1
|
Tan RJ, Liu Y. Matrix metalloproteinases in kidney homeostasis and diseases: an update. Am J Physiol Renal Physiol 2024; 327:F967-F984. [PMID: 39361724 DOI: 10.1152/ajprenal.00179.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/23/2024] [Accepted: 09/23/2024] [Indexed: 10/05/2024] Open
Abstract
Matrix metalloproteinases (MMPs) are zinc-dependent endopeptidases with important roles in kidney homeostasis and pathology. While capable of collectively degrading each component of the extracellular matrix, MMPs also degrade nonmatrix substrates to regulate inflammation, epithelial plasticity, proliferation, apoptosis, and angiogenesis. More recently, intriguing mechanisms that directly alter podocyte biology have been described. There is now irrefutable evidence for MMP dysregulation in many types of kidney disease including acute kidney injury, diabetic and hypertensive nephropathy, polycystic kidney disease, and Alport syndrome. This updated review will detail the complex biology of MMPs in kidney disease.
Collapse
Affiliation(s)
- Roderick J Tan
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
- VA Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, United States
| | - Youhua Liu
- Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
2
|
Sirois JP, Heinz A. Matrikines in the skin: Origin, effects, and therapeutic potential. Pharmacol Ther 2024; 260:108682. [PMID: 38917886 DOI: 10.1016/j.pharmthera.2024.108682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/31/2024] [Accepted: 06/21/2024] [Indexed: 06/27/2024]
Abstract
The extracellular matrix (ECM) represents a complex multi-component environment that has a decisive influence on the biomechanical properties of tissues and organs. Depending on the tissue, ECM components are subject to a homeostasis of synthesis and degradation, a subtle interplay that is influenced by external factors and the intrinsic aging process and is often disturbed in pathologies. Upon proteolytic cleavage of ECM proteins, small bioactive peptides termed matrikines can be formed. These bioactive peptides play a crucial role in cell signaling and contribute to the dynamic regulation of both physiological and pathological processes such as tissue remodeling and repair as well as inflammatory responses. In the skin, matrikines exert an influence for instance on cell adhesion, migration, and proliferation as well as vasodilation, angiogenesis and protein expression. Due to their manifold functions, matrikines represent promising leads for developing new therapeutic options for the treatment of skin diseases. This review article gives a comprehensive overview on matrikines in the skin, including their origin in the dermal ECM, their biological effects and therapeutic potential for the treatment of skin pathologies such as melanoma, chronic wounds and inflammatory skin diseases or for their use in anti-aging cosmeceuticals.
Collapse
Affiliation(s)
- Jonathan P Sirois
- Department of Pharmacy, LEO Foundation Center for Cutaneous Drug Delivery, University of Copenhagen, Copenhagen, Denmark
| | - Andrea Heinz
- Department of Pharmacy, LEO Foundation Center for Cutaneous Drug Delivery, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
3
|
Brodesser DM, Kummer S, Eichberger JA, Schlangen K, Corteggio A, Borzacchiello G, Bertram CA, Brandt S, Pratscher B. Deregulation of Metalloproteinase Expression in Gray Horse Melanoma Ex Vivo and In Vitro. Cells 2024; 13:956. [PMID: 38891088 PMCID: PMC11172212 DOI: 10.3390/cells13110956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/25/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
The ability of human melanoma cells to switch from an epithelial to a mesenchymal phenotype contributes to the metastatic potential of disease. Metalloproteinases (MPs) are crucially involved in this process by promoting the detachment of tumor cells from the primary lesion and their migration to the vasculature. In gray horse melanoma, epithelial-mesenchymal transition (EMT) is poorly understood, prompting us to address MP expression in lesions versus intact skin by transcriptome analyses and the immunofluorescence staining (IF) of gray horse tumor tissue and primary melanoma cells. RNAseq revealed the deregulation of several MPs in gray horse melanoma and, notably, a 125-fold upregulation of matrix metalloproteinase 1 (MMP1) that was further confirmed by RT-qPCR from additional tumor material. The IF staining of melanoma tissue versus intact skin for MMP1 and tumor marker S100 revealed MMP1 expression in all lesions. The co-expression of S100 was observed at different extents, with some tumors scoring S100-negative. The IF staining of primary tumor cells explanted from the tumors for MMP1 showed that the metalloproteinase is uniformly expressed in the cytoplasm of 100% of tumor cells. Overall, the presented data point to MP expression being deregulated in gray horse melanoma, and suggest that MMP1 has an active role in gray horse melanoma by driving EMT-mediated tumor cell dissemination via the degradation of the extracellular matrix. Whilst S100 is considered a reliable tumor marker in human MM, gray horse melanomas do not seem to regularly express this protein.
Collapse
Affiliation(s)
- Daniela M. Brodesser
- Research Group Oncology (RGO), Centre for Equine Health and Research, Department for Small Animals and Horses, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria; (D.M.B.); (J.A.E.)
| | - Stefan Kummer
- VetImaging, VetCore Facility, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria;
| | - Julia A. Eichberger
- Research Group Oncology (RGO), Centre for Equine Health and Research, Department for Small Animals and Horses, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria; (D.M.B.); (J.A.E.)
| | - Karin Schlangen
- Section for Biosimulation and Bioinformatics, Centre for Medical Statistics, Informatics and Intelligent Systems, Medical University of Vienna (MUV), Waehringer Guertel 18-20, 1090 Vienna, Austria;
| | - Annunziata Corteggio
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Via Pietro Castellino 111, 80131 Naples, Italy;
| | - Giuseppe Borzacchiello
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Corso Umberto I 40, 80138 Naples, Italy;
| | - Christof A. Bertram
- Institute of Pathology, Department of Pathobiology, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria;
| | - Sabine Brandt
- Research Group Oncology (RGO), Centre for Equine Health and Research, Department for Small Animals and Horses, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria; (D.M.B.); (J.A.E.)
| | - Barbara Pratscher
- Division of Small Animal Internal Medicine, Department for Small Animals and Horses, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria;
| |
Collapse
|
4
|
Rahat MM, Sabtan H, Simanovich E, Haddad A, Gazitt T, Feld J, Slobodin G, Kibari A, Elias M, Zisman D, Rahat MA. Soluble CD147 regulates endostatin via its effects on the activities of MMP-9 and secreted proteasome 20S. Front Immunol 2024; 15:1319939. [PMID: 38318187 PMCID: PMC10840997 DOI: 10.3389/fimmu.2024.1319939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/02/2024] [Indexed: 02/07/2024] Open
Abstract
During progression of rheumatoid arthritis (RA), angiogenesis provides oxygen and nutrients for the cells' increased metabolic demands and number. To turn on angiogenesis, pro-angiogenic factors must outweigh anti-angiogenic factors. We have previously shown that CD147/extracellular matrix metalloproteinase inducer (EMMPRIN) can induce the expression of the pro-angiogenic factors vascular endothelial growth factor (VEGF) and matrix metallopeptidase 9 (MMP-9) in a co-culture of the human HT1080 fibrosarcoma and U937 monocytic-like cell lines. However, whether CD147 influences anti-angiogenic factors was not known. We now show that relative to single cultures, the co-culture of these cells not only enhanced pro-angiogenic factors but also decreased the anti-angiogenic factors endostatin and thrombospondin-1 (Tsp-1), generally increasing the angiogenic potential as measured by a wound assay. Using anti-CD147 antibody, CD147 small interfering RNA (siRNA), and recombinant CD147, we demonstrate that CD147 hormetically regulates the generation of endostatin but has no effect on Tsp-1. Since endostatin is cleaved from collagen XVIII (Col18A), we applied different protease inhibitors and established that MMP-9 and proteasome 20S, but not cathepsins, are responsible for endostatin generation. MMP-9 and proteasome 20S collaborate to synergistically enhance endostatin generation, and in a non-cellular system, CD147 enhanced MMP-9 activity and hormetically regulated proteasome 20S activity. Serum samples obtained from RA patients and healthy controls mostly corroborated these findings, indicating clinical relevance. Cumulatively, these findings suggest that secreted CD147 mediates a possibly allosteric effect on MMP-9 and proteasome 20S activities and can serve as a switch that turns angiogenesis on or off, depending on its ambient concentrations in the microenvironment.
Collapse
Affiliation(s)
- Maya M. Rahat
- Immunotherapy Laboratory, Carmel Medical Center, Haifa, Israel
| | - Hala Sabtan
- Immunotherapy Laboratory, Carmel Medical Center, Haifa, Israel
- Department of Rheumatology, Carmel Medical Center, Haifa, Israel
| | | | - Amir Haddad
- Department of Rheumatology, Carmel Medical Center, Haifa, Israel
- The Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Tal Gazitt
- Department of Rheumatology, Carmel Medical Center, Haifa, Israel
- The Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Joy Feld
- Department of Rheumatology, Carmel Medical Center, Haifa, Israel
- The Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Gleb Slobodin
- The Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Department of Rheumatology, Bnai Zion Medical Center, Haifa, Israel
| | - Adi Kibari
- Department of Rheumatology, Carmel Medical Center, Haifa, Israel
- The Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Muna Elias
- Department of Rheumatology, Carmel Medical Center, Haifa, Israel
| | - Devy Zisman
- Department of Rheumatology, Carmel Medical Center, Haifa, Israel
- The Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Michal A. Rahat
- Immunotherapy Laboratory, Carmel Medical Center, Haifa, Israel
- The Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
5
|
Bao F, Liu M, Gai W, Hua Y, Li J, Han C, Zai Z, Li J, Hua Z. Bacteria-mediated tumor-targeted delivery of tumstatin (54-132) significantly suppresses tumor growth in mouse model by inhibiting angiogenesis and promoting apoptosis. Front Med 2022; 16:873-882. [PMID: 36152127 DOI: 10.1007/s11684-022-0925-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 01/30/2022] [Indexed: 01/19/2023]
Abstract
Tumor growth is an angiogenesis-dependent process and accompanied by the formation of hypoxic areas. Tumstatin is a tumor-specific angiogenesis inhibitor that suppresses the proliferation and induces the apoptosis of tumorous vascular endothelial cells. VNP20009, an attenuated Salmonella typhimurium strain, preferentially accumulates in the hypoxic areas of solid tumors. In this study, a novel Salmonella-mediated targeted expression system of tumstatin (VNP-Tum5) was developed under the control of the hypoxia-induced J23100 promoter to obtain anti-tumor efficacy in mice. Treatment with VNP-Tum5 effectively suppressed tumor growth and prolonged survival in the mouse model of B16F10 melanoma. VNP-Tum5 exhibited a higher efficacy in inhibiting the proliferation and inducing the necrosis and apoptosis of B16F10 cells in vitro and in vivo compared with VNP (control). VNP-Tum5 significantly inhibited the proliferation and migration of mouse umbilical vascular endothelial cells to impede angiogenesis. VNP-Tum5 downregulated the expression of anti-vascular endothelial growth factor A, platelet endothelial cell adhesion molecule-1, phosphorylated phosphoinositide 3 kinase, and phosphorylated protein kinase B and upregulated the expression of cleaved-caspase 3 in tumor tissues. This study is the first to use tumstatin-transformed VNP20009 as a tumor-targeted system for treatment of melanoma by combining anti-tumor and anti-angiogenic effects.
Collapse
Affiliation(s)
- Feifei Bao
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Mengjie Liu
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Wenhua Gai
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Yuwei Hua
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Jing Li
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Chao Han
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Ziyu Zai
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Jiahuang Li
- Changzhou High-Tech Research Institute of Nanjing University and Jiangsu Target Pharma Laboratories Inc., Changzhou, 213164, China
| | - Zichun Hua
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China.
