1
|
Wang SS, Zeng X, Wang YL, Dongzhi Z, Zhao YF, Chen YZ. Chinese Medicine Meets Conventional Medicine in Targeting COVID-19 Pathophysiology, Complications and Comorbidities. Chin J Integr Med 2022; 28:627-635. [PMID: 35583580 PMCID: PMC9116066 DOI: 10.1007/s11655-022-3573-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2021] [Indexed: 01/09/2023]
Abstract
OBJECTIVE To investigate how the National Health Commission of China (NHCC)-recommended Chinese medicines (CMs) modulate the major maladjustments of coronavirus disease 2019 (COVID-19), particularly the clinically observed complications and comorbidities. METHODS By focusing on the potent targets in common with the conventional medicines, we investigated the mechanisms of 11 NHCC-recommended CMs in the modulation of the major COVID-19 pathophysiology (hyperinflammations, viral replication), complications (pain, headache) and comorbidities (hypertension, obesity, diabetes). The constituent herbs of these CMs and their chemical ingredients were from the Traditional Chinese Medicine Information Database. The experimentally-determined targets and the activity values of the chemical ingredients of these CMs were from the Natural Product Activity and Species Source Database. The approved and clinical trial drugs against these targets were searched from the Therapeutic Target Database and DrugBank Database. Pathways of the targets was obtained from Kyoto Encyclopedia of Genes and Genomes and additional literature search. RESULTS Overall, 9 CMs modulated 6 targets discovered by the COVID-19 target discovery studies, 8 and 11 CMs modulated 8 and 6 targets of the approved or clinical trial drugs for the treatment of the major COVID-19 complications and comorbidities, respectively. CONCLUSION The coordinated actions of each NHCC-recommended CM against a few targets of the major COVID-19 pathophysiology, complications and comorbidities, partly have common mechanisms with the conventional medicines.
Collapse
Affiliation(s)
- Shan-shan Wang
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Institute of Drug Discovery Technology, Ningbo University, Ningbo, Zhejiang Province, 315211 China
| | - Xian Zeng
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, 201203 China
| | - Ya-li Wang
- Bioinformatics and Drug Design Group, Department of Pharmacy, National University of Singapore, Singapore, 117543 Singapore
| | | | - Yu-fen Zhao
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Institute of Drug Discovery Technology, Ningbo University, Ningbo, Zhejiang Province, 315211 China ,Department of Chemical Biology, College of Chemistry and Chemical Engineering, and The Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, Fujian Province, 361005 China ,Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 102206 China
| | - Yu-zong Chen
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Institute of Drug Discovery Technology, Ningbo University, Ningbo, Zhejiang Province, 315211 China ,Bioinformatics and Drug Design Group, Department of Pharmacy, National University of Singapore, Singapore, 117543 Singapore
| |
Collapse
|
2
|
Li Y, Chen D, Hu J, Zhang K, Kang L, Chen Y, Huang L, Zhang L, Xiang Y, Song Q, Liu F. The α-tubulin of Laodelphax striatellus mediates the passage of rice stripe virus (RSV) and enhances horizontal transmission. PLoS Pathog 2020; 16:e1008710. [PMID: 32817722 PMCID: PMC7446811 DOI: 10.1371/journal.ppat.1008710] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/17/2020] [Indexed: 01/01/2023] Open
Abstract
Rice stripe virus (RSV, genus Tenuivirus, family Phenuiviridae) is the causal agent of rice stripe disease transmitted by the small brown planthopper (SBPH, Laodelphax striatellus) in a persistent propagative manner. The midgut and salivary glands of SBPH are the first and last barriers to the viral circulation and transmission processes, respectively; however, the precise mechanisms used by RSV to cross these organs and transmit to rice plants have not been fully elucidated. We obtained the full-length cDNA sequence of L. striatellus α-tubulin 2 (LsTUB) and found that RSV infection increased the level of LsTUB in vivo. Furthermore, LsTUB was shown to co-localize with RSV nonstructural protein 3 (NS3) in vivo and bound NS3 at positions 74-76 and 80-82 in vitro. Transient gene silencing of LsTUB expression caused a significant reduction in detectable RSV loads and viral NS3 expression levels, but had no effect on NS3 silencing suppressor activity and viral replication in insect cells. However, suppression of LsTUB attenuated viral spread in the bodies of SBPHs and decreased RSV transmission rates to rice plants. Electrical penetration graphs (EPG) showed that LsTUB knockdown by RNAi did not impact SBPH feeding; therefore, the reduction in RSV transmission rates was likely caused by a decrease in viral loads inside the planthopper. These findings suggest that LsTUB mediates the passage of RSV through midgut and salivary glands and leads to successful horizontal transmission.
Collapse
Affiliation(s)
- Yao Li
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Danyu Chen
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Jia Hu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Kun Zhang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Lin Kang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Yan Chen
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Lijun Huang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Lu Zhang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Yin Xiang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Qisheng Song
- Division of Plant Sciences, University of Missouri, Columbia, Missouri, United States of America
| | - Fang Liu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| |
Collapse
|
3
|
The Integrity of the YxxL Motif of Ebola Virus VP24 Is Important for the Transport of Nucleocapsid-Like Structures and for the Regulation of Viral RNA Synthesis. J Virol 2020; 94:JVI.02170-19. [PMID: 32102881 DOI: 10.1128/jvi.02170-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 02/15/2020] [Indexed: 12/15/2022] Open
Abstract
While it is well appreciated that late domains in the viral matrix proteins are crucial to mediate efficient virus budding, little is known about roles of late domains in the viral nucleocapsid proteins. Here, we characterized the functional relevance of a YxxL motif with potential late-domain function in the Ebola virus nucleocapsid protein VP24. Mutations in the YxxL motif had two opposing effects on the functions of VP24. On the one hand, the mutation affected the regulatory function of VP24 in viral RNA transcription and replication, which correlated with an increased incorporation of minigenomes into released transcription- and replication-competent virus-like particles (trVLPs). Consequently, cells infected with those trVLPs showed higher levels of viral transcription. On the other hand, mutations of the YxxL motif greatly impaired the intracellular transport of nucleocapsid-like structures (NCLSs) composed of the viral proteins NP, VP35, and VP24 and the length of released trVLPs. Attempts to rescue recombinant Ebola virus expressing YxxL-deficient VP24 failed, underlining the importance of this motif for the viral life cycle.IMPORTANCE Ebola virus (EBOV) causes a severe fever with high case fatality rates and, so far, no available specific therapy. Understanding the interplay between viral and host proteins is important to identify new therapeutic approaches. VP24 is one of the essential nucleocapsid components and is necessary to regulate viral RNA synthesis and condense viral nucleocapsids before their transport to the plasma membrane. Our functional analyses of the YxxL motif in VP24 suggested that it serves as an interface between nucleocapsid-like structures (NCLSs) and cellular proteins, promoting intracellular transport of NCLSs in an Alix-independent manner. Moreover, the YxxL motif is necessary for the inhibitory function of VP24 in viral RNA synthesis. A failure to rescue EBOV encoding VP24 with a mutated YxxL motif indicated that the integrity of the YxxL motif is essential for EBOV growth. Thus, this motif might represent a potential target for antiviral interference.
