1
|
Bernasconi R, Soodla K, Sirp A, Zovo K, Kuhtinskaja M, Lukk T, Vendelin M, Birkedal R. Higher AMPK activation in mouse oxidative compared with glycolytic muscle does not correlate with LKB1 or CaMKKβ expression. Am J Physiol Endocrinol Metab 2025; 328:E21-E33. [PMID: 39607028 DOI: 10.1152/ajpendo.00261.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/14/2024] [Accepted: 11/01/2024] [Indexed: 11/29/2024]
Abstract
AMP-activated protein kinase (AMPK) is an energy-sensing serine/threonine kinase involved in metabolic regulation. It is phosphorylated by the upstream liver kinase B1 (LKB1) or calcium/calmodulin-dependent kinase kinase 2 (CaMKKβ). In cultured cells, AMPK activation correlates with LKB1 activity. The phosphorylation activates AMPK, shifting metabolism toward catabolism and promoting mitogenesis. In muscles, inactivity reduces AMPK activation, shifting the phenotype of oxidative muscles toward a more glycolytic profile. Here, we compared the basal level of AMPK activation in glycolytic and oxidative muscles and analyzed whether this relates to LKB1 or CaMKKβ. Using Western blotting, we assessed AMPK expression and phosphorylation in soleus, gastrocnemius (GAST), extensor digitorum longus (EDL), and heart from C57BL6J mice. We also assessed LKB1 and CaMKKβ expression, and CaMKKβ activity in tissue homogenates. AMPK activation was higher in oxidative (soleus and heart) than in glycolytic muscles (gastrocnemius and EDL). This correlated with AMPK α1-isoform expression, but not LKB1 and CaMKKβ. LKB1 expression was sex dependent and lower in male than female muscles. CaMKKβ expression was very low in skeletal muscles and did not phosphorylate AMPK in muscle lysates. The higher AMPK activation in oxidative muscles is in line with the fact that activated AMPK maintains an oxidative phenotype. However, this could not be explained by LKB1 and CaMKKβ. These results suggest that the regulation of AMPK activation is more complex in muscle than in cultured cells. As AMPK has been proposed as a therapeutic target for several diseases, future research should consider AMPK isoform expression and localization, and energetic compartmentalization.NEW & NOTEWORTHY It is important to understand how AMP-activated kinase, AMPK, is regulated, as it is a potential therapeutic target for several diseases. AMPK is activated by liver kinase B1, LKB1, and calcium/calmodulin-dependent kinase kinase 2, CaMKKβ. In cultured cells, AMPK activation correlates with LKB1 expression. In contrast, we show that AMPK-activation was higher in oxidative than glycolytic muscle, without correlating with LKB1 or CaMKKβ expression. Thus, AMPK regulation is more complex in highly compartmentalized muscle cells.
Collapse
Affiliation(s)
- Romain Bernasconi
- Laboratory of Systems Biology, Department of Cybernetics, Tallinn University of Technology, Tallinn, Estonia
| | - Kärol Soodla
- Laboratory of Systems Biology, Department of Cybernetics, Tallinn University of Technology, Tallinn, Estonia
| | - Alex Sirp
- Laboratory of Molecular Neurobiology, Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Kairit Zovo
- Laboratory of Wood Chemistry, Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Maria Kuhtinskaja
- Laboratory of Analytical Chemistry, Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Tiit Lukk
- Laboratory of Wood Chemistry, Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Marko Vendelin
- Laboratory of Systems Biology, Department of Cybernetics, Tallinn University of Technology, Tallinn, Estonia
| | - Rikke Birkedal
- Laboratory of Systems Biology, Department of Cybernetics, Tallinn University of Technology, Tallinn, Estonia
| |
Collapse
|
2
|
Alonso-Villa E, Mangas A, Bonet F, Campuzano Ó, Quezada-Feijoo M, Ramos M, García-Padilla C, Franco D, Toro R. The Protective Role of miR-130b-3p Against Palmitate-Induced Lipotoxicity in Cardiomyocytes Through PPARγ Pathway. Int J Mol Sci 2024; 25:12161. [PMID: 39596228 PMCID: PMC11594327 DOI: 10.3390/ijms252212161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/16/2024] [Accepted: 10/21/2024] [Indexed: 11/28/2024] Open
Abstract
Excess lipid accumulation in the heart is associated with lipotoxicity and cardiac dysfunction due to excessive fatty acid oxidation. Peroxisome proliferator-activated receptor gamma (PPARγ) modulates the expression of key molecules involved in the FA metabolic pathway. Cardiomyocyte-specific overexpression of PPARγ causes dilated cardiomyopathy associated with lipotoxicity in mice. miR-130b-3p has been shown to be downregulated in the plasma of idiopathic dilated cardiomyopathy patients, but its role in modulating cardiomyocyte lipotoxicity via PPARγ remains unclear. Our objective was to investigate the protective role of miR-130b-3p against palmitate-induced lipotoxicity in cardiomyocytes through the modulation of the PPARγ signaling pathway. Human cardiomyoblasts were treated with palmitate. Intracellular lipid accumulation and expression of PPARγ and its downstream targets (CD36, FABP3, CAV1, VLDLR) were analyzed. Mitochondrial oxidative stress was assessed via MitoTracker Green and Redox Sensor Red staining and expression of CPT1B and SOD2. Endoplasmic reticulum stress and apoptosis were determined by examining GRP78, ATF6, XBP1s, CHOP, and caspase-3 expression. miR-130b-3p overexpression was achieved using transfection methods, and its effect on these parameters was evaluated. Luciferase assays were used to confirm PPARγ as a direct target of miR-130b-3p. Palmitate treatment led to increased lipid accumulation and upregulation of PPARγ and its downstream targets in human cardiomyoblasts. Palmitate also increased mitochondrial oxidative stress, endoplasmic reticulum stress and apoptosis. miR-130b-3p overexpression reduced PPARγ expression and its downstream signaling, alleviated mitochondrial oxidative stress and decreased endoplasmic reticulum stress and apoptosis in palmitate-stimulated cardiomyoblasts. Luciferase assays confirmed PPARγ as a direct target of miR-130b-3p. Our findings suggest that miR-130b-3p plays a protective role against palmitate-induced lipotoxicity in cardiomyocytes by modulating the PPARγ signaling pathway.
Collapse
Affiliation(s)
- Elena Alonso-Villa
- Biomedical Research and Innovation Institute of Cadiz (INiBICA), Research Unit, Puerta del Mar University Hospital, 11009 Cádiz, Spain; (E.A.-V.); (A.M.); (F.B.)
- Medicine Department, School of Medicine, University of Cadiz, 11002 Cádiz, Spain
| | - Alipio Mangas
- Biomedical Research and Innovation Institute of Cadiz (INiBICA), Research Unit, Puerta del Mar University Hospital, 11009 Cádiz, Spain; (E.A.-V.); (A.M.); (F.B.)
- Medicine Department, School of Medicine, University of Cadiz, 11002 Cádiz, Spain
- Lipid and Atherosclerotic Unit, Internal Medicine Department, Puerta del Mar University Hospital Cardiology Service, 11009 Cádiz, Spain
| | - Fernando Bonet
- Biomedical Research and Innovation Institute of Cadiz (INiBICA), Research Unit, Puerta del Mar University Hospital, 11009 Cádiz, Spain; (E.A.-V.); (A.M.); (F.B.)
- Medicine Department, School of Medicine, University of Cadiz, 11002 Cádiz, Spain
| | - Óscar Campuzano
- Hospital Josep Trueta, University of Girona, 17007 Girona, Spain;
- Cardiovascular Genetics Center, University of Girona-IDIBGI, 17190 Girona, Spain
- Centro de Investigación Biomédica en Red, Fisiopatología Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Maribel Quezada-Feijoo
- Cardiology Department, Hospital Central de la Cruz Roja, 28003 Madrid, Spain; (M.Q.-F.); (M.R.)
- Medicine School, Alfonso X el Sabio University (UAX), 28691 Madrid, Spain
| | - Mónica Ramos
- Cardiology Department, Hospital Central de la Cruz Roja, 28003 Madrid, Spain; (M.Q.-F.); (M.R.)
- Medicine School, Alfonso X el Sabio University (UAX), 28691 Madrid, Spain
| | - Carlos García-Padilla
- Cardiovascular Research Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (C.G.-P.); (D.F.)
- Medina Foundation, Technology Park of Health Sciences, 18016 Granada, Spain
| | - Diego Franco
- Cardiovascular Research Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (C.G.-P.); (D.F.)
- Medina Foundation, Technology Park of Health Sciences, 18016 Granada, Spain
| | - Rocio Toro
- Biomedical Research and Innovation Institute of Cadiz (INiBICA), Research Unit, Puerta del Mar University Hospital, 11009 Cádiz, Spain; (E.A.-V.); (A.M.); (F.B.)
- Medicine Department, School of Medicine, University of Cadiz, 11002 Cádiz, Spain
| |
Collapse
|
3
|
Su S, Quan C, Chen Q, Wang R, Du Q, Zhu S, Li M, Yang X, Rong P, Chen J, Bai Y, Zheng W, Feng W, Liu M, Xie B, Ouyang K, Shi YS, Lan F, Zhang X, Xiao R, Chen X, Wang HY, Chen S. AS160 is a lipid-responsive regulator of cardiac Ca 2+ homeostasis by controlling lysophosphatidylinositol metabolism and signaling. Nat Commun 2024; 15:9602. [PMID: 39505896 PMCID: PMC11542008 DOI: 10.1038/s41467-024-54031-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 10/28/2024] [Indexed: 11/08/2024] Open
Abstract
The obese heart undergoes metabolic remodeling and exhibits impaired calcium (Ca2+) homeostasis, which are two critical assaults leading to cardiac dysfunction. The molecular mechanisms underlying these alterations in obese heart are not well understood. Here, we show that the Rab-GTPase activating protein AS160 is a lipid-responsive regulator of Ca2+ homeostasis through governing lysophosphatidylinositol metabolism and signaling. Palmitic acid/high fat diet inhibits AS160 activity through phosphorylation by NEK6, which consequently activates its downstream target Rab8a. Inactivation of AS160 in cardiomyocytes elevates cytosolic Ca2+ that subsequently impairs cardiac contractility. Mechanistically, Rab8a downstream of AS160 interacts with DDHD1 to increase lysophosphatidylinositol metabolism and signaling that leads to Ca2+ release from sarcoplasmic reticulum. Inactivation of NEK6 prevents inhibition of AS160 by palmitic acid/high fat diet, and alleviates cardiac dysfunction in high fat diet-fed mice. Together, our findings reveal a regulatory mechanism governing metabolic remodeling and Ca2+ homeostasis in obese heart, and have therapeutic implications to combat obesity cardiomyopathy.
Collapse
Affiliation(s)
- Shu Su
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Cardiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, China
- MOE Key Laboratory of Model Animal for Disease Study, Department of Endocrinology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, China
| | - Chao Quan
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Cardiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, China
- MOE Key Laboratory of Model Animal for Disease Study, Department of Endocrinology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, China
| | - Qiaoli Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Cardiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, China
- MOE Key Laboratory of Model Animal for Disease Study, Department of Endocrinology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, China
| | - Ruizhen Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Cardiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, China
- MOE Key Laboratory of Model Animal for Disease Study, Department of Endocrinology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, China
| | - Qian Du
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Cardiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, China
- MOE Key Laboratory of Model Animal for Disease Study, Department of Endocrinology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, China
| | - Sangsang Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Cardiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, China
- MOE Key Laboratory of Model Animal for Disease Study, Department of Endocrinology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, China
| | - Min Li
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Cardiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, China
- MOE Key Laboratory of Model Animal for Disease Study, Department of Endocrinology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, China
| | - Xinyu Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Cardiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, China
- MOE Key Laboratory of Model Animal for Disease Study, Department of Endocrinology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, China
| | - Ping Rong
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Cardiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, China
- MOE Key Laboratory of Model Animal for Disease Study, Department of Endocrinology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, China
| | - Jiang Chen
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yingyu Bai
- Department of Biopharmaceuticals & Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Wen Zheng
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, China
| | - Weikuan Feng
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Cardiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, China
- MOE Key Laboratory of Model Animal for Disease Study, Department of Endocrinology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, China
| | - Minjun Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Cardiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, China
- MOE Key Laboratory of Model Animal for Disease Study, Department of Endocrinology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, China
| | - Bingxian Xie
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Cardiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, China
- MOE Key Laboratory of Model Animal for Disease Study, Department of Endocrinology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, China
| | - Kunfu Ouyang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Yun Stone Shi
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Cardiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, China
| | - Feng Lan
- Beijing Laboratory for Cardiovascular Precision Medicine, MOE Key Laboratory of Biomedical Engineering for Cardiovascular Disease Research, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Xiuqin Zhang
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, China
| | - Ruiping Xiao
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, China
| | - Xiongwen Chen
- Department of Biopharmaceuticals & Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Hong-Yu Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Cardiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, China.
- MOE Key Laboratory of Model Animal for Disease Study, Department of Endocrinology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, China.
| | - Shuai Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Cardiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, China.
- MOE Key Laboratory of Model Animal for Disease Study, Department of Endocrinology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, China.
- Nanjing Biomedical Research Institute, Nanjing University, Nanjing, China.
- Nanjing Key Laboratory for Cardiovascular Information and Health Engineering Medicine, Nanjing, China.
| |
Collapse
|
4
|
Birkedal R, Branovets J, Vendelin M. Compartmentalization in cardiomyocytes modulates creatine kinase and adenylate kinase activities. FEBS Lett 2024; 598:2623-2640. [PMID: 39112921 DOI: 10.1002/1873-3468.14994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/03/2024] [Accepted: 07/21/2024] [Indexed: 11/12/2024]
Abstract
Intracellular molecules are transported by motor proteins or move by diffusion resulting from random molecular motion. Cardiomyocytes are packed with structures that are crucial for function, but also confine the diffusional spaces, providing cells with a means to control diffusion. They form compartments in which local concentrations are different from the overall, average concentrations. For example, calcium and cyclic AMP are highly compartmentalized, allowing these versatile second messengers to send different signals depending on their location. In energetic compartmentalization, the ratios of AMP and ADP to ATP are different from the average ratios. This is important for the performance of ATPases fuelling cardiac excitation-contraction coupling and mechanical work. A recent study suggested that compartmentalization modulates the activity of creatine kinase and adenylate kinase in situ. This could have implications for energetic signaling through, for example, AMP-activated kinase. It highlights the importance of taking compartmentalization into account in our interpretation of cellular physiology and developing methods to assess local concentrations of AMP and ADP to enhance our understanding of compartmentalization in different cell types.
