1
|
Maiworm M. The relevance of BDNF for neuroprotection and neuroplasticity in multiple sclerosis. Front Neurol 2024; 15:1385042. [PMID: 39148705 PMCID: PMC11325594 DOI: 10.3389/fneur.2024.1385042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 06/24/2024] [Indexed: 08/17/2024] Open
Abstract
Background Neuroplasticity as a mechanism to overcome central nervous system injury resulting from different neurological diseases has gained increasing attention in recent years. However, deficiency of these repair mechanisms leads to the accumulation of neuronal damage and therefore long-term disability. To date, the mechanisms by which remyelination occurs and why the extent of remyelination differs interindividually between multiple sclerosis patients regardless of the disease course are unclear. A member of the neurotrophins family, the brain-derived neurotrophic factor (BDNF) has received particular attention in this context as it is thought to play a central role in remyelination and thus neuroplasticity, neuroprotection, and memory. Objective To analyse the current literature regarding BDNF in different areas of multiple sclerosis and to provide an overview of the current state of knowledge in this field. Conclusion To date, studies assessing the role of BDNF in patients with multiple sclerosis remain inconclusive. However, there is emerging evidence for a beneficial effect of BDNF in multiple sclerosis, as studies reporting positive effects on clinical as well as MRI characteristics outweighed studies assuming detrimental effects of BDNF. Furthermore, studies regarding the Val66Met polymorphism have not conclusively determined whether this is a protective or harmful factor in multiple sclerosis, but again most studies hypothesized a protective effect through modulation of BDNF secretion and anti-inflammatory effects with different effects in healthy controls and patients with multiple sclerosis, possibly due to the pro-inflammatory milieu in patients with multiple sclerosis. Further studies with larger cohorts and longitudinal follow-ups are needed to improve our understanding of the effects of BDNF in the central nervous system, especially in the context of multiple sclerosis.
Collapse
Affiliation(s)
- Michelle Maiworm
- Department of Neurology, University Hospital Frankfurt, Frankfurt, Germany
| |
Collapse
|
2
|
Malange KF, de Souza DM, Lemes JBP, Fagundes CC, Oliveira ALL, Pagliusi MO, Carvalho NS, Nishijima CM, da Silva CRR, Consonni SR, Sartori CR, Tambeli CH, Parada CA. The Implications of Brain-Derived Neurotrophic Factor in the Biological Activities of Platelet-Rich Plasma. Inflammation 2024:10.1007/s10753-024-02072-9. [PMID: 38904872 DOI: 10.1007/s10753-024-02072-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/16/2024] [Accepted: 05/31/2024] [Indexed: 06/22/2024]
Abstract
Platelet-rich plasma (PRP) is a biological blood-derived therapeutic obtained from whole blood that contains higher levels of platelets. PRP has been primarily used to mitigate joint degeneration and chronic pain in osteoarthritis (OA). This clinical applicability is based mechanistically on the release of several proteins by platelets that can restore joint homeostasis. Platelets are the primary source of brain-derived neurotrophic factor (BDNF) outside the central nervous system. Interestingly, BDNF and PRP share key biological activities with clinical applicability for OA management, such as anti-inflammatory, anti-apoptotic, and antioxidant. However, the role of BDNF in PRP therapeutic activities is still unknown. Thus, this work aimed to investigate the implications of BDNF in therapeutic outcomes provided by PRP therapy in vitro and in-vivo, using the MIA-OA animal model in male Wistar rats. Initially, the PRP was characterized, obtaining a leukocyte-poor-platelet-rich plasma (LP-PRP). Our assays indicated that platelets activated by Calcium release BDNF, and suppression of M1 macrophage polarization induced by LP-PRP depends on BDNF full-length receptor, Tropomyosin Kinase-B (TrkB). OA animals were given LP-PRP intra-articular and showed functional recovery in gait, joint pain, inflammation, and tissue damage caused by MIA. Immunohistochemistry for activating transcriptional factor-3 (ATF-3) on L4/L5 dorsal root ganglia showed the LP-PRP decreased the nerve injury induced by MIA. All these LP-PRP therapeutic activities were reversed in the presence of TrkB receptor antagonist. Our results suggest that the therapeutic effects of LP-PRP in alleviating OA symptoms in rats depend on BDNF/TrkB activity.
Collapse
Affiliation(s)
- Kaue Franco Malange
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Carl Von Linnaeus, Cidade Universitária Zeferino Vaz, Campinas, São Paulo, 13083-864, Brazil
| | - Douglas Menezes de Souza
- Department of Pharmacology, School of Medical Sciences, University of Campinas (UNICAMP), Rua Tessália Vieira de Camargo, 126, Cidade Universitária Zeferino Vaz, Campinas, São Paulo, 13083-887, Brazil
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, 255, Cidade Universitária Zeferino Vaz, Campinas, São Paulo, CEP 13083-862, Brazil
| | - Julia Borges Paes Lemes
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Carl Von Linnaeus, Cidade Universitária Zeferino Vaz, Campinas, São Paulo, 13083-864, Brazil
| | - Cecilia Costa Fagundes
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Carl Von Linnaeus, Cidade Universitária Zeferino Vaz, Campinas, São Paulo, 13083-864, Brazil
| | - Anna Lethicia Lima Oliveira
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Carl Von Linnaeus, Cidade Universitária Zeferino Vaz, Campinas, São Paulo, 13083-864, Brazil
| | - Marco Oreste Pagliusi
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Carl Von Linnaeus, Cidade Universitária Zeferino Vaz, Campinas, São Paulo, 13083-864, Brazil
| | - Nathalia Santos Carvalho
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Carl Von Linnaeus, Cidade Universitária Zeferino Vaz, Campinas, São Paulo, 13083-864, Brazil
| | - Catarine Massucato Nishijima
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Carl Von Linnaeus, Cidade Universitária Zeferino Vaz, Campinas, São Paulo, 13083-864, Brazil
| | - Cintia Rizoli Ruiz da Silva
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, 255, Cidade Universitária Zeferino Vaz, Campinas, São Paulo, CEP 13083-862, Brazil
| | - Silvio Roberto Consonni
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, 255, Cidade Universitária Zeferino Vaz, Campinas, São Paulo, CEP 13083-862, Brazil
| | - Cesar Renato Sartori
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Carl Von Linnaeus, Cidade Universitária Zeferino Vaz, Campinas, São Paulo, 13083-864, Brazil
| | - Claudia Herrera Tambeli
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Carl Von Linnaeus, Cidade Universitária Zeferino Vaz, Campinas, São Paulo, 13083-864, Brazil
| | - Carlos Amilcar Parada
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Carl Von Linnaeus, Cidade Universitária Zeferino Vaz, Campinas, São Paulo, 13083-864, Brazil.
| |
Collapse
|
3
|
Warnecke A, Staecker H, Rohde E, Gimona M, Giesemann A, Szczepek AJ, Di Stadio A, Hochmair I, Lenarz T. Extracellular Vesicles in Inner Ear Therapies-Pathophysiological, Manufacturing, and Clinical Considerations. J Clin Med 2022; 11:jcm11247455. [PMID: 36556073 PMCID: PMC9788356 DOI: 10.3390/jcm11247455] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/09/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022] Open
Abstract
(1) Background: Sensorineural hearing loss is a common and debilitating condition. To date, comprehensive pharmacologic interventions are not available. The complex and diverse molecular pathology that underlies hearing loss may limit our ability to intervene with small molecules. The current review foccusses on the potential for the use of extracellular vesicles in neurotology. (2) Methods: Narrative literature review. (3) Results: Extracellular vesicles provide an opportunity to modulate a wide range of pathologic and physiologic pathways and can be manufactured under GMP conditions allowing for their application in the human inner ear. The role of inflammation in hearing loss with a focus on cochlear implantation is shown. How extracellular vesicles may provide a therapeutic option for complex inflammatory disorders of the inner ear is discussed. Additionally, manufacturing and regulatory issues that need to be addressed to develop EVs as advanced therapy medicinal product for use in the inner ear are outlined. (4) Conclusion: Given the complexities of inner ear injury, novel therapeutics such as extracellular vesicles could provide a means to modulate inflammation, stress pathways and apoptosis in the inner ear.