- Changzhou High-Tech Research Institute of Nanjing University and Jiangsu Target Pharma Laboratories Inc., Changzhou, 213164, China.
| |
Collapse
|
6
|
Zhu C, Zuo Z, Xu C, Ji M, He J, Li J. Tumstatin (69-88) alleviates heart failure via attenuating oxidative stress in rats with myocardial infarction. Heliyon 2022; 8:e10582. [PMID: 36158078 PMCID: PMC9489976 DOI: 10.1016/j.heliyon.2022.e10582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/30/2022] [Accepted: 09/05/2022] [Indexed: 11/30/2022] Open
Abstract
Background This study aimed to elucidate the effects of tumstatin (69–88) on heart failure and the underlying mechanism. Materials and methods Myocardial infarction (MI) was induced by ligating the left coronary artery in rats to trigger heart failure. Results Tumstatin (69–88) can reduce cardiac insufficiency in rats with heart failure. The increased cardiac fibrosis in MI rat was attenuated by tumstatin (69–88). Increase of cardiac atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) in rats with myocardial infarction, and Ang II-treated NRCMs or H9C2 cells was inhibited by tumstatin (69–88). In the heart of MI rats, and Ang II-treated NRCMs or H9C2 cells, the superoxide anions and NADPH oxidase (Nox) activity rose and the superoxide dismutase (SOD) activity was reduced, which was inhibited by tumstatin (69–88). Diethyldithiocarbamate, an SOD inhibitor, increased the ANP and BNP in NRCMs or H9C2 cells. Tumstatin (69–88) inhibited the Ang II-induced raises of ANP and BNP in NRCMs or H9C2 cells, which was reversed by DETC. Conclusions These results indicate that tumstatin (69–88) alleviates cardiac dysfunction of heart failure. Tumstatin (69–88) improves the hypertrophy of cardiomyocytes via attenuation of oxidative stress. Tumstatin (69–88) may be a potential drug for heart failure in the future.
Collapse
Affiliation(s)
- Congfei Zhu
- Department of Cardiology, Lianshui County People's Hospital, Huaian, China
| | - Zhi Zuo
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Cheng Xu
- Department of Cardiology, Lianshui County People's Hospital, Huaian, China
| | - Mingyue Ji
- Department of Cardiology, Lianshui County People's Hospital, Huaian, China
| | - Junjie He
- Department of Cardiology, Lianshui County People's Hospital, Huaian, China
| | - Jinshuang Li
- Department of Cardiology, Suqian Hospital Affiliated of Xuzhou Medical University, Suqian, China
| |
Collapse
|
7
|
Matrikines as mediators of tissue remodelling. Adv Drug Deliv Rev 2022; 185:114240. [PMID: 35378216 DOI: 10.1016/j.addr.2022.114240] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/21/2022] [Accepted: 03/26/2022] [Indexed: 11/21/2022]
Abstract
Extracellular matrix (ECM) proteins confer biomechanical properties, maintain cell phenotype and mediate tissue repair (via release of sequestered cytokines and proteases). In contrast to intracellular proteomes, where proteins are monitored and replaced over short time periods, many ECM proteins function for years (decades in humans) without replacement. The longevity of abundant ECM proteins, such as collagen I and elastin, leaves them vulnerable to damage accumulation and their host organs prone to chronic, age-related diseases. However, ECM protein fragmentation can potentially produce peptide cytokines (matrikines) which may exacerbate and/or ameliorate age- and disease-related ECM remodelling. In this review, we discuss ECM composition, function and degradation and highlight examples of endogenous matrikines. We then critically and comprehensively analyse published studies of matrix-derived peptides used as topical skin treatments, before considering the potential for improvements in the discovery and delivery of novel matrix-derived peptides to skin and internal organs. From this, we conclude that while the translational impact of matrix-derived peptide therapeutics is evident, the mechanisms of action of these peptides are poorly defined. Further, well-designed, multimodal studies are required.
Collapse
|
8
|
Chamani R, Taleqani MH, Imanpour A, Khatami M. New insights into short peptides derived from the collagen NC1 α1, α2, and α3 (IV) domains: An experimental and MD simulations study. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2022; 1870:140769. [PMID: 35151893 DOI: 10.1016/j.bbapap.2022.140769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 02/04/2022] [Accepted: 02/08/2022] [Indexed: 10/19/2022]
Abstract
Proteolytically cleavage of the collagen NC1 α1 to α3 (IV) domains leads to antiangiogenic proteins called Arresten, Canstatin, and Tumstatin, respectively. The research identified that the two overlapping peptides derived from Tumstatin are more effective than other fragments and amino acids L78, V82, and D84 are essential for their activity. In the present study, the efficacy of a nine amino acid peptide derived from Tumstatin (Tum), containing amino acids L78, V82, and D84 was compared to the corresponding sequence in Arresten (Ars) and Canstatin (Can) in vitro and in vivo. Moreover, CD spectroscopy, MD, and docking simulations were performed to evaluate the structure and the interaction of peptides to integrin αvβ3, respectively. Results demonstrated that peptides inhibit viability, migration, and tube formation in vitro, as well as the growth of tumor in vivo and Canstatin-derived peptide was more potent than others. CD measurement and DSSP calculation revealed that Can had more coil conformation. According to MD simulations, Can had more fluctuation, less intramolecular interactions, and less structural compactness compared to Tum and Ars. It can be assumed that amino acid variations lead to a more flexible and loose structure compared to the other peptides. The Canstatin-derived peptide interacts with the integrin αvβ3 extremely close to RGD binding site by the most negative binding energy and more interactions. In conclusion, we for the first time identified an active peptide derived from Canstatin and showed that the sequence affected structure and thereby interaction of peptide to its receptor.
Collapse
Affiliation(s)
- Reyhane Chamani
- Department of Biology, Faculty of Science, Yazd University, Yazd, Iran.
| | | | - Aylar Imanpour
- Department of Fisheries, Faculty of Natural Resources, Urmia University, Urmia, Iran
| | - Mehri Khatami
- Department of Biology, Faculty of Science, Yazd University, Yazd, Iran
| |
Collapse
|
9
|
Thomas DM, Kannabiran C, Balasubramanian D. Identification of Key Genes and Pathways in Persistent Hyperplastic Primary Vitreous of the Eye Using Bioinformatic Analysis. Front Med (Lausanne) 2021; 8:690594. [PMID: 34485332 PMCID: PMC8409525 DOI: 10.3389/fmed.2021.690594] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 06/07/2021] [Indexed: 11/13/2022] Open
Abstract
Background: The failure of the embryonic hyaloid vascular system to regress naturally causes persistent hyperplastic primary vitreous (PHPV), a congenital eye disease. PHPVs molecular pathway, candidate genes, and drug targets are unknown. The current paper describes a comprehensive analysis using bioinformatics to identify the key genes and molecular pathways associated with PHPV, and to evaluate potential therapeutic agents for disease management. Methods: The genes associated with PHPV were identified using the pubmed2ensembl text mining platform. GeneCodis was employed to evaluate the Gene Ontology (GO) biological process terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Search Tool for the Retrieval of Interacting Genes (STRING) constructed a protein-protein interaction (PPI) network from the text mining genes (TMGs) in Cytoscape. The significant modules were clustered using Molecular Complex Detection (MCODE), and the GO and KEGG analysis for the hub genes were analyzed with the Database of Annotation, Visualization and Integrated Discovery (DAVID) tool. ClueGO, CluePedia, and ShinyGo were used to illustrate the functions and pathways of the clustered hub genes in a significant module. The Drug-Gene Interaction database (DGIdb) was used to evaluate drug-gene interactions of the hub genes to identify potential PHPV drug candidates. Results: A total of 50 genes associated with PHPV were identified. Overall, 35 enriched GO terms and 15 KEGG pathways were discovered by the gene functional enrichment analysis. Two gene modules were obtained from the PPI network constructed with 31 nodes with 42 edges using MCODE. We selected 14 hub genes as core candidate genes: TP53, VEGFA, SMAD2, CDKN2A, FOXC, FZD4, LRP5, KDR, FZD5, PAX6, MYCN, NDP, PITX2, and PAX2, primarily associated with camera-type eye morphogenesis, pancreatic cancer, the apoptotic process involved in morphogenesis, and the VEGF receptor signaling pathway. We discovered that 26 Food and Drug Administration (FDA)-approved drugs could target 7 of the 14 hub genes. Conclusions: In conclusion, the results revealed a total of 14 potential genes, 4 major pathways, 7 drug gene targets, and 26 candidate drugs that could provide the basis of novel targeted therapies for targeted treatment and management of PHPV.
Collapse
Affiliation(s)
- Derin M Thomas
- Kallam Anji Reddy Molecular Genetics Laboratory, Prof. Brien Holden Eye Research Center, LV Prasad Eye Institute, Hyderabad, India
| | - Chitra Kannabiran
- Kallam Anji Reddy Molecular Genetics Laboratory, Prof. Brien Holden Eye Research Center, LV Prasad Eye Institute, Hyderabad, India
| | - D Balasubramanian
- Kallam Anji Reddy Molecular Genetics Laboratory, Prof. Brien Holden Eye Research Center, LV Prasad Eye Institute, Hyderabad, India
| |
Collapse
|
10
|
Li H, Liu S, Wu S, Li L, Ge R, Cheng CY. Bioactive fragments of laminin and collagen chains: lesson from the testis. Reproduction 2021; 159:R111-R123. [PMID: 31581125 DOI: 10.1530/rep-19-0288] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 10/03/2019] [Indexed: 12/11/2022]
Abstract
Recent studies have shown that the testis is producing several biologically active peptides, namely the F5- and the NC1-peptides from laminin-γ3 and collagen α3 (IV) chain, respectively, that promotes blood-testis barrier (BTB) remodeling and also elongated spermatid release at spermiation. Also the LG3/4/5 peptide from laminin-α2 chain promotes BTB integrity which is likely being used for the assembly of a 'new' BTB behind preleptotene spermatocytes under transport at the immunological barrier. These findings thus provide a new opportunity for investigators to better understand the biology of spermatogenesis. Herein, we briefly summarize the recent findings and provide a critical update. We also present a hypothetical model which could serve as the framework for studies in the years to come.
Collapse
Affiliation(s)
- Huitao Li
- The Second Affiliated Hospital & Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York, USA
| | - Shiwen Liu
- The Second Affiliated Hospital & Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York, USA
| | - Siwen Wu
- The Second Affiliated Hospital & Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York, USA
| | - Linxi Li
- The Second Affiliated Hospital & Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York, USA
| | - Renshan Ge
- The Second Affiliated Hospital & Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - C Yan Cheng
- The Second Affiliated Hospital & Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York, USA
| |
Collapse
|
11
|
Li L, Li H, Wang L, Bu T, Liu S, Mao B, Cheng CY. A local regulatory network in the testis mediated by laminin and collagen fragments that supports spermatogenesis. Crit Rev Biochem Mol Biol 2021; 56:236-254. [PMID: 33761828 DOI: 10.1080/10409238.2021.1901255] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
It is almost five decades since the discovery of the hypothalamic-pituitary-testicular axis. This refers to the hormonal axis that connects the hypothalamus, pituitary gland and testes, which in turn, regulates the production of spermatozoa through spermatogenesis in the seminiferous tubules, and testosterone through steroidogenesis by Leydig cells in the interstitium, of the testes. Emerging evidence has demonstrated the presence of a regulatory network across the seminiferous epithelium utilizing bioactive molecules produced locally at specific domains of the epithelium. Studies have shown that biologically active fragments are produced from structural laminin and collagen chains in the basement membrane. Additionally, bioactive peptides are also produced locally in non-basement membrane laminin chains at the Sertoli-spermatid interface known as apical ectoplasmic specialization (apical ES, a testis-specific actin-based anchoring junction type). These bioactive peptides are derived from structural laminins and/or collagens at the corresponding sites through proteolytic cleavage by matrix metalloproteinases (MMPs). They in turn serve as autocrine and/or paracrine factors to modulate and coordinate cellular events across the epithelium by linking the apical and basal compartments, the apical and basal ES, the blood-testis barrier (BTB), and the basement membrane of the tunica propria. The cellular events supported by these bioactive peptides/fragments include the release of spermatozoa at spermiation, remodeling of the immunological barrier to facilitate the transport of preleptotene spermatocytes across the BTB, and the transport of haploid spermatids across the epithelium to support spermiogenesis. In this review, we critically evaluate these findings. Our goal is to identify research areas that deserve attentions in future years. The proposed research also provides the much needed understanding on the biology of spermatogenesis supported by a local network of regulatory biomolecules.