Collapse
Affiliation(s)
- Rikke Birkedal
- Laboratory of Systems Biology, Department of Cybernetics, Tallinn University of Technology, Estonia
| | - Jelena Branovets
- Laboratory of Systems Biology, Department of Cybernetics, Tallinn University of Technology, Estonia
| | - Marko Vendelin
- Laboratory of Systems Biology, Department of Cybernetics, Tallinn University of Technology, Estonia
| |
Collapse
|
5
|
Lin F, Masterson E, Gilbertson TA. Adiponectin Signaling Modulates Fat Taste Responsiveness in Mice. Nutrients 2024; 16:3704. [PMID: 39519538 PMCID: PMC11547430 DOI: 10.3390/nu16213704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/23/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND/OBJECTIVES Adiponectin, the most abundant peptide hormone secreted by adipocytes, is a well-known homeostatic factor regulating lipid metabolism and insulin sensitivity. It has been shown that the adiponectin receptor agonist AdipoRon selectively enhances cellular responses to fatty acids in human taste cells, and adiponectin selectively increases taste behavioral responses to intralipid in mice. However, the molecular mechanism underlying the physiological effects of adiponectin on fat taste in mice remains unclear. CONCLUSIONS Here we define AdipoR1 as the mediator responsible for the enhancement role of adiponectin/AdipoRon on fatty acid-induced responses in mouse taste bud cells. METHODS AND RESULTS Calcium imaging data demonstrate that AdipoRon enhances linoleic acid-induced calcium responses in a dose-dependent fashion in mouse taste cells isolated from circumvallate and fungiform papillae. Similar to human taste cells, the enhancement role of AdipoRon on fatty acid-induced responses was impaired by co-administration of an AMPK inhibitor (Compound C) or a CD36 inhibitor (SSO). Utilizing Adipor1-deficient animals, we determined that the enhancement role of AdipoRon/adiponectin is dependent on AdipoR1, since AdipoRon/adiponectin failed to increase fatty acid-induced calcium responses in taste bud cells isolated from these mice. Brief-access taste tests were performed to determine whether AdipoRon's enhancement role was correlated with any differences in taste behavioral responses to fat. Although AdipoRon enhances the cellular responses of taste bud cells to fatty acids, it does not appear to alter fat taste behavior in mice. However, fat-naïve Adipor1-/- animals were indifferent to increasing concentrations of intralipid, suggesting that adiponectin signaling may have profound effects on the ability of mice to detect fatty acids in the absence of previous exposure to fatty acids and fat-containing diets.
Collapse
Affiliation(s)
- Fangjun Lin
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA; (F.L.); (E.M.)
- Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Emeline Masterson
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA; (F.L.); (E.M.)
- Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Timothy A. Gilbertson
- Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| |
Collapse
|
6
|
Hemnes A, Fortune N, Simon K, Trenary IA, Shay S, Austin E, Young JD, Britain E, West J, Talati M. A multimodal approach identifies lactate as a central feature of right ventricular failure that is detectable in human plasma. Front Med (Lausanne) 2024; 11:1387195. [PMID: 39346939 PMCID: PMC11428650 DOI: 10.3389/fmed.2024.1387195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 08/23/2024] [Indexed: 10/01/2024] Open
Abstract
Background In PAH metabolic abnormalities in multiple pathways are well-recognized features of right ventricular dysfunction, however, prior work has focused mainly on the use of a single "omic" modality to describe a single deranged pathway. We integrated metabolomic and epigenomic data using transcriptomics in failing and non-failing RVs from a rodent model to provide novel mechanistic insight and translated these findings to accessible human specimens by correlation with plasma from PAH patients. Methods Study was conducted in a doxycycline-inducible BMPR2 mutant mouse model of RV failure. Plasma was collected from controls and PAH patients. Transcriptomic and metabolomic analyses were done on mouse RV tissue and human plasma. For mouse RV, we layered metabolomic and transcriptomic data for multiple metabolic pathways and compared our findings with metabolomic and transcriptomic data obtained for human plasma. We confirmed our key findings in cultured cardiomyocyte cells with BMPR2 mutation. Results In failing mouse RVs, (1) in the glycolysis pathway, glucose is converted to lactate via aerobic glycolysis, but may also be utilized for glycogen, fatty acid, and nucleic acid synthesis, (2) in the fatty acid pathway, FAs are accumulated in the cytoplasm because the transfer of FAs to mitochondria is reduced, however, the ß-oxidation pathway is likely to be functional. (3) the TCA cycle is altered at multiple checkpoints and accumulates citrate, and the glutaminolysis pathway is not activated. In PAH patients, plasma metabolic and transcriptomic data indicated that unlike in the failing BMPR2 mutant RV, expression of genes and metabolites measured for the glycolysis pathway, FA pathway, TCA cycle, and glutaminolysis pathway were increased. Lactate was the only metabolite that was increased both in RV and circulation. We confirmed using a stable isotope of lactate that cultured cardiomyocytes with mutant BMPR2 show a modest increase in endogenous lactate, suggesting a possibility of an increase in lactate production by cardiomyocytes in failing BMPR2 mutant RV. Conclusion In the failing RV with mutant BMPR2, lactate is produced by RV cardiomyocytes and may be secreted out, thereby increasing lactate in circulation. Lactate can potentially serve as a marker of RV dysfunction in PAH, which warrants investigation.
Collapse
Affiliation(s)
- Anna Hemnes
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Niki Fortune
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Katie Simon
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Irina A Trenary
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, United States
| | - Sheila Shay
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Eric Austin
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Jamey D Young
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, United States
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, United States
| | - Evan Britain
- Department of Cardiology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - James West
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Megha Talati
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
7
|
Wang L, Wan W, Zhang S, Keswani T, Li G, Xiao J. RNA-mediated epigenetic regulation in exercised heart: Mechanisms and opportunities for intervention. Mol Aspects Med 2024; 97:101274. [PMID: 38653129 DOI: 10.1016/j.mam.2024.101274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/21/2024] [Accepted: 04/12/2024] [Indexed: 04/25/2024]
Abstract
Physical exercise has been widely acknowledged as a beneficial lifestyle alteration and a potent non-pharmacological treatment for heart disease. Extensive investigations have revealed the beneficial effects of exercise on the heart and the underlying mechanisms involved. Exercise is considered one of the key factors that can lead to epigenetic alterations. The increasing number of identified molecules in the exercised heart has led to many studies in recent years that have explored the cellular function of ncRNAs and RNA modifications in the heart. Investigating the regulatory role of RNA-mediated epigenetic regulation in exercised hearts will contribute to the development of therapeutic strategies for the management of heart diseases. This review aims to summarize the positive impact of exercise on cardiac health. We will first provide an overview of the mechanisms through which exercise offers protection to the heart. Subsequently, we will delve into the current understanding of ncRNAs, specifically miRNAs, lncRNAs, and circRNAs, as well as RNA modification, focusing on RNA m6A and RNA A-to-I editing, and how they contribute to exercise-induced benefits for the heart. Lastly, we will explore the emerging therapeutic strategies that utilize exercise-mediated RNA epigenetic regulation in the treatment of heart diseases, while also addressing the challenges faced in this field.
Collapse
Affiliation(s)
- Lijun Wang
- Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, 200444, China; Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Life Science, Shanghai University, Shanghai, 200444, China
| | - Wensi Wan
- Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, 200444, China; Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Life Science, Shanghai University, Shanghai, 200444, China
| | - Shuang Zhang
- Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, 200444, China; Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Life Science, Shanghai University, Shanghai, 200444, China
| | - Tarun Keswani
- Center for Immunological and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02129, USA
| | - Guoping Li
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Junjie Xiao
- Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, 200444, China; Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Life Science, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
8
|
Choksey A, Carter RD, Thackray BD, Ball V, Kennedy BWC, Ha LHT, Sharma E, Broxholme J, Castro-Guarda M, Murphy MP, Heather LC, Tyler DJ, Timm KN. AICAR confers prophylactic cardioprotection in doxorubicin-induced heart failure in rats. J Mol Cell Cardiol 2024; 191:12-22. [PMID: 38643934 DOI: 10.1016/j.yjmcc.2024.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/12/2024] [Accepted: 04/18/2024] [Indexed: 04/23/2024]
Abstract
Doxorubicin (DOX) is a widely used chemotherapeutic agent that can cause serious cardiotoxic side effects, leading to heart failure (HF). Impaired mitochondrial function is thought to be key factor driving progression into HF. We have previously shown in a rat model of DOX-HF that heart failure with reduced ejection fraction correlates with mitochondrial loss and dysfunction. Adenosine monophosphate-dependent kinase (AMPK) is a cellular energy sensor, regulating mitochondrial biogenesis and energy metabolism, including fatty acid oxidation. We hypothesised that AMPK activation could restore mitochondrial function and therefore be a novel cardioprotective strategy for the prevention of DOX-HF. Consequently, we set out to assess whether 5-aminoimidazole-4-carboxamide 1-β-D-ribofuranoside (AICAR), an activator of AMPK, could prevent cardiac functional decline in this chronic intravenous rat model of DOX-HF. In line with our hypothesis, AICAR improved cardiac systolic function. AICAR furthermore improved cardiac mitochondrial fatty acid oxidation, independent of mitochondrial number, and in the absence of observable AMPK-activation. In addition, we found that AICAR prevented loss of myocardial mass. RNAseq analysis showed that this may be driven by normalisation of pathways associated with ribosome function and protein synthesis, which are impaired in DOX-treated rat hearts. AICAR furthermore prevented dyslipidemia and excessive body-weight loss in DOX-treated rats, which may contribute to preservation of myocardial mass. Though it is unclear whether AICAR exerted its cardioprotective effect through cardiac or extra-cardiac AMPK-activation or via an AMPK-independent effect, these results show promise for the use of AICAR as a cardioprotective agent in DOX-HF to both preserve cardiac function and mass.
Collapse
Affiliation(s)
- Anurag Choksey
- Department of Physiology Anatomy and Genetics, University of Oxford, UK
| | - Ryan D Carter
- Department of Physiology Anatomy and Genetics, University of Oxford, UK; Doctoral Training Centre, University of Oxford, Keble Road, Oxford, OX1 3NP, UK
| | | | - Vicky Ball
- Department of Physiology Anatomy and Genetics, University of Oxford, UK
| | - Brett W C Kennedy
- Department of Physiology Anatomy and Genetics, University of Oxford, UK; Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, UK
| | | | - Eshita Sharma
- Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Dr, Headington, Oxford OX3 7BN, UK
| | - John Broxholme
- Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Dr, Headington, Oxford OX3 7BN, UK
| | | | | | - Lisa C Heather
- Department of Physiology Anatomy and Genetics, University of Oxford, UK
| | - Damian J Tyler
- Department of Physiology Anatomy and Genetics, University of Oxford, UK; Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, UK
| | - Kerstin N Timm
- Department of Physiology Anatomy and Genetics, University of Oxford, UK; Department of Pharmacology, University of Oxford, UK.
| |
Collapse
|
9
|
Xu G, Xu Y, Zhang Y, Kao G, Li J. miR-1268a Regulates Fatty Acid Metabolism by Targeting CD36 in Angiotensin II-induced Heart Failure. Cell Biochem Biophys 2024; 82:1193-1201. [PMID: 38619643 DOI: 10.1007/s12013-024-01268-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2024] [Indexed: 04/16/2024]
Abstract
Multiple RNAs have been involved in the progress of heart failure. However, the role of miR-1268a in heart failure is still unclear. The differentially expressed miRNAs in heart failure was analyzed based on GEO dataset GSE104150. AC16 cells were treated with Angiotensin II (Ang II) to explore the role of miR-1268a in heart failure. The web tool miRWalk was used to analyze the targets of miR-1268a. miR-1268a was up-regulated in Ang II-treated AC16 cells. Ang II treatment markedly inhibited cell proliferation, ATP production, fatty acid (FA) uptake and enhanced levels of HF markers BNP and ST2, and oxidative stress of AC16 cells. Notably, inhibition of miR-1268a eliminated the inhibiting effect of Ang II on cell proliferation, ATP production, FA uptake and decreased levels of BNP an ST2, and oxidative stress on AC16 cells. Furthermore, CD36 was a target of miR-1268a and the CD36 level was decreased by miR-1268a mimics but increased by miR-1268a inhibitor in AC16 cells. miR-1268a regulates FA metabolism and oxidative stress in myocardial cells by targeting CD36 in heart failure.
Collapse
Affiliation(s)
- Gang Xu
- Department of Cardiovascular Medicine, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, 400010, China
| | - Yi Xu
- Department of Cardiovascular Medicine, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, 400010, China
| | - Ying Zhang
- Department of Cardiovascular Medicine, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, 400010, China
| | - Guoying Kao
- Department of Cardiovascular Medicine, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, 400010, China.
| | - Jun Li
- Department of Cardiovascular Medicine, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, 400010, China.
| |
Collapse
|
10
|
Glatz JFC, Heather LC, Luiken JJFP. CD36 as a gatekeeper of myocardial lipid metabolism and therapeutic target for metabolic disease. Physiol Rev 2024; 104:727-764. [PMID: 37882731 DOI: 10.1152/physrev.00011.2023] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 10/02/2023] [Accepted: 10/22/2023] [Indexed: 10/27/2023] Open
Abstract
The multifunctional membrane glycoprotein CD36 is expressed in different types of cells and plays a key regulatory role in cellular lipid metabolism, especially in cardiac muscle. CD36 facilitates the cellular uptake of long-chain fatty acids, mediates lipid signaling, and regulates storage and oxidation of lipids in various tissues with active lipid metabolism. CD36 deficiency leads to marked impairments in peripheral lipid metabolism, which consequently impact on the cellular utilization of multiple different fuels because of the integrated nature of metabolism. The functional presence of CD36 at the plasma membrane is regulated by its reversible subcellular recycling from and to endosomes and is under the control of mechanical, hormonal, and nutritional factors. Aberrations in this dynamic role of CD36 are causally associated with various metabolic diseases, in particular insulin resistance, diabetic cardiomyopathy, and cardiac hypertrophy. Recent research in cardiac muscle has disclosed the endosomal proton pump vacuolar-type H+-ATPase (v-ATPase) as a key enzyme regulating subcellular CD36 recycling and being the site of interaction between various substrates to determine cellular substrate preference. In addition, evidence is accumulating that interventions targeting CD36 directly or modulating its subcellular recycling are effective for the treatment of metabolic diseases. In conclusion, subcellular CD36 localization is the major adaptive regulator of cellular uptake and metabolism of long-chain fatty acids and appears a suitable target for metabolic modulation therapy to mend failing hearts.