Collapse
Affiliation(s)
- Athanasia Warnecke
- Department of Otolaryngology, Hannover Medical School, 30625 Hannover, Germany
- Cluster of Excellence of the German Research Foundation (DFG; “Deutsche Forschungsgemeinschaft”) “Hearing4all”, 30625 Hannover, Germany
- Correspondence:
| | - Hinrich Staecker
- Department of Otolaryngology Head and Neck Surgery, University of Kansas School of Medicine, Rainbow Blvd., Kansas City, KS 66160, USA
| | - Eva Rohde
- GMP Unit, Spinal Cord Injury & Tissue Regeneration Centre Salzburg (SCI-TReCS), Paracelsus Medical University, 5020 Salzburg, Austria
- Transfer Centre for Extracellular Vesicle Theralytic Technologies (EV-TT), 5020 Salzburg, Austria
- Department of Transfusion Medicine, University Hospital, Salzburger Landeskliniken GesmbH (SALK) Paracelsus Medical University, 5020 Salzburg, Austria
| | - Mario Gimona
- GMP Unit, Spinal Cord Injury & Tissue Regeneration Centre Salzburg (SCI-TReCS), Paracelsus Medical University, 5020 Salzburg, Austria
- Transfer Centre for Extracellular Vesicle Theralytic Technologies (EV-TT), 5020 Salzburg, Austria
- Research Program “Nanovesicular Therapies”, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Anja Giesemann
- Department of Diagnostic and Interventional Neuroradiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Agnieszka J. Szczepek
- Department of Otorhinolaryngology, Head and Neck Surgery, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
- Faculty of Medicine and Health Sciences, University of Zielona Gora, 65-046 Zielona Gora, Poland
| | - Arianna Di Stadio
- Department GF Ingrassia, University of Catania, 95124 Catania, Italy
| | | | - Thomas Lenarz
- Department of Otolaryngology, Hannover Medical School, 30625 Hannover, Germany
- Cluster of Excellence of the German Research Foundation (DFG; “Deutsche Forschungsgemeinschaft”) “Hearing4all”, 30625 Hannover, Germany
| |
Collapse
|
4
|
A novel cell-free intrathecal approach with PRP for the treatment of spinal cord multiple sclerosis in cats. Inflamm Regen 2022; 42:45. [PMID: 36229845 PMCID: PMC9563497 DOI: 10.1186/s41232-022-00230-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 08/28/2022] [Indexed: 11/24/2022] Open
Abstract
Background Multiple sclerosis (MS) is a progressive autoimmune demyelinating disease of the central nervous system. To date, there is no effective therapy for it. Our study aimed to determine the potential role of platelet-rich plasma (PRP) in the treatment of MS in cats. Methods The current study was conducted on 15 adult Persian cats that were divided into three groups: control negative, control positive (ethidium bromide (EB)-treated group), and PRP co-treated group (EB-treated group intrathecally injected with PRP on day 14 post-spinal cord injury). PRP was obtained by centrifuging blood on anticoagulant citrate dextrose and activating it with red and green laser diodes. The Basso–Beattie–Bresnahan (BBB) scores were used to assess the motor function recovery on days 1, 3, 7, 14, 20, and 28 following 14 days from EB injection. Moreover, magnetic resonance imaging (MRI) analysis, histopathological investigations, transmission electron microscopy (TEM) studies, and immunohistochemical analysis were conducted, and the gene expressions of nerve growth factors (NGFs), brain-derived neurotrophic factors (BDNF), and stromal cell-derived factors (SDF) were evaluated. Results Our results indicated that PRP had a significant ameliorative effect on the motor function of the hindlimbs as early as day 20 and so on. MRI revealed that the size and intensity of the lesion were significantly reduced in the PRP co-treated group. The histopathological and TEM investigations demonstrated that the PRP co-treated group had a significant improvement in the structure and organization of the white matter, as well as a high remyelination capacity. Furthermore, a significant increase in myelin basic protein and Olig2 immunoreactivity as well as a reduction in Bax and glial fibrillar acidic protein immune markers was observed. NGFs were found to be upregulated by gene expression. Conclusion As a result, we concluded that the intrathecal injection of PRP was an effective, safe, and promising method for the treatment of MS.
Collapse
|
5
|
Jorge DDMF, Huber SC, Rodrigues BL, Da Fonseca LF, Azzini GOM, Parada CA, Paulus-Romero C, Lana JFSD. The Mechanism of Action between Pulsed Radiofrequency and Orthobiologics: Is There a Synergistic Effect? Int J Mol Sci 2022; 23:ijms231911726. [PMID: 36233026 PMCID: PMC9570243 DOI: 10.3390/ijms231911726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/07/2022] [Accepted: 09/16/2022] [Indexed: 12/04/2022] Open
Abstract
Radiofrequency energy is a common treatment modality for chronic pain. While there are different forms of radiofrequency-based therapeutics, the common concept is the generation of an electromagnetic field in the applied area, that can result in neuromodulation (pulsed radiofrequency—PRF) or ablation. Our specific focus relates to PRF due to the possibility of modulation that is in accordance with the mechanisms of action of orthobiologics. The proposed mechanism of action of PRF pertaining to pain relief relies on a decrease in pro-inflammatory cytokines, an increase in cytosolic calcium concentration, a general effect on the immune system, and a reduction in the formation of free radical molecules. The primary known properties of orthobiologics constitute the release of growth factors, a stimulus for endogenous repair, analgesia, and improvement of the function of the injured area. In this review, we described the mechanism of action of both treatments and pertinent scientific references to the use of the combination of PRF and orthobiologics. Our hypothesis is a synergic effect with the combination of both techniques which could benefit patients and improve the life quality.
Collapse
Affiliation(s)
| | - Stephany Cares Huber
- Orthoregen International Course—Avenida Presidente Kennedy, 1386, Cidade Nova I, Indaiatuba 13334-170, Brazil
| | - Bruno Lima Rodrigues
- Orthoregen International Course—Avenida Presidente Kennedy, 1386, Cidade Nova I, Indaiatuba 13334-170, Brazil
| | - Lucas Furtado Da Fonseca
- Orthopaedic Department, Universidade Federal de São Paulo, 715 Napoleão de Barros St-Vila Clementino, São Paulo 04024-002, Brazil
| | - Gabriel Ohana Marques Azzini
- Department of Orthopaedics, Brazilian Institute of Regenerative Medicine, Cidade Nova I, Indaiatuba 13334-170, Brazil
| | - Carlos Amilcar Parada
- Laboratory of Study of Pain, Department of Structural and Functional Biology, University of Campinas, Rua Monteiro Lobato, 255, Campinas 13083-862, Brazil
| | - Christian Paulus-Romero
- American Academy of Regenerative Medicine, 14405 West Colfax Avenue, #291, Lakewood, CO 80401, USA
| | - José Fábio Santos Duarte Lana
- Orthoregen International Course—Avenida Presidente Kennedy, 1386, Cidade Nova I, Indaiatuba 13334-170, Brazil
- Department of Orthopaedics, Brazilian Institute of Regenerative Medicine, Cidade Nova I, Indaiatuba 13334-170, Brazil
| |
Collapse
|
6
|
Is Brain-Derived Neurotrophic Factor a Metabolic Hormone in Peripheral Tissues? BIOLOGY 2022; 11:biology11071063. [PMID: 36101441 PMCID: PMC9312804 DOI: 10.3390/biology11071063] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/05/2022] [Accepted: 07/15/2022] [Indexed: 12/06/2022]
Abstract
Simple Summary The activity of brain-derived neurotrophic factor (BDF) in the central nervous system has been well-studied, but its physiological role in other organs has not been clearly defined. This review summarizes the current findings on the functionality of BDNF in various peripheral tissues and discusses several unresolved questions in the field. Abstract Brain-derived neurotrophic factor (BDNF) is an important growth factor in the central nervous system. In addition to its well-known activities in promoting neuronal survival, neuron differentiation, and synaptic plasticity, neuronal BDNF also regulates energy homeostasis by modulating the hypothalamus’s hormonal signals. In the past decades, several peripheral tissues, including liver, skeletal muscle, and white adipose tissue, were demonstrated as the active sources of BDNF synthesis in response to different metabolic challenges. Nevertheless, the functions of BDNF in these tissues remain obscure. With the use of tissue-specific Bdnf knockout animals and the availability of non-peptidyl BDNF mimetic, increasing evidence has reported that peripheral tissues-derived BDNF might play a significant role in maintaining systemic metabolism, possibly through the regulation of mitochondrial dynamics in the various tissues. This article reviews the autocrine/paracrine/endocrine functions of BDNF in non-neuronal tissues and discusses the unresolved questions about BDNF’s function.