Collapse
Affiliation(s)
- Linxi Li
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY, USA
| | - Huitao Li
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY, USA
| | - Lingling Wang
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY, USA
| | - Tiao Bu
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Shiwen Liu
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY, USA
| | - Baiping Mao
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY, USA
| | - C Yan Cheng
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY, USA
| |
Collapse
|
12
|
Yang X, Wu Q, Wu F, Zhong Y. Differential expression of COL4A3 and collagen in upward and downward progressing types of nasopharyngeal carcinoma. Oncol Lett 2021; 21:223. [PMID: 33613712 PMCID: PMC7859474 DOI: 10.3892/ol.2021.12484] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 12/21/2020] [Indexed: 12/18/2022] Open
Abstract
Upward (local growth and invasion of the base of skull), downward (distant metastasis) and mixed progressing types of nasopharyngeal carcinoma (NPC) have been identified and are distinctly different with respect to clinical symptoms, therapeutic strategies and prognosis. The present study aimed to identify the genetic difference and collagen expression levels in the upward and downward progressing types of NPC. Whole exon sequencing (WES) was used to detect genes differentially mutated between the upward and downward progressing types of NPC. Collagen deposition in the upward and downward progressing types of NPC was determined using Masson trichromatic staining, while the protein expression level of COL4A3 was detected using immunohistochemistry. Survival analysis was also performed using the Kaplan-Meier Plotter database to examine the role of COL4A3 expression level in the prognosis of head and neck squamous cell carcinoma. Knockdown of COL4A3 was performed using short interfering (si)RNA-COL4A3 in a 5-8F NPC cell line. Reverse transcription-quantitative PCR and western blot analyses were utilized to analyze the mRNA and protein expression levels of COL4A3, respectively. The roles of COL4A3 in the migration and invasion of the 5-8F cell line were examined using wound-healing Transwell and Matrigel assays, respectively. A total of 21 genes were differentially mutated between the upward and downward progressing types of NPC. The COL4A3 was investigated further, as it was found to be associated with extracellular matrix deposition and cancer metastasis. The COL4A3 gene was markedly downregulated in the downward progressing type compared with that in the upward progressing type (2.161±1.306 vs. 5.077±3.619; P<0.05). In addition, the deposition of collagen in the downward progressing type was also significantly decreased compared with that in the upward progressing type (5.63±6.83 vs. 10.94±9.60; P<0.05). Kaplan-Meier analysis indicated that high expression level of COL4A3 was positively associated with a favorable prognosis of head and neck squamous cell carcinoma (HR, 0.69; 95% CI, 0.49- 0.97; P=0.031). To confirm the role of COL4A3, the expression level of COL4A3 was knocked down using siRNA in the 5-8F cell line and the results showed that the invasion and migration was significantly increased when the expression of COL4A3 was inhibited (P<0.0001). In conclusion, the gene mutation patterns were significantly different between the upward and downward progressing types of NPC. In addition, the expression level of the COL4A3 gene was decreased in the downward progressing type, which might promote NPC metastasis through the downregulation of extracellular collagen expression.
Collapse
Affiliation(s)
- Xiting Yang
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Qiuji Wu
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Fengyang Wu
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Yahua Zhong
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
- Correspondence to: Professor Yahua Zhong, Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuchang, Wuhan, Hubei 430071, P.R. China, E-mail:
| |
Collapse
|
13
|
Liu SW, Li HT, Ge RS, Cheng CY. NC1-peptide derived from collagen α3 (IV) chain is a blood-tissue barrier regulator: lesson from the testis. Asian J Androl 2021; 23:123-128. [PMID: 32896837 PMCID: PMC7991810 DOI: 10.4103/aja.aja_44_20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Collagen α3 (IV) chains are one of the major constituent components of the basement membrane in the mammalian testis. Studies have shown that biologically active fragments, such as noncollagenase domain (NC1)-peptide, can be released from the C-terminal region of collagen α3 (IV) chains, possibly through the proteolytic action of metalloproteinase 9 (MMP9). NC1-peptide was shown to promote blood–testis barrier (BTB) remodeling and fully developed spermatid (e.g., sperm) release from the seminiferous epithelium because this bioactive peptide was capable of perturbing the organization of both actin- and microtubule (MT)-based cytoskeletons at the Sertoli cell–cell and also Sertoli–spermatid interface, the ultrastructure known as the basal ectoplasmic specialization (ES) and apical ES, respectively. More importantly, recent studies have shown that this NC1-peptide-induced effects on cytoskeletal organization in the testis are mediated through an activation of mammalian target of rapamycin complex 1/ribosomal protein S6/transforming retrovirus Akt1/2 protein (mTORC1/rpS6/Akt1/2) signaling cascade, involving an activation of cell division control protein 42 homolog (Cdc42) GTPase, but not Ras homolog family member A GTPase (RhoA), and the participation of end-binding protein 1 (EB1), a microtubule plus (+) end tracking protein (+TIP), downstream. Herein, we critically evaluate these findings, providing a critical discussion by which the basement membrane modulates spermatogenesis through one of its locally generated regulatory peptides in the testis.
Collapse
Affiliation(s)
- Shi-Wen Liu
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou 325027, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, NY 10065, USA
| | - Hui-Tao Li
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou 325027, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, NY 10065, USA
| | - Ren-Shan Ge
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - C Yan Cheng
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou 325027, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, NY 10065, USA
| |
Collapse
|
14
|
Niland S, Eble JA. Hold on or Cut? Integrin- and MMP-Mediated Cell-Matrix Interactions in the Tumor Microenvironment. Int J Mol Sci 2020; 22:ijms22010238. [PMID: 33379400 PMCID: PMC7794804 DOI: 10.3390/ijms22010238] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 02/07/2023] Open
Abstract
The tumor microenvironment (TME) has become the focus of interest in cancer research and treatment. It includes the extracellular matrix (ECM) and ECM-modifying enzymes that are secreted by cancer and neighboring cells. The ECM serves both to anchor the tumor cells embedded in it and as a means of communication between the various cellular and non-cellular components of the TME. The cells of the TME modify their surrounding cancer-characteristic ECM. This in turn provides feedback to them via cellular receptors, thereby regulating, together with cytokines and exosomes, differentiation processes as well as tumor progression and spread. Matrix remodeling is accomplished by altering the repertoire of ECM components and by biophysical changes in stiffness and tension caused by ECM-crosslinking and ECM-degrading enzymes, in particular matrix metalloproteinases (MMPs). These can degrade ECM barriers or, by partial proteolysis, release soluble ECM fragments called matrikines, which influence cells inside and outside the TME. This review examines the changes in the ECM of the TME and the interaction between cells and the ECM, with a particular focus on MMPs.
Collapse
|
15
|
Cui J, Dean D, Hornicek FJ, Chen Z, Duan Z. The role of extracelluar matrix in osteosarcoma progression and metastasis. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:178. [PMID: 32887645 PMCID: PMC7650219 DOI: 10.1186/s13046-020-01685-w] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 08/20/2020] [Indexed: 02/07/2023]
Abstract
Osteosarcoma (OS) is the most common primary bone malignancy and responsible for considerable morbidity and mortality due to its high rates of pulmonary metastasis. Although neoadjuvant chemotherapy has improved 5-year survival rates for patients with localized OS from 20% to over 65%, outcomes for those with metastasis remain dismal. In addition, therapeutic regimens have not significantly improved patient outcomes over the past four decades, and metastases remains a primary cause of death and obstacle in curative therapy. These limitations in care have given rise to numerous works focused on mechanisms and novel targets of OS pathogenesis, including tumor niche factors. OS is notable for its hallmark production of rich extracellular matrix (ECM) of osteoid that goes beyond simple physiological growth support. The aberrant signaling and structural components of the ECM are rich promoters of OS development, and very recent works have shown the specific pathogenic phenotypes induced by these macromolecules. Here we summarize the current developments outlining how the ECM contributes to OS progression and metastasis with supporting mechanisms. We also illustrate the potential of tumorigenic ECM elements as prognostic biomarkers and therapeutic targets in the evolving clinical management of OS.
Collapse
Affiliation(s)
- Juncheng Cui
- Department of Orthopedic Surgery, The First Affiliated Hospital of University of South China, 69 Chuanshan Road, Hengyang, 421001, Hunan, China.,Department of Orthopedic Surgery, Sarcoma Biology Laboratory, David Geffen School of Medicine at UCLA, 615 Charles E. Young Dr. South, Los Angeles, CA, 90095, USA
| | - Dylan Dean
- Department of Orthopedic Surgery, Sarcoma Biology Laboratory, David Geffen School of Medicine at UCLA, 615 Charles E. Young Dr. South, Los Angeles, CA, 90095, USA
| | - Francis J Hornicek
- Department of Orthopedic Surgery, Sarcoma Biology Laboratory, David Geffen School of Medicine at UCLA, 615 Charles E. Young Dr. South, Los Angeles, CA, 90095, USA
| | - Zhiwei Chen
- Department of Orthopedic Surgery, The First Affiliated Hospital of University of South China, 69 Chuanshan Road, Hengyang, 421001, Hunan, China.
| | - Zhenfeng Duan
- Department of Orthopedic Surgery, Sarcoma Biology Laboratory, David Geffen School of Medicine at UCLA, 615 Charles E. Young Dr. South, Los Angeles, CA, 90095, USA.
| |
Collapse
|
16
|
Mutgan AC, Jandl K, Kwapiszewska G. Endothelial Basement Membrane Components and Their Products, Matrikines: Active Drivers of Pulmonary Hypertension? Cells 2020; 9:cells9092029. [PMID: 32899187 PMCID: PMC7563239 DOI: 10.3390/cells9092029] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/27/2020] [Accepted: 08/29/2020] [Indexed: 12/19/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a vascular disease that is characterized by elevated pulmonary arterial pressure (PAP) due to progressive vascular remodeling. Extracellular matrix (ECM) deposition in pulmonary arteries (PA) is one of the key features of vascular remodeling. Emerging evidence indicates that the basement membrane (BM), a specialized cluster of ECM proteins underlying the endothelium, may be actively involved in the progression of vascular remodeling. The BM and its steady turnover are pivotal for maintaining appropriate vascular functions. However, the pathologically elevated turnover of BM components leads to an increased release of biologically active short fragments, which are called matrikines. Both BM components and their matrikines can interfere with pivotal biological processes, such as survival, proliferation, adhesion, and migration and thus may actively contribute to endothelial dysfunction. Therefore, in this review, we summarize the emerging role of the BM and its matrikines on the vascular endothelium and further discuss its implications on lung vascular remodeling in pulmonary hypertension.
Collapse
Affiliation(s)
- Ayse Ceren Mutgan
- Otto Loewi Research Center, Division of Physiology, Medical University of Graz, 8010 Graz, Austria;
| | - Katharina Jandl
- Ludwig Boltzmann Institute for Lung Vascular Research, 8010 Graz, Austria;
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, 8010 Graz, Austria
| | - Grazyna Kwapiszewska
- Otto Loewi Research Center, Division of Physiology, Medical University of Graz, 8010 Graz, Austria;
- Ludwig Boltzmann Institute for Lung Vascular Research, 8010 Graz, Austria;
- Correspondence:
| |
Collapse
|
17
|
Nielsen PM, Mariager CØ, Mølmer M, Sparding N, Genovese F, Karsdal MA, Nørregaard R, Bertelsen LB, Laustsen C. Hyperpolarized [1- 13 C] alanine production: A novel imaging biomarker of renal fibrosis. Magn Reson Med 2020; 84:2063-2073. [PMID: 32452096 DOI: 10.1002/mrm.28326] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 12/15/2022]
Abstract
PURPOSE Renal tubulointerstitial fibrosis is strongly linked to the progressive decline of renal function seen in chronic kidney disease. State-of-the-art noninvasive diagnostic modalities are currently unable to detect the earliest changes associated with the onset of fibrosis. This study was undertaken to evaluate the potential for detecting the earliest alterations in fibrogenesis using a biofluid-based method and metabolic hyperpolarized [1-13 C]pyruvate imaging. METHODS We evaluated renal fibrosis in a combined ischemia reperfusion-induced and streptozotocin-induced diabetic nephropathy rodent model by hyperpolarized [1-13 C]pyruvate MRI and correlated the metabolic MRI parameters with biomarkers of fibrosis measured on renal tissue and plasma/urine. RESULTS The hyperglycemic rats experienced maladaptive injury repair after the ischemic insults, as shown by the elevation in the injury markers kidney injury molecule-1 and neutrophil gelatinase-associated lipocalin. Renal function was significantly impaired in the ischemic hyperglycemic kidney, as seen in the reduced perfusion and single-kidney glomerular filtration rate. A deranged energy metabolism was detected in the ischemic hyperglycemic kidney, as seen in the reduced fractional perfusion of lactate. Renal fibrosis biomarkers correlated significantly with the alanine production. CONCLUSION Hyperpolarized carbon-13 MRI provides a promising approach to assess renal fibrosis in an animal model of fibrotic chronic kidney disease. In particular, the metabolic supply of amino acids for fibrogenesis (alanine production) correlates well with biomarkers of fibrosis. Thus, [1-13 C]pyruvate-to-[1-13 C]alanine conversion might be a candidate for noninvasive assessment of renal fibrogenesis.