Collapse
|
4
|
Koehler A, Pfeiffer S, Kolesnikova L, Becker S. Analysis of the multifunctionality of Marburg virus VP40. J Gen Virol 2018; 99:1614-1620. [PMID: 30394868 DOI: 10.1099/jgv.0.001169] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Marburg virus (MARV) matrix protein, VP40, is a multifunctional protein that is essential for the assembly and release of viral particles, inhibition of the interferon response and viral transcription/replication. VP40 is assumed to be present as soluble monomers and membrane-bound higher-order oligomers. To investigate the functional relevance of oligomerization and lipid binding of VP40 we constructed mutants with impaired VP40-VP40 or VP40-lipid interactions and tested their capacity to bind the plasma membrane, to form virus-like particles (VLPs) and to inhibit viral RNA synthesis. All of the analysed VP40 mutants formed perinuclear aggregates and were defective in their delivery to the plasma membrane and in VLP production. The VP40 mutants that were competent for oligomerization but lacked VP40-lipid interactions formed fibril-like structures, influenced MARV inclusion body formation and inhibited viral transcription/replication more strongly than the VP40 wild-type. Altogether, mutations that interfere with VP40's transition from monomer to higher-order oligomers and/or lipid interactions destroy the protein's multifunctionality.
Collapse
Affiliation(s)
- Alexander Koehler
- 1Institut für Virologie, Philipps-Universität Marburg, 35043 Marburg, Germany
| | - Sebastian Pfeiffer
- 1Institut für Virologie, Philipps-Universität Marburg, 35043 Marburg, Germany
| | - Larissa Kolesnikova
- 1Institut für Virologie, Philipps-Universität Marburg, 35043 Marburg, Germany
| | - Stephan Becker
- 1Institut für Virologie, Philipps-Universität Marburg, 35043 Marburg, Germany.,2German Center for Infection Research (DZIF), Institut für Virologie, Philipps-Universität Marburg, 35043 Marburg, Germany
| |
Collapse
|
5
|
Abstract
Microtubules (MTs) form a rapidly adaptable network of filaments that radiate throughout the cell. These dynamic arrays facilitate a wide range of cellular processes, including the capture, transport, and spatial organization of cargos and organelles, as well as changes in cell shape, polarity, and motility. Nucleating from MT-organizing centers, including but by no means limited to the centrosome, MTs undergo rapid transitions through phases of growth, pause, and catastrophe, continuously exploring and adapting to the intracellular environment. Subsets of MTs can become stabilized in response to environmental cues, acquiring distinguishing posttranslational modifications and performing discrete functions as specialized tracks for cargo trafficking. The dynamic behavior and organization of the MT array is regulated by MT-associated proteins (MAPs), which include a subset of highly specialized plus-end-tracking proteins (+TIPs) that respond to signaling cues to alter MT behavior. As pathogenic cargos, viruses require MTs to transport to and from their intracellular sites of replication. While interactions with and functions for MT motor proteins are well characterized and extensively reviewed for many viruses, this review focuses on MT filaments themselves. Changes in the spatial organization and dynamics of the MT array, mediated by virus- or host-induced changes to MT regulatory proteins, not only play a central role in the intracellular transport of virus particles but also regulate a wider range of processes critical to the outcome of infection.
Collapse
|
6
|
Zan J, Liu S, Sun DN, Mo KK, Yan Y, Liu J, Hu BL, Gu JY, Liao M, Zhou JY. Rabies Virus Infection Induces Microtubule Depolymerization to Facilitate Viral RNA Synthesis by Upregulating HDAC6. Front Cell Infect Microbiol 2017; 7:146. [PMID: 28491824 PMCID: PMC5405082 DOI: 10.3389/fcimb.2017.00146] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 04/07/2017] [Indexed: 12/20/2022] Open
Abstract
Rabies virus (RABV) is the cause of rabies, and is associated with severe neurological symptoms, high mortality rate, and a serious threat to human health. Although cellular tubulin has recently been identified to be incorporated into RABV particles, the effects of RABV infection on the microtubule cytoskeleton remain poorly understood. In this study, we show that RABV infection induces microtubule depolymerization as observed by confocal microscopy, which is closely associated with the formation of the filamentous network of the RABV M protein. Depolymerization of microtubules significantly increases viral RNA synthesis, while the polymerization of microtubules notably inhibits viral RNA synthesis and prevents the viral M protein from inducing the formation of the filamentous network. Furthermore, the histone deacetylase 6 (HDAC6) expression level progressively increases during RABV infection, and the inhibition of HDAC6 deacetylase activity significantly decreases viral RNA synthesis. In addition, the expression of viral M protein alone was found to significantly upregulate HDAC6 expression, leading to a substantial reduction in its substrate, acetylated α-tubulin, eventually resulting in microtubule depolymerization. These results demonstrate that HDAC6 plays a positive role in viral transcription and replication by inducing microtubule depolymerization during RABV infection.
