1
|
Sun P, Feng S, Yu H, Wang X, Fang Y. Two hub genes of bipolar disorder, a bioinformatics study based on the GEO database. IBRO Neurosci Rep 2024; 17:122-130. [PMID: 39157463 PMCID: PMC11326958 DOI: 10.1016/j.ibneur.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/29/2024] [Accepted: 07/20/2024] [Indexed: 08/20/2024] Open
Abstract
Bipolar disorder is a mood illness that affects many people. It has a high recurrence frequency and will cause significant damage to the patient's social function. At present, the pathogenesis of BD is not clear. The National Center for Biotechnology Information (NCBI) established and maintained the Gene Expression Omnibus (GEO) database, a gene expression database. For bioinformatics analysis, researchers can obtain expression data from the internet. At present, the samples of the dataset used in the research of BD are mostly from brain tissue, and the data containing blood samples are rarely used. GEO databases (GSE46416, GSE5388, and GSE5389) were used to retrieve public data, and utilizing the online tool GEO2R, differentially expressed genes (DEGs) were retrieved. The common DEGs between the samples of patients with BD and the samples of the normal population were screened by Venn diagrams. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were used to perform functional annotation and pathway enrichment analysis of DEGs. A protein-protein interaction network (PPI) was built to investigate hub genes on this basis. There were 117 up-regulated DEGs and 38 down-regulated DEGs discovered, with two hub genes [SRC, CDKN1A] among the up-regulated DEGs. These two hub genes were also highly enriched in the oxytocin signaling pathway, proteoglycans in cancer and bladder cancer, according to KEGG analysis. The results of the receiver operating characteristic curve (ROC) of SRC and CDKN1A in the three datasets strongly suggested that SRC and CDKN1A were potential diagnostic markers of BD. The results strongly suggest that SRC and CDKN1A are related to the pathogenesis of BD.
Collapse
Affiliation(s)
- Ping Sun
- Clinical Research Center, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
- Qingdao Mental Health Center, Qingdao, Shandong Province 266034, China
| | - Shunkang Feng
- Qingdao Mental Health Center, Qingdao, Shandong Province 266034, China
| | - Hui Yu
- Qingdao Mental Health Center, Qingdao, Shandong Province 266034, China
| | - Xiaoxiao Wang
- Department of Psychiatry, Huashan Hospital, Fudan University, Shanghai, China
| | - Yiru Fang
- Clinical Research Center, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
- Department of Psychiatry & Affective Disorders Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai 201108, China
- State Key Laboratory of Neuroscience, Shanghai Institue for Biological Sciences, CAS, Shanghai 200031, China
| |
Collapse
|
2
|
Yu W, Jiang H. Paeoniflorin alleviates high glucose-induced endothelial cell apoptosis in diabetes mellitus by inhibiting HRAS-activated RAS pathway. Endocr J 2024; 71:1045-1053. [PMID: 39085078 DOI: 10.1507/endocrj.ej24-0122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/02/2024] Open
Abstract
Paeoniflorin (Pae) can improve diabetes mellitus (DM), especially endothelial dysfunction induced by high glucose (HG). Molecularly, the mechanism pertinent to Pae and DM lacks further in-depth research. Hence, this study determined the molecular mechanism of Pae in treating DM through network pharmacology. The target of Pae was analyzed by TCMSP database, and DM-related genes were dissected by Genecards database and Omim database. PPI network was constructed for cross targets through Cytoscape 3.9.1 and STRING platform. GO and KEGG analyses were carried out on the cross targets. Protein molecular docking verification was completed by AutoDockTools and Pymol programs. Human umbilical vein endothelial cells (HUVECs) were separately treated with HG, Pae (5, 10, 20 μM) and/or HRAS overexpression plasmids (oe-HRAS). The cell viability, apoptosis and the protein expressions of HRAS and Ras-GTP were evaluated. There were 50 cross targets between Pae and DM, and VEGFA, EGFR, HRAS, SRC and HSP90AA1 were the key genes identified by PPI network analysis. GO and KEGG analyses revealed signal paths such as Rap1 and Ras. Molecular docking results confirmed that Pae had a good binding ability with key genes. In HG-treated HUVECs, Pae dose-dependently facilitated cell viability, attenuated cell apoptosis, and dwindled the expressions of HRAS and Ras-GTP, but these effects of Pae were reversed by oe-HRAS. In conclusion, Pae regulates the viability and apoptosis of HG-treated HUVECs by inhibiting the expression of HRAS.
Collapse
Affiliation(s)
- Wenting Yu
- Department of Infection Control, Red Flag Hospital Affiliated to Mudanjiang Medical College, Heilongjiang 157011, China
| | - Hongchun Jiang
- The Third Department of Ophthalmology, Mudanjiang Medical College Affiliated Hongqi Hospital First Branch, Heilongjiang 157099, China
| |
Collapse
|
3
|
Chen C, Zhu Y, Li Q, Yu Z, Tan Y, Li F, Chen X, Jiang S, Yu K, Zhang S. SKI-606, a Src inhibitor, ameliorates benzene-induced hematotoxicity via blocking ROS/Src kinase-mediated p38 and Akt signaling pathways. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117223. [PMID: 39447291 DOI: 10.1016/j.ecoenv.2024.117223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 10/26/2024]
Abstract
Exposure to benzene causes acute myelosuppression and other hematologic disorders. However, the detailed mechanism by which benzene exerts its severe hematotoxicity and potential treatments still require further deciphering and exploration. Herein, we found that hydroquinone (HQ), a main benzene metabolite, significantly increased intracellular reactive oxygen species (ROS) formation and subsequently caused damage to DNA, leading to impaired colony formation capacity and induction of apoptosis in human hematopoietic stem/progenitor cells (HSPCs) in vitro. The effects were mediated by activation of Src kinase, which subsequently activated the p38 signaling pathway while inhibiting the Akt signaling pathway. The mechanism was further verified by pre-treatment with a Src kinase inhibitor SKI-606, which effectively reversed the dampened self-renewal capacity and increased apoptosis of HSPCs induced by HQ in vitro. Furthermore, administration of SKI-606 partially reversed benzene-induced hematotoxicity and prolonged the survival time in benzene-poisoned mice. Taken together, these findings highlight that HQ-induced hematotoxicity in HSPCs is attributed to the Src kinase-mediated activation of p38 signaling pathway and repression of Akt signaling pathway. Notably, SKI-606 as a tyrosine kinase inhibitor may be a promising and potential agent for alleviating benzene-induced hematotoxicity.
Collapse
Affiliation(s)
- Cheng Chen
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Institute of Hematology, Wenzhou Medical University, Wenzhou, Zhejiang, China; Wenzhou Key Laboratory of Hematology, Wenzhou, Zhejiang, China
| | - Yiyi Zhu
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Institute of Hematology, Wenzhou Medical University, Wenzhou, Zhejiang, China; Wenzhou Key Laboratory of Hematology, Wenzhou, Zhejiang, China
| | - Qianping Li
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Institute of Hematology, Wenzhou Medical University, Wenzhou, Zhejiang, China; Wenzhou Key Laboratory of Hematology, Wenzhou, Zhejiang, China
| | - Zhijie Yu
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Institute of Hematology, Wenzhou Medical University, Wenzhou, Zhejiang, China; Wenzhou Key Laboratory of Hematology, Wenzhou, Zhejiang, China
| | - Yicheng Tan
- Institute of Hematology, Wenzhou Medical University, Wenzhou, Zhejiang, China; Wenzhou Key Laboratory of Hematology, Wenzhou, Zhejiang, China; Laboratory Animal Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Fanfan Li
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Institute of Hematology, Wenzhou Medical University, Wenzhou, Zhejiang, China; Wenzhou Key Laboratory of Hematology, Wenzhou, Zhejiang, China
| | - Xipeng Chen
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Institute of Hematology, Wenzhou Medical University, Wenzhou, Zhejiang, China; Wenzhou Key Laboratory of Hematology, Wenzhou, Zhejiang, China
| | - Songfu Jiang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Institute of Hematology, Wenzhou Medical University, Wenzhou, Zhejiang, China; Wenzhou Key Laboratory of Hematology, Wenzhou, Zhejiang, China
| | - Kang Yu
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Institute of Hematology, Wenzhou Medical University, Wenzhou, Zhejiang, China; Wenzhou Key Laboratory of Hematology, Wenzhou, Zhejiang, China.
| | - Shenghui Zhang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Institute of Hematology, Wenzhou Medical University, Wenzhou, Zhejiang, China; Wenzhou Key Laboratory of Hematology, Wenzhou, Zhejiang, China; Laboratory Animal Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
4
|
Navarro AM, Alonso M, Martínez-Pérez E, Lazar T, Gibson TJ, Iserte JA, Tompa P, Marino-Buslje C. Unveiling the Complexity of cis-Regulation Mechanisms in Kinases: A Comprehensive Analysis. Proteins 2024. [PMID: 39366918 DOI: 10.1002/prot.26751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/29/2024] [Accepted: 09/12/2024] [Indexed: 10/06/2024]
Abstract
Protein cis-regulatory elements (CREs) are regions that modulate the activity of a protein through intramolecular interactions. Kinases, pivotal enzymes in numerous biological processes, often undergo regulatory control via inhibitory interactions in cis. This study delves into the mechanisms of cis regulation in kinases mediated by CREs, employing a combined structural and sequence analysis. To accomplish this, we curated an extensive dataset of kinases featuring annotated CREs, organized into homolog families through multiple sequence alignments. Key molecular attributes, including disorder and secondary structure content, active and ATP-binding sites, post-translational modifications, and disease-associated mutations, were systematically mapped onto all sequences. Additionally, we explored the potential for conformational changes between active and inactive states. Finally, we explored the presence of these kinases within membraneless organelles and elucidated their functional roles therein. CREs display a continuum of structures, ranging from short disordered stretches to fully folded domains. The adaptability demonstrated by CREs in achieving the common goal of kinase inhibition spans from direct autoinhibitory interaction with the active site within the kinase domain, to CREs binding to an alternative site, inducing allosteric regulation revealing distinct types of inhibitory mechanisms, which we exemplify by archetypical representative systems. While this study provides a systematic approach to comprehend kinase CREs, further experimental investigations are imperative to unravel the complexity within distinct kinase families. The insights gleaned from this research lay the foundation for future studies aiming to decipher the molecular basis of kinase dysregulation, and explore potential therapeutic interventions.
Collapse
Affiliation(s)
- Alvaro M Navarro
- Structural Bioinformatics Unit, Fundación Instituto Leloir, Buenos Aires, Argentina
| | - Macarena Alonso
- Structural Bioinformatics Unit, Fundación Instituto Leloir, Buenos Aires, Argentina
| | | | - Tamas Lazar
- VIB-VUB Center for Structural Biology, Flanders Institute for Biotechnology (VIB), Brussels, Belgium
- Structural Biology Brussels, Department of Bioengineering, Vrije Universiteit Brussel, Brussels, Belgium
| | - Toby J Gibson
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Javier A Iserte
- Structural Bioinformatics Unit, Fundación Instituto Leloir, Buenos Aires, Argentina
| | - Peter Tompa
- VIB-VUB Center for Structural Biology, Flanders Institute for Biotechnology (VIB), Brussels, Belgium
- Structural Biology Brussels, Department of Bioengineering, Vrije Universiteit Brussel, Brussels, Belgium
- Research Centre for Natural Sciences, Hungarian Research Network, Institute of Enzymology, Budapest, Hungary
| | | |
Collapse
|
5
|
Xie A, Kang GJ, Kim EJ, Liu H, Feng F, Dudley SC. c-Src Is Responsible for Mitochondria-Mediated Arrhythmic Risk in Ischemic Cardiomyopathy. Circ Arrhythm Electrophysiol 2024; 17:e013054. [PMID: 39212055 PMCID: PMC11477858 DOI: 10.1161/circep.124.013054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Increased mitochondrial Ca2+ uptake has been implicated in the QT prolongation and lethal arrhythmias associated with nonischemic cardiomyopathy. We attempted to define the role of mitochondria in ischemic arrhythmic risk and to identify upstream regulators. METHODS Myocardial infarction (MI) was induced in wild-type FVB/NJ mice by ligation of the left anterior descending coronary artery. Western blot, immunoprecipitation, ECG telemetry, and patch-clamp techniques were used. RESULTS After MI, c-Src (proto-oncogene tyrosine-protein kinase Src) and its active form (phosphorylated Src, p-Src) were increased. The activation of c-Src was associated with increased diastolic Ca2+ sparks, action potential duration prolongation, and arrhythmia in MI mice. c-Src upregulation and arrhythmia could be reversed by treatment of mice with the Src inhibitor PP1 but not with the inactive analogue PP3. Tyrosine phosphorylated mitochondrial Ca2+ uniporter (MCU) was upregulated in the heart tissues of MI mice and patients with ischemic cardiomyopathy. In a heterologous expression system, c-Src could bind MCU and phosphorylate MCU tyrosines. Overexpression of wild-type c-Src significantly increased the mitochondrial Ca2+ transient while overexpression of dominant-negative c-Src significantly decreased the mitochondrial Ca2+ transient. c-Src inhibition by PP1, MCU inhibition by Ru360, or MCU knockdown could reduce the action potential duration, Ca2+ sparks, and arrhythmia after MI. The human heart tissue showed that patients with ischemic cardiomyopathy had significantly increased c-Src active form associated with increased MCU tyrosine phosphorylation and ventricular arrhythmia. CONCLUSIONS MI leads to increased c-Src active form that results in MCU tyrosine phosphorylation, increased mitochondrial Ca2+ uptake, QT prolongation, and arrhythmia, suggesting c-Src or MCU may represent novel antiarrhythmic targets.
Collapse
MESH Headings
- Animals
- src-Family Kinases/metabolism
- Arrhythmias, Cardiac/metabolism
- Arrhythmias, Cardiac/physiopathology
- Arrhythmias, Cardiac/etiology
- Arrhythmias, Cardiac/genetics
- Arrhythmias, Cardiac/enzymology
- Mitochondria, Heart/metabolism
- Mitochondria, Heart/enzymology
- Humans
- Disease Models, Animal
- Mice
- Action Potentials
- Phosphorylation
- Male
- Cardiomyopathies/metabolism
- Cardiomyopathies/genetics
- Cardiomyopathies/physiopathology
- Cardiomyopathies/etiology
- Cardiomyopathies/enzymology
- CSK Tyrosine-Protein Kinase/metabolism
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/enzymology
- Calcium Channels/metabolism
- Calcium Channels/genetics
- Calcium Signaling
- Myocardial Infarction/metabolism
- Myocardial Infarction/complications
- Myocardial Infarction/physiopathology
- Myocardial Infarction/genetics
- Risk Factors
Collapse
Affiliation(s)
- An Xie
- Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, USA
| | - Gyeoung-Jin Kang
- Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, USA
| | - Eun Ji Kim
- Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, USA
| | - Hong Liu
- Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, USA
| | - Feng Feng
- Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, USA
| | - Samuel C. Dudley
- Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, USA
| |
Collapse
|
6
|
Chen R, Wang Y, Shen Z, Ye C, Guo Y, Lu Y, Ding J, Dong X, Xu D, Zheng X. Discovery of potent CSK inhibitors through integrated virtual screening and molecular dynamic simulation. Arch Pharm (Weinheim) 2024; 357:e2400066. [PMID: 38809025 DOI: 10.1002/ardp.202400066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/23/2024] [Accepted: 05/08/2024] [Indexed: 05/30/2024]
Abstract
Oncogenic overexpression or activation of C-terminal Src kinase (CSK) has been shown to play an important role in triple-negative breast cancer (TNBC) progression, including tumor initiation, growth, metastasis, drug resistance. This revelation has pivoted the focus toward CSK as a potential target for novel treatments. However, until now, there are few inhibitors designed to target the CSK protein. Responding to this, our research has implemented a comprehensive virtual screening protocol. By integrating energy-based screening methods with AI-driven scoring functions, such as Attentive FP, and employing rigorous rescoring methods like Glide docking and molecular mechanics generalized Born surface area (MM/GBSA), we have systematically sought out inhibitors of CSK. This approach led to the discovery of a compound with a potent CSK inhibitory activity, reflected by an IC50 value of 1.6 nM under a homogeneous time-resolved fluorescence (HTRF) bioassay. Subsequently, molecule 2 exhibits strong growth inhibition of MD anderson - metastatic breast (MDA-MB) -231, Hs578T, and SUM159 cells, showing a level of growth inhibition comparable to that observed with dasatinib. Treatment with molecule 2 also induced significant G1 phase accumulation and cell apoptosis. Furthermore, we have explored the explicit binding interactions of the compound with CSK using molecular dynamics simulations, providing valuable insights into its mechanism of action.