Collapse
Affiliation(s)
- Per Mose Nielsen
- MR Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | - Maria Mølmer
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | | | | | - Rikke Nørregaard
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Lotte Bonde Bertelsen
- MR Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Christoffer Laustsen
- MR Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
18
|
Gajjar DU, Vasavada AR, Patel P, Praveen MR, Shah SR. Evaluation of collagen derived antiangiogenic factors and matrix metalloproteinases in anterior lens epithelial cells of pediatric eyes with persistent fetal vasculature. Indian J Ophthalmol 2020; 67:1618-1622. [PMID: 31546493 PMCID: PMC6786169 DOI: 10.4103/ijo.ijo_185_19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Purpose: To measure levels of collagen-derived antiangiogenic factors (arresten, canstatin, tumstatin, endostatin) and matrix metalloproteinases (MMP-2 and MMP-9) in anterior lens epithelial cells (LECs) and anterior capsules of children with cataract and persistent fetal vasculature (PFV) as cases and cataract without PFV as controls. Methods: Anterior capsules harboring LECs were collected from pediatric cataract patients with (n = 13) and without PFV (n = 13) during surgery. Samples were immediately subjected to RNA extraction and cDNA preparation. Quantitative real time PCR was performed to determine the mRNA levels of antiangiogenic factors and matrix metalloproteinases. GAPDH (Glyceraldehyde 3-Phosphate Dehydrogenase) and β Actin were used as the housekeeping control. The mRNA levels were expressed as a ratio, using the delta-delta method for comparing the relative expression results between controls and cases. The non-parametric Mann-Whitney U test was applied for statistical evaluation. P values < 0.05 were statistically significant. Results: The relative mRNA levels of arresten, canstatin, tumstatin, endostatin, MMP-2 and MMP-9 in cases were 6.20E-03 ± 0.003, 1.49E-01 ± 0.02, 1.70E-01 ± 0.007, 3.20E-03 ± 0.003, 1.11E-03 ± 0.0009 and 3.72E-04 ± 0.0001. The mRNA levels of arresten was 1.6 times lower (P = 0.01) while mRNA levels of MMP-2, tumstatin and canstatin were 4, 2.5, and 2.3 times higher in cases than in controls. No change was observed in mRNA levels of MMP-9 and endostatin (P = 0.82). Conclusion: A significant difference in the levels of arresten, canstatin, tumstatin, and MMP-2 was found in LECs with PFV.
Collapse
|
19
|
Brassart-Pasco S, Brézillon S, Brassart B, Ramont L, Oudart JB, Monboisse JC. Tumor Microenvironment: Extracellular Matrix Alterations Influence Tumor Progression. Front Oncol 2020; 10:397. [PMID: 32351878 PMCID: PMC7174611 DOI: 10.3389/fonc.2020.00397] [Citation(s) in RCA: 161] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 03/05/2020] [Indexed: 12/12/2022] Open
Abstract
The tumor microenvironment (TME) is composed of various cell types embedded in an altered extracellular matrix (ECM). ECM not only serves as a support for tumor cell but also regulates cell-cell or cell-matrix cross-talks. Alterations in ECM may be induced by hypoxia and acidosis, by oxygen free radicals generated by infiltrating inflammatory cells or by tumor- or stromal cell-secreted proteases. A poorer diagnosis for patients is often associated with ECM alterations. Tumor ECM proteome, also named cancer matrisome, is strongly altered, and different ECM protein signatures may be defined to serve as prognostic biomarkers. Collagen network reorganization facilitates tumor cell invasion. Proteoglycan expression and location are modified in the TME and affect cell invasion and metastatic dissemination. ECM macromolecule degradation by proteases may induce the release of angiogenic growth factors but also the release of proteoglycan-derived or ECM protein fragments, named matrikines or matricryptins. This review will focus on current knowledge and new insights in ECM alterations, degradation, and reticulation through cross-linking enzymes and on the role of ECM fragments in the control of cancer progression and their potential use as biomarkers in cancer diagnosis and prognosis.
Collapse
Affiliation(s)
- Sylvie Brassart-Pasco
- Université de Reims Champagne Ardenne, SFR CAP-Santé (FED 4231), Laboratoire de Biochimie Médicale et Biologie Moléculaire, Reims, France
- CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire - MEDyC, Reims, France
| | - Stéphane Brézillon
- Université de Reims Champagne Ardenne, SFR CAP-Santé (FED 4231), Laboratoire de Biochimie Médicale et Biologie Moléculaire, Reims, France
- CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire - MEDyC, Reims, France
| | - Bertrand Brassart
- Université de Reims Champagne Ardenne, SFR CAP-Santé (FED 4231), Laboratoire de Biochimie Médicale et Biologie Moléculaire, Reims, France
- CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire - MEDyC, Reims, France
| | - Laurent Ramont
- Université de Reims Champagne Ardenne, SFR CAP-Santé (FED 4231), Laboratoire de Biochimie Médicale et Biologie Moléculaire, Reims, France
- CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire - MEDyC, Reims, France
- CHU Reims, Service Biochimie-Pharmacologie-Toxicologie, Reims, France
| | - Jean-Baptiste Oudart
- Université de Reims Champagne Ardenne, SFR CAP-Santé (FED 4231), Laboratoire de Biochimie Médicale et Biologie Moléculaire, Reims, France
- CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire - MEDyC, Reims, France
- CHU Reims, Service Biochimie-Pharmacologie-Toxicologie, Reims, France
| | - Jean Claude Monboisse
- Université de Reims Champagne Ardenne, SFR CAP-Santé (FED 4231), Laboratoire de Biochimie Médicale et Biologie Moléculaire, Reims, France
- CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire - MEDyC, Reims, France
- CHU Reims, Service Biochimie-Pharmacologie-Toxicologie, Reims, France
| |
Collapse
|
20
|
Yasuda J, Okada M, Yamawaki H. Protective effect of T3 peptide, an active fragment of tumstatin, against ischemia/reperfusion injury in rat heart. J Pharmacol Sci 2019; 139:193-200. [PMID: 30827890 DOI: 10.1016/j.jphs.2019.01.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/11/2019] [Accepted: 01/17/2019] [Indexed: 12/28/2022] Open
Abstract
Ischemia/reperfusion (I/R)-induced oxidative stress is a serious clinical problem in the reperfusion therapy for ischemic diseases. Tumstatin is an endogenous bioactive peptide cleaved from type IV collagen α3 chain. We previously reported that T3 peptide, an active subfragment of tumstatin, exerts cytoprotective effects on H2O2-induced apoptosis through the inhibition of intracellular reactive oxygen species (ROS) production in H9c2 cardiomyoblasts. In this study, we investigated whether T3 peptide has cardioprotective effects against I/R injury by using in vitro and ex vivo experimental models. H9c2 cardiomyoblasts were stimulated with oxygen and glucose deprivation (OGD) for 12 h followed by reoxygenation for 1-8 h (OGD/R; in vitro model). The cells were treated with T3 peptide (30-1000 ng/ml) during OGD. Ten minutes after the pre-perfusion of T3 peptide (300 ng/ml), Langendorff perfused rat hearts were exposed to ischemia for 30 min followed by reperfusion for 1 h (ex vivo model). T3 peptide inhibited OGD/R-induced apoptosis through the inhibition of mitochondrial ROS production and dysfunction in H9c2 cardiomyoblasts. T3 peptide also prevented I/R-induced cardiac dysfunction, arrhythmia and myocardial infarction in the perfused rat heart. In conclusion, we for the first time demonstrated that T3 peptide exerts cardioprotective effects against I/R injury.
Collapse
Affiliation(s)
- Jumpei Yasuda
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Higashi 23 Bancho 35-1, Towada City, Aomori, 034-8628, Japan
| | - Muneyoshi Okada
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Higashi 23 Bancho 35-1, Towada City, Aomori, 034-8628, Japan.
| | - Hideyuki Yamawaki
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Higashi 23 Bancho 35-1, Towada City, Aomori, 034-8628, Japan
| |
Collapse
|
21
|
Nielsen SH, Willumsen N, Brix S, Sun S, Manon-Jensen T, Karsdal M, Genovese F. Tumstatin, a Matrikine Derived from Collagen Type IVα3, is Elevated in Serum from Patients with Non-Small Cell Lung Cancer. Transl Oncol 2018. [PMID: 29524830 PMCID: PMC5884192 DOI: 10.1016/j.tranon.2018.02.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Affiliation(s)
- Signe Holm Nielsen
- Fibrosis Biology and Biomarkers, Nordic Bioscience A/S, Herlev, Denmark; Disease Systems Immunology, Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark.
| | | | - Susanne Brix
- Disease Systems Immunology, Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Shu Sun
- Fibrosis Biology and Biomarkers, Nordic Bioscience A/S, Herlev, Denmark
| | - Tina Manon-Jensen
- Fibrosis Biology and Biomarkers, Nordic Bioscience A/S, Herlev, Denmark
| | - Morten Karsdal
- Fibrosis Biology and Biomarkers, Nordic Bioscience A/S, Herlev, Denmark
| | - Federica Genovese
- Fibrosis Biology and Biomarkers, Nordic Bioscience A/S, Herlev, Denmark
| |
Collapse
|
22
|
Ricard-Blum S, Vallet SD. Fragments generated upon extracellular matrix remodeling: Biological regulators and potential drugs. Matrix Biol 2017; 75-76:170-189. [PMID: 29133183 DOI: 10.1016/j.matbio.2017.11.005] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 11/05/2017] [Accepted: 11/07/2017] [Indexed: 12/13/2022]
Abstract
The remodeling of the extracellular matrix (ECM) by several protease families releases a number of bioactive fragments, which regulate numerous biological processes such as autophagy, angiogenesis, adipogenesis, fibrosis, tumor growth, metastasis and wound healing. We review here the proteases which generate bioactive ECM fragments, their ECM substrates, the major bioactive ECM fragments, together with their biological properties and their receptors. The translation of ECM fragments into drugs is challenging and would take advantage of an integrative approach to optimize the design of pre-clinical and clinical studies. This could be done by building the contextualized interaction network of the ECM fragment repertoire including their parent proteins, remodeling proteinases, and their receptors, and by using mathematical disease models.
Collapse
Affiliation(s)
- Sylvie Ricard-Blum
- Univ Lyon, University Claude Bernard Lyon 1, CNRS, INSA Lyon, CPE, Institute of Molecular and Supramolecular Chemistry and Biochemistry, UMR 5246, F-69622 Villeurbanne cedex, France.
| | - Sylvain D Vallet
- Univ Lyon, University Claude Bernard Lyon 1, CNRS, INSA Lyon, CPE, Institute of Molecular and Supramolecular Chemistry and Biochemistry, UMR 5246, F-69622 Villeurbanne cedex, France.
| |
Collapse
|
23
|
T3 peptide, a fragment of tumstatin, stimulates proliferation and migration of cardiac fibroblasts through activation of Akt signaling pathway. Naunyn Schmiedebergs Arch Pharmacol 2017; 390:1135-1144. [DOI: 10.1007/s00210-017-1413-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 07/27/2017] [Indexed: 12/27/2022]
|
24
|
Harkness LM, Weckmann M, Kopp M, Becker T, Ashton AW, Burgess JK. Tumstatin regulates the angiogenic and inflammatory potential of airway smooth muscle extracellular matrix. J Cell Mol Med 2017; 21:3288-3297. [PMID: 28608951 PMCID: PMC5706579 DOI: 10.1111/jcmm.13232] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 04/10/2017] [Indexed: 12/29/2022] Open
Abstract
The extracellular matrix (ECM) creates the microenvironment of the tissue; an altered ECM in the asthmatic airway may be central in airway inflammation and remodelling. Tumstatin is a collagen IV‐derived matrikine reduced in the asthmatic airway wall that reverses airway inflammation and remodelling in small and large animal models of asthma. This study hypothesized that the mechanisms underlying the broad asthma‐resolving effects of tumstatin were due to autocrine remodelling of the ECM. Neutrophils and endothelial cells were seeded on decellularized ECM of non‐asthmatic (NA) or asthmatic (A) airway smooth muscle (ASM) cells previously exposed to tumstatin in the presence or absence of a broad matrix metalloproteinase inhibitor, Marimastat. Gene expression in NA and A ASM induced by tumstatin was assessed using RT‐PCR arrays. The presence of tumstatin during ECM deposition affected neutrophil and endothelial cell properties on both NA and A ASM‐derived matrices and this was only partly due to MMP activity. Gene expression patterns in response to tumstatin in NA and A ASM cells were different. Tumstatin may foster an anti‐inflammatory and anti‐angiogenic microenvironment by modifying ASM‐derived ECM. Further work is required to examine whether restoring tumstatin levels in the asthmatic airway represents a potential novel therapeutic approach.