Collapse
Affiliation(s)
- Jie Zan
- Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang UniversityHangzhou, China
| | - Song Liu
- Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang UniversityHangzhou, China
| | - Dong-Nan Sun
- Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang UniversityHangzhou, China
| | - Kai-Kun Mo
- Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang UniversityHangzhou, China
| | - Yan Yan
- Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang UniversityHangzhou, China
| | - Juan Liu
- Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang UniversityHangzhou, China
| | - Bo-Li Hu
- Institute of Immunology, Nanjing Agricultural UniversityNanjing, China
| | - Jin-Yan Gu
- Collaborative Innovation Center and State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang UniversityHangzhou, China
| | - Min Liao
- Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang UniversityHangzhou, China
| | - Ji-Yong Zhou
- Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang UniversityHangzhou, China.,Collaborative Innovation Center and State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang UniversityHangzhou, China
| |
Collapse
|
7
|
Regulation of Viral RNA Synthesis by the V Protein of Parainfluenza Virus 5. J Virol 2015; 89:11845-57. [PMID: 26378167 DOI: 10.1128/jvi.01832-15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 09/06/2015] [Indexed: 02/08/2023] Open
Abstract
UNLABELLED Paramyxoviruses include many important animal and human pathogens. The genome of parainfluenza virus 5 (PIV5), a prototypical paramyxovirus, encodes a V protein that inhibits viral RNA synthesis. In this work, the mechanism of inhibition was investigated. Using mutational analysis and a minigenome system, we identified regions in the N and C termini of the V protein that inhibit viral RNA synthesis: one at the very N terminus of V and the second at the C terminus of V. Furthermore, we determined that residues L16 and I17 are critical for the inhibitory function of the N-terminal region of the V protein. Both regions interact with the nucleocapsid protein (NP), an essential component of the viral RNA genome complex (RNP). Mutations at L16 and I17 abolished the interaction between NP and the N-terminal domain of V. This suggests that the interaction between NP and the N-terminal domain plays a critical role in V inhibition of viral RNA synthesis by the N-terminal domain. Both the N- and C-terminal regions inhibited viral RNA replication. The C terminus inhibited viral RNA transcription, while the N-terminal domain enhanced viral RNA transcription, suggesting that the two domains affect viral RNA through different mechanisms. Interestingly, V also inhibited the synthesis of the RNA of other paramyxoviruses, such as Nipah virus (NiV), human parainfluenza virus 3 (HPIV3), measles virus (MeV), mumps virus (MuV), and respiratory syncytial virus (RSV). This suggests that a common host factor may be involved in the replication of these paramyxoviruses. IMPORTANCE We identified two regions of the V protein that interact with NP and determined that one of these regions enhances viral RNA transcription via its interaction with NP. Our data suggest that a common host factor may be involved in the regulation of paramyxovirus replication and could be a target for broad antiviral drug development. Understanding the regulation of paramyxovirus replication will enable the rational design of vaccines and potential antiviral drugs.
Collapse
|
8
|
Brice A, Moseley GW. Viral interactions with microtubules: orchestrators of host cell biology? Future Virol 2013. [DOI: 10.2217/fvl.12.137] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Viral interaction with the microtubule (MT) cytoskeleton is critical to infection by many viruses. Most data regarding virus–MT interaction indicate key roles in the subcellular transport of virions/viral genomic material to sites of replication, assembly and egress. However, the MT cytoskeleton orchestrates diverse processes in addition to subcellular cargo transport, including regulation of signaling pathways, cell survival and mitosis, suggesting that viruses, expert manipulators of the host cell, may use the virus–MT interface to control multiple aspects of cell biology. Several lines of evidence support this idea, indicating that specific viral proteins can modify MT dynamics and/or structure and regulate processes such as apoptosis and innate immune signaling through MT-dependent mechanisms. Here, the authors review general aspects of virus–MT interactions, with emphasis on viral mechanisms that modify MT dynamics and functions to affect processes beyond virion transport. The emerging importance of discrete viral protein–MT interactions in pathogenic processes indicates that these interfaces may represent new targets for future therapeutics and vaccine development.
Collapse
Affiliation(s)
- Aaron Brice
- Viral Immune Evasion & Pathogenicity Laboratory, Department of Biochemistry & Molecular Biology, Monash University, Victoria 3800, Australia
| | - Gregory W Moseley
- Viral Immune Evasion & Pathogenicity Laboratory, Department of Biochemistry & Molecular Biology, Monash University, Victoria 3800, Australia.
| |
Collapse
|
9
|
Chen HQ, Yao Q, Bao F, Chen KP, Liu XY, Li J, Wang L. Comparative Proteome Analysis of Silkworm in Its Susceptibility and Resistance Responses to Bombyx mori Densonucleosis Virus. Intervirology 2012; 55:21-8. [DOI: 10.1159/000322381] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Accepted: 10/25/2010] [Indexed: 11/19/2022] Open
|
10
|
Dortmans JCFM, Koch G, Rottier PJM, Peeters BPH. Virulence of Newcastle disease virus: what is known so far? Vet Res 2011; 42:122. [PMID: 22195547 PMCID: PMC3269386 DOI: 10.1186/1297-9716-42-122] [Citation(s) in RCA: 157] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 12/23/2011] [Indexed: 12/22/2022] Open
Abstract
In the last decade many studies have been performed on the virulence of Newcastle disease virus (NDV). This is mainly due to the development of reverse genetics systems which made it possible to genetically modify NDV and to investigate the contribution of individual genes and genome regions to its virulence. However, the available information is scattered and a comprehensive overview of the factors and conditions determining NDV virulence is lacking. This review summarises, compares and discusses the available literature and shows that virulence of NDV is a complex trait determined by multiple genetic factors.
Collapse
Affiliation(s)
- Jos C F M Dortmans
- Central Veterinary Institute of Wageningen UR, PO Box 65, 8200 AB Lelystad, The Netherlands.
| | | | | | | |
Collapse
|
11
|
Nishimura K, Sano M, Ohtaka M, Furuta B, Umemura Y, Nakajima Y, Ikehara Y, Kobayashi T, Segawa H, Takayasu S, Sato H, Motomura K, Uchida E, Kanayasu-Toyoda T, Asashima M, Nakauchi H, Yamaguchi T, Nakanishi M. Development of defective and persistent Sendai virus vector: a unique gene delivery/expression system ideal for cell reprogramming. J Biol Chem 2010; 286:4760-71. [PMID: 21138846 DOI: 10.1074/jbc.m110.183780] [Citation(s) in RCA: 264] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The ectopic expression of transcription factors can reprogram differentiated tissue cells into induced pluripotent stem cells. However, this is a slow and inefficient process, depending on the simultaneous delivery of multiple genes encoding essential reprogramming factors and on their sustained expression in target cells. Moreover, once cell reprogramming is accomplished, these exogenous reprogramming factors should be replaced with their endogenous counterparts for establishing autoregulated pluripotency. Complete and designed removal of the exogenous genes from the reprogrammed cells would be an ideal option for satisfying this latter requisite as well as for minimizing the risk of malignant cell transformation. However, no single gene delivery/expression system has ever been equipped with these contradictory characteristics. Here we report the development of a novel replication-defective and persistent Sendai virus (SeVdp) vector based on a noncytopathic variant virus, which fulfills all of these requirements for cell reprogramming. The SeVdp vector could accommodate up to four exogenous genes, deliver them efficiently into various mammalian cells (including primary tissue cells and human hematopoietic stem cells) and express them stably in the cytoplasm at a prefixed balance. Furthermore, interfering with viral transcription/replication using siRNA could erase the genomic RNA of SeVdp vector from the target cells quickly and thoroughly. A SeVdp vector installed with Oct4/Sox2/Klf4/c-Myc could reprogram mouse primary fibroblasts quite efficiently; ∼1% of the cells were reprogrammed to Nanog-positive induced pluripotent stem cells without chromosomal gene integration. Thus, this SeVdp vector has potential as a tool for advanced cell reprogramming and for stem cell research.