Collapse
Affiliation(s)
- Roufen Chen
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yuchen Wang
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Zheyuan Shen
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Chenyi Ye
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China
| | - Yu Guo
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yan Lu
- Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianjun Ding
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xiaowu Dong
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Donghang Xu
- Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoli Zheng
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China
| |
Collapse
|
7
|
Kaur C, Thakur A, Liou KC, Rao NV, Nepali K. Spleen tyrosine kinase (SYK): an emerging target for the assemblage of small molecule antitumor agents. Expert Opin Investig Drugs 2024; 33:897-914. [PMID: 39096234 DOI: 10.1080/13543784.2024.2388559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/13/2024] [Accepted: 08/01/2024] [Indexed: 08/05/2024]
Abstract
INTRODUCTION Spleen tyrosine kinase (SYK), a nonreceptor tyrosine kinase, has emerged as a vital component in the complex symphony of cancer cell survival and division. SYK activation (constitutive) is documented in various B-cell malignancies, and its inhibition induces programmed cell death. In some instances, it also acts as a tumor suppressor. AREAS COVERED Involvement of the SYK in the cancer growth, specifically in the progression of chronic lymphocytic leukemia (CLL), diffuse large B cell lymphomas (DLBCLs), acute myeloid leukemia (AML), and multiple myeloma (MM) is discussed. Therapeutic strategies to target SYK in cancer, including investigational SYK inhibitors, combinations of SYK inhibitors with other drugs targeting therapeutically relevant targets, and recent advancements in constructing new structural assemblages as SYK inhibitors, are also covered. EXPERT OPINION The SYK inhibitor field is currently marred by the poor translation rate of SYK inhibitors from preclinical to clinical studies. Also, dose-limited toxicities associated with the applications of SYK inhibitors have been evidenced. Thus, the development of new SYK inhibitory structural templates is in the need of the hour. To accomplish the aforementioned, interdisciplinary teams should incessantly invest efforts to expand the size of the armory of SYK inhibitors.
Collapse
Affiliation(s)
- Charanjit Kaur
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Amandeep Thakur
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Ke-Chi Liou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Neralla Vijayakameswara Rao
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Kunal Nepali
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
8
|
Kumar R, Goel H, Solanki R, Rawat L, Tabasum S, Tanwar P, Pal S, Sabarwal A. Recent developments in receptor tyrosine kinase inhibitors: A promising mainstay in targeted cancer therapy. MEDICINE IN DRUG DISCOVERY 2024; 23:100195. [PMID: 39281823 PMCID: PMC11393807 DOI: 10.1016/j.medidd.2024.100195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2024] Open
Abstract
During the past two decades, significant advances have been made in the discovery and development of targeted inhibitors aimed at improving the survival rates of cancer patients. Among the multitude of potential therapeutic targets identified thus far, Receptor Tyrosine Kinases (RTKs) are of particular importance. Dysregulation of RTKs has been implicated in numerous human diseases, particularly cancer, where aberrant signaling pathways contribute to disease progression. RTKs have a profound impact on intra and intercellular communication, and they also facilitate post-translational modifications, notably phosphorylation, which intricately regulates a multitude of cellular processes. Prolonged phosphorylation or the disruption of kinase regulation may lead to significant alterations in cell signaling. The emergence of small molecule kinase inhibitors has revolutionized cancer therapy by offering a targeted and strategic approach that surpasses the efficacy of traditional chemotherapeutic drugs. Over the last two decades, a plethora of targeted inhibitors have been identified or engineered and have undergone clinical evaluation to enhance the survival rates of cancer patients. In this review, we have compared the expression of different RTKs, including Met, KDR/VEGFR2, EGFR, BRAF, BCR, and ALK across different cancer types in TCGA samples. Additionally, we have summarized the recent development of small molecule inhibitors and their potential in treating various malignancies. Lastly, we have discussed the mechanisms of acquired therapeutic resistance with a focus on kinase inhibitors in EGFR mutant and ALK-rearranged non-small cell lung cancer and BCR-ABL positive chronic myeloid leukemia.
Collapse
Affiliation(s)
- Rahul Kumar
- Dr B. R. A.-Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Harsh Goel
- Dr B. R. A.-Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Raghu Solanki
- School of Life Sciences, Central University of Gujarat, Gandhinagar, India
| | - Laxminarayan Rawat
- Division of Nephrology, Boston Children's Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Saba Tabasum
- Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Pranay Tanwar
- Dr B. R. A.-Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Soumitro Pal
- Division of Nephrology, Boston Children's Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Akash Sabarwal
- Division of Nephrology, Boston Children's Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
9
|
Ray P, Sarker DK, Uddin SJ. Bioinformatics and computational studies of chabamide F and chabamide G for breast cancer and their probable mechanisms of action. Sci Rep 2024; 14:19893. [PMID: 39191884 DOI: 10.1038/s41598-024-70854-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/21/2024] [Indexed: 08/29/2024] Open
Abstract
Globally, the prevalence of breast cancer (BC) is increasing at an alarming level, despite early detection and technological improvements. Alkaloids are diverse chemical groups, and many within this class have been reported as potential anticancer compounds. Chabamide F (F) and chabamide G (G) are two dimeric amide alkaloids found in a traditional medicinal plant, Piper chaba, and possess significant cytotoxic effects. However, their scientific rationalization in BC remains unknown. Here, we aimed to investigate their potential and molecular mechanisms for BC through in silico approaches. From network pharmacology, we identified 64 BC-related genes as targets. GO and KEGG studies showed that they were involved in various biological processes and mostly expressed in BC-related pathways such as RAS, PI3K-AKT, estrogen, MAPK, and FoxO pathways. However, PPI analysis revealed SRC and AKT1 as hub genes, which play key roles in BC tumorigenesis and metastasis. Molecular docking revealed the strong binding affinity of F (- 10.7 kcal/mol) and G (- 9.4 and - 11.7 kcal/mol) for SRC and AKT1, respectively, as well as the acquisition of vital residues to inhibit them. Their long-term stability was evaluated using 200 ns molecular dynamics simulation. The RMSD, RMSF, Rg, and SASA analyses showed that the G-SRC and G-AKT1 complexes were excellently stable compared to the control, dasatinib, and capivasertib, respectively. Additionally, the PCA and DCCM analyses revealed a significant reduction in the residual correlation and motions. By contrast, the stability of the F-SRC complex was greater than that of the control, whereas it was moderately stable in complex with AKT1. The MMPBSA analysis demonstrated higher binding energies for both compounds than the controls. In particular, the binding energy of G for SRC and AKT1 was - 120.671 ± 16.997 and - 130.437 ± 19.111 kJ/mol, respectively, which was approximately twice as high as the control molecules. Van der Waal and polar solvation energies significantly contributed to this energy. Furthermore, both of them exhibited significant interactions with the binding site residues of both proteins. In summary, this study indicates that these two molecules could be a potential ATP-competitive inhibitor of SRC and an allosteric inhibitor of AKT1.
Collapse
Affiliation(s)
- Pallobi Ray
- Pharmacy Discipline, Life Science School, Khulna University, Khulna, 9208, Bangladesh
| | - Dipto Kumer Sarker
- Pharmacy Discipline, Life Science School, Khulna University, Khulna, 9208, Bangladesh
- Department of Pharmacy, Atish Dipankar University of Science & Technology, Dhaka, 1230, Bangladesh
| | - Shaikh Jamal Uddin
- Pharmacy Discipline, Life Science School, Khulna University, Khulna, 9208, Bangladesh.
| |
Collapse
|
10
|
Sauvé R, Morin S, Yam PT, Charron F. β-arrestins Are Scaffolding Proteins Required for Shh-Mediated Axon Guidance. J Neurosci 2024; 44:e0261242024. [PMID: 38886055 PMCID: PMC11270522 DOI: 10.1523/jneurosci.0261-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/31/2024] [Accepted: 06/06/2024] [Indexed: 06/20/2024] Open
Abstract
During nervous system development, Sonic hedgehog (Shh) guides developing commissural axons toward the floor plate of the spinal cord. To guide axons, Shh binds to its receptor Boc and activates downstream effectors such as Smoothened (Smo) and Src family kinases (SFKs). SFK activation requires Smo activity and is also required for Shh-mediated axon guidance. Here we report that β-arrestin1 and β-arrestin2 (β-arrestins) serve as scaffolding proteins that link Smo and SFKs in Shh-mediated axon guidance. We found that β-arrestins are expressed in rat commissural neurons. We also found that Smo, β-arrestins, and SFKs form a tripartite complex, with the complex formation dependent on β-arrestins. β-arrestin knockdown blocked the Shh-mediated increase in Src phosphorylation, demonstrating that β-arrestins are required to activate Src kinase downstream of Shh. β-arrestin knockdown also led to the loss of Shh-mediated attraction of rat commissural axons in axon turning assays. Expression of two different dominant-negative β-arrestins, β-arrestin1 V53D which blocks the internalization of Smo and β-arrestin1 P91G-P121E which blocks its interaction with SFKs, also led to the loss of Shh-mediated attraction of commissural axons. In vivo, the expression of these dominant-negative β-arrestins caused defects in commissural axon guidance in the spinal cord of chick embryos of mixed sexes. Thus we show that β-arrestins are essential scaffolding proteins that connect Smo to SFKs and are required for Shh-mediated axon guidance.
Collapse
Affiliation(s)
- Rachelle Sauvé
- Montreal Clinical Research Institute (IRCM), Montreal, Quebec H2W 1R7, Canada
- Department of Medicine, University of Montreal, Montreal, Quebec H3T 1J4, Canada
| | - Steves Morin
- Montreal Clinical Research Institute (IRCM), Montreal, Quebec H2W 1R7, Canada
| | - Patricia T Yam
- Montreal Clinical Research Institute (IRCM), Montreal, Quebec H2W 1R7, Canada
| | - Frédéric Charron
- Montreal Clinical Research Institute (IRCM), Montreal, Quebec H2W 1R7, Canada
- Department of Medicine, University of Montreal, Montreal, Quebec H3T 1J4, Canada
- Division of Experimental Medicine, Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0G4, Canada
| |
Collapse
|
11
|
İçen Taşkın I, Gürbüz S, Koç A, Kocabay S, Yolbaş S, Keser MF. The roles of SFKs in the regulation of proinflammatory cytokines and NLRP3 in familial mediterranean fever patients. Cytokine 2024; 179:156615. [PMID: 38640560 DOI: 10.1016/j.cyto.2024.156615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/02/2024] [Accepted: 04/09/2024] [Indexed: 04/21/2024]
Abstract
Familial Mediterranean Fever (FMF) is caused by mutations in pyrin, a protein produced in innate immune cells that regulates the development of interleukin (IL)-1β by interacting with caspase-1 and other components of inflammasomes. Although overexpression of proinflammatory cytokines have been observed in FMF patients, no studies have been conducted on the role of Src family kinases (SFKs). The purpose of this study was to examine the impact of SFKs on the modulation of IL-1β, IL-6, IL-8, TNF-α, and NLRP3 inflammasome in patients with FMF. The study included 20 FMF patients and 20 controls. Peripheral blood mononuclear cells (PBMCs) were isolated by density gradient centrifugation. Protein expression levels of SFKs members were measured by western blot. The effect of lipopolysaccharide-induced (LPS) activation and PP2- induced inhibition of SFKs on NLRP3 and IL-1β, IL 6, IL-8, TNF-α were examined by western blot and flow cytometry respectively. Patients with FMF have considerably greater levels of Lck expression. In addition, patients had a substantially greater basal level of NLRP3 than the control group (*p = 0.016). Most importantly, the levels of IL-1 β were elevated with LPS stimulation and reduced with PP2 inhibition in FMF patients. These results suggest that SFKs are effective in regulation of IL-1 β in FMF patients.
Collapse
Affiliation(s)
- Irmak İçen Taşkın
- Department of Molecular Biology and Genetics, Faculty of Science and Art, Inonu University, Malatya, Turkey.
| | - Sevim Gürbüz
- Department of Molecular Biology and Genetics, Faculty of Science and Art, Inonu University, Malatya, Turkey
| | - Ahmet Koç
- Department of Genetics, Faculty of Medicine, Inonu University, Malatya, Turkey
| | - Samet Kocabay
- Department of Molecular Biology and Genetics, Faculty of Science and Art, Inonu University, Malatya, Turkey
| | - Servet Yolbaş
- Department of Rheumatology, Faculty of Medicine, Inonu University, Malatya, Turkey
| | | |
Collapse
|
12
|
Meur S, Karati D. Fyn Kinase in Alzheimer's Disease: Unraveling Molecular Mechanisms and Therapeutic Implications. Mol Neurobiol 2024:10.1007/s12035-024-04286-2. [PMID: 38890236 DOI: 10.1007/s12035-024-04286-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/05/2024] [Indexed: 06/20/2024]
Abstract
Alzheimer's disease, characterized by the accumulation of abnormal protein aggregates and neuronal damage in the brain, leads to a gradual decline in cognitive function and memory. As a complex neurodegenerative disorder, it involves disruptions in various biochemical pathways and neurotransmitter systems, contributing to the progressive loss of neurons and synaptic connections. The complexity of Alzheimer's signaling pathways complicates treatment, presenting a formidable challenge in the quest for effective therapeutic interventions. A member of the Src family of kinases (SFKs), Fyn, is a type of non-receptor tyrosine kinase that has been linked to multiple essential CNS processes, such as myelination and synaptic transmission. Fyn is an appealing target for AD treatments because it is uniquely linked to the two major pathologies in AD by its interaction with tau, in addition to being activated by amyloid-beta (Aβ) through PrPC. Fyn mediates neurotoxicity and synaptic impairments caused by Aβ and is involved in regulating the process of Aβ synthesis.Additionally, the tau protein's tyrosine phosphorylation is induced by Fyn. Fyn is also a challenging target because of its widespread body expression and strong homology with other kinases of the Src family, which could cause unintentional off-target effects. This review emphasizes signaling pathways mediated by Fyn that govern neuronal development and plasticity while also summarizing the most noteworthy recent research relevant to Fyn kinase's function in the brain. Additionally, the therapeutic inhibition of Fyn kinase has been discussed, with a focus on the Fyn kinase inhibitors that are in clinical trials, which presents a fascinating opportunity for targeting Fyn kinase in the creation of possible therapeutic approaches for the management of Alzheimer's disease.
Collapse
Affiliation(s)
- Shreyasi Meur
- Department of Pharmaceutical Technology, School of Pharmacy, Techno India University, Kolkata, 700091, West Bengal, India
| | - Dipanjan Karati
- Department of Pharmaceutical Technology, School of Pharmacy, Techno India University, Kolkata, 700091, West Bengal, India.
| |
Collapse
|
13
|
Brady ST, Mesnard-Hoaglin NA, Mays S, Priego M, Dziechciowska J, Morris S, Kang M, Tsai MY, Purks JL, Klein A, Gaona A, Melloni A, Connors T, Hyman B, Song Y, Morfini GA. Toxic effects of mutant huntingtin in axons are mediated by its proline-rich domain. Brain 2024; 147:2098-2113. [PMID: 37633260 PMCID: PMC11146425 DOI: 10.1093/brain/awad280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 05/13/2023] [Accepted: 07/17/2023] [Indexed: 08/28/2023] Open
Abstract
Huntington's disease results from expansion of a polyglutamine tract (polyQ) in mutant huntingtin (mHTT) protein, but mechanisms underlying polyQ expansion-mediated toxic gain-of-mHTT function remain elusive. Here, deletion and antibody-based experiments revealed that a proline-rich domain (PRD) adjacent to the polyQ tract is necessary for mHTT to inhibit fast axonal transport and promote axonal pathology in cultured mammalian neurons. Further, polypeptides corresponding to subregions of the PRD sufficed to elicit the toxic effect on fast axonal transport, which was mediated by c-Jun N-terminal kinases (JNKs) and involved PRD binding to one or more SH3-domain containing proteins. Collectively, these data suggested a mechanism whereby polyQ tract expansion in mHTT promotes aberrant PRD exposure and interactions of this domain with SH3 domain-containing proteins including some involved in activation of JNKs. In support, biochemical and immunohistochemical experiments linked aberrant PRD exposure to increased JNK activation in striatal tissues of the zQ175 mouse model and from post-mortem Huntington's disease patients. Together, these findings support a critical role of PRD on mHTT toxicity, suggesting a novel framework for the potential development of therapies aimed to halt or reduce axonal pathology in Huntington's disease.