Collapse
Affiliation(s)
- Jan F C Glatz
- Department of Genetics & Cell Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Lisa C Heather
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, United Kingdom
| | - Joost J F P Luiken
- Department of Genetics & Cell Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| |
Collapse
|
11
|
Lu H, Zhao Z, Yu H, Iqbal A, Jiang P. The serine protease 2 gene regulates lipid metabolism through the LEP/ampkα1/SREBP1 pathway in bovine mammary epithelial cells. Biochem Biophys Res Commun 2024; 698:149558. [PMID: 38271832 DOI: 10.1016/j.bbrc.2024.149558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/12/2024] [Accepted: 01/20/2024] [Indexed: 01/27/2024]
Abstract
Molecular breeding has brought about significant transformations in the milk market and production system during the twenty-first century. The primary economic characteristic of dairy production pertains to milk fat content. Our previous transcriptome analyses revealed that serine protease 2 (PRSS2) is a candidate gene that could impact milk fat synthesis in bovine mammary epithelial cells (BMECs) of Chinese Holstein dairy cows. To elucidate the function of the PRSS2 gene in milk fat synthesis, we constructed vectors for PRSS2 overexpression and interference and assessed intracellular triglycerides (TGs), cholesterol (CHOL), and nonesterified fatty acid (NEFA) contents in BMECs. Fatty acid varieties and components were also quantified using gas chromatography‒mass spectrometry (GC‒MS) technology. The regulatory pathway mediated by PRSS2 was validated through qPCR, ELISA, and WB techniques. Based on our research findings, PRSS2 emerges as a pivotal gene that regulates the expression of associated genes, thereby making a substantial contribution to lipid metabolism via the leptin (LEP)/Adenylate-activated protein kinase, alpha 1 catalytic subunit (AMPKα1)/sterol regulatory element binding protein 1(SREBP1) pathway by inhibiting TGs and CHOL accumulation while potentially promoting NEFA synthesis in BMECs. Furthermore, the PRSS2 gene enhances intracellular medium- and long-chain fatty acid metabolism by modulating genes related to the LEP/AMPKα1/SREBP1 pathway, leading to increased contents of unsaturated fatty acids C17:1N7 and C22:4N6. This study provides a robust theoretical framework for further investigation into the underlying molecular mechanisms through which PRSS2 influences lipid metabolism in dairy cows.
Collapse
Affiliation(s)
- Huixian Lu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China; The Key Laboratory of Animal Resources and Breed Innovation in Western Guangdong Province, Guangdong Ocean University, Zhanjiang, China
| | - Zhihui Zhao
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China; The Key Laboratory of Animal Resources and Breed Innovation in Western Guangdong Province, Guangdong Ocean University, Zhanjiang, China
| | - Haibin Yu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China; The Key Laboratory of Animal Resources and Breed Innovation in Western Guangdong Province, Guangdong Ocean University, Zhanjiang, China
| | - Ambreen Iqbal
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China; The Key Laboratory of Animal Resources and Breed Innovation in Western Guangdong Province, Guangdong Ocean University, Zhanjiang, China
| | - Ping Jiang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China; The Key Laboratory of Animal Resources and Breed Innovation in Western Guangdong Province, Guangdong Ocean University, Zhanjiang, China.
| |
Collapse
|
12
|
Nakanishi R, Tanaka M, Nisa BU, Shimizu S, Hirabayashi T, Tanaka M, Maeshige N, Roy RR, Fujino H. Alternating current electromagnetic field exposure lessens intramyocellular lipid accumulation due to high-fat feeding via enhanced lipid metabolism in mice. PLoS One 2023; 18:e0289086. [PMID: 38011220 PMCID: PMC10681264 DOI: 10.1371/journal.pone.0289086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 07/11/2023] [Indexed: 11/29/2023] Open
Abstract
Long-term high-fat feeding results in intramyocellular lipid accumulation, leading to insulin resistance. Intramyocellular lipid accumulation is related to an energy imbalance between excess fat intake and fatty acid consumption. Alternating current electromagnetic field exposure has been shown to enhance mitochondrial metabolism in the liver and sperm. Therefore, we hypothesized that alternating current electromagnetic field exposure would ameliorate high-fat diet-induced intramyocellular lipid accumulation via activation of fatty acid consumption. C57BL/6J mice were either fed a normal diet (ND), a normal diet and exposed to an alternating current electromagnetic field (ND+EMF), a high-fat diet (HFD), or a high-fat diet and exposed to an alternating current electromagnetic field (HFD+EMF). Electromagnetic field exposure was administered 8 hrs/day for 16 weeks using an alternating current electromagnetic field device (max.180 mT, Hokoen, Utatsu, Japan). Tibialis anterior muscles were collected for measurement of intramyocellular lipids, AMPK phosphorylation, FAT/CD-36, and carnitine palmitoyltransferase (CPT)-1b protein expression levels. Intramyocellular lipid levels were lower in the HFD + EMF than in the HFD group. The levels of AMPK phosphorylation, FAT/CD-36, and CPT-1b protein levels were higher in the HFD + EMF than in the HFD group. These results indicate that alternating current electromagnetic field exposure decreases intramyocellular lipid accumulation via increased fat consumption.
Collapse
Affiliation(s)
- Ryosuke Nakanishi
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe, Japan
- Department of Physical Therapy, Kobe International University, Kobe, Japan
| | - Masayuki Tanaka
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe, Japan
- Department of Physical Therapy, Okayama Healthcare Professional University, Okayama, Japan
| | - Badur un Nisa
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Sayaka Shimizu
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Takumi Hirabayashi
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Minoru Tanaka
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe, Japan
- Department of Rehabilitation Science, Osaka Health Science University, Osaka, Japan
| | - Noriaki Maeshige
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Roland R. Roy
- Brain Research Institute and Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, United States of America
| | - Hidemi Fujino
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe, Japan
| |
Collapse
|
13
|
Acharya R, Shetty SS, Pavan G, Monteiro F, Munikumar M, Naresh S, Kumari NS. AI-Based Homology Modelling of Fatty Acid Transport Protein 1 Using AlphaFold: Structural Elucidation and Molecular Dynamics Exploration. Biomolecules 2023; 13:1670. [PMID: 38002353 PMCID: PMC10669040 DOI: 10.3390/biom13111670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/16/2023] [Accepted: 10/16/2023] [Indexed: 11/26/2023] Open
Abstract
Fatty acid transport protein 1 (FATP1) is an integral transmembrane protein that is involved in facilitating the translocation of long-chain fatty acids (LCFA) across the plasma membrane, thereby orchestrating the importation of LCFA into the cell. FATP1 also functions as an acyl-CoA ligase, catalyzing the ATP-dependent formation of fatty acyl-CoA using LCFA and VLCFA (very-long-chain fatty acids) as substrates. It is expressed in various types of tissues and is involved in the regulation of crucial signalling pathways, thus playing a vital role in numerous physiological and pathological conditions. Structural insight about FATP1 is, thus, extremely important for understanding the mechanism of action of this protein and developing efficient treatments against its anomalous expression and dysregulation, which are often associated with pathological conditions such as breast cancer. As of now, there has been no prior prediction or evaluation of the 3D configuration of the human FATP1 protein, hindering a comprehensive understanding of the distinct functional roles of its individual domains. In our pursuit to unravel the structure of the most commonly expressed isoforms of FATP1, we employed the cutting-edge ALPHAFOLD 2 model for an initial prediction of the entire protein's structure. This prediction was complemented by molecular dynamics simulations, focusing on the most promising model. We predicted the structure of FATP1 in silico and thoroughly refined and validated it using coarse and molecular dynamics in the absence of the complete crystal structure. Their relative dynamics revealed the different properties of the characteristic FATP1.
Collapse
Affiliation(s)
- Ranjitha Acharya
- Department of Biochemistry, KS Hegde Medical Academy, Nitte (Deemed to be University), Mangalore 575018, India; (R.A.); (F.M.); (S.N.)
| | - Shilpa S. Shetty
- Central Research Laboratory, KS Hegde Medical Academy, Nitte (Deemed to be University), Mangalore 575018, India; (S.S.S.); (G.P.)
| | - Gollapalli Pavan
- Central Research Laboratory, KS Hegde Medical Academy, Nitte (Deemed to be University), Mangalore 575018, India; (S.S.S.); (G.P.)
| | - Flama Monteiro
- Department of Biochemistry, KS Hegde Medical Academy, Nitte (Deemed to be University), Mangalore 575018, India; (R.A.); (F.M.); (S.N.)
| | - Manne Munikumar
- Clinical Division, ICMR-National Institute of Nutrition, Jamai-Osmania (Post), Hyderabad 500007, India;
| | - Sriram Naresh
- Department of Biochemistry, KS Hegde Medical Academy, Nitte (Deemed to be University), Mangalore 575018, India; (R.A.); (F.M.); (S.N.)
| | - Nalilu Suchetha Kumari
- Department of Biochemistry, KS Hegde Medical Academy, Nitte (Deemed to be University), Mangalore 575018, India; (R.A.); (F.M.); (S.N.)
| |
Collapse
|
14
|
Fan L, Meng C, Wang X, Wang Y, Li Y, Lv S, Zhang J. Driving force of deteriorated cellular environment in heart failure: Metabolic remodeling. Clinics (Sao Paulo) 2023; 78:100263. [PMID: 37557005 PMCID: PMC10432917 DOI: 10.1016/j.clinsp.2023.100263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 07/15/2023] [Accepted: 07/18/2023] [Indexed: 08/11/2023] Open
Abstract
Heart Failure (HF) has been one of the leading causes of death worldwide. Though its latent mechanism and therapeutic manipulation are updated and developed ceaselessly, there remain great gaps in the cognition of heart failure. High morbidity and readmission rates among HF patients are waiting to be addressed. Recent studies have found that myocardial energy metabolism was closely related to heart failure, in which substrate utilization, as well as intermediate metabolism disorders, insulin resistance, oxidative stress, and mitochondrial dysfunction, might underlie systolic dysfunction and progression of HF. This article centers on the changes and counteraction of cardiac energy metabolism in the failing heart. Therefore, targeting impaired energy provision is of great potential in the treatment of HF. And shifting the objective from traditional neurohormones to improving the cellular environment is expected to further optimize the management of HF.
Collapse
Affiliation(s)
- Lu Fan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Chenchen Meng
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Xiaoming Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yunjiao Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yanyang Li
- Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Shichao Lv
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin Key Laboratory of Traditional Research of TCM Prescription and Syndrome, Tianjin, China.
| | - Junping Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
15
|
Wang Y, Yan W, Lu Y, Du J, Tian X, Wu B, Peng S, Gu B, Cai W, Xiao Y. Intestinal Reg4 deficiency confers susceptibility to high-fat diet-induced liver steatosis by increasing intestinal fat absorption in mice. JHEP Rep 2023; 5:100700. [PMID: 37138677 PMCID: PMC10149362 DOI: 10.1016/j.jhepr.2023.100700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 01/31/2023] [Accepted: 01/31/2023] [Indexed: 05/05/2023] Open
Abstract
Background & Aims Regenerating gene family member 4 (REG4) is a novel marker for enteroendocrine cells and is selectively expressed in specialised enteroendocrine cells of the small intestine. However, the exact roles of REG4 are largely unknown. In this study we investigate the effects of REG4 on the development of dietary fat-dependent liver steatosis and the mechanisms involved. Methods Mice with intestinal-specific Reg4 deficiency (Reg4 ΔIEC ) and Reg4-floxed alleles (Reg4 fl/fl ) were generated to investigate the effects of Reg4 on diet-induced obesity and liver steatosis. Serum levels of REG4 were also measured in children with obesity using ELISA. Results Reg4 ΔIEC mice fed a high-fat diet demonstrated significantly increased intestinal fat absorption and were prone to obesity and hepatic steatosis. Importantly, Reg4 ΔIEC mice exhibit enhanced activation of adenosine monophosphate-activated protein kinase (AMPK) signalling and increased protein abundance of the intestinal fat transporters, as well as enzymes involved in triglyceride synthesis and packaging at the proximal small intestine. Moreover, REG4 administration reduced fat absorption, and decreased the expression of intestinal fat absorption-related proteins in cultured intestinal cells possibly via the CaMKK2-AMPK pathway. Serum REG4 levels were markedly lower in children with obesity with advanced liver steatosis (p <0.05). Serum REG4 levels were inversely correlated with levels of liver enzymes, homeostasis model assessment of insulin resistance, low-density lipoprotein cholesterol, and triglycerides. Conclusions Our findings directly link Reg4 deficiency with increased fat absorption and obesity-related liver steatosis, and suggest that REG4 may provide a potential target for prevention and treatment of liver steatosis in children. Impact and Implications Hepatic steatosis is a key histological feature of non-alcoholic fatty liver disease, which is the leading chronic liver disease in children leading to the development of metabolic diseases; however, little is known about mechanisms induced by dietary fat. Intestinal REG4 acts as a novel enteroendocrine hormone reducing high-fat-diet-induced liver steatosis with decreasing intestinal fat absorption. REG4 may be a novel target for treatment of paediatric liver steatosis from the perspective of crosstalk between intestine and liver.
Collapse
Affiliation(s)
- Ying Wang
- Division of Pediatric Gastroenterology and Nutrition, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Institute for Pediatric Research, Shanghai, China
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Weihui Yan
- Division of Pediatric Gastroenterology and Nutrition, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Institute for Pediatric Research, Shanghai, China
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Ying Lu
- Shanghai Institute for Pediatric Research, Shanghai, China
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Jun Du
- Shanghai Institute for Pediatric Research, Shanghai, China
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Xinbei Tian
- Division of Pediatric Gastroenterology and Nutrition, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Institute for Pediatric Research, Shanghai, China
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Bo Wu
- Division of Pediatric Gastroenterology and Nutrition, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Department of Pediatric Surgery, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shicheng Peng
- Shanghai Institute for Pediatric Research, Shanghai, China
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Beilin Gu
- Shanghai Institute for Pediatric Research, Shanghai, China
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Wei Cai
- Division of Pediatric Gastroenterology and Nutrition, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Institute for Pediatric Research, Shanghai, China
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
- Department of Pediatric Surgery, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Corresponding authors. Addresses: Department of Pediatric Surgery, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University No. 1665, Kong Jiang Road, Shanghai 200092, China. Tel.: +86-21-25076441; Fax: +86-21-65791316.
| | - Yongtao Xiao
- Division of Pediatric Gastroenterology and Nutrition, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Institute for Pediatric Research, Shanghai, China
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
- Department of Pediatric Surgery, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Division of Pediatric Gastroenterology and Nutrition, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, No. 1665, Kong Jiang Road, Shanghai 200092, China. Tel.: +86-21-25076445; Fax: +86-21-65791316.
| |
Collapse
|
16
|
Muscle Lipid Oxidation Is Not Affected by Obstructive Sleep Apnea in Diabetes and Healthy Subjects. Int J Mol Sci 2023; 24:ijms24065308. [PMID: 36982383 PMCID: PMC10048979 DOI: 10.3390/ijms24065308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 03/05/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
The molecular mechanisms linking obstructive sleep apnea (OSA) with type 2 diabetes mellitus (T2DM) remain unclear. This study investigated the effect of OSA on skeletal muscle lipid oxidation in nondiabetic controls and in type 2 diabetes (T2DM) patients. Forty-four participants matched for age and adiposity were enrolled: nondiabetic controls (control, n = 14), nondiabetic patients with severe OSA (OSA, n = 9), T2DM patients with no OSA (T2DM, n = 10), and T2DM patients with severe OSA (T2DM + OSA, n = 11). A skeletal muscle biopsy was performed; gene and protein expressions were determined and lipid oxidation was analyzed. An intravenous glucose tolerance test was performed to investigate glucose homeostasis. No differences in lipid oxidation (178.2 ± 57.1, 161.7 ± 22.4, 169.3 ± 50.9, and 140.0 ± 24.1 pmol/min/mg for control, OSA, T2DM, and T2DM+OSA, respectively; p > 0.05) or gene and protein expressions were observed between the groups. The disposition index, acute insulin response to glucose, insulin resistance, plasma insulin, glucose, and HBA1C progressively worsened in the following order: control, OSA, T2DM, and T2DM + OSA (p for trend <0.05). No association was observed between the muscle lipid oxidation and the glucose metabolism variables. We conclude that severe OSA is not associated with reduced muscle lipid oxidation and that metabolic derangements in OSA are not mediated through impaired muscle lipid oxidation.