Collapse
Affiliation(s)
- Ken Nishimura
- Research Center for Stem Cell Engineering, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Central 4, Tsukuba, Ibaraki 305-8562, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
The viral replication complex is associated with the virulence of Newcastle disease virus. J Virol 2010; 84:10113-20. [PMID: 20660202 DOI: 10.1128/jvi.00097-10] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Virulent strains of Newcastle disease virus ([NDV] also known as avian paramyxovirus type 1) can be discriminated from low-virulence strains by the presence of multiple basic amino acid residues at the proteolytic cleavage site of the fusion (F) protein. However, some NDV variants isolated from pigeons (pigeon paramyxovirus type 1 [PPMV-1]) have low levels of virulence, despite the fact that their F protein cleavage sites contain a multibasic amino acid sequence and have the same functionality as that of virulent strains. To determine the molecular basis of this discrepancy, we examined the role of the internal proteins in NDV virulence. Using reverse genetics, the genes encoding the nucleoprotein (NP), phosphoprotein (P), matrix protein (M), and large polymerase protein (L) were exchanged between the nonvirulent PPMV-1 strain AV324 and the highly virulent NDV strain Herts. Recombinant viruses were evaluated for their pathogenicities and replication levels in day-old chickens, and viral genome replication and plaque sizes were examined in cell culture monolayers. We also tested the contributions of the individual NP, P, and L proteins to the activity of the viral replication complex in an in vitro replication assay. The results showed that the replication proteins of Herts are more active than those of AV324 and that the activity of the viral replication complex is directly related to virulence. Although the M protein affected viral replication in vitro, it had only a minor effect on virulence.
Collapse
|
13
|
Adaptation of wild-type measles virus to cotton rat lung cells: E89K mutation in matrix protein contributes to its fitness. Virus Genes 2009; 39:330-4. [PMID: 19826940 DOI: 10.1007/s11262-009-0408-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Accepted: 09/26/2009] [Indexed: 10/20/2022]
Abstract
Wild-type measles virus (wtMeV) adapted well to cotton rat lung (CRL) cells after serial passages. In order to evaluate the contributions of the individual genes of wtMeV for adaptation, whole genome sequences of the adapted and original viruses were determined and analyzed. The results showed that there were two mutations in the whole genome of the adapted virus. One mutation was located at the 265th nucleotide in the open reading frame (ORF) of the M gene, resulting in the substitution of the 89th amino acid from E (glutamate) to K (lysine). The other was a silent mutation located at the 4182nd nucleotide in the ORF of the L gene. It was demonstrated that the E89K mutation in the M protein is responsible for the adaptation of wtMeV MV99Y in CRL cells. Cotton rats were infected with adapted virus and the original strain via intranasal inoculation. Virus titer results showed that adapted strain replicated better than the original strain in cotton rat lungs. It is suggested that the E89K mutation also contributes to the enhancement of wtMeV replication in a cotton rat model infected intranasally. The results revealed that the E89K mutation in the M protein plays a key role in wtMeV adaptation in cotton rat and CRL cells.
Collapse
|
14
|
Wang J, Fang S, Xiao H, Chen B, Tam JP, Liu DX. Interaction of the coronavirus infectious bronchitis virus membrane protein with beta-actin and its implication in virion assembly and budding. PLoS One 2009; 4:e4908. [PMID: 19287488 PMCID: PMC2653722 DOI: 10.1371/journal.pone.0004908] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Accepted: 02/02/2009] [Indexed: 02/05/2023] Open
Abstract
Coronavirus M protein is an essential component of virion and plays pivotal roles in virion assembly, budding and maturation. The M protein is integrated into the viral envelope with three transmembrane domains flanked by a short amino-terminal ectodomain and a large carboxy-terminal endodomain. In this study, we showed co-purification of the M protein from coronavirus infectious bronchitis virus (IBV) with actin. To understand the cellular factors that may be involved in virion assembly, budding and maturation processes, IBV M was used as the bait in a yeast two-hybrid screen, resulting in the identification of β-actin as a potentially interacting partner. This interaction was subsequently confirmed by coimmunoprecipitation and immunofluorescence microscopy in mammalian cells, and mutation of amino acids A159 and K160 on the M protein abolished the interaction. Introduction of the A159-K160 mutation into an infectious IBV clone system blocks the infectivity of the clone, although viral RNA replication and subgenomic mRNA transcription were actively detected. Disruption of actin filaments with cell-permeable agent cytochalasin D at early stages of the infection cycle led to the detection of viral protein synthesis in infected cells but not release of virus particles to the cultured media. However, the same treatment at late stages of the infection cycle did not affect the release of virus particles to the media, suggesting that disruption of the actin filaments might block virion assembly and budding, but not release of the virus particles. This study reveals an essential function of actin in the replication cycle of coronavirus.
Collapse
Affiliation(s)
- Jibin Wang
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Shouguo Fang
- Institute of Molecular and Cell Biology, Proteos, Singapore, Singapore
| | - Han Xiao
- Institute of Molecular and Cell Biology, Proteos, Singapore, Singapore
| | - Bo Chen
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - James P. Tam
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Ding Xiang Liu
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- Institute of Molecular and Cell Biology, Proteos, Singapore, Singapore
- * E-mail:
| |
Collapse
|
15
|
Roohvand F, Maillard P, Lavergne JP, Boulant S, Walic M, Andréo U, Goueslain L, Helle F, Mallet A, McLauchlan J, Budkowska A. Initiation of hepatitis C virus infection requires the dynamic microtubule network: role of the viral nucleocapsid protein. J Biol Chem 2009; 284:13778-13791. [PMID: 19269968 DOI: 10.1074/jbc.m807873200] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Early events leading to the establishment of hepatitis C virus (HCV) infection are not completely understood. We show that intact and dynamic microtubules play a key role in the initiation of productive HCV infection. Microtubules were required for virus entry into cells, as evidenced using virus pseudotypes presenting HCV envelope proteins on their surface. Studies carried out using the recent infectious HCV model revealed that microtubules also play an essential role in early, postfusion steps of the virus cycle. Moreover, low concentrations of vinblastin and nocodazol, microtubule-affecting drugs, and paclitaxel, which stabilizes microtubules, inhibited infection, suggesting that microtubule dynamic instability and/or treadmilling mechanisms are involved in HCV internalization and early transport. By protein chip and direct core-dependent pull-down assays, followed by mass spectrometry, we identified beta- and alpha-tubulin as cellular partners of the HCV core protein. Surface plasmon resonance analyses confirmed that core directly binds to tubulin with high affinity via amino acids 2-117. The interaction of core with tubulin in vitro promoted its polymerization and enhanced the formation of microtubules. Immune electron microscopy showed that HCV core associates, at least temporarily, with microtubules polymerized in its presence. Studies by confocal microscopy showed a juxtaposition of core with microtubules in HCV-infected cells. In summary, we report that intact and dynamic microtubules are required for virus entry into cells and for early postfusion steps of infection. HCV may exploit a direct interaction of core with tubulin, enhancing microtubule polymerization, to establish efficient infection and promote virus transport and/or assembly in infected cells.