Collapse
Affiliation(s)
- Scott T Brady
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612, USA
- Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | | | - Sarah Mays
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612, USA
- Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Mercedes Priego
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Joanna Dziechciowska
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Sarah Morris
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612, USA
- Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Minsu Kang
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612, USA
- Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Ming Ying Tsai
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | | | - Alison Klein
- Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Angelica Gaona
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Alexandra Melloni
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Theresa Connors
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Bradley Hyman
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Department of Neurology, Harvard Medical School, Boston, MA 02129, USA
| | - Yuyu Song
- Marine Biological Laboratory, Woods Hole, MA 02543, USA
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Department of Neurology, Harvard Medical School, Boston, MA 02129, USA
| | - Gerardo A Morfini
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612, USA
- Marine Biological Laboratory, Woods Hole, MA 02543, USA
| |
Collapse
|
14
|
Inoue M, Ekimoto T, Yamane T, Ikeguchi M. Computational Analysis of Activation of Dimerized Epidermal Growth Factor Receptor Kinase Using the String Method and Markov State Model. J Chem Inf Model 2024; 64:3884-3895. [PMID: 38670929 DOI: 10.1021/acs.jcim.4c00172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Epidermal growth factor receptor (EGFR) activation is accompanied by dimerization. During the activation of the intracellular kinase domain, two EGFR kinases form an asymmetric dimer, and one side of the dimer (receiver) is activated. Using the string method and Markov state model (MSM), we performed a computational analysis of the structural changes in the activation of the EGFR dimer in this study. The string method reveals the minimum free-energy pathway (MFEP) from the inactive to active structure. The MSM was constructed from numerous trajectories of molecular dynamics simulations around the MFEP, which revealed the free-energy map of structural changes. In the activation of the receiver kinase, the unfolding of the activation loop (A-loop) is followed by the rearrangement of the C-helix, as observed in other kinases. However, unlike other kinases, the free-energy map of EGFR at the asymmetric dimer showed that the active state yielded the highest stability and revealed how interactions at the dimer interface induced receiver activation. As the H-helix of the activator approaches the C-helix of the receiver during activation, the A-loop unfolds. Subsequently, L782 of the receiver enters the pocket between the G- and H-helices of the activator, leading to a rearrangement of the hydrophobic residues around L782 of the receiver, which constitutes a structural rearrangement of the C-helix of the receiver from an outward to an inner position. The MSM analysis revealed long-time scale trajectories via kinetic Monte Carlo.
Collapse
Affiliation(s)
- Masao Inoue
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Toru Ekimoto
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Tsutomu Yamane
- HPC- and AI-driven Drug Development Platform Division, Center for Computational Science, RIKEN, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Mitsunori Ikeguchi
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
- HPC- and AI-driven Drug Development Platform Division, Center for Computational Science, RIKEN, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| |
Collapse
|
15
|
Di Meo D, Kundu T, Ravindran P, Shah B, Püschel AW. Pip5k1γ regulates axon formation by limiting Rap1 activity. Life Sci Alliance 2024; 7:e202302383. [PMID: 38438249 PMCID: PMC10912816 DOI: 10.26508/lsa.202302383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 02/26/2024] [Accepted: 02/26/2024] [Indexed: 03/06/2024] Open
Abstract
During their differentiation, neurons establish a highly polarized morphology by forming axons and dendrites. Cortical and hippocampal neurons initially extend several short neurites that all have the potential to become an axon. One of these neurites is then selected as the axon by a combination of positive and negative feedback signals that promote axon formation and prevent the remaining neurites from developing into axons. Here, we show that Pip5k1γ is required for the formation of a single axon as a negative feedback signal that regulates C3G and Rap1 through the generation of phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2). Impairing the function of Pip5k1γ results in a hyper-activation of the Fyn/C3G/Rap1 pathway, which induces the formation of supernumerary axons. Application of a hyper-osmotic shock to modulate membrane tension has a similar effect, increasing Rap1 activity and inducing the formation of supernumerary axons. In both cases, the induction of supernumerary axons can be reverted by expressing constitutively active Pip5k. Our results show that PI(4,5)P2-dependent membrane properties limit the activity of C3G and Rap1 to ensure the extension of a single axon.
Collapse
Affiliation(s)
- Danila Di Meo
- Institut für Integrative Zellbiologie und Physiologie, Universität Münster, Münster, Germany
- Cells-in-Motion Interfaculty Center, University of Münster, Münster, Germany
| | - Trisha Kundu
- Institut für Integrative Zellbiologie und Physiologie, Universität Münster, Münster, Germany
- Cells-in-Motion Interfaculty Center, University of Münster, Münster, Germany
| | - Priyadarshini Ravindran
- Institut für Integrative Zellbiologie und Physiologie, Universität Münster, Münster, Germany
| | - Bhavin Shah
- Institut für Integrative Zellbiologie und Physiologie, Universität Münster, Münster, Germany
| | - Andreas W Püschel
- Institut für Integrative Zellbiologie und Physiologie, Universität Münster, Münster, Germany
- Cells-in-Motion Interfaculty Center, University of Münster, Münster, Germany
| |
Collapse
|
16
|
Ouyang M, Xing Y, Zhang S, Li L, Pan Y, Deng L. Development of FRET Biosensor to Characterize CSK Subcellular Regulation. BIOSENSORS 2024; 14:206. [PMID: 38667199 PMCID: PMC11048185 DOI: 10.3390/bios14040206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/13/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024]
Abstract
C-terminal Src kinase (CSK) is the major inhibitory kinase for Src family kinases (SFKs) through the phosphorylation of their C-tail tyrosine sites, and it regulates various types of cellular activity in association with SFK function. As a cytoplasmic protein, CSK needs be recruited to the plasma membrane to regulate SFKs' activity. The regulatory mechanism behind CSK activity and its subcellular localization remains largely unclear. In this work, we developed a genetically encoded biosensor based on fluorescence resonance energy transfer (FRET) to visualize the CSK activity in live cells. The biosensor, with an optimized substrate peptide, confirmed the crucial Arg107 site in the CSK SH2 domain and displayed sensitivity and specificity to CSK activity, while showing minor responses to co-transfected Src and Fyn. FRET measurements showed that CSK had a relatively mild level of kinase activity in comparison to Src and Fyn in rat airway smooth muscle cells. The biosensor tagged with different submembrane-targeting signals detected CSK activity at both non-lipid raft and lipid raft microregions, while it showed a higher FRET level at non-lipid ones. Co-transfected receptor-type protein tyrosine phosphatase alpha (PTPα) had an inhibitory effect on the CSK FRET response. The biosensor did not detect obvious changes in CSK activity between metastatic cancer cells and normal ones. In conclusion, a novel FRET biosensor was generated to monitor CSK activity and demonstrated CSK activity existing in both non-lipid and lipid raft membrane microregions, being more present at non-lipid ones.
Collapse
Affiliation(s)
- Mingxing Ouyang
- Institute of Biomedical Engineering and Health Sciences, School of Medical and Health Engineering, Changzhou University, Changzhou 213164, China; (Y.X.); (S.Z.); (L.L.); (Y.P.)
| | - Yujie Xing
- Institute of Biomedical Engineering and Health Sciences, School of Medical and Health Engineering, Changzhou University, Changzhou 213164, China; (Y.X.); (S.Z.); (L.L.); (Y.P.)
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Shumin Zhang
- Institute of Biomedical Engineering and Health Sciences, School of Medical and Health Engineering, Changzhou University, Changzhou 213164, China; (Y.X.); (S.Z.); (L.L.); (Y.P.)
| | - Liting Li
- Institute of Biomedical Engineering and Health Sciences, School of Medical and Health Engineering, Changzhou University, Changzhou 213164, China; (Y.X.); (S.Z.); (L.L.); (Y.P.)
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Yan Pan
- Institute of Biomedical Engineering and Health Sciences, School of Medical and Health Engineering, Changzhou University, Changzhou 213164, China; (Y.X.); (S.Z.); (L.L.); (Y.P.)
| | - Linhong Deng
- Institute of Biomedical Engineering and Health Sciences, School of Medical and Health Engineering, Changzhou University, Changzhou 213164, China; (Y.X.); (S.Z.); (L.L.); (Y.P.)
| |
Collapse
|
17
|
Awaji AA, Zaloa WAZE, Seleem MA, Alswah M, Elsebaei MM, Bayoumi AH, El-Morsy AM, Alfaifi MY, Shati AA, Elbehairi SEI, Almaghrabi M, Aljohani AKB, Ahmed HEA. N- and s-substituted Pyrazolopyrimidines: A promising new class of potent c-Src kinase inhibitors with prominent antitumor activity. Bioorg Chem 2024; 145:107228. [PMID: 38422592 DOI: 10.1016/j.bioorg.2024.107228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/13/2024] [Accepted: 02/17/2024] [Indexed: 03/02/2024]
Abstract
In this work, readily achievable synthetic pathways were utilized for construction of a library of N/S analogues based on the pyrazolopyrimidine scaffold with terminal alkyl or aryl fragments. Subsequently, we evaluated the anticancer effects of these novel analogs against the proliferation of various cancer cell lines, including breast, colon, and liver lines. The results were striking, most of the tested molecules exhibited strong and selective cytotoxic activity against the MDA-MB-231 cancer cell line; IC50 1.13 µM. Structure-activity relationship (SAR) analysis revealed that N-substituted derivatives generally enhanced the cytotoxic effect, particularly with aliphatic side chains that facilitated favorable target interactions. We also investigated apoptosis, DNA fragmentation, invasion assay, and anti-migration effects, and discussed their underlying molecular mechanisms for the most active compound 7c. We demonstrated that 7c N-propyl analogue could inhibit MDA-MB-231 TNBC cell proliferation by inducing apoptosis through the regulation of vital proteins, namely c-Src, p53, and Bax. In addition, our results also revealed the potential of these compounds against tumor metastasis by downregulating the invasion and migration modes. Moreover, the in vitro inhibitory effect of active analogs against c-Src kinase was studied and proved that might be the main cause of their antiproliferative effect. Overall, these compelling results point towards the therapeutic potential of these derivatives, particularly those with N-substitution as promising candidates for the treatment of TNBC type of breast cancer.
Collapse
Affiliation(s)
- Aeshah A Awaji
- Department of Biology, Faculty of Science, University College of Taymaa, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Waheed Ali Zaki El Zaloa
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt
| | - Mohamed A Seleem
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt
| | - Mohamed Alswah
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt.
| | - Mohamed M Elsebaei
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt.
| | - Ashraf H Bayoumi
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt
| | - Ahmed M El-Morsy
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt; Pharmaceutical Chemistry Department, College of Pharmacy, The Islamic University, Najaf 54001, Iraq
| | - Mohammad Y Alfaifi
- Biology Department, Faculty of Science, King Khalid University, Abha 9004, Saudi Arabia
| | - Ali A Shati
- Biology Department, Faculty of Science, King Khalid University, Abha 9004, Saudi Arabia
| | - Serag Eldin I Elbehairi
- Biology Department, Faculty of Science, King Khalid University, Abha 9004, Saudi Arabia; Cell Culture Lab, Egyptian Organization for Biological Products and Vaccines (VACSERA Holding Company), 51 Wezaret El-Zeraa St., Agouza, Giza, Egypt.
| | - Mohammed Almaghrabi
- Pharmacognosy and Pharmaceutical Chemistry Department, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah 41477, Saudi Arabia
| | - Ahmed K B Aljohani
- Pharmacognosy and Pharmaceutical Chemistry Department, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah 41477, Saudi Arabia
| | - Hany E A Ahmed
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt
| |
Collapse
|
18
|
Wei-Ye L, Hong-Bo G, Rui-Heng Y, Ai-Guo X, Jia-Chen Z, Zhao-Qian Y, Wen-Jun H, Xiao-Dan Y. UPLC-ESI-MS/MS-based widely targeted metabolomics reveals differences in metabolite composition among four Ganoderma species. Front Nutr 2024; 11:1335538. [PMID: 38562486 PMCID: PMC10982346 DOI: 10.3389/fnut.2024.1335538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/07/2024] [Indexed: 04/04/2024] Open
Abstract
The Chinese name "Lingzhi" refers to Ganoderma genus, which are increasingly used in the food and medical industries. Ganoderma species are often used interchangeably since the differences in their composition are not known. To find compositional metabolite differences among Ganoderma species, we conducted a widely targeted metabolomics analysis of four commonly used edible and medicinal Ganoderma species based on ultra performance liquid chromatography-electrospray ionization-tandem mass spectrometry. Through pairwise comparisons, we identified 575-764 significant differential metabolites among the species, most of which exhibited large fold differences. We screened and analyzed the composition and functionality of the advantageous metabolites in each species. Ganoderma lingzhi advantageous metabolites were mostly related to amino acids and derivatives, as well as terpenes, G. sinense to terpenes, and G. leucocontextum and G. tsugae to nucleotides and derivatives, alkaloids, and lipids. Network pharmacological analysis showed that SRC, GAPDH, TNF, and AKT1 were the key targets of high-degree advantage metabolites among the four Ganoderma species. Analysis of Gene Ontology and Kyoto Encyclopedia of Genes and Genomes demonstrated that the advantage metabolites in the four Ganoderma species may regulate and participate in signaling pathways associated with diverse cancers, Alzheimer's disease, and diabetes. Our findings contribute to more targeted development of Ganoderma products in the food and medical industries.
Collapse
Affiliation(s)
- Liu Wei-Ye
- College of Biological Science and Technology, Shenyang Agricultural University, Shenyang, China
| | - Guo Hong-Bo
- College of Life Engineering, Shenyang Institute of Technology, Fushun, China
| | - Yang Rui-Heng
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Xu Ai-Guo
- Alpine Fungarium, Tibet Plateau Institute of Biology, Lasa, China
| | - Zhao Jia-Chen
- College of Biological Science and Technology, Shenyang Agricultural University, Shenyang, China
| | - Yang Zhao-Qian
- College of Biological Science and Technology, Shenyang Agricultural University, Shenyang, China
| | - Han Wen-Jun
- College of Biological Science and Technology, Shenyang Agricultural University, Shenyang, China
| | - Yu Xiao-Dan
- College of Biological Science and Technology, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
19
|
Chitadze L, Meparishvili M, Lagani V, Khuchua Z, McCabe BJ, Solomonia R. Src-NADH dehydrogenase subunit 2 complex and recognition memory of imprinting in domestic chicks. PLoS One 2024; 19:e0297166. [PMID: 38285689 PMCID: PMC10824410 DOI: 10.1371/journal.pone.0297166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/30/2023] [Indexed: 01/31/2024] Open
Abstract
Src is a non-receptor tyrosine kinase participating in a range of neuronal processes, including synaptic plasticity. We have recently shown that the amounts of total Src and its two phosphorylated forms, at tyrosine-416 (activated) and tyrosine-527 (inhibited), undergoes time-dependent, region-specific learning-related changes in the domestic chick forebrain after visual imprinting. These changes occur in the intermediate medial mesopallium (IMM), a site of memory formation for visual imprinting, but not the posterior pole of the nidopallium (PPN), a control brain region not involved in imprinting. Src interacts with mitochondrial genome-coded NADH dehydrogenase subunit 2 (NADH2), a component of mitochondrial respiratory complex I. This interaction occurs at brain excitatory synapses bearing NMDA glutamate receptors. The involvement of Src-NADH2 complexes in learning and memory is not yet explored. We show for the first time that, independently of changes in total Src or total NADH2, NADH2 bound to Src immunoprecipitated from the P2 plasma membrane-mitochondrial fraction: (i) is increased in a learning-related manner in the left IMM 1 h after the end of training; (ii), is decreased in the right IMM in a learning-related way 24 h after training. These changes occurred in the IMM but not the PPN. They are attributable to learning occurring during training rather than a predisposition to learn. Learning-related changes in Src-bound NADH2 are thus time- and region-dependent.
