is currently no relevant behavioral or event-related potential (ERP) research to investigate whether the forgetting effect caused by part-list cues is more sensitive to recollection or to familiarity. By combining the part-list cuing paradigm with the Remember/Know procedure, we investigated this issue in the present ERP study. Behavioral data showed part-list cuing induced detrimental effect in two aspects: significantly lowered familiarity of the target items and decreased memory discrimination score (Pr score) for "Know" but not for "Remember" items in the part-list cue condition than in the no-part-list cue condition. ERP data revealed that the FN400 old/new effects, which are associated with familiarity, were absent when providing part-list cues, whereas the late positive complex (LPC) old/new effects, which are associated with recollection, were observed comparably in both part-list cue and no-part-list cue conditions. Converging behavioral and ERP results suggested that part-list cues hindered familiarity-based retrieval but not recollection-based retrieval of item recognition. Theoretical implications of the findings for the part-list cuing effect are discussed.
Collapse
Affiliation(s)
- Tuanli Liu
- School of Education Science, Xinyang Normal University, Xinyang, China
| | - Min Xing
- School of Education Science, Xinyang Normal University, Xinyang, China.,Key Research Base of Humanities and Social Sciences of the Ministry of Education, Academy of Psychology and Behavior, Tianjin Normal University, Tianjin, China.,Faculty of Psychology, Tianjin Normal University, Tianjin, China
| | - Xuejun Bai
- Key Research Base of Humanities and Social Sciences of the Ministry of Education, Academy of Psychology and Behavior, Tianjin Normal University, Tianjin, China.,Faculty of Psychology, Tianjin Normal University, Tianjin, China
| |
Collapse
|
7
|
Abstract
Real-life choices often require that we draw inferences about the value of options based on structured, schematic knowledge about their utility for our current goals. Other times, value information may be retrieved directly from a specific prior experience with an option. In an fMRI experiment, we investigated the neural systems involved in retrieving and assessing information from different memory sources to support value-based choice. Participants completed a task in which items could be conferred positive or negative value based on schematic associations (i.e., schema value) or learned directly from experience via deterministic feedback (i.e., experienced value). We found that ventromedial pFC (vmPFC) activity correlated with the influence of both experience- and schema-based values on participants' decisions. Connectivity between the vmPFC and middle temporal cortex also tracked the inferred value of items based on schematic associations on the first presentation of ingredients, before any feedback. In contrast, the striatum responded to participants' willingness to bet on ingredients as a function of the unsigned strength of their memory for those options' values. These results argue that the striatum and vmPFC play distinct roles in memory-based value judgment and decision-making. Specifically, the vmPFC assesses the value of options based on information inferred from schematic knowledge and retrieved from prior direct experience, whereas the striatum controls a decision to act on options based on memory strength.
Collapse
Affiliation(s)
- Avinash R. Vaidya
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, RI, 02912
| | - David Badre
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, RI, 02912
- Carney Institute for Brain Science, Brown University, Providence, RI, 02912
| |
Collapse
|
8
|
Raper J, Kovacs-Balint Z, Mavigner M, Gumber S, Burke MW, Habib J, Mattingly C, Fair D, Earl E, Feczko E, Styner M, Jean SM, Cohen JK, Suthar MS, Sanchez MM, Alvarado MC, Chahroudi A. Long-term alterations in brain and behavior after postnatal Zika virus infection in infant macaques. Nat Commun 2020; 11:2534. [PMID: 32439858 PMCID: PMC7242369 DOI: 10.1038/s41467-020-16320-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 04/21/2020] [Indexed: 12/18/2022] Open
Abstract
Zika virus (ZIKV) infection has a profound impact on the fetal nervous system. The postnatal period is also a time of rapid brain growth, and it is important to understand the potential neurobehavioral consequences of ZIKV infection during infancy. Here we show that postnatal ZIKV infection in a rhesus macaque model resulted in long-term behavioral, motor, and cognitive changes, including increased emotional reactivity, decreased social contact, loss of balance, and deficits in visual recognition memory at one year of age. Structural and functional MRI showed that ZIKV-infected infant rhesus macaques had persistent enlargement of lateral ventricles, smaller volumes and altered functional connectivity between brain areas important for socioemotional behavior, cognitive, and motor function (e.g. amygdala, hippocampus, cerebellum). Neuropathological changes corresponded with neuroimaging results and were consistent with the behavioral and memory deficits. Overall, this study demonstrates that postnatal ZIKV infection in this model may have long-lasting neurodevelopmental consequences.
Collapse
Affiliation(s)
- Jessica Raper
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | | | - Maud Mavigner
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Center for Childhood Infections and Vaccines of Children's Healthcare of Atlanta and Emory University, Atlanta, GA, USA
| | - Sanjeev Gumber
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Mark W Burke
- Department of Physiology and Biophysics, Howard University, Washington, DC, USA
| | - Jakob Habib
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Cameron Mattingly
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Damien Fair
- Oregon Health and Science University, Portland, OR, USA
| | - Eric Earl
- Oregon Health and Science University, Portland, OR, USA
| | - Eric Feczko
- Oregon Health and Science University, Portland, OR, USA
| | - Martin Styner
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
| | - Sherrie M Jean
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Joyce K Cohen
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
- Psychiatry & Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Mehul S Suthar
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
- Center for Childhood Infections and Vaccines of Children's Healthcare of Atlanta and Emory University, Atlanta, GA, USA
- Emory Vaccine Center, Atlanta, GA, 30329, USA
| | - Mar M Sanchez
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
- Psychiatry & Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Maria C Alvarado
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Ann Chahroudi
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA.