Collapse
Affiliation(s)
- Farzin Roohvand
- Unité des Hépacivirus et Immunité Innée and Institut Pasteur, 25/28 Rue du Dr. Roux, Paris 75724, France
| | - Patrick Maillard
- Unité des Hépacivirus et Immunité Innée and Institut Pasteur, 25/28 Rue du Dr. Roux, Paris 75724, France
| | - Jean-Pierre Lavergne
- Institut de Biologie et Chimie de Protéines (IBCP-UMR 5086), CNRS, Université Lyon 1, Lyon 69367, France
| | - Steeve Boulant
- Medical Research Council Virology Unit, Glasgow G11 5JR, Scotland, United Kingdom
| | - Marine Walic
- Unité des Hépacivirus et Immunité Innée and Institut Pasteur, 25/28 Rue du Dr. Roux, Paris 75724, France
| | - Ursula Andréo
- Unité des Hépacivirus et Immunité Innée and Institut Pasteur, 25/28 Rue du Dr. Roux, Paris 75724, France
| | - Lucie Goueslain
- Institut de Biologie de Lille (UMR8161), CNRS, Université de Lille I & II, Institut Pasteur de Lille, Lille 59021, France
| | - François Helle
- Institut de Biologie de Lille (UMR8161), CNRS, Université de Lille I & II, Institut Pasteur de Lille, Lille 59021, France
| | - Adeline Mallet
- Plate-Forme de Microscopie Ultrastructurale, Institut Pasteur, 25/28 Rue du Dr. Roux, Paris 75724, France
| | - John McLauchlan
- Medical Research Council Virology Unit, Glasgow G11 5JR, Scotland, United Kingdom
| | - Agata Budkowska
- Unité des Hépacivirus et Immunité Innée and Institut Pasteur, 25/28 Rue du Dr. Roux, Paris 75724, France.
| |
Collapse
|
16
|
Crystal structure of the Borna disease virus matrix protein (BDV-M) reveals ssRNA binding properties. Proc Natl Acad Sci U S A 2009; 106:3710-5. [PMID: 19237566 DOI: 10.1073/pnas.0808101106] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Borna disease virus (BDV) is a neurotropic enveloped RNA virus that causes a noncytolytic, persistent infection of the central nervous system in mammals. BDV belongs to the order Mononegavirales, which also includes the negative-strand RNA viruses (NSVs) Ebola, Marburg, vesicular stomatitis, rabies, mumps, and measles. BDV-M, the matrix protein (M-protein) of BDV, is the smallest M-protein (16.2 kDa) among the NSVs. M-proteins play a critical role in virus assembly and budding, mediating the interaction between the viral capsid, envelope, and glycoprotein spikes, and are as such responsible for the structural stability and individual form of virus particles. Here, we report the 3D structure of BDV-M, a full-length M-protein structure from a nonsegmented RNA NSV. The BDV-M monomer exhibits structural similarity to the N-terminal domain of the Ebola M-protein (VP40), while the surface charge of the tetramer provides clues to the membrane association of BDV-M. Additional electron density in the crystal reveals the presence of bound nucleic acid, interpreted as cytidine-5'-monophosphate. The heterologously expressed BDV-M copurifies with and protects ssRNA oligonucleotides of a median length of 16 nt taken up from the expression host. The results presented here show that BDV-M would be able to bind RNA and lipid membranes simultaneously, expanding the repertoire of M-protein functionalities.
Collapse
|
17
|
AcMNPV EXON0 (AC141) which is required for the efficient egress of budded virus nucleocapsids interacts with beta-tubulin. Virology 2009; 385:496-504. [PMID: 19155039 DOI: 10.1016/j.virol.2008.12.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2008] [Revised: 11/15/2008] [Accepted: 12/08/2008] [Indexed: 11/22/2022]
Abstract
The Autographa californica multiple nucleopolyhedrovirus (AcMNPV) encoded protein, EXON0 (AC141), is required for the efficient transport of nucleocapsids out of the nucleus for the production of budded virus (BV). To further elucidate the molecular mechanisms by which EXON0 regulates BV production, EXON0 was tagged at the N-terminus with 3x FLAG-6x His. Protein complexes were isolated by tandem affinity purification and potential EXON0 specific interacting protein partners were gel purified and identified by LC-MS/MS. This analysis showed that the cellular protein, beta-tubulin, co-purified with EXON0 which was confirmed by co-immunoprecipitation. In addition, immunofluorescence showed that EXON0 and beta-tubulin co-localized during virus infection. The microtubule inhibitors colchicine and nocodazole were used to treat AcMNPV infected Sf9 cells and results showed that BV production was reduced by over 85%. These data suggest that the egress of AcMNPV budded virus may be facilitated by the interaction of EXON0 with beta-tubulin and microtubules.