Collapse
|
7
|
Moss LD, Sode D, Patel R, Lui A, Hudson C, Patel NA, Bickford PC. Intranasal delivery of exosomes from human adipose derived stem cells at forty-eight hours post injury reduces motor and cognitive impairments following traumatic brain injury. Neurochem Int 2021; 150:105173. [PMID: 34453976 PMCID: PMC8511339 DOI: 10.1016/j.neuint.2021.105173] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/18/2021] [Accepted: 08/24/2021] [Indexed: 12/14/2022]
Abstract
The neuroprotective role of human adipose-derived stems cells (hASCs) has raised great interest in regenerative medicine due to their ability to modulate their surrounding environment. Our group has demonstrated that exosomes derived from hASC (hASCexo) are a cell-free regenerative approach to long term recovery following traumatic brain injury (TBI). Previously, we demonstrated the efficacy of exosome treatment with intravenous delivery at 3 h post TBI in rats. Here, we show efficacy of exosomes through intranasal delivery at 48 h post TBI in mice lengthening the therapeutic window of treatment and therefore increasing possible translation to clinical studies. Our findings demonstrate significant recovery of motor impairment assessed by an elevated body swing test in mice treated with exosomes containing MALAT1 compared to both TBI mice without exosomes and exosomes depleted of MALAT1. Significant cognitive improvement was seen in the reversal trial of 8 arm radial arm water maze in mice treated with exosomes containing MALAT1. Furthermore, cortical damage was significantly reduced in mice treated with exosomes containing MALAT1 as well as decreased MHCII+ staining of microglial cells. Mice without exosomes or treated with exosomes depleted of MALAT1 did not show similar recovery. Results demonstrate both inflammation related genes and NRTK3 (TrkC) are target genes modulated by hASC exosomes and further that MALAT1 in hASC exosomes regulates expression of full length TrkC thereby activating the MAPK pathway and promoting recovery. Exosomes are a promising therapeutic approach following TBI with a therapeutic window of at least 48 h and contain long noncoding RNA's, specifically MALAT1 that play a vital role in the mechanism of action.
Collapse
Affiliation(s)
- Lauren D Moss
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Derek Sode
- Department of Molecular Medicine, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Rekha Patel
- James A. Haley Veterans Hospital, Research Service, Tampa, FL, USA
| | - Ashley Lui
- Department of Molecular Medicine, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Charles Hudson
- James A. Haley Veterans Hospital, Research Service, Tampa, FL, USA
| | - Niketa A Patel
- James A. Haley Veterans Hospital, Research Service, Tampa, FL, USA; Department of Molecular Medicine, University of South Florida Morsani College of Medicine, Tampa, FL, USA.
| | - Paula C Bickford
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA; James A. Haley Veterans Hospital, Research Service, Tampa, FL, USA.
| |
Collapse
|
8
|
Prowse N, Hayley S. Microglia and BDNF at the crossroads of stressor related disorders: Towards a unique trophic phenotype. Neurosci Biobehav Rev 2021; 131:135-163. [PMID: 34537262 DOI: 10.1016/j.neubiorev.2021.09.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 09/08/2021] [Accepted: 09/08/2021] [Indexed: 12/16/2022]
Abstract
Stressors ranging from psychogenic/social to neurogenic/injury to systemic/microbial can impact microglial inflammatory processes, but less is known regarding their effects on trophic properties of microglia. Recent studies do suggest that microglia can modulate neuronal plasticity, possibly through brain derived neurotrophic factor (BDNF). This is particularly important given the link between BDNF and neuropsychiatric and neurodegenerative pathology. We posit that certain activated states of microglia play a role in maintaining the delicate balance of BDNF release onto neuronal synapses. This focused review will address how different "activators" influence the expression and release of microglial BDNF and address the question of tropomyosin receptor kinase B (TrkB) expression on microglia. We will then assess sex-based differences in microglial function and BDNF expression, and how microglia are involved in the stress response and related disorders such as depression. Drawing on research from a variety of other disorders, we will highlight challenges and opportunities for modulators that can shift microglia to a "trophic" phenotype with a view to potential therapeutics relevant for stressor-related disorders.
Collapse
Affiliation(s)
- Natalie Prowse
- Department of Neuroscience, Carleton University, Ottawa, ON K1S 5B6, Canada.
| | - Shawn Hayley
- Department of Neuroscience, Carleton University, Ottawa, ON K1S 5B6, Canada.
| |
Collapse
|
9
|
Sasaki S, Takeda K, Ouhara K, Shirawachi S, Kajiya M, Matsuda S, Kono S, Shiba H, Kurihara H, Mizuno N. Involvement of Rac1 in macrophage activation by brain-derived neurotrophic factor. Mol Biol Rep 2021; 48:5249-5257. [PMID: 34251558 DOI: 10.1007/s11033-021-06531-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 06/29/2021] [Indexed: 01/14/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) enhances periodontal tissue regeneration. Tissue regeneration is characterized by inflammation, which directs the quality of tissue repair. This study aimed to investigate the effect of BDNF on the phagocytic activity of RAW264.7 cells. In addition, we studied the effect of BDNF on guanosine triphosphatase (GTP)-RAS-related C3 botulinus toxin substrate (Rac)1 and phospho-Rac1 levels in RAW264.7 cells. Rac1 inhibitor inhibited BDNF-induced phagocytosis of latex-beads. In addition, BDNF enhanced Porphyromonas gingivalis (Pg) phagocytosis by RAW264.7 cells as well as latex-beads. We demonstrated for the first time that BDNF enhances phagocytic activity of RAW264.7 cells through Rac1 activation. The present study proposes that BDNF may reduce inflammatory stimuli during BDNF-induced periodontal tissue regeneration through enhanced phagocytic activity of macrophages.
Collapse
Affiliation(s)
- Shinya Sasaki
- Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Katsuhiro Takeda
- Department of Biological Endodontics, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8553, Japan.
| | - Kazuhisa Ouhara
- Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Satomi Shirawachi
- Department of Biological Endodontics, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Mikihito Kajiya
- Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Shinji Matsuda
- Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Shoko Kono
- Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Hideki Shiba
- Department of Biological Endodontics, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Hidemi Kurihara
- Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Noriyoshi Mizuno
- Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| |
Collapse
|
10
|
Abstract
Brain-derived neurotrophic factor (BDNF) and the high-affinity receptor tropomyosin receptor kinase B (TrkB) have important roles in neuronal survival and in spinal sensitization mechanisms associated with chronic pain. Recent clinical evidence also supports a peripheral role of BDNF in osteoarthritis (OA), with synovial expression of TrkB associated with higher OA pain. The aim of this study was to use clinical samples and animal models to explore the potential contribution of knee joint BDNF/TrkB signalling to chronic OA pain. Brain-derived neurotrophic factor and TrkB mRNA and protein were present in knee synovia from OA patients (16 women, 14 men, median age 67 years [interquartile range: 61-73]). There was a significant positive correlation between mRNA expression of NTRK2 (TrkB) and the proinflammatory chemokine fractalkine in the OA synovia. Using the surgical medial meniscal transection (MNX) model and the chemical monosodium iodoacetate (MIA) model of OA pain in male rats, the effects of peripheral BDNF injection, vs sequestering endogenous BDNF with TrkB-Fc chimera, on established pain behaviour were determined. Intra-articular injection of BDNF augmented established OA pain behaviour in MIA rats, but had no effect in controls. Intra-articular injection of the TrkB-Fc chimera acutely reversed pain behaviour to a similar extent in both models of OA pain (weight-bearing asymmetry MIA: -11 ± 4%, MNX: -12 ± 4%), compared to vehicle treatment. Our data suggesting a contribution of peripheral knee joint BDNF/TrkB signalling in the maintenance of chronic OA joint pain support further investigation of the therapeutic potential of this target.
Collapse
|
11
|
Warnecke A, Harre J, Staecker H, Prenzler N, Strunk D, Couillard‐Despres S, Romanelli P, Hollerweger J, Lassacher T, Auer D, Pachler K, Wietzorrek G, Köhl U, Lenarz T, Schallmoser K, Laner‐Plamberger S, Falk CS, Rohde E, Gimona M. Extracellular vesicles from human multipotent stromal cells protect against hearing loss after noise trauma in vivo. Clin Transl Med 2020; 10:e262. [PMID: 33377658 PMCID: PMC7752163 DOI: 10.1002/ctm2.262] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 12/03/2020] [Accepted: 12/06/2020] [Indexed: 12/21/2022] Open
Abstract
The lack of approved anti-inflammatory and neuroprotective therapies in otology has been acknowledged in the last decades and recent approaches are heralding a new era in the field. Extracellular vesicles (EVs) derived from human multipotent (mesenchymal) stromal cells (MSC) can be enriched in vesicular secretome fractions, which have been shown to exert effects (eg, neuroprotection and immunomodulation) of their parental cells. Hence, MSC-derived EVs may serve as novel drug candidates for several inner ear diseases. Here, we provide first evidence of a strong neuroprotective potential of human stromal cell-derived EVs on inner ear physiology. In vitro, MSC-EV preparations exerted immunomodulatory activity on T cells and microglial cells. Moreover, local application of MSC-EVs to the inner ear significantly attenuated hearing loss and protected auditory hair cells from noise-induced trauma in vivo. Thus, EVs derived from the vesicular secretome of human MSC may represent a next-generation biological drug that can exert protective therapeutic effects in a complex and nonregenerating organ like the inner ear.