Collapse
Affiliation(s)
- Lela Chitadze
- Institute of Chemical Biology, School of Natural Sciences and Medicine, Ilia State University, Tbilisi, Georgia
| | - Maia Meparishvili
- Institute of Chemical Biology, School of Natural Sciences and Medicine, Ilia State University, Tbilisi, Georgia
| | - Vincenzo Lagani
- Institute of Chemical Biology, School of Natural Sciences and Medicine, Ilia State University, Tbilisi, Georgia
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Zaza Khuchua
- Institute of Chemical Biology, School of Natural Sciences and Medicine, Ilia State University, Tbilisi, Georgia
| | - Brian J. McCabe
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Revaz Solomonia
- Institute of Chemical Biology, School of Natural Sciences and Medicine, Ilia State University, Tbilisi, Georgia
- Iv. Beritashvili Centre of Experimental Biomedicine, Tbilisi, Georgia
| |
Collapse
|
20
|
Fukatsu S, Miyamoto Y, Oka Y, Ishibashi M, Shirai R, Ishida Y, Endo S, Katoh H, Yamauchi J. Investigating the Protective Effects of a Citrus Flavonoid on the Retardation Morphogenesis of the Oligodendroglia-like Cell Line by Rnd2 Knockdown. Neurol Int 2023; 16:33-61. [PMID: 38251051 PMCID: PMC10801557 DOI: 10.3390/neurolint16010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/23/2024] Open
Abstract
Recent discoveries suggest links between abnormalities in cell morphogenesis in the brain and the functional deficiency of molecules controlling signal transduction in glial cells such as oligodendroglia. Rnd2 is one such molecule and one of the Rho family monomeric GTP-binding proteins. Despite the currently known functions of Rnd2, its precise roles as it relates to cell morphogenesis and disease state remain to be elucidated. First, we showed that signaling through the loss of function of the rnd2 gene affected the regulation of oligodendroglial cell-like morphological differentiation using the FBD-102b cell line, which is often utilized as a differentiation model. The knockdown of Rnd2 using the clustered regularly interspaced palindromic repeats (CRISPR)/CasRx system or RNA interference was shown to slow morphological differentiation. Second, the knockdown of Prag1 or Fyn kinase, a signaling molecule acting downstream of Rnd2, slowed differentiation. Rnd2 or Prag1 knockdown also decreased Fyn phosphorylation, which is critical for its activation and for oligodendroglial cell differentiation and myelination. Of note, hesperetin, a citrus flavonoid with protective effects on oligodendroglial cells and neurons, can recover differentiation states induced by the knockdown of Rnd2/Prag1/Fyn. Here, we showed that signaling through Rnd2/Prag1/Fyn is involved in the regulation of oligodendroglial cell-like morphological differentiation. The effects of knocking down the signaling cascade molecule can be recovered by hesperetin, highlighting an important molecular structure involved in morphological differentiation.
Collapse
Affiliation(s)
- Shoya Fukatsu
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan; (S.F.); (Y.M.); (R.S.)
| | - Yuki Miyamoto
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan; (S.F.); (Y.M.); (R.S.)
- Laboratory of Molecular Pharmacology, National Research Institute for Child Health and Development, Setagaya-ku, Tokyo 157-8535, Japan
| | - Yu Oka
- Personal Health Care Division, Hayashibara Co., Ltd., Okayama 702-8006, Japan
| | - Maki Ishibashi
- Personal Health Care Division, Hayashibara Co., Ltd., Okayama 702-8006, Japan
| | - Remina Shirai
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan; (S.F.); (Y.M.); (R.S.)
| | - Yuki Ishida
- Personal Health Care Division, Hayashibara Co., Ltd., Okayama 702-8006, Japan
| | - Shin Endo
- Personal Health Care Division, Hayashibara Co., Ltd., Okayama 702-8006, Japan
| | - Hironori Katoh
- Department of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, Osaka 599-8531, Japan;
| | - Junji Yamauchi
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan; (S.F.); (Y.M.); (R.S.)
- Laboratory of Molecular Pharmacology, National Research Institute for Child Health and Development, Setagaya-ku, Tokyo 157-8535, Japan
- Diabetic Neuropathy Project, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo 156-8506, Japan
| |
Collapse
|
21
|
Zimmer N, Trzeciak ER, Müller A, Licht P, Sprang B, Leukel P, Mailänder V, Sommer C, Ringel F, Tuettenberg J, Kim E, Tuettenberg A. Nuclear Glycoprotein A Repetitions Predominant (GARP) Is a Common Trait of Glioblastoma Stem-like Cells and Correlates with Poor Survival in Glioblastoma Patients. Cancers (Basel) 2023; 15:5711. [PMID: 38136258 PMCID: PMC10741777 DOI: 10.3390/cancers15245711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/17/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
Glioblastoma (GB) is notoriously resistant to therapy. GB genesis and progression are driven by glioblastoma stem-like cells (GSCs). One goal for improving treatment efficacy and patient outcomes is targeting GSCs. Currently, there are no universal markers for GSCs. Glycoprotein A repetitions predominant (GARP), an anti-inflammatory protein expressed by activated regulatory T cells, was identified as a possible marker for GSCs. This study evaluated GARP for the detection of human GSCs utilizing a multidimensional experimental design that replicated several features of GB: (1) intratumoral heterogeneity, (2) cellular hierarchy (GSCs with varied degrees of self-renewal and differentiation), and (3) longitudinal GSC evolution during GB recurrence (GSCs from patient-matched newly diagnosed and recurrent GB). Our results indicate that GARP is expressed by GSCs across various cellular states and disease stages. GSCs with an increased GARP expression had reduced self-renewal but no alterations in proliferative capacity or differentiation commitment. Rather, GARP correlated inversely with the expression of GFAP and PDGFR-α, markers of astrocyte or oligodendrocyte differentiation. GARP had an abnormal nuclear localization (GARPNU+) in GSCs and was negatively associated with patient survival. The uniformity of GARP/GARPNU+ expression across different types of GSCs suggests a potential use of GARP as a marker to identify GSCs.
Collapse
Affiliation(s)
- Niklas Zimmer
- Department of Dermatology, University Medical Center Mainz, 55131 Mainz, Germany (P.L.)
| | - Emily R. Trzeciak
- Department of Dermatology, University Medical Center Mainz, 55131 Mainz, Germany (P.L.)
| | - Andreas Müller
- Department of Neurosurgery, University Medical Center Mainz, 55131 Mainz, Germany
- Laboratory of Experimental Neurooncology, University Medical Center Mainz, 55131 Mainz, Germany
| | - Philipp Licht
- Department of Dermatology, University Medical Center Mainz, 55131 Mainz, Germany (P.L.)
| | - Bettina Sprang
- Department of Neurosurgery, University Medical Center Mainz, 55131 Mainz, Germany
- Laboratory of Experimental Neurooncology, University Medical Center Mainz, 55131 Mainz, Germany
| | - Petra Leukel
- Institute of Neuropathology, University Medical Center Mainz, 55131 Mainz, Germany
| | - Volker Mailänder
- Department of Dermatology, University Medical Center Mainz, 55131 Mainz, Germany (P.L.)
- Research Center for Immunotherapy, University Medical Center Mainz, 55131 Mainz, Germany
| | - Clemens Sommer
- Institute of Neuropathology, University Medical Center Mainz, 55131 Mainz, Germany
| | - Florian Ringel
- Department of Neurosurgery, University Medical Center Mainz, 55131 Mainz, Germany
| | - Jochen Tuettenberg
- Department of Neurosurgery, SHG-Klinikum Idar-Oberstein, 55743 Idar-Oberstein, Germany;
| | - Ella Kim
- Department of Neurosurgery, University Medical Center Mainz, 55131 Mainz, Germany
- Laboratory of Experimental Neurooncology, University Medical Center Mainz, 55131 Mainz, Germany
| | - Andrea Tuettenberg
- Department of Dermatology, University Medical Center Mainz, 55131 Mainz, Germany (P.L.)
- Research Center for Immunotherapy, University Medical Center Mainz, 55131 Mainz, Germany
| |
Collapse
|
22
|
Dang XW, Duan JL, Ye E, Mao ND, Bai R, Zhou X, Ye XY. Recent advances of small-molecule c-Src inhibitors for potential therapeutic utilities. Bioorg Chem 2023; 142:106934. [PMID: 39492169 DOI: 10.1016/j.bioorg.2023.106934] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/29/2023] [Accepted: 10/20/2023] [Indexed: 11/05/2024]
Abstract
Proto-oncogene tyrosine-protein kinase Src, also known as c-Src, belongs to the family of non-receptor tyrosine protein kinases (TKs) called Src kinases. It plays a crucial role in cell division, motility, adhesion, and survival in both normal cells and cancer cells by activating various signaling pathways mediated by multiple cytokines. Additionally, c-Src kinase has been implicated in osteoclasts and bone loss diseases mediated by inflammation and osteoporosis. In recent years, remarkable advancements have been achieved in the development of c-Src inhibitors, with several candidates progressing to the clinical stage. This review focuses on the research progress in several areas, including the mechanism of action, drug discovery, combination therapy, and clinical research. By presenting this information, we aim to provide researchers with convenient access to valuable insights and inspire new ideas to expedite future drug discovery programs.
Collapse
Affiliation(s)
- Xia-Wen Dang
- School of Pharmacy, Key Laboratory of Elemene Class Anticancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Ji-Long Duan
- School of Pharmacy, Key Laboratory of Elemene Class Anticancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Emily Ye
- Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA
| | - Nian-Dong Mao
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - RenRen Bai
- School of Pharmacy, Key Laboratory of Elemene Class Anticancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| | - Xinglu Zhou
- Drug Discovery, Hangzhou HealZen Therapeutics Co., Ltd., Hangzhou, Zhejiang 310018, China.
| | - Xiang-Yang Ye
- School of Pharmacy, Key Laboratory of Elemene Class Anticancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| |
Collapse
|
23
|
Cuesta-Hernández HN, Contreras J, Soriano-Maldonado P, Sánchez-Wandelmer J, Yeung W, Martín-Hurtado A, Muñoz IG, Kannan N, Llimargas M, Muñoz J, Plaza-Menacho I. An allosteric switch between the activation loop and a c-terminal palindromic phospho-motif controls c-Src function. Nat Commun 2023; 14:6548. [PMID: 37848415 PMCID: PMC10582172 DOI: 10.1038/s41467-023-41890-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 09/18/2023] [Indexed: 10/19/2023] Open
Abstract
Autophosphorylation controls the transition between discrete functional and conformational states in protein kinases, yet the structural and molecular determinants underlying this fundamental process remain unclear. Here we show that c-terminal Tyr 530 is a de facto c-Src autophosphorylation site with slow time-resolution kinetics and a strong intermolecular component. On the contrary, activation-loop Tyr 419 undergoes faster kinetics and a cis-to-trans phosphorylation switch that controls c-terminal Tyr 530 autophosphorylation, enzyme specificity, and strikingly, c-Src non-catalytic function as a substrate. In line with this, we visualize by X-ray crystallography a snapshot of Tyr 530 intermolecular autophosphorylation. In an asymmetric arrangement of both catalytic domains, a c-terminal palindromic phospho-motif flanking Tyr 530 on the substrate molecule engages the G-loop of the active kinase adopting a position ready for entry into the catalytic cleft. Perturbation of the phospho-motif accounts for c-Src dysfunction as indicated by viral and colorectal cancer (CRC)-associated c-terminal deleted variants. We show that c-terminal residues 531 to 536 are required for c-Src Tyr 530 autophosphorylation, and such a detrimental effect is caused by the substrate molecule inhibiting allosterically the active kinase. Our work reveals a crosstalk between the activation and c-terminal segments that control the allosteric interplay between substrate- and enzyme-acting kinases during autophosphorylation.
Collapse
Affiliation(s)
- Hipólito Nicolás Cuesta-Hernández
- Kinases, Protein Phosphorylation and Cancer Group, Structural Biology Programme, Spanish National Cancer Research Center (CNIO), C/Melchor Fernández Almagro num. 3, 28029, Madrid, Spain
| | - Julia Contreras
- Kinases, Protein Phosphorylation and Cancer Group, Structural Biology Programme, Spanish National Cancer Research Center (CNIO), C/Melchor Fernández Almagro num. 3, 28029, Madrid, Spain
| | - Pablo Soriano-Maldonado
- Kinases, Protein Phosphorylation and Cancer Group, Structural Biology Programme, Spanish National Cancer Research Center (CNIO), C/Melchor Fernández Almagro num. 3, 28029, Madrid, Spain
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria (UFV), 28223, Pozuelo de Alarcón, Madrid, Spain
| | - Jana Sánchez-Wandelmer
- Proteomics Unit, Spanish National Cancer Research Center (CNIO), C/Melchor Fernández Almagro num. 3, 28029, Madrid, Spain
| | - Wayland Yeung
- Institute of Bioinformatics, Department of Biochemistry & Molecular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Ana Martín-Hurtado
- Kinases, Protein Phosphorylation and Cancer Group, Structural Biology Programme, Spanish National Cancer Research Center (CNIO), C/Melchor Fernández Almagro num. 3, 28029, Madrid, Spain
| | - Inés G Muñoz
- Protein Crystallography Unit, Spanish National Cancer Research Center (CNIO), C/Melchor Fernández Almagro num. 3, 28029, Madrid, Spain
| | - Natarajan Kannan
- Institute of Bioinformatics, Department of Biochemistry & Molecular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Marta Llimargas
- Institute of Molecular Biology of Barcelona (IMBB) CSIC, 08028, Barcelona, Spain
| | - Javier Muñoz
- Proteomics Unit, Spanish National Cancer Research Center (CNIO), C/Melchor Fernández Almagro num. 3, 28029, Madrid, Spain
- Ikerbasque, Basque Foundation for Science, IIS Biocruces Bizkaia, Building Biocruces Bizkaia 1, 48903, Cruces, Bizkaia, Spain
| | - Iván Plaza-Menacho
- Kinases, Protein Phosphorylation and Cancer Group, Structural Biology Programme, Spanish National Cancer Research Center (CNIO), C/Melchor Fernández Almagro num. 3, 28029, Madrid, Spain.
| |
Collapse
|
24
|
Vitting-Seerup K. Most protein domains exist as variants with distinct functions across cells, tissues and diseases. NAR Genom Bioinform 2023; 5:lqad084. [PMID: 37745975 PMCID: PMC10516350 DOI: 10.1093/nargab/lqad084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/09/2023] [Accepted: 09/05/2023] [Indexed: 09/26/2023] Open
Abstract
Protein domains are the active subunits that provide proteins with specific functions through precise three-dimensional structures. Such domains facilitate most protein functions, including molecular interactions and signal transduction. Currently, these protein domains are described and analyzed as invariable molecular building blocks with fixed functions. Here, I show that most human protein domains exist as multiple distinct variants termed 'domain isotypes'. Domain isotypes are used in a cell, tissue and disease-specific manner and have surprisingly different 3D structures. Accordingly, domain isotypes, compared to each other, modulate or abolish the functionality of protein domains. These results challenge the current view of protein domains as invariable building blocks and have significant implications for both wet- and dry-lab workflows. The extensive use of protein domain isotypes within protein isoforms adds to the literature indicating we need to transition to an isoform-centric research paradigm.