Collapse
|
18
|
Loss of the N-linked glycan at residue 173 of human parainfluenza virus type 1 hemagglutinin-neuraminidase exposes a second receptor-binding site. J Virol 2008; 82:8400-10. [PMID: 18579600 DOI: 10.1128/jvi.00474-08] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
BCX 2798 (4-azido-5-isobutyrylamino-2,3-didehydro-2,3,4,5-tetradeoxy-d-glycero-d-galacto-2-nonulopyranosic acid) effectively inhibited the activities of the hemagglutinin-neuraminidase (HN) of human parainfluenza viruses (hPIV) in vitro and protected mice from lethal infection with a recombinant Sendai virus whose HN was replaced with that of hPIV-1 (rSeV[hPIV-1HN]) (I. V. Alymova, G. Taylor, T. Takimoto, T. H. Lin., P. Chand, Y. S. Babu, C. Li, X. Xiong, and A. Portner, Antimicrob. Agents Chemother. 48:1495-1502, 2004). The ability of BCX 2798 to select drug-resistant variants in vivo was examined. A variant with an Asn-to-Ser mutation at residue 173 (N173S) in HN was recovered from mice after a second passage of rSeV(hPIV-1HN) in the presence of BCX 2798 (10 mg/kg of body weight daily). The N173S mutant remained sensitive to BCX 2798 in neuraminidase inhibition assays but was more than 10,000-fold less sensitive to the compound in hemagglutination inhibition tests than rSeV(hPIV-1HN). Its susceptibility to BCX 2798 in plaque reduction assays was reduced fivefold and did not differ from that of rSeV(hPIV-1HN) in mice. The N173S mutant failed to be efficiently eluted from erythrocytes and released from cells. It demonstrated reduced growth in cell culture and superior growth in mice. The results for gel electrophoresis analysis were consistent with the loss of the N-linked glycan at residue 173 in the mutant. Sequence and structural comparisons revealed that residue 173 on hPIV-1 HN is located close to the region of the second receptor-binding site identified in Newcastle disease virus HN. Our study suggests that the N-linked glycan at residue 173 masks a second receptor-binding site on hPIV-1 HN.
Collapse
|
19
|
Akt plays a critical role in replication of nonsegmented negative-stranded RNA viruses. J Virol 2007; 82:105-14. [PMID: 17959676 DOI: 10.1128/jvi.01520-07] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The order Mononegavirales (comprised of nonsegmented negative-stranded RNA viruses or NNSVs) contains many important pathogens. Parainfluenza virus 5 (PIV5), formerly known as simian virus 5, is a prototypical paramyxovirus and encodes a V protein, which has a cysteine-rich C terminus that is conserved among all paramyxoviruses. The V protein of PIV5, like that of many other paramyxoviruses, plays an important role in regulating viral RNA synthesis. In this work, we show that V interacts with Akt, a serine/threonine kinase, also known as protein kinase B. Both pharmacological inhibitors and small interfering RNA against Akt1 reduced PIV5 replication, indicating that Akt plays a critical role in PIV5 replication. Furthermore, treatment with Akt inhibitors also reduced the replication of several other paramyxoviruses, as well as vesicular stomatitis virus, the prototypical rhabdovirus, indicating that Akt may play a more universal role in NNSV replication. The phosphoproteins (P proteins) of NNSVs are essential cofactors for the viral RNA polymerase complex and require heavy phosphorylation for their activity. Inhibition of Akt activity reduced the level of P phosphorylation, suggesting that Akt is involved in regulating viral RNA synthesis. In addition, Akt1 phosphorylated a recombinant P protein of PIV5 purified from bacteria. The finding that Akt plays a critical role in replication of NNSV will lead to a better understanding of how these viruses replicate, as well as novel strategies to treat infectious diseases caused by NNSVs.
Collapse
|
20
|
Liu J, Lessman CA. Soluble tubulin complexes, γ-tubulin, and their changing distribution in the zebrafish (Danio rerio) ovary, oocyte and embryo. Comp Biochem Physiol B Biochem Mol Biol 2007; 147:56-73. [PMID: 17293149 DOI: 10.1016/j.cbpb.2006.12.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2006] [Revised: 12/22/2006] [Accepted: 12/29/2006] [Indexed: 11/17/2022]
Abstract
Tubulin dynamics, i.e., the interchange of polymeric and soluble forms, is important for microtubule (MTs) cellular functions, and thus plays essential roles in zebrafish oogenesis and embryogenesis. A novel finding in this study revealed that there were soluble pools of tubulins in zebrafish oocytes that were sequestered and maintained in a temporary "oligomeric" state, which retained assembling and disassembling potential (suggested by undetected acetylated tubulin, marker of stable tubulin), but lacked abilities to assemble into MTs spontaneously in vivo. Using differential centrifugation, gel chromatography and DM1A-probed western blot, soluble alpha-tubulin was found to be associated with large molecular weight complexes (MW range to over 2 MDa) which were reduced in amount by the blastula stage, especially in some batches of embryos, with a concomitant decrease in soluble tubulin. Complexes (MW range less than 2 MDa) then increased in the gastrula with an increase in soluble alpha-tubulin. Two different anti-gamma-tubulin monoclonal antibodies, GTU 88 and TU 30, revealed the existence of soluble gamma-tubulin in both zebrafish oocytes and embryos, which also decreased by the blastula stage and increased in the gastrula stage. Soluble alpha-tubulin and gamma-tubulin extracted from zebrafish ovaries, oocytes and embryos co-localized in fractions on three different columns: S-200 Sephacryl, DEAE and Superose-6b. The soluble tubulin complexes were competent to assemble into MTs in vitro induced by taxol, and gamma-tubulin was co-localized with assembled MTs. These soluble tubulin complexes were stable during freeze-thaw cycles and resisted high ionic interaction (up to 1.5 M NaCl). Furthermore, some ovarian soluble alpha-tubulin could be co-immunoprecipitated with gamma-tubulin, and vice versa. Two antibodies specific for Xenopus gamma-tubulin ring complex proteins (Xgrip 109 and Xgrip 195) detected single bands from ovarian extracts in western blots, suggesting the existence of Xgrip 109 and Xgrip 195 homologues in zebrafish. These findings, together with recent work on gamma-tubulin ring complexes in oocytes, eggs and embryos of other species, suggest that soluble gamma-tubulin-associated protein complexes may be involved in regulating tubulin dynamics during zebrafish oogenesis and embryogenesis.
Collapse
Affiliation(s)
- Jianxiong Liu
- Department of Biology, The University of Memphis, Memphis, TN 38152-3560, USA
| | | |
Collapse
|
21
|
Mottet-Osman G, Iseni F, Pelet T, Wiznerowicz M, Garcin D, Roux L. Suppression of the Sendai virus M protein through a novel short interfering RNA approach inhibits viral particle production but does not affect viral RNA synthesis. J Virol 2006; 81:2861-8. [PMID: 17192312 PMCID: PMC1865978 DOI: 10.1128/jvi.02291-06] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Short RNA interference is more and more widely recognized as an effective method to specifically suppress viral functions in eukaryotic cells. Here, we used an experimental system that allows suppression of the Sendai virus (SeV) M protein by using a target sequence, derived from the green fluorescent protein gene, that was introduced in the 3' untranslated region of the M protein mRNA. Silencing of the M protein gene was eventually achieved by a small interfering RNA (siRNA) directed against this target sequence. This siRNA was constitutively expressed in a cell line constructed by transduction with an appropriate lentivirus vector. Suppression of the M protein was sufficient to diminish virus production by 50- to 100-fold. This level of suppression had no apparent effect on viral replication and transcription, supporting the lack of M involvement in SeV transcription or replication control.