Collapse
Affiliation(s)
- Athanasia Warnecke
- Department of OtorhinolaryngologyHead and Neck SurgeryHannover Medical SchoolHannoverGermany
| | - Jennifer Harre
- Department of OtorhinolaryngologyHead and Neck SurgeryHannover Medical SchoolHannoverGermany
| | - Hinrich Staecker
- Department of Otolaryngology, Head and Neck SurgeryUniversity of Kansas School of MedicineKansas CityKansas
| | - Nils Prenzler
- Department of OtorhinolaryngologyHead and Neck SurgeryHannover Medical SchoolHannoverGermany
| | - Dirk Strunk
- Institute of Experimental and Clinical Cell TherapySpinal Cord Injury and Tissue Regeneration Centre Salzburg (SCI‐TReCS)Paracelsus Medical UniversitySalzburgAustria
| | - Sebastien Couillard‐Despres
- Institute of Experimental NeuroregenerationSpinal Cord Injury and Tissue Regeneration Centre Salzburg (SCI‐TReCS)Paracelsus Medical UniversitySalzburgAustria
- Austrian Cluster for Tissue RegenerationViennaAustria
| | - Pasquale Romanelli
- Institute of Experimental NeuroregenerationSpinal Cord Injury and Tissue Regeneration Centre Salzburg (SCI‐TReCS)Paracelsus Medical UniversitySalzburgAustria
| | - Julia Hollerweger
- GMP Unit, Spinal Cord Injury and Tissue Regeneration Centre Salzburg (SCI‐TReCS)Paracelsus Medical University (PMU)SalzburgAustria
| | - Teresa Lassacher
- GMP Unit, Spinal Cord Injury and Tissue Regeneration Centre Salzburg (SCI‐TReCS)Paracelsus Medical University (PMU)SalzburgAustria
| | - Daniela Auer
- GMP Unit, Spinal Cord Injury and Tissue Regeneration Centre Salzburg (SCI‐TReCS)Paracelsus Medical University (PMU)SalzburgAustria
| | - Karin Pachler
- Research Program “Nanovesicular Therapies,”Paracelsus Medical University (PMU)SalzburgAustria
| | - Georg Wietzorrek
- Institute of Molecular and Cellular PharmacologyMedical University of InnsbruckInnsbruckAustria
| | - Ulrike Köhl
- Institute of Cellular TherapeuticsHannover Medical School and Clinical ImmunologyUniversity Leipzig, Fraunhofer Institute for Cell Therapy and ImmunologyLeipzigGermany
| | - Thomas Lenarz
- Department of OtorhinolaryngologyHead and Neck SurgeryHannover Medical SchoolHannoverGermany
| | - Katharina Schallmoser
- GMP Unit, Spinal Cord Injury and Tissue Regeneration Centre Salzburg (SCI‐TReCS)Paracelsus Medical University (PMU)SalzburgAustria
- Department of Transfusion MedicineUniversity HospitalSalzburger Landeskliniken GesmbH (SALK) and Paracelsus Medical University (PMU)SalzburgAustria
| | - Sandra Laner‐Plamberger
- Department of Transfusion MedicineUniversity HospitalSalzburger Landeskliniken GesmbH (SALK) and Paracelsus Medical University (PMU)SalzburgAustria
| | - Christine S. Falk
- Institute of Transplant ImmunologyHannover Medical SchoolHannoverGermany
| | - Eva Rohde
- GMP Unit, Spinal Cord Injury and Tissue Regeneration Centre Salzburg (SCI‐TReCS)Paracelsus Medical University (PMU)SalzburgAustria
- Department of Transfusion MedicineUniversity HospitalSalzburger Landeskliniken GesmbH (SALK) and Paracelsus Medical University (PMU)SalzburgAustria
| | - Mario Gimona
- GMP Unit, Spinal Cord Injury and Tissue Regeneration Centre Salzburg (SCI‐TReCS)Paracelsus Medical University (PMU)SalzburgAustria
- Research Program “Nanovesicular Therapies,”Paracelsus Medical University (PMU)SalzburgAustria
| |
Collapse
|
12
|
Chang JW, Wu MT, Song WS, Yang FY. Ultrasound Stimulation Suppresses LPS-Induced Proinflammatory Responses by Regulating NF-κB and CREB Activation in Microglial Cells. Cereb Cortex 2020; 30:4597-4606. [DOI: 10.1093/cercor/bhaa062] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Abstract
The purpose of this study was to investigate the effects and underlying mechanisms of low-intensity pulsed ultrasound (LIPUS) against lipopolysaccharide (LPS)-induced neuroinflammation. BV-2 microglia subjected to LPS administration (1 μg/mL) were treated with LIPUS stimulation. The levels of inflammatory mediators and brain-derived neurotrophic factor (BDNF) were quantified using the western blot. The results showed that LIPUS stimulation promoted the associated cAMP response element-binding protein (CREB)/BDNF expression in the LPS-treated microglia. Meanwhile, LIPUS treatment effectively suppressed the LPS-induced production of tumor necrosis factor-α, interleukin-1β, interleukin-6, inducible nitric oxide synthase, and cyclooxygenase-2 in the microglial cells, in addition to inhibiting the LPS-induced expressions of toll-like receptor 4 and myeloid differentiation factor 88, as well as the LPS-induced activation of c-Jun N-terminal kinase and nuclear factor kappa B. Furthermore, LIPUS significantly decreased the Bax/Bcl-2 ratio in the microglia following LPS treatment. Our data indicated that LIPUS attenuated the proinflammatory responses as well as the decline in BDNF in LPS-treated microglia. This study provides a better understanding of how LIPUS stimulation regulates anti-inflammatory actions in microglia, providing further evidence suggesting that such stimulation may be regarded as a novel strategy for the treatment of neuroinflammation.
Collapse
Affiliation(s)
- Jia-Wei Chang
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei 11221, Taiwan
| | - Meng-Ting Wu
- Division of Neurosurgery, Cheng Hsin General Hospital, Taipei 11221, Taiwan
- Electrical and Communications Engineering, Feng Chia University, Taichung 407301, Taiwan
| | - Wen-Shin Song
- Division of Neurosurgery, Cheng Hsin General Hospital, Taipei 11221, Taiwan
- School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan
| | - Feng-Yi Yang
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei 11221, Taiwan
| |
Collapse
|
13
|
Lai SW, Chen JH, Lin HY, Liu YS, Tsai CF, Chang PC, Lu DY, Lin C. Regulatory Effects of Neuroinflammatory Responses Through Brain-Derived Neurotrophic Factor Signaling in Microglial Cells. Mol Neurobiol 2018; 55:7487-7499. [PMID: 29427085 DOI: 10.1007/s12035-018-0933-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 01/25/2018] [Indexed: 11/26/2022]
Abstract
Inhibition of microglial over-activation is an important strategy to counter balance neurodegenerative progression. We previously demonstrated that the adenosine monophosphate-activated protein kinase (AMPK) may be a therapeutic target in mediating anti-neuroinflammatory responses in microglia. Brain-derived neurotrophic factor (BDNF) is one of the major neurotrophic factors produced by astrocytes to maintain the development and survival of neurons in the brain, and have recently been shown to modulate homeostasis of neuroinflammation. Therefore, the present study focused on BDNF-mediated neuroinflammatory responses and may provide an endogenous regulation of neuroinflammation. Among the tested neuroinflammation, epigallocatechin gallate (EGCG) and minocycline exerted BDNF upregulation to inhibit COX-2 and proinflammatory mediator expressions. Furthermore, both EGCG and minocycline upregulated BDNF expression in microglia through AMPK signaling. In addition, minocycline and EGCG also increased expressions of erythropoietin (EPO) and sonic hedgehog (Shh). In the endogenous modulation of neuroinflammation, astrocyte-conditioned medium (AgCM) also decreased the expression of COX-2 and upregulated BDNF expression in microglia. The anti-inflammatory effects of BDNF were mediated through EPO/Shh in microglia. Our results indicated that the BDNF-EPO-Shh novel-signaling pathway underlies the regulation of inflammatory responses and may be regarded as a potential therapeutic target in neurodegenerative diseases. This study also reveals a better understanding of an endogenous crosstalk between astrocytes and microglia to regulate anti-inflammatory actions, which could provide a novel strategy for the treatment of neuroinflammation and neurodegenerative diseases.