Collapse
Affiliation(s)
- Louise Margaret Harkness
- Respiratory Cell and Molecular Biology, Woolcock Institute of Medical Research, Sydney, NSW, Australia.,Discipline of Pharmacology, The University of Sydney, Sydney, NSW, Australia
| | - Markus Weckmann
- Section for Pediatric Pneumology and Allergology, University Medical Center Schleswig-Holstein, Campus Centrum Luebeck, Airway Research Centre North (ARCN), Member of the German Centre of Lung Research (DZL), Luebeck, Germany
| | - Matthias Kopp
- Section for Pediatric Pneumology and Allergology, University Medical Center Schleswig-Holstein, Campus Centrum Luebeck, Airway Research Centre North (ARCN), Member of the German Centre of Lung Research (DZL), Luebeck, Germany
| | - Tim Becker
- Fraunhofer Institute for Marine Biotechnology (Fraunhofer EMB), Luebeck, Germany
| | - Anthony Wayne Ashton
- Division of Perinatal Research, Kolling Institute of Medical Research, Sydney, NSW, Australia
| | - Janette Kay Burgess
- Respiratory Cell and Molecular Biology, Woolcock Institute of Medical Research, Sydney, NSW, Australia.,Discipline of Pharmacology, The University of Sydney, Sydney, NSW, Australia.,University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands
| |
Collapse
|
25
|
Chen H, Mruk DD, Lee WM, Cheng CY. Regulation of spermatogenesis by a local functional axis in the testis: role of the basement membrane-derived noncollagenous 1 domain peptide. FASEB J 2017; 31:3587-3607. [PMID: 28487282 DOI: 10.1096/fj.201700052r] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 04/11/2017] [Indexed: 11/11/2022]
Abstract
Spermatogenesis takes place in the epithelium of the seminiferous tubules of the testes, producing millions of spermatozoa per day in an adult male in rodents and humans. Thus, multiple cellular events that are regulated by an array of signaling molecules and pathways are tightly coordinated to support spermatogenesis. Here, we report findings of a local regulatory axis between the basement membrane (BM), the blood-testis barrier (BTB), and the apical ectoplasmic specialization (apical ES; a testis-specific, actin-rich adherens junction at the Sertoli cell-spermatid interface) to coordinate cellular events across the seminiferous epithelium during the epithelial cycle. In short, a biologically active fragment, noncollagenous 1 (NC1) domain that is derived from collagen chains in the BM, was found to modulate cell junction dynamics at the BTB and apical ES. NC1 domain from the collagen α3(IV) chain was cloned into a mammalian expression vector, pCI-neo, with and without a collagen signal peptide. We also prepared a specific Ab against the purified recombinant NC1 domain peptide. These reagents were used to examine whether overexpression of NC1 domain with high transfection efficacy would perturb spermatogenesis, in particular, spermatid adhesion (i.e., inducing apical ES degeneration) and BTB function (i.e., basal ES and tight junction disruption, making the barrier leaky), in the testis in vivo We report our findings that NC1 domain derived from collagen α3(IV) chain-a major structural component of the BM-was capable of inducing BTB remodeling, making the BTB leaky in studies in vivo Furthermore, NC1 domain peptide was transported across the epithelium via a microtubule-dependent mechanism and is capable of inducing apical ES degeneration, which leads to germ cell exfoliation from the seminiferous epithelium. Of more importance, we show that NC1 domain peptide exerted its regulatory effect by disorganizing actin microfilaments and microtubules in Sertoli cells so that they failed to support cell adhesion and transport of germ cells and organelles (e.g., residual bodies, phagosomes) across the seminiferous epithelium. This local regulatory axis between the BM, BTB, and the apical ES thus coordinates cellular events that take place across the seminiferous epithelium during the epithelial cycle of spermatogenesis.-Chen, H., Mruk, D. D., Lee, W. M., Cheng, C. Y. Regulation of spermatogenesis by a local functional axis in the testis: role of the basement membrane-derived noncollagenous 1 domain peptide.
Collapse
Affiliation(s)
- Haiqi Chen
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York, USA
| | - Dolores D Mruk
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York, USA
| | - Will M Lee
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong, China
| | - C Yan Cheng
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York, USA; .,School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong, China
| |
Collapse
|
26
|
Yasuda J, Okada M, Yamawaki H. T3 peptide, an active fragment of tumstatin, inhibits H 2O 2-induced apoptosis in H9c2 cardiomyoblasts. Eur J Pharmacol 2017; 807:64-70. [PMID: 28457922 DOI: 10.1016/j.ejphar.2017.04.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 04/24/2017] [Accepted: 04/26/2017] [Indexed: 01/09/2023]
Abstract
Tumstatin, a cleaved fragment of α3 chain of type IV collagen, is an endogenous anti-angiogenetic peptide. Although the expression level of tumstatin changes in the heart tissues of certain experimental cardiac disease models, its effect on cardiomyocytes has not been clarified. In this study, we examined the effects of T3 peptide, an active subfragment of tumstatin, on hydrogen peroxide (H2O2)-induced cell death in H9c2 cardiomyoblasts. Cell viability was examined by a cell counting assay. Staining using 4', 6-diamidino-2-phenylindole was performed to observe nuclear morphology. Western blotting was performed to examine cleaved caspase-3 expression. Mitochondrial membrane potential and morphology were detected by a Mito Tracker Red staining. Intracellular reactive oxygen species production was examined by 2', 7'-dichlorodihydrofluorescein diacetate staining. T3 peptide (300, 1000ng/ml) suppressed H2O2 (1mM)-induced cell death, apoptotic changes of nuclei and cleaved caspas-3 expression in a concentration-dependent manner. T3 peptide also inhibited H2O2-induced loss of mitochondrial membrane potential, mitochondrial fission and reactive oxygen species production. Cilengitide, an integrin αvβ3/αvβ5 inhibitor, prevents the inhibitory effect of T3 peptide on H2O2-induced reactive oxygen species production. In conclusion, T3 peptide inhibits H2O2-induced apoptosis at least partly via the inhibition of intracellular reactive oxygen species production through the action on integrin.
Collapse
Affiliation(s)
- Jumpei Yasuda
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Higashi 23 Bancho 35-1, Towada, Aomori 034-8628, Japan
| | - Muneyoshi Okada
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Higashi 23 Bancho 35-1, Towada, Aomori 034-8628, Japan.
| | - Hideyuki Yamawaki
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Higashi 23 Bancho 35-1, Towada, Aomori 034-8628, Japan
| |
Collapse
|
27
|
Zhao Y, Yan H, Qiao S, Zhang L, Wang T, Meng Q, Chen X, Lin FH, Guo K, Li C, Tian W. Hydrogels bearing bioengineered mimetic embryonic microenvironments for tumor reversion. J Mater Chem B 2016; 4:6183-6191. [PMID: 32263630 DOI: 10.1039/c6tb00927a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Embryonic microenvironments can reverse the metastatic phenotype of aggressive tumors by inhibiting the Nodal signaling pathway. Here, we hypothesize that embryonic microenvironments can be transplanted for the purpose of oncotherapy. We report the development of an injectable bioactive hydrogel system containing the key antagonists of Nodal signaling-Cripto-1 receptor antibodies (2B11)-for the creation of embryonic microenvironments and the examination of their effect on tumor reversion treatment using a mouse model. Our in vitro results show that the hydrogel system can reduce the mitochondrial membrane potential of MDA-MB-231 and MCF-7, promote cell apoptosis, and reduce the invasive ability of cells. Our in vivo results illustrate that the hydrogel system can significantly inhibit tumor growth in both breast cancer and melanoma tumor-bearing mouse models, as well as transform the cell morphology of melanoma B16 cells to melanin-like cells. Furthermore, the results of the up-regulation of tumor suppressor genes and the down-regulation of oncogenes by high-throughput sequencing confirm that the developed system can also selectively turn on some tumor suppressor genes and turn off certain oncogenes so as to prompt the benign reversion of the tumor phenotype. Taken together, our results demonstrate the injectable biomaterial system is able to create an effective microenvironment for melanoma and breast tumor therapy.
Collapse
Affiliation(s)
- Yufang Zhao
- Bio-X Center, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, P. R. China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
The Effects of Tumstatin on Vascularity, Airway Inflammation and Lung Function in an Experimental Sheep Model of Chronic Asthma. Sci Rep 2016; 6:26309. [PMID: 27199164 PMCID: PMC4873797 DOI: 10.1038/srep26309] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 04/08/2016] [Indexed: 02/07/2023] Open
Abstract
Tumstatin, a protein fragment of the alpha-3 chain of Collagen IV, is known to be significantly reduced in the airways of asthmatics. Further, there is evidence that suggests a link between the relatively low level of tumstatin and the induction of angiogenesis and inflammation in allergic airway disease. Here, we show that the intra-segmental administration of tumstatin can impede the development of vascular remodelling and allergic inflammatory responses that are induced in a segmental challenge model of experimental asthma in sheep. In particular, the administration of tumstatin to lung segments chronically exposed to house dust mite (HDM) resulted in a significant reduction of airway small blood vessels in the diameter range 10+–20 μm compared to controls. In tumstatin treated lung segments after HDM challenge, the number of eosinophils was significantly reduced in parenchymal and airway wall tissues, as well as in the bronchoalveolar lavage fluid. The expression of VEGF in airway smooth muscle was also significantly reduced in tumstatin-treated segments compared to control saline-treated segments. Allergic lung function responses were not attenuated by tumstatin administration in this model. The data are consistent with the concept that tumstatin can act to suppress vascular remodelling and inflammation in allergic airway disease.
Collapse
|
29
|
Wang Y, Yin RF, Teng JS. Tumstatin induces apoptosis and stimulates phosphorylation of p65NF-κB in human osteoblastic osteosarcoma Saos-2 cells. Oncol Rep 2016; 35:3403-8. [PMID: 27109498 DOI: 10.3892/or.2016.4762] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 02/11/2016] [Indexed: 11/06/2022] Open
Abstract
The present study was aimed to investigate the effect of tumstatin on inhibition of proliferation and induction of apoptosis in Saos-2 human osteosarcoma cells and to understand the mechanism involved. Inhibition of cell proliferation was analyzed by MTT assay and induction of apoptosis through nuclear fragmentation assay. Viability of Saos-2 cells was reduced to 19% on treatment with 25 µM concentration of tumstatin after 48 h. Presence of characteristic apoptotic nuclei, rounded cell shape and shrunken size were caused by tumstatin treatment at 25 µM concentration. The level of mRNA corresponding to PTEN, FasR and FasL was increased significantly in tumstatin treated Saos-2 cells compared to untreated control. Investigation of the mechanism revealed NF-κB activation by phosphorylation on serine 536. The activated NF-κB was translocated into the nucleus from the cytoplasm on treatment with tumstatin. Degradation of the IκBα by tumstatin was found to be much slower compared to that induced by treatment with TNF-α. Thus, tumstatin inhibits proliferation and induces apoptosis in Saos-2 cells through activation of NF-κB and its translocation to the nucleus. Therefore, tumstatin can play an important role in the treatment of osteosarcoma.