Collapse
|
17
|
Cong Y, Hong Y, Wang D, Cheng P, Wang Z, Xing C, Sun W, Xu G. 2,3,7,8-Tetrachlorodibenzo-p-dioxin induces liver lipid metabolism disorder via the ROS/AMPK/CD36 signaling pathway. Toxicol Sci 2023; 191:276-284. [PMID: 36534932 DOI: 10.1093/toxsci/kfac133] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is widely considered as the most toxic and common carcinogen in the world. Exposure to TCDD causes liver lipid metabolism disorder and steatosis. However, the molecular mechanism of TCDD-induced liver lipid accumulation is not completely clear. Here, we found that a 5 μg/kg TCDD exposure for 3 weeks induced hepatocyte lipid deposition, increased CD36 expression, and promoted AMP-activated protein kinase (AMPK) ɑ phosphorylation in the liver of C57BL/6J mice. Furthermore, sulfo-N-succinimidyl oleate, a CD36 inhibiter, blunted TCDD-induced lipid deposition in Huh7 cells, confirming the critical role of CD36 in TCDD-induced hepatic steatosis. In terms of molecular mechanisms, we found that TCDD exposure increased reactive oxygen species (ROS) levels in Huh7 cells, which activated AMPK. Moreover, the activated AMPK upregulated CD36 expression. Therefore, we can see that the increase in CD36 expression induced by TCDD was regulated by ROS/AMPK/CD36 signaling pathway. Our results help to clarify the molecular mechanism of TCDD-induced hepatic steatosis.
Collapse
Affiliation(s)
- Yewen Cong
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Yujing Hong
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu 226001, P.R. China.,Department of Clinical Nutrition, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu 226006, P.R. China
| | - Dandan Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu 226001, P.R. China.,Haian Center for Disease Control and Prevention, Haian, Jiangsu 226600, P.R. China
| | - Pei Cheng
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu 226001, P.R. China.,Department of Clinical Nutrition, Xuzhou Children's Hospital, Xuzhou, Jiangsu 221000, P. R. China
| | - Zhisheng Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Changming Xing
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Wenxing Sun
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Guangfei Xu
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu 226001, P.R. China
| |
Collapse
|
18
|
Kim YW, Bak SB, Lee WY, Bae SJ, Lee EH, Yang JH, Kim KY, Song CH, Kim SC, Yun UJ, Park KI. Systemic and molecular analysis dissect the red ginseng induction of apoptosis and autophagy in HCC as mediated with AMPK. J Ginseng Res 2023; 47:479-491. [DOI: 10.1016/j.jgr.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/17/2023] [Accepted: 02/12/2023] [Indexed: 02/25/2023] Open
|
19
|
Asgari R, Vaisi-Raygani A, Aleagha MSE, Mohammadi P, Bakhtiari M, Arghiani N. CD147 and MMPs as key factors in physiological and pathological processes. Biomed Pharmacother 2023; 157:113983. [PMID: 36370522 DOI: 10.1016/j.biopha.2022.113983] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022] Open
Abstract
Cluster of differentiation 147 (CD147) or extracellular matrix metalloproteinase inducer (EMMPRIN) is a transmembrane glycoprotein that induces the synthesis of matrix metalloproteinases (MMPs). MMPs, as zinc-dependent proteases and versatile enzymes, play critical roles in the degradation of the extracellular matrix (ECM) components, cleaving of the receptors of cellular surfaces, signaling molecules, and other precursor proteins, which may lead to attenuation or activation of such targets. CD147 and MMPs play essential roles in physiological and pathological conditions and any disorder in the expression, synthesis, or function of CD147 and MMPs may be associated with various types of disease. In this review, we have focused on the roles of CD147 and MMPs in some major physiological and pathological processes.
Collapse
Affiliation(s)
- Rezvan Asgari
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Asad Vaisi-Raygani
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Sajad Emami Aleagha
- Department of Clinical Biochemistry, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Pantea Mohammadi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mitra Bakhtiari
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Nahid Arghiani
- Department of Molecular Biosciences, the Wenner-Gren Institute, Stockholm University, Stockholm, Sweden; School of Life Science, Department of Biochemistry and Biomedicine, University of Sussex, Brighton, United Kingdom.
| |
Collapse
|
20
|
Zhang J, Han X, Lu Q, Feng Y, Ma A, Wang T. Left ventricular non-compaction cardiomyopathy associated with the PRKAG2 mutation. BMC Med Genomics 2022; 15:214. [PMID: 36221081 PMCID: PMC9552423 DOI: 10.1186/s12920-022-01361-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 09/16/2022] [Indexed: 11/10/2022] Open
Abstract
Left ventricular non-compaction cardiomyopathy (LVNC) is one of the most common inherited cardiovascular diseases. The genetic backgrounds of most LVNC patients are not fully understood. We collected clinical data, family histories, and blood samples and performed genetic analysis using next-generation sequencing (NGS) from a Chinese family of 15 subjects. Clinically LVNC affected subjects showed marked cardiac phenotype heterogeneity. We found that these subjects with LVNC carried a missense heterozygous genetic mutation c.905G>A (p.R302Q) in γ2 subunit of AMP-activated protein kinase (PRKAG2) gene through NGS. Individuals without this mutation showed no symptoms or cardiac structural abnormalities related to LVNC. One subject was the victim of sudden cardiac death. To sum up, PRKAG2 mutation c.905G>A (p.R302Q) caused familial LVNC. Our results described a potentially pathogenic mutation associated with LVNC, which may further extend the spectrum of LVNC phenotypes related to PRKAG2 gene mutations.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Key Laboratory of Molecular Cardiology, Xi'an, Shaanxi, China.,Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, Shaanxi, China
| | - Xiu Han
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Qun Lu
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yunfei Feng
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Key Laboratory of Molecular Cardiology, Xi'an, Shaanxi, China.,Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, Shaanxi, China
| | - Aiqun Ma
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China. .,Key Laboratory of Molecular Cardiology, Xi'an, Shaanxi, China. .,Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, Shaanxi, China.
| | - Tingzhong Wang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China. .,Key Laboratory of Molecular Cardiology, Xi'an, Shaanxi, China. .,Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, Shaanxi, China.
| |
Collapse
|
21
|
Oluwadare J, Cabodevilla AG, Son NH, Hu Y, Mullick AE, Verano M, Alemán JO, Ramasamy R, Goldberg IJ. Blocking Lipid Uptake Pathways Does not Prevent Toxicity in Adipose Triglyceride Lipase (ATGL) Deficiency. J Lipid Res 2022; 63:100274. [PMID: 36115595 PMCID: PMC9618837 DOI: 10.1016/j.jlr.2022.100274] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 01/05/2023] Open
Abstract
Lipid accumulation in nonadipose tissues can cause lipotoxicity, leading to cell death and severe organ dysfunction. Adipose triglyceride lipase (ATGL) deficiency causes human neutral lipid storage disease and leads to cardiomyopathy; ATGL deficiency has no current treatment. One possible approach to alleviate this disorder has been to alter the diet and reduce the supply of dietary lipids and, hence, myocardial lipid uptake. However, in this study, when we supplied cardiac Atgl KO mice a low- or high-fat diet, we found that heart lipid accumulation, heart dysfunction, and death were not altered. We next deleted lipid uptake pathways in the ATGL-deficient mice through the generation of double KO mice also deficient in either cardiac lipoprotein lipase or cluster of differentiation 36, which is involved in an lipoprotein lipase-independent pathway for FA uptake in the heart. We show that neither deletion ameliorated ATGL-deficient heart dysfunction. Similarly, we determined that non-lipid-containing media did not prevent lipid accumulation by cultured myocytes; rather, the cells switched to increased de novo FA synthesis. Thus, we conclude that pathological storage of lipids in ATGL deficiency cannot be corrected by reducing heart lipid uptake.
Collapse
Affiliation(s)
- Jide Oluwadare
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Ainara G. Cabodevilla
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Ni-Huiping Son
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Yunying Hu
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Adam E. Mullick
- Cardiovascular Drug Discovery, Ionis Pharmaceuticals Inc., Carlsbad, CA, USA
| | - Michael Verano
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Jose O. Alemán
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Ravichandran Ramasamy
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Ira J. Goldberg
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA,For correspondence: Ira J. Goldberg
| |
Collapse
|
22
|
Abstract
PURPOSE OF REVIEW Transmembrane glycoprotein cluster of differentiation 36 (CD36) is a scavenger receptor class B protein (SR-B2) that serves various functions in lipid metabolism and signaling, in particular facilitating the cellular uptake of long-chain fatty acids. Recent studies have disclosed CD36 to play a prominent regulatory role in cellular fatty acid metabolism in both health and disease. RECENT FINDINGS The rate of cellular fatty acid uptake is short-term (i.e., minutes) regulated by the subcellular recycling of CD36 between endosomes and the plasma membrane. This recycling is governed by the activity of vacuolar-type H+-ATPase (v-ATPase) in the endosomal membrane via assembly and disassembly of two subcomplexes. The latter process is being influenced by metabolic substrates including fatty acids, glucose and specific amino acids, together resulting in a dynamic interplay to modify cellular substrate preference and uptake rates. Moreover, in cases of metabolic disease v-ATPase activity was found to be affected while interventions aimed at normalizing v-ATPase functioning had therapeutic potential. SUMMARY The emerging central role of CD36 in cellular lipid homeostasis and recently obtained molecular insight in the interplay among metabolic substrates indicate the applicability of CD36 as target for metabolic modulation therapy in disease. Experimental studies already have shown the feasibility of this approach.
Collapse
Affiliation(s)
- Jan F.C. Glatz
- Department of Genetics & Cell Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University
- Department of Clinical Genetics, Maastricht University Medical Center+
| | - Miranda Nabben
- Department of Genetics & Cell Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University
- Department of Clinical Genetics, Maastricht University Medical Center+
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht, The Netherlands
| | - Joost J.F.P. Luiken
- Department of Genetics & Cell Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University
- Department of Clinical Genetics, Maastricht University Medical Center+
| |
Collapse
|
23
|
Longo M, Scappaticcio L, Cirillo P, Maio A, Carotenuto R, Maiorino MI, Bellastella G, Esposito K. Glycemic Control and the Heart: The Tale of Diabetic Cardiomyopathy Continues. Biomolecules 2022; 12:biom12020272. [PMID: 35204778 PMCID: PMC8961546 DOI: 10.3390/biom12020272] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 01/25/2022] [Accepted: 02/01/2022] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular diseases are the leading cause of death in people with diabetes. Diabetic cardiomyopathy (DC) is an important complication of diabetes and represents a distinct subtype of heart failure that occurs in absence of cardiovascular diseases. Chronic hyperglycemia and hyperinsulinemia along with insulin resistance and inflammatory milieu are the main mechanisms involved in the pathophysiology of DC. Changes in lifestyle favoring healthy dietary patterns and physical activity, combined with more innovative anti-diabetes therapies, are the current treatment strategies to safeguard the cardiovascular system. This review aims at providing an updated comprehensive overview of clinical, pathogenetic, and molecular aspects of DC, with a focus on the effects of anti-hyperglycemic drugs on the prevention of pump dysfunction and consequently on cardiovascular health in type 2 diabetes.
Collapse
Affiliation(s)
- Miriam Longo
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.L.); (L.S.); (P.C.); (A.M.); (R.C.); (M.I.M.); (G.B.)
- Division of Endocrinology and Metabolic Diseases, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Lorenzo Scappaticcio
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.L.); (L.S.); (P.C.); (A.M.); (R.C.); (M.I.M.); (G.B.)
| | - Paolo Cirillo
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.L.); (L.S.); (P.C.); (A.M.); (R.C.); (M.I.M.); (G.B.)
| | - Antonietta Maio
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.L.); (L.S.); (P.C.); (A.M.); (R.C.); (M.I.M.); (G.B.)
| | - Raffaela Carotenuto
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.L.); (L.S.); (P.C.); (A.M.); (R.C.); (M.I.M.); (G.B.)
- Division of Endocrinology and Metabolic Diseases, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Maria Ida Maiorino
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.L.); (L.S.); (P.C.); (A.M.); (R.C.); (M.I.M.); (G.B.)
- Division of Endocrinology and Metabolic Diseases, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Giuseppe Bellastella
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.L.); (L.S.); (P.C.); (A.M.); (R.C.); (M.I.M.); (G.B.)
- Division of Endocrinology and Metabolic Diseases, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Katherine Esposito
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.L.); (L.S.); (P.C.); (A.M.); (R.C.); (M.I.M.); (G.B.)
- Division of Endocrinology and Metabolic Diseases, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
- Correspondence: ; Tel.: +39-08-156-65031
| |
Collapse
|
24
|
Nuclear functions of microRNAs relevant to the cardiovascular system. Transl Res 2021; 230:151-163. [PMID: 33186782 DOI: 10.1016/j.trsl.2020.11.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/22/2020] [Accepted: 11/05/2020] [Indexed: 12/30/2022]
Abstract
A fraction of the transcriptome is translated into proteins. The rest is classified as non-protein coding RNA (Ribonucleic Acid) but has gained increased attention as functional and regulatory group of transcripts. The gene regulatory role of non-coding RNAs (ncRNAs) has now been widely accepted in diverse biological processes in both physiology and disease. MicroRNAs fall into this latter group and are widely known for their diverse post-transcriptional regulatory role. MicroRNA sequences are embedded in the long ncRNAs, known as primary microRNAs, are processed into precursor microRNAs and are typically transported out of the nucleus for maturation and loading into a protein complex forming RNA-induced silencing complex (RISC) that either drives the degradation of messenger RNA (mRNA) or blocks its translation. A new phenomenon is emerging where microRNAs have active roles within the nucleus. The presence of RISC components including microRNAs in the nucleus supports this notion. They may integrate with chromatin modifiers, microprocessing machinery and mRNA stabilizing transcripts to play a multifunctional role in the nucleus. Although a limited number of studies appreciate this novel activity of microRNAs relevant to the cardiovascular system, they provide proof-of-concept that requires consideration while targeting miRNAs with therapeutic potential.