Collapse
Affiliation(s)
- Sheng-Wei Lai
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Jia-Hong Chen
- Department of General Surgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Hsiao-Yun Lin
- Department of Pharmacology, School of Medicine, China Medical University, No.91 Hsueh-Shih Road, Taichung, Taiwan
| | - Yu-Shu Liu
- Department of Pharmacology, School of Medicine, China Medical University, No.91 Hsueh-Shih Road, Taichung, Taiwan
- Department of Biotechnology, Asia University, Taichung, Taiwan
| | - Cheng-Fang Tsai
- Department of Biotechnology, Asia University, Taichung, Taiwan
| | - Pei-Chun Chang
- Department of Bioinformatics, Asia University, Taichung, Taiwan
| | - Dah-Yuu Lu
- Department of Pharmacology, School of Medicine, China Medical University, No.91 Hsueh-Shih Road, Taichung, Taiwan.
- Department of Photonics and Communication Engineering, Asia University, Taichung, Taiwan.
| | - Chingju Lin
- Department of Physiology, School of Medicine, China Medical University, Taichung, Taiwan.
| |
Collapse
|
14
|
Leviton A, Allred EN, Yamamoto H, Fichorova RN, Kuban K, O'Shea TM, Dammann O. Antecedents and correlates of blood concentrations of neurotrophic growth factors in very preterm newborns. Cytokine 2017; 94:21-28. [PMID: 28396037 PMCID: PMC5464409 DOI: 10.1016/j.cyto.2017.03.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 01/18/2017] [Accepted: 03/31/2017] [Indexed: 11/16/2022]
Abstract
AIM To identify the antecedents and very early correlates of low concentrations of neurotrophic growth factors in the blood of extremely preterm newborns during the first postnatal month. METHODS Using an immunobead assay, we measured the concentrations of neurotrophin 4 (NT4), brain-derived neurotrophic factor (BDNF), and basic fibroblast growth factor (bFGF) in blood spots collected on postnatal days 1 (N=1062), 7 (N=1087), 14 (N=989), 21 (N=940) and 28 (N=880) from infants born before the 28th week of gestation. We then sought the correlates of measurements in the top and bottom quartiles for gestational age and day the specimen was collected. RESULTS The concentrations of 2 neurotrophic proteins, NT4 and BDNF, were low among children delivered for medical (maternal or fetal) indications, and among those who were growth restricted. Children who had top quartile concentrations of NT4, BDNF, and bFGF tended to have elevated concentrations of inflammation-related proteins that day. This pattern persisted for much of the first postnatal month. CONCLUSIONS Delivery for medical indications and fetal growth restriction are associated with a relative paucity of NT4 and BDNF concentrations during the first 24 h after very preterm birth. Elevated blood concentrations of NT4, BDNF, and bFGF tended to co-occur with indicators of systemic inflammation on the same day.
Collapse
Affiliation(s)
- Alan Leviton
- Boston Children's Hospital, and Harvard Medical School, Boston, MA, United States.
| | - Elizabeth N Allred
- Boston Children's Hospital, and Harvard Medical School, Boston, MA, United States
| | | | - Raina N Fichorova
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Karl Kuban
- Boston Medical Center and Boston University, Boston, MA, United States
| | | | - Olaf Dammann
- Tufts University School of Medicine, Boston, MA, United States; Hannover Medical School, Hannover, Germany
| |
Collapse
|
15
|
Fasulo L, Brandi R, Arisi I, La Regina F, Berretta N, Capsoni S, D'Onofrio M, Cattaneo A. ProNGF Drives Localized and Cell Selective Parvalbumin Interneuron and Perineuronal Net Depletion in the Dentate Gyrus of Transgenic Mice. Front Mol Neurosci 2017; 10:20. [PMID: 28232789 PMCID: PMC5299926 DOI: 10.3389/fnmol.2017.00020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 01/16/2017] [Indexed: 01/12/2023] Open
Abstract
ProNGF, the precursor of mature Nerve Growth Factor (NGF), is the most abundant NGF form in the brain and increases markedly in the cortex in Alzheimer's Disease (AD), relative to mature NGF. A large body of evidence shows that the actions of ProNGF and mature NGF are often conflicting, depending on the receptors expressed in target cells. TgproNGF#3 mice, expressing furin-cleavage resistant proNGF in CNS neurons, directly reveal consequences of increased proNGF levels on brain homeostasis. Their phenotype clearly indicates that proNGF can be a driver of neurodegeneration, including severe learning and memory behavioral deficits, cholinergic deficits, and diffuse immunoreactivity for A-beta and A-beta-oligomers. In aged TgproNGF#3 mice spontaneous epileptic-like events are detected in entorhinal cortex-hippocampal slices, suggesting occurrence of excitatory/inhibitory (E/I) imbalance. In this paper, we investigate the molecular events linking increased proNGF levels to the epileptiform activity detected in hippocampal slices. The occurrence of spontaneous epileptiform discharges in the hippocampal network in TgproNGF#3 mice suggests an impaired inhibitory interneuron homeostasis. In the present study, we detect the onset of hippocampal epileptiform events at 1-month of age. Later, we observe a regional- and cellular-selective Parvalbumin interneuron and perineuronal net (PNN) depletion in the dentate gyrus (DG), but not in other hippocampal regions of TgproNGF#3 mice. These results demonstrate that, in the hippocampus, the DG is selectively vulnerable to altered proNGF/NGF signaling. Parvalbumin interneuron depletion is also observed in the amygdala, a region strongly connected to the hippocampus and likewise receiving cholinergic afferences. Transcriptome analysis of TgproNGF#3 hippocampus reveals a proNGF signature with broad down-regulation of transcription. The most affected mRNAs modulated at early times belong to synaptic transmission and plasticity and extracellular matrix (ECM) gene families. Moreover, alterations in the expression of selected BDNF splice variants were observed. Our results provide further mechanistic insights into the vicious negative cycle linking proNGF and neurodegeneration, confirming the regulation of E/I homeostasis as a crucial mediating mechanism.
Collapse
Affiliation(s)
- Luisa Fasulo
- Bio@SNS Laboratory, Scuola Normale SuperiorePisa, Italy; European Brain Research Institute Rita Levi-MontalciniRome, Italy
| | - Rossella Brandi
- European Brain Research Institute Rita Levi-Montalcini Rome, Italy
| | - Ivan Arisi
- European Brain Research Institute Rita Levi-Montalcini Rome, Italy
| | | | - Nicola Berretta
- Department of Experimental Neurology, Fondazione Santa Lucia IRCCS Rome, Italy
| | - Simona Capsoni
- Bio@SNS Laboratory, Scuola Normale Superiore Pisa, Italy
| | - Mara D'Onofrio
- European Brain Research Institute Rita Levi-Montalcini Rome, Italy
| | - Antonino Cattaneo
- Bio@SNS Laboratory, Scuola Normale SuperiorePisa, Italy; European Brain Research Institute Rita Levi-MontalciniRome, Italy
| |
Collapse
|
16
|
Cao J, Murat C, An W, Yao X, Lee J, Santulli-Marotto S, Harris IR, Inana G. Human umbilical tissue-derived cells rescue retinal pigment epithelium dysfunction in retinal degeneration. Stem Cells 2015; 34:367-79. [PMID: 26523756 DOI: 10.1002/stem.2239] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 09/29/2015] [Indexed: 12/20/2022]
Abstract
Retinal pigment epithelium (RPE) cells perform many functions crucial for retinal preservation and vision. RPE cell dysfunction results in various retinal degenerative diseases, such as retinitis pigmentosa and age-related macular degeneration (AMD). Currently, there are no effective treatments for retinal degeneration except for a small percentage of individuals with exudative AMD. Cell therapies targeting RPE cells are being developed in the clinic for the treatment of retinal degeneration. Subretinal injection of human umbilical tissue-derived cells (hUTC) in the Royal College of Surgeons (RCS) rat model of retinal degeneration was shown to preserve photoreceptors and visual function. However, the precise mechanism remains unclear. Here, we demonstrate that hUTC rescue phagocytic dysfunction in RCS RPE cells in vitro. hUTC secrete receptor tyrosine kinase (RTK) ligands brain-derived neurotrophic factor (BDNF), hepatocyte growth factor (HGF), and glial cell-derived neurotrophic factor (GDNF), as well as opsonizing bridge molecules milk-fat-globule-epidermal growth factor 8 (MFG-E8), growth arrest-specific 6 (Gas6), thrombospondin (TSP)-1, and TSP-2. The effect of hUTC on phagocytosis rescue in vitro is mimicked by recombinant human proteins of these factors and is abolished by siRNA-targeted gene silencing in hUTC. The bridge molecules secreted from hUTC bind to the photoreceptor outer segments and facilitate their ingestion by the RPE. This study elucidates novel cellular mechanisms for the repair of RPE function in retinal degeneration through RTK ligands and bridge molecules, and demonstrates the potential of using hUTC for the treatment of retinal degenerative diseases.