Collapse
Affiliation(s)
- Yang Wang
- Department of Orthopaedics, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Ruo-Feng Yin
- Department of Orthopaedics, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Jia-Song Teng
- Department of Orthopaedics, Daqing Oilfields general Hospital, Daqing, Heilongjiang 163000, P.R. China
| |
Collapse
|
30
|
Shen X, Chen J, Qiu R, Fan X, Xin Y. Effect of camptothecin on inducible nitric oxide synthase expression in the colon cancer SW480 cell line. Oncol Lett 2015; 10:3157-3160. [PMID: 26722304 DOI: 10.3892/ol.2015.3658] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 08/05/2015] [Indexed: 11/06/2022] Open
Abstract
As a topoisomerase I inhibitor, camptothecin (CPT) is regarded as an effective antitumor agent. In an attempt to search for its novel anticancer mechanism, the present study evaluated the effects of CPT on inducible nitric oxide synthase (iNOS) in the human colon cancer SW480 cell line when stimulated with lipopolysaccharide (LPS) and interleukin (IL)-1β. The data indicated that CPT significantly decreased NO production. Consistent with these observations, the protein and mRNA expression levels of iNOS were inhibited by CPT in a dose-dependent manner. Thus, the inhibitory effects of CPT on LPS/IL-1β-stimulated NO production were likely mediated via the inhibition of iNOS gene transcription. From these results, we propose that the inhibition of NO biosynthesis by CPT may partially underlie the efficacy of this antitumor agent.
Collapse
Affiliation(s)
- Xiangdi Shen
- Department of Basic Science, Zhejiang Medical College, Hangzhou, Zhejiang 310053, P.R. China
| | - Jian Chen
- Department of Basic Science, Zhejiang Medical College, Hangzhou, Zhejiang 310053, P.R. China
| | - Rong Qiu
- Department of Basic Science, Zhejiang Medical College, Hangzhou, Zhejiang 310053, P.R. China
| | - Xingli Fan
- Department of Basic Science, Zhejiang Medical College, Hangzhou, Zhejiang 310053, P.R. China
| | - Ying Xin
- Department of General Surgery, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310014, P.R. China
| |
Collapse
|
31
|
Hwang-Bo J, Park JH, Chung IS. Tumstatin induces apoptosis mediated by Fas signaling pathway in oral squamous cell carcinoma SCC-VII cells. Oncol Lett 2015; 10:1016-1022. [PMID: 26622617 DOI: 10.3892/ol.2015.3261] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 05/07/2015] [Indexed: 11/06/2022] Open
Abstract
Oral squamous cell carcinoma is a cancer originating in the tissues lining the mouth and lips. The present study investigated the effects of recombinant tumstatin, an anti-angiogenic agent with distinct antitumor activity, on oral squamous cell carcinoma SCC-VII cells. Apoptosis was characterized by YO-PRO-1 staining, sub-G1 population, and DNA fragmentation analysis. Apoptotic mechanism of tumstatin was also investigated. The antitumor activity of tumstatin was further evaluated using an SCC-VII animal model. Recombinant tumstatin was found to decrease the viability of SCC-VII cells in a dose-dependent manner. The number of cells stained with the apoptotic marker YO-PRO-1, the sub-G1 cell population and the level of apoptotic DNA fragmentation increased in the SCC-VII cells following treatment with recombinant tumstatin. In addition, recombinant tumstatin treatment increased the expression of the Fas gene at the transcript and protein levels, and the inhibition of cell viability by recombinant tumstatin was suppressed by a neutralizing anti-Fas antibody. Furthermore, treatment with recombinant tumstatin decreased the volume and weight of tumors in C3H/HeJ mice implanted with SCC-VII cells. In conclusion, the results indicated that tumstatin induced apoptosis that is mediated by the Fas signaling pathway in SCC-VII cells and inhibited tumor growth in an SCC-VII animal model.
Collapse
Affiliation(s)
- Jeon Hwang-Bo
- Department of Genetic Engineering and Graduate School of Biotechnology, Kyung Hee University, Yongin, Gyeonggi 446-701, Republic of Korea
| | - Jong-Hwa Park
- Department of Genetic Engineering and Graduate School of Biotechnology, Kyung Hee University, Yongin, Gyeonggi 446-701, Republic of Korea
| | - In Sik Chung
- Department of Genetic Engineering and Graduate School of Biotechnology, Kyung Hee University, Yongin, Gyeonggi 446-701, Republic of Korea
| |
Collapse
|
32
|
Wei C, Xun AY, Wei XX, Yao J, Wang JY, Shi RY, Yang GH, Li YX, Xu ZL, Lai MG, Zhang R, Wang LS, Zeng WS. Bifidobacteria Expressing Tumstatin Protein for Antitumor Therapy in Tumor-Bearing Mice. Technol Cancer Res Treat 2015; 15:498-508. [PMID: 25969440 DOI: 10.1177/1533034615581977] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 11/20/2013] [Indexed: 11/15/2022] Open
Abstract
Tumstatin (Tum) is a powerful angiostatin that inhibits proliferation and induces apoptosis of tumorous vascular endothelial cells. A nonpathogenic and anaerobic bacterium, Bifidobacterium longum (BL), selectively localizes to and proliferates in the hypoxia location within solid tumor. The aims of this study were to develop a novel delivery system for Tum using engineered Bifidobacterium and to investigate the inhibitory effect of Tum on tumor in mice. A vector that enabled the expression of Tum under the control of the pBBADs promoter of BL was constructed and transformed into BL NCC2705 by electroporation. The mouse colon carcinoma cells CT26 (1 × 10(7)/mL) were subcutaneously inserted in the left armpit of BALB/c mice. The tumor-bearing mice were treated with Tum-transformed BL, and green fluorescent protein (GFP)-transformed BL was used as a negative control. The microvessel density (MVD) in the transplanted tumor was determined, and terminal deoxynucleotidyl transferase-mediated 2'-deoxyuridine 5'-triphosphate nick end labeling was used to detect apoptosis of vascular endothelial cells in transplanted tumor. The in vitro expression of Tum was examined in BL after l-arabinose induction. Bifidobacterium longum with pBBAD-Tum (BL-Tum) showed significant antitumor effect in tumor-bearing mice. The weight, volume, growth, and MVD, as well as the percentage of apoptotic vascular endothelial cells of transplanted tumors in the tumor-bearing mice treated with Tum-transformed BL were all significantly lower than those in the GFP negative control group. Intragastric administration, injection in tumor and vena caudalis injection of Tum-transformed BL exerted marked antitumor effects in tumor-bearing mice. This is the first demonstration of the utilization of Tum-transformed BL as a specific gene delivery system for treating tumor.
Collapse
Affiliation(s)
- C Wei
- Department of Gastroenteroloy, Jinan University of Medical Sciences, Shenzhen Municipal People's Hospital, Shenzhen animal genetic engineering technology research and Development Center, Shenzhen, Guangdong Province, China
| | - A Y Xun
- Department of Gastroenterology, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, China
| | - X X Wei
- Department of Infectious Diseases, Xinxiang Medical College, Xinxiang, Guangdong Province, China
| | - J Yao
- Department of Gastroenteroloy, Jinan University of Medical Sciences, Shenzhen Municipal People's Hospital, Shenzhen animal genetic engineering technology research and Development Center, Shenzhen, Guangdong Province, China
| | - J Y Wang
- Department of General Surgery, Shenzhen Children's Hospital, Shenzhen, Guangdong Province, China
| | - R Y Shi
- Department of Gastroenteroloy, Jinan University of Medical Sciences, Shenzhen Municipal People's Hospital, Shenzhen animal genetic engineering technology research and Development Center, Shenzhen, Guangdong Province, China
| | - G H Yang
- Department of Gastroenteroloy, Jinan University of Medical Sciences, Shenzhen Municipal People's Hospital, Shenzhen animal genetic engineering technology research and Development Center, Shenzhen, Guangdong Province, China
| | - Y X Li
- Department of Gastroenteroloy, Jinan University of Medical Sciences, Shenzhen Municipal People's Hospital, Shenzhen animal genetic engineering technology research and Development Center, Shenzhen, Guangdong Province, China
| | - Z L Xu
- Department of Gastroenteroloy, Jinan University of Medical Sciences, Shenzhen Municipal People's Hospital, Shenzhen animal genetic engineering technology research and Development Center, Shenzhen, Guangdong Province, China
| | - M G Lai
- Department of Gastroenteroloy, Jinan University of Medical Sciences, Shenzhen Municipal People's Hospital, Shenzhen animal genetic engineering technology research and Development Center, Shenzhen, Guangdong Province, China
| | - R Zhang
- Department of Gastroenteroloy, Jinan University of Medical Sciences, Shenzhen Municipal People's Hospital, Shenzhen animal genetic engineering technology research and Development Center, Shenzhen, Guangdong Province, China
| | - L-S Wang
- Department of Gastroenteroloy, Jinan University of Medical Sciences, Shenzhen Municipal People's Hospital, Shenzhen animal genetic engineering technology research and Development Center, Shenzhen, Guangdong Province, China
| | - W S Zeng
- Department of Cell Biology, Southern Medical University, Guangzhou, Guangdong Province, China
| |
Collapse
|
33
|
Inhibition of angiogenesis by a synthetic fusion protein VTF derived from vasostatin and tumstatin. Anticancer Drugs 2015; 25:1044-51. [PMID: 24942148 DOI: 10.1097/cad.0000000000000134] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The inhibition of angiogenesis represents a potential strategy for antitumor therapy. A novel synthetic fusion protein VTF, composed of bioactive fragments from two different angiogenesis inhibitors, vasostatin and tumstatin with a (Gly-Ser-Gly)2 bridge, was generated using the pET-15b expression vector. The fusion protein VTF showed significantly enhanced efficacy in inhibiting human endothelial cell proliferation and tube formation and neovascularization on chick embryo chorioallantoic membrane. Moreover, VTF suppressed the growth of B16 melanoma and the formation of tumor blood vessels potently in vivo. These results indicated that the fusion protein containing the bioactive fragments of multiple angiogenesis inhibitors might be a promising therapeutic agent for tumor treatment.
Collapse
|
34
|
Moro N, Mauch C, Zigrino P. Metalloproteinases in melanoma. Eur J Cell Biol 2014; 93:23-9. [PMID: 24530009 DOI: 10.1016/j.ejcb.2014.01.002] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 11/08/2013] [Accepted: 01/08/2014] [Indexed: 02/05/2023] Open
Abstract
Tumour cell adhesion, motility, proteolytic activities and cell receptors have important roles in cancer invasion. These processes are involved from early development of melanoma within the epidermis, to tumour cell invasion of the underlying tissue until intravasation of lymphatic or blood vessels, and thereafter, dissemination into distant organs occur. The activity of several proteolytic enzymes was shown to be pivotal in promoting melanoma cell invasion. These enzymes not only remodel the extracellular matrix, but also release active factors and shed cell surface receptors thereby mediating melanoma cross-communication with their microenvironment. This leads to the generation of a favourable environment for melanoma growth. Several proteases are involved in melanoma invasion and include serine, cysteine proteases, matrix metalloproteases (MMPs) and the disintegrin and metalloproteases (ADAMs). This study summarises the current knowledge on the role of metalloproteinases, MMPs and ADAMs, in melanoma.
Collapse
Affiliation(s)
- Nives Moro
- Department of Dermatology and Venerology, University of Cologne, Germany
| | - Cornelia Mauch
- Department of Dermatology and Venerology, University of Cologne, Germany
| | - Paola Zigrino
- Department of Dermatology and Venerology, University of Cologne, Germany.
| |
Collapse
|
35
|
Wang W, Xu CX, Hou GS, Chen YG, Xin JX, Liu XX. Downregulation of tumstatin expression by overexpression of ornithine decarboxylase. Oncol Rep 2013; 30:2042-8. [PMID: 24002681 PMCID: PMC3820612 DOI: 10.3892/or.2013.2708] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 08/12/2013] [Indexed: 11/05/2022] Open
Abstract
Tumor angiogenesis, a pivotal process for cancer growth and metastasis, requires both upregulation of pro‑angiogenic molecules and downregulation of anti‑angiogenic molecules. Anti-angiogenesis therapy represents a promising way for cancer treatment. Tumstatin, a novel endogenous angiogenesis inhibitor, inhibits endothelial cell proliferation, pathological angiogenesis and tumor growth. Ornithine decarboxylase (ODC), overexpressed in various cancers, is associated with cell transformation, tumor invasion and angiogenesis. We found that the expression of tumstatin was suppressed in ODC-overexpressing human cancer cells and renal carcinoma tissues. We presumed that ODC overexpression may downregulate the expression of tumstatin. To be able to test this hypothesis, we generated HEK293 cells that overexpress ODC (ODC transfectants) and characterized the following experimental groups: PBS-treated group, mock transfectants, ODC transfectants, ODC transfectants transfected with pcDNA-ODCr (an antisense ODC-expressing plasmid) group and putrescine-treated group. The effect of ODC overexpression on tumstatin expression was examined by reverse transcriptase-polymerase chain reaction (RT-PCR), western blot analysis and dual luciferase reporter assay. ODC-overexpressing cells and putrescine-treated cells showed suppressed tumstatin mRNA and protein expression, and decreased tumstatin gene promoter activity. Thus, ODC overexpression suppresses the expression of tumstatin, which may provide fundamental evidence for the combination of anti-angiogenic therapy and conventional therapy for cancer treatment.