Collapse
Affiliation(s)
- Kristoffer Vitting-Seerup
- The Bioinformatics Section, Department of Health Technology, The Technical University of Denmark (DTU), Denmark
| |
Collapse
|
25
|
Liu K, Hao Z, Zheng H, Wang H, Zhang L, Yan M, Tuerhong R, Zhou Y, Wang Y, Pang T, Shi L. Repurposing of rilpivirine for preventing platelet β3 integrin-dependent thrombosis by targeting c-Src active autophosphorylation. Thromb Res 2023; 229:53-68. [PMID: 37413892 DOI: 10.1016/j.thromres.2023.06.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/19/2023] [Accepted: 06/30/2023] [Indexed: 07/08/2023]
Abstract
BACKGROUND HIV-infected individuals are known to be at higher risk for thrombotic cardiovascular disease (CVD), which may also be differentially affected by components of anti-HIV drugs. To identify the effects of a series of FDA-approved anti-HIV drugs on platelet aggregation in humans, focusing on the novel pharmacological effects of rilpivirine (RPV), a reverse transcriptase inhibitor, on platelet function both in vitro and in vivo and the mechanisms involved. METHODS AND RESULTS In vitro studies showed that RPV was the only anti-HIV reagent that consistently and efficiently inhibited aggregation elicited by different agonists, exocytosis, morphological extension on fibrinogen, and clot retraction. Treatment of mice with RPV significantly prevented thrombus formation in FeCl3-injured mesenteric vessels, postcava with stenosis surgery, and ADP -induced pulmonary embolism models without defects in platelet viability, tail bleeding, and coagulation activities. RPV also improved cardiac performance in mice with post-ischemic reperfusion. A mechanistic study revealed that RPV preferentially attenuated fibrinogen-stimulated Tyr773 phosphorylation of β3-integrin by inhibiting Tyr419 autophosphorylation of c-Src. Molecular docking and surface plasmon resonance analyses showed that RPV can bind directly to c-Src. Further mutational analysis showed that the Phe427 residue of c-Src is critical for RPV interaction, suggesting a novel interaction site for targeting c-Src to block β3-integrin outside-in signaling. CONCLUSION These results demonstrated that RPV was able to prevent the progression of thrombotic CVDs by interrupting β3-integrin-mediated outside-in signaling via inhibiting c-Src activation without hemorrhagic side effects, highlighting RPV as a promising reagent for the prevention and therapy of thrombotic CVDs.
Collapse
Affiliation(s)
- Kui Liu
- Xiamen Key Laboratory of Cardiovascular Disease, Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, 2999 Jinshan Road, Xiamen 361000, China; State Key Laboratory of Natural Medicines, New Drug Screening Center, Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing 210009, China
| | - Zhen Hao
- Xiamen Key Laboratory of Cardiovascular Disease, Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, 2999 Jinshan Road, Xiamen 361000, China; College of Basic Medical Sciences, Dalian Medical University, No. 9 West Section, South Lv shun Road, Dalian 116044, China
| | - Hao Zheng
- College of Basic Medical Sciences, Dalian Medical University, No. 9 West Section, South Lv shun Road, Dalian 116044, China
| | - Haojie Wang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Luying Zhang
- College of Basic Medical Sciences, Dalian Medical University, No. 9 West Section, South Lv shun Road, Dalian 116044, China
| | - Minghui Yan
- College of Basic Medical Sciences, Dalian Medical University, No. 9 West Section, South Lv shun Road, Dalian 116044, China
| | - Reyisha Tuerhong
- College of Basic Medical Sciences, Dalian Medical University, No. 9 West Section, South Lv shun Road, Dalian 116044, China
| | - Yuling Zhou
- Xiamen Key Laboratory of Cardiovascular Disease, Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, 2999 Jinshan Road, Xiamen 361000, China
| | - Yan Wang
- Xiamen Key Laboratory of Cardiovascular Disease, Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, 2999 Jinshan Road, Xiamen 361000, China.
| | - Tao Pang
- State Key Laboratory of Natural Medicines, New Drug Screening Center, Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing 210009, China.
| | - Lei Shi
- Xiamen Key Laboratory of Cardiovascular Disease, Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, 2999 Jinshan Road, Xiamen 361000, China; College of Basic Medical Sciences, Dalian Medical University, No. 9 West Section, South Lv shun Road, Dalian 116044, China.
| |
Collapse
|
26
|
Teli G, Pal R, Maji L, Sengupta S, Raghavendra NM, Matada GSP. Medicinal Chemistry Perspectives on Recent Advances in Src Kinase Inhibitors as a Potential Target for the Development of Anticancer Agents: Biological Profile, Selectivity, Structure-Activity Relationship. Chem Biodivers 2023; 20:e202300515. [PMID: 37563848 DOI: 10.1002/cbdv.202300515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 08/05/2023] [Accepted: 08/10/2023] [Indexed: 08/12/2023]
Abstract
The physiological Src proto-oncogene is a protein tyrosine kinase receptor that served as the essential signaling pathway in different types of cancer. Src kinase receptor is divided into different domains: a unique domain, an SH3 domain, an SH2 domain, a protein tyrosine kinase domain, and a regulatory tail, which runs from the N-terminus to the C-terminus. Src kinase inhibitors bind in the kinase domain and are activated by phosphorylation. The etiology of cancer involved various signaling pathways and Src signaling pathways are also involved in those clusters. Although the dysregulation of Src kinase resulted in cancer being discovered in the late 19th century it is still considered a cult pathway because it is not much explored by different medicinal chemists and oncologists. The Src kinase regulated through different kinase pathways (MAPK, PI3K/Akt/mTOR, JAK/STAT3, Hippo kinase, PEAK1, and Rho/ROCK pathways) and proceeded downstream signaling to conduct cell proliferation, angiogenesis, migration, invasion, and metastasis of cancer cells. There are numerous FDA-approved drugs flooded the market but still, there is a huge demand for the creation of novel anticancer drugs. As the existing drugs are accompanied by several adverse effects and drug resistance due to rapid mutation in proteins. In this review, we have elaborated about the structure and activation of Src kinase, as well as the development of Src kinase inhibitors. Our group also provided a comprehensive overview of Src inhibitors throughout the last two decades, including their biological activity, structure-activity relationship, and Src kinase selectivity. The Src binding pocket has been investigated in detail to better comprehend the interaction of Src inhibitors with amino acid residues. We have strengthened the literature with our contribution in terms of molecular docking and ADMET studies of top compounds. We hope that the current analysis will be a useful resource for researchers and provide glimpse of direction toward the design and development of more specific, selective, and potent Src kinase inhibitors.
Collapse
Affiliation(s)
- Ghanshyam Teli
- Integrated Drug Discovery Center, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, Karnataka, India
| | - Rohit Pal
- Integrated Drug Discovery Center, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, Karnataka, India
| | - Lalmohan Maji
- Integrated Drug Discovery Center, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, Karnataka, India
| | - Sindhuja Sengupta
- Integrated Drug Discovery Center, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, Karnataka, India
| | | | | |
Collapse
|
27
|
Urushihara Y, Hashimoto T, Fujishima Y, Hosoi Y. AMPK/FOXO3a Pathway Increases Activity and/or Expression of ATM, DNA-PKcs, Src, EGFR, PDK1, and SOD2 and Induces Radioresistance under Nutrient Starvation. Int J Mol Sci 2023; 24:12828. [PMID: 37629008 PMCID: PMC10454868 DOI: 10.3390/ijms241612828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/13/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Most solid tumors contain hypoxic and nutrient-deprived microenvironments. The cancer cells in these microenvironments have been reported to exhibit radioresistance. We have previously reported that nutrient starvation increases the expression and/or activity of ATM and DNA-PKcs, which are involved in the repair of DNA double-strand breaks induced by ionizing radiation. In the present study, to elucidate the molecular mechanisms underlying these phenomena, we investigated the roles of AMPK and FOXO3a, which play key roles in the cellular response to nutrient starvation. Nutrient starvation increased clonogenic cell survival after irradiation and increased the activity and/or expression of AMPKα, FOXO3a, ATM, DNA-PKcs, Src, EGFR, PDK1, and SOD2 in MDA-MB-231 cells. Knockdown of AMPKα using siRNA suppressed the activity and/or expression of FOXO3a, ATM, DNA-PKcs, Src, EGFR, PDK1, and SOD2 under nutrient starvation. Knockdown of FOXO3a using siRNA suppressed the activity and/or expression of AMPKα, ATM, DNA-PKcs, FOXO3a, Src, EGFR, PDK1, and SOD2 under nutrient starvation. Nutrient starvation decreased the incidence of apoptosis after 8 Gy irradiation. Knockdown of FOXO3a increased the incidence of apoptosis after irradiation under nutrient starvation. AMPK and FOXO3a appear to be key molecules that induce radioresistance under nutrient starvation and may serve as targets for radiosensitization.
Collapse
Affiliation(s)
- Yusuke Urushihara
- Department of Radiation Biology, School of Medicine, Tohoku University, Sendai 980-8575, Japan
- Kobe Research Lab, Oncolys BioPharma Inc., Kobe 650-0047, Japan
| | - Takuma Hashimoto
- Department of Radiation Biology, School of Medicine, Tohoku University, Sendai 980-8575, Japan
| | - Yohei Fujishima
- Department of Radiation Biology, School of Medicine, Tohoku University, Sendai 980-8575, Japan
- Department of Risk Analysis and Biodosimetry, Institute of Radiation Emergency Medicine, Hirosaki University, Hirosaki 036-8562, Japan
| | - Yoshio Hosoi
- Department of Radiation Biology, School of Medicine, Tohoku University, Sendai 980-8575, Japan
| |
Collapse
|
28
|
Liu X, Bao X, Li Z, Zhang Q. Investigation of Gene Networks in Three Components of Immune System Provides Novel Insights into Immune Response Mechanisms against Edwardsiella tarda Infection in Paralichthys olivaceus. Animals (Basel) 2023; 13:2542. [PMID: 37570350 PMCID: PMC10417057 DOI: 10.3390/ani13152542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023] Open
Abstract
As a quintessential marine teleost, Paralichthys olivaceus demonstrates vulnerability to a range of pathogens. Long-term infection with Edwardsiella tarda significantly inhibits fish growth and even induces death. Gills, blood, and kidneys, pivotal components of the immune system in teleosts, elicit vital regulatory roles in immune response processes including immune cell differentiation, diseased cell clearance, and other immunity-related mechanisms. This study entailed infecting P. olivaceus with E. tarda for 48 h and examining transcriptome data from the three components at 0, 8, and 48 h post-infection employing weighted gene co-expression network analysis (WGCNA) and protein-protein interaction (PPI) network analysis. Network analyses revealed a series of immune response processes after infection and identified multiple key modules and key, core, and hub genes including xpo1, src, tlr13, stat1, and mefv. By innovatively amalgamating WGCNA and PPI network methodologies, our investigation facilitated an in-depth examination of immune response mechanisms within three significant P. olivaceus components post-E. tarda infection. Our results provided valuable genetic resources for understanding immunity in P. olivaceus immune-related components and assisted us in further exploring the molecular mechanisms of E. tarda infection in teleosts.
Collapse
Affiliation(s)
- Xiumei Liu
- College of Life Sciences, Yantai University, Yantai 264005, China
| | - Xiaokai Bao
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Zan Li
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Quanqi Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
29
|
Suresh K. "Lyn"king Emphysema and Cancer Development: Insights from Src Family Kinase Gain-of-Function Models. Am J Respir Cell Mol Biol 2023; 69:8-9. [PMID: 37079882 PMCID: PMC10324041 DOI: 10.1165/rcmb.2023-0122ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023] Open
Affiliation(s)
- Karthik Suresh
- Department of Medicine Johns Hopkins University School of Medicine Baltimore, Maryland
| |
Collapse
|
30
|
Backe SJ, Votra SD, Stokes MP, Sebestyén E, Castelli M, Torielli L, Colombo G, Woodford MR, Mollapour M, Bourboulia D. PhosY-secretome profiling combined with kinase-substrate interaction screening defines active c-Src-driven extracellular signaling. Cell Rep 2023; 42:112539. [PMID: 37243593 PMCID: PMC10569185 DOI: 10.1016/j.celrep.2023.112539] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 04/07/2023] [Accepted: 05/03/2023] [Indexed: 05/29/2023] Open
Abstract
c-Src tyrosine kinase is a renowned key intracellular signaling molecule and a potential target for cancer therapy. Secreted c-Src is a recent observation, but how it contributes to extracellular phosphorylation remains elusive. Using a series of domain deletion mutants, we show that the N-proximal region of c-Src is essential for its secretion. The tissue inhibitor of metalloproteinases 2 (TIMP2) is an extracellular substrate of c-Src. Limited proteolysis-coupled mass spectrometry and mutagenesis studies verify that the Src homology 3 (SH3) domain of c-Src and the P31VHP34 motif of TIMP2 are critical for their interaction. Comparative phosphoproteomic analyses identify an enrichment of PxxP motifs in phosY-containing secretomes from c-Src-expressing cells with cancer-promoting roles. Inhibition of extracellular c-Src using custom SH3-targeting antibodies disrupt kinase-substrate complexes and inhibit cancer cell proliferation. These findings point toward an intricate role for c-Src in generating phosphosecretomes, which will likely influence cell-cell communication, particularly in c-Src-overexpressing cancers.
Collapse
Affiliation(s)
- Sarah J Backe
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - SarahBeth D Votra
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | | | | | - Matteo Castelli
- Dipartimento di Chimica, Università di Pavia, 27100 Pavia, Italy
| | - Luca Torielli
- Dipartimento di Chimica, Università di Pavia, 27100 Pavia, Italy
| | - Giorgio Colombo
- Dipartimento di Chimica, Università di Pavia, 27100 Pavia, Italy
| | - Mark R Woodford
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Mehdi Mollapour
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Dimitra Bourboulia
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA.
| |
Collapse
|
31
|
Buxton ILO, Asif H, Barnett SD. β3 Receptor Signaling in Pregnant Human Myometrium Suggests a Role for β3 Agonists as Tocolytics. Biomolecules 2023; 13:1005. [PMID: 37371585 DOI: 10.3390/biom13061005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/07/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Preterm labor leading to preterm birth is the leading cause of infant morbidity and mortality. At the present time, nothing can reliably halt labor once it begins. The knowledge that agonists of the β2 adrenergic receptor relax airway smooth muscle and are effective in the treatment of asthma led to the notion that β2 mimetics would prevent preterm birth by relaxing uterine smooth muscle. The activation of cAMP-dependent protein kinase by β2 receptors is unable to provide meaningful tocolysis. The failure of β2 agonists such as ritodrine and terbutaline to prevent preterm birth suggests that the regulation of uterine smooth muscle is disparate from that of airway. Other smooth muscle quiescent-mediating molecules, such as nitric oxide, relax vascular smooth muscle in a cGMP-protein kinase G-dependent manner; however, nitric oxide activation of protein kinase G fails to explain the relaxation of the myometrium to nitric oxide. Moreover, nitric oxide-mediated relaxation is blunted in preterm labor, and thus, for this reason and because of the fall in maternal blood pressure, nitric oxide cannot be employed as a tocolytic. The β3 adrenergic receptor-mediated relaxation of the human myometrium is claimed to be cAMP-dependent protein kinase-dependent. This is scientifically displeasing given the failure of β2 agonists as tocolytics and suggests a non-canonical signaling role for β3AR in myometrium. The addition of the β3 agonist mirabegron to pregnant human myometrial strips in the tissue bath relaxes oxytocin-induced contractions. Mirabegron stimulates nitric oxide production in myometrial microvascular endothelial cells, and the relaxation of uterine tissue in vitro is partially blocked by the addition of the endothelial nitric oxide synthase blocker Nω-Nitro-L-arginine. Recent data suggest that both endothelial and smooth muscle cells respond to β3 stimulation and contribute to relaxation through disparate signaling pathways. The repurposing of approved medications such as mirabegron (Mybetriq™) tested in human myometrium as uterine tocolytics can advance the prevention of preterm birth.