Collapse
|
25
|
Abstract
Pulmonary arterial hypertension (PAH) is characterized by impaired regulation of pulmonary hemodynamics and vascular growth. Alterations of metabolism and bioenergetics are increasingly recognized as universal hallmarks of PAH, as metabolic abnormalities are identified in lungs and hearts of patients, animal models of the disease, and cells derived from lungs of patients. Mitochondria are the primary organelle critically mediating the complex and integrative metabolic pathways in bioenergetics, biosynthetic pathways, and cell signaling. Here, we review the alterations in metabolic pathways that are linked to the pathologic vascular phenotype of PAH, including abnormalities in glycolysis and glucose oxidation, fatty acid oxidation, glutaminolysis, arginine metabolism, one-carbon metabolism, the reducing and oxidizing cell environment, and the tricarboxylic acid cycle, as well as the effects of PAH-associated nuclear and mitochondrial mutations on metabolism. Understanding of the metabolic mechanisms underlying PAH provides important knowledge for the design of new therapeutics for treatment of patients.
Collapse
Affiliation(s)
- Weiling Xu
- Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA;
| | - Allison J Janocha
- Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA;
| | - Serpil C Erzurum
- Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA; .,Respiratory Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| |
Collapse
|
26
|
Cheng L, Zhang S, Shang F, Ning Y, Huang Z, He R, Sun J, Dong S. Emodin Improves Glucose and Lipid Metabolism Disorders in Obese Mice via Activating Brown Adipose Tissue and Inducing Browning of White Adipose Tissue. Front Endocrinol (Lausanne) 2021; 12:618037. [PMID: 34040579 PMCID: PMC8143048 DOI: 10.3389/fendo.2021.618037] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 04/06/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Adipose tissue (e.g. white, brown and brite) plays a critical role in modulating energy metabolism. Activating brown adipose tissue (BAT) and inducing browning in white adipose tissue (WAT) has been proposed to be a potential molecular target for obesity treatment. Emodin is a natural anthraquinone derivative that exhibits variety of pharmacologic effects including lowering lipids and regulating glucose utilization. However, the underlying mechanism of action is still unclear. In the present study, we investigated whether emodin could alleviate obesity via promoting browning process in adipose tissue. METHODS C57BL/6J mice were fed with high fat diet to induce obesity. Emodin at the doses of 40 and 80 mg/kg were orally given to obesity mice for consecutive 6 weeks. Parameters including fasting blood glucose, oral glucose tolerance, blood lipids, and the ratios of subcutaneous white adipose tissue (scWAT) or BAT mass to body weight, and morphology of adipose tissue were observed. Besides, the protein expression of uncoupling protein 1 (UCP1) and prohibitin in BAT and scWAT was determined by immunohistochemistry method. Relative mRNA expression of Cd137, transmembrane protein 26 (Tmem26) and Tbx1 in scWAT was analyzed using qRT-PCR. And the protein expression of UCP1, CD36, fatty acid transporter 4 (FATP4), peroxisome proliferator-activated receptor alpha (PPARα) and prohibitin of scWAT and BAT were analyzed using western blotting. In addition, ultra-high-performance liquid chromatography with electrospray ionization tandem mass spectrometry was utilized to detect the small lipid metabolites of scWAT and BAT. RESULTS Emodin decreased the body weight and food intake in HFD-induced obesity mice, and it also improved the glucose tolerance and reduced the blood lipids. Emodin treatment induced beiging of WAT, and more multilocular lipid droplets were found in scWAT. Also, emodin significantly increased markers of beige adipocytes, e.g. Cd137, Tmem26 and Tbx1 mRNA in scWAT, and UCP1, CD36, FATP4, PPARα and prohibitin protein expression in scWAT and BAT. Furthermore, emodin perturbed the lipidomic profiles in scWAT and BAT of obese mice. Emodin increased total ceramides (Cers), lysophosphatidylcholines (LPCs), lyso-phosphatidylcholines oxygen (LPCs-O), and phosphatidylethanolamines oxygen (PEs-O) species concentration in scWAT. Specifically, emodin significantly up-regulated levels of Cer (34:1), LPC (18:2), LPC-(O-20:2), PC (O-40:7), PE (O-36:3), PE (O-38:6), PE (O-40:6), and sphingolipid (41:0) [SM (41:0)], and down-regulated PC (O-38:0), PE (O-40:4), PE (O-40:5) in scWAT of obesity mice. In terms of lipid matabolites of BAT, the emodin remarkably increased the total PCs levels, which was driven by significant increase of PC (30:0), PC (32:1), PC (32:2), PC (33:4) and PC (38:0) species. In addition, it also increased species of LPCs, e.g. LPC (20:0), LPC (20:1), LPC (22:0), LPC (22:1), LPC (24:0), and LPC (24:1). Especially, emodin treatment could reverse the ratio of PC/PE in HFD-induced obese mice. CONCLUSIONS These results indicated that emodin could ameliorate adiposity and improve metabolic disorders in obese mice. Also, emodin could promote browning in scWAT and activate the BAT activities. In addition, emodin treatment-induced changes to the scWAT and BAT lipidome were highly specific to certain molecular lipid species, indicating that changes in tissue lipid content reflects selective remodeling in scWAT and BAT of both glycerophospholipids and sphingolipids in response to emodin treatment.
Collapse
Affiliation(s)
- Long Cheng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Shuofeng Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Fei Shang
- Analytical and Testing Center, Beijing University of Chemical Technology, Beijing, China
| | - Yibo Ning
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Zhiqi Huang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Runcheng He
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jianning Sun
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Shifen Dong
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Shifen Dong,
| |
Collapse
|
27
|
Haye A, Ansari MA, Rahman SO, Shamsi Y, Ahmed D, Sharma M. Role of AMP-activated protein kinase on cardio-metabolic abnormalities in the development of diabetic cardiomyopathy: A molecular landscape. Eur J Pharmacol 2020; 888:173376. [PMID: 32810493 DOI: 10.1016/j.ejphar.2020.173376] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 12/13/2022]
Abstract
Cardiovascular complications associated with diabetes mellitus remains a leading cause of morbidity and mortality across the world. Diabetic cardiomyopathy is a descriptive pathology that in absence of co-morbidities such as hypertension, dyslipidemia initially characterized by cardiac stiffness, myocardial fibrosis, ventricular hypertrophy, and remodeling. These abnormalities further contribute to diastolic dysfunctions followed by systolic dysfunctions and eventually results in clinical heart failure (HF). The clinical outcomes associated with HF are considerably worse in patients with diabetes. The complexity of the pathogenesis and clinical features of diabetic cardiomyopathy raises serious questions in developing a therapeutic strategy to manage cardio-metabolic abnormalities. Despite extensive research in the past decade the compelling approaches to manage and treat diabetic cardiomyopathy are limited. AMP-Activated Protein Kinase (AMPK), a serine-threonine kinase, often referred to as cellular "metabolic master switch". During the development and progression of diabetic cardiomyopathy, a plethora of evidence demonstrate the beneficial role of AMPK on cardio-metabolic abnormalities including altered substrate utilization, impaired cardiac insulin metabolic signaling, mitochondrial dysfunction and oxidative stress, myocardial inflammation, increased accumulation of advanced glycation end-products, impaired cardiac calcium handling, maladaptive activation of the renin-angiotensin-aldosterone system, endoplasmic reticulum stress, myocardial fibrosis, ventricular hypertrophy, cardiac apoptosis, and impaired autophagy. Therefore, in this review, we have summarized the findings from pre-clinical and clinical studies and provided a collective overview of the pathophysiological mechanism and the regulatory role of AMPK on cardio-metabolic abnormalities during the development of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Abdul Haye
- Pharmaceutical Medicine, Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mohd Asif Ansari
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Syed Obaidur Rahman
- Pharmaceutical Medicine, Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Yasmeen Shamsi
- Department of Moalejat, School of Unani Medical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Danish Ahmed
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, Sam Higginbottom University of Agriculture Technology and Sciences, Allahabad, Uttar Pradesh, India
| | - Manju Sharma
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
28
|
Andreadou I, Tsoumani M, Vilahur G, Ikonomidis I, Badimon L, Varga ZV, Ferdinandy P, Schulz R. PCSK9 in Myocardial Infarction and Cardioprotection: Importance of Lipid Metabolism and Inflammation. Front Physiol 2020; 11:602497. [PMID: 33262707 PMCID: PMC7688516 DOI: 10.3389/fphys.2020.602497] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 10/26/2020] [Indexed: 12/12/2022] Open
Abstract
Extensive evidence from epidemiologic, genetic, and clinical intervention studies has indisputably shown that elevated low-density lipoprotein cholesterol (LDL-C) concentrations play a central role in the pathophysiology of atherosclerotic cardiovascular disease. Apart from LDL-C, also triglycerides independently modulate cardiovascular risk. Reduction of proprotein convertase subtilisin/kexin type 9 (PCSK9) has emerged as a therapeutic target for reducing plasma LDL-C, but it is also associated with a reduction in triglyceride levels potentially through modulation of the expression of free fatty acid transporters. Preclinical data indicate that PCSK9 is up-regulated in the ischaemic heart and decreasing PCSK9 expression impacts on infarct size, post infarct inflammation and remodeling as well as cardiac dysfunction following ischaemia/reperfusion. Clinical data support that notion in that PCSK9 inhibition is associated with reductions in the incidence of myocardial infarction, stroke, and coronary revascularization and an improvement of endothelial function in subjects with increased cardiovascular risk. The aim of the current review is to summarize the current knowledge on the importance of free fatty acid metabolism on myocardial ischaemia/reperfusion injury and to provide an update on recent evidence on the role of hyperlipidemia and PCSK9 in myocardial infarction and cardioprotection.
Collapse
Affiliation(s)
- Ioanna Andreadou
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Tsoumani
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Gemma Vilahur
- Cardiovascular Program-ICCC, Research Institute-Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, Barcelona, Spain.,CIBERCV, Instituto Salud Carlos III, Madrid, Spain
| | - Ignatios Ikonomidis
- Second Cardiology Department, Attikon Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Lina Badimon
- Cardiovascular Program-ICCC, Research Institute-Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, Barcelona, Spain.,CIBERCV, Instituto Salud Carlos III, Madrid, Spain.,Cardiovascular Research Chair, Autonomous University of Barcelona (UAB), Barcelona Spain
| | - Zoltán V Varga
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary.,HCEMM-SU Cardiometabolic Immunology Research Group, Budapest, Hungary
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary.,Pharmahungary Group, Szeged, Hungary
| | - Rainer Schulz
- Institute for Physiology, Justus-Liebig University Giessen, Giessen, Germany
| |
Collapse
|
29
|
Xiang K, Qin Z, Zhang H, Liu X. Energy Metabolism in Exercise-Induced Physiologic Cardiac Hypertrophy. Front Pharmacol 2020; 11:1133. [PMID: 32848751 PMCID: PMC7403221 DOI: 10.3389/fphar.2020.01133] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 07/13/2020] [Indexed: 12/17/2022] Open
Abstract
Physiologic hypertrophy of the heart preserves or enhances systolic function without interstitial fibrosis or cell death. As a unique form of physiological stress, regular exercise training can trigger the adaptation of cardiac muscle to cause physiological hypertrophy, partly due to its ability to improve cardiac metabolism. In heart failure (HF), cardiac dysfunction is closely associated with early initiation of maladaptive metabolic remodeling. A large amount of clinical and experimental evidence shows that metabolic homeostasis plays an important role in exercise training, which is conducive to the treatment and recovery of cardiovascular diseases. Potential mechanistic targets for modulation of cardiac metabolism have become a hot topic at present. Thus, exploring the energy metabolism mechanism in exercise-induced physiologic cardiac hypertrophy may produce new therapeutic targets, which will be helpful to design novel effective strategies. In this review, we summarize the changes of myocardial metabolism (fatty acid metabolism, carbohydrate metabolism, and mitochondrial adaptation), metabolically-related signaling molecules, and probable regulatory mechanism of energy metabolism during exercise-induced physiological cardiac hypertrophy.
Collapse
Affiliation(s)
- Kefa Xiang
- Department of Clinical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Zhen Qin
- Department of Clinical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Huimin Zhang
- Department of Clinical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Xia Liu
- Department of Clinical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai, China
| |
Collapse
|
30
|
Vitamin D Status of Mice Deficient in Scavenger Receptor Class B Type 1, Cluster Determinant 36 and ATP-Binding Cassette Proteins G5/G8. Nutrients 2020; 12:nu12082169. [PMID: 32707802 PMCID: PMC7469065 DOI: 10.3390/nu12082169] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/17/2020] [Accepted: 07/20/2020] [Indexed: 12/15/2022] Open
Abstract
Classical lipid transporters are suggested to modulate cellular vitamin D uptake. This study investigated the vitamin D levels in serum and tissues of mice deficient in SR-B1 (Srb1-/-), CD36 (Cd36-/-) and ABC-G5/G8 (Abcg5/g8-/-) and compared them with corresponding wild-type (WT) mice. All mice received triple-deuterated vitamin D3 (vitamin D3-d3) for six weeks. All knockout mice vs. WT mice showed specific alterations in their vitamin D concentrations. Srb1-/- mice had higher levels of vitamin D3-d3 in the serum, adipose tissue, kidney and heart, whereas liver levels of vitamin D3-d3 remained unaffected. Additionally, Srb1-/- mice had lower levels of deuterated 25-hydroxyvitamin D3 (25(OH)D3-d3) in the serum, liver and kidney compared to WT mice. In contrast, Cd36-/- and WT mice did not differ in the serum and tissue levels of vitamin D3-d3, but Cd36-/- vs. WT mice were characterized by lower levels of 25(OH)D3-d3 in the serum, liver and kidney. Finally, Abcg5/g8-/- mice tended to have higher levels of vitamin D3-d3 in the serum and liver. Major alterations in Abcg5/g8-/- mice were notably higher levels of 25(OH)D3-d3 in the serum and kidney, accompanied by a higher hepatic mRNA abundance of Cyp27a1 hydroxylase. To conclude, the current data emphasize the significant role of lipid transporters in the uptake, tissue distribution and activation of vitamin D.