Collapse
Affiliation(s)
- Jing Cao
- Janssen Research and Development, LLC, Spring House, Pennsylvania, USA
| | - Christopher Murat
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Weijun An
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Xiang Yao
- Janssen Research and Development, LLC, San Diego, California, USA
| | - John Lee
- Janssen Research and Development, LLC, Spring House, Pennsylvania, USA
| | | | - Ian R Harris
- Janssen Research and Development, LLC, Spring House, Pennsylvania, USA
| | - George Inana
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
17
|
Hong JH, Park HM, Byun KH, Lee BH, Kang WC, Jeong GB. BDNF expression of macrophages and angiogenesis after myocardial infarction. Int J Cardiol 2014; 176:1405-8. [DOI: 10.1016/j.ijcard.2014.08.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 08/02/2014] [Indexed: 01/09/2023]
|
18
|
Broom L, Jenner P, Rose S. Increased neurotrophic factor levels in ventral mesencephalic cultures do not explain the protective effect of osteopontin and the synthetic 15-mer RGD domain against MPP+ toxicity. Exp Neurol 2014; 263:1-7. [PMID: 25218309 DOI: 10.1016/j.expneurol.2014.09.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Revised: 09/02/2014] [Accepted: 09/05/2014] [Indexed: 01/13/2023]
Abstract
The synthetic 15-mer arginine-glycine-aspartic acid (RGD) domain of osteopontin (OPN) is protective in vitro and in vivo against dopaminergic cell death and this protective effect may be mediated through interaction with integrin receptors to regulate neurotrophic factor levels. We now examine this concept in rat primary ventral mesencephalic (VM) cultures. 1-Methyl-4-phenylpyridinium (MPP+) exposure reduced tyrosine hydroxylase (TH)-positive cell number and activated glial cells as shown by increased glial fibrillary acidic protein (GFAP), oxycocin-42 (OX-42) and ectodermal dysplasia 1 (ED-1) immunoreactivity. Both OPN and the RGD domain of OPN were equally protective against MPP+ toxicity in VM cultures and both increased glial-derived neurotrophic factor (GDNF) and brain-derived neurotrophic factor (BDNF) levels. The effects of OPN and the RGD domain were accompanied by a decrease in numbers of activated microglia but with no change in astrocyte number. However, full-length OPN and the RGD domain of OPN remained protective against MPP+ toxicity in the presence of a GDNF neutralising antibody. This suggests that increased GDNF levels do not underlie the protective effect observed with OPN. Rather, OPN's protective effect may be mediated through decreased glial cell activation.
Collapse
Affiliation(s)
- Lauren Broom
- Neurodegenerative Diseases Research Group, Institute of Pharmaceutical Science, School of Biomedical Sciences, King's College London, London, SE1 1UL, UK.
| | - Peter Jenner
- Neurodegenerative Diseases Research Group, Institute of Pharmaceutical Science, School of Biomedical Sciences, King's College London, London, SE1 1UL, UK
| | - Sarah Rose
- Neurodegenerative Diseases Research Group, Institute of Pharmaceutical Science, School of Biomedical Sciences, King's College London, London, SE1 1UL, UK
| |
Collapse
|
19
|
Morotti M, Vincent K, Brawn J, Zondervan KT, Becker CM. Peripheral changes in endometriosis-associated pain. Hum Reprod Update 2014; 20:717-36. [PMID: 24859987 DOI: 10.1093/humupd/dmu021] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Pain remains the cardinal symptom of endometriosis. However, to date, the underlying mechanisms are still only poorly understood. Increasing evidence points towards a close interaction between peripheral nerves, the peritoneal environment and the central nervous system in pain generation and processing. Recently, studies demonstrating nerve fibres and neurotrophic and angiogenic factors in endometriotic lesions and their vicinity have led to increased interest in peripheral changes in endometriosis-associated pain. This review focuses on the origin and function of these nerves and factors as well as possible peripheral mechanisms that may contribute to the generation and modulation of pain in women with endometriosis. METHODS We conducted a systematic search using several databases (PubMed, MEDLINE, EMBASE and CINAHL) of publications from January 1977 to October 2013 to evaluate the possible roles of the peripheral nervous system in endometriosis pathophysiology and how it can contribute to endometriosis-associated pain. RESULTS Endometriotic lesions and peritoneal fluid from women with endometriosis had pronounced neuroangiogenic properties with increased expression of new nerve fibres, a shift in the distribution of sensory and autonomic fibres in some locations, and up-regulation of several neurotrophins. In women suffering from deep infiltrating endometriosis and bowel endometriosis, in which the anatomical distribution of lesions is generally more closely related to pelvic pain symptoms, endometriotic lesions and surrounding tissues present higher nerve fibre densities compared with peritoneal lesions and endometriomas. More data are needed to fully confirm a direct correlation between fibre density in these locations and the amount of perceived pain. A better correlation between the presence of nerve fibres and pain symptoms seems to exist for eutopic endometrium. However, this appears not to be exclusive to endometriosis. No correlation between elevated neurotrophin levels and pain severity appears to exist, suggesting the involvement of other mediators in the modulation of pain. CONCLUSIONS The increased expression of neurotrophic factors and nerve fibres in endometriotic lesions, eutopic endometrium and the peritoneum imply a role of such peripheral changes in the pathogenesis of endometriosis-associated pain. However, a clear link between these findings and pain in patients with endometriosis has so far not been demonstrated.
Collapse
Affiliation(s)
- Matteo Morotti
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Women's Centre, John Radcliffe Hospital, Oxford OX3 9DU, UK Department of Obstetrics and Gynaecology, University of Genoa, Genoa 16100, Italy
| | - Katy Vincent
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Women's Centre, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Jennifer Brawn
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Krina T Zondervan
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Women's Centre, John Radcliffe Hospital, Oxford OX3 9DU, UK Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Christian M Becker
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Women's Centre, John Radcliffe Hospital, Oxford OX3 9DU, UK
| |
Collapse
|
20
|
Costa MA, Girard M, Dalmay F, Malauzat D. Brain-Derived Neurotrophic Factor Serum Levels in Alcohol-Dependent Subjects 6 Months After Alcohol Withdrawal. Alcohol Clin Exp Res 2011; 35:1966-73. [DOI: 10.1111/j.1530-0277.2011.01548.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
21
|
Ray B, Gaskins DL, Sajdyk TJ, Spence JP, Fitz SD, Shekhar A, Lahiri DK. Restraint stress and repeated corticotrophin-releasing factor receptor activation in the amygdala both increase amyloid-β precursor protein and amyloid-β peptide but have divergent effects on brain-derived neurotrophic factor and pre-synaptic proteins in the prefrontal cortex of rats. Neuroscience 2011; 184:139-50. [PMID: 21477639 PMCID: PMC3391572 DOI: 10.1016/j.neuroscience.2011.03.067] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Revised: 03/11/2011] [Accepted: 03/29/2011] [Indexed: 11/22/2022]
Abstract
Both environmental stress and anxiety may represent important risk factors for Alzheimer's disease (AD) pathogenesis. Previous studies demonstrate that restraint stress is associated with increased amyloid beta (Aβ) and decreased brain-derived neurotrophic factor (BDNF) levels in the brain. Aβ deposition, synaptic loss, and neurodegeneration define major hallmarks of AD, and BDNF is responsible for the maintenance of neurons. In contrast to restraint stress, repeated injections of sub-anxiogenic doses of the corticotrophin releasing factor receptor agonist urocortin1 (Ucn1) administered in the basolateral amygdala (BLA) of rats elicits persistent anxiety-like responses. We hypothesized that both restraint stress and Ucn1-induced anxiety would contribute to a neurobiological abnormality that would change the levels of Aβ precursor protein (APP) and Aβ as well as BDNF and pre-synaptic markers. In the first experiment, adult male Wister rats (n=5) were subjected to 3-h restraint, as compared to unstressed controls. In the second experiment, adult male Wistar rats (n=6) were subjected to sub-anxiogenic doses of Ucn1 (6 fmol/100 nl) administered in the BLA for 5 consecutive days, as compared to controls. Following each respective treatment, the social interaction (SI) test was performed to measure anxiety-like behavior. Protein studies were then conducted to quantify levels of APP, Aβ, BDNF and presynaptic proteins in the prefrontal cortex (PFC). In both experiments, we detected differences in either corticosterone levels or the SI test associated with a stress response. Furthermore, our findings indicate that both restraint stress and Ucn1 administration in the BLA lead to increased APP and Aβ deposition. However, restraint-induced stress leads to reductions in the levels of BDNF and presynaptic markers, while Ucn1-induced anxiety is associated with increases in the levels of each respective protein. This demonstrates a convergent role for stress response and Ucn1-induced anxiety in the regulation of APP and Aβ, but opposing roles for each respective treatment in the regulation of BDNF and presynaptic markers.