Collapse
Affiliation(s)
- Iain L O Buxton
- Myometrial Function Group, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| | - Hazik Asif
- Myometrial Function Group, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| | - Scott D Barnett
- Myometrial Function Group, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| |
Collapse
|
32
|
Goel RK, Kim N, Lukong KE. Seeking a better understanding of the non-receptor tyrosine kinase, SRMS. Heliyon 2023; 9:e16421. [PMID: 37251450 PMCID: PMC10220380 DOI: 10.1016/j.heliyon.2023.e16421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 05/14/2023] [Accepted: 05/16/2023] [Indexed: 05/31/2023] Open
Abstract
SRMS (Src-Related kinase lacking C-terminal regulatory tyrosine and N-terminal Myristoylation Sites) is a non-receptor tyrosine kinase first reported in a 1994 screen for genes regulating murine neural precursor cells. SRMS, pronounced "Shrims", lacks the C-terminal regulatory tyrosine critical for the regulation of the enzymatic activity of Src-family kinases (SFKs). Another remarkable characteristic of SRMS is its localization into distinct SRMS cytoplasmic punctae (SCPs) or GREL (Goel Raghuveera-Erique Lukong) bodies, a pattern not observed in the SFKs. This unique subcellular localization of SRMS could dictate its cellular targets, proteome, and potentially, substrates. However, the function of SRMS is still relatively unknown. Further, how is its activity regulated and by what cellular targets? Studies have emerged highlighting the potential role of SRMS in autophagy and in regulating the activation of BRK/PTK6. Potential novel cellular substrates have also been identified, including DOK1, vimentin, Sam68, FBKP51, and OTUB1. Recent studies have also demonstrated the potential role of the kinase in various cancers, including gastric and colorectal cancers and platinum resistance in ovarian cancer. This review discusses the advancements made in SRMS-related biology to date and the path to understanding the cellular and physiological significance of the kinase.
Collapse
Affiliation(s)
- Raghuveera Kumar Goel
- Center for Network Systems Biology, Boston University, Boston, MA, USA
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Nayoung Kim
- Department of Biochemistry, Microbiology, and Immunology, 107 Wiggins Road, Health Sciences Building, University of Saskatchewan, Saskatoon S7N 5E5, Saskatchewan, Canada
| | - Kiven Erique Lukong
- Department of Biochemistry, Microbiology, and Immunology, 107 Wiggins Road, Health Sciences Building, University of Saskatchewan, Saskatoon S7N 5E5, Saskatchewan, Canada
| |
Collapse
|
33
|
Poh AR, Ernst M. Functional roles of SRC signaling in pancreatic cancer: Recent insights provide novel therapeutic opportunities. Oncogene 2023:10.1038/s41388-023-02701-x. [PMID: 37120696 DOI: 10.1038/s41388-023-02701-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 04/19/2023] [Indexed: 05/01/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignant disease with a 5-year survival rate of <10%. Aberrant activation or elevated expression of the tyrosine kinase c-SRC (SRC) is frequently observed in PDAC and is associated with a poor prognosis. Preclinical studies have revealed a multifaceted role for SRC activation in PDAC, including promoting chronic inflammation, tumor cell proliferation and survival, cancer cell stemness, desmoplasia, hypoxia, angiogenesis, invasion, metastasis, and drug resistance. Strategies to inhibit SRC signaling include suppressing its catalytic activity, inhibiting protein stability, or by interfering with signaling components of the SRC signaling pathway including suppressing protein interactions of SRC. In this review, we discuss the molecular and immunological mechanisms by which aberrant SRC activity promotes PDAC tumorigenesis. We also provide a comprehensive update of SRC inhibitors in the clinic, and discuss the clinical challenges associated with targeting SRC in pancreatic cancer.
Collapse
Affiliation(s)
- Ashleigh R Poh
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Melbourne, VIC, 3084, Australia.
| | - Matthias Ernst
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Melbourne, VIC, 3084, Australia.
| |
Collapse
|
34
|
Huang Y, Wang ZL, He Y, Ye LM, Guo WQ, Zhang JJ. Jiawei Taohe Chengqi Decoction attenuates hepatic fibrosis by preventing activation of HSCs through regulating Src/ERK/Smad3 signal pathway. JOURNAL OF ETHNOPHARMACOLOGY 2023; 305:116059. [PMID: 36549368 DOI: 10.1016/j.jep.2022.116059] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/24/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Jiawei Taohe Chengqi Decoction (JTCD) is a Traditional Chinese Medicine (TCM) formula modified from Taohe Chengqi Decoction in the classic ancient literature of TCM "Treatise on Febrile Diseases". Clinical and pharmacological studies have shown that JTCD has a therapeutic effect on hepatic encephalopathy, non-alcoholic fatty liver, cirrhotic ascites, and can alleviate acute liver injury in rats. Our previous studies confirmed that JTCD could alleviate hepatic fibrosis and activation of hepatic stellate cells (HSCs). However, its mechanism remains unclear. AIM OF THE STUDY This study aimed to elucidate the mechanism of Src Signal on hepatic fibrosis and HSCs activation, and whether JTCD inhibited hepatic fibrosis and HSCs activation through affecting Src Signal. MATERIALS AND METHODS In vivo, sixty specific pathogen free male C57/BL6 mice were divided into following six groups: Control group, Model group, SARA group, JTCD low dose group, JTCD medium dose group and JTCD high dose group. Then we established a carbon tetrachloride (CCL4)-induced hepatic fibrosis mice model, each JTCD group was given the corresponding dose of JTCD by gavage, the SARA group was given Saracatinib and the control group was given saline, once a day for 4 consecutive weeks. UPLC-Q-TOF-MS analyzed chemical components of JTCD. Pathological examination including Hematoxylin and Eosin (H&E), Masson and Sirius red staining was used to observe the characteristic of hepatic fibrosis. Automatic biochemical analyzer detected the levels of alanine aminotransfease (ALT), and aspartate transaminase (AST) in serum. Western-blot and immunohistochemical staining (IHC) detected protein expression. In vitro, we used shRNA to knock down the expression of Src in immortalized human hepatic stellate cell line (LX-2), then intervened with ERK1/2 agonists/inhibitors and JTCD-containing serum after transforming growth factor β1 (TGF-β1) treatment. Immunofluorescence and western-blot detected protein expression. The migratory characteristic of HSCs was assessed by wound-healing assay. RESULTS We identified 135 chemical components in the water extract of JTCD, and the water extract of JTCD contains a variety of anti-hepatic fibrosis components. Compared to the model group, hepatic fibrosis performance was significantly improved, the serum levels of ALT and AST were significantly decreased in JTCD groups and SARA group, IHC staining and western blot results indicated that JTCD decreased the expressions of α-smooth muscle actin (α-SMA), phospho-Src (Tyr416), phospho-ERK1/2 and phospho-Smad3. In vitro, JTCD-containing serum could significantly decrease the protein expressions of α-SMA, phospho-Src (Tyr416), phospho-ERK1/2 and phospho-Smad3 according to the results of western-blot and immunofluorescence, in addition, JTCD-containing serum inhibited the mobility and activation of LX-2. What's more, after intervening with Src-shRNA, ERK1/2 agonists/inhibitors and JTCD-containing serum, the western-blot results showed that Src/ERK/Smad3 signal has an important role in hepatic fibrosis and HSCs, and JTCD attenuates hepatic fibrosis by preventing activation of HSCs through regulating Src/ERK/Smad3 signal pathway. CONCLUSIONS The results showed that Src kinase promoted hepatic fibrosis and HSCs activation through the ERK/Smad3 signal pathway. More importantly, the mechanism by which JTCD attenuated hepatic fibrosis and HSCs activation was by inhibiting the Src/ERK/Smad3 signal pathway.
Collapse
Affiliation(s)
- Yan Huang
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, PR China
| | - Zhi-Li Wang
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, PR China
| | - Yi He
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, PR China
| | - Lin-Mao Ye
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, PR China
| | - Wen-Qin Guo
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, PR China
| | - Jun-Jie Zhang
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, PR China.
| |
Collapse
|
35
|
Cai Y, Zuo X, Zuo Y, Wu S, Pang W, Ma K, Yi Q, Tan L, Deng H, Qu X, Chen X. Transcriptomic analysis reveals shared gene signatures and molecular mechanisms between obesity and periodontitis. Front Immunol 2023; 14:1101854. [PMID: 37063877 PMCID: PMC10090675 DOI: 10.3389/fimmu.2023.1101854] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/24/2023] [Indexed: 03/31/2023] Open
Abstract
BackgroundBoth obesity (OB) and periodontitis (PD) are chronic non-communicable diseases, and numerous epidemiological studies have demonstrated the association between these two diseases. However, the molecular mechanisms that could explain the association between OB and PD are largely unclear. This study aims to investigate the common gene signatures and biological pathways in OB and PD through bioinformatics analysis of publicly available transcriptome datasets.MethodsThe RNA expression profile datasets of OB (GSE104815) and PD (GSE106090) were used as training data, and GSE152991 and GSE16134 as validation data. After screening for differentially expressed genes (DEGs) shared by OB and PD, gene enrichment analysis, protein-protein interaction (PPI) network construction, GeneMANIA analysis, immune infiltration analysis and gene set enrichment analysis (GSEA) were performed. In addition, receiver operating characteristic (ROC) curves were used to assess the predictive accuracy of the hub gene. Finally, we constructed the hub gene-associated TF-miRNA-mRNA regulatory network.ResultsWe identified a total of 147 DEGs shared by OB and PD (38 down-regulated and 109 up-regulated). Functional analysis showed that these genes were mainly enriched in immune-related pathways such as B cell receptor signalling, leukocyte migration and cellular defence responses. 14 hub genes (FGR, MNDA, NCF2, FYB1, EVI2B, LY86, IGSF6, CTSS, CXCR4, LCK, FCN1, CXCL2, P2RY13, MMP7) showed high sensitivity and specificity in the ROC curve analysis. The results of immune infiltration analysis showed that immune cells such as macrophages, activated CD4 T cells and immune B cells were present at high infiltration levels in both OB and PD samples.The results of GeneMANIA analysis and GSEA analysis suggested that five key genes (FGR, LCK, FYB1, LY86 and P2RY13) may be strongly associated with macrophages. Finally, we constructed a TF-miRNA-mRNA regulatory network consisting of 233 transcription factors (TFs), 8 miRNAs and 14 mRNAs based on the validated information obtained from the database.ConclusionsFive key genes (FGR, LCK, FYB1, LY86, P2RY13) may be important biomarkers of OB and PD. These genes may play an important role in the pathogenesis of OB and PD by affecting macrophage activity and participating in immune regulation and inflammatory responses.
Collapse
Affiliation(s)
- Yisheng Cai
- Laboratory of Molecular and Statistical Genetics and Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Xuemei Zuo
- Laboratory of Molecular and Statistical Genetics and Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Yuyang Zuo
- Laboratory of Molecular and Statistical Genetics and Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Shuang Wu
- Laboratory of Molecular and Statistical Genetics and Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Weiwei Pang
- Laboratory of Molecular and Statistical Genetics and Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Keqiang Ma
- Laboratory of Molecular and Statistical Genetics and Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Qiaorong Yi
- Laboratory of Molecular and Statistical Genetics and Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Lijun Tan
- Laboratory of Molecular and Statistical Genetics and Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Hongwen Deng
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA, United States
| | - Xiaochao Qu
- Laboratory of Molecular and Statistical Genetics and Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, China
- *Correspondence: Xiaochao Qu, ; Xiangding Chen,
| | - Xiangding Chen
- Laboratory of Molecular and Statistical Genetics and Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, China
- *Correspondence: Xiaochao Qu, ; Xiangding Chen,
| |
Collapse
|
36
|
de Jesus AA, Chen G, Yang D, Brdicka T, Ruth NM, Bennin D, Cebecauerova D, Malcova H, Freeman H, Martin N, Svojgr K, Passo MH, Bhuyan F, Alehashemi S, Rastegar AT, Uss K, Kardava L, Marrero B, Duric I, Omoyinmi E, Peldova P, Lee CCR, Kleiner DE, Hadigan CM, Hewitt SM, Pittaluga S, Carmona-Rivera C, Calvo KR, Shah N, Balascakova M, Fink DL, Kotalova R, Parackova Z, Peterkova L, Kuzilkova D, Campr V, Sramkova L, Biancotto A, Brooks SR, Manes C, Meffre E, Harper RL, Kuehn H, Kaplan MJ, Brogan P, Rosenzweig SD, Merchant M, Deng Z, Huttenlocher A, Moir SL, Kuhns DB, Boehm M, Skvarova Kramarzova K, Goldbach-Mansky R. Constitutively active Lyn kinase causes a cutaneous small vessel vasculitis and liver fibrosis syndrome. Nat Commun 2023; 14:1502. [PMID: 36932076 PMCID: PMC10022554 DOI: 10.1038/s41467-023-36941-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 02/22/2023] [Indexed: 03/19/2023] Open
Abstract
Neutrophilic inflammation is a hallmark of many monogenic autoinflammatory diseases; pathomechanisms that regulate extravasation of damaging immune cells into surrounding tissues are poorly understood. Here we identified three unrelated boys with perinatal-onset of neutrophilic cutaneous small vessel vasculitis and systemic inflammation. Two patients developed liver fibrosis in their first year of life. Next-generation sequencing identified two de novo truncating variants in the Src-family tyrosine kinase, LYN, p.Y508*, p.Q507* and a de novo missense variant, p.Y508F, that result in constitutive activation of Lyn kinase. Functional studies revealed increased expression of ICAM-1 on induced patient-derived endothelial cells (iECs) and of β2-integrins on patient neutrophils that increase neutrophil adhesion and vascular transendothelial migration (TEM). Treatment with TNF inhibition improved systemic inflammation; and liver fibrosis resolved on treatment with the Src kinase inhibitor dasatinib. Our findings reveal a critical role for Lyn kinase in modulating inflammatory signals, regulating microvascular permeability and neutrophil recruitment, and in promoting hepatic fibrosis.