Collapse
|
31
|
Geraets IME, Glatz JFC, Luiken JJFP, Nabben M. Pivotal role of membrane substrate transporters on the metabolic alterations in the pressure-overloaded heart. Cardiovasc Res 2020; 115:1000-1012. [PMID: 30938418 DOI: 10.1093/cvr/cvz060] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 02/04/2019] [Accepted: 03/07/2019] [Indexed: 12/16/2022] Open
Abstract
Cardiac pressure overload (PO), such as caused by aortic stenosis and systemic hypertension, commonly results in cardiac hypertrophy and may lead to the development of heart failure. PO-induced heart failure is among the leading causes of death worldwide, but its pathological origin remains poorly understood. Metabolic alterations are proposed to be an important contributor to PO-induced cardiac hypertrophy and failure. While the healthy adult heart mainly uses long-chain fatty acids (FAs) and glucose as substrates for energy metabolism and to a lesser extent alternative substrates, i.e. lactate, ketone bodies, and amino acids (AAs), the pressure-overloaded heart is characterized by a shift in energy metabolism towards a greater reliance on glycolysis and alternative substrates. A key-governing kinetic step of both FA and glucose fluxes is at the level of their substrate-specific membrane transporters. The relative presence of these transporters in the sarcolemma determines the cardiac substrate preference. Whether the cardiac utilization of alternative substrates is also governed by membrane transporters is not yet known. In this review, we discuss current insight into the role of membrane substrate transporters in the metabolic alterations occurring in the pressure-overloaded heart. Given the increasing evidence of a role for alternative substrates in these metabolic alterations, there is an urgent need to disclose the key-governing kinetic steps in their utilization as well. Taken together, membrane substrate transporters emerge as novel targets for metabolic interventions to prevent or treat PO-induced heart failure.
Collapse
Affiliation(s)
- Ilvy M E Geraets
- Department of Genetics & Cell Biology, Faculty of Health, Medicine and Life Sciences (FHML), Maastricht University, MD Maastricht, The Netherlands
| | - Jan F C Glatz
- Department of Genetics & Cell Biology, Faculty of Health, Medicine and Life Sciences (FHML), Maastricht University, MD Maastricht, The Netherlands
| | - Joost J F P Luiken
- Department of Genetics & Cell Biology, Faculty of Health, Medicine and Life Sciences (FHML), Maastricht University, MD Maastricht, The Netherlands
| | - Miranda Nabben
- Department of Genetics & Cell Biology, Faculty of Health, Medicine and Life Sciences (FHML), Maastricht University, MD Maastricht, The Netherlands
| |
Collapse
|
32
|
Wu W, Wang S, Liu Q, Shan T, Wang X, Feng J, Wang Y. AMPK facilitates intestinal long-chain fatty acid uptake by manipulating CD36 expression and translocation. FASEB J 2020; 34:4852-4869. [PMID: 32048347 DOI: 10.1096/fj.201901994r] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 12/24/2019] [Accepted: 01/14/2020] [Indexed: 12/13/2022]
Abstract
Cellular long-chain fatty acids' (LCFAs) uptake is a crucial physiological process that regulates cellular energy homeostasis. AMPK has been shown to modulate LCFAs uptake in several kinds of cells, but whether it exerts an impact on intestinal LCFAs uptake is not quite clear. In the current study, we found that AMPK reinforced LCFAs uptake in intestinal epithelial cells (IECs). Moreover, intestinal epithelium-specific AMPK deletion impaired intestinal LCFAs absorption and protected mice from high-fat diet-induced obesity. Mechanistically, we discovered that AMPK deletion reduced the CD36 protein level by upregulating Parkin-mediated polyubiquitination of CD36 in IECs. Furthermore, our results revealed that AMPK affected PARK2 (gene name of Parkin) mRNA stability in a YTHDF2-dependent manner through FTO-dependent demethylation of N6 -methyladenosine (m6 A). Besides, AMPK promoted the translocation of CD36 to the plasma membrane in IECs, but the inhibition of AKT signaling suppressed this effect, which also halted the accelerated fatty acid uptake induced by AMPK. These results suggest that AMPK facilitates the intestinal LCFAs uptake by upregulating CD36 protein abundance and promoting its membrane translocation simultaneously. Such findings shed light on the role of AMPK in the regulation of intestinal LCFAs uptake.
Collapse
Affiliation(s)
- Weiche Wu
- College of Animal Science, Zhejiang University, Hangzhou, P.R. China.,Key Laboratory of Animal Nutrition & Feed Sciences, Ministry of Agriculture, Zhejiang University, Hangzhou, P.R. China.,Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Zhejiang University, Hangzhou, P.R. China
| | - Sisi Wang
- College of Animal Science, Zhejiang University, Hangzhou, P.R. China.,Key Laboratory of Animal Nutrition & Feed Sciences, Ministry of Agriculture, Zhejiang University, Hangzhou, P.R. China.,Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Zhejiang University, Hangzhou, P.R. China
| | - Qing Liu
- College of Animal Science, Zhejiang University, Hangzhou, P.R. China.,Key Laboratory of Animal Nutrition & Feed Sciences, Ministry of Agriculture, Zhejiang University, Hangzhou, P.R. China.,Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Zhejiang University, Hangzhou, P.R. China
| | - Tizhong Shan
- College of Animal Science, Zhejiang University, Hangzhou, P.R. China.,Key Laboratory of Animal Nutrition & Feed Sciences, Ministry of Agriculture, Zhejiang University, Hangzhou, P.R. China.,Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Zhejiang University, Hangzhou, P.R. China
| | - Xinxia Wang
- College of Animal Science, Zhejiang University, Hangzhou, P.R. China.,Key Laboratory of Animal Nutrition & Feed Sciences, Ministry of Agriculture, Zhejiang University, Hangzhou, P.R. China.,Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Zhejiang University, Hangzhou, P.R. China
| | - Jie Feng
- College of Animal Science, Zhejiang University, Hangzhou, P.R. China.,Key Laboratory of Animal Nutrition & Feed Sciences, Ministry of Agriculture, Zhejiang University, Hangzhou, P.R. China.,Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Zhejiang University, Hangzhou, P.R. China
| | - Yizhen Wang
- College of Animal Science, Zhejiang University, Hangzhou, P.R. China.,Key Laboratory of Animal Nutrition & Feed Sciences, Ministry of Agriculture, Zhejiang University, Hangzhou, P.R. China.,Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Zhejiang University, Hangzhou, P.R. China
| |
Collapse
|
33
|
Chen C, Luo F, Wu P, Huang Y, Das A, Chen S, Chen J, Hu X, Li F, Fang Z, Zhou S. Metabolomics reveals metabolite changes of patients with pulmonary arterial hypertension in China. J Cell Mol Med 2020; 24:2484-2496. [PMID: 31945804 PMCID: PMC7028857 DOI: 10.1111/jcmm.14937] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 12/01/2019] [Accepted: 12/16/2019] [Indexed: 12/12/2022] Open
Abstract
The specific mechanism of pulmonary arterial hypertension (PAH) remains elusive. The present study aimed to explore the underlying mechanism of PAH through the identity of novel biomarkers for PAH using metabolomics approach. Serum samples from 40 patients with idiopathic PAH (IPAH), 20 patients with congenital heart disease-associated PAH (CHD-PAH) and 20 healthy controls were collected and analysed by ultra-high-performance liquid chromatography coupled with high-resolution mass spectrometry (UPLC-HRMS). Orthogonal partial least square-discriminate analysis (OPLS-DA) was applied to screen potential biomarkers. These results were validated in monocrotaline (MCT)-induced PAH rat model. The OPLS-DA model was successful in screening distinct metabolite signatures which distinguished IPAH and CHD-PAH patients from healthy controls, respectively (26 and 15 metabolites). Unbiased analysis from OPLS-DA identified 31 metabolites from PAH patients which were differentially regulated compared to the healthy controls. Our analysis showed dysregulation of the different metabolic pathways, including lipid metabolism, glucose metabolism, amino acid metabolism and phospholipid metabolism pathways in PAH patients compared to their healthy counterpart. Among these metabolites from dysregulated metabolic pathways, a panel of metabolites from lipid metabolism and fatty acid oxidation (lysophosphatidylcholine, phosphatidylcholine, perillic acid, palmitoleic acid, N-acetylcholine-d-sphingomyelin, oleic acid, palmitic acid and 2-Octenoylcarnitine metabolites) were found to have a close association with PAH. The results from the analysis of both real-time quantitative PCR and Western blot showed that expression of LDHA, CD36, FASN, PDK1 GLUT1 and CPT-1 in right heart/lung were significantly up-regulated in MCT group than the control group.
Collapse
Affiliation(s)
- Chenyang Chen
- Department of Cardiovascular MedicineThe Second Xiangya HospitalCentral South UniversityChangshaChina
- Department of Cardiovascular MedicineThe Third Xiangya HospitalCentral South UniversityChangshaChina
| | - Fei Luo
- Department of Cardiovascular MedicineThe Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Panyun Wu
- Department of Cardiovascular MedicineThe Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Yiyuan Huang
- Department of Cardiovascular MedicineThe Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Avash Das
- Department of Molecular GeneticsUniversity of Texas Southwestern Medical CenterDallasTXUSA
| | - Shenglan Chen
- Department of Cardiovascular MedicineThe Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Jingyuan Chen
- Department of Cardiovascular MedicineThe Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Xinqun Hu
- Department of Cardiovascular MedicineThe Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Fei Li
- Kunming Institute of BotanyChinese Academy of SciencesKunmingChina
| | - Zhenfei Fang
- Department of Cardiovascular MedicineThe Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Shenhua Zhou
- Department of Cardiovascular MedicineThe Second Xiangya HospitalCentral South UniversityChangshaChina
| |
Collapse
|
34
|
Glatz JFC, Luiken JJFP, Nabben M. CD36 (SR-B2) as a Target to Treat Lipid Overload-Induced Cardiac Dysfunction. J Lipid Atheroscler 2020; 9:66-78. [PMID: 32821722 PMCID: PMC7379071 DOI: 10.12997/jla.2020.9.1.66] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/06/2019] [Accepted: 12/09/2019] [Indexed: 01/05/2023] Open
Abstract
The heart faces the challenge of adjusting the rate of fatty acid uptake to match myocardial demand for energy provision at any given moment, avoiding both too low uptake rates, which could elicit an energy deficit, and too high uptake rates, which pose the risk of excess lipid accumulation and lipotoxicity. The transmembrane glycoprotein cluster of differentiation 36 (CD36), a scavenger receptor (B2), serves many functions in lipid metabolism and signaling. In the heart, CD36 is the main sarcolemmal lipid transporter involved in the rate-limiting kinetic step in cardiac lipid utilization. The cellular fatty acid uptake rate is determined by the presence of CD36 at the cell surface, which is regulated by subcellular vesicular recycling from endosomes to the sarcolemma. CD36 has been implicated in dysregulated fatty acid and lipid metabolism in pathophysiological conditions, particularly high-fat diet-induced insulin resistance and diabetic cardiomyopathy. Thus, in conditions of chronic lipid overload, high levels of CD36 are moved to the sarcolemma, setting the heart on a route towards increased lipid uptake, excessive lipid accumulation, insulin resistance, and eventually contractile dysfunction. Insight into the subcellular trafficking machinery of CD36 will provide novel targets to treat the lipid-overloaded heart. A screen for CD36-dedicated trafficking proteins found that vacuolar-type H+-ATPase and specific vesicle-associated membrane proteins, among others, were uniquely involved in CD36 recycling. Preliminary data suggest that these proteins may offer clues on how to manipulate myocardial lipid uptake, and thus could be promising targets for metabolic intervention therapy to treat the failing heart.
Collapse
Affiliation(s)
- Jan F C Glatz
- Department of Genetics & Cell Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands
| | - Joost J F P Luiken
- Department of Genetics & Cell Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands
| | - Miranda Nabben
- Department of Genetics & Cell Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
35
|
Wu RX, Dong YY, Yang PW, Wang L, Deng YH, Zhang HW, Huang XY. CD36- and obesity-associated granulosa cells dysfunction. Reprod Fertil Dev 2020; 31:993-1001. [PMID: 30832758 DOI: 10.1071/rd18292] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 12/27/2018] [Indexed: 01/14/2023] Open
Abstract
Emerging evidence indicates that obesity impairs granulosa cell (GC) function, but the underlying mechanisms remain unclear. Gene expression profiles in GC of non-polycystic ovary syndrome (PCOS) obese (NPO), PCOS obese (PO), PCOS normal weight (PN) and non-PCOS normal weight (NPN) patients were analysed by microarray analysis. Compared with the NPN group, there were 16, 545 and 416 differently expressed genes in the NPO, PO and PN groups respectively. CD36 was the only intersecting gene, with greater than two fold changes in expression between the NPO versus NPN and PO versus NPN comparisons, and was not present in the PN versus NPN comparison. In addition, levels of CD36 protein were higher in GC from obese than normal weight patients. Furthermore, CD36 overexpression in a GC line inhibited cell proliferation, as determined by the cell counting kit-8 (CCK8) test, promoted cell apoptosis, as determined by flow cytometry, and inhibited the secretion of oestradiol by depositing triglyceride in cells and increasing cellular lipid peroxide levels. These adverse effects were reduced by sulfo-N-succinimidyloleate, a specific inhibitor of CD36. Together, the findings of this study suggest that obesity with and without PCOS should be regarded as separate entities, and that CD36 overexpression in GC of obese patients is one of the mechanisms by which obesity impairs GC function.
Collapse
Affiliation(s)
- Ru-Xing Wu
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie Fang Avenue, Wuhan 430030, China
| | - Ying-Ying Dong
- Department of Dermatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie Fang Avenue, Wuhan 430030, China
| | - Pei-Wen Yang
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie Fang Avenue, Wuhan 430030, China
| | - Lan Wang
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie Fang Avenue, Wuhan 430030, China
| | - Yun-Hua Deng
- Department of Dermatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie Fang Avenue, Wuhan 430030, China
| | - Han-Wang Zhang
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie Fang Avenue, Wuhan 430030, China; and Corresponding authors. Emails: ;
| | - Xiao-Yuan Huang
- Cancer Biology Research Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie Fang Avenue, Wuhan 430030, China; and Corresponding authors. Emails: ;
| |
Collapse
|
36
|
Methionine restriction at the post-weanling period promotes muscle fiber transition in piglets and improves intramuscular fat content in growing-finishing pigs. Amino Acids 2019; 51:1657-1666. [PMID: 31729551 DOI: 10.1007/s00726-019-02802-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 11/03/2019] [Indexed: 01/29/2023]
Abstract
The effects of methionine restriction on lipid metabolism in the liver and adipose tissue have been well determined, while its effects on the skeletal muscle have not been fully studied. The present study was conducted to explore whether methionine restriction in weanling piglets would affect skeletal muscle lipid content and fiber type and whether such changes would further affect the meat quality of growing-finishing pigs. A total of 28 crossbred healthy barrows weaned at the age of 21 days were randomly allotted to two treatments and fed either a methionine-restricted diet (0.25% methionine) or a control diet (0.48% methionine) for 4 weeks. After this period, the pigs were fed the same basal diet throughout the growing-finishing period. The results showed that methionine restriction during the post-weanling period of piglets enhanced lipid accumulation and promoted the formation of slow-twitch muscle fibers in the skeletal muscle, while it had no effects on growth performance. We hypothesized that such effects might be mediated by AMPK-PGC-1α signaling pathway. Furthermore, the effects of methionine restriction on the skeletal muscle of pigs at the post-weanling period had a subsequent effect on growing-finishing pigs, which showed a higher intramuscular fat content. Our results suggest that dietary methionine restriction in piglets at an early stage might be an alternative method for improving meat quality.