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA.
- Center for Childhood Infections and Vaccines of Children's Healthcare of Atlanta and Emory University, Atlanta, GA, USA.
| |
Collapse
|
9
|
Nie A, Xiao Y, Liu S, Zhu X, Zhang D. Sensitivity of Reality Monitoring to Fluency: Evidence from Behavioral Performance and Event-Related Potential (ERP) Old/New Effects. Med Sci Monit 2019; 25:9490-9498. [PMID: 31830005 PMCID: PMC6927240 DOI: 10.12659/msm.917401] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Background Item memory and source memory are differently processed with both behavioral and event-related potential (ERP) evidence. Reality monitoring, a specific type of source memory, which refers to the ability to differentiate external sources from internal sources, has been drawing much attention. Among factors that have an impact on reality monitoring, fluency has not been well-studied. Therefore, the current study aimed to investigate whether fluency could affect reality monitoring, through observations on both behavioral performance and electrophysiological patterns. Material/Methods Adopting ERP techniques, participants were required either to watch the presentation of a name/picture pair, or to imagine a picture for each displayed name, once (low fluency) or twice (high fluency). Later they completed a reality monitoring task of identifying names as perceived, imagined, or novel items. Behavioral performance was measured, and ERP waveforms were recorded. Results Behaviorally, high fluency items were faster and more accurately attributed to the sources than low fluency items. ERP waveforms revealed that late positive component (LPC) occurred for all 4 types of items, while imagined items of low fluency did not record a robust FN400 or late frontal old/new effect. Conclusions As results revealed, the factor of fluency does influence reality monitoring in terms of accuracy and responding speed. Meanwhile, for imagined items of low fluency, the absence of FN400 and frontal old/new effect also suggests the sensitivity of reality monitoring to fluency, because these representatives of familiarity-based processing and post-retrieval monitoring are inevitably involved in the process of differentiating internal source from external source.
Collapse
Affiliation(s)
- Aiqing Nie
- Department of Psychology and Behavioral Science, Zhejiang University, Hangzhou, Zhejiang, China (mainland)
| | - Yueyue Xiao
- Department of Psychology and Behavioral Science, Zhejiang University, Hangzhou, Zhejiang, China (mainland)
| | - Si Liu
- Department of Psychology and Behavioral Science, Zhejiang University, Hangzhou, Zhejiang, China (mainland)
| | - Xiaolei Zhu
- Department of Psychology and Behavioral Science, Zhejiang University, Hangzhou, Zhejiang, China (mainland)
| | - Delin Zhang
- Department of Anesthesiology, First Hospital, Zhejiang University, Hangzhou, Zhejiang, China (mainland)
| |
Collapse
|
10
|
Doss MK, Weafer J, Gallo DA, de Wit H. Δ 9-Tetrahydrocannabinol at Retrieval Drives False Recollection of Neutral and Emotional Memories. Biol Psychiatry 2018; 84:743-750. [PMID: 29884456 DOI: 10.1016/j.biopsych.2018.04.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 04/05/2018] [Accepted: 04/26/2018] [Indexed: 11/16/2022]
Abstract
BACKGROUND It is well established that the main psychoactive constituent of cannabis, Δ9-tetrahydrocannabinol (THC), impairs episodic memory encoding and modulates emotional processing, but little is known about the impact of THC during the retrieval of emotional episodic memories. With the rise of cannabis to treat medical conditions, including those characterized by emotional and episodic memory disturbances, there is an urgent need to determine the effects of THC on memory accuracy and distortion. Here, we report the first study investigating the effects of THC during retrieval of neutral and emotional episodic memories. METHODS Using a double-blind, placebo-controlled, within-subjects design, healthy volunteers (N = 23) viewed negative, neutral, and positive pictures (emotional memory task) and lists of semantically related words (false memory task). Forty-eight hours later, participants ingested a capsule containing either THC (15 mg) or placebo and completed tasks to test their memories for the previously studied pictures and words. RESULTS THC during retrieval did not reduce the number of correct responses to studied items. Instead, it robustly increased false recollection on both the emotional memory and false memory tasks. This effect was found for both neutral and emotional items. CONCLUSIONS These findings show that THC has adverse effects during memory retrieval, distorting both neutral and emotional memories. Coupled with THC's known effects during encoding, these new retrieval findings are important in light of the spreading acceptance of cannabis.
Collapse
Affiliation(s)
- Manoj K Doss
- Department of Psychology, the University of Chicago, Chicago, Illinois.
| | - Jessica Weafer
- Department of Psychiatry and Behavioral Neuroscience, the University of Chicago, Chicago, Illinois
| | - David A Gallo
- Department of Psychology, the University of Chicago, Chicago, Illinois
| | - Harriet de Wit
- Department of Psychiatry and Behavioral Neuroscience, the University of Chicago, Chicago, Illinois
| |
Collapse
|