Collapse
Affiliation(s)
- Adriana A de Jesus
- Translational Autoinflammatory Diseases Section (TADS), Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Guibin Chen
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Dan Yang
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tomas Brdicka
- Laboratory of Leukocyte Signaling, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Natasha M Ruth
- Medical University of South Carolina, Charleston, SC, USA
| | - David Bennin
- Departments of Pediatrics and Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA
| | - Dita Cebecauerova
- Second Faculty of Medicine, Charles University/University Hospital Motol, Prague, Czech Republic
| | - Hana Malcova
- Second Faculty of Medicine, Charles University/University Hospital Motol, Prague, Czech Republic
| | | | - Neil Martin
- Royal Hospital for Children, Glasgow, Scotland
| | - Karel Svojgr
- Second Faculty of Medicine, Charles University/University Hospital Motol, Prague, Czech Republic
| | - Murray H Passo
- Medical University of South Carolina, Charleston, SC, USA
| | - Farzana Bhuyan
- Translational Autoinflammatory Diseases Section (TADS), Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sara Alehashemi
- Translational Autoinflammatory Diseases Section (TADS), Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Andre T Rastegar
- Translational Autoinflammatory Diseases Section (TADS), Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Katsiaryna Uss
- Translational Autoinflammatory Diseases Section (TADS), Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Lela Kardava
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Bernadette Marrero
- Translational Autoinflammatory Diseases Section (TADS), Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Iris Duric
- Laboratory of Leukocyte Signaling, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Ebun Omoyinmi
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Petra Peldova
- Second Faculty of Medicine, Charles University/University Hospital Motol, Prague, Czech Republic
| | | | - David E Kleiner
- National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Stephen M Hewitt
- National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Stefania Pittaluga
- National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Carmelo Carmona-Rivera
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | - Nirali Shah
- National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Miroslava Balascakova
- Second Faculty of Medicine, Charles University/University Hospital Motol, Prague, Czech Republic
| | - Danielle L Fink
- Collaborative Clinical Research Branch/Neutrophil Monitoring Laboratory, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD, USA
| | - Radana Kotalova
- Second Faculty of Medicine, Charles University/University Hospital Motol, Prague, Czech Republic
| | - Zuzana Parackova
- Second Faculty of Medicine, Charles University/University Hospital Motol, Prague, Czech Republic
| | - Lucie Peterkova
- Second Faculty of Medicine, Charles University/University Hospital Motol, Prague, Czech Republic
| | - Daniela Kuzilkova
- Second Faculty of Medicine, Charles University/University Hospital Motol, Prague, Czech Republic
| | - Vit Campr
- Second Faculty of Medicine, Charles University/University Hospital Motol, Prague, Czech Republic
| | - Lucie Sramkova
- Second Faculty of Medicine, Charles University/University Hospital Motol, Prague, Czech Republic
| | | | - Stephen R Brooks
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | | | - Rebecca L Harper
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Hyesun Kuehn
- Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Mariana J Kaplan
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Paul Brogan
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | | | - Melinda Merchant
- AstraZeneca Research Based Biopharmaceutical Company, Waltham, MA, USA
| | - Zuoming Deng
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Anna Huttenlocher
- Departments of Pediatrics and Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA
| | - Susan L Moir
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Douglas B Kuhns
- Collaborative Clinical Research Branch/Neutrophil Monitoring Laboratory, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD, USA
| | - Manfred Boehm
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Raphaela Goldbach-Mansky
- Translational Autoinflammatory Diseases Section (TADS), Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
37
|
Identification of miR-192 target genes in porcine endometrial epithelial cells based on miRNA pull-down. Mol Biol Rep 2023; 50:4273-4284. [PMID: 36914869 DOI: 10.1007/s11033-023-08349-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 02/21/2023] [Indexed: 03/16/2023]
Abstract
INTRODUCTION MicroRNAs (miRNAs)-a class of small endogenous non-coding RNAs-are widely involved in post-transcriptional gene regulation of numerous physiological processes. High-throughput sequencing revealed that the miR-192 expression level appeared to be significantly higher in the blood exosomes of sows at early gestation than that in non-pregnant sows. Furthermore, miR-192 was hypothesized to have a regulatory role in embryo implantation; however, the target genes involved in exerting the regulatory function of miR-192 required further elucidation. METHODS In the present study, potential target genes of miR-192 in porcine endometrial epithelial cells (PEECs) were identified through biotin-labeled miRNA pull-down; functional and pathway enrichment analysis was performed via gene ontology analysis and Kyoto Encyclopedia of Genes and Genomes pathway enrichment. Bioinformatic analyses were concurrently used to predict the potential target genes associated with sow embryo implantation. In addition, double luciferase reporter vectors, reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR), and Western blot were performed to verify the targeting and regulatory roles of the abovementioned target genes. RESULTS A total of 1688 differentially expressed mRNAs were identified via miRNA pull-down. Through RT-qPCR, the accuracy of the sequencing data was verified. In the bioinformatics analysis, potential target genes of miR-192 appeared to form a dense inter-regulatory network and regulated multiple signaling pathways, such as metabolic pathways and the PI3K-Akt, MAPKs, and mTOR signaling pathways, that are relevant to the mammalian embryo implantation process. In addition, CSK (C-terminal Src kinase) and YY1 (Yin-Yang-1) were predicted to be potential candidates, and we validated that miR-192 directly targets and suppresses the expression of the CSK and YY1 genes. CONCLUSION We screened 1688 potential target genes of miR-192 were screened, and CSK and YY1 were identified as miR-192 target genes. The outcomes of the present study provide novel insights into the regulatory mechanism of porcine embryo implantation and the identification of miRNA target genes.
Collapse
|
38
|
Elfaki EM, Alhassan HH, Kamal M, Al-Enazi MM, Rub MA, Asiri AM, Ali M, Marwani HM, Alharethi SH, Alotaibi MM, Azum N. Identifying bioactive phytoconstituents as C-terminal Src kinase inhibitors: a virtual screening and molecular simulation approach. J Biomol Struct Dyn 2023; 41:13415-13424. [PMID: 36752377 DOI: 10.1080/07391102.2023.2176362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 01/22/2023] [Indexed: 02/09/2023]
Abstract
Tyrosine-protein kinase CSK otherwise known as C-terminal Src kinase (CSK), is involved in multiple pathways and processes, including regulating cell growth, differentiation, migration, and immune responses. Altered expression of CSK has been associated with various complexities, including cancer, CD45 deficiency, Osteopetrosis and lupus erythematosus. Important auxiliary roles of CSK in cancer progression make it a crucial target in developing novel anticancer therapy. Thus, CSK inhibitors are of concern as potent immuno-oncology agents. In this perspective, phytochemicals can be a significant source for unraveling novel CSK inhibitors. In this study, we carried out a systematic structure-based virtual screening of bioactive phytoconstituents against CSK to identify its potential inhibitors. After a multi-step screening process, two hits (Shinpterocarpin and Justicidin B) were selected based on their druglike properties and binding affinity towards CSK. The selected hits were further analyzed for their stability and interaction via all-atom molecular dynamics (MD) simulations. The selected hits indicated their potential as selective binding partners of CSK, which can further be used for therapeutic development against CSK-associated malignancies.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Elyasa Mustafa Elfaki
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences-Qurayyat, Jouf University, Qurayyat, Saudi Arabia
| | - Hassan H Alhassan
- Department of Clinical Laboratory Science, College of Applied medical Sciences, Jouf University, Sakaka, Saudi Arabia
| | - Mehnaz Kamal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Maher M Al-Enazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Malik Abdul Rub
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdullah M Asiri
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, Saudi Arabia
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Maroof Ali
- Chemistry Department, Faculty of Science, Aligarh Muslim University, Aligarh, India
| | - Hadi M Marwani
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Salem Hussain Alharethi
- Department of Biological Science, College of Arts and Science, Najran University, Najran, Saudia Arabia
| | - Maha Moteb Alotaibi
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Naved Azum
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
39
|
Src heterodimerically activates Lyn or Fyn to serve as targets for the diagnosis and treatment of esophageal squamous cell carcinoma. SCIENCE CHINA. LIFE SCIENCES 2023:10.1007/s11427-022-2216-x. [PMID: 36763244 DOI: 10.1007/s11427-022-2216-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/21/2022] [Indexed: 02/11/2023]
Abstract
Although Src is one of the oldest and most investigated oncoproteins, its function in tumor malignancy remains to be defined further. In this study, we demonstrated that the inhibition of Src activity by ponatinib effectively suppressed several malignant phenotypes of esophageal squamous cell carcinoma (ESCC) both in vitro and in vivo, whereas it did not produce growth-inhibitory effects on normal esophageal epithelial cells (NEECs). Importantly, we combined phosphoproteomics and several cellular and molecular biologic strategies to identify that Src interacted with the members of Src-family kinases (SFKs), such as Fyn or Lyn, to form heterodimers. Src interactions with Fyn and Lyn phosphorylated the tyrosine sites in SH2 (Fyn Tyr185 or Lyn Tyr183) and kinase domains (Fyn Tyr420 or Lyn Tyr397), which critically contributed to ESCC development. By contrast, Src could not form heterodimers with Fyn or Lyn in NEECs. We used RNA sequencing to comprehensively demonstrate that the inhibition of Src activity effectively blocked several critical tumor-promoting pathways, such as JAK/STAT, mTOR, stemness-related, and metabolism-related pathways. Results of the real-time polymerase chain reaction (RT-PCR) assay confirmed that Lyn and Fyn were critical effectors for the Src-mediated expression of tumor growth or metastasis-related molecules. Furthermore, results of the clinical ESCC samples showed that the hyperactivation of pSrc Tyr419, Fyn Tyr185 or Tyr420, and Lyn Tyr183 or Tyr397 could be biomarkers of ESCC prognosis. This study illustrates that Src/Fyn and Src/Lyn heterodimers serve as targets for the treatment of ESCC.
Collapse
|
40
|
Gul M, Navid A, Rashid S. Structural basis of constitutive c-Src kinase activity due to R175L and W118A mutations. J Biomol Struct Dyn 2023; 41:634-645. [PMID: 34854354 DOI: 10.1080/07391102.2021.2010600] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Cellular Src (c-Src) belongs to a non-receptor membrane-associated tyrosine kinase family that plays essential roles in cellular processes. Growing evidence suggests that R175L and W118A mutations in SH2/SH3 domains of c-Src functionally inactivate these domains leading to constitutive activation of kinase domain (KD). Here we modeled c-SrcR175L, c-SrcW118A and c-SrcW118A+R175L structures by inducing phosphorylation at Y416 or Y527, respectively to characterize the comparative dynamics in the active versus inactive states through molecular dynamics simulation assay. We observed more conformational readjustments in c-Srcopen than its close variants. In particular, C-terminal tail residues of c-SrcW118A-open and c-SrcW118A+R175L-open demonstrate significantly higher transitions. The cross-correlation analysis revealed an anticorrelation behavior in the motion of KD with respect to SH2, SH3 and the linker region of SrcW118A+R175L-open, while in c-SrcWT-open, SH2 and SH3 domains were anticorrelated, while KD and C-terminal tail motions were correlated. Due to these conformational differences, c-Src open forms exhibited lower interaction between pY527 and SH2 domain. Through detailed structural analysis, we observed a uniform myristate binding cavity in c-SrcWT-open, while the myristoyl pockets of mutant forms were deformed. We propose that constitutive activation of mutant Src forms may presumably be achieved by the prolonged membrane binding due to unusual conformations of C-terminal and myristoyl switch residues that may result in a higher dephosphorylation rate at pY527 in the myristoylated c-Src. Thus, our study establishes novel clues to decipher the constitutive activation status of c-Src in response to known mutations that may help in devising novel therapeutic strategies for cancer metastasis treatment.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mehreen Gul
- National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan
| | - Ahmad Navid
- National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan
| | - Sajid Rashid
- National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
41
|
Wang X, Han X, Wang S, Wang Y, Wang P, Zhao Z, Qin H, Jing C, Liang C. Extraction of honokiol from Artemisia argyi and in vitro and in vivo investigation of its antifungal activity. Nat Prod Res 2023; 37:651-656. [PMID: 35506313 DOI: 10.1080/14786419.2022.2071887] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Extracts from plants used in Chinese medicine can be good sources of fungicides for agricultural applications. In this study, we separated and identified antifungal compounds from four traditional Chinese medicine extracts and evaluated their antifungal activities in vitro and in vivo. In vitro, honokiol extracted from Artemisia argyi showed broad-spectrum antimicrobial and mycelial inhibitory activity with EC50 in the range 3.56 - 33.85 μg/mL against eight plant pathogens. q-PCR indicated that honokiol might induce cell cancerisation and inhibit cellular respiration, which provided significant insights into honokiol function in tobacco resistance to molecular mechanisms of the phytopathogenic fungus Phytophthora nicotianae. In vivo, honokiol significantly decreased the rate of fungal infection in eggplants, potatoes, grapes, cherry tomatoes, and cucumbers, and enhanced disease resistance in tobacco. Overall, our results indicate that honokiol has the potential to control a variety of fungal and oomycete diseases, and A. argyi could be a source of honokiol.
Collapse
Affiliation(s)
- Xianxian Wang
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Xiaobin Han
- Zunyi Branch, Guizhou Tobacco Company, Zunyi, China
| | - Shu Wang
- Technology Center of Qingdao Customs, Qingdao, China
| | - Yaobin Wang
- Qingdao Branch, Shandong Qingdao Tobacco Co., Ltd, Qingdao, China
| | - Peng Wang
- Qingdao Branch, Shandong Qingdao Tobacco Co., Ltd, Qingdao, China
| | - Zhongli Zhao
- Qingdao Branch, Shandong Qingdao Tobacco Co., Ltd, Qingdao, China
| | - Huimin Qin
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Changliang Jing
- Ocean Agricultural Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Chen Liang
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
42
|
Harding AL, Colley HE, Vazquez IB, Danby S, Hasan MZ, Nakanishi H, Furuno T, Murdoch C. c-Src activation as a potential marker of chemical-induced skin irritation using tissue-engineered skin equivalents. Exp Dermatol 2023; 32:220-225. [PMID: 36457227 PMCID: PMC10946902 DOI: 10.1111/exd.14719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 11/16/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022]
Abstract
Skin irritancy to topically applied chemicals is a significant problem that affects millions of people worldwide. New or modified chemical entities must be tested for potential skin irritancy by industry as part of the safety and toxicity profiling process. Many of these tests have now moved to a non-animal-based format to reduce experiments on animals. However, these tests for irritancy potential often rely on monolayer cultures of keratinocytes that are not representative of the skin architecture or tissue-engineered human skin equivalents (HSE) using complex multi-gene expression panels that are often cumbersome and not amenable for high throughput. Here, we show that human skin equivalents increase abundance of several phosphorylated kinases (c-Src, c-Jun, p53, GSK3α/β) in response to irritant chemical stimulation by phosphokinase array analysis. Specific phosphorylation of c-SrcY419 was confirmed by immunoblotting and was plasma membrane-associated in basal/spinous cells by phospho-specific immunohistochemistry. Moreover, c-SrcY419 phosphorylation in response to the irritants lactic acid and capsaicin was inhibited by the c-Src inhibitors KB-SRC and betaine trimethylglycine. These data provide the first evidence for c-Src specific activation in response to chemical irritants and point to the development of new modes of rapid testing by immunodetection for first-pass screening of potential irritants.
Collapse
Affiliation(s)
- Amy L. Harding
- School of Clinical DentistryUniversity of SheffieldSheffieldUK
| | - Helen E. Colley
- School of Clinical DentistryUniversity of SheffieldSheffieldUK
| | | | - Simon Danby
- Sheffield Dermatology Research, Department of Infection, Immunity & Cardiovascular Disease, Medical SchoolUniversity of SheffieldSheffieldUK
| | - Md Zobaer Hasan
- Rohto Pharmaceutical Co., Ltd., Safety Design CentreKyotoJapan
| | | | - Tetsuo Furuno
- Rohto Pharmaceutical Co., Ltd., Safety Design CentreKyotoJapan
| | - Craig Murdoch
- School of Clinical DentistryUniversity of SheffieldSheffieldUK
| |
Collapse
|
43
|
Erdogan MA, Yuca E, Ashour A, Gurbuz N, Sencan S, Ozpolat B. SCN5A promotes the growth and lung metastasis of triple-negative breast cancer through EF2-kinase signaling. Life Sci 2023; 313:121282. [PMID: 36526045 DOI: 10.1016/j.lfs.2022.121282] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/29/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022]
Affiliation(s)
- Mumin Alper Erdogan
- Department of Experimental Therapeutics, Unit 1950, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA; Department of Physiology, Faculty of Medicine, Izmir Katip Celebi University, Izmir, Turkey
| | - Erkan Yuca
- Department of Experimental Therapeutics, Unit 1950, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Ahmed Ashour
- Department of Experimental Therapeutics, Unit 1950, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Nilgun Gurbuz
- Department of Experimental Therapeutics, Unit 1950, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Sevide Sencan
- Department of Experimental Therapeutics, Unit 1950, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Bulent Ozpolat
- Department of Experimental Therapeutics, Unit 1950, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA; Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA; Department of Nanomedicine, Innovative Cancer Therapeutics, Dr. Marr and Roy Neil Cancer Center, Houston Methodist Research Institute, Houston, TX 77030, USA.
| |
Collapse
|
44
|
Krstulović L, Leventić M, Rastija V, Starčević K, Jirouš M, Janić I, Karnaš M, Lasić K, Bajić M, Glavaš-Obrovac L. Novel 7-Chloro-4-aminoquinoline-benzimidazole Hybrids as Inhibitors of Cancer Cells Growth: Synthesis, Antiproliferative Activity, in Silico ADME Predictions, and Docking. Molecules 2023; 28:540. [PMID: 36677600 PMCID: PMC9866588 DOI: 10.3390/molecules28020540] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/29/2022] [Accepted: 01/02/2023] [Indexed: 01/08/2023] Open
Abstract
In this study, new 7-chloro-4-aminoquinoline-benzimidazole compounds were synthesized and characterized by NMR, MS, and elemental analysis. These novel hybrids differ in the type of linker and in the substituent on the benzimidazole moiety. Their antiproliferative activities were evaluated on one non-tumor (MDCK1) and seven selected tumor (CaCo-2, MCF-7, CCRF-CEM, Hut78, THP-1, and Raji) cell lines by MTT test and flow cytometry analysis. The compounds with different types of linkers and an unsubstituted benzimidazole ring, 5d, 8d, and 12d, showed strong cytotoxic activity (the GI50 ranged from 0.4 to 8 µM) and effectively suppressed the cell cycle progression in the leukemia and lymphoma cells. After 24 h of treatment, compounds 5d and 12d induced the disruption of the mitochondrial membrane potential as well as apoptosis in HuT78 cells. The drug-like properties and bioavailability of the compounds were calculated using the Swiss ADME web tool, and a molecular docking study was performed on tyrosine-protein kinase c-Src (PDB: 3G6H). Compound 12d showed good solubility and permeability and bound to c-Src with an energy of -119.99 kcal/mol, forming hydrogen bonds with Glu310 and Asp404 in the active site and other residues with van der Waals interactions. The results suggest that compound 12d could be a leading compound in the further design of effective antitumor drugs.