Collapse
|
37
|
Rahmani S, Defferrari MS, Wakarchuk WW, Antonescu CN. Energetic adaptations: Metabolic control of endocytic membrane traffic. Traffic 2019; 20:912-931. [DOI: 10.1111/tra.12705] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 09/11/2019] [Accepted: 10/13/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Sadia Rahmani
- Department of Chemistry and BiologyRyerson University Toronto Ontario Canada
| | | | - Warren W. Wakarchuk
- Department of Chemistry and BiologyRyerson University Toronto Ontario Canada
- Department of Biological SciencesUniversity of Alberta Edmonton Alberta Canada
| | - Costin N. Antonescu
- Department of Chemistry and BiologyRyerson University Toronto Ontario Canada
- Keenan Research Centre for Biomedical Science of St. Michael's Hospital Toronto Ontario Canada
| |
Collapse
|
38
|
Hoi JK, Lieder B, Pignitter M, Hans J, Ley JP, Lietard J, Hoelz K, Somoza M, Somoza V. Identification of Cinnamaldehyde as Most Effective Fatty Acid Uptake Reducing Cinnamon-Derived Compound in Differentiated Caco-2 Cells Compared to Its Structural Analogues Cinnamyl Alcohol, Cinnamic Acid, and Cinnamyl Isobutyrate. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:11638-11649. [PMID: 31532204 DOI: 10.1021/acs.jafc.9b04274] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Naturally occurring cinnamon compounds such as cinnamaldehyde (CAL) and structurally related constituents have been associated with antiobesity activities, although studies regarding the impact on intestinal fatty acid uptake are scarce. Here, we demonstrate the effects of CAL and structural analogues cinnamyl alcohol (CALC), cinnamic acid (CAC), and cinnamyl isobutyrate on mechanisms regulating intestinal fatty acid uptake in differentiated Caco-2 cells. CAL, CALC, and CAC (3000 μM) were found to decrease fatty acid uptake by 58.0 ± 8.83, 19.4 ± 8.98, and 21.9 ± 6.55%, respectively. While CAL and CALC at a concentration of 300 μM increased serotonin release 14.9 ± 3.00- and 2.72 ± 0.69-fold, respectively, serotonin alone showed no effect on fatty acid uptake. However, CAL revealed transient receptor potential channel A1-dependency in the decrease of fatty acid uptake, as well as in CAL-induced serotonin release. Overall, CAL was identified as the most potent of the cinnamon constituents tested.
Collapse
Affiliation(s)
| | | | | | - Joachim Hans
- Symrise AG , Muehlenfeldstraße 1 , Holzminden 37603 , Germany
| | - Jakob P Ley
- Symrise AG , Muehlenfeldstraße 1 , Holzminden 37603 , Germany
| | | | | | | | | |
Collapse
|
39
|
Identification of coronary heart disease biomarkers with different severities of coronary stenosis in human urine using non-targeted metabolomics based on UPLC-Q-TOF/MS. Clin Chim Acta 2019; 497:95-103. [DOI: 10.1016/j.cca.2019.07.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/09/2019] [Accepted: 07/16/2019] [Indexed: 12/14/2022]
|
40
|
Abstract
Heart failure and related morbidity and mortality are increasing at an alarming rate, in large part, because of increases in aging, obesity, and diabetes mellitus. The clinical outcomes associated with heart failure are considerably worse for patients with diabetes mellitus than for those without diabetes mellitus. In people with diabetes mellitus, the presence of myocardial dysfunction in the absence of overt clinical coronary artery disease, valvular disease, and other conventional cardiovascular risk factors, such as hypertension and dyslipidemia, has led to the descriptive terminology, diabetic cardiomyopathy. The prevalence of diabetic cardiomyopathy is increasing in parallel with the increase in diabetes mellitus. Diabetic cardiomyopathy is initially characterized by myocardial fibrosis, dysfunctional remodeling, and associated diastolic dysfunction, later by systolic dysfunction, and eventually by clinical heart failure. Impaired cardiac insulin metabolic signaling, mitochondrial dysfunction, increases in oxidative stress, reduced nitric oxide bioavailability, elevations in advanced glycation end products and collagen-based cardiomyocyte and extracellular matrix stiffness, impaired mitochondrial and cardiomyocyte calcium handling, inflammation, renin-angiotensin-aldosterone system activation, cardiac autonomic neuropathy, endoplasmic reticulum stress, microvascular dysfunction, and a myriad of cardiac metabolic abnormalities have all been implicated in the development and progression of diabetic cardiomyopathy. Molecular mechanisms linked to the underlying pathophysiological changes include abnormalities in AMP-activated protein kinase, peroxisome proliferator-activated receptors, O-linked N-acetylglucosamine, protein kinase C, microRNA, and exosome pathways. The aim of this review is to provide a contemporary view of these instigators of diabetic cardiomyopathy, as well as mechanistically based strategies for the prevention and treatment of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Guanghong Jia
- From the Diabetes and Cardiovascular Research Center (G.J., J.R.S.) and Department of Medical Pharmacology and Physiology (M.A.H., J.R.S.), University of Missouri School of Medicine, Columbia; Dalton Cardiovascular Research Center, University of Missouri, Columbia (M.A.H., J.R.S.); and Research Service, Truman Memorial Veterans Hospital, Columbia, MO (G.J., J.R.S.)
| | - Michael A Hill
- From the Diabetes and Cardiovascular Research Center (G.J., J.R.S.) and Department of Medical Pharmacology and Physiology (M.A.H., J.R.S.), University of Missouri School of Medicine, Columbia; Dalton Cardiovascular Research Center, University of Missouri, Columbia (M.A.H., J.R.S.); and Research Service, Truman Memorial Veterans Hospital, Columbia, MO (G.J., J.R.S.)
| | - James R Sowers
- From the Diabetes and Cardiovascular Research Center (G.J., J.R.S.) and Department of Medical Pharmacology and Physiology (M.A.H., J.R.S.), University of Missouri School of Medicine, Columbia; Dalton Cardiovascular Research Center, University of Missouri, Columbia (M.A.H., J.R.S.); and Research Service, Truman Memorial Veterans Hospital, Columbia, MO (G.J., J.R.S.).
| |
Collapse
|
41
|
Harasim-Symbor E, Polak A, Pędzińska-Betiuk A, Weresa J, Malinowska B, Lewandowska A, Kasacka I, Chabowski A. Fatty acid amide hydrolase inhibitor (URB597) as a regulator of myocardial lipid metabolism in spontaneously hypertensive rats. Chem Phys Lipids 2018; 218:141-148. [PMID: 30578756 DOI: 10.1016/j.chemphyslip.2018.12.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 11/22/2018] [Accepted: 12/13/2018] [Indexed: 11/28/2022]
Abstract
Pressure overload, which is typical of hypertension, is known to evoke alterations not only in the morphology of the heart but also in the preference of myocardial energetic substrates usage. Nowadays, the endocannabinoid system (ECS) serves as a potential therapeutic target for cardiovascular disorders and, simultaneously, affects whole body metabolism homeostasis. Therefore, an open question is whether ECS, apart from decreasing blood pressure, also affects cardiac muscle metabolism in hypertensive conditions. All experiments were conducted on a genetic model of primary hypertension i.e. spontaneously hypertensive rats (SHRs) and Wistar Kyoto rats (WKY) served as a normotensive control. ECS was chronically activated by 2-weeks intraperitoneal injections of fatty acid amide hydrolase (FAAH) inhibitor - URB597. Lipid analyses in the left ventricle and serum were based on ex vivo heart perfusion in Langendorff perfusion system, thin layer chromatography, and gas liquid chromatography. The total expression of selected proteins was determined using Western blot as well as immunohistochemical techniques. As expected, URB597 markedly reduced systolic as well as mean blood pressures in SHRs. Moreover, prolonged FAAH inhibition resulted in stimulation of 3H-palmitate uptake and incorporation into different lipid fractions in cardiomyocytes in the hypertensive as well as normotensive conditions. An increase in fatty acid oxidation caused by URB597 treatment was observed only in WKY rats, but not SHRs, and was accompanied by an elevation in peroxisome proliferator-activated receptor alpha (PPARα) and β-hydroxyacyl-CoA dehydrogenase (β-HAD) expressions. Chronic activation of ECS significantly upregulates palmitate uptake and its esterification but not oxidation in the SHR's myocardium.
Collapse
Affiliation(s)
- Ewa Harasim-Symbor
- Department of Physiology, Medical University of Bialystok, 15-222 Bialystok, Poland.
| | - Agnieszka Polak
- Department of Physiology, Medical University of Bialystok, 15-222 Bialystok, Poland; Faculty of Health Sciences, Lomza State University of Applied Sciences, 18-400 Lomza, Poland.
| | - Anna Pędzińska-Betiuk
- Department of Experimental Physiology and Pathophysiology, Medical University of Bialystok, 15-222 Bialystok, Poland.
| | - Jolanta Weresa
- Department of Experimental Physiology and Pathophysiology, Medical University of Bialystok, 15-222 Bialystok, Poland.
| | - Barbara Malinowska
- Department of Experimental Physiology and Pathophysiology, Medical University of Bialystok, 15-222 Bialystok, Poland.
| | - Alicja Lewandowska
- Department of Histology and Cytophysiology, Medical University of Bialystok, 15-222 Bialystok, Poland.
| | - Irena Kasacka
- Department of Histology and Cytophysiology, Medical University of Bialystok, 15-222 Bialystok, Poland.
| | - Adrian Chabowski
- Department of Physiology, Medical University of Bialystok, 15-222 Bialystok, Poland.
| |
Collapse
|
42
|
Liu Y, Neumann D, Glatz JFC, Luiken JJFP. Molecular mechanism of lipid-induced cardiac insulin resistance and contractile dysfunction. Prostaglandins Leukot Essent Fatty Acids 2018; 136:131-141. [PMID: 27372802 DOI: 10.1016/j.plefa.2016.06.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 06/10/2016] [Indexed: 01/04/2023]
Abstract
Long-chain fatty acids are the main cardiac substrates from which ATP is generated continually to serve the high energy demand and sustain the normal function of the heart. Under healthy conditions, fatty acid β-oxidation produces 50-70% of the energy demands with the remainder largely accounted for by glucose. Chronically increased dietary lipid supply often leads to excess lipid accumulation in the heart, which is linked to a variety of maladaptive phenomena, such as insulin resistance, cardiac hypertrophy and contractile dysfunction. CD36, the predominant cardiac fatty acid transporter, has a key role in setting the heart on a road to contractile dysfunction upon the onset of chronic lipid oversupply by translocating to the cell surface and opening the cellular 'doors' for fatty acids. The sequence of events after the CD36-mediated myocellular lipid accumulation is less understood, but in general it has been accepted that the excessively imported lipids cause insulin resistance, which in turn leads to contractile dysfunction. There are several gaps of knowledge in this proposed order of events which this review aims to discuss. First, the molecular mechanisms underlying lipid-induced insulin resistance are not yet completely disclosed. Specifically, several mediators have been proposed, such as diacylglycerols, ceramides, peroxisome proliferator-activated receptors (PPAR), inflammatory kinases and reactive oxygen species (ROS), but their relative contributions to the onset of insulin resistance and their putatively synergistic actions are topics of controversy. Second, there are also pieces of evidence that lipids can induce contractile dysfunction independently of insulin resistance. Perhaps, a more integrative view is needed, in which several lipid-induced pathways operate synergistically or in parallel to induce contractile dysfunction. Unraveling of these processes is expected to be important in designing effective therapeutic strategies to protect the lipid-overloaded heart.
Collapse
Affiliation(s)
- Yilin Liu
- Department of Molecular Genetics, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Dietbert Neumann
- Department of Molecular Genetics, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Jan F C Glatz
- Department of Molecular Genetics, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| | - Joost J F P Luiken
- Department of Molecular Genetics, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| |
Collapse
|
43
|
Lin L, Huang S, Zhu Z, Han J, Wang Z, Huang W, Huang Z. P2X7 receptor regulates EMMPRIN and MMP‑9 expression through AMPK/MAPK signaling in PMA‑induced macrophages. Mol Med Rep 2018; 18:3027-3033. [PMID: 30015874 DOI: 10.3892/mmr.2018.9282] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 11/20/2017] [Indexed: 11/06/2022] Open
Abstract
The rupture of atherosclerotic plaques may result in the formation of thrombi, which may induce subsequent cardiac events such as acute myocardial infarction. Overproduction of matrix metalloproteinases (MMPs) and extracellular matrix metalloproteinase inducers (EMMPRINs) by monocytes and macrophages may lead to rupture of atherosclerotic plaques as a result of the degradation of the extracellular matrix. The purinergic 2X7 receptor (P2X7R) is expressed in macrophages that are assembled in atherosclerotic lesions of human carotid arteries. P2X7R may serve a crucial role in the development of atherosclerosis; therefore, the present study aimed to determine whether P2X7R regulated the expression of EMMPRIN and MMP‑9 in phorbol 12‑myristate 13‑acetate (PMA)‑induced macrophages. In addition, the potential molecular mechanisms involved in this process were investigated. THP‑1 human monocytic cells were pretreated with A‑438079 (a specific inhibitor of P2X7R) for 1 h and subsequently incubated with or without PMA for 48 h. Exposure to A‑438079 significantly decreased the expression of MMP‑9 and EMMPRIN in the PMA‑induced macrophages and attenuated the activation (phosphorylation) of mitogen‑activated protein kinase (MAPK) signaling, including c‑Jun N‑terminal kinase, p38 and extracellular signal‑regulated kinase. The present study also demonstrated that 5'‑AMP‑activated protein kinase (AMPK) was activated by PMA exposure during differentiation from monocytes to macrophages. This activation was reversed by A‑438079 treatment through the inhibition of P2X7R expression. These results suggested that the inhibition of P2X7R may be able to suppress the AMPK/MAPK signaling pathway and consequently downregulate both EMMPRIN and MMP‑9 expression in PMA‑induced macrophages.