Collapse
Affiliation(s)
- Balmiki Ray
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, 791 Union Drive, Indianapolis, IN 46202, USA
| | - Denise L. Gaskins
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, 791 Union Drive, Indianapolis, IN 46202, USA
| | - Tammy J. Sajdyk
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, 791 Union Drive, Indianapolis, IN 46202, USA
| | - John P. Spence
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, 791 Union Drive, Indianapolis, IN 46202, USA
| | - Stephanie D. Fitz
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, 791 Union Drive, Indianapolis, IN 46202, USA
| | - Anantha Shekhar
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, 791 Union Drive, Indianapolis, IN 46202, USA
| | - Debomoy K. Lahiri
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, 791 Union Drive, Indianapolis, IN 46202, USA
| |
Collapse
|
22
|
Kashiwazaki H, Nomura R, Matsuyama S, Taguchi F, Watanabe R. Spongiform degeneration induced by neuropathogenic murine coronavirus infection. Pathol Int 2011; 61:184-91. [PMID: 21418390 PMCID: PMC7167946 DOI: 10.1111/j.1440-1827.2010.02639.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Soluble receptor‐resistant mutant 7 (ssr7) is isolated from a highly neurovirulent mouse hepatitis virus (MHV) JHMV cl‐2 strain (cl‐2). srr7 exhibits lower virulence than its maternal strain in infected mice, which is typically manifested in a longer lifespan. In this study, during the course of infection with srr7, small spongiotic lesions became apparent at 2 days post‐inoculation (pi), they spread out to form spongiform encephalopathy by 8 to 10 days pi. We recently reported that the initial expressions of viral antigens in the brain are detected in the infiltrating monocyte lineage and in ependymal cells. Here, we demonstrate that the next viral spread was observed in glial fibrillary acidic protein‐positive cells or nestin‐positive progenitor cells which take up positions in the subventricular zone (SVZ). From this restricted site of infection in the SVZ, a large area of gliosis extended deep into the brain parenchyma where no viral antigens were detected but vacuolar degeneration started at 48 h pi of the virus. The extremely short incubation period compared with other experimental models of infectious spongiform degeneration in the brain would provide a superior experimental model to investigate the mechanism of spongiotic lesions formation.
Collapse
Affiliation(s)
- Hiromi Kashiwazaki
- Department of Bioinformatics, Faculty of Engineering, Soka University, Tokyo, Japan
| | | | | | | | | |
Collapse
|
23
|
Gelbard HA, Dewhurst S, Maggirwar SB, Kiebala M, Polesskaya O, Gendelman HE. Rebuilding synaptic architecture in HIV-1 associated neurocognitive disease: a therapeutic strategy based on modulation of mixed lineage kinase. Neurotherapeutics 2010; 7:392-8. [PMID: 20880503 PMCID: PMC2948545 DOI: 10.1016/j.nurt.2010.08.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Revised: 07/28/2010] [Accepted: 08/04/2010] [Indexed: 12/13/2022] Open
Abstract
Work from our laboratories has validated mixed lineage kinase type 3 (MLK3) as an enzyme pathologically activated in the CNS by human immunodeficiency virus 1 (HIV-1) neurotoxins. In this review, we discuss MLK3 activation in the context of the neuropathogenesis of HIV-1 associated neurocognitive deficits (HAND). We use findings from the literature to substantiate the neuropathologic relevance of MLK3 to neurodegenerative disease, with an emphasis on Parkinson's disease that shares a number of important phenotypic and neuropathologic characteristics with HAND. We discuss signal transduction pathways downstream from MLK3 activation, with an emphasis on their involvement in microglia and neurons in preclinical models of HAND. Finally, we make a case for pharmacologic intervention targeted at inhibition of MLK3 as a strategy to reverse HAND, in light of the fact that combination antiretroviral therapy, despite successfully managing systemic infection of HIV-1, has been largely unsuccessful in eradicating HAND.
Collapse
Affiliation(s)
- Harris A Gelbard
- Center for Neural Development and Disease, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA.
| | | | | | | | | | | |
Collapse
|
24
|
Ley S, Weigert A, Brüne B. Neuromediators in inflammation—a macrophage/nerve connection. Immunobiology 2010; 215:674-84. [DOI: 10.1016/j.imbio.2010.05.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Accepted: 05/20/2010] [Indexed: 02/06/2023]
|
25
|
Hjorth E, Frenkel D, Weiner H, Schultzberg M. Effects of immunomodulatory substances on phagocytosis of abeta(1-42) by human microglia. Int J Alzheimers Dis 2010; 2010. [PMID: 20798889 PMCID: PMC2925296 DOI: 10.4061/2010/798424] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Accepted: 02/24/2010] [Indexed: 01/24/2023] Open
Abstract
Glial activation and increased inflammation characterize neuropathology in Alzheimer's disease (AD). The aim was to develop a model for studying phagocytosis of beta-amyloid (Abeta) peptide by human microglia and to test effects thereupon by immunomodulatory substances. Human CHME3 microglia showed intracellular Abeta(1-42) colocalized with lysosome-associated membrane protein-2, indicating phagocytosis. This was increased by interferon-gamma, and to a lesser degree with Protollin, a proteosome-based adjuvant. Secretion of brain-derived neurotrophic factor (BDNF) was decreased by Abeta(1-42) and by interferon-gamma and interleukin-1beta. These cytokines, but not Abeta(1-42), stimulated interleukin-6 release. Microglia which phagocytosed Abeta(1-42) exhibited a higher degree of expression of interleukin-1 receptor type I and inducible nitric oxide synthase. In conclusion, we show that human microglia are able to phagocytose Abeta(1-42) and that this is associated with expression of inflammatory markers. Abeta(1-42) and interferon-gamma decreased BDNF secretion suggesting a new neuropathological role for Abeta(1-42) and the inflammation accompanying AD.
Collapse
Affiliation(s)
- Erik Hjorth
- Division of Neurodegeneration, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 141 86 Stockholm, Sweden
| | | | | | | |
Collapse
|
26
|
ProBDNF inhibits infiltration of ED1+ macrophages after spinal cord injury. Brain Behav Immun 2010; 24:585-97. [PMID: 20083190 DOI: 10.1016/j.bbi.2010.01.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Revised: 12/17/2009] [Accepted: 01/03/2010] [Indexed: 12/27/2022] Open
Abstract
The central nervous system (CNS) does not regenerate partly due to the slow clearance of debris from the degenerated myelin sheath by Wallerian degeneration. The mechanism underlying the inefficiency in myelin clearance is not clear. Here we showed that endogenous proBDNF may inhibit the infiltration of ED1+ inflammatory cells after spinal cord injury. After injury, proBDNF and its receptors sortilin and p75NTR are expressed in the spinal cord as determined by Western blots and immunocytochemistry. ProBDNF and mature BDNF were released from macrophages in vitro. Macrophages in vivo (ED1+) and isolated in vitro (CD11b+) express moderate levels of proBDNF, sortilin and p75NTR. ProBDNF suppressed the migration of isolated macrophages in vitro and the antibody to proBDNF enhanced the migration. Suppression of proBDNF in vivo by administering the antiserum to the prodomain of BDNF after spinal cord injury (SCI) increased the infiltration of macrophages and increased number of neurons in the injured cord. BBB tests showed that the treatment of the antibody to proBDNF improved the functional recovery after spinal cord injury. Our data suggest that proBDNF is a suppressing factor for macrophage migration and infiltration and may play a detrimental role after SCI.