Collapse
Affiliation(s)
- Geneviève Mottet-Osman
- Department of Microbiology and Molecular Medicine, University of Geneva Medical School, CMU, 1 Rue Michel-Servet, CH-1211 Geneva 4, Switzerland.
| | | | | | | | | | | |
Collapse
|
22
|
Chase G, Mayer D, Hildebrand A, Frank R, Hayashi Y, Tomonaga K, Schwemmle M. Borna disease virus matrix protein is an integral component of the viral ribonucleoprotein complex that does not interfere with polymerase activity. J Virol 2006; 81:743-9. [PMID: 17079312 PMCID: PMC1797437 DOI: 10.1128/jvi.01351-06] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We have recently shown that the matrix protein M of Borna disease virus (BDV) copurifies with the affinity-purified nucleoprotein (N) from BDV-infected cells, suggesting that M is an integral component of the viral ribonucleoprotein complex (RNP). However, further studies were hampered by the lack of appropriate tools. Here we generated an M-specific rabbit polyclonal antiserum to investigate the intracellular distribution of M as well as its colocalization with other viral proteins in BDV-infected cells. Immunofluorescence analysis revealed that M is located both in the cytoplasm and in nuclear punctate structures typical for BDV infection. Colocalization studies indicated an association of M with nucleocapsid proteins in these nuclear punctate structures. In situ hybridization analysis revealed that M also colocalizes with the viral genome, implying that M associates directly with viral RNPs. Biochemical studies demonstrated that M binds specifically to the phosphoprotein P but not to N. Binding of M to P involves the N terminus of P and is independent of the ability of P to oligomerize. Surprisingly, despite P-M complex formation, BDV polymerase activity was not inhibited but rather slightly elevated by M, as revealed in a minireplicon assay. Thus, unlike M proteins of other negative-strand RNA viruses, BDV-M seems to be an integral component of the RNPs without interfering with the viral polymerase activity. We propose that this unique feature of BDV-M is a prerequisite for the establishment of BDV persistence.
Collapse
Affiliation(s)
- Geoffrey Chase
- Department of Virology, Institute for Medical Microbiology and Hygiene, University of Freiburg, Freiburg, Germany
| | | | | | | | | | | | | |
Collapse
|
23
|
Reuter T, Weissbrich B, Schneider-Schaulies S, Schneider-Schaulies J. RNA interference with measles virus N, P, and L mRNAs efficiently prevents and with matrix protein mRNA enhances viral transcription. J Virol 2006; 80:5951-7. [PMID: 16731933 PMCID: PMC1472597 DOI: 10.1128/jvi.02453-05] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
In contrast to studies with genetically modified viruses, RNA interference allows the analysis of virus infections with identical viruses and posttranscriptional ablation of individual gene functions. Using RNase III-generated multiple short interfering RNAs (siRNAs) against the six measles virus genes, we found efficient downregulation of viral gene expression in general with siRNAs against the nucleocapsid (N), phosphoprotein (P), and polymerase (L) mRNAs, the translation products of which form the ribonucleoprotein (RNP) complex. Silencing of the RNP mRNAs was highly efficient in reducing viral messenger and genomic RNAs. siRNAs against the mRNAs for the hemagglutinin (H) and fusion (F) proteins reduced the extent of cell-cell fusion. Interestingly, siRNA-mediated knockdown of the matrix (M) protein not only enhanced cell-cell fusion but also increased the levels of both mRNAs and genomic RNA by a factor of 2 to 2.5 so that the genome-to-mRNA ratio was constant. These findings indicate that M acts as a negative regulator of viral polymerase activity, affecting mRNA transcription and genome replication to the same extent.
Collapse
Affiliation(s)
- Thorsten Reuter
- Institut für Virologie und Immunbiologie, Julius Maximilians Universität, Würzburg, Germany
| | | | | | | |
Collapse
|
24
|
Radtke K, Döhner K, Sodeik B. Viral interactions with the cytoskeleton: a hitchhiker's guide to the cell. Cell Microbiol 2006; 8:387-400. [PMID: 16469052 DOI: 10.1111/j.1462-5822.2005.00679.x] [Citation(s) in RCA: 274] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The actin and microtubule cytoskeleton play important roles in the life cycle of every virus. During attachment, internalization, endocytosis, nuclear targeting, transcription, replication, transport of progeny subviral particles, assembly, exocytosis, or cell-to-cell spread, viruses make use of different cellular cues and signals to enlist the cytoskeleton for their mission. Viruses induce rearrangements of cytoskeletal filaments so that they can utilize them as tracks or shove them aside when they represent barriers. Viral particles recruit molecular motors in order to hitchhike rides to different subcellular sites which provide the proper molecular environment for uncoating, replicating and packaging viral genomes. Interactions between subviral components and cytoskeletal tracks also help to orchestrate virus assembly, release and efficient cell-to-cell spread. There is probably not a single virus that does not use cytoskeletal and motor functions in its life cycle. Being well informed intracellular passengers, viruses provide us with unique tools to decipher how a particular cargo recruits one or several motors, how these are activated or tuned down depending on transport needs, and how cargoes switch from actin tracks to microtubules to nuclear pores and back.