Collapse
Affiliation(s)
- Luka Krstulović
- Department of Chemistry and Biochemistry, Faculty of Veterinary Medicine, University of Zagreb, HR-10000 Zagreb, Croatia
| | - Marijana Leventić
- Department of Medicinal Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, HR-31000 Osijek, Croatia
| | - Vesna Rastija
- Department of Agroecology and Environmental Protection, Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, HR-31000 Osijek, Croatia
| | - Kristina Starčević
- Department of Chemistry and Biochemistry, Faculty of Veterinary Medicine, University of Zagreb, HR-10000 Zagreb, Croatia
| | - Maja Jirouš
- Department of Medicinal Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, HR-31000 Osijek, Croatia
| | - Ivana Janić
- Department of Medicinal Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, HR-31000 Osijek, Croatia
| | - Maja Karnaš
- Department of Agroecology and Environmental Protection, Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, HR-31000 Osijek, Croatia
| | - Kornelija Lasić
- R&D, Pliva Croatia Ltd., TEVA Group Member, HR-10000 Zagreb, Croatia
| | - Miroslav Bajić
- Department of Chemistry and Biochemistry, Faculty of Veterinary Medicine, University of Zagreb, HR-10000 Zagreb, Croatia
| | - Ljubica Glavaš-Obrovac
- Department of Medicinal Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, HR-31000 Osijek, Croatia
| |
Collapse
|
45
|
Koch KC, Tew GN. Functional antibody delivery: Advances in cellular manipulation. Adv Drug Deliv Rev 2023; 192:114586. [PMID: 36280179 DOI: 10.1016/j.addr.2022.114586] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/10/2022] [Accepted: 10/18/2022] [Indexed: 02/03/2023]
Abstract
The current therapeutic antibody market in the U.S. consists of 100 antibody-based products and their market value is expected to explode beyond $300 billion by 2025. These therapies are presently limited to extracellular targets due to the innate inability of antibodies to transverse membranes. To expand the number of accessible therapeutic targets, intracellular antibody delivery is necessary. Many delivery vehicles for antibodies have been used with some promising results, such as nanoparticles and cell penetrating polymers. Despite the success of these delivery platforms using model antibody cargo, there is a surprisingly small number of studies that focus on functional antibody delivery into the cytosol that also measures a cellular response. Antibodies can be designed for essentially unlimited targets, including proteins and DNA, that will ultimately control cell function once delivered inside cells. Advancement in cellular manipulation depends on the application of intracellularly delivering functional antibodies to achieve a desired result. This review focuses on the emerging field of functional antibody delivery which enables various cellular responses and cell manipulation.
Collapse
Affiliation(s)
- Kayla C Koch
- Department of Polymer Science & Engineering, University of Massachusetts, Amherst, MA 01003, United States
| | - Gregory N Tew
- Department of Polymer Science & Engineering, University of Massachusetts, Amherst, MA 01003, United States; Molecular & Cellular Biology Program, University of Massachusetts, Amherst, MA 01003, United States; Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, MA 01003, United States.
| |
Collapse
|
46
|
Kim HG, Sung NY, Kim JH, Cho JY. In vitro anti-cancer effects of beauvericin through inhibition of actin polymerization and Src phosphorylation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 109:154573. [PMID: 36610128 DOI: 10.1016/j.phymed.2022.154573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/09/2022] [Accepted: 11/19/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Beauvericin (BEA) is a depsipeptide with antimicrobial, anti-inflammatory, and anti-cancer activities isolated from Beauveria bassiana. However, little is understood on its anti-cancer activities and mechanism. PURPOSE Aim of this study was to explore the anti-cancer activity of BEA and its underlying molecular mechanism to provide a theoretical basis for its role as a candidate natural drug in cancer diseases. STUDY DESIGN Various cancer cells such as C6 glioma, U251, MDA-MB-231, HeLa, HCT-15, LoVo cells, and HEK293T cells were used to the anti-cancer activity of BEA. METHODS To evaluate the anti-cancer activity of BEA, cell viability test (MTT assay), morphological change check, confocal microscopy, actin polymerization assay, flow cytometry, and Western blotting analysis. To check the target enzyme of BEA, overexpression and site-directed mutagenesis was employed. RESULTS BEA inhibited the viability of cancer cells including C6, MDA-MB-231, HeLa, HCT-15, LoVo, and U251 cells. Treatment of BEA in C6 glioma cells induced cell membrane blebbing and apoptosis. Caspase-3 and -9 were dose-dependently activated by BEA, and the mRNA expression of Bcl-2 was inhibited by BEA. According to confocal microscopy, actin polymerization and actin-actin interaction were interrupted by BEA in C6 cells. BEA regulated the apoptosis of C6 cells depending on the protein phosphorylation of Src and Signal transducer and activator of transcription (STAT3). Moreover, c-terminal amino acids in Src directly interacted with BEA in C6 cells, and the binding of Src and BEA suppressed the kinase activity of Src. CONCLUSIONS These results suggest that BEA may be a critical candidate or substitute drug for cancer treatment via suppression of the Src/STAT3 pathway.
Collapse
Affiliation(s)
- Han Gyung Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea; Research Institute of Biomolecule Control and Biomedical Institute for Convergence at SKKU, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Nak Yoon Sung
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Ji Hye Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea; Research Institute of Biomolecule Control and Biomedical Institute for Convergence at SKKU, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea; Research Institute of Biomolecule Control and Biomedical Institute for Convergence at SKKU, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
47
|
Fortner A, Chera A, Tanca A, Bucur O. Apoptosis regulation by the tyrosine-protein kinase CSK. Front Cell Dev Biol 2022; 10:1078180. [PMID: 36578781 PMCID: PMC9792154 DOI: 10.3389/fcell.2022.1078180] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 11/24/2022] [Indexed: 12/14/2022] Open
Abstract
C-terminal Src kinase (CSK) is a cytosolic tyrosine-protein kinase with an important role in regulating critical cellular decisions, such as cellular apoptosis, survival, proliferation, cytoskeletal organization and many others. Current knowledge on the CSK mechanisms of action, regulation and functions is still at an early stage, most of CSK's known actions and functions being mediated by the negative regulation of the SRC family of tyrosine kinases (SFKs) through phosphorylation. As SFKs play a vital role in apoptosis, cell proliferation and survival regulation, SFK inhibition by CSK has a pro-apoptotic effect, which is mediated by the inhibition of cellular signaling cascades controlled by SFKs, such as the MAPK/ERK, STAT3 and PI3K/AKT signaling pathways. Abnormal functioning of CSK and SFK activation can lead to diseases such as cancer, cardiovascular and neurological manifestations. This review describes apoptosis regulation by CSK, CSK inhibition of the SFKs and further explores the clinical relevance of CSK in important pathologies, such as cancer, autoimmune, autoinflammatory, neurologic diseases, hypertension and HIV/AIDS.
Collapse
Affiliation(s)
- Andra Fortner
- Victor Babes National Institute of Pathology, Bucharest, Romania,Medical School, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
| | - Alexandra Chera
- Victor Babes National Institute of Pathology, Bucharest, Romania,Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Antoanela Tanca
- Victor Babes National Institute of Pathology, Bucharest, Romania,Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania,*Correspondence: Octavian Bucur, ; Antoanela Tanca,
| | - Octavian Bucur
- Victor Babes National Institute of Pathology, Bucharest, Romania,Viron Molecular Medicine Institute, Boston, MA, United States,*Correspondence: Octavian Bucur, ; Antoanela Tanca,
| |
Collapse
|
48
|
Jiang XF, Zhang BM, Du FQ, Guo JN, Wang D, Li YE, Deng SH, Cui BB, Liu YL. Exploring biomarkers for prognosis and neoadjuvant chemosensitivity in rectal cancer: Multi-omics and ctDNA sequencing collaboration. Front Immunol 2022; 13:1013828. [PMID: 36569844 PMCID: PMC9780298 DOI: 10.3389/fimmu.2022.1013828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 11/23/2022] [Indexed: 12/13/2022] Open
Abstract
Introduction This study aimed to identified the key genes and sequencing metrics for predicting prognosis and efficacy of neoadjuvant chemotherapy (nCT) in rectal cancer (RC) based on genomic DNA sequencing in samples with different origin and multi-omics association database. Methods We collected 16 RC patients and obtained DNA sequencing data from cancer tissues and plasma cell-free DNA before and after nCT. Various gene variations were analyzed, including single nucleotide variants (SNV), copy number variation (CNV), tumor mutation burden (TMB), copy number instability (CNI) and mutant-allele tumor heterogeneity (MATH). We also identified genes by which CNV level can differentiate the response to nCT. The Cancer Genome Atlas database and the Clinical Proteomic Tumor Analysis Consortium database were used to further evaluate the specific role of therapeutic relevant genes and screen out the key genes in multi-omics levels. After the intersection of the screened genes from differential expression analysis, survival analysis and principal components analysis dimensionality reduction cluster analysis, the key genes were finally identified. Results The genes CNV level of principal component genes in baseline blood and cancer tissues could significantly distinguish the two groups of patients. The CNV of HSP90AA1, EGFR, SRC, MTOR, etc. were relatively gained in the better group compared with the poor group in baseline blood. The CNI and TMB was significantly different between the two groups. The increased expression of HSP90AA1, EGFR, and SRC was associated with increased sensitivity to multiple chemotherapeutic drugs. The nCT predictive score obtained by therapeutic relevant genes could be a potential prognostic indicator, and the combination with TMB could further refine prognostic prediction for patients. After a series of analysis in multi-omics association database, EGFR and HSP90AA1 with significant differences in multiple aspects were identified as the key predictive genes related to prognosis and the sensitivity of nCT. Discussion This work revealed that effective combined application and analysis in multi-omics data are critical to search for predictive biomarkers. The key genes EGFR and HSP90AA1 could serve as an effective biomarker to predict prognose and neoadjuvant chemosensitivity.
Collapse
Affiliation(s)
- Xiu-Feng Jiang
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Bo-Miao Zhang
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Fen-Qi Du
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Jun-Nan Guo
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Dan Wang
- Department of Neurology, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Yi-En Li
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Shen-Hui Deng
- Department of Anesthesiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bin-Bin Cui
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, China,*Correspondence: Bin-Bin Cui, ; Yan-Long Liu,
| | - Yan-Long Liu
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, China,*Correspondence: Bin-Bin Cui, ; Yan-Long Liu,
| |
Collapse
|
49
|
Carigga Gutierrez NM, Pujol-Solé N, Arifi Q, Coll JL, le Clainche T, Broekgaarden M. Increasing cancer permeability by photodynamic priming: from microenvironment to mechanotransduction signaling. Cancer Metastasis Rev 2022; 41:899-934. [PMID: 36155874 DOI: 10.1007/s10555-022-10064-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/06/2022] [Indexed: 01/25/2023]
Abstract
The dense cancer microenvironment is a significant barrier that limits the penetration of anticancer agents, thereby restraining the efficacy of molecular and nanoscale cancer therapeutics. Developing new strategies to enhance the permeability of cancer tissues is of major interest to overcome treatment resistance. Nonetheless, early strategies based on small molecule inhibitors or matrix-degrading enzymes have led to disappointing clinical outcomes by causing increased chemotherapy toxicity and promoting disease progression. In recent years, photodynamic therapy (PDT) has emerged as a novel approach to increase the permeability of cancer tissues. By producing excessive amounts of reactive oxygen species selectively in the cancer microenvironment, PDT increases the accumulation, penetration depth, and efficacy of chemotherapeutics. Importantly, the increased cancer permeability has not been associated to increased metastasis formation. In this review, we provide novel insights into the mechanisms by which this effect, called photodynamic priming, can increase cancer permeability without promoting cell migration and dissemination. This review demonstrates that PDT oxidizes and degrades extracellular matrix proteins, reduces the capacity of cancer cells to adhere to the altered matrix, and interferes with mechanotransduction pathways that promote cancer cell migration and differentiation. Significant knowledge gaps are identified regarding the involvement of critical signaling pathways, and to which extent these events are influenced by the complicated PDT dosimetry. Addressing these knowledge gaps will be vital to further develop PDT as an adjuvant approach to improve cancer permeability, demonstrate the safety and efficacy of this priming approach, and render more cancer patients eligible to receive life-extending treatments.
Collapse
Affiliation(s)
| | - Núria Pujol-Solé
- Université Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Institute for Advanced Biosciences, 38000, Grenoble, France
| | - Qendresa Arifi
- Université Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Institute for Advanced Biosciences, 38000, Grenoble, France
| | - Jean-Luc Coll
- Université Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Institute for Advanced Biosciences, 38000, Grenoble, France
| | - Tristan le Clainche
- Université Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Institute for Advanced Biosciences, 38000, Grenoble, France.
| | - Mans Broekgaarden
- Université Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Institute for Advanced Biosciences, 38000, Grenoble, France.
| |
Collapse
|
50
|
Identification of Potential Molecular Targets and Active Ingredients of Mingmu Dihuang Pill for the Treatment of Diabetic Retinopathy Based on Network Pharmacology. BIOMED RESEARCH INTERNATIONAL 2022; 2022:2896185. [DOI: 10.1155/2022/2896185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 10/27/2022] [Accepted: 11/11/2022] [Indexed: 11/25/2022]
Abstract
Objective. Mingmu Dihuang Pill (MMDHP) is a traditional Chinese formula that has shown remarkable improvements of dry eyes, tearing, and blurry vision; however, the mechanisms underlying MMDHP treatment for diabetic retinopathy have not been fully understood. This study is aimed at identifying the molecular targets and active ingredients of MMDHP for the treatment of diabetic retinopathy based on network pharmacology. Methods. All active ingredients of MMDHP were retrieved from TCMSP and BATMAN-TCM databases, and the targets of active ingredients of MMDHP were predicted on the SwissTargetPrediction website. Diabetic retinopathy-related target sets were retrieved from GeneCards and OMIM databases, and the intersecting targets between targets of active ingredients of MMDHP and potential therapeutic targets of diabetic retinopathy were collected to generate the traditional Chinese medicine-ingredient-target-diabetic retinopathy network and to create the protein-protein interaction network. In addition, GO terms and KEGG pathway enrichment analyses were performed to identify the potential pathways, and molecular docking was employed to verify the binding of active ingredients of MMDHP to key targets of diabetic retinopathy. Results. Network pharmacology predicted 183 active ingredients and 904 targets from MMDHP, and 203 targets were intersected with the therapeutic targets of diabetic retinopathy. The top 10 hub targets included PIK3RA, TP53, SRC, JUN, HRAS, AKT1, VEGFA, EGFR, ESR1, and PI3KCA. GO terms and KEGG pathway enrichment analyses identified AGE-RAGE, PI3K-AKT, and Rap1 signaling pathways as major pathways involved in MMDHP treatment for diabetic retinopathy. Molecular docking confirmed a good binding affinity of active ingredients of MMDHP, including luteolin, acacetin, naringenin, and alisol B, with AKT1, SRC, and VEGFA as the three key targets of diabetic retinopathy. Conclusion. MMDHP may be effective for the treatment of diabetic retinopathy through active ingredients luteolin, acacetin, naringenin, and alisol B via AKT1, SRC, and VEGFA in AGE-RAGE, PI3K-AKT, and Rap1 signaling pathways.
Collapse
|