Collapse
|
27
|
Jiang H, Wang R, Liu Y, Zhang Y, Chen ZY. BDNF Val66Met polymorphism is associated with unstable angina. Clin Chim Acta 2009; 400:3-7. [DOI: 10.1016/j.cca.2008.10.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2008] [Revised: 08/12/2008] [Accepted: 10/16/2008] [Indexed: 12/16/2022]
|
28
|
Abstract
Multiple lines of evidence suggest that inflammation and glutamate dysfunction contribute to the pathophysiology of depression. In this review we provide an overview of how these two systems may interact. Excess levels of inflammatory mediators occur in a subgroup of depressed patients. Studies of acute experimental activation of the immune system with endotoxin and of chronic activation during interferon-alpha treatment show that inflammation can cause depression. Peripheral inflammation leads to microglial activation which could interfere with excitatory amino acid metabolism leading to inappropriate glutamate receptor activation. Loss of astroglia, a feature of depression, upsets the balance of anti- and pro-inflammatory mediators and further impairs the removal of excitatory amino acids. Microglia activated by excess inflammation, astroglial loss, and inappropriate glutamate receptor activation ultimately disrupt the delicate balance of neuroprotective versus neurotoxic effects in the brain, potentially leading to depression.
Collapse
|
29
|
Samah B, Porcheray F, Gras G. Neurotrophins modulate monocyte chemotaxis without affecting macrophage function. Clin Exp Immunol 2008; 151:476-86. [PMID: 18190610 DOI: 10.1111/j.1365-2249.2007.03578.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Neurotrophins nerve growth factor (NGF), brain-derived growth factor (BDNF), neurotrophin-3 (NT-3) and neurotrophin-4 (NT-4) and their high-affinity tyrosine protein kinase receptor (Trk) family, TrkA, TrkB, TrkC, and low-affinity p75(NTR) receptor, are key molecules implicated in the development of the central nervous system. Increasing evidence suggests that they also have physiological and pathological roles outside the nervous system. In this study we examined the expression of neurotrophins and their receptors in human activated macrophages and to what extent neurotrophins themselves modulate macrophage activation, in a model of primary adult monocyte-derived macrophage. Our data indicate that macrophages express neurotrophin and neurotrophin receptor genes differentially, and respond to cell stimulation by specific inductions. Neurotrophins did not modify the antigen-presenting capacities of macrophages or their production of proinflammatory cytokines, but somehow skewed their activation phenotype. In contrast, NGF clearly increased CXCR-4 expression in macrophage and their chemotactic response to low CXCL-12 concentration. The differential effect of specific macrophage stimuli on neurotrophin expression, in particular NGF and NT-3, and the specific enhancement of CXCR-4 expression suggest that neurotrophins might participate in tissue-healing mechanisms that should be investigated further in vivo.
Collapse
Affiliation(s)
- B Samah
- CEA, DSV, iMETI, SIV, UMR E-01 Université Paris Sud, IFR13 Institut Paris Sud Cytokines, Service d'Immuno-Virologie, Fontenay-aux Roses, France
| | | | | |
Collapse
|
30
|
Marini AM, Jiang H, Pan H, Wu X, Lipsky RH. Hormesis: a promising strategy to sustain endogenous neuronal survival pathways against neurodegenerative disorders. Ageing Res Rev 2008; 7:21-33. [PMID: 17889623 DOI: 10.1016/j.arr.2007.07.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2007] [Revised: 07/31/2007] [Accepted: 07/31/2007] [Indexed: 12/22/2022]
Abstract
The brain developed adaptive mechanisms in the face of changing environments and stresses imposed on the nervous system. The addition of glutamate as the major excitatory amino acid neurotransmitter to the brain's complement of amino acids and peptides dictated a coordinated transcriptional and translational program to meet the demands of excitatory neurotransmission. One such program is the ability of neurons to sustain and maintain their survival given the nature of glutamate-mediated receptor activation. The unique development of endogenous neuronal pathways activated by glutamate receptors transformed neurons and allowed them to survive under conditions of high energy demands. These same endogenous survival pathways also mediate plastic responses to meet another demand of the brain, adaptation. An endogenous protein that plays a central role in glutamate receptor-mediated survival pathways is brain-derived neurotrophic factor (BDNF). Intermittent but frequent synaptic ionotropic glutamate receptor activation ensures neuronal survival through a BDNF autocrine loop. In sharp contrast, overactivation of ionotropic glutamate receptors leads to neuronal cell death. Thus, innovative strategies that induce endogenous neuronal survival pathways through low-level activation of ionotropic glutamate receptors or those that bypass receptor activation but upregulate endogenous survival pathways may not only prevent neurodegenerative disorders that involve glutamate as a final common pathway that kills neurons, but may also provide treatment alternatives critical for neurons to survive stressful conditions such as stroke, status epilepticus and hypoglycemic-induced neuronal cell death.
Collapse
Affiliation(s)
- Ann M Marini
- Department of Neurology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA.
| | | | | | | | | |
Collapse
|
31
|
Nagamoto-Combs K, McNeal DW, Morecraft RJ, Combs CK. Prolonged Microgliosis in the Rhesus Monkey Central Nervous System after Traumatic Brain Injury. J Neurotrauma 2007; 24:1719-42. [DOI: 10.1089/neu.2007.0377] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Affiliation(s)
- Kumi Nagamoto-Combs
- Department of Pharmacology, Physiology and Therapeutics, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota
| | - David W. McNeal
- Division of Basic Biomedical Sciences, University of South Dakota School of Medicine, Vermillion, South Dakota
| | - Robert J. Morecraft
- Division of Basic Biomedical Sciences, University of South Dakota School of Medicine, Vermillion, South Dakota
| | - Colin K. Combs
- Department of Pharmacology, Physiology and Therapeutics, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota
| |
Collapse
|
32
|
Carter CJ. Multiple genes and factors associated with bipolar disorder converge on growth factor and stress activated kinase pathways controlling translation initiation: implications for oligodendrocyte viability. Neurochem Int 2007; 50:461-90. [PMID: 17239488 DOI: 10.1016/j.neuint.2006.11.009] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2006] [Accepted: 11/27/2006] [Indexed: 02/06/2023]
Abstract
Famine and viral infection, as well as interferon therapy have been reported to increase the risk of developing bipolar disorder. In addition, almost 100 polymorphic genes have been associated with this disease. Several form most of the components of a phosphatidyl-inositol signalling/AKT1 survival pathway (PIK3C3, PIP5K2A, PLCG1, SYNJ1, IMPA2, AKT1, GSK3B, TCF4) which is activated by growth factors (BDNF, NRG1) and also by NMDA receptors (GRIN1, GRIN2A, GRIN2B). Various other protein products of genes associated with bipolar disorder either bind to or are affected by phosphatidyl-inositol phosphate products of this pathway (ADBRK2, HIP1R, KCNQ2, RGS4, WFS1), are associated with its constituent elements (BCR, DUSP6, FAT, GNAZ) or are downstream targets of this signalling cascade (DPYSL2, DRD3, GAD1, G6PD, GCH1, KCNQ2, NOS3, SLC6A3, SLC6A4, SST, TH, TIMELESS). A further pathway relates to endoplasmic reticulum-stress (HSPA5, XBP1), caused by problems in protein glycosylation (ALG9), growth factor receptor sorting (PIK3C3, HIP1R, SYBL1), or aberrant calcium homoeostasis (WFS1). Key processes relating to these pathways appear to be under circadian control (ARNTL, CLOCK, PER3, TIMELESS). DISC1 can also be linked to many of these pathways. The growth factor pathway promotes protein synthesis, while the endoplasmic reticulum stress pathway, and other stress pathways activated by viruses and cytokines (IL1B, TNF, Interferons), oxidative stress or starvation, all factors associated with bipolar disorder risk, shuts down protein synthesis via control of the EIF2 alpha and beta translation initiation complex. For unknown reasons, oligodendrocytes appear to be particularly prone to defects in the translation initiation complex (EIF2B) and the convergence of these environmental and genomic signalling pathways on this area might well explain their vulnerability in bipolar disorder.
Collapse
|