Collapse
Affiliation(s)
- Lu Lin
- The Key Laboratory of Cardiovascular Disease of Wenzhou, Department of Cardiology, Cardiac Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Shanjun Huang
- The Key Laboratory of Cardiovascular Disease of Wenzhou, Department of Cardiology, Cardiac Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Zhouyang Zhu
- The Key Laboratory of Cardiovascular Disease of Wenzhou, Department of Cardiology, Cardiac Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Jibo Han
- The Key Laboratory of Cardiovascular Disease of Wenzhou, Department of Cardiology, Cardiac Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Zhengxian Wang
- The Key Laboratory of Cardiovascular Disease of Wenzhou, Department of Cardiology, Cardiac Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Weijian Huang
- The Key Laboratory of Cardiovascular Disease of Wenzhou, Department of Cardiology, Cardiac Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Zhouqing Huang
- The Key Laboratory of Cardiovascular Disease of Wenzhou, Department of Cardiology, Cardiac Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| |
Collapse
|
44
|
Glatz JFC, Luiken JJFP. Dynamic role of the transmembrane glycoprotein CD36 (SR-B2) in cellular fatty acid uptake and utilization. J Lipid Res 2018; 59:1084-1093. [PMID: 29627764 PMCID: PMC6027920 DOI: 10.1194/jlr.r082933] [Citation(s) in RCA: 193] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/26/2018] [Indexed: 12/20/2022] Open
Abstract
The widely expressed transmembrane glycoprotein, cluster of differentiation 36 (CD36), a scavenger receptor class B protein (SR-B2), serves many functions in lipid metabolism and signaling. Here, we review CD36's role in facilitating cellular long-chain fatty acid uptake across the plasma membrane, particularly in heart and skeletal muscles. CD36 acts in concert with other membrane proteins, such as peripheral plasma membrane fatty acid-binding protein, and is an intracellular docking site for cytoplasmic fatty acid-binding protein. The cellular fatty-acid uptake rate is governed primarily by the presence of CD36 at the cell surface, which is regulated by the subcellular vesicular recycling of CD36 from endosomes to the plasma membrane. CD36 has been implicated in dysregulated fatty acid and lipid metabolism in pathophysiological conditions, particularly in high-fat diet-induced insulin resistance and diabetic cardiomyopathy. Current research is exploring signaling pathways and vesicular trafficking routes involving CD36 to identify metabolic targets to manipulate the cellular utilization of fatty acids. Because of its rate-controlling function in the use of fatty acids in the heart and muscle, CD36 would be a preferable target to protect myocytes against lipotoxicity. Despite a poor understanding of its mechanism of action, CD36 has emerged as a pivotal membrane protein involved in whole-body lipid homeostasis.
Collapse
Affiliation(s)
- Jan F C Glatz
- Department of Genetics and Cell Biology, Faculty of Health, Medicine & Life Sciences (FHML), Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Joost J F P Luiken
- Department of Genetics and Cell Biology, Faculty of Health, Medicine & Life Sciences (FHML), Maastricht University, 6200 MD Maastricht, The Netherlands
| |
Collapse
|
45
|
Ramírez E, Picatoste B, González-Bris A, Oteo M, Cruz F, Caro-Vadillo A, Egido J, Tuñón J, Morcillo MA, Lorenzo Ó. Sitagliptin improved glucose assimilation in detriment of fatty-acid utilization in experimental type-II diabetes: role of GLP-1 isoforms in Glut4 receptor trafficking. Cardiovasc Diabetol 2018; 17:12. [PMID: 29325553 PMCID: PMC5765634 DOI: 10.1186/s12933-017-0643-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 12/12/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The distribution of glucose and fatty-acid transporters in the heart is crucial for energy consecution and myocardial function. In this sense, the glucagon-like peptide-1 (GLP-1) enhancer, sitagliptin, improves glucose homeostasis but it could also trigger direct cardioprotective actions, including regulation of energy substrate utilization. METHODS Type-II diabetic GK (Goto-Kakizaki), sitagliptin-treated GK (10 mg/kg/day) and wistar rats (n = 10, each) underwent echocardiographic evaluation, and positron emission tomography scanning for [18F]-2-fluoro-2-deoxy-D-glucose (18FDG). Hearts and plasma were isolated for biochemical approaches. Cultured cardiomyocytes were examined for receptor distribution after incretin stimulation in high fatty acid or high glucose media. RESULTS Untreated GK rats exhibited hyperglycemia, hyperlipidemia, insulin resistance, and plasma GLP-1 reduction. Moreover, GK myocardium decreased 18FDG assimilation and diastolic dysfunction. However, sitagliptin improved hyperglycemia, insulin resistance, and GLP-1 levels, and additionally, enhanced 18FDG uptake and diastolic function. Sitagliptin also stimulated the sarcolemmal translocation of the glucose transporter-4 (Glut4), in detriment of the fatty acyl translocase (FAT)/CD36. In fact, Glut4 mRNA expression and sarcolemmal translocation were also increased after GLP-1 stimulation in high-fatty acid incubated cardiomyocytes. PI3K/Akt and AMPKα were involved in this response. Intriguingly, the GLP-1 degradation metabolite, GLP-1(9-36), showed similar effects. CONCLUSIONS Besides of its anti-hyperglycemic effect, sitagliptin-enhanced GLP-1 may ameliorate diastolic dysfunction in type-II diabetes by shifting fatty acid to glucose utilization in the cardiomyocyte, and thus, improving cardiac efficiency and reducing lipolysis.
Collapse
Affiliation(s)
- E Ramírez
- Renal, Vascular and Diabetes Laboratory, Instituto de Investigaciones Sanitarias-Fundación Jiménez Díaz, School of Medicine, Universidad Autónoma, Av. Reyes Católicos 2, 28040, Madrid, Spain
| | - B Picatoste
- Renal, Vascular and Diabetes Laboratory, Instituto de Investigaciones Sanitarias-Fundación Jiménez Díaz, School of Medicine, Universidad Autónoma, Av. Reyes Católicos 2, 28040, Madrid, Spain
| | - A González-Bris
- Renal, Vascular and Diabetes Laboratory, Instituto de Investigaciones Sanitarias-Fundación Jiménez Díaz, School of Medicine, Universidad Autónoma, Av. Reyes Católicos 2, 28040, Madrid, Spain
| | - M Oteo
- Biomedical Applications of Radioisotopes and Pharmacokinetics, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
| | - F Cruz
- Biomedical Applications of Radioisotopes and Pharmacokinetics, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
| | - A Caro-Vadillo
- Veterinary School, Universidad Complutense, Madrid, Spain
| | - J Egido
- Renal, Vascular and Diabetes Laboratory, Instituto de Investigaciones Sanitarias-Fundación Jiménez Díaz, School of Medicine, Universidad Autónoma, Av. Reyes Católicos 2, 28040, Madrid, Spain.,Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM) Network, Madrid, Spain
| | - J Tuñón
- Department of Cardiology, Hospital Fundación Jiménez Díaz, Madrid, Spain
| | - M A Morcillo
- Biomedical Applications of Radioisotopes and Pharmacokinetics, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
| | - Ó Lorenzo
- Renal, Vascular and Diabetes Laboratory, Instituto de Investigaciones Sanitarias-Fundación Jiménez Díaz, School of Medicine, Universidad Autónoma, Av. Reyes Católicos 2, 28040, Madrid, Spain. .,Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM) Network, Madrid, Spain.
| |
Collapse
|
46
|
Feng Y, Zhang Y, Xiao H. AMPK and cardiac remodelling. SCIENCE CHINA-LIFE SCIENCES 2017; 61:14-23. [PMID: 29170891 DOI: 10.1007/s11427-017-9197-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 08/11/2017] [Indexed: 12/17/2022]
Abstract
Cardiac remodelling is generally accepted as a critical process in the progression of heart failure. Myocyte hypertrophy, inflammatory responses and cardiac fibrosis are the main pathological changes associated with cardiac remodelling. AMP-activated protein kinase (AMPK) is known as an energy sensor and a regulator of cardiac metabolism under normal and ischaemic conditions. Additionally, AMPK has been shown to play roles in cardiac remodelling extending well beyond metabolic regulation. In this review, we discuss the currently defined roles of AMPK in cardiac remodelling and summarize the effects of AMPK on cardiac hypertrophy, inflammatory responses and fibrosis and the molecular mechanisms underlying these effects. In addition, we discuss some pharmacological activators of AMPK that are promising treatments for cardiac remodelling.
Collapse
Affiliation(s)
- Yenan Feng
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China
| | - Youyi Zhang
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China
| | - Han Xiao
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China.
| |
Collapse
|
47
|
Talati MH, Brittain EL, Fessel JP, Penner N, Atkinson J, Funke M, Grueter C, Jerome WG, Freeman M, Newman JH, West J, Hemnes AR. Mechanisms of Lipid Accumulation in the Bone Morphogenetic Protein Receptor Type 2 Mutant Right Ventricle. Am J Respir Crit Care Med 2017; 194:719-28. [PMID: 27077479 DOI: 10.1164/rccm.201507-1444oc] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
RATIONALE In heritable pulmonary arterial hypertension with germline mutation in the bone morphogenetic protein receptor type 2 (BMPR2) gene, right ventricle (RV) dysfunction is associated with RV lipotoxicity; however, the underlying mechanism for lipid accumulation is not known. OBJECTIVES We hypothesized that lipid accumulation in cardiomyocytes with BMPR2 mutation occurs owing to alterations in lipid transport and impaired fatty acid oxidation (FAO), which is exacerbated by a high-lipid (Western) diet (WD). METHODS We used a transgenic mouse model of pulmonary arterial hypertension with mutant BMPR2 and generated a cardiomyocyte cell line with BMPR2 mutation. Electron microscopy and metabolomic analysis were performed on mouse RVs. MEASUREMENTS AND MAIN RESULTS By metabolomics analysis, we found an increase in long-chain fatty acids in BMPR2 mutant mouse RVs compared with controls, which correlated with cardiac index. BMPR2-mutant cardiomyocytes had increased lipid compared with controls. Direct measurement of FAO in the WD-fed BMPR2-mutant RV showed impaired palmitate-linked oxygen consumption, and metabolomics analysis showed reduced indices of FAO. Using both mutant BMPR2 mouse RVs and cardiomyocytes, we found an increase in the uptake of (14)C-palmitate and fatty acid transporter CD36 that was further exacerbated by WD. CONCLUSIONS Taken together, our data suggest that impaired FAO and increased expression of the lipid transporter CD36 are key mechanisms underlying lipid deposition in the BMPR2-mutant RV, which are exacerbated in the presence of dietary lipids. These findings suggest important features leading to RV lipotoxicity in pulmonary arterial hypertension and may point to novel areas of therapeutic intervention.
Collapse
Affiliation(s)
- Megha H Talati
- 1 Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | | | - Joshua P Fessel
- 1 Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee.,3 Department of Pharmacology
| | - Niki Penner
- 1 Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | | | - Mitch Funke
- 1 Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | | | - W Gray Jerome
- 4 Department of Pathology, Microbiology, and Immunology.,6 Department of Cancer Biology, and
| | - Michael Freeman
- 7 Department of Radiation Oncology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - John H Newman
- 1 Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - James West
- 1 Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Anna R Hemnes
- 1 Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| |
Collapse
|
48
|
Li J, Zhong L, Wang F, Zhu H. Dissecting the role of AMP-activated protein kinase in human diseases. Acta Pharm Sin B 2017; 7:249-259. [PMID: 28540163 PMCID: PMC5430814 DOI: 10.1016/j.apsb.2016.12.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 11/12/2016] [Accepted: 11/17/2016] [Indexed: 12/18/2022] Open
Abstract
AMP-activated protein kinase (AMPK), known as a sensor and a master of cellular energy balance, integrates various regulatory signals including anabolic and catabolic metabolic processes. Accompanying the application of genetic methods and a plethora of AMPK agonists, rapid progress has identified AMPK as an attractive therapeutic target for several human diseases, such as cancer, type 2 diabetes, atherosclerosis, myocardial ischemia/reperfusion injury and neurodegenerative disease. The role of AMPK in metabolic and energetic modulation both at the intracellular and whole body levels has been reviewed elsewhere. In the present review, we summarize and update the paradoxical role of AMPK implicated in the diseases mentioned above and put forward the challenge encountered. Thus it will be expected to provide important clues for exploring rational methods of intervention in human diseases.
Collapse
Affiliation(s)
- Jin Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Liping Zhong
- Life Science College of Tarim University, Xinjiang 843300, China
| | - Fengzhong Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
- Corresponding author. Tel./fax: +86 10 62810295.
| | - Haibo Zhu
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines, Beijing 100050, China
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Beijing 100050, China
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- Corresponding author at: Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China. Tel./fax: +86 10 63188106.
| |
Collapse
|
49
|
Ritchie RH, Zerenturk EJ, Prakoso D, Calkin AC. Lipid metabolism and its implications for type 1 diabetes-associated cardiomyopathy. J Mol Endocrinol 2017; 58:R225-R240. [PMID: 28373293 DOI: 10.1530/jme-16-0249] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 04/03/2017] [Indexed: 12/13/2022]
Abstract
Diabetic cardiomyopathy was first defined over four decades ago. It was observed in small post-mortem studies of diabetic patients who suffered from concomitant heart failure despite the absence of hypertension, coronary disease or other likely causal factors, as well as in large population studies such as the Framingham Heart Study. Subsequent studies continue to demonstrate an increased incidence of heart failure in the setting of diabetes independent of established risk factors, suggesting direct effects of diabetes on the myocardium. Impairments in glucose metabolism and handling receive the majority of the blame. The role of concomitant impairments in lipid handling, particularly at the level of the myocardium, has however received much less attention. Cardiac lipid accumulation commonly occurs in the setting of type 2 diabetes and has been suggested to play a direct causal role in the development of cardiomyopathy and heart failure in a process termed as cardiac lipotoxicity. Excess lipids promote numerous pathological processes linked to the development of cardiomyopathy, including mitochondrial dysfunction and inflammation. Although somewhat underappreciated, cardiac lipotoxicity also occurs in the setting of type 1 diabetes. This phenomenon is, however, largely understudied in comparison to hyperglycaemia, which has been widely studied in this context. The current review addresses the changes in lipid metabolism occurring in the type 1 diabetic heart and how they are implicated in disease progression. Furthermore, the pathological pathways linked to cardiac lipotoxicity are discussed. Finally, we consider novel approaches for modulating lipid metabolism as a cardioprotective mechanism against cardiomyopathy and heart failure.
Collapse
Affiliation(s)
- Rebecca H Ritchie
- Heart Failure PharmacologyBaker Heart & Diabetes Institute, Melbourne, Victoria, Australia
- Central Clinical SchoolMonash University, Melbourne, Victoria, Australia
| | - Eser J Zerenturk
- Lipid Metabolism & Cardiometabolic Disease LaboratoryBaker Heart & Diabetes Institute, Melbourne, Victoria, Australia
| | - Darnel Prakoso
- Heart Failure PharmacologyBaker Heart & Diabetes Institute, Melbourne, Victoria, Australia
- School of BiosciencesThe University of Melbourne, Parkville, Victoria, Australia
| | - Anna C Calkin
- Central Clinical SchoolMonash University, Melbourne, Victoria, Australia
- Lipid Metabolism & Cardiometabolic Disease LaboratoryBaker Heart & Diabetes Institute, Melbourne, Victoria, Australia
| |
Collapse
|
50
|
|