Collapse
Affiliation(s)
- Kerstin Radtke
- Institute of Virology, OE5230, Hannover Medical School, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany
| | | | | |
Collapse
|
25
|
Yoshizaki M, Hironaka T, Iwasaki H, Ban H, Tokusumi Y, Iida A, Nagai Y, Hasegawa M, Inoue M. Naked Sendai virus vector lacking all of the envelope-related genes: reduced cytopathogenicity and immunogenicity. J Gene Med 2006; 8:1151-9. [PMID: 16841365 DOI: 10.1002/jgm.938] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Sendai virus (SeV) is a new class of cytoplasmic RNA vector that is free from genotoxicity that infects and multiplies in most mammalian cells, and directs high-level transgene expression. We improved the vector by deleting all of the envelope-related genes from the SeV genome and thus reducing its immunogenicity. METHODS The matrix (M), fusion (F) and hemagglutinin-neuraminidase (HN) genes-deleted SeV vector (SeV/DeltaMDeltaFDeltaHN) was recovered in a newly established packaging cell line. Then, the generated SeV/DeltaMDeltaFDeltaHN vector was characterised by comparing with single gene-deleted type SeV vectors. RESULTS This SeV/DeltaMDeltaFDeltaHN vector carrying the green fluorescent protein gene in place of the envelope-related genes could be propagated to a titer of more than 10(8) cell infectious units/ml. This vector showed an efficient transduction capability in vitro and in vivo, and the cytopathic effect and induction of neutralizing antibody in vivo were greatly reduced compared with those of single gene-deleted type SeV vectors. No activity of neutralizing antibody or anti-HN antibody was seen when SeV/DeltaMDeltaFDeltaHN was transduced ex vivo. Additional introduction of amino acid mutations that had been identified from SeV strains causing persistent infections was also effective for the reduction of cytopathic effects. CONCLUSIONS The deletion of genes from the SeV genome and the additional mutation are very effective for reducing both the immunogenic and cytopathic reactions to the SeV vector. These modifications are expected to improve the safety and broaden the range of clinical applications of this new class of cytoplasmic RNA vector.
Collapse
Affiliation(s)
- Mariko Yoshizaki
- DNAVEC Corporation, 1-25-11 Kannondai, Tsukuba-shi, Ibaraki 305-0856, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Armeanu S, Bitzer M, Smirnow I, Bossow S, Appel S, Ungerechts G, Bernloehr C, Neubert WJ, Lauer UM, Brossart P. Severe Impairment of Dendritic Cell Allostimulatory Activity by Sendai Virus Vectors Is Overcome by Matrix Protein Gene Deletion. THE JOURNAL OF IMMUNOLOGY 2005; 175:4971-80. [PMID: 16210599 DOI: 10.4049/jimmunol.175.8.4971] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Delivery of Ags to dendritic cells (DCs) plays a pivotal role in the induction of efficient immune responses ranging from immunity to tolerance. The observation that certain viral pathogens are able to infect DCs has led to a concept in which applications of recombinant viruses are used for Ag delivery with the potential benefit of inducing potent Ag-specific T cell responses directed against multiple epitopes. As a prerequisite for such an application, the infection of DCs by recombinant viruses should not interfere with their stimulatory capacity. In this context, we could show that an emerging negative-strand RNA viral vector system based on the Sendai virus (SeV) is able to efficiently infect monocyte-derived human DCs (moDCs). However, after infection with SeV wild type, both the response of DCs to bacterial LPS as a powerful mediator of DC maturation and the allostimulatory activity were severely impaired. Interestingly, using various recombinant SeV vectors that were devoid of single viral genes, we were able to identify the SeV matrix (M) protein as a key component in moDC functional impairment after viral infection. Consequently, use of M-deficient SeV vectors preserved the allostimulatory activity in infected moDCs despite an efficient expression of all other virally encoded genes, thereby identifying M-deficient vectors as a highly potent tool for the genetic manipulation of DCs.
Collapse
Affiliation(s)
- Sorin Armeanu
- Department of Internal Medicine I, University Clinic Tübingen, Tübingen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Ruthel G, Demmin GL, Kallstrom G, Javid MP, Badie SS, Will AB, Nelle T, Schokman R, Nguyen TL, Carra JH, Bavari S, Aman MJ. Association of ebola virus matrix protein VP40 with microtubules. J Virol 2005; 79:4709-19. [PMID: 15795257 PMCID: PMC1069569 DOI: 10.1128/jvi.79.8.4709-4719.2005] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Viruses exploit a variety of cellular components to complete their life cycles, and it has become increasingly clear that use of host cell microtubules is a vital part of the infection process for many viruses. A variety of viral proteins have been identified that interact with microtubules, either directly or via a microtubule-associated motor protein. Here, we report that Ebola virus associates with microtubules via the matrix protein VP40. When transfected into mammalian cells, a fraction of VP40 colocalized with microtubule bundles and VP40 coimmunoprecipitated with tubulin. The degree of colocalization and microtubule bundling in cells was markedly intensified by truncation of the C terminus to a length of 317 amino acids. Further truncation to 308 or fewer amino acids abolished the association with microtubules. Both the full-length and the 317-amino-acid truncation mutant stabilized microtubules against depolymerization with nocodazole. Direct physical interaction between purified VP40 and tubulin proteins was demonstrated in vitro. A region of moderate homology to the tubulin binding motif of the microtubule-associated protein MAP2 was identified in VP40. Deleting this region resulted in loss of microtubule stabilization against drug-induced depolymerization. The presence of VP40-associated microtubules in cells continuously treated with nocodazole suggested that VP40 promotes tubulin polymerization. Using an in vitro polymerization assay, we demonstrated that VP40 directly enhances tubulin polymerization without any cellular mediators. These results suggest that microtubules may play an important role in the Ebola virus life cycle and potentially provide a novel target for therapeutic intervention against this highly pathogenic virus.
Collapse
|
28
|
Ogino T, Kobayashi M, Iwama M, Mizumoto K. Sendai virus RNA-dependent RNA polymerase L protein catalyzes cap methylation of virus-specific mRNA. J Biol Chem 2004; 280:4429-35. [PMID: 15574411 DOI: 10.1074/jbc.m411167200] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Sendai virus (SeV) RNA-dependent RNA polymerase complex, which consists of L and P proteins, participates in the synthesis of viral mRNAs that possess a methylated cap structure. To identify the SeV protein(s) involved in mRNA cap methylation, we developed an in vitro assay system to detect mRNA (guanine-7-)methyltransferase (G-7-MTase) activity. Viral ribonucleoprotein complexes and purified recombinant L protein but not P protein exhibited G-7-MTase activity. On the other hand, mRNA synthesis in a reconstituted transcription system using purified N-RNA (N protein-genomic RNA) complex as a template required both the L and P proteins. The enzymatic properties of SeV G-7-MTase were different from those of cellular G-7-MTase. In particular, unlike cellular G-7-MTase, the SeV enzyme preferentially methylated capped RNA containing the viral mRNA 5'-end sequences (GpppApGpG-). The C-terminal part (amino acid residues 1,756-2,228) of the L protein catalyzed cap methylation, whereas the N-terminal half (residues 1-1,120) containing putative RNA polymerase subdomains did not. This is to our knowledge the first direct biochemical evidence that supports the idea that mononegavirus L protein catalyzes cap methylation as well as RNA synthesis.
Collapse
Affiliation(s)
- Tomoaki Ogino
- Department of Biochemistry, School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | | | | | | |
Collapse
|