Collapse
Affiliation(s)
- Wei Wang
- Institute of Biochemistry and Molecular Biology, School of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | | | | | | | | | | |
Collapse
|
36
|
Huang Y, He Y, Ye S, Li X, Zhong Q, Chen Z, Jin X. Combined use of cyclophosphamide and Chalone 19-peptide in experimental breast cancer. Onco Targets Ther 2013; 6:861-7. [PMID: 23874108 PMCID: PMC3712081 DOI: 10.2147/ott.s44564] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Cyclophosphamide is a potent anticancer drug, but its clinical utility is limited because of its severe side effects, in particular liver damage. Chalone 19-peptide induces apoptosis of tumor cells and inhibits tumor growth. The present study investigated the antitumor effects of a combination of cyclophosphamide and Chalone 19-peptide in experimental breast cancer. Methods An animal model of breast cancer was developed, consisting of an MDA-MB-231 cell line implanted in the nude mouse. Eight doses of a combination of cyclophosphamide 50 mg/kg or 100 mg/kg and Chalone 19-peptide 6.6 mg/kg were administered, and the mice were euthanized 28 days after the final drug injection. Histopathologic analysis of tumor size, metastasis, and apoptosis of cancer cells was performed. Control mice were injected intraperitoneally with either cyclophosphamide alone or the same volume of solvent. Results Tumor sizes in the treatment groups were smaller than in the controls. No metastasis was found in the groups treated with cyclophosphamide and Chalone 19-peptide, but lung metastasis was found in controls. Liver damage in the groups treated with cyclophosphamide was more serious than in the other groups. Conclusion Addition of Chalone 19-peptide can improve the ability of cyclophosphamide to inhibit tumor growth and also reduces side effects.
Collapse
|
37
|
Le Goff MM, Sutton MJ, Slevin M, Latif A, Humphries MJ, Bishop PN. Opticin exerts its anti-angiogenic activity by regulating extracellular matrix adhesiveness. J Biol Chem 2012; 287:28027-36. [PMID: 22669977 PMCID: PMC3431625 DOI: 10.1074/jbc.m111.331157] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2011] [Revised: 05/04/2012] [Indexed: 01/02/2023] Open
Abstract
Opticin is an extracellular matrix glycoprotein that we identified associated with the collagen network of the vitreous humor of the eye. Recently, we discovered that opticin possesses anti-angiogenic activity using a murine oxygen-induced retinopathy model: here, we investigate the underlying mechanism. Using an ex vivo chick chorioallantoic membrane assay, we show that opticin inhibits angiogenesis when stimulated by a range of growth factors. We show that it suppresses capillary morphogenesis, inhibits endothelial invasion, and promotes capillary network regression in three-dimensional matrices of collagen and Matrigel(TM). We then show that opticin binds to collagen and thereby competitively inhibits endothelial cell interactions with collagen via α(1)β(1) and α(2)β(1) integrins, thereby preventing the strong adhesion that is required for proangiogenic signaling via these integrins.
Collapse
Affiliation(s)
| | | | - Mark Slevin
- The School of Biology, Chemistry, and Health Science, Manchester Metropolitan University, Manchester M1 5GD, United Kingdom, and
- the Institut Català de Ciències Cardiovasculars, Hospital de la Santa Creu i Sant Pau, Pavelló del Convent, Sant Antoni Maria Claret, Barcelona 08025, Spain
| | - Ayse Latif
- From the Faculty of Medical and Human Sciences and
- the Centre for Advanced Discovery and Experimental Therapeutics and Manchester Royal Eye Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9WH, United Kingdom
| | - Martin J. Humphries
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Paul N. Bishop
- From the Faculty of Medical and Human Sciences and
- the Centre for Advanced Discovery and Experimental Therapeutics and Manchester Royal Eye Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9WH, United Kingdom
| |
Collapse
|
38
|
Tan RJ, Liu Y. Matrix metalloproteinases in kidney homeostasis and diseases. Am J Physiol Renal Physiol 2012; 302:F1351-61. [PMID: 22492945 DOI: 10.1152/ajprenal.00037.2012] [Citation(s) in RCA: 177] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Matrix metalloproteinases (MMPs) are a family of zinc-dependent endopeptidases that have been increasingly linked to both normal physiology and abnormal pathology in the kidney. Collectively able to degrade all components of the extracellular matrix, MMPs were originally thought to antagonize the development of fibrotic diseases solely through digestion of excessive matrix. However, increasing evidence has shown that MMPs play a wide variety of roles in regulating inflammation, epithelial-mesenchymal transition, cell proliferation, angiogenesis, and apoptosis. We now have robust evidence for MMP dysregulation in a multitude of renal diseases including acute kidney injury, diabetic nephropathy, glomerulonephritis, inherited kidney disease, and chronic allograft nephropathy. The goal of this review is to summarize current findings regarding the role of MMPs in kidney diseases as well as the mechanisms of action of this family of proteases.
Collapse
Affiliation(s)
- Roderick J Tan
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, 200 Lothrop St., Pittsburgh, PA 15261, USA
| | | |
Collapse
|
39
|
Esipov R, Beyrakhova K, Likhvantseva V, Stepanova E, Stepanenko V, Kostromina M, Abramchik Y, Miroshnikov A. Antiangiogenic and antivascular effects of a recombinant tumstatin-derived peptide in a corneal neovascularization model. Biochimie 2012; 94:1368-75. [PMID: 22440655 DOI: 10.1016/j.biochi.2012.03.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 03/07/2012] [Indexed: 01/25/2023]
Abstract
Tumstatin, a cleavage fragment of collagen IV, is a potent endogenous inhibitor of angiogenesis. Tumstatin-derived peptide T8 possesses all angiostatic properties of full-length tumstatin and indirectly suppresses tumor growth. The potential of T8 to block pathological angiogenesis in the eye has not been explored yet. Here we assess antiangiogenic effects of a recombinant T8 peptide in rabbit corneal neovascularization models. The fusion protein consisting of T8 and thioredoxin was synthesized in a highly efficient Escherichia coli expression system, isolated using ion-exchange chromatography and cleaved with TEV (tobacco etch virus) protease. The target peptide was purified on an anion-exchange resin and by reversed phase high-performance liquid chromatography. The recombinant peptide suppressed the proliferation of basic fibroblast growth factor-induced SVEC-4-10 endothelial cells (simian virus 40-immortalized murine endothelial cells) and inhibited tube formation in these cells in a dose-dependent manner. In rabbit corneal neovascularization models T8 demonstrated the ability to prevent pathological angiogenesis (when injected simultaneously with the induction of neovascularization) and, moreover, to promote the regression of newly-formed blood vessels (when injected on day 8 after angiogenesis stimulation). Our results suggest that T8 may have a therapeutic potential in the treatment of ocular neovascular diseases.
Collapse
Affiliation(s)
- Roman Esipov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, Moscow 117997, Russia.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Fleury C, Serpentini A, Kypriotou M, Renard E, Galéra P, Lebel JM. Characterization of a non-fibrillar-related collagen in the mollusc Haliotis tuberculata and its biological activity on human dermal fibroblasts. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2011; 13:1003-1016. [PMID: 21271271 DOI: 10.1007/s10126-011-9364-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Accepted: 01/07/2011] [Indexed: 05/30/2023]
Abstract
In invertebrates, members of the collagen family have been found in various phyla. Surprisingly, in mollusc, little is known about such molecules. In this study, we characterize the full-length abalone type IV collagen and we analysed its biological effects on human fibroblast in order to gain insights about this molecule in molluscs and particularly clues about its roles. We screened a cDNA library of Haliotis tuberculata hemocytes. The expression pattern of the transcript is determined using real-time polymerase chain reaction and in situ hybridization. The close identity between α1(IV) C-terminal domain and the vertebrate homologue led us to produce, purify and test in vitro a recombinant protein corresponding to this region using human dermal fibroblasts cell culture. The biological effects were evaluated on proliferation and on differentiation. We found that the 5,334-bp open reading frame transcript encodes a protein of 1,777 amino acids, including an interrupted 1,502-residue collagenous domain and a 232-residue C-terminal non-collagenous domain. The expression pattern of this transcript is mainly found in the mantle and hemocytes. The recombinant protein corresponding α1(IV) C-terminal domain increased fibroblast proliferation by 69% and doubled collagen synthesis produced in primary cultures. This work provides the first complete primary structure of a mollusc non-fibrillar collagen chain and the biological effects of its C-terminal domain on human cells. In this study, we prove that the NC1 domain from a molluscan collagen can improve human fibroblast proliferation as well as differentiation.
Collapse
Affiliation(s)
- Christophe Fleury
- UMR 100 IFREMER Physiologie et Ecophysiologie des Mollusques Marins-IFR 146 ICORE-IBFA-Esplanade de la Paix, Université de Caen Basse-normandie, 14032, Caen, France
| | | | | | | | | | | |
Collapse
|
41
|
Integrin-mediated cell-matrix interaction in physiological and pathological blood vessel formation. JOURNAL OF ONCOLOGY 2011; 2012:125278. [PMID: 21941547 PMCID: PMC3175391 DOI: 10.1155/2012/125278] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Accepted: 07/15/2011] [Indexed: 02/07/2023]
Abstract
Physiological as well as pathological blood vessel formation are fundamentally dependent on cell-matrix interaction. Integrins, a family of major cell adhesion receptors, play a pivotal role in development, maintenance, and remodeling of the vasculature. Cell migration, invasion, and remodeling of the extracellular matrix (ECM) are integrin-regulated processes, and the expression of certain integrins also correlates with tumor progression. Recent advances in the understanding of how integrins are involved in the regulation of blood vessel formation and remodeling during tumor progression are highlighted. The increasing knowledge of integrin function at the molecular level, together with the growing repertoire of integrin inhibitors which allow their selective pharmacological manipulation, makes integrins suited as potential diagnostic markers and therapeutic targets.
Collapse
|
42
|
Stenvold H, Donnem T, Andersen S, Al-Saad S, Al-Shibli K, Busund LT, Bremnes RM. Overexpression of matrix metalloproteinase-7 and -9 in NSCLC tumor and stromal cells: correlation with a favorable clinical outcome. Lung Cancer 2011; 75:235-41. [PMID: 21764478 DOI: 10.1016/j.lungcan.2011.06.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Revised: 06/17/2011] [Accepted: 06/21/2011] [Indexed: 11/25/2022]
Abstract
BACKGROUND Matrix metalloproteinases (MMPs) are considered important players in angiogenesis and cancer progression. Several drugs developed for targeting MMPs have until now been without clinical efficacy. As both malignant cells and cells of the surrounding stroma contribute to tumor growth, we have explored the impact of MMP-2, -7 and -9 expression in both the tumor and stromal compartment of non-small-cell lung cancers (NSCLC). PATIENTS AND METHODS From 335 unselected stage I to IIIA NSCLC carcinomas, duplicate tumor and tumor-associated stromal cores were collected in tissue microarrays (TMAs). Immunohistochemistry was used to detect the expression of MMP-2, -7 and -9 in tumor and stromal cells. RESULTS In univariate analyses, high tumor cell MMP-7 expression (P=0.029) and high stromal MMP-9 expression (P=0.001) were positive prognostic factors. In the multivariate analysis, high tumor cell MMP-7 expression (HR 1.58, CI 1.08-2.32, P=0.020) and high stromal MMP-9 expression (HR 1.92, CI 1.25-2.96, P=0.003) were independent positive prognostic factors for disease-specific survival. CONCLUSION High levels of MMP-7 in tumor cells and high levels of MMP-9 in tumor associated stroma were independent positive prognostic factors in NSCLC patients.
Collapse
Affiliation(s)
- Helge Stenvold
- Institute of Clinical Medicine, University of Tromso, Norway.
| | | | | | | | | | | | | |
Collapse
|
43
|
Funahashi Y, Shawber CJ, Sharma A, Kanamaru E, Choi YK, Kitajewski J. Notch modulates VEGF action in endothelial cells by inducing Matrix Metalloprotease activity. Vasc Cell 2011; 3:2. [PMID: 21349159 PMCID: PMC3039832 DOI: 10.1186/2045-824x-3-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Accepted: 01/18/2011] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND In the vasculature, Notch signaling functions as a downstream effecter of Vascular Endothelial Growth Factor (VEGF) signaling. VEGF regulates sprouting angiogenesis in part by inducing and activating matrix metalloproteases (MMPs). This study sought to determine if VEGF regulation of MMPs was mediated via Notch signaling and to determine how Notch regulation of MMPs influenced endothelial cell morphogenesis. METHODS AND RESULTS We assessed the relationship between VEGF and Notch signaling in cultured human umbilical vein endothelial cells. Overexpression of VEGF-induced Notch4 and the Notch ligand, Dll4, activated Notch signaling, and altered endothelial cell morphology in a fashion similar to that induced by Notch activation. Expression of a secreted Notch antagonist (Notch1 decoy) suppressed VEGF-mediated activation of endothelial Notch signaling and endothelial morphogenesis. We demonstrate that Notch mediates VEGF-induced matrix metalloprotease activity via induction of MMP9 and MT1-MMP expression and activation of MMP2. Introduction of a MMP inhibitor blocked Notch-mediated endothelial morphogenesis. In mice, analysis of VEGF-induced dermal angiogenesis demonstrated that the Notch1 decoy reduced perivascular MMP9 expression. CONCLUSIONS Taken together, our data demonstrate that Notch signaling can act downstream of VEGF signaling to regulate endothelial cell morphogenesis via induction and activation of specific MMPs. In a murine model of VEGF-induced dermal angiogenesis, Notch inhibition led to reduced MMP9 expression.
Collapse
Affiliation(s)
- Yasuhiro Funahashi
- Pathology and Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, NY, NY 10032, USA.
| | | | | | | | | | | |
Collapse
|
44
|
Boxler S, Djonov V, Kessler TM, Hlushchuk R, Bachmann LM, Held U, Markwalder R, Thalmann GN. Matrix metalloproteinases and angiogenic factors: predictors of survival after radical prostatectomy for clinically organ-confined prostate cancer? THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:2216-24. [PMID: 20889560 PMCID: PMC2966781 DOI: 10.2353/ajpath.2010.091190] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/21/2010] [Indexed: 12/27/2022]
Abstract
The aim of the present study was to investigate whether biomarkers improve the prediction of recurrence-free, disease-specific, and overall survival in patients with clinically localized prostate cancer. A tissue microarray was constructed from prostate specimens of 278 patients who underwent open radical retropubic prostatectomy for clinically localized prostate cancer. For immunohistochemical studies, antibodies were used against matrix metalloproteinase (MMP)-2, MMP-3, MMP-7, MMP-9, MMP-13, and MMP-19, as well as against vascular endothelial growth factor, hypoxia-induced factor 1α, basic fibroblast growth factor, and cluster of differentiation 31. Univariate and multivariable analyses were performed to evaluate the potential predictors of overall, disease-specific, and recurrence-free survival. In univariate analysis of patients with clinically organ-confined prostate cancer, only higher expression levels of MMP-9 (hazard ratio [0.6], 95% CI 0.45-0.8) had a protective effect in terms of overall survival. This positive effect of high MMP-9 expression was also observed for recurrence-free (HR 0.88, 95% CI 0.78-0.99) and disease-specific survival (HR 0.5, 95% CI 0.36-0.73). In multivariable analysis, none of these potential markers was found to be an independent prognostic factor of survival. Of all MMPs and angiogenic factors tested, MMP-9 expression has the potential as a prognostic marker in patients undergoing radical prostatectomy for clinically organ-confined cases of prostate cancer.
Collapse
Affiliation(s)
- Silvan Boxler
- Institute of Anatomy, Department of Urology, University of Bern, 3010 Bern, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Pan CH, Hsieh IC, Liu FC, Hsieh WT, Sheu MJ, Koizumi A, Wu CH. Effects of a Chinese herbal health formula, "Gan-Lu-Yin", on angiogenesis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:7685-7692. [PMID: 20527984 DOI: 10.1021/jf1002254] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
According to the known effects of each ingredient, Gan-Lu-Yin (GLY), a traditional Chinese herbal formula, has the potential to be an antiangiogenic agent. The purpose of this study was to explore the putative effect of GLY on antiangiogenesis. An ethanol extract of GLY was tested on chicken chorioallantoic membrane (CAM) and human umbilical vein endothelial cells (HUVEC) to evaluate the effects of GLY extract on cell proliferation, migration, and tube formation. The results showed that treatment with 1.0 mg/mL of GLY extract could markedly reduce cell migration and in vitro tube formation of HUVEC, and 1.5 mg/mL of GLY extract was sufficient to inhibit proliferation of HUVEC. The expression level of vascular endothelial growth factor (VEGF) of HUVEC was significantly decreased by 1.5 and 2.0 mg/mL of GLY extract. In chicken CAM assay, all tested concentrations of GLY extract were found to reduce the capillary mesh on the CAM of fertilized eggs. The inhibitory effects of GLY extract (1 mg/mL) were also found on tumor cell-induced HUVEC proliferation and tube formation. These observations suggested that GLY extract has an inhibitory effect on angiogenesis, which in turn may prevent tumor growth, and its mechanism might be partially associated with blocking VEGF protein expression of HUVEC.
Collapse
Affiliation(s)
- Chun-Hsu Pan
- School of Pharmacy, China Medical University,Taichung 40402, Taiwan
| | | | | | | | | | | | | |
Collapse
|
46
|
Wang C, Cao J, Qu J, Li Y, Peng B, Gu Y, He Z. Recombinant vascular basement membrane derived multifunctional peptide blocks endothelial cell angiogenesis and neovascularization. J Cell Biochem 2010; 111:453-60. [DOI: 10.1002/jcb.22735] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
47
|
Tumor angiogenesis: insights and innovations. JOURNAL OF ONCOLOGY 2010; 2010:132641. [PMID: 20445741 PMCID: PMC2860112 DOI: 10.1155/2010/132641] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Revised: 02/12/2010] [Accepted: 02/12/2010] [Indexed: 12/21/2022]
Abstract
Angiogenesis is a vital process resulting in the formation of new blood vessels. It is normally a highly regulated process that occurs during human development, reproduction, and wound repair. However, angiogenesis can also become a fundamental pathogenic process found in cancer and several other diseases. To date, the inhibition of angiogenesis has been researched at both the bench and the bedside. While several studies have found moderate improvements when treating with angiogenesis inhibitors, greater success is being seen when the inhibition of angiogenesis is combined with other traditional forms of available therapy. This review summarizes several important angiogenic factors, examines new research and ongoing clinical trials for such factors, and attempts to explain how this new knowledge may be applied in the fight against cancer and other angiogenic-related diseases.
Collapse
|
48
|
Thevenard J, Ramont L, Devy J, Brassart B, Dupont-Deshorgue A, Floquet N, Schneider L, Ouchani F, Terryn C, Maquart FX, Monboisse JC, Brassart-Pasco S. The YSNSG cyclopeptide derived from tumstatin inhibits tumor angiogenesis by down-regulating endothelial cell migration. Int J Cancer 2010; 126:1055-66. [PMID: 19551865 DOI: 10.1002/ijc.24688] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
We previously demonstrated that the CNYYSNS peptide derived from tumstatin inhibited in vivo tumor progression. The YSNS motif formed a beta-turn crucial for biological activity. More recently, a YSNSG cyclopeptide with a constrained beta-turn on the YSNS residues was designed. Intraperitoneal administration of the YSNSG cyclopeptide inhibited in vivo melanoma progression more efficiently than the native linear peptide. In the present article, we showed that the YSNSG cyclopeptide also triggered an inhibition of in vivo tumor neovascularization and we further analyzed its in vitroantiangiogenic effect. The YSNSG cyclopeptide did not alter endothelial cell proliferation but inhibited cell migration by 83% in an in vitro wound healing model. The inhibition was mediated by a decrease in active MT1-MMP at the migration front as well as a decrease in u-PA and u-PAR expression. The cyclopeptide also altered beta1-integrin distribution in endothelial cell lamellipodia, induced a strong decrease in the phosphorylated focal adhesion kinase (p125(FAK)), disorganized F-actin stress fibers and decreased the number of lamellipodia, resulting in a non migratory phenotype. Our results confirm the YSNSG cyclopeptide as a potent antitumor agent, through both the inhibition of invasive properties of tumor cells and the antiangiogenic activity.
Collapse
Affiliation(s)
- Jessica Thevenard
- CNRS UMR 6237, Université de Reims Champagne-Ardenne, CHU de Reims, Reims, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
Cells, including endothelial cells, continuously sense their surrounding environment and rapidly adapt to changes in order to assure tissues and organs homeostasis. The extracellular matrix (ECM) provides a physical scaffold for cell positioning and represents an instructive interface allowing cells to communicate over short distances. Cell surface receptors of the integrin family emerged through evolution as essential mediators and integrators of ECM-dependent communication. In preclinical studies, pharmacological inhibition of vascular integrins suppressed angiogenesis and inhibited tumor progression. alpha(V)beta(3) and alpha(V)beta(5) were the first integrins targeted to suppress tumor angiogenesis. Subsequently, additional integrins, in particular alpha(1)beta(1), alpha(2)beta(1), alpha(5)beta(1), and alpha(6)beta(4), emerged as potential therapeutic targets. Integrin inhibitors are currently tested in clinical trials for their safety and antiangiogenic/antitumor activity. In this chapter, we review the role of integrins in angiogenesis and present recent advances in the use of integrin antagonists as potential therapeutics in cancer and discuss future perspectives.
Collapse
|
50
|
Burgess JK, Boustany S, Moir LM, Weckmann M, Lau JY, Grafton K, Baraket M, Hansbro PM, Hansbro NG, Foster PS, Black JL, Oliver BG. Reduction of tumstatin in asthmatic airways contributes to angiogenesis, inflammation, and hyperresponsiveness. Am J Respir Crit Care Med 2009; 181:106-15. [PMID: 19875687 DOI: 10.1164/rccm.200904-0631oc] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
RATIONALE Angiogenesis is a prominent feature of remodeling in asthma. Many proangiogenic factors are up-regulated in asthma, but little is known about levels of endogenous antiangiogenic agents. Collagen IV is decreased in the airway basement membrane in asthma. It has six alpha chains, of which the noncollagenous domain-1 domains have endogenous antiangiogenic properties. OBJECTIVES To study the expression of the noncollagenous domain-1 of the alpha3 chain of collagen IV, tumstatin, in the airways of subjects with and without asthma and to examine the potential for tumstatin to regulate angiogenesis and inflammation. METHODS We used immunohistochemistry and dot blots to examine the expression of tumstatin in bronchial biopsies, bronchoalveolar lavage fluid, and serum. We then used an in vitro angiogenesis assay and a murine model of allergic airways disease to explore tumstatin's biological function. MEASUREMENTS AND MAIN RESULTS The level of tumstatin is decreased 18-fold in the airways of patients with asthma but not in subjects without asthma, including those with chronic obstructive pulmonary disease, cystic fibrosis, and bronchiectasis. In vitro, recombinant tumstatin inhibited primary pulmonary endothelial cell tube formation. In a mouse model of chronic allergic airways disease, tumstatin suppressed angiogenesis, airway hyperresponsiveness, inflammatory cell infiltration, and mucus secretion and decreased levels of vascular endothelial growth factor and IL-13. CONCLUSIONS The observation that tumstatin is decreased in asthmatic airways and inhibits airway hyperresponsiveness and angiogenesis demonstrates the potential use of antiangiogenic agents such as tumstatin as a therapeutic intervention in diseases that are characterized by aberrant angiogenesis and tissue remodeling, such as asthma.
Collapse
Affiliation(s)
- Janette K Burgess
- Respiratory Research Group, Discipline of Pharmacology, Bosch Building, D05, University of Sydney, Sydney, NSW, Australia 